1792 lines
43 KiB
C
Raw Normal View History

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
1994-05-24 10:09:53 +00:00
* Copyright (c) 1982, 1986, 1988, 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
1994-05-24 10:09:53 +00:00
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
*/
2003-06-11 00:56:59 +00:00
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
Add kernel-side support for in-kernel TLS. KTLS adds support for in-kernel framing and encryption of Transport Layer Security (1.0-1.2) data on TCP sockets. KTLS only supports offload of TLS for transmitted data. Key negotation must still be performed in userland. Once completed, transmit session keys for a connection are provided to the kernel via a new TCP_TXTLS_ENABLE socket option. All subsequent data transmitted on the socket is placed into TLS frames and encrypted using the supplied keys. Any data written to a KTLS-enabled socket via write(2), aio_write(2), or sendfile(2) is assumed to be application data and is encoded in TLS frames with an application data type. Individual records can be sent with a custom type (e.g. handshake messages) via sendmsg(2) with a new control message (TLS_SET_RECORD_TYPE) specifying the record type. At present, rekeying is not supported though the in-kernel framework should support rekeying. KTLS makes use of the recently added unmapped mbufs to store TLS frames in the socket buffer. Each TLS frame is described by a single ext_pgs mbuf. The ext_pgs structure contains the header of the TLS record (and trailer for encrypted records) as well as references to the associated TLS session. KTLS supports two primary methods of encrypting TLS frames: software TLS and ifnet TLS. Software TLS marks mbufs holding socket data as not ready via M_NOTREADY similar to sendfile(2) when TLS framing information is added to an unmapped mbuf in ktls_frame(). ktls_enqueue() is then called to schedule TLS frames for encryption. In the case of sendfile_iodone() calls ktls_enqueue() instead of pru_ready() leaving the mbufs marked M_NOTREADY until encryption is completed. For other writes (vn_sendfile when pages are available, write(2), etc.), the PRUS_NOTREADY is set when invoking pru_send() along with invoking ktls_enqueue(). A pool of worker threads (the "KTLS" kernel process) encrypts TLS frames queued via ktls_enqueue(). Each TLS frame is temporarily mapped using the direct map and passed to a software encryption backend to perform the actual encryption. (Note: The use of PHYS_TO_DMAP could be replaced with sf_bufs if someone wished to make this work on architectures without a direct map.) KTLS supports pluggable software encryption backends. Internally, Netflix uses proprietary pure-software backends. This commit includes a simple backend in a new ktls_ocf.ko module that uses the kernel's OpenCrypto framework to provide AES-GCM encryption of TLS frames. As a result, software TLS is now a bit of a misnomer as it can make use of hardware crypto accelerators. Once software encryption has finished, the TLS frame mbufs are marked ready via pru_ready(). At this point, the encrypted data appears as regular payload to the TCP stack stored in unmapped mbufs. ifnet TLS permits a NIC to offload the TLS encryption and TCP segmentation. In this mode, a new send tag type (IF_SND_TAG_TYPE_TLS) is allocated on the interface a socket is routed over and associated with a TLS session. TLS records for a TLS session using ifnet TLS are not marked M_NOTREADY but are passed down the stack unencrypted. The ip_output_send() and ip6_output_send() helper functions that apply send tags to outbound IP packets verify that the send tag of the TLS record matches the outbound interface. If so, the packet is tagged with the TLS send tag and sent to the interface. The NIC device driver must recognize packets with the TLS send tag and schedule them for TLS encryption and TCP segmentation. If the the outbound interface does not match the interface in the TLS send tag, the packet is dropped. In addition, a task is scheduled to refresh the TLS send tag for the TLS session. If a new TLS send tag cannot be allocated, the connection is dropped. If a new TLS send tag is allocated, however, subsequent packets will be tagged with the correct TLS send tag. (This latter case has been tested by configuring both ports of a Chelsio T6 in a lagg and failing over from one port to another. As the connections migrated to the new port, new TLS send tags were allocated for the new port and connections resumed without being dropped.) ifnet TLS can be enabled and disabled on supported network interfaces via new '[-]txtls[46]' options to ifconfig(8). ifnet TLS is supported across both vlan devices and lagg interfaces using failover, lacp with flowid enabled, or lacp with flowid enabled. Applications may request the current KTLS mode of a connection via a new TCP_TXTLS_MODE socket option. They can also use this socket option to toggle between software and ifnet TLS modes. In addition, a testing tool is available in tools/tools/switch_tls. This is modeled on tcpdrop and uses similar syntax. However, instead of dropping connections, -s is used to force KTLS connections to switch to software TLS and -i is used to switch to ifnet TLS. Various sysctls and counters are available under the kern.ipc.tls sysctl node. The kern.ipc.tls.enable node must be set to true to enable KTLS (it is off by default). The use of unmapped mbufs must also be enabled via kern.ipc.mb_use_ext_pgs to enable KTLS. KTLS is enabled via the KERN_TLS kernel option. This patch is the culmination of years of work by several folks including Scott Long and Randall Stewart for the original design and implementation; Drew Gallatin for several optimizations including the use of ext_pgs mbufs, the M_NOTREADY mechanism for TLS records awaiting software encryption, and pluggable software crypto backends; and John Baldwin for modifications to support hardware TLS offload. Reviewed by: gallatin, hselasky, rrs Obtained from: Netflix Sponsored by: Netflix, Chelsio Communications Differential Revision: https://reviews.freebsd.org/D21277
2019-08-27 00:01:56 +00:00
#include "opt_kern_tls.h"
#include "opt_param.h"
1994-05-24 10:09:53 +00:00
#include <sys/param.h>
#include <sys/aio.h> /* for aio_swake proto */
#include <sys/kernel.h>
Add kernel-side support for in-kernel TLS. KTLS adds support for in-kernel framing and encryption of Transport Layer Security (1.0-1.2) data on TCP sockets. KTLS only supports offload of TLS for transmitted data. Key negotation must still be performed in userland. Once completed, transmit session keys for a connection are provided to the kernel via a new TCP_TXTLS_ENABLE socket option. All subsequent data transmitted on the socket is placed into TLS frames and encrypted using the supplied keys. Any data written to a KTLS-enabled socket via write(2), aio_write(2), or sendfile(2) is assumed to be application data and is encoded in TLS frames with an application data type. Individual records can be sent with a custom type (e.g. handshake messages) via sendmsg(2) with a new control message (TLS_SET_RECORD_TYPE) specifying the record type. At present, rekeying is not supported though the in-kernel framework should support rekeying. KTLS makes use of the recently added unmapped mbufs to store TLS frames in the socket buffer. Each TLS frame is described by a single ext_pgs mbuf. The ext_pgs structure contains the header of the TLS record (and trailer for encrypted records) as well as references to the associated TLS session. KTLS supports two primary methods of encrypting TLS frames: software TLS and ifnet TLS. Software TLS marks mbufs holding socket data as not ready via M_NOTREADY similar to sendfile(2) when TLS framing information is added to an unmapped mbuf in ktls_frame(). ktls_enqueue() is then called to schedule TLS frames for encryption. In the case of sendfile_iodone() calls ktls_enqueue() instead of pru_ready() leaving the mbufs marked M_NOTREADY until encryption is completed. For other writes (vn_sendfile when pages are available, write(2), etc.), the PRUS_NOTREADY is set when invoking pru_send() along with invoking ktls_enqueue(). A pool of worker threads (the "KTLS" kernel process) encrypts TLS frames queued via ktls_enqueue(). Each TLS frame is temporarily mapped using the direct map and passed to a software encryption backend to perform the actual encryption. (Note: The use of PHYS_TO_DMAP could be replaced with sf_bufs if someone wished to make this work on architectures without a direct map.) KTLS supports pluggable software encryption backends. Internally, Netflix uses proprietary pure-software backends. This commit includes a simple backend in a new ktls_ocf.ko module that uses the kernel's OpenCrypto framework to provide AES-GCM encryption of TLS frames. As a result, software TLS is now a bit of a misnomer as it can make use of hardware crypto accelerators. Once software encryption has finished, the TLS frame mbufs are marked ready via pru_ready(). At this point, the encrypted data appears as regular payload to the TCP stack stored in unmapped mbufs. ifnet TLS permits a NIC to offload the TLS encryption and TCP segmentation. In this mode, a new send tag type (IF_SND_TAG_TYPE_TLS) is allocated on the interface a socket is routed over and associated with a TLS session. TLS records for a TLS session using ifnet TLS are not marked M_NOTREADY but are passed down the stack unencrypted. The ip_output_send() and ip6_output_send() helper functions that apply send tags to outbound IP packets verify that the send tag of the TLS record matches the outbound interface. If so, the packet is tagged with the TLS send tag and sent to the interface. The NIC device driver must recognize packets with the TLS send tag and schedule them for TLS encryption and TCP segmentation. If the the outbound interface does not match the interface in the TLS send tag, the packet is dropped. In addition, a task is scheduled to refresh the TLS send tag for the TLS session. If a new TLS send tag cannot be allocated, the connection is dropped. If a new TLS send tag is allocated, however, subsequent packets will be tagged with the correct TLS send tag. (This latter case has been tested by configuring both ports of a Chelsio T6 in a lagg and failing over from one port to another. As the connections migrated to the new port, new TLS send tags were allocated for the new port and connections resumed without being dropped.) ifnet TLS can be enabled and disabled on supported network interfaces via new '[-]txtls[46]' options to ifconfig(8). ifnet TLS is supported across both vlan devices and lagg interfaces using failover, lacp with flowid enabled, or lacp with flowid enabled. Applications may request the current KTLS mode of a connection via a new TCP_TXTLS_MODE socket option. They can also use this socket option to toggle between software and ifnet TLS modes. In addition, a testing tool is available in tools/tools/switch_tls. This is modeled on tcpdrop and uses similar syntax. However, instead of dropping connections, -s is used to force KTLS connections to switch to software TLS and -i is used to switch to ifnet TLS. Various sysctls and counters are available under the kern.ipc.tls sysctl node. The kern.ipc.tls.enable node must be set to true to enable KTLS (it is off by default). The use of unmapped mbufs must also be enabled via kern.ipc.mb_use_ext_pgs to enable KTLS. KTLS is enabled via the KERN_TLS kernel option. This patch is the culmination of years of work by several folks including Scott Long and Randall Stewart for the original design and implementation; Drew Gallatin for several optimizations including the use of ext_pgs mbufs, the M_NOTREADY mechanism for TLS records awaiting software encryption, and pluggable software crypto backends; and John Baldwin for modifications to support hardware TLS offload. Reviewed by: gallatin, hselasky, rrs Obtained from: Netflix Sponsored by: Netflix, Chelsio Communications Differential Revision: https://reviews.freebsd.org/D21277
2019-08-27 00:01:56 +00:00
#include <sys/ktls.h>
#include <sys/lock.h>
#include <sys/malloc.h>
1994-05-24 10:09:53 +00:00
#include <sys/mbuf.h>
#include <sys/mutex.h>
#include <sys/proc.h>
1994-05-24 10:09:53 +00:00
#include <sys/protosw.h>
#include <sys/resourcevar.h>
#include <sys/signalvar.h>
1994-05-24 10:09:53 +00:00
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
/*
* Function pointer set by the AIO routines so that the socket buffer code
* can call back into the AIO module if it is loaded.
*/
void (*aio_swake)(struct socket *, struct sockbuf *);
1994-05-24 10:09:53 +00:00
/*
* Primitive routines for operating on socket buffers
1994-05-24 10:09:53 +00:00
*/
u_long sb_max = SB_MAX;
u_long sb_max_adj =
(quad_t)SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
1994-05-24 10:09:53 +00:00
static u_long sb_efficiency = 8; /* parameter for sbreserve() */
#ifdef KERN_TLS
Add support for KTLS RX via software decryption. Allow TLS records to be decrypted in the kernel after being received by a NIC. At a high level this is somewhat similar to software KTLS for the transmit path except in reverse. Protocols enqueue mbufs containing encrypted TLS records (or portions of records) into the tail of a socket buffer and the KTLS layer decrypts those records before returning them to userland applications. However, there is an important difference: - In the transmit case, the socket buffer is always a single "record" holding a chain of mbufs. Not-yet-encrypted mbufs are marked not ready (M_NOTREADY) and released to protocols for transmit by marking mbufs ready once their data is encrypted. - In the receive case, incoming (encrypted) data appended to the socket buffer is still a single stream of data from the protocol, but decrypted TLS records are stored as separate records in the socket buffer and read individually via recvmsg(). Initially I tried to make this work by marking incoming mbufs as M_NOTREADY, but there didn't seemed to be a non-gross way to deal with picking a portion of the mbuf chain and turning it into a new record in the socket buffer after decrypting the TLS record it contained (along with prepending a control message). Also, such mbufs would also need to be "pinned" in some way while they are being decrypted such that a concurrent sbcut() wouldn't free them out from under the thread performing decryption. As such, I settled on the following solution: - Socket buffers now contain an additional chain of mbufs (sb_mtls, sb_mtlstail, and sb_tlscc) containing encrypted mbufs appended by the protocol layer. These mbufs are still marked M_NOTREADY, but soreceive*() generally don't know about them (except that they will block waiting for data to be decrypted for a blocking read). - Each time a new mbuf is appended to this TLS mbuf chain, the socket buffer peeks at the TLS record header at the head of the chain to determine the encrypted record's length. If enough data is queued for the TLS record, the socket is placed on a per-CPU TLS workqueue (reusing the existing KTLS workqueues and worker threads). - The worker thread loops over the TLS mbuf chain decrypting records until it runs out of data. Each record is detached from the TLS mbuf chain while it is being decrypted to keep the mbufs "pinned". However, a new sb_dtlscc field tracks the character count of the detached record and sbcut()/sbdrop() is updated to account for the detached record. After the record is decrypted, the worker thread first checks to see if sbcut() dropped the record. If so, it is freed (can happen when a socket is closed with pending data). Otherwise, the header and trailer are stripped from the original mbufs, a control message is created holding the decrypted TLS header, and the decrypted TLS record is appended to the "normal" socket buffer chain. (Side note: the SBCHECK() infrastucture was very useful as I was able to add assertions there about the TLS chain that caught several bugs during development.) Tested by: rmacklem (various versions) Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D24628
2020-07-23 23:48:18 +00:00
static void sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m,
struct mbuf *n);
#endif
static struct mbuf *sbcut_internal(struct sockbuf *sb, int len);
static void sbflush_internal(struct sockbuf *sb);
/*
* Our own version of m_clrprotoflags(), that can preserve M_NOTREADY.
*/
static void
sbm_clrprotoflags(struct mbuf *m, int flags)
{
int mask;
mask = ~M_PROTOFLAGS;
if (flags & PRUS_NOTREADY)
mask |= M_NOTREADY;
while (m) {
m->m_flags &= mask;
m = m->m_next;
}
}
/*
* Compress M_NOTREADY mbufs after they have been readied by sbready().
*
* sbcompress() skips M_NOTREADY mbufs since the data is not available to
* be copied at the time of sbcompress(). This function combines small
* mbufs similar to sbcompress() once mbufs are ready. 'm0' is the first
* mbuf sbready() marked ready, and 'end' is the first mbuf still not
* ready.
*/
static void
sbready_compress(struct sockbuf *sb, struct mbuf *m0, struct mbuf *end)
{
struct mbuf *m, *n;
int ext_size;
SOCKBUF_LOCK_ASSERT(sb);
if ((sb->sb_flags & SB_NOCOALESCE) != 0)
return;
for (m = m0; m != end; m = m->m_next) {
MPASS((m->m_flags & M_NOTREADY) == 0);
2020-03-30 23:29:53 +00:00
/*
* NB: In sbcompress(), 'n' is the last mbuf in the
* socket buffer and 'm' is the new mbuf being copied
* into the trailing space of 'n'. Here, the roles
* are reversed and 'n' is the next mbuf after 'm'
* that is being copied into the trailing space of
* 'm'.
