freebsd-nq/usr.sbin/ppp/bundle.c

1241 lines
33 KiB
C
Raw Normal View History

/*-
* Copyright (c) 1998 Brian Somers <brian@Awfulhak.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id: bundle.c,v 1.1.2.69 1998/05/02 21:57:42 brian Exp $
*/
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <net/if.h>
#include <arpa/inet.h>
#include <net/route.h>
#include <net/if_dl.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <net/if_tun.h>
#include <sys/un.h>
#include <errno.h>
#include <fcntl.h>
#include <paths.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/uio.h>
#include <termios.h>
#include <unistd.h>
#include "command.h"
#include "mbuf.h"
#include "log.h"
#include "id.h"
#include "defs.h"
#include "timer.h"
#include "fsm.h"
#include "iplist.h"
#include "lqr.h"
#include "hdlc.h"
#include "throughput.h"
#include "slcompress.h"
#include "ipcp.h"
1998-03-16 22:52:54 +00:00
#include "filter.h"
#include "descriptor.h"
#include "route.h"
#include "lcp.h"
#include "ccp.h"
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
#include "link.h"
#include "mp.h"
#include "bundle.h"
#include "async.h"
#include "physical.h"
#include "modem.h"
#include "auth.h"
#include "lcpproto.h"
#include "chap.h"
#include "tun.h"
#include "prompt.h"
#include "chat.h"
#include "datalink.h"
#include "ip.h"
#define SCATTER_SEGMENTS 4 /* version, datalink, name, physical */
#define SOCKET_OVERHEAD 100 /* additional buffer space for large */
/* {recv,send}msg() calls */
static const char *PhaseNames[] = {
"Dead", "Establish", "Authenticate", "Network", "Terminate"
};
const char *
bundle_PhaseName(struct bundle *bundle)
{
return bundle->phase <= PHASE_TERMINATE ?
PhaseNames[bundle->phase] : "unknown";
}
void
bundle_NewPhase(struct bundle *bundle, u_int new)
{
if (new == bundle->phase)
return;
if (new <= PHASE_TERMINATE)
log_Printf(LogPHASE, "bundle: %s\n", PhaseNames[new]);
switch (new) {
case PHASE_DEAD:
bundle->phase = new;
break;
case PHASE_ESTABLISH:
bundle->phase = new;
break;
case PHASE_AUTHENTICATE:
bundle->phase = new;
bundle_DisplayPrompt(bundle);
break;
case PHASE_NETWORK:
1998-03-13 21:07:46 +00:00
ipcp_Setup(&bundle->ncp.ipcp);
fsm_Up(&bundle->ncp.ipcp.fsm);
fsm_Open(&bundle->ncp.ipcp.fsm);
bundle->phase = new;
bundle_DisplayPrompt(bundle);
break;
case PHASE_TERMINATE:
bundle->phase = new;
mp_Down(&bundle->ncp.mp);
bundle_DisplayPrompt(bundle);
break;
}
}
static int
bundle_CleanInterface(const struct bundle *bundle)
{
int s;
struct ifreq ifrq;
struct ifaliasreq ifra;
s = ID0socket(AF_INET, SOCK_DGRAM, 0);
if (s < 0) {
log_Printf(LogERROR, "bundle_CleanInterface: socket(): %s\n",
strerror(errno));
return (-1);
}
strncpy(ifrq.ifr_name, bundle->ifname, sizeof ifrq.ifr_name - 1);
ifrq.ifr_name[sizeof ifrq.ifr_name - 1] = '\0';
while (ID0ioctl(s, SIOCGIFADDR, &ifrq) == 0) {
memset(&ifra.ifra_mask, '\0', sizeof ifra.ifra_mask);
strncpy(ifra.ifra_name, bundle->ifname, sizeof ifra.ifra_name - 1);
ifra.ifra_name[sizeof ifra.ifra_name - 1] = '\0';
ifra.ifra_addr = ifrq.ifr_addr;
if (ID0ioctl(s, SIOCGIFDSTADDR, &ifrq) < 0) {
if (ifra.ifra_addr.sa_family == AF_INET)
log_Printf(LogERROR,
"bundle_CleanInterface: Can't get dst for %s on %s !\n",
inet_ntoa(((struct sockaddr_in *)&ifra.ifra_addr)->sin_addr),
bundle->ifname);
return 0;
}
ifra.ifra_broadaddr = ifrq.ifr_dstaddr;
if (ID0ioctl(s, SIOCDIFADDR, &ifra) < 0) {
if (ifra.ifra_addr.sa_family == AF_INET)
log_Printf(LogERROR,
"bundle_CleanInterface: Can't delete %s address on %s !\n",
inet_ntoa(((struct sockaddr_in *)&ifra.ifra_addr)->sin_addr),
bundle->ifname);
return 0;
}
}
return 1;
}
static void
bundle_LayerStart(void *v, struct fsm *fp)
{
/* The given FSM is about to start up ! */
}
static void
bundle_Notify(struct bundle *bundle, char c)
{
if (bundle->notify.fd != -1) {
if (write(bundle->notify.fd, &c, 1) == 1)
log_Printf(LogPHASE, "Parent notified of success.\n");
else
log_Printf(LogPHASE, "Failed to notify parent of success.\n");
close(bundle->notify.fd);
bundle->notify.fd = -1;
}
}
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
static void
bundle_LayerUp(void *v, struct fsm *fp)
{
/*
* The given fsm is now up
* If it's an LCP set our mtu (if we're multilink, add up the link
* speeds and set the MRRU).
* If it's an NCP, tell our -background parent to go away.
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
* If it's the first NCP, start the idle timer.
*/
struct bundle *bundle = (struct bundle *)v;
if (fp->proto == PROTO_LCP) {
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
if (bundle->ncp.mp.active) {
int speed;
struct datalink *dl;
for (dl = bundle->links, speed = 0; dl; dl = dl->next)
speed += modem_Speed(dl->physical);
if (speed)
tun_configure(bundle, bundle->ncp.mp.peer_mrru, speed);
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
} else
tun_configure(bundle, fsm2lcp(fp)->his_mru,
modem_Speed(link2physical(fp->link)));
} else if (fp->proto == PROTO_IPCP) {
bundle_StartIdleTimer(bundle);
bundle_Notify(bundle, EX_NORMAL);
}
}
static void
bundle_LayerDown(void *v, struct fsm *fp)
{
/*
* The given FSM has been told to come down.
* If it's our last NCP, stop the idle timer.
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
* If it's our last NCP *OR* LCP, enter TERMINATE phase.
* If it's an LCP and we're in multilink mode, adjust our tun speed.
*/
struct bundle *bundle = (struct bundle *)v;
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
if (fp->proto == PROTO_IPCP) {
bundle_StopIdleTimer(bundle);
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
} else if (fp->proto == PROTO_LCP) {
int speed, others_active;
struct datalink *dl;
others_active = 0;
for (dl = bundle->links, speed = 0; dl; dl = dl->next)
if (fp != &dl->physical->link.lcp.fsm &&
dl->state != DATALINK_CLOSED && dl->state != DATALINK_HANGUP) {
speed += modem_Speed(dl->physical);
others_active++;
}
if (bundle->ncp.mp.active && speed)
tun_configure(bundle, bundle->ncp.mp.link.lcp.his_mru, speed);
if (!others_active)
bundle_NewPhase(bundle, PHASE_TERMINATE);
}
}
static void
bundle_LayerFinish(void *v, struct fsm *fp)
{
/* The given fsm is now down (fp cannot be NULL)
*
* If it's the last LCP, fsm_Down all NCPs
* If it's the last NCP, fsm_Close all LCPs
*/
struct bundle *bundle = (struct bundle *)v;
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
struct datalink *dl;
if (fp->proto == PROTO_IPCP) {
if (bundle_Phase(bundle) != PHASE_DEAD)
bundle_NewPhase(bundle, PHASE_TERMINATE);
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
for (dl = bundle->links; dl; dl = dl->next)
datalink_Close(dl, 0);
fsm_Down(fp);
fsm_Close(fp);
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
} else if (fp->proto == PROTO_LCP) {
int others_active;
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
others_active = 0;
for (dl = bundle->links; dl; dl = dl->next)
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
if (fp != &dl->physical->link.lcp.fsm &&
dl->state != DATALINK_CLOSED && dl->state != DATALINK_HANGUP)
others_active++;
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
if (!others_active) {
fsm_Down(&bundle->ncp.ipcp.fsm);
fsm_Close(&bundle->ncp.ipcp.fsm); /* ST_INITIAL please */
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
}
}
}
int
bundle_LinkIsUp(const struct bundle *bundle)
{
1998-03-13 21:07:46 +00:00
return bundle->ncp.ipcp.fsm.state == ST_OPENED;
}
void
bundle_Close(struct bundle *bundle, const char *name, int staydown)
{
/*
* Please close the given datalink.
* If name == NULL or name is the last datalink, fsm_Close all NCPs
* (except our MP)
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
* If it isn't the last datalink, just Close that datalink.