*/
n = m->m_next;
#ifdef KERN_TLS
/* Try to coalesce adjacent ktls mbuf hdr/trailers. */
if ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
(m->m_flags & M_EXTPG) &&
(n->m_flags & M_EXTPG) &&
2020-03-30 23:29:53 +00:00
!mbuf_has_tls_session(m) &&
!mbuf_has_tls_session(n)) {
int hdr_len, trail_len;
hdr_len = n->m_epg_hdrlen;
trail_len = m->m_epg_trllen;
2020-03-30 23:29:53 +00:00
if (trail_len != 0 && hdr_len != 0 &&
trail_len + hdr_len <= MBUF_PEXT_TRAIL_LEN) {
/* copy n's header to m's trailer */
KTLS: Re-work unmapped mbufs to carry ext_pgs in the mbuf itself. While the original implementation of unmapped mbufs was a large step forward in terms of reducing cache misses by enabling mbufs to carry more than a single page for sendfile, they are rather cache unfriendly when accessing the ext_pgs metadata and data. This is because the ext_pgs part of the mbuf is allocated separately, and almost guaranteed to be cold in cache. This change takes advantage of the fact that unmapped mbufs are never used at the same time as pkthdr mbufs. Given this fact, we can overlap the ext_pgs metadata with the mbuf pkthdr, and carry the ext_pgs meta directly in the mbuf itself. Similarly, we can carry the ext_pgs data (TLS hdr/trailer/array of pages) directly after the existing m_ext. In order to be able to carry 5 pages (which is the minimum required for a 16K TLS record which is not perfectly aligned) on LP64, I've had to steal ext_arg2. The only user of this in the xmit path is sendfile, and I've adjusted it to use arg1 when using unmapped mbufs. This change is almost entirely mechanical, except that we change mb_alloc_ext_pgs() to no longer allow allocating pkthdrs, the change to avoid ext_arg2 as mentioned above, and the removal of the ext_pgs zone, This change saves roughly 2% "raw" CPU (~59% -> 57%), or over 3% "scaled" CPU on a Netflix 100% software kTLS workload at 90+ Gb/s on Broadwell Xeons. In a follow-on commit, I plan to remove some hacks to avoid access ext_pgs fields of mbufs, since they will now be in cache. Many thanks to glebius for helping to make this better in the Netflix tree. Reviewed by: hselasky, jhb, rrs, glebius (early version) Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D24213
2020-04-14 14:46:06 +00:00
memcpy(&m->m_epg_trail[trail_len],
n->m_epg_hdr, hdr_len);
m->m_epg_trllen += hdr_len;
2020-03-30 23:29:53 +00:00
m->m_len += hdr_len;
n->m_epg_hdrlen = 0;
2020-03-30 23:29:53 +00:00
n->m_len -= hdr_len;
}
}
#endif
/* Compress small unmapped mbufs into plain mbufs. */
if ((m->m_flags & M_EXTPG) && m->m_len <= MLEN &&
Add kernel-side support for in-kernel TLS. KTLS adds support for in-kernel framing and encryption of Transport Layer Security (1.0-1.2) data on TCP sockets. KTLS only supports offload of TLS for transmitted data. Key negotation must still be performed in userland. Once completed, transmit session keys for a connection are provided to the kernel via a new TCP_TXTLS_ENABLE socket option. All subsequent data transmitted on the socket is placed into TLS frames and encrypted using the supplied keys. Any data written to a KTLS-enabled socket via write(2), aio_write(2), or sendfile(2) is assumed to be application data and is encoded in TLS frames with an application data type. Individual records can be sent with a custom type (e.g. handshake messages) via sendmsg(2) with a new control message (TLS_SET_RECORD_TYPE) specifying the record type. At present, rekeying is not supported though the in-kernel framework should support rekeying. KTLS makes use of the recently added unmapped mbufs to store TLS frames in the socket buffer. Each TLS frame is described by a single ext_pgs mbuf. The ext_pgs structure contains the header of the TLS record (and trailer for encrypted records) as well as references to the associated TLS session. KTLS supports two primary methods of encrypting TLS frames: software TLS and ifnet TLS. Software TLS marks mbufs holding socket data as not ready via M_NOTREADY similar to sendfile(2) when TLS framing information is added to an unmapped mbuf in ktls_frame(). ktls_enqueue() is then called to schedule TLS frames for encryption. In the case of sendfile_iodone() calls ktls_enqueue() instead of pru_ready() leaving the mbufs marked M_NOTREADY until encryption is completed. For other writes (vn_sendfile when pages are available, write(2), etc.), the PRUS_NOTREADY is set when invoking pru_send() along with invoking ktls_enqueue(). A pool of worker threads (the "KTLS" kernel process) encrypts TLS frames queued via ktls_enqueue(). Each TLS frame is temporarily mapped using the direct map and passed to a software encryption backend to perform the actual encryption. (Note: The use of PHYS_TO_DMAP could be replaced with sf_bufs if someone wished to make this work on architectures without a direct map.) KTLS supports pluggable software encryption backends. Internally, Netflix uses proprietary pure-software backends. This commit includes a simple backend in a new ktls_ocf.ko module that uses the kernel's OpenCrypto framework to provide AES-GCM encryption of TLS frames. As a result, software TLS is now a bit of a misnomer as it can make use of hardware crypto accelerators. Once software encryption has finished, the TLS frame mbufs are marked ready via pru_ready(). At this point, the encrypted data appears as regular payload to the TCP stack stored in unmapped mbufs. ifnet TLS permits a NIC to offload the TLS encryption and TCP segmentation. In this mode, a new send tag type (IF_SND_TAG_TYPE_TLS) is allocated on the interface a socket is routed over and associated with a TLS session. TLS records for a TLS session using ifnet TLS are not marked M_NOTREADY but are passed down the stack unencrypted. The ip_output_send() and ip6_output_send() helper functions that apply send tags to outbound IP packets verify that the send tag of the TLS record matches the outbound interface. If so, the packet is tagged with the TLS send tag and sent to the interface. The NIC device driver must recognize packets with the TLS send tag and schedule them for TLS encryption and TCP segmentation. If the the outbound interface does not match the interface in the TLS send tag, the packet is dropped. In addition, a task is scheduled to refresh the TLS send tag for the TLS session. If a new TLS send tag cannot be allocated, the connection is dropped. If a new TLS send tag is allocated, however, subsequent packets will be tagged with the correct TLS send tag. (This latter case has been tested by configuring both ports of a Chelsio T6 in a lagg and failing over from one port to another. As the connections migrated to the new port, new TLS send tags were allocated for the new port and connections resumed without being dropped.) ifnet TLS can be enabled and disabled on supported network interfaces via new '[-]txtls[46]' options to ifconfig(8). ifnet TLS is supported across both vlan devices and lagg interfaces using failover, lacp with flowid enabled, or lacp with flowid enabled. Applications may request the current KTLS mode of a connection via a new TCP_TXTLS_MODE socket option. They can also use this socket option to toggle between software and ifnet TLS modes. In addition, a testing tool is available in tools/tools/switch_tls. This is modeled on tcpdrop and uses similar syntax. However, instead of dropping connections, -s is used to force KTLS connections to switch to software TLS and -i is used to switch to ifnet TLS. Various sysctls and counters are available under the kern.ipc.tls sysctl node. The kern.ipc.tls.enable node must be set to true to enable KTLS (it is off by default). The use of unmapped mbufs must also be enabled via kern.ipc.mb_use_ext_pgs to enable KTLS. KTLS is enabled via the KERN_TLS kernel option. This patch is the culmination of years of work by several folks including Scott Long and Randall Stewart for the original design and implementation; Drew Gallatin for several optimizations including the use of ext_pgs mbufs, the M_NOTREADY mechanism for TLS records awaiting software encryption, and pluggable software crypto backends; and John Baldwin for modifications to support hardware TLS offload. Reviewed by: gallatin, hselasky, rrs Obtained from: Netflix Sponsored by: Netflix, Chelsio Communications Differential Revision: https://reviews.freebsd.org/D21277
2019-08-27 00:01:56 +00:00
!mbuf_has_tls_session(m)) {
ext_size = m->m_ext.ext_size;
if (mb_unmapped_compress(m) == 0) {
sb->sb_mbcnt -= ext_size;
sb->sb_ccnt -= 1;
}
}
while ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
M_WRITABLE(m) &&
(m->m_flags & M_EXTPG) == 0 &&
Add kernel-side support for in-kernel TLS. KTLS adds support for in-kernel framing and encryption of Transport Layer Security (1.0-1.2) data on TCP sockets. KTLS only supports offload of TLS for transmitted data. Key negotation must still be performed in userland. Once completed, transmit session keys for a connection are provided to the kernel via a new TCP_TXTLS_ENABLE socket option. All subsequent data transmitted on the socket is placed into TLS frames and encrypted using the supplied keys. Any data written to a KTLS-enabled socket via write(2), aio_write(2), or sendfile(2) is assumed to be application data and is encoded in TLS frames with an application data type. Individual records can be sent with a custom type (e.g. handshake messages) via sendmsg(2) with a new control message (TLS_SET_RECORD_TYPE) specifying the record type. At present, rekeying is not supported though the in-kernel framework should support rekeying. KTLS makes use of the recently added unmapped mbufs to store TLS frames in the socket buffer. Each TLS frame is described by a single ext_pgs mbuf. The ext_pgs structure contains the header of the TLS record (and trailer for encrypted records) as well as references to the associated TLS session. KTLS supports two primary methods of encrypting TLS frames: software TLS and ifnet TLS. Software TLS marks mbufs holding socket data as not ready via M_NOTREADY similar to sendfile(2) when TLS framing information is added to an unmapped mbuf in ktls_frame(). ktls_enqueue() is then called to schedule TLS frames for encryption. In the case of sendfile_iodone() calls ktls_enqueue() instead of pru_ready() leaving the mbufs marked M_NOTREADY until encryption is completed. For other writes (vn_sendfile when pages are available, write(2), etc.), the PRUS_NOTREADY is set when invoking pru_send() along with invoking ktls_enqueue(). A pool of worker threads (the "KTLS" kernel process) encrypts TLS frames queued via ktls_enqueue(). Each TLS frame is temporarily mapped using the direct map and passed to a software encryption backend to perform the actual encryption. (Note: The use of PHYS_TO_DMAP could be replaced with sf_bufs if someone wished to make this work on architectures without a direct map.) KTLS supports pluggable software encryption backends. Internally, Netflix uses proprietary pure-software backends. This commit includes a simple backend in a new ktls_ocf.ko module that uses the kernel's OpenCrypto framework to provide AES-GCM encryption of TLS frames. As a result, software TLS is now a bit of a misnomer as it can make use of hardware crypto accelerators. Once software encryption has finished, the TLS frame mbufs are marked ready via pru_ready(). At this point, the encrypted data appears as regular payload to the TCP stack stored in unmapped mbufs. ifnet TLS permits a NIC to offload the TLS encryption and TCP segmentation. In this mode, a new send tag type (IF_SND_TAG_TYPE_TLS) is allocated on the interface a socket is routed over and associated with a TLS session. TLS records for a TLS session using ifnet TLS are not marked M_NOTREADY but are passed down the stack unencrypted. The ip_output_send() and ip6_output_send() helper functions that apply send tags to outbound IP packets verify that the send tag of the TLS record matches the outbound interface. If so, the packet is tagged with the TLS send tag and sent to the interface. The NIC device driver must recognize packets with the TLS send tag and schedule them for TLS encryption and TCP segmentation. If the the outbound interface does not match the interface in the TLS send tag, the packet is dropped. In addition, a task is scheduled to refresh the TLS send tag for the TLS session. If a new TLS send tag cannot be allocated, the connection is dropped. If a new TLS send tag is allocated, however, subsequent packets will be tagged with the correct TLS send tag. (This latter case has been tested by configuring both ports of a Chelsio T6 in a lagg and failing over from one port to another. As the connections migrated to the new port, new TLS send tags were allocated for the new port and connections resumed without being dropped.) ifnet TLS can be enabled and disabled on supported network interfaces via new '[-]txtls[46]' options to ifconfig(8). ifnet TLS is supported across both vlan devices and lagg interfaces using failover, lacp with flowid enabled, or lacp with flowid enabled. Applications may request the current KTLS mode of a connection via a new TCP_TXTLS_MODE socket option. They can also use this socket option to toggle between software and ifnet TLS modes. In addition, a testing tool is available in tools/tools/switch_tls. This is modeled on tcpdrop and uses similar syntax. However, instead of dropping connections, -s is used to force KTLS connections to switch to software TLS and -i is used to switch to ifnet TLS. Various sysctls and counters are available under the kern.ipc.tls sysctl node. The kern.ipc.tls.enable node must be set to true to enable KTLS (it is off by default). The use of unmapped mbufs must also be enabled via kern.ipc.mb_use_ext_pgs to enable KTLS. KTLS is enabled via the KERN_TLS kernel option. This patch is the culmination of years of work by several folks including Scott Long and Randall Stewart for the original design and implementation; Drew Gallatin for several optimizations including the use of ext_pgs mbufs, the M_NOTREADY mechanism for TLS records awaiting software encryption, and pluggable software crypto backends; and John Baldwin for modifications to support hardware TLS offload. Reviewed by: gallatin, hselasky, rrs Obtained from: Netflix Sponsored by: Netflix, Chelsio Communications Differential Revision: https://reviews.freebsd.org/D21277
2019-08-27 00:01:56 +00:00
!mbuf_has_tls_session(n) &&
!mbuf_has_tls_session(m) &&
n->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
n->m_len <= M_TRAILINGSPACE(m) &&
m->m_type == n->m_type) {
KASSERT(sb->sb_lastrecord != n,
("%s: merging start of record (%p) into previous mbuf (%p)",
__func__, n, m));
m_copydata(n, 0, n->m_len, mtodo(m, m->m_len));
m->m_len += n->m_len;
m->m_next = n->m_next;
m->m_flags |= n->m_flags & M_EOR;
if (sb->sb_mbtail == n)
sb->sb_mbtail = m;
sb->sb_mbcnt -= MSIZE;
sb->sb_mcnt -= 1;
if (n->m_flags & M_EXT) {
sb->sb_mbcnt -= n->m_ext.ext_size;
sb->sb_ccnt -= 1;
}
m_free(n);
n = m->m_next;
}
}
SBLASTRECORDCHK(sb);
SBLASTMBUFCHK(sb);
}
Merge from projects/sendfile: o Introduce a notion of "not ready" mbufs in socket buffers. These mbufs are now being populated by some I/O in background and are referenced outside. This forces following implications: - An mbuf which is "not ready" can't be taken out of the buffer. - An mbuf that is behind a "not ready" in the queue neither. - If sockbet buffer is flushed, then "not ready" mbufs shouln't be freed. o In struct sockbuf the sb_cc field is split into sb_ccc and sb_acc. The sb_ccc stands for ""claimed character count", or "committed character count". And the sb_acc is "available character count". Consumers of socket buffer API shouldn't already access them directly, but use sbused() and sbavail() respectively. o Not ready mbufs are marked with M_NOTREADY, and ready but blocked ones with M_BLOCKED. o New field sb_fnrdy points to the first not ready mbuf, to avoid linear search. o New function sbready() is provided to activate certain amount of mbufs in a socket buffer. A special note on SCTP: SCTP has its own sockbufs. Unfortunately, FreeBSD stack doesn't yet allow protocol specific sockbufs. Thus, SCTP does some hacks to make itself compatible with FreeBSD: it manages sockbufs on its own, but keeps sb_cc updated to inform the stack of amount of data in them. The new notion of "not ready" data isn't supported by SCTP. Instead, only a mechanical substitute is done: s/sb_cc/sb_ccc/. A proper solution would be to take away struct sockbuf from struct socket and allow protocols to implement their own socket buffers, like SCTP already does. This was discussed with rrs@. Sponsored by: Netflix Sponsored by: Nginx, Inc.