*/
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
struct datalink *dl, *this_dl;
int others_active;
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
if (bundle->phase == PHASE_TERMINATE || bundle->phase == PHASE_DEAD)
return;
others_active = 0;
this_dl = NULL;
for (dl = bundle->links; dl; dl = dl->next) {
if (name && !strcasecmp(name, dl->name))
this_dl = dl;
if (name == NULL || this_dl == dl) {
if (staydown)
datalink_StayDown(dl);
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
} else if (dl->state != DATALINK_CLOSED && dl->state != DATALINK_HANGUP)
others_active++;
}
if (name && this_dl == NULL) {
log_Printf(LogWARN, "%s: Invalid datalink name\n", name);
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
return;
}
if (!others_active) {
if (bundle->ncp.ipcp.fsm.state > ST_CLOSED ||
bundle->ncp.ipcp.fsm.state == ST_STARTING)
fsm_Close(&bundle->ncp.ipcp.fsm);
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
else {
if (bundle->ncp.ipcp.fsm.state > ST_INITIAL) {
fsm_Close(&bundle->ncp.ipcp.fsm);
fsm_Down(&bundle->ncp.ipcp.fsm);
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
}
for (dl = bundle->links; dl; dl = dl->next)
datalink_Close(dl, staydown);
}
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
} else if (this_dl && this_dl->state != DATALINK_CLOSED &&
this_dl->state != DATALINK_HANGUP)
datalink_Close(this_dl, staydown);
}
static int
bundle_UpdateSet(struct descriptor *d, fd_set *r, fd_set *w, fd_set *e, int *n)
{
struct bundle *bundle = descriptor2bundle(d);
struct datalink *dl;
struct descriptor *desc;
int result;
result = 0;
for (dl = bundle->links; dl; dl = dl->next)
result += descriptor_UpdateSet(&dl->desc, r, w, e, n);
for (desc = bundle->desc.next; desc; desc = desc->next)
result += descriptor_UpdateSet(desc, r, w, e, n);
return result;
}
static int
bundle_IsSet(struct descriptor *d, const fd_set *fdset)
{
struct bundle *bundle = descriptor2bundle(d);
struct datalink *dl;
struct descriptor *desc;
for (dl = bundle->links; dl; dl = dl->next)
if (descriptor_IsSet(&dl->desc, fdset))
return 1;
for (desc = bundle->desc.next; desc; desc = desc->next)
if (descriptor_IsSet(desc, fdset))
return 1;
return 0;
}
static void
bundle_DescriptorRead(struct descriptor *d, struct bundle *bundle,
const fd_set *fdset)
{
struct datalink *dl;
struct descriptor *desc;
for (dl = bundle->links; dl; dl = dl->next)
if (descriptor_IsSet(&dl->desc, fdset))
descriptor_Read(&dl->desc, bundle, fdset);
for (desc = bundle->desc.next; desc; desc = desc->next)
if (descriptor_IsSet(desc, fdset))
descriptor_Read(desc, bundle, fdset);
}
static void
bundle_DescriptorWrite(struct descriptor *d, struct bundle *bundle,
const fd_set *fdset)
{
struct datalink *dl;
struct descriptor *desc;
for (dl = bundle->links; dl; dl = dl->next)
if (descriptor_IsSet(&dl->desc, fdset))
descriptor_Write(&dl->desc, bundle, fdset);
for (desc = bundle->desc.next; desc; desc = desc->next)
if (descriptor_IsSet(desc, fdset))
descriptor_Write(desc, bundle, fdset);
}
struct bundle *
bundle_Create(const char *prefix, struct prompt *prompt, int type)
{
int s, enoentcount, err;
struct ifreq ifrq;
static struct bundle bundle; /* there can be only one */
if (bundle.ifname != NULL) { /* Already allocated ! */
log_Printf(LogERROR, "bundle_Create: There's only one BUNDLE !\n");
return NULL;
}
err = ENOENT;
enoentcount = 0;
for (bundle.unit = 0; ; bundle.unit++) {
snprintf(bundle.dev, sizeof bundle.dev, "%s%d", prefix, bundle.unit);
bundle.tun_fd = ID0open(bundle.dev, O_RDWR);
if (bundle.tun_fd >= 0)
break;
else if (errno == ENXIO) {
err = errno;
break;
} else if (errno == ENOENT) {
if (++enoentcount > 2)
break;
} else
err = errno;
}
if (bundle.tun_fd < 0) {
log_Printf(LogWARN, "No available tunnel devices found (%s).\n",
strerror(err));
return NULL;
}
log_SetTun(bundle.unit);
s = socket(AF_INET, SOCK_DGRAM, 0);
if (s < 0) {
log_Printf(LogERROR, "bundle_Create: socket(): %s\n", strerror(errno));
close(bundle.tun_fd);
return NULL;
}
bundle.ifname = strrchr(bundle.dev, '/');
if (bundle.ifname == NULL)
bundle.ifname = bundle.dev;
else
bundle.ifname++;
/*
* Now, bring up the interface.