2014-11-30 12:52:33 +00:00
/*
Add an external mbuf buffer type that holds multiple unmapped pages. Unmapped mbufs allow sendfile to carry multiple pages of data in a single mbuf, without mapping those pages. It is a requirement for Netflix's in-kernel TLS, and provides a 5-10% CPU savings on heavy web serving workloads when used by sendfile, due to effectively compressing socket buffers by an order of magnitude, and hence reducing cache misses. For this new external mbuf buffer type (EXT_PGS), the ext_buf pointer now points to a struct mbuf_ext_pgs structure instead of a data buffer. This structure contains an array of physical addresses (this reduces cache misses compared to an earlier version that stored an array of vm_page_t pointers). It also stores additional fields needed for in-kernel TLS such as the TLS header and trailer data that are currently unused. To more easily detect these mbufs, the M_NOMAP flag is set in m_flags in addition to M_EXT. Various functions like m_copydata() have been updated to safely access packet contents (using uiomove_fromphys()), to make things like BPF safe. NIC drivers advertise support for unmapped mbufs on transmit via a new IFCAP_NOMAP capability. This capability can be toggled via the new 'nomap' and '-nomap' ifconfig(8) commands. For NIC drivers that only transmit packet contents via DMA and use bus_dma, adding the capability to if_capabilities and if_capenable should be all that is required. If a NIC does not support unmapped mbufs, they are converted to a chain of mapped mbufs (using sf_bufs to provide the mapping) in ip_output or ip6_output. If an unmapped mbuf requires software checksums, it is also converted to a chain of mapped mbufs before computing the checksum. Submitted by: gallatin (earlier version) Reviewed by: gallatin, hselasky, rrs Discussed with: ae, kp (firewalls) Relnotes: yes Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20616
2019-06-29 00:48:33 +00:00
* Mark ready "count" units of I/O starting with "m". Most mbufs
* count as a single unit of I/O except for M_EXTPG mbufs which
* are backed by multiple pages.
Merge from projects/sendfile: o Introduce a notion of "not ready" mbufs in socket buffers. These mbufs are now being populated by some I/O in background and are referenced outside. This forces following implications: - An mbuf which is "not ready" can't be taken out of the buffer. - An mbuf that is behind a "not ready" in the queue neither. - If sockbet buffer is flushed, then "not ready" mbufs shouln't be freed. o In struct sockbuf the sb_cc field is split into sb_ccc and sb_acc. The sb_ccc stands for ""claimed character count", or "committed character count". And the sb_acc is "available character count". Consumers of socket buffer API shouldn't already access them directly, but use sbused() and sbavail() respectively. o Not ready mbufs are marked with M_NOTREADY, and ready but blocked ones with M_BLOCKED. o New field sb_fnrdy points to the first not ready mbuf, to avoid linear search. o New function sbready() is provided to activate certain amount of mbufs in a socket buffer. A special note on SCTP: SCTP has its own sockbufs. Unfortunately, FreeBSD stack doesn't yet allow protocol specific sockbufs. Thus, SCTP does some hacks to make itself compatible with FreeBSD: it manages sockbufs on its own, but keeps sb_cc updated to inform the stack of amount of data in them. The new notion of "not ready" data isn't supported by SCTP. Instead, only a mechanical substitute is done: s/sb_cc/sb_ccc/. A proper solution would be to take away struct sockbuf from struct socket and allow protocols to implement their own socket buffers, like SCTP already does. This was discussed with rrs@. Sponsored by: Netflix Sponsored by: Nginx, Inc.
2014-11-30 12:52:33 +00:00
*/
int
Add an external mbuf buffer type that holds multiple unmapped pages. Unmapped mbufs allow sendfile to carry multiple pages of data in a single mbuf, without mapping those pages. It is a requirement for Netflix's in-kernel TLS, and provides a 5-10% CPU savings on heavy web serving workloads when used by sendfile, due to effectively compressing socket buffers by an order of magnitude, and hence reducing cache misses. For this new external mbuf buffer type (EXT_PGS), the ext_buf pointer now points to a struct mbuf_ext_pgs structure instead of a data buffer. This structure contains an array of physical addresses (this reduces cache misses compared to an earlier version that stored an array of vm_page_t pointers). It also stores additional fields needed for in-kernel TLS such as the TLS header and trailer data that are currently unused. To more easily detect these mbufs, the M_NOMAP flag is set in m_flags in addition to M_EXT. Various functions like m_copydata() have been updated to safely access packet contents (using uiomove_fromphys()), to make things like BPF safe. NIC drivers advertise support for unmapped mbufs on transmit via a new IFCAP_NOMAP capability. This capability can be toggled via the new 'nomap' and '-nomap' ifconfig(8) commands. For NIC drivers that only transmit packet contents via DMA and use bus_dma, adding the capability to if_capabilities and if_capenable should be all that is required. If a NIC does not support unmapped mbufs, they are converted to a chain of mapped mbufs (using sf_bufs to provide the mapping) in ip_output or ip6_output. If an unmapped mbuf requires software checksums, it is also converted to a chain of mapped mbufs before computing the checksum. Submitted by: gallatin (earlier version) Reviewed by: gallatin, hselasky, rrs Discussed with: ae, kp (firewalls) Relnotes: yes Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20616
2019-06-29 00:48:33 +00:00
sbready(struct sockbuf *sb, struct mbuf *m0, int count)
Merge from projects/sendfile: o Introduce a notion of "not ready" mbufs in socket buffers. These mbufs are now being populated by some I/O in background and are referenced outside. This forces following implications: - An mbuf which is "not ready" can't be taken out of the buffer. - An mbuf that is behind a "not ready" in the queue neither. - If sockbet buffer is flushed, then "not ready" mbufs shouln't be freed. o In struct sockbuf the sb_cc field is split into sb_ccc and sb_acc. The sb_ccc stands for ""claimed character count", or "committed character count". And the sb_acc is "available character count". Consumers of socket buffer API shouldn't already access them directly, but use sbused() and sbavail() respectively. o Not ready mbufs are marked with M_NOTREADY, and ready but blocked ones with M_BLOCKED. o New field sb_fnrdy points to the first not ready mbuf, to avoid linear search. o New function sbready() is provided to activate certain amount of mbufs in a socket buffer. A special note on SCTP: SCTP has its own sockbufs. Unfortunately, FreeBSD stack doesn't yet allow protocol specific sockbufs. Thus, SCTP does some hacks to make itself compatible with FreeBSD: it manages sockbufs on its own, but keeps sb_cc updated to inform the stack of amount of data in them. The new notion of "not ready" data isn't supported by SCTP. Instead, only a mechanical substitute is done: s/sb_cc/sb_ccc/. A proper solution would be to take away struct sockbuf from struct socket and allow protocols to implement their own socket buffers, like SCTP already does. This was discussed with rrs@. Sponsored by: Netflix Sponsored by: Nginx, Inc.
2014-11-30 12:52:33 +00:00
{
Add an external mbuf buffer type that holds multiple unmapped pages. Unmapped mbufs allow sendfile to carry multiple pages of data in a single mbuf, without mapping those pages. It is a requirement for Netflix's in-kernel TLS, and provides a 5-10% CPU savings on heavy web serving workloads when used by sendfile, due to effectively compressing socket buffers by an order of magnitude, and hence reducing cache misses. For this new external mbuf buffer type (EXT_PGS), the ext_buf pointer now points to a struct mbuf_ext_pgs structure instead of a data buffer. This structure contains an array of physical addresses (this reduces cache misses compared to an earlier version that stored an array of vm_page_t pointers). It also stores additional fields needed for in-kernel TLS such as the TLS header and trailer data that are currently unused. To more easily detect these mbufs, the M_NOMAP flag is set in m_flags in addition to M_EXT. Various functions like m_copydata() have been updated to safely access packet contents (using uiomove_fromphys()), to make things like BPF safe. NIC drivers advertise support for unmapped mbufs on transmit via a new IFCAP_NOMAP capability. This capability can be toggled via the new 'nomap' and '-nomap' ifconfig(8) commands. For NIC drivers that only transmit packet contents via DMA and use bus_dma, adding the capability to if_capabilities and if_capenable should be all that is required. If a NIC does not support unmapped mbufs, they are converted to a chain of mapped mbufs (using sf_bufs to provide the mapping) in ip_output or ip6_output. If an unmapped mbuf requires software checksums, it is also converted to a chain of mapped mbufs before computing the checksum. Submitted by: gallatin (earlier version) Reviewed by: gallatin, hselasky, rrs Discussed with: ae, kp (firewalls) Relnotes: yes Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20616
2019-06-29 00:48:33 +00:00
struct mbuf *m;
Merge from projects/sendfile: o Introduce a notion of "not ready" mbufs in socket buffers. These mbufs are now being populated by some I/O in background and are referenced outside. This forces following implications: - An mbuf which is "not ready" can't be taken out of the buffer. - An mbuf that is behind a "not ready" in the queue neither. - If sockbet buffer is flushed, then "not ready" mbufs shouln't be freed. o In struct sockbuf the sb_cc field is split into sb_ccc and sb_acc. The sb_ccc stands for ""claimed character count", or "committed character count". And the sb_acc is "available character count". Consumers of socket buffer API shouldn't already access them directly, but use sbused() and sbavail() respectively. o Not ready mbufs are marked with M_NOTREADY, and ready but blocked ones with M_BLOCKED. o New field sb_fnrdy points to the first not ready mbuf, to avoid linear search. o New function sbready() is provided to activate certain amount of mbufs in a socket buffer. A special note on SCTP: SCTP has its own sockbufs. Unfortunately, FreeBSD stack doesn't yet allow protocol specific sockbufs. Thus, SCTP does some hacks to make itself compatible with FreeBSD: it manages sockbufs on its own, but keeps sb_cc updated to inform the stack of amount of data in them. The new notion of "not ready" data isn't supported by SCTP. Instead, only a mechanical substitute is done: s/sb_cc/sb_ccc/. A proper solution would be to take away struct sockbuf from struct socket and allow protocols to implement their own socket buffers, like SCTP already does. This was discussed with rrs@. Sponsored by: Netflix Sponsored by: Nginx, Inc.
2014-11-30 12:52:33 +00:00
u_int blocker;
SOCKBUF_LOCK_ASSERT(sb);
KASSERT(sb->sb_fnrdy != NULL, ("%s: sb %p NULL fnrdy", __func__, sb));
Add an external mbuf buffer type that holds multiple unmapped pages. Unmapped mbufs allow sendfile to carry multiple pages of data in a single mbuf, without mapping those pages. It is a requirement for Netflix's in-kernel TLS, and provides a 5-10% CPU savings on heavy web serving workloads when used by sendfile, due to effectively compressing socket buffers by an order of magnitude, and hence reducing cache misses. For this new external mbuf buffer type (EXT_PGS), the ext_buf pointer now points to a struct mbuf_ext_pgs structure instead of a data buffer. This structure contains an array of physical addresses (this reduces cache misses compared to an earlier version that stored an array of vm_page_t pointers). It also stores additional fields needed for in-kernel TLS such as the TLS header and trailer data that are currently unused. To more easily detect these mbufs, the M_NOMAP flag is set in m_flags in addition to M_EXT. Various functions like m_copydata() have been updated to safely access packet contents (using uiomove_fromphys()), to make things like BPF safe. NIC drivers advertise support for unmapped mbufs on transmit via a new IFCAP_NOMAP capability. This capability can be toggled via the new 'nomap' and '-nomap' ifconfig(8) commands. For NIC drivers that only transmit packet contents via DMA and use bus_dma, adding the capability to if_capabilities and if_capenable should be all that is required. If a NIC does not support unmapped mbufs, they are converted to a chain of mapped mbufs (using sf_bufs to provide the mapping) in ip_output or ip6_output. If an unmapped mbuf requires software checksums, it is also converted to a chain of mapped mbufs before computing the checksum. Submitted by: gallatin (earlier version) Reviewed by: gallatin, hselasky, rrs Discussed with: ae, kp (firewalls) Relnotes: yes Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20616
2019-06-29 00:48:33 +00:00
KASSERT(count > 0, ("%s: invalid count %d", __func__, count));
Merge from projects/sendfile: o Introduce a notion of "not ready" mbufs in socket buffers. These mbufs are now being populated by some I/O in background and are referenced outside. This forces following implications: - An mbuf which is "not ready" can't be taken out of the buffer. - An mbuf that is behind a "not ready" in the queue neither. - If sockbet buffer is flushed, then "not ready" mbufs shouln't be freed. o In struct sockbuf the sb_cc field is split into sb_ccc and sb_acc. The sb_ccc stands for ""claimed character count", or "committed character count". And the sb_acc is "available character count". Consumers of socket buffer API shouldn't already access them directly, but use sbused() and sbavail() respectively. o Not ready mbufs are marked with M_NOTREADY, and ready but blocked ones with M_BLOCKED. o New field sb_fnrdy points to the first not ready mbuf, to avoid linear search. o New function sbready() is provided to activate certain amount of mbufs in a socket buffer. A special note on SCTP: SCTP has its own sockbufs. Unfortunately, FreeBSD stack doesn't yet allow protocol specific sockbufs. Thus, SCTP does some hacks to make itself compatible with FreeBSD: it manages sockbufs on its own, but keeps sb_cc updated to inform the stack of amount of data in them. The new notion of "not ready" data isn't supported by SCTP. Instead, only a mechanical substitute is done: s/sb_cc/sb_ccc/. A proper solution would be to take away struct sockbuf from struct socket and allow protocols to implement their own socket buffers, like SCTP already does. This was discussed with rrs@. Sponsored by: Netflix Sponsored by: Nginx, Inc.
2014-11-30 12:52:33 +00:00
Add an external mbuf buffer type that holds multiple unmapped pages. Unmapped mbufs allow sendfile to carry multiple pages of data in a single mbuf, without mapping those pages. It is a requirement for Netflix's in-kernel TLS, and provides a 5-10% CPU savings on heavy web serving workloads when used by sendfile, due to effectively compressing socket buffers by an order of magnitude, and hence reducing cache misses. For this new external mbuf buffer type (EXT_PGS), the ext_buf pointer now points to a struct mbuf_ext_pgs structure instead of a data buffer. This structure contains an array of physical addresses (this reduces cache misses compared to an earlier version that stored an array of vm_page_t pointers). It also stores additional fields needed for in-kernel TLS such as the TLS header and trailer data that are currently unused. To more easily detect these mbufs, the M_NOMAP flag is set in m_flags in addition to M_EXT. Various functions like m_copydata() have been updated to safely access packet contents (using uiomove_fromphys()), to make things like BPF safe. NIC drivers advertise support for unmapped mbufs on transmit via a new IFCAP_NOMAP capability. This capability can be toggled via the new 'nomap' and '-nomap' ifconfig(8) commands. For NIC drivers that only transmit packet contents via DMA and use bus_dma, adding the capability to if_capabilities and if_capenable should be all that is required. If a NIC does not support unmapped mbufs, they are converted to a chain of mapped mbufs (using sf_bufs to provide the mapping) in ip_output or ip6_output. If an unmapped mbuf requires software checksums, it is also converted to a chain of mapped mbufs before computing the checksum. Submitted by: gallatin (earlier version) Reviewed by: gallatin, hselasky, rrs Discussed with: ae, kp (firewalls) Relnotes: yes Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20616
2019-06-29 00:48:33 +00:00
m = m0;
Merge from projects/sendfile: o Introduce a notion of "not ready" mbufs in socket buffers. These mbufs are now being populated by some I/O in background and are referenced outside. This forces following implications: - An mbuf which is "not ready" can't be taken out of the buffer. - An mbuf that is behind a "not ready" in the queue neither. - If sockbet buffer is flushed, then "not ready" mbufs shouln't be freed. o In struct sockbuf the sb_cc field is split into sb_ccc and sb_acc. The sb_ccc stands for ""claimed character count", or "committed character count". And the sb_acc is "available character count". Consumers of socket buffer API shouldn't already access them directly, but use sbused() and sbavail() respectively. o Not ready mbufs are marked with M_NOTREADY, and ready but blocked ones with M_BLOCKED. o New field sb_fnrdy points to the first not ready mbuf, to avoid linear search. o New function sbready() is provided to activate certain amount of mbufs in a socket buffer. A special note on SCTP: SCTP has its own sockbufs. Unfortunately, FreeBSD stack doesn't yet allow protocol specific sockbufs. Thus, SCTP does some hacks to make itself compatible with FreeBSD: it manages sockbufs on its own, but keeps sb_cc updated to inform the stack of amount of data in them. The new notion of "not ready" data isn't supported by SCTP. Instead, only a mechanical substitute is done: s/sb_cc/sb_ccc/. A proper solution would be to take away struct sockbuf from struct socket and allow protocols to implement their own socket buffers, like SCTP already does. This was discussed with rrs@. Sponsored by: Netflix Sponsored by: Nginx, Inc.