*/
memset(&ifrq, '\0', sizeof ifrq);
strncpy(ifrq.ifr_name, bundle.ifname, sizeof ifrq.ifr_name - 1);
ifrq.ifr_name[sizeof ifrq.ifr_name - 1] = '\0';
if (ID0ioctl(s, SIOCGIFFLAGS, &ifrq) < 0) {
log_Printf(LogERROR, "OpenTunnel: ioctl(SIOCGIFFLAGS): %s\n",
strerror(errno));
close(s);
close(bundle.tun_fd);
bundle.ifname = NULL;
return NULL;
}
ifrq.ifr_flags |= IFF_UP;
if (ID0ioctl(s, SIOCSIFFLAGS, &ifrq) < 0) {
log_Printf(LogERROR, "OpenTunnel: ioctl(SIOCSIFFLAGS): %s\n",
strerror(errno));
close(s);
close(bundle.tun_fd);
bundle.ifname = NULL;
return NULL;
}
close(s);
if ((bundle.ifIndex = GetIfIndex(bundle.ifname)) < 0) {
log_Printf(LogERROR, "OpenTunnel: Can't find ifindex.\n");
close(bundle.tun_fd);
bundle.ifname = NULL;
return NULL;
}
prompt_Printf(prompt, "Using interface: %s\n", bundle.ifname);
log_Printf(LogPHASE, "Using interface: %s\n", bundle.ifname);
bundle.routing_seq = 0;
1998-03-16 22:53:15 +00:00
bundle.phase = PHASE_DEAD;
bundle.CleaningUp = 0;
bundle.fsm.LayerStart = bundle_LayerStart;
bundle.fsm.LayerUp = bundle_LayerUp;
bundle.fsm.LayerDown = bundle_LayerDown;
bundle.fsm.LayerFinish = bundle_LayerFinish;
bundle.fsm.object = &bundle;
bundle.cfg.idle_timeout = NCP_IDLE_TIMEOUT;
*bundle.cfg.auth.name = '\0';
*bundle.cfg.auth.key = '\0';
bundle.cfg.opt = OPT_IDCHECK | OPT_LOOPBACK | OPT_THROUGHPUT | OPT_UTMP;
*bundle.cfg.label = '\0';
bundle.cfg.mtu = DEF_MTU;
bundle.phys_type = type;
bundle.links = datalink_Create("deflink", &bundle, type);
if (bundle.links == NULL) {
log_Printf(LogERROR, "Cannot create data link: %s\n", strerror(errno));
close(bundle.tun_fd);
bundle.ifname = NULL;
return NULL;
}
bundle.desc.type = BUNDLE_DESCRIPTOR;
bundle.desc.next = NULL;
bundle.desc.UpdateSet = bundle_UpdateSet;
bundle.desc.IsSet = bundle_IsSet;
bundle.desc.Read = bundle_DescriptorRead;
bundle.desc.Write = bundle_DescriptorWrite;
mp_Init(&bundle.ncp.mp, &bundle);
/* Send over the first physical link by default */
1998-03-13 21:07:46 +00:00
ipcp_Init(&bundle.ncp.ipcp, &bundle, &bundle.links->physical->link,
&bundle.fsm);
1998-03-16 22:52:54 +00:00
memset(&bundle.filter, '\0', sizeof bundle.filter);
bundle.filter.in.fragok = bundle.filter.in.logok = 1;
bundle.filter.in.name = "IN";
bundle.filter.out.fragok = bundle.filter.out.logok = 1;
bundle.filter.out.name = "OUT";
bundle.filter.dial.name = "DIAL";
bundle.filter.dial.logok = 1;
1998-03-16 22:52:54 +00:00
bundle.filter.alive.name = "ALIVE";
bundle.filter.alive.logok = 1;
memset(&bundle.idle.timer, '\0', sizeof bundle.idle.timer);
bundle.idle.done = 0;
bundle.notify.fd = -1;
/* Clean out any leftover crud */
bundle_CleanInterface(&bundle);
if (prompt) {
/* Retrospectively introduce ourselves to the prompt */
prompt->bundle = &bundle;
bundle_RegisterDescriptor(&bundle, &prompt->desc);
}
return &bundle;
}
static void
bundle_DownInterface(struct bundle *bundle)
{
struct ifreq ifrq;
int s;
route_IfDelete(bundle, 1);
s = ID0socket(AF_INET, SOCK_DGRAM, 0);
if (s < 0) {
log_Printf(LogERROR, "bundle_DownInterface: socket: %s\n", strerror(errno));
return;
}
memset(&ifrq, '\0', sizeof ifrq);
strncpy(ifrq.ifr_name, bundle->ifname, sizeof ifrq.ifr_name - 1);
ifrq.ifr_name[sizeof ifrq.ifr_name - 1] = '\0';
if (ID0ioctl(s, SIOCGIFFLAGS, &ifrq) < 0) {
log_Printf(LogERROR, "bundle_DownInterface: ioctl(SIOCGIFFLAGS): %s\n",
strerror(errno));
close(s);
return;
}
ifrq.ifr_flags &= ~IFF_UP;
if (ID0ioctl(s, SIOCSIFFLAGS, &ifrq) < 0) {
log_Printf(LogERROR, "bundle_DownInterface: ioctl(SIOCSIFFLAGS): %s\n",
strerror(errno));
close(s);
return;
}
close(s);
}
void
bundle_Destroy(struct bundle *bundle)
{
struct datalink *dl;
struct descriptor *desc, *ndesc;
if (bundle->phys_type & PHYS_DEMAND) {
ipcp_CleanInterface(&bundle->ncp.ipcp);
bundle_DownInterface(bundle);
}
dl = bundle->links;
while (dl)
dl = datalink_Destroy(dl);
bundle_Notify(bundle, EX_ERRDEAD);
desc = bundle->desc.next;
while (desc) {
ndesc = desc->next;
if (desc->type == PROMPT_DESCRIPTOR)
prompt_Destroy((struct prompt *)desc, 1);
else
log_Printf(LogERROR, "bundle_Destroy: Don't know how to delete descriptor"
" type %d\n", desc->type);
desc = ndesc;
}
bundle->desc.next = NULL;
bundle->ifname = NULL;
}
struct rtmsg {
struct rt_msghdr m_rtm;
char m_space[64];
};
void
bundle_SetRoute(struct bundle *bundle, int cmd, struct in_addr dst,
struct in_addr gateway, struct in_addr mask, int bang)
{
struct rtmsg rtmes;
int s, nb, wb;
char *cp;
const char *cmdstr;
struct sockaddr_in rtdata;
if (bang)
cmdstr = (cmd == RTM_ADD ? "Add!" : "Delete!");
else
cmdstr = (cmd == RTM_ADD ? "Add" : "Delete");
s = ID0socket(PF_ROUTE, SOCK_RAW, 0);
if (s < 0) {
log_Printf(LogERROR, "bundle_SetRoute: socket(): %s\n", strerror(errno));
return;
}
memset(&rtmes, '\0', sizeof rtmes);
rtmes.m_rtm.rtm_version = RTM_VERSION;
rtmes.m_rtm.rtm_type = cmd;
rtmes.m_rtm.rtm_addrs = RTA_DST;
rtmes.m_rtm.rtm_seq = ++bundle->routing_seq;
rtmes.m_rtm.rtm_pid = getpid();
rtmes.m_rtm.rtm_flags = RTF_UP | RTF_GATEWAY | RTF_STATIC;
memset(&rtdata, '\0', sizeof rtdata);
rtdata.sin_len = sizeof rtdata;
rtdata.sin_family = AF_INET;
rtdata.sin_port = 0;
rtdata.sin_addr = dst;
cp = rtmes.m_space;
memcpy(cp, &rtdata, rtdata.sin_len);
cp += rtdata.sin_len;
if (cmd == RTM_ADD) {
if (gateway.s_addr == INADDR_ANY) {
/* Add a route through the interface */
struct sockaddr_dl dl;
const char *iname;
int ilen;
iname = Index2Nam(bundle->ifIndex);
ilen = strlen(iname);
dl.sdl_len = sizeof dl - sizeof dl.sdl_data + ilen;
dl.sdl_family = AF_LINK;
dl.sdl_index = bundle->ifIndex;
dl.sdl_type = 0;
dl.sdl_nlen = ilen;
dl.sdl_alen = 0;
dl.sdl_slen = 0;
strncpy(dl.sdl_data, iname, sizeof dl.sdl_data);
memcpy(cp, &dl, dl.sdl_len);
cp += dl.sdl_len;
rtmes.m_rtm.rtm_addrs |= RTA_GATEWAY;
} else {
rtdata.sin_addr = gateway;
memcpy(cp, &rtdata, rtdata.sin_len);
cp += rtdata.sin_len;
rtmes.m_rtm.rtm_addrs |= RTA_GATEWAY;
}
}
if (dst.s_addr == INADDR_ANY)
mask.s_addr = INADDR_ANY;
if (cmd == RTM_ADD || dst.s_addr == INADDR_ANY) {
rtdata.sin_addr = mask;
memcpy(cp, &rtdata, rtdata.sin_len);
cp += rtdata.sin_len;
rtmes.m_rtm.rtm_addrs |= RTA_NETMASK;
}
nb = cp - (char *) &rtmes;
rtmes.m_rtm.rtm_msglen = nb;
wb = ID0write(s, &rtmes, nb);
if (wb < 0) {
log_Printf(LogTCPIP, "bundle_SetRoute failure:\n");
log_Printf(LogTCPIP, "bundle_SetRoute: Cmd = %s\n", cmdstr);
log_Printf(LogTCPIP, "bundle_SetRoute: Dst = %s\n", inet_ntoa(dst));
log_Printf(LogTCPIP, "bundle_SetRoute: Gateway = %s\n", inet_ntoa(gateway));
log_Printf(LogTCPIP, "bundle_SetRoute: Mask = %s\n", inet_ntoa(mask));
failed:
if (cmd == RTM_ADD && (rtmes.m_rtm.rtm_errno == EEXIST ||
(rtmes.m_rtm.rtm_errno == 0 && errno == EEXIST))) {
if (!bang)
log_Printf(LogWARN, "Add route failed: %s already exists\n",
inet_ntoa(dst));
else {
rtmes.m_rtm.rtm_type = cmd = RTM_CHANGE;
if ((wb = ID0write(s, &rtmes, nb)) < 0)
goto failed;
}
} else if (cmd == RTM_DELETE &&
(rtmes.m_rtm.rtm_errno == ESRCH ||
(rtmes.m_rtm.rtm_errno == 0 && errno == ESRCH))) {
if (!bang)
log_Printf(LogWARN, "Del route failed: %s: Non-existent\n",
inet_ntoa(dst));
} else if (rtmes.m_rtm.rtm_errno == 0)
log_Printf(LogWARN, "%s route failed: %s: errno: %s\n", cmdstr,
inet_ntoa(dst), strerror(errno));
else
log_Printf(LogWARN, "%s route failed: %s: %s\n",
cmdstr, inet_ntoa(dst), strerror(rtmes.m_rtm.rtm_errno));
}
log_Printf(LogDEBUG, "wrote %d: cmd = %s, dst = %x, gateway = %x\n",
wb, cmdstr, (unsigned)dst.s_addr, (unsigned)gateway.s_addr);
close(s);
}
void
bundle_LinkClosed(struct bundle *bundle, struct datalink *dl)
{
/*
* Our datalink has closed.