2014-11-30 12:52:33 +00:00
blocker = (sb->sb_fnrdy == m) ? M_BLOCKED : 0;
Add an external mbuf buffer type that holds multiple unmapped pages. Unmapped mbufs allow sendfile to carry multiple pages of data in a single mbuf, without mapping those pages. It is a requirement for Netflix's in-kernel TLS, and provides a 5-10% CPU savings on heavy web serving workloads when used by sendfile, due to effectively compressing socket buffers by an order of magnitude, and hence reducing cache misses. For this new external mbuf buffer type (EXT_PGS), the ext_buf pointer now points to a struct mbuf_ext_pgs structure instead of a data buffer. This structure contains an array of physical addresses (this reduces cache misses compared to an earlier version that stored an array of vm_page_t pointers). It also stores additional fields needed for in-kernel TLS such as the TLS header and trailer data that are currently unused. To more easily detect these mbufs, the M_NOMAP flag is set in m_flags in addition to M_EXT. Various functions like m_copydata() have been updated to safely access packet contents (using uiomove_fromphys()), to make things like BPF safe. NIC drivers advertise support for unmapped mbufs on transmit via a new IFCAP_NOMAP capability. This capability can be toggled via the new 'nomap' and '-nomap' ifconfig(8) commands. For NIC drivers that only transmit packet contents via DMA and use bus_dma, adding the capability to if_capabilities and if_capenable should be all that is required. If a NIC does not support unmapped mbufs, they are converted to a chain of mapped mbufs (using sf_bufs to provide the mapping) in ip_output or ip6_output. If an unmapped mbuf requires software checksums, it is also converted to a chain of mapped mbufs before computing the checksum. Submitted by: gallatin (earlier version) Reviewed by: gallatin, hselasky, rrs Discussed with: ae, kp (firewalls) Relnotes: yes Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20616
2019-06-29 00:48:33 +00:00
while (count > 0) {
Merge from projects/sendfile: o Introduce a notion of "not ready" mbufs in socket buffers. These mbufs are now being populated by some I/O in background and are referenced outside. This forces following implications: - An mbuf which is "not ready" can't be taken out of the buffer. - An mbuf that is behind a "not ready" in the queue neither. - If sockbet buffer is flushed, then "not ready" mbufs shouln't be freed. o In struct sockbuf the sb_cc field is split into sb_ccc and sb_acc. The sb_ccc stands for ""claimed character count", or "committed character count". And the sb_acc is "available character count". Consumers of socket buffer API shouldn't already access them directly, but use sbused() and sbavail() respectively. o Not ready mbufs are marked with M_NOTREADY, and ready but blocked ones with M_BLOCKED. o New field sb_fnrdy points to the first not ready mbuf, to avoid linear search. o New function sbready() is provided to activate certain amount of mbufs in a socket buffer. A special note on SCTP: SCTP has its own sockbufs. Unfortunately, FreeBSD stack doesn't yet allow protocol specific sockbufs. Thus, SCTP does some hacks to make itself compatible with FreeBSD: it manages sockbufs on its own, but keeps sb_cc updated to inform the stack of amount of data in them. The new notion of "not ready" data isn't supported by SCTP. Instead, only a mechanical substitute is done: s/sb_cc/sb_ccc/. A proper solution would be to take away struct sockbuf from struct socket and allow protocols to implement their own socket buffers, like SCTP already does. This was discussed with rrs@. Sponsored by: Netflix Sponsored by: Nginx, Inc.
2014-11-30 12:52:33 +00:00
KASSERT(m->m_flags & M_NOTREADY,
("%s: m %p !M_NOTREADY", __func__, m));
if ((m->m_flags & M_EXTPG) != 0 && m->m_epg_npgs != 0) {
if (count < m->m_epg_nrdy) {
m->m_epg_nrdy -= count;
Add an external mbuf buffer type that holds multiple unmapped pages. Unmapped mbufs allow sendfile to carry multiple pages of data in a single mbuf, without mapping those pages. It is a requirement for Netflix's in-kernel TLS, and provides a 5-10% CPU savings on heavy web serving workloads when used by sendfile, due to effectively compressing socket buffers by an order of magnitude, and hence reducing cache misses. For this new external mbuf buffer type (EXT_PGS), the ext_buf pointer now points to a struct mbuf_ext_pgs structure instead of a data buffer. This structure contains an array of physical addresses (this reduces cache misses compared to an earlier version that stored an array of vm_page_t pointers). It also stores additional fields needed for in-kernel TLS such as the TLS header and trailer data that are currently unused. To more easily detect these mbufs, the M_NOMAP flag is set in m_flags in addition to M_EXT. Various functions like m_copydata() have been updated to safely access packet contents (using uiomove_fromphys()), to make things like BPF safe. NIC drivers advertise support for unmapped mbufs on transmit via a new IFCAP_NOMAP capability. This capability can be toggled via the new 'nomap' and '-nomap' ifconfig(8) commands. For NIC drivers that only transmit packet contents via DMA and use bus_dma, adding the capability to if_capabilities and if_capenable should be all that is required. If a NIC does not support unmapped mbufs, they are converted to a chain of mapped mbufs (using sf_bufs to provide the mapping) in ip_output or ip6_output. If an unmapped mbuf requires software checksums, it is also converted to a chain of mapped mbufs before computing the checksum. Submitted by: gallatin (earlier version) Reviewed by: gallatin, hselasky, rrs Discussed with: ae, kp (firewalls) Relnotes: yes Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20616
2019-06-29 00:48:33 +00:00
count = 0;
break;
}
count -= m->m_epg_nrdy;
m->m_epg_nrdy = 0;
Add an external mbuf buffer type that holds multiple unmapped pages. Unmapped mbufs allow sendfile to carry multiple pages of data in a single mbuf, without mapping those pages. It is a requirement for Netflix's in-kernel TLS, and provides a 5-10% CPU savings on heavy web serving workloads when used by sendfile, due to effectively compressing socket buffers by an order of magnitude, and hence reducing cache misses. For this new external mbuf buffer type (EXT_PGS), the ext_buf pointer now points to a struct mbuf_ext_pgs structure instead of a data buffer. This structure contains an array of physical addresses (this reduces cache misses compared to an earlier version that stored an array of vm_page_t pointers). It also stores additional fields needed for in-kernel TLS such as the TLS header and trailer data that are currently unused. To more easily detect these mbufs, the M_NOMAP flag is set in m_flags in addition to M_EXT. Various functions like m_copydata() have been updated to safely access packet contents (using uiomove_fromphys()), to make things like BPF safe. NIC drivers advertise support for unmapped mbufs on transmit via a new IFCAP_NOMAP capability. This capability can be toggled via the new 'nomap' and '-nomap' ifconfig(8) commands. For NIC drivers that only transmit packet contents via DMA and use bus_dma, adding the capability to if_capabilities and if_capenable should be all that is required. If a NIC does not support unmapped mbufs, they are converted to a chain of mapped mbufs (using sf_bufs to provide the mapping) in ip_output or ip6_output. If an unmapped mbuf requires software checksums, it is also converted to a chain of mapped mbufs before computing the checksum. Submitted by: gallatin (earlier version) Reviewed by: gallatin, hselasky, rrs Discussed with: ae, kp (firewalls) Relnotes: yes Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20616
2019-06-29 00:48:33 +00:00
} else
count--;
Merge from projects/sendfile: o Introduce a notion of "not ready" mbufs in socket buffers. These mbufs are now being populated by some I/O in background and are referenced outside. This forces following implications: - An mbuf which is "not ready" can't be taken out of the buffer. - An mbuf that is behind a "not ready" in the queue neither. - If sockbet buffer is flushed, then "not ready" mbufs shouln't be freed. o In struct sockbuf the sb_cc field is split into sb_ccc and sb_acc. The sb_ccc stands for ""claimed character count", or "committed character count". And the sb_acc is "available character count". Consumers of socket buffer API shouldn't already access them directly, but use sbused() and sbavail() respectively. o Not ready mbufs are marked with M_NOTREADY, and ready but blocked ones with M_BLOCKED. o New field sb_fnrdy points to the first not ready mbuf, to avoid linear search. o New function sbready() is provided to activate certain amount of mbufs in a socket buffer. A special note on SCTP: SCTP has its own sockbufs. Unfortunately, FreeBSD stack doesn't yet allow protocol specific sockbufs. Thus, SCTP does some hacks to make itself compatible with FreeBSD: it manages sockbufs on its own, but keeps sb_cc updated to inform the stack of amount of data in them. The new notion of "not ready" data isn't supported by SCTP. Instead, only a mechanical substitute is done: s/sb_cc/sb_ccc/. A proper solution would be to take away struct sockbuf from struct socket and allow protocols to implement their own socket buffers, like SCTP already does. This was discussed with rrs@. Sponsored by: Netflix Sponsored by: Nginx, Inc.
2014-11-30 12:52:33 +00:00
m->m_flags &= ~(M_NOTREADY | blocker);
if (blocker)
sb->sb_acc += m->m_len;
Add an external mbuf buffer type that holds multiple unmapped pages. Unmapped mbufs allow sendfile to carry multiple pages of data in a single mbuf, without mapping those pages. It is a requirement for Netflix's in-kernel TLS, and provides a 5-10% CPU savings on heavy web serving workloads when used by sendfile, due to effectively compressing socket buffers by an order of magnitude, and hence reducing cache misses. For this new external mbuf buffer type (EXT_PGS), the ext_buf pointer now points to a struct mbuf_ext_pgs structure instead of a data buffer. This structure contains an array of physical addresses (this reduces cache misses compared to an earlier version that stored an array of vm_page_t pointers). It also stores additional fields needed for in-kernel TLS such as the TLS header and trailer data that are currently unused. To more easily detect these mbufs, the M_NOMAP flag is set in m_flags in addition to M_EXT. Various functions like m_copydata() have been updated to safely access packet contents (using uiomove_fromphys()), to make things like BPF safe. NIC drivers advertise support for unmapped mbufs on transmit via a new IFCAP_NOMAP capability. This capability can be toggled via the new 'nomap' and '-nomap' ifconfig(8) commands. For NIC drivers that only transmit packet contents via DMA and use bus_dma, adding the capability to if_capabilities and if_capenable should be all that is required. If a NIC does not support unmapped mbufs, they are converted to a chain of mapped mbufs (using sf_bufs to provide the mapping) in ip_output or ip6_output. If an unmapped mbuf requires software checksums, it is also converted to a chain of mapped mbufs before computing the checksum. Submitted by: gallatin (earlier version) Reviewed by: gallatin, hselasky, rrs Discussed with: ae, kp (firewalls) Relnotes: yes Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20616
2019-06-29 00:48:33 +00:00
m = m->m_next;
Merge from projects/sendfile: o Introduce a notion of "not ready" mbufs in socket buffers. These mbufs are now being populated by some I/O in background and are referenced outside. This forces following implications: - An mbuf which is "not ready" can't be taken out of the buffer. - An mbuf that is behind a "not ready" in the queue neither. - If sockbet buffer is flushed, then "not ready" mbufs shouln't be freed. o In struct sockbuf the sb_cc field is split into sb_ccc and sb_acc. The sb_ccc stands for ""claimed character count", or "committed character count". And the sb_acc is "available character count". Consumers of socket buffer API shouldn't already access them directly, but use sbused() and sbavail() respectively. o Not ready mbufs are marked with M_NOTREADY, and ready but blocked ones with M_BLOCKED. o New field sb_fnrdy points to the first not ready mbuf, to avoid linear search. o New function sbready() is provided to activate certain amount of mbufs in a socket buffer. A special note on SCTP: SCTP has its own sockbufs. Unfortunately, FreeBSD stack doesn't yet allow protocol specific sockbufs. Thus, SCTP does some hacks to make itself compatible with FreeBSD: it manages sockbufs on its own, but keeps sb_cc updated to inform the stack of amount of data in them. The new notion of "not ready" data isn't supported by SCTP. Instead, only a mechanical substitute is done: s/sb_cc/sb_ccc/. A proper solution would be to take away struct sockbuf from struct socket and allow protocols to implement their own socket buffers, like SCTP already does. This was discussed with rrs@. Sponsored by: Netflix Sponsored by: Nginx, Inc.
2014-11-30 12:52:33 +00:00
}
Add an external mbuf buffer type that holds multiple unmapped pages. Unmapped mbufs allow sendfile to carry multiple pages of data in a single mbuf, without mapping those pages. It is a requirement for Netflix's in-kernel TLS, and provides a 5-10% CPU savings on heavy web serving workloads when used by sendfile, due to effectively compressing socket buffers by an order of magnitude, and hence reducing cache misses. For this new external mbuf buffer type (EXT_PGS), the ext_buf pointer now points to a struct mbuf_ext_pgs structure instead of a data buffer. This structure contains an array of physical addresses (this reduces cache misses compared to an earlier version that stored an array of vm_page_t pointers). It also stores additional fields needed for in-kernel TLS such as the TLS header and trailer data that are currently unused. To more easily detect these mbufs, the M_NOMAP flag is set in m_flags in addition to M_EXT. Various functions like m_copydata() have been updated to safely access packet contents (using uiomove_fromphys()), to make things like BPF safe. NIC drivers advertise support for unmapped mbufs on transmit via a new IFCAP_NOMAP capability. This capability can be toggled via the new 'nomap' and '-nomap' ifconfig(8) commands. For NIC drivers that only transmit packet contents via DMA and use bus_dma, adding the capability to if_capabilities and if_capenable should be all that is required. If a NIC does not support unmapped mbufs, they are converted to a chain of mapped mbufs (using sf_bufs to provide the mapping) in ip_output or ip6_output. If an unmapped mbuf requires software checksums, it is also converted to a chain of mapped mbufs before computing the checksum. Submitted by: gallatin (earlier version) Reviewed by: gallatin, hselasky, rrs Discussed with: ae, kp (firewalls) Relnotes: yes Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20616
2019-06-29 00:48:33 +00:00
/*
* If the first mbuf is still not fully ready because only
* some of its backing pages were readied, no further progress
* can be made.