* UpdateSet() will remove 1OFF and STDIN links.
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
* If it's the last data link, enter phase DEAD.
*/
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
struct datalink *odl;
int other_links;
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
other_links = 0;
for (odl = bundle->links; odl; odl = odl->next)
if (odl != dl && odl->state != DATALINK_CLOSED)
other_links++;
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
if (!other_links) {
if (dl->physical->type != PHYS_DEMAND)
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
bundle_DownInterface(bundle);
if (bundle->ncp.ipcp.fsm.state > ST_CLOSED ||
bundle->ncp.ipcp.fsm.state == ST_STARTING) {
fsm_Down(&bundle->ncp.ipcp.fsm);
fsm_Close(&bundle->ncp.ipcp.fsm); /* ST_INITIAL please */
}
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
bundle_NewPhase(bundle, PHASE_DEAD);
bundle_DisplayPrompt(bundle);
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
}
}
void
bundle_Open(struct bundle *bundle, const char *name, int mask)
{
/*
* Please open the given datalink, or all if name == NULL
*/
struct datalink *dl;
for (dl = bundle->links; dl; dl = dl->next)
if (name == NULL || !strcasecmp(dl->name, name)) {
if (mask & dl->physical->type)
datalink_Up(dl, 1, 1);
if (name != NULL)
break;
}
}
struct datalink *
bundle2datalink(struct bundle *bundle, const char *name)
{
struct datalink *dl;
if (name != NULL) {
for (dl = bundle->links; dl; dl = dl->next)
if (!strcasecmp(dl->name, name))
return dl;
} else if (bundle->links && !bundle->links->next)
return bundle->links;
return NULL;
}
int
bundle_FillQueues(struct bundle *bundle)
{
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
int total;
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
if (bundle->ncp.mp.active) {
total = mp_FillQueues(bundle);
} else {
total = link_QueueLen(&bundle->links->physical->link);
if (total == 0 && bundle->links->physical->out == NULL)
total = ip_FlushPacket(&bundle->links->physical->link, bundle);
}
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
return total + ip_QueueLen();
}
int
bundle_ShowLinks(struct cmdargs const *arg)
{
struct datalink *dl;
for (dl = arg->bundle->links; dl; dl = dl->next) {
prompt_Printf(arg->prompt, "Name: %s [%s]", dl->name, datalink_State(dl));
if (dl->physical->link.throughput.rolling)
prompt_Printf(arg->prompt, " (%d bytes/sec)",
dl->physical->link.throughput.OctetsPerSecond);
prompt_Printf(arg->prompt, "\n");
}
return 0;
}
static const char *
optval(struct bundle *bundle, int bit)
{
return (bundle->cfg.opt & bit) ? "enabled" : "disabled";
}
int
bundle_ShowStatus(struct cmdargs const *arg)
{
int remaining;
prompt_Printf(arg->prompt, "Phase %s\n", bundle_PhaseName(arg->bundle));
prompt_Printf(arg->prompt, " Interface: %s\n", arg->bundle->dev);
prompt_Printf(arg->prompt, "\nDefaults:\n");
prompt_Printf(arg->prompt, " Label: %s\n", arg->bundle->cfg.label);
1998-04-20 00:21:24 +00:00
prompt_Printf(arg->prompt, " Auth name: %s\n", arg->bundle->cfg.auth.name);
prompt_Printf(arg->prompt, " Idle Timer: ");
if (arg->bundle->cfg.idle_timeout) {
prompt_Printf(arg->prompt, "%ds", arg->bundle->cfg.idle_timeout);
remaining = bundle_RemainingIdleTime(arg->bundle);
if (remaining != -1)
prompt_Printf(arg->prompt, " (%ds remaining)", remaining);
prompt_Printf(arg->prompt, "\n");
} else
prompt_Printf(arg->prompt, "disabled\n");
prompt_Printf(arg->prompt, " MTU: ");
if (arg->bundle->cfg.mtu)
prompt_Printf(arg->prompt, "%d\n", arg->bundle->cfg.mtu);
else
prompt_Printf(arg->prompt, "unspecified\n");
prompt_Printf(arg->prompt, " ID check: %s\n",
optval(arg->bundle, OPT_IDCHECK));
prompt_Printf(arg->prompt, " Loopback: %s\n",
optval(arg->bundle, OPT_LOOPBACK));
prompt_Printf(arg->prompt, " PasswdAuth: %s\n",
optval(arg->bundle, OPT_PASSWDAUTH));
prompt_Printf(arg->prompt, " Proxy: %s\n",
optval(arg->bundle, OPT_PROXY));
prompt_Printf(arg->prompt, " Throughput: %s\n",
optval(arg->bundle, OPT_THROUGHPUT));
prompt_Printf(arg->prompt, " Utmp: %s\n",
optval(arg->bundle, OPT_UTMP));
return 0;
}
static void
bundle_IdleTimeout(void *v)
{
struct bundle *bundle = (struct bundle *)v;
bundle->idle.done = 0;
log_Printf(LogPHASE, "Idle timer expired.\n");
bundle_Close(bundle, NULL, 1);
}
/*
* Start Idle timer. If timeout is reached, we call bundle_Close() to
* close LCP and link.