*/
if (m0 == m) {
MPASS(m->m_flags & M_NOTREADY);
return (EINPROGRESS);
}
if (!blocker) {
sbready_compress(sb, m0, m);
Merge from projects/sendfile: o Introduce a notion of "not ready" mbufs in socket buffers. These mbufs are now being populated by some I/O in background and are referenced outside. This forces following implications: - An mbuf which is "not ready" can't be taken out of the buffer. - An mbuf that is behind a "not ready" in the queue neither. - If sockbet buffer is flushed, then "not ready" mbufs shouln't be freed. o In struct sockbuf the sb_cc field is split into sb_ccc and sb_acc. The sb_ccc stands for ""claimed character count", or "committed character count". And the sb_acc is "available character count". Consumers of socket buffer API shouldn't already access them directly, but use sbused() and sbavail() respectively. o Not ready mbufs are marked with M_NOTREADY, and ready but blocked ones with M_BLOCKED. o New field sb_fnrdy points to the first not ready mbuf, to avoid linear search. o New function sbready() is provided to activate certain amount of mbufs in a socket buffer. A special note on SCTP: SCTP has its own sockbufs. Unfortunately, FreeBSD stack doesn't yet allow protocol specific sockbufs. Thus, SCTP does some hacks to make itself compatible with FreeBSD: it manages sockbufs on its own, but keeps sb_cc updated to inform the stack of amount of data in them. The new notion of "not ready" data isn't supported by SCTP. Instead, only a mechanical substitute is done: s/sb_cc/sb_ccc/. A proper solution would be to take away struct sockbuf from struct socket and allow protocols to implement their own socket buffers, like SCTP already does. This was discussed with rrs@. Sponsored by: Netflix Sponsored by: Nginx, Inc.
2014-11-30 12:52:33 +00:00
return (EINPROGRESS);
Add an external mbuf buffer type that holds multiple unmapped pages. Unmapped mbufs allow sendfile to carry multiple pages of data in a single mbuf, without mapping those pages. It is a requirement for Netflix's in-kernel TLS, and provides a 5-10% CPU savings on heavy web serving workloads when used by sendfile, due to effectively compressing socket buffers by an order of magnitude, and hence reducing cache misses. For this new external mbuf buffer type (EXT_PGS), the ext_buf pointer now points to a struct mbuf_ext_pgs structure instead of a data buffer. This structure contains an array of physical addresses (this reduces cache misses compared to an earlier version that stored an array of vm_page_t pointers). It also stores additional fields needed for in-kernel TLS such as the TLS header and trailer data that are currently unused. To more easily detect these mbufs, the M_NOMAP flag is set in m_flags in addition to M_EXT. Various functions like m_copydata() have been updated to safely access packet contents (using uiomove_fromphys()), to make things like BPF safe. NIC drivers advertise support for unmapped mbufs on transmit via a new IFCAP_NOMAP capability. This capability can be toggled via the new 'nomap' and '-nomap' ifconfig(8) commands. For NIC drivers that only transmit packet contents via DMA and use bus_dma, adding the capability to if_capabilities and if_capenable should be all that is required. If a NIC does not support unmapped mbufs, they are converted to a chain of mapped mbufs (using sf_bufs to provide the mapping) in ip_output or ip6_output. If an unmapped mbuf requires software checksums, it is also converted to a chain of mapped mbufs before computing the checksum. Submitted by: gallatin (earlier version) Reviewed by: gallatin, hselasky, rrs Discussed with: ae, kp (firewalls) Relnotes: yes Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20616
2019-06-29 00:48:33 +00:00
}
Merge from projects/sendfile: o Introduce a notion of "not ready" mbufs in socket buffers. These mbufs are now being populated by some I/O in background and are referenced outside. This forces following implications: - An mbuf which is "not ready" can't be taken out of the buffer. - An mbuf that is behind a "not ready" in the queue neither. - If sockbet buffer is flushed, then "not ready" mbufs shouln't be freed. o In struct sockbuf the sb_cc field is split into sb_ccc and sb_acc. The sb_ccc stands for ""claimed character count", or "committed character count". And the sb_acc is "available character count". Consumers of socket buffer API shouldn't already access them directly, but use sbused() and sbavail() respectively. o Not ready mbufs are marked with M_NOTREADY, and ready but blocked ones with M_BLOCKED. o New field sb_fnrdy points to the first not ready mbuf, to avoid linear search. o New function sbready() is provided to activate certain amount of mbufs in a socket buffer. A special note on SCTP: SCTP has its own sockbufs. Unfortunately, FreeBSD stack doesn't yet allow protocol specific sockbufs. Thus, SCTP does some hacks to make itself compatible with FreeBSD: it manages sockbufs on its own, but keeps sb_cc updated to inform the stack of amount of data in them. The new notion of "not ready" data isn't supported by SCTP. Instead, only a mechanical substitute is done: s/sb_cc/sb_ccc/. A proper solution would be to take away struct sockbuf from struct socket and allow protocols to implement their own socket buffers, like SCTP already does. This was discussed with rrs@. Sponsored by: Netflix Sponsored by: Nginx, Inc.
2014-11-30 12:52:33 +00:00
/* This one was blocking all the queue. */
for (; m && (m->m_flags & M_NOTREADY) == 0; m = m->m_next) {
KASSERT(m->m_flags & M_BLOCKED,
("%s: m %p !M_BLOCKED", __func__, m));
m->m_flags &= ~M_BLOCKED;
sb->sb_acc += m->m_len;
}
sb->sb_fnrdy = m;
sbready_compress(sb, m0, m);
Merge from projects/sendfile: o Introduce a notion of "not ready" mbufs in socket buffers. These mbufs are now being populated by some I/O in background and are referenced outside. This forces following implications: - An mbuf which is "not ready" can't be taken out of the buffer. - An mbuf that is behind a "not ready" in the queue neither. - If sockbet buffer is flushed, then "not ready" mbufs shouln't be freed. o In struct sockbuf the sb_cc field is split into sb_ccc and sb_acc. The sb_ccc stands for ""claimed character count", or "committed character count". And the sb_acc is "available character count". Consumers of socket buffer API shouldn't already access them directly, but use sbused() and sbavail() respectively. o Not ready mbufs are marked with M_NOTREADY, and ready but blocked ones with M_BLOCKED. o New field sb_fnrdy points to the first not ready mbuf, to avoid linear search. o New function sbready() is provided to activate certain amount of mbufs in a socket buffer. A special note on SCTP: SCTP has its own sockbufs. Unfortunately, FreeBSD stack doesn't yet allow protocol specific sockbufs. Thus, SCTP does some hacks to make itself compatible with FreeBSD: it manages sockbufs on its own, but keeps sb_cc updated to inform the stack of amount of data in them. The new notion of "not ready" data isn't supported by SCTP. Instead, only a mechanical substitute is done: s/sb_cc/sb_ccc/. A proper solution would be to take away struct sockbuf from struct socket and allow protocols to implement their own socket buffers, like SCTP already does. This was discussed with rrs@. Sponsored by: Netflix Sponsored by: Nginx, Inc.
2014-11-30 12:52:33 +00:00
return (0);
}
/*
* Adjust sockbuf state reflecting allocation of m.
*/
void
sballoc(struct sockbuf *sb, struct mbuf *m)
{
SOCKBUF_LOCK_ASSERT(sb);
Merge from projects/sendfile: o Introduce a notion of "not ready" mbufs in socket buffers. These mbufs are now being populated by some I/O in background and are referenced outside. This forces following implications: - An mbuf which is "not ready" can't be taken out of the buffer. - An mbuf that is behind a "not ready" in the queue neither. - If sockbet buffer is flushed, then "not ready" mbufs shouln't be freed. o In struct sockbuf the sb_cc field is split into sb_ccc and sb_acc. The sb_ccc stands for ""claimed character count", or "committed character count". And the sb_acc is "available character count". Consumers of socket buffer API shouldn't already access them directly, but use sbused() and sbavail() respectively. o Not ready mbufs are marked with M_NOTREADY, and ready but blocked ones with M_BLOCKED. o New field sb_fnrdy points to the first not ready mbuf, to avoid linear search. o New function sbready() is provided to activate certain amount of mbufs in a socket buffer. A special note on SCTP: SCTP has its own sockbufs. Unfortunately, FreeBSD stack doesn't yet allow protocol specific sockbufs. Thus, SCTP does some hacks to make itself compatible with FreeBSD: it manages sockbufs on its own, but keeps sb_cc updated to inform the stack of amount of data in them. The new notion of "not ready" data isn't supported by SCTP. Instead, only a mechanical substitute is done: s/sb_cc/sb_ccc/. A proper solution would be to take away struct sockbuf from struct socket and allow protocols to implement their own socket buffers, like SCTP already does. This was discussed with rrs@. Sponsored by: Netflix Sponsored by: Nginx, Inc.
2014-11-30 12:52:33 +00:00
sb->sb_ccc += m->m_len;
if (sb->sb_fnrdy == NULL) {
if (m->m_flags & M_NOTREADY)
sb->sb_fnrdy = m;
else
sb->sb_acc += m->m_len;
} else
m->m_flags |= M_BLOCKED;
if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
sb->sb_ctl += m->m_len;
sb->sb_mbcnt += MSIZE;
sb->sb_mcnt += 1;
if (m->m_flags & M_EXT) {
sb->sb_mbcnt += m->m_ext.ext_size;
sb->sb_ccnt += 1;
}
}
/*
* Adjust sockbuf state reflecting freeing of m.
*/
void
sbfree(struct sockbuf *sb, struct mbuf *m)
{
#if 0 /* XXX: not yet: soclose() call path comes here w/o lock. */
SOCKBUF_LOCK_ASSERT(sb);
#endif
Merge from projects/sendfile: o Introduce a notion of "not ready" mbufs in socket buffers. These mbufs are now being populated by some I/O in background and are referenced outside. This forces following implications: - An mbuf which is "not ready" can't be taken out of the buffer. - An mbuf that is behind a "not ready" in the queue neither. - If sockbet buffer is flushed, then "not ready" mbufs shouln't be freed. o In struct sockbuf the sb_cc field is split into sb_ccc and sb_acc. The sb_ccc stands for ""claimed character count", or "committed character count". And the sb_acc is "available character count". Consumers of socket buffer API shouldn't already access them directly, but use sbused() and sbavail() respectively. o Not ready mbufs are marked with M_NOTREADY, and ready but blocked ones with M_BLOCKED. o New field sb_fnrdy points to the first not ready mbuf, to avoid linear search. o New function sbready() is provided to activate certain amount of mbufs in a socket buffer. A special note on SCTP: SCTP has its own sockbufs. Unfortunately, FreeBSD stack doesn't yet allow protocol specific sockbufs. Thus, SCTP does some hacks to make itself compatible with FreeBSD: it manages sockbufs on its own, but keeps sb_cc updated to inform the stack of amount of data in them. The new notion of "not ready" data isn't supported by SCTP. Instead, only a mechanical substitute is done: s/sb_cc/sb_ccc/. A proper solution would be to take away struct sockbuf from struct socket and allow protocols to implement their own socket buffers, like SCTP already does. This was discussed with rrs@. Sponsored by: Netflix Sponsored by: Nginx, Inc.
2014-11-30 12:52:33 +00:00
sb->sb_ccc -= m->m_len;
if (!(m->m_flags & M_NOTAVAIL))
sb->sb_acc -= m->m_len;
if (m == sb->sb_fnrdy) {
struct mbuf *n;
KASSERT(m->m_flags & M_NOTREADY,
("%s: m %p !M_NOTREADY", __func__, m));
n = m->m_next;
while (n != NULL && !(n->m_flags & M_NOTREADY)) {
n->m_flags &= ~M_BLOCKED;
sb->sb_acc += n->m_len;
n = n->m_next;
}
sb->sb_fnrdy = n;
}
if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
sb->sb_ctl -= m->m_len;
sb->sb_mbcnt -= MSIZE;
sb->sb_mcnt -= 1;
if (m->m_flags & M_EXT) {
sb->sb_mbcnt -= m->m_ext.ext_size;
sb->sb_ccnt -= 1;
}
if (sb->sb_sndptr == m) {
sb->sb_sndptr = NULL;
sb->sb_sndptroff = 0;
}
if (sb->sb_sndptroff != 0)
sb->sb_sndptroff -= m->m_len;
}
Add support for KTLS RX via software decryption. Allow TLS records to be decrypted in the kernel after being received by a NIC. At a high level this is somewhat similar to software KTLS for the transmit path except in reverse. Protocols enqueue mbufs containing encrypted TLS records (or portions of records) into the tail of a socket buffer and the KTLS layer decrypts those records before returning them to userland applications. However, there is an important difference: - In the transmit case, the socket buffer is always a single "record" holding a chain of mbufs. Not-yet-encrypted mbufs are marked not ready (M_NOTREADY) and released to protocols for transmit by marking mbufs ready once their data is encrypted. - In the receive case, incoming (encrypted) data appended to the socket buffer is still a single stream of data from the protocol, but decrypted TLS records are stored as separate records in the socket buffer and read individually via recvmsg(). Initially I tried to make this work by marking incoming mbufs as M_NOTREADY, but there didn't seemed to be a non-gross way to deal with picking a portion of the mbuf chain and turning it into a new record in the socket buffer after decrypting the TLS record it contained (along with prepending a control message). Also, such mbufs would also need to be "pinned" in some way while they are being decrypted such that a concurrent sbcut() wouldn't free them out from under the thread performing decryption. As such, I settled on the following solution: - Socket buffers now contain an additional chain of mbufs (sb_mtls, sb_mtlstail, and sb_tlscc) containing encrypted mbufs appended by the protocol layer. These mbufs are still marked M_NOTREADY, but soreceive*() generally don't know about them (except that they will block waiting for data to be decrypted for a blocking read). - Each time a new mbuf is appended to this TLS mbuf chain, the socket buffer peeks at the TLS record header at the head of the chain to determine the encrypted record's length. If enough data is queued for the TLS record, the socket is placed on a per-CPU TLS workqueue (reusing the existing KTLS workqueues and worker threads). - The worker thread loops over the TLS mbuf chain decrypting records until it runs out of data. Each record is detached from the TLS mbuf chain while it is being decrypted to keep the mbufs "pinned". However, a new sb_dtlscc field tracks the character count of the detached record and sbcut()/sbdrop() is updated to account for the detached record. After the record is decrypted, the worker thread first checks to see if sbcut() dropped the record. If so, it is freed (can happen when a socket is closed with pending data). Otherwise, the header and trailer are stripped from the original mbufs, a control message is created holding the decrypted TLS header, and the decrypted TLS record is appended to the "normal" socket buffer chain. (Side note: the SBCHECK() infrastucture was very useful as I was able to add assertions there about the TLS chain that caught several bugs during development.) Tested by: rmacklem (various versions) Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D24628
2020-07-23 23:48:18 +00:00
#ifdef KERN_TLS
/*
* Similar to sballoc/sbfree but does not adjust state associated with
* the sb_mb chain such as sb_fnrdy or sb_sndptr*. Also assumes mbufs
* are not ready.
*/
void
sballoc_ktls_rx(struct sockbuf *sb, struct mbuf *m)
{
SOCKBUF_LOCK_ASSERT(sb);
sb->sb_ccc += m->m_len;
sb->sb_tlscc += m->m_len;
sb->sb_mbcnt += MSIZE;
sb->sb_mcnt += 1;
if (m->m_flags & M_EXT) {
sb->sb_mbcnt += m->m_ext.ext_size;
sb->sb_ccnt += 1;
}
}
void
sbfree_ktls_rx(struct sockbuf *sb, struct mbuf *m)
{
#if 0 /* XXX: not yet: soclose() call path comes here w/o lock. */
SOCKBUF_LOCK_ASSERT(sb);
#endif
sb->sb_ccc -= m->m_len;
sb->sb_tlscc -= m->m_len;
sb->sb_mbcnt -= MSIZE;
sb->sb_mcnt -= 1;
if (m->m_flags & M_EXT) {
sb->sb_mbcnt -= m->m_ext.ext_size;
sb->sb_ccnt -= 1;
}
}
#endif
1994-05-24 10:09:53 +00:00
/*
* Socantsendmore indicates that no more data will be sent on the socket; it
* would normally be applied to a socket when the user informs the system
* that no more data is to be sent, by the protocol code (in case
* PRU_SHUTDOWN). Socantrcvmore indicates that no more data will be
* received, and will normally be applied to the socket by a protocol when it
* detects that the peer will send no more data. Data queued for reading in
* the socket may yet be read.
1994-05-24 10:09:53 +00:00
*/
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
void
socantsendmore_locked(struct socket *so)
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
{
SOCKBUF_LOCK_ASSERT(&so->so_snd);
so->so_snd.sb_state |= SBS_CANTSENDMORE;
sowwakeup_locked(so);
mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
}
1994-05-24 10:09:53 +00:00
void
socantsendmore(struct socket *so)
1994-05-24 10:09:53 +00:00
{
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK(&so->so_snd);
socantsendmore_locked(so);
mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
1994-05-24 10:09:53 +00:00
}
void
socantrcvmore_locked(struct socket *so)
1994-05-24 10:09:53 +00:00
{
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK_ASSERT(&so->so_rcv);
so->so_rcv.sb_state |= SBS_CANTRCVMORE;
Add support for KTLS RX via software decryption. Allow TLS records to be decrypted in the kernel after being received by a NIC. At a high level this is somewhat similar to software KTLS for the transmit path except in reverse. Protocols enqueue mbufs containing encrypted TLS records (or portions of records) into the tail of a socket buffer and the KTLS layer decrypts those records before returning them to userland applications. However, there is an important difference: - In the transmit case, the socket buffer is always a single "record" holding a chain of mbufs. Not-yet-encrypted mbufs are marked not ready (M_NOTREADY) and released to protocols for transmit by marking mbufs ready once their data is encrypted. - In the receive case, incoming (encrypted) data appended to the socket buffer is still a single stream of data from the protocol, but decrypted TLS records are stored as separate records in the socket buffer and read individually via recvmsg(). Initially I tried to make this work by marking incoming mbufs as M_NOTREADY, but there didn't seemed to be a non-gross way to deal with picking a portion of the mbuf chain and turning it into a new record in the socket buffer after decrypting the TLS record it contained (along with prepending a control message). Also, such mbufs would also need to be "pinned" in some way while they are being decrypted such that a concurrent sbcut() wouldn't free them out from under the thread performing decryption. As such, I settled on the following solution: - Socket buffers now contain an additional chain of mbufs (sb_mtls, sb_mtlstail, and sb_tlscc) containing encrypted mbufs appended by the protocol layer. These mbufs are still marked M_NOTREADY, but soreceive*() generally don't know about them (except that they will block waiting for data to be decrypted for a blocking read). - Each time a new mbuf is appended to this TLS mbuf chain, the socket buffer peeks at the TLS record header at the head of the chain to determine the encrypted record's length. If enough data is queued for the TLS record, the socket is placed on a per-CPU TLS workqueue (reusing the existing KTLS workqueues and worker threads). - The worker thread loops over the TLS mbuf chain decrypting records until it runs out of data. Each record is detached from the TLS mbuf chain while it is being decrypted to keep the mbufs "pinned". However, a new sb_dtlscc field tracks the character count of the detached record and sbcut()/sbdrop() is updated to account for the detached record. After the record is decrypted, the worker thread first checks to see if sbcut() dropped the record. If so, it is freed (can happen when a socket is closed with pending data). Otherwise, the header and trailer are stripped from the original mbufs, a control message is created holding the decrypted TLS header, and the decrypted TLS record is appended to the "normal" socket buffer chain. (Side note: the SBCHECK() infrastucture was very useful as I was able to add assertions there about the TLS chain that caught several bugs during development.) Tested by: rmacklem (various versions) Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D24628
2020-07-23 23:48:18 +00:00
#ifdef KERN_TLS
if (so->so_rcv.sb_flags & SB_TLS_RX)
ktls_check_rx(&so->so_rcv);
#endif
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
sorwakeup_locked(so);
mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
}
void
socantrcvmore(struct socket *so)
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
{
SOCKBUF_LOCK(&so->so_rcv);
socantrcvmore_locked(so);
mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
1994-05-24 10:09:53 +00:00
}
void
soroverflow_locked(struct socket *so)
{
SOCKBUF_LOCK_ASSERT(&so->so_rcv);
if (so->so_options & SO_RERROR) {
so->so_rerror = ENOBUFS;
sorwakeup_locked(so);
} else
SOCKBUF_UNLOCK(&so->so_rcv);
mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
}
void
soroverflow(struct socket *so)
{
SOCKBUF_LOCK(&so->so_rcv);
soroverflow_locked(so);
mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
}
1994-05-24 10:09:53 +00:00
/*
* Wait for data to arrive at/drain from a socket buffer.
*/
int
sbwait(struct sockbuf *sb)
1994-05-24 10:09:53 +00:00
{
SOCKBUF_LOCK_ASSERT(sb);
1994-05-24 10:09:53 +00:00
sb->sb_flags |= SB_WAIT;
return (msleep_sbt(&sb->sb_acc, SOCKBUF_MTX(sb),
(sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
sb->sb_timeo, 0, 0));
1994-05-24 10:09:53 +00:00
}
/*
* Wakeup processes waiting on a socket buffer. Do asynchronous notification
* via SIGIO if the socket has the SS_ASYNC flag set.
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
*
* Called with the socket buffer lock held; will release the lock by the end
* of the function. This allows the caller to acquire the socket buffer lock
* while testing for the need for various sorts of wakeup and hold it through
* to the point where it's no longer required. We currently hold the lock
* through calls out to other subsystems (with the exception of kqueue), and
* then release it to avoid lock order issues. It's not clear that's
* correct.
1994-05-24 10:09:53 +00:00
*/
void
sowakeup(struct socket *so, struct sockbuf *sb)
1994-05-24 10:09:53 +00:00
{
Rework socket upcalls to close some races with setup/teardown of upcalls. - Each socket upcall is now invoked with the appropriate socket buffer locked. It is not permissible to call soisconnected() with this lock held; however, so socket upcalls now return an integer value. The two possible values are SU_OK and SU_ISCONNECTED. If an upcall returns SU_ISCONNECTED, then the soisconnected() will be invoked on the socket after the socket buffer lock is dropped. - A new API is provided for setting and clearing socket upcalls. The API consists of soupcall_set() and soupcall_clear(). - To simplify locking, each socket buffer now has a separate upcall. - When a socket upcall returns SU_ISCONNECTED, the upcall is cleared from the receive socket buffer automatically. Note that a SO_SND upcall should never return SU_ISCONNECTED. - All this means that accept filters should now return SU_ISCONNECTED instead of calling soisconnected() directly. They also no longer need to explicitly clear the upcall on the new socket. - The HTTP accept filter still uses soupcall_set() to manage its internal state machine, but other accept filters no longer have any explicit knowlege of socket upcall internals aside from their return value. - The various RPC client upcalls currently drop the socket buffer lock while invoking soreceive() as a temporary band-aid. The plan for the future is to add a new flag to allow soreceive() to be called with the socket buffer locked. - The AIO callback for socket I/O is now also invoked with the socket buffer locked. Previously sowakeup() would drop the socket buffer lock only to call aio_swake() which immediately re-acquired the socket buffer lock for the duration of the function call. Discussed with: rwatson, rmacklem
2009-06-01 21:17:03 +00:00
int ret;
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK_ASSERT(sb);
Listening sockets improvements. o Separate fields of struct socket that belong to listening from fields that belong to normal dataflow, and unionize them. This shrinks the structure a bit. - Take out selinfo's from the socket buffers into the socket. The first reason is to support braindamaged scenario when a socket is added to kevent(2) and then listen(2) is cast on it. The second reason is that there is future plan to make socket buffers pluggable, so that for a dataflow socket a socket buffer can be changed, and in this case we also want to keep same selinfos through the lifetime of a socket. - Remove struct struct so_accf. Since now listening stuff no longer affects struct socket size, just move its fields into listening part of the union. - Provide sol_upcall field and enforce that so_upcall_set() may be called only on a dataflow socket, which has buffers, and for listening sockets provide solisten_upcall_set(). o Remove ACCEPT_LOCK() global. - Add a mutex to socket, to be used instead of socket buffer lock to lock fields of struct socket that don't belong to a socket buffer. - Allow to acquire two socket locks, but the first one must belong to a listening socket. - Make soref()/sorele() to use atomic(9). This allows in some situations to do soref() without owning socket lock. There is place for improvement here, it is possible to make sorele() also to lock optionally. - Most protocols aren't touched by this change, except UNIX local sockets. See below for more information. o Reduce copy-and-paste in kernel modules that accept connections from listening sockets: provide function solisten_dequeue(), and use it in the following modules: ctl(4), iscsi(4), ng_btsocket(4), ng_ksocket(4), infiniband, rpc. o UNIX local sockets. - Removal of ACCEPT_LOCK() global uncovered several races in the UNIX local sockets. Most races exist around spawning a new socket, when we are connecting to a local listening socket. To cover them, we need to hold locks on both PCBs when spawning a third one. This means holding them across sonewconn(). This creates a LOR between pcb locks and unp_list_lock. - To fix the new LOR, abandon the global unp_list_lock in favor of global unp_link_lock. Indeed, separating these two locks didn't provide us any extra parralelism in the UNIX sockets. - Now call into uipc_attach() may happen with unp_link_lock hold if, we are accepting, or without unp_link_lock in case if we are just creating a socket. - Another problem in UNIX sockets is that uipc_close() basicly did nothing for a listening socket. The vnode remained opened for connections. This is fixed by removing vnode in uipc_close(). Maybe the right way would be to do it for all sockets (not only listening), simply move the vnode teardown from uipc_detach() to uipc_close()? Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D9770
2017-06-08 21:30:34 +00:00
selwakeuppri(sb->sb_sel, PSOCK);
if (!SEL_WAITING(sb->sb_sel))
sb->sb_flags &= ~SB_SEL;
1994-05-24 10:09:53 +00:00
if (sb->sb_flags & SB_WAIT) {
sb->sb_flags &= ~SB_WAIT;
Merge from projects/sendfile: o Introduce a notion of "not ready" mbufs in socket buffers. These mbufs are now being populated by some I/O in background and are referenced outside. This forces following implications: - An mbuf which is "not ready" can't be taken out of the buffer. - An mbuf that is behind a "not ready" in the queue neither. - If sockbet buffer is flushed, then "not ready" mbufs shouln't be freed. o In struct sockbuf the sb_cc field is split into sb_ccc and sb_acc. The sb_ccc stands for ""claimed character count", or "committed character count". And the sb_acc is "available character count". Consumers of socket buffer API shouldn't already access them directly, but use sbused() and sbavail() respectively. o Not ready mbufs are marked with M_NOTREADY, and ready but blocked ones with M_BLOCKED. o New field sb_fnrdy points to the first not ready mbuf, to avoid linear search. o New function sbready() is provided to activate certain amount of mbufs in a socket buffer. A special note on SCTP: SCTP has its own sockbufs. Unfortunately, FreeBSD stack doesn't yet allow protocol specific sockbufs. Thus, SCTP does some hacks to make itself compatible with FreeBSD: it manages sockbufs on its own, but keeps sb_cc updated to inform the stack of amount of data in them. The new notion of "not ready" data isn't supported by SCTP. Instead, only a mechanical substitute is done: s/sb_cc/sb_ccc/. A proper solution would be to take away struct sockbuf from struct socket and allow protocols to implement their own socket buffers, like SCTP already does. This was discussed with rrs@. Sponsored by: Netflix Sponsored by: Nginx, Inc.
2014-11-30 12:52:33 +00:00
wakeup(&sb->sb_acc);
1994-05-24 10:09:53 +00:00
}
Listening sockets improvements. o Separate fields of struct socket that belong to listening from fields that belong to normal dataflow, and unionize them. This shrinks the structure a bit. - Take out selinfo's from the socket buffers into the socket. The first reason is to support braindamaged scenario when a socket is added to kevent(2) and then listen(2) is cast on it. The second reason is that there is future plan to make socket buffers pluggable, so that for a dataflow socket a socket buffer can be changed, and in this case we also want to keep same selinfos through the lifetime of a socket. - Remove struct struct so_accf. Since now listening stuff no longer affects struct socket size, just move its fields into listening part of the union. - Provide sol_upcall field and enforce that so_upcall_set() may be called only on a dataflow socket, which has buffers, and for listening sockets provide solisten_upcall_set(). o Remove ACCEPT_LOCK() global. - Add a mutex to socket, to be used instead of socket buffer lock to lock fields of struct socket that don't belong to a socket buffer. - Allow to acquire two socket locks, but the first one must belong to a listening socket. - Make soref()/sorele() to use atomic(9). This allows in some situations to do soref() without owning socket lock. There is place for improvement here, it is possible to make sorele() also to lock optionally. - Most protocols aren't touched by this change, except UNIX local sockets. See below for more information. o Reduce copy-and-paste in kernel modules that accept connections from listening sockets: provide function solisten_dequeue(), and use it in the following modules: ctl(4), iscsi(4), ng_btsocket(4), ng_ksocket(4), infiniband, rpc. o UNIX local sockets. - Removal of ACCEPT_LOCK() global uncovered several races in the UNIX local sockets. Most races exist around spawning a new socket, when we are connecting to a local listening socket. To cover them, we need to hold locks on both PCBs when spawning a third one. This means holding them across sonewconn(). This creates a LOR between pcb locks and unp_list_lock. - To fix the new LOR, abandon the global unp_list_lock in favor of global unp_link_lock. Indeed, separating these two locks didn't provide us any extra parralelism in the UNIX sockets. - Now call into uipc_attach() may happen with unp_link_lock hold if, we are accepting, or without unp_link_lock in case if we are just creating a socket. - Another problem in UNIX sockets is that uipc_close() basicly did nothing for a listening socket. The vnode remained opened for connections. This is fixed by removing vnode in uipc_close(). Maybe the right way would be to do it for all sockets (not only listening), simply move the vnode teardown from uipc_detach() to uipc_close()? Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D9770
2017-06-08 21:30:34 +00:00
KNOTE_LOCKED(&sb->sb_sel->si_note, 0);
if (sb->sb_upcall != NULL) {
ret = sb->sb_upcall(so, sb->sb_upcallarg, M_NOWAIT);
Rework socket upcalls to close some races with setup/teardown of upcalls. - Each socket upcall is now invoked with the appropriate socket buffer locked. It is not permissible to call soisconnected() with this lock held; however, so socket upcalls now return an integer value. The two possible values are SU_OK and SU_ISCONNECTED. If an upcall returns SU_ISCONNECTED, then the soisconnected() will be invoked on the socket after the socket buffer lock is dropped. - A new API is provided for setting and clearing socket upcalls. The API consists of soupcall_set() and soupcall_clear(). - To simplify locking, each socket buffer now has a separate upcall. - When a socket upcall returns SU_ISCONNECTED, the upcall is cleared from the receive socket buffer automatically. Note that a SO_SND upcall should never return SU_ISCONNECTED. - All this means that accept filters should now return SU_ISCONNECTED instead of calling soisconnected() directly. They also no longer need to explicitly clear the upcall on the new socket. - The HTTP accept filter still uses soupcall_set() to manage its internal state machine, but other accept filters no longer have any explicit knowlege of socket upcall internals aside from their return value. - The various RPC client upcalls currently drop the socket buffer lock while invoking soreceive() as a temporary band-aid. The plan for the future is to add a new flag to allow soreceive() to be called with the socket buffer locked. - The AIO callback for socket I/O is now also invoked with the socket buffer locked. Previously sowakeup() would drop the socket buffer lock only to call aio_swake() which immediately re-acquired the socket buffer lock for the duration of the function call. Discussed with: rwatson, rmacklem
2009-06-01 21:17:03 +00:00
if (ret == SU_ISCONNECTED) {
KASSERT(sb == &so->so_rcv,
("SO_SND upcall returned SU_ISCONNECTED"));
soupcall_clear(so, SO_RCV);
}
} else
ret = SU_OK;
if (sb->sb_flags & SB_AIO)
Refactor the AIO subsystem to permit file-type-specific handling and improve cancellation robustness. Introduce a new file operation, fo_aio_queue, which is responsible for queueing and completing an asynchronous I/O request for a given file. The AIO subystem now exports library of routines to manipulate AIO requests as well as the ability to run a handler function in the "default" pool of AIO daemons to service a request. A default implementation for file types which do not include an fo_aio_queue method queues requests to the "default" pool invoking the fo_read or fo_write methods as before. The AIO subsystem permits file types to install a private "cancel" routine when a request is queued to permit safe dequeueing and cleanup of cancelled requests. Sockets now use their own pool of AIO daemons and service per-socket requests in FIFO order. Socket requests will not block indefinitely permitting timely cancellation of all requests. Due to the now-tight coupling of the AIO subsystem with file types, the AIO subsystem is now a standard part of all kernels. The VFS_AIO kernel option and aio.ko module are gone. Many file types may block indefinitely in their fo_read or fo_write callbacks resulting in a hung AIO daemon. This can result in hung user processes (when processes attempt to cancel all outstanding requests during exit) or a hung system. To protect against this, AIO requests are only permitted for known "safe" files by default. AIO requests for all file types can be enabled by setting the new vfs.aio.enable_usafe sysctl to a non-zero value. The AIO tests have been updated to skip operations on unsafe file types if the sysctl is zero. Currently, AIO requests on sockets and raw disks are considered safe and are enabled by default. aio_mlock() is also enabled by default. Reviewed by: cem, jilles Discussed with: kib (earlier version) Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D5289
2016-03-01 18:12:14 +00:00
sowakeup_aio(so, sb);
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_UNLOCK(sb);
if (ret == SU_ISCONNECTED)
Rework socket upcalls to close some races with setup/teardown of upcalls. - Each socket upcall is now invoked with the appropriate socket buffer locked. It is not permissible to call soisconnected() with this lock held; however, so socket upcalls now return an integer value. The two possible values are SU_OK and SU_ISCONNECTED. If an upcall returns SU_ISCONNECTED, then the soisconnected() will be invoked on the socket after the socket buffer lock is dropped. - A new API is provided for setting and clearing socket upcalls. The API consists of soupcall_set() and soupcall_clear(). - To simplify locking, each socket buffer now has a separate upcall. - When a socket upcall returns SU_ISCONNECTED, the upcall is cleared from the receive socket buffer automatically. Note that a SO_SND upcall should never return SU_ISCONNECTED. - All this means that accept filters should now return SU_ISCONNECTED instead of calling soisconnected() directly. They also no longer need to explicitly clear the upcall on the new socket. - The HTTP accept filter still uses soupcall_set() to manage its internal state machine, but other accept filters no longer have any explicit knowlege of socket upcall internals aside from their return value. - The various RPC client upcalls currently drop the socket buffer lock while invoking soreceive() as a temporary band-aid. The plan for the future is to add a new flag to allow soreceive() to be called with the socket buffer locked. - The AIO callback for socket I/O is now also invoked with the socket buffer locked. Previously sowakeup() would drop the socket buffer lock only to call aio_swake() which immediately re-acquired the socket buffer lock for the duration of the function call. Discussed with: rwatson, rmacklem
2009-06-01 21:17:03 +00:00
soisconnected(so);
if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
pgsigio(&so->so_sigio, SIGIO, 0);
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
mtx_assert(SOCKBUF_MTX(sb), MA_NOTOWNED);
1994-05-24 10:09:53 +00:00
}
/*
* Socket buffer (struct sockbuf) utility routines.