*/
void
bundle_StartIdleTimer(struct bundle *bundle)
{
if (!(bundle->phys_type & (PHYS_DEDICATED|PHYS_PERM))) {
timer_Stop(&bundle->idle.timer);
if (bundle->cfg.idle_timeout) {
bundle->idle.timer.func = bundle_IdleTimeout;
bundle->idle.timer.name = "idle";
bundle->idle.timer.load = bundle->cfg.idle_timeout * SECTICKS;
bundle->idle.timer.arg = bundle;
timer_Start(&bundle->idle.timer);
bundle->idle.done = time(NULL) + bundle->cfg.idle_timeout;
}
}
}
void
bundle_SetIdleTimer(struct bundle *bundle, int value)
{
bundle->cfg.idle_timeout = value;
if (bundle_LinkIsUp(bundle))
bundle_StartIdleTimer(bundle);
}
void
bundle_StopIdleTimer(struct bundle *bundle)
{
timer_Stop(&bundle->idle.timer);
bundle->idle.done = 0;
}
int
bundle_RemainingIdleTime(struct bundle *bundle)
{
if (bundle->idle.done)
return bundle->idle.done - time(NULL);
return -1;
}
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
int
bundle_IsDead(struct bundle *bundle)
{
return !bundle->links || (bundle->phase == PHASE_DEAD && bundle->CleaningUp);
}
void
bundle_RegisterDescriptor(struct bundle *bundle, struct descriptor *d)
{
d->next = bundle->desc.next;
bundle->desc.next = d;
}
void
bundle_UnRegisterDescriptor(struct bundle *bundle, struct descriptor *d)
{
struct descriptor **desc;
for (desc = &bundle->desc.next; *desc; desc = &(*desc)->next)
if (*desc == d) {
*desc = d->next;
break;
}
}
void
bundle_DelPromptDescriptors(struct bundle *bundle, struct server *s)
{
struct descriptor **desc;
struct prompt *p;
desc = &bundle->desc.next;
while (*desc) {
if ((*desc)->type == PROMPT_DESCRIPTOR) {
p = (struct prompt *)*desc;
if (p->owner == s) {
prompt_Destroy(p, 1);
desc = &bundle->desc.next;
continue;
}
}
desc = &(*desc)->next;
}
}
void
bundle_DisplayPrompt(struct bundle *bundle)
{
struct descriptor **desc;
for (desc = &bundle->desc.next; *desc; desc = &(*desc)->next)
if ((*desc)->type == PROMPT_DESCRIPTOR)
prompt_Required((struct prompt *)*desc);
}
void
bundle_WriteTermPrompt(struct bundle *bundle, struct datalink *dl,
const char *data, int len)
{
struct descriptor *desc;
struct prompt *p;
for (desc = bundle->desc.next; desc; desc = desc->next)
if (desc->type == PROMPT_DESCRIPTOR) {
p = (struct prompt *)desc;
if (prompt_IsTermMode(p, dl))
prompt_Printf(p, "%.*s", len, data);
}
}
void
bundle_SetTtyCommandMode(struct bundle *bundle, struct datalink *dl)
{
struct descriptor *desc;
struct prompt *p;
for (desc = bundle->desc.next; desc; desc = desc->next)
if (desc->type == PROMPT_DESCRIPTOR) {
p = (struct prompt *)desc;
if (prompt_IsTermMode(p, dl))
prompt_TtyCommandMode(p);
}
}
static void
bundle_GenPhysType(struct bundle *bundle)
{
struct datalink *dl;
bundle->phys_type = 0;
for (dl = bundle->links; dl; dl = dl->next)
bundle->phys_type |= dl->physical->type;
}
void
bundle_DatalinkClone(struct bundle *bundle, struct datalink *dl,
const char *name)
{
struct datalink *ndl = datalink_Clone(dl, name);
ndl->next = dl->next;
dl->next = ndl;
bundle_GenPhysType(bundle);
}
void
bundle_DatalinkRemove(struct bundle *bundle, struct datalink *dl)
{
struct datalink **dlp;
if (dl->state == DATALINK_CLOSED)
for (dlp = &bundle->links; *dlp; dlp = &(*dlp)->next)
if (*dlp == dl) {
*dlp = datalink_Destroy(dl);
break;
}
bundle_GenPhysType(bundle);
}
void
bundle_CleanDatalinks(struct bundle *bundle)
{
struct datalink **dlp = &bundle->links;
while (*dlp)
if ((*dlp)->state == DATALINK_CLOSED &&
(*dlp)->physical->type & (PHYS_DIRECT|PHYS_1OFF))
*dlp = datalink_Destroy(*dlp);
else
dlp = &(*dlp)->next;
bundle_GenPhysType(bundle);
}
void
bundle_SetLabel(struct bundle *bundle, const char *label)
{
if (label)
strncpy(bundle->cfg.label, label, sizeof bundle->cfg.label - 1);
else
*bundle->cfg.label = '\0';
}
const char *
bundle_GetLabel(struct bundle *bundle)