*
* Each socket contains two socket buffers: one for sending data and one for
* receiving data. Each buffer contains a queue of mbufs, information about
* the number of mbufs and amount of data in the queue, and other fields
* allowing select() statements and notification on data availability to be
* implemented.
1994-05-24 10:09:53 +00:00
*
* Data stored in a socket buffer is maintained as a list of records. Each
* record is a list of mbufs chained together with the m_next field. Records
* are chained together with the m_nextpkt field. The upper level routine
* soreceive() expects the following conventions to be observed when placing
* information in the receive buffer:
1994-05-24 10:09:53 +00:00
*
* 1. If the protocol requires each message be preceded by the sender's name,
* then a record containing that name must be present before any
* associated data (mbuf's must be of type MT_SONAME).
* 2. If the protocol supports the exchange of ``access rights'' (really just
* additional data associated with the message), and there are ``rights''
* to be received, then a record containing this data should be present
* (mbuf's must be of type MT_RIGHTS).
* 3. If a name or rights record exists, then it must be followed by a data
* record, perhaps of zero length.
1994-05-24 10:09:53 +00:00
*
* Before using a new socket structure it is first necessary to reserve
* buffer space to the socket, by calling sbreserve(). This should commit
* some of the available buffer space in the system buffer pool for the
* socket (currently, it does nothing but enforce limits). The space should
* be released by calling sbrelease() when the socket is destroyed.
1994-05-24 10:09:53 +00:00
*/
int
soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
1994-05-24 10:09:53 +00:00
{
struct thread *td = curthread;
1994-05-24 10:09:53 +00:00
SOCKBUF_LOCK(&so->so_snd);
SOCKBUF_LOCK(&so->so_rcv);
if (sbreserve_locked(&so->so_snd, sndcc, so, td) == 0)
1994-05-24 10:09:53 +00:00
goto bad;
if (sbreserve_locked(&so->so_rcv, rcvcc, so, td) == 0)
1994-05-24 10:09:53 +00:00
goto bad2;
if (so->so_rcv.sb_lowat == 0)
so->so_rcv.sb_lowat = 1;
if (so->so_snd.sb_lowat == 0)
so->so_snd.sb_lowat = MCLBYTES;
if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
SOCKBUF_UNLOCK(&so->so_rcv);
SOCKBUF_UNLOCK(&so->so_snd);
1994-05-24 10:09:53 +00:00
return (0);
bad2:
sbrelease_locked(&so->so_snd, so);
1994-05-24 10:09:53 +00:00
bad:
SOCKBUF_UNLOCK(&so->so_rcv);
SOCKBUF_UNLOCK(&so->so_snd);
1994-05-24 10:09:53 +00:00
return (ENOBUFS);
}
static int
sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
{
int error = 0;
u_long tmp_sb_max = sb_max;
error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req);
if (error || !req->newptr)
return (error);
if (tmp_sb_max < MSIZE + MCLBYTES)
return (EINVAL);
sb_max = tmp_sb_max;
sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
return (0);
}
1994-05-24 10:09:53 +00:00
/*
* Allot mbufs to a sockbuf. Attempt to scale mbmax so that mbcnt doesn't
* become limiting if buffering efficiency is near the normal case.
1994-05-24 10:09:53 +00:00
*/
int
sbreserve_locked(struct sockbuf *sb, u_long cc, struct socket *so,
struct thread *td)
1994-05-24 10:09:53 +00:00
{
Locking for the per-process resource limits structure. - struct plimit includes a mutex to protect a reference count. The plimit structure is treated similarly to struct ucred in that is is always copy on write, so having a reference to a structure is sufficient to read from it without needing a further lock. - The proc lock protects the p_limit pointer and must be held while reading limits from a process to keep the limit structure from changing out from under you while reading from it. - Various global limits that are ints are not protected by a lock since int writes are atomic on all the archs we support and thus a lock wouldn't buy us anything. - All accesses to individual resource limits from a process are abstracted behind a simple lim_rlimit(), lim_max(), and lim_cur() API that return either an rlimit, or the current or max individual limit of the specified resource from a process. - dosetrlimit() was renamed to kern_setrlimit() to match existing style of other similar syscall helper functions. - The alpha OSF/1 compat layer no longer calls getrlimit() and setrlimit() (it didn't used the stackgap when it should have) but uses lim_rlimit() and kern_setrlimit() instead. - The svr4 compat no longer uses the stackgap for resource limits calls, but uses lim_rlimit() and kern_setrlimit() instead. - The ibcs2 compat no longer uses the stackgap for resource limits. It also no longer uses the stackgap for accessing sysctl's for the ibcs2_sysconf() syscall but uses kernel_sysctl() instead. As a result, ibcs2_sysconf() no longer needs Giant. - The p_rlimit macro no longer exists. Submitted by: mtm (mostly, I only did a few cleanups and catchups) Tested on: i386 Compiled on: alpha, amd64
2004-02-04 21:52:57 +00:00
rlim_t sbsize_limit;
SOCKBUF_LOCK_ASSERT(sb);
/*
* When a thread is passed, we take into account the thread's socket
* buffer size limit. The caller will generally pass curthread, but
* in the TCP input path, NULL will be passed to indicate that no
* appropriate thread resource limits are available. In that case,
* we don't apply a process limit.
*/
if (cc > sb_max_adj)
1994-05-24 10:09:53 +00:00
return (0);
Locking for the per-process resource limits structure. - struct plimit includes a mutex to protect a reference count. The plimit structure is treated similarly to struct ucred in that is is always copy on write, so having a reference to a structure is sufficient to read from it without needing a further lock. - The proc lock protects the p_limit pointer and must be held while reading limits from a process to keep the limit structure from changing out from under you while reading from it. - Various global limits that are ints are not protected by a lock since int writes are atomic on all the archs we support and thus a lock wouldn't buy us anything. - All accesses to individual resource limits from a process are abstracted behind a simple lim_rlimit(), lim_max(), and lim_cur() API that return either an rlimit, or the current or max individual limit of the specified resource from a process. - dosetrlimit() was renamed to kern_setrlimit() to match existing style of other similar syscall helper functions. - The alpha OSF/1 compat layer no longer calls getrlimit() and setrlimit() (it didn't used the stackgap when it should have) but uses lim_rlimit() and kern_setrlimit() instead. - The svr4 compat no longer uses the stackgap for resource limits calls, but uses lim_rlimit() and kern_setrlimit() instead. - The ibcs2 compat no longer uses the stackgap for resource limits. It also no longer uses the stackgap for accessing sysctl's for the ibcs2_sysconf() syscall but uses kernel_sysctl() instead. As a result, ibcs2_sysconf() no longer needs Giant. - The p_rlimit macro no longer exists. Submitted by: mtm (mostly, I only did a few cleanups and catchups) Tested on: i386 Compiled on: alpha, amd64
2004-02-04 21:52:57 +00:00
if (td != NULL) {
sbsize_limit = lim_cur(td, RLIMIT_SBSIZE);
Locking for the per-process resource limits structure. - struct plimit includes a mutex to protect a reference count. The plimit structure is treated similarly to struct ucred in that is is always copy on write, so having a reference to a structure is sufficient to read from it without needing a further lock. - The proc lock protects the p_limit pointer and must be held while reading limits from a process to keep the limit structure from changing out from under you while reading from it. - Various global limits that are ints are not protected by a lock since int writes are atomic on all the archs we support and thus a lock wouldn't buy us anything. - All accesses to individual resource limits from a process are abstracted behind a simple lim_rlimit(), lim_max(), and lim_cur() API that return either an rlimit, or the current or max individual limit of the specified resource from a process. - dosetrlimit() was renamed to kern_setrlimit() to match existing style of other similar syscall helper functions. - The alpha OSF/1 compat layer no longer calls getrlimit() and setrlimit() (it didn't used the stackgap when it should have) but uses lim_rlimit() and kern_setrlimit() instead. - The svr4 compat no longer uses the stackgap for resource limits calls, but uses lim_rlimit() and kern_setrlimit() instead. - The ibcs2 compat no longer uses the stackgap for resource limits. It also no longer uses the stackgap for accessing sysctl's for the ibcs2_sysconf() syscall but uses kernel_sysctl() instead. As a result, ibcs2_sysconf() no longer needs Giant. - The p_rlimit macro no longer exists. Submitted by: mtm (mostly, I only did a few cleanups and catchups) Tested on: i386 Compiled on: alpha, amd64
2004-02-04 21:52:57 +00:00
} else
sbsize_limit = RLIM_INFINITY;
if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
Locking for the per-process resource limits structure. - struct plimit includes a mutex to protect a reference count. The plimit structure is treated similarly to struct ucred in that is is always copy on write, so having a reference to a structure is sufficient to read from it without needing a further lock. - The proc lock protects the p_limit pointer and must be held while reading limits from a process to keep the limit structure from changing out from under you while reading from it. - Various global limits that are ints are not protected by a lock since int writes are atomic on all the archs we support and thus a lock wouldn't buy us anything. - All accesses to individual resource limits from a process are abstracted behind a simple lim_rlimit(), lim_max(), and lim_cur() API that return either an rlimit, or the current or max individual limit of the specified resource from a process. - dosetrlimit() was renamed to kern_setrlimit() to match existing style of other similar syscall helper functions. - The alpha OSF/1 compat layer no longer calls getrlimit() and setrlimit() (it didn't used the stackgap when it should have) but uses lim_rlimit() and kern_setrlimit() instead. - The svr4 compat no longer uses the stackgap for resource limits calls, but uses lim_rlimit() and kern_setrlimit() instead. - The ibcs2 compat no longer uses the stackgap for resource limits. It also no longer uses the stackgap for accessing sysctl's for the ibcs2_sysconf() syscall but uses kernel_sysctl() instead. As a result, ibcs2_sysconf() no longer needs Giant. - The p_rlimit macro no longer exists. Submitted by: mtm (mostly, I only did a few cleanups and catchups) Tested on: i386 Compiled on: alpha, amd64
2004-02-04 21:52:57 +00:00
sbsize_limit))
return (0);
sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
1994-05-24 10:09:53 +00:00
if (sb->sb_lowat > sb->sb_hiwat)
sb->sb_lowat = sb->sb_hiwat;
return (1);
}
int
sbsetopt(struct socket *so, int cmd, u_long cc)
{
struct sockbuf *sb;
short *flags;
u_int *hiwat, *lowat;
int error;
2018-05-19 03:49:36 +00:00
sb = NULL;
SOCK_LOCK(so);
if (SOLISTENING(so)) {
switch (cmd) {
case SO_SNDLOWAT:
case SO_SNDBUF:
lowat = &so->sol_sbsnd_lowat;
hiwat = &so->sol_sbsnd_hiwat;
flags = &so->sol_sbsnd_flags;
break;
case SO_RCVLOWAT:
case SO_RCVBUF:
lowat = &so->sol_sbrcv_lowat;
hiwat = &so->sol_sbrcv_hiwat;
flags = &so->sol_sbrcv_flags;
break;
}
} else {
switch (cmd) {
case SO_SNDLOWAT:
case SO_SNDBUF:
sb = &so->so_snd;
break;
case SO_RCVLOWAT:
case SO_RCVBUF:
sb = &so->so_rcv;
break;
}
flags = &sb->sb_flags;
hiwat = &sb->sb_hiwat;
lowat = &sb->sb_lowat;
SOCKBUF_LOCK(sb);
}
error = 0;
switch (cmd) {
case SO_SNDBUF:
case SO_RCVBUF:
if (SOLISTENING(so)) {
if (cc > sb_max_adj) {
error = ENOBUFS;
break;
}
*hiwat = cc;
if (*lowat > *hiwat)
*lowat = *hiwat;
} else {
if (!sbreserve_locked(sb, cc, so, curthread))
error = ENOBUFS;
}
if (error == 0)
*flags &= ~SB_AUTOSIZE;
break;
case SO_SNDLOWAT:
case SO_RCVLOWAT:
/*
* Make sure the low-water is never greater than the
* high-water.
*/
*lowat = (cc > *hiwat) ? *hiwat : cc;
break;
}
if (!SOLISTENING(so))
SOCKBUF_UNLOCK(sb);
SOCK_UNLOCK(so);
return (error);
}
1994-05-24 10:09:53 +00:00
/*
* Free mbufs held by a socket, and reserved mbuf space.