{
return *bundle->cfg.label ? bundle->cfg.label : NULL;
}
void
bundle_ReceiveDatalink(struct bundle *bundle, int s, struct sockaddr_un *sun)
{
char cmsgbuf[sizeof(struct cmsghdr) + sizeof(int)];
struct cmsghdr *cmsg = (struct cmsghdr *)cmsgbuf;
struct msghdr msg;
struct iovec iov[SCATTER_SEGMENTS];
struct datalink *dl, *ndl;
int niov, link_fd, expect, f;
log_Printf(LogPHASE, "Receiving datalink\n");
/* Create our scatter/gather array */
niov = 1;
iov[0].iov_len = strlen(Version) + 1;
iov[0].iov_base = (char *)malloc(iov[0].iov_len);
if (datalink2iov(NULL, iov, &niov, sizeof iov / sizeof *iov) == -1)
return;
for (f = expect = 0; f < niov; f++)
expect += iov[f].iov_len;
/* Set up our message */
cmsg->cmsg_len = sizeof cmsgbuf;
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
memset(&msg, '\0', sizeof msg);
msg.msg_name = (caddr_t)sun;
msg.msg_namelen = sizeof *sun;
msg.msg_iov = iov;
msg.msg_iovlen = niov;
msg.msg_control = cmsgbuf;
msg.msg_controllen = sizeof cmsgbuf;
log_Printf(LogDEBUG, "Expecting %d scatter/gather bytes\n", expect);
f = expect + 100;
setsockopt(s, SOL_SOCKET, SO_RCVBUF, &f, sizeof f);
if ((f = recvmsg(s, &msg, MSG_WAITALL)) != expect) {
if (f == -1)
log_Printf(LogERROR, "Failed recvmsg: %s\n", strerror(errno));
else
log_Printf(LogERROR, "Failed recvmsg: Got %d, not %d\n", f, expect);
while (niov--)
free(iov[niov].iov_base);
return;
}
/* We've successfully received an open file descriptor through our socket */
link_fd = *(int *)CMSG_DATA(cmsg);
if (strncmp(Version, iov[0].iov_base, iov[0].iov_len)) {
log_Printf(LogWARN, "Cannot receive datalink, incorrect version"
" (\"%.*s\", not \"%s\")\n", (int)iov[0].iov_len,
iov[0].iov_base, Version);
close(link_fd);
while (niov--)
free(iov[niov].iov_base);
return;
}
niov = 1;
ndl = iov2datalink(bundle, iov, &niov, sizeof iov / sizeof *iov, link_fd);
if (ndl) {
/* Make sure the name is unique ! */
do {
for (dl = bundle->links; dl; dl = dl->next)
if (!strcasecmp(ndl->name, dl->name)) {
datalink_Rename(ndl);
break;
}
} while (dl);
ndl->next = bundle->links;
bundle->links = ndl;
bundle_GenPhysType(bundle);
log_Printf(LogPHASE, "%s: Created in %s state\n",
ndl->name, datalink_State(ndl));
datalink_AuthOk(ndl);
} else
close(link_fd);
free(iov[0].iov_base);
}
void
bundle_SendDatalink(struct datalink *dl, int s, struct sockaddr_un *sun)
{
char cmsgbuf[sizeof(struct cmsghdr) + sizeof(int)]; /* pass ppp_fd */
struct cmsghdr *cmsg = (struct cmsghdr *)cmsgbuf;
struct msghdr msg;
struct iovec iov[SCATTER_SEGMENTS];
int niov, link_fd, f, expect;
struct datalink **pdl;
struct bundle *bundle = dl->bundle;
log_Printf(LogPHASE, "Transmitting datalink %s\n", dl->name);
/* First, un-hook the datalink */
for (pdl = &bundle->links; *pdl; pdl = &(*pdl)->next)
if (*pdl == dl) {
*pdl = dl->next;
dl->next = NULL;
break;
}
/* Build our scatter/gather array */
iov[0].iov_len = strlen(Version) + 1;
iov[0].iov_base = strdup(Version);
niov = 1;
link_fd = datalink2iov(dl, iov, &niov, sizeof iov / sizeof *iov);
if (link_fd != -1) {
cmsg->cmsg_len = sizeof cmsgbuf;
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
*(int *)CMSG_DATA(cmsg) = link_fd;
memset(&msg, '\0', sizeof msg);
msg.msg_name = (caddr_t)sun;
msg.msg_namelen = sizeof *sun;
msg.msg_iov = iov;
msg.msg_iovlen = niov;
msg.msg_control = cmsgbuf;
msg.msg_controllen = sizeof cmsgbuf;
for (f = expect = 0; f < niov; f++)
expect += iov[f].iov_len;
log_Printf(LogDEBUG, "Sending %d bytes in scatter/gather array\n", expect);
f = expect + SOCKET_OVERHEAD;
setsockopt(s, SOL_SOCKET, SO_SNDBUF, &f, sizeof f);
if (sendmsg(s, &msg, 0) == -1)
log_Printf(LogERROR, "Failed sendmsg: %s\n", strerror(errno));
close(link_fd);
}
while (niov--)
free(iov[niov].iov_base);
}