*/
void
sbrelease_internal(struct sockbuf *sb, struct socket *so)
{
sbflush_internal(sb);
(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
RLIM_INFINITY);
sb->sb_mbmax = 0;
}
void
sbrelease_locked(struct sockbuf *sb, struct socket *so)
1994-05-24 10:09:53 +00:00
{
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK_ASSERT(sb);
sbrelease_internal(sb, so);
1994-05-24 10:09:53 +00:00
}
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
void
sbrelease(struct sockbuf *sb, struct socket *so)
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
{
SOCKBUF_LOCK(sb);
sbrelease_locked(sb, so);
SOCKBUF_UNLOCK(sb);
}
void
sbdestroy(struct sockbuf *sb, struct socket *so)
{
sbrelease_internal(sb, so);
Add kernel-side support for in-kernel TLS. KTLS adds support for in-kernel framing and encryption of Transport Layer Security (1.0-1.2) data on TCP sockets. KTLS only supports offload of TLS for transmitted data. Key negotation must still be performed in userland. Once completed, transmit session keys for a connection are provided to the kernel via a new TCP_TXTLS_ENABLE socket option. All subsequent data transmitted on the socket is placed into TLS frames and encrypted using the supplied keys. Any data written to a KTLS-enabled socket via write(2), aio_write(2), or sendfile(2) is assumed to be application data and is encoded in TLS frames with an application data type. Individual records can be sent with a custom type (e.g. handshake messages) via sendmsg(2) with a new control message (TLS_SET_RECORD_TYPE) specifying the record type. At present, rekeying is not supported though the in-kernel framework should support rekeying. KTLS makes use of the recently added unmapped mbufs to store TLS frames in the socket buffer. Each TLS frame is described by a single ext_pgs mbuf. The ext_pgs structure contains the header of the TLS record (and trailer for encrypted records) as well as references to the associated TLS session. KTLS supports two primary methods of encrypting TLS frames: software TLS and ifnet TLS. Software TLS marks mbufs holding socket data as not ready via M_NOTREADY similar to sendfile(2) when TLS framing information is added to an unmapped mbuf in ktls_frame(). ktls_enqueue() is then called to schedule TLS frames for encryption. In the case of sendfile_iodone() calls ktls_enqueue() instead of pru_ready() leaving the mbufs marked M_NOTREADY until encryption is completed. For other writes (vn_sendfile when pages are available, write(2), etc.), the PRUS_NOTREADY is set when invoking pru_send() along with invoking ktls_enqueue(). A pool of worker threads (the "KTLS" kernel process) encrypts TLS frames queued via ktls_enqueue(). Each TLS frame is temporarily mapped using the direct map and passed to a software encryption backend to perform the actual encryption. (Note: The use of PHYS_TO_DMAP could be replaced with sf_bufs if someone wished to make this work on architectures without a direct map.) KTLS supports pluggable software encryption backends. Internally, Netflix uses proprietary pure-software backends. This commit includes a simple backend in a new ktls_ocf.ko module that uses the kernel's OpenCrypto framework to provide AES-GCM encryption of TLS frames. As a result, software TLS is now a bit of a misnomer as it can make use of hardware crypto accelerators. Once software encryption has finished, the TLS frame mbufs are marked ready via pru_ready(). At this point, the encrypted data appears as regular payload to the TCP stack stored in unmapped mbufs. ifnet TLS permits a NIC to offload the TLS encryption and TCP segmentation. In this mode, a new send tag type (IF_SND_TAG_TYPE_TLS) is allocated on the interface a socket is routed over and associated with a TLS session. TLS records for a TLS session using ifnet TLS are not marked M_NOTREADY but are passed down the stack unencrypted. The ip_output_send() and ip6_output_send() helper functions that apply send tags to outbound IP packets verify that the send tag of the TLS record matches the outbound interface. If so, the packet is tagged with the TLS send tag and sent to the interface. The NIC device driver must recognize packets with the TLS send tag and schedule them for TLS encryption and TCP segmentation. If the the outbound interface does not match the interface in the TLS send tag, the packet is dropped. In addition, a task is scheduled to refresh the TLS send tag for the TLS session. If a new TLS send tag cannot be allocated, the connection is dropped. If a new TLS send tag is allocated, however, subsequent packets will be tagged with the correct TLS send tag. (This latter case has been tested by configuring both ports of a Chelsio T6 in a lagg and failing over from one port to another. As the connections migrated to the new port, new TLS send tags were allocated for the new port and connections resumed without being dropped.) ifnet TLS can be enabled and disabled on supported network interfaces via new '[-]txtls[46]' options to ifconfig(8). ifnet TLS is supported across both vlan devices and lagg interfaces using failover, lacp with flowid enabled, or lacp with flowid enabled. Applications may request the current KTLS mode of a connection via a new TCP_TXTLS_MODE socket option. They can also use this socket option to toggle between software and ifnet TLS modes. In addition, a testing tool is available in tools/tools/switch_tls. This is modeled on tcpdrop and uses similar syntax. However, instead of dropping connections, -s is used to force KTLS connections to switch to software TLS and -i is used to switch to ifnet TLS. Various sysctls and counters are available under the kern.ipc.tls sysctl node. The kern.ipc.tls.enable node must be set to true to enable KTLS (it is off by default). The use of unmapped mbufs must also be enabled via kern.ipc.mb_use_ext_pgs to enable KTLS. KTLS is enabled via the KERN_TLS kernel option. This patch is the culmination of years of work by several folks including Scott Long and Randall Stewart for the original design and implementation; Drew Gallatin for several optimizations including the use of ext_pgs mbufs, the M_NOTREADY mechanism for TLS records awaiting software encryption, and pluggable software crypto backends; and John Baldwin for modifications to support hardware TLS offload. Reviewed by: gallatin, hselasky, rrs Obtained from: Netflix Sponsored by: Netflix, Chelsio Communications Differential Revision: https://reviews.freebsd.org/D21277
2019-08-27 00:01:56 +00:00
#ifdef KERN_TLS
if (sb->sb_tls_info != NULL)
ktls_free(sb->sb_tls_info);
sb->sb_tls_info = NULL;
#endif
}
1994-05-24 10:09:53 +00:00
/*
* Routines to add and remove data from an mbuf queue.
1994-05-24 10:09:53 +00:00
*
* The routines sbappend() or sbappendrecord() are normally called to append
* new mbufs to a socket buffer, after checking that adequate space is
* available, comparing the function sbspace() with the amount of data to be
* added. sbappendrecord() differs from sbappend() in that data supplied is
* treated as the beginning of a new record. To place a sender's address,
* optional access rights, and data in a socket receive buffer,
* sbappendaddr() should be used. To place access rights and data in a
* socket receive buffer, sbappendrights() should be used. In either case,
* the new data begins a new record. Note that unlike sbappend() and
* sbappendrecord(), these routines check for the caller that there will be
* enough space to store the data. Each fails if there is not enough space,
* or if it cannot find mbufs to store additional information in.
1994-05-24 10:09:53 +00:00
*
* Reliable protocols may use the socket send buffer to hold data awaiting
* acknowledgement. Data is normally copied from a socket send buffer in a
* protocol with m_copy for output to a peer, and then removing the data from
* the socket buffer with sbdrop() or sbdroprecord() when the data is
* acknowledged by the peer.
1994-05-24 10:09:53 +00:00
*/
#ifdef SOCKBUF_DEBUG
void
sblastrecordchk(struct sockbuf *sb, const char *file, int line)
{
struct mbuf *m = sb->sb_mb;
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK_ASSERT(sb);
while (m && m->m_nextpkt)
m = m->m_nextpkt;
if (m != sb->sb_lastrecord) {
printf("%s: sb_mb %p sb_lastrecord %p last %p\n",
__func__, sb->sb_mb, sb->sb_lastrecord, m);
printf("packet chain:\n");
for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
printf("\t%p\n", m);
panic("%s from %s:%u", __func__, file, line);
}
}
void
sblastmbufchk(struct sockbuf *sb, const char *file, int line)
{
struct mbuf *m = sb->sb_mb;
struct mbuf *n;
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK_ASSERT(sb);
while (m && m->m_nextpkt)
m = m->m_nextpkt;
while (m && m->m_next)
m = m->m_next;
if (m != sb->sb_mbtail) {
printf("%s: sb_mb %p sb_mbtail %p last %p\n",
__func__, sb->sb_mb, sb->sb_mbtail, m);
printf("packet tree:\n");
for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
printf("\t");
for (n = m; n != NULL; n = n->m_next)
printf("%p ", n);
printf("\n");
}
panic("%s from %s:%u", __func__, file, line);
}
Add support for KTLS RX via software decryption. Allow TLS records to be decrypted in the kernel after being received by a NIC. At a high level this is somewhat similar to software KTLS for the transmit path except in reverse. Protocols enqueue mbufs containing encrypted TLS records (or portions of records) into the tail of a socket buffer and the KTLS layer decrypts those records before returning them to userland applications. However, there is an important difference: - In the transmit case, the socket buffer is always a single "record" holding a chain of mbufs. Not-yet-encrypted mbufs are marked not ready (M_NOTREADY) and released to protocols for transmit by marking mbufs ready once their data is encrypted. - In the receive case, incoming (encrypted) data appended to the socket buffer is still a single stream of data from the protocol, but decrypted TLS records are stored as separate records in the socket buffer and read individually via recvmsg(). Initially I tried to make this work by marking incoming mbufs as M_NOTREADY, but there didn't seemed to be a non-gross way to deal with picking a portion of the mbuf chain and turning it into a new record in the socket buffer after decrypting the TLS record it contained (along with prepending a control message). Also, such mbufs would also need to be "pinned" in some way while they are being decrypted such that a concurrent sbcut() wouldn't free them out from under the thread performing decryption. As such, I settled on the following solution: - Socket buffers now contain an additional chain of mbufs (sb_mtls, sb_mtlstail, and sb_tlscc) containing encrypted mbufs appended by the protocol layer. These mbufs are still marked M_NOTREADY, but soreceive*() generally don't know about them (except that they will block waiting for data to be decrypted for a blocking read). - Each time a new mbuf is appended to this TLS mbuf chain, the socket buffer peeks at the TLS record header at the head of the chain to determine the encrypted record's length. If enough data is queued for the TLS record, the socket is placed on a per-CPU TLS workqueue (reusing the existing KTLS workqueues and worker threads). - The worker thread loops over the TLS mbuf chain decrypting records until it runs out of data. Each record is detached from the TLS mbuf chain while it is being decrypted to keep the mbufs "pinned". However, a new sb_dtlscc field tracks the character count of the detached record and sbcut()/sbdrop() is updated to account for the detached record. After the record is decrypted, the worker thread first checks to see if sbcut() dropped the record. If so, it is freed (can happen when a socket is closed with pending data). Otherwise, the header and trailer are stripped from the original mbufs, a control message is created holding the decrypted TLS header, and the decrypted TLS record is appended to the "normal" socket buffer chain. (Side note: the SBCHECK() infrastucture was very useful as I was able to add assertions there about the TLS chain that caught several bugs during development.) Tested by: rmacklem (various versions) Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D24628
2020-07-23 23:48:18 +00:00
#ifdef KERN_TLS
m = sb->sb_mtls;
while (m && m->m_next)
m = m->m_next;
if (m != sb->sb_mtlstail) {
printf("%s: sb_mtls %p sb_mtlstail %p last %p\n",
__func__, sb->sb_mtls, sb->sb_mtlstail, m);
printf("TLS packet tree:\n");
printf("\t");
for (m = sb->sb_mtls; m != NULL; m = m->m_next) {
printf("%p ", m);
}
printf("\n");
panic("%s from %s:%u", __func__, file, line);
}
#endif
}
#endif /* SOCKBUF_DEBUG */
#define SBLINKRECORD(sb, m0) do { \
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK_ASSERT(sb); \
if ((sb)->sb_lastrecord != NULL) \
(sb)->sb_lastrecord->m_nextpkt = (m0); \
else \
(sb)->sb_mb = (m0); \
(sb)->sb_lastrecord = (m0); \
} while (/*CONSTCOND*/0)
1994-05-24 10:09:53 +00:00
/*
* Append mbuf chain m to the last record in the socket buffer sb. The
* additional space associated the mbuf chain is recorded in sb. Empty mbufs
* are discarded and mbufs are compacted where possible.
1994-05-24 10:09:53 +00:00
*/
void
sbappend_locked(struct sockbuf *sb, struct mbuf *m, int flags)
1994-05-24 10:09:53 +00:00
{
struct mbuf *n;
1994-05-24 10:09:53 +00:00
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK_ASSERT(sb);
if (m == NULL)
1994-05-24 10:09:53 +00:00
return;
sbm_clrprotoflags(m, flags);
SBLASTRECORDCHK(sb);
n = sb->sb_mb;
if (n) {
1994-05-24 10:09:53 +00:00
while (n->m_nextpkt)
n = n->m_nextpkt;
do {
if (n->m_flags & M_EOR) {
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
1994-05-24 10:09:53 +00:00
return;
}
} while (n->m_next && (n = n->m_next));
} else {
/*
* XXX Would like to simply use sb_mbtail here, but
* XXX I need to verify that I won't miss an EOR that
* XXX way.
*/
if ((n = sb->sb_lastrecord) != NULL) {
do {
if (n->m_flags & M_EOR) {
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
return;
}
} while (n->m_next && (n = n->m_next));
} else {
/*
* If this is the first record in the socket buffer,
* it's also the last record.
*/
sb->sb_lastrecord = m;
}
1994-05-24 10:09:53 +00:00
}
sbcompress(sb, m, n);
SBLASTRECORDCHK(sb);
}
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
/*
* Append mbuf chain m to the last record in the socket buffer sb. The
* additional space associated the mbuf chain is recorded in sb. Empty mbufs
* are discarded and mbufs are compacted where possible.
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
*/
void
sbappend(struct sockbuf *sb, struct mbuf *m, int flags)
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
{
SOCKBUF_LOCK(sb);
sbappend_locked(sb, m, flags);
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_UNLOCK(sb);
}
Add support for KTLS RX via software decryption. Allow TLS records to be decrypted in the kernel after being received by a NIC. At a high level this is somewhat similar to software KTLS for the transmit path except in reverse. Protocols enqueue mbufs containing encrypted TLS records (or portions of records) into the tail of a socket buffer and the KTLS layer decrypts those records before returning them to userland applications. However, there is an important difference: - In the transmit case, the socket buffer is always a single "record" holding a chain of mbufs. Not-yet-encrypted mbufs are marked not ready (M_NOTREADY) and released to protocols for transmit by marking mbufs ready once their data is encrypted. - In the receive case, incoming (encrypted) data appended to the socket buffer is still a single stream of data from the protocol, but decrypted TLS records are stored as separate records in the socket buffer and read individually via recvmsg(). Initially I tried to make this work by marking incoming mbufs as M_NOTREADY, but there didn't seemed to be a non-gross way to deal with picking a portion of the mbuf chain and turning it into a new record in the socket buffer after decrypting the TLS record it contained (along with prepending a control message). Also, such mbufs would also need to be "pinned" in some way while they are being decrypted such that a concurrent sbcut() wouldn't free them out from under the thread performing decryption. As such, I settled on the following solution: - Socket buffers now contain an additional chain of mbufs (sb_mtls, sb_mtlstail, and sb_tlscc) containing encrypted mbufs appended by the protocol layer. These mbufs are still marked M_NOTREADY, but soreceive*() generally don't know about them (except that they will block waiting for data to be decrypted for a blocking read). - Each time a new mbuf is appended to this TLS mbuf chain, the socket buffer peeks at the TLS record header at the head of the chain to determine the encrypted record's length. If enough data is queued for the TLS record, the socket is placed on a per-CPU TLS workqueue (reusing the existing KTLS workqueues and worker threads). - The worker thread loops over the TLS mbuf chain decrypting records until it runs out of data. Each record is detached from the TLS mbuf chain while it is being decrypted to keep the mbufs "pinned". However, a new sb_dtlscc field tracks the character count of the detached record and sbcut()/sbdrop() is updated to account for the detached record. After the record is decrypted, the worker thread first checks to see if sbcut() dropped the record. If so, it is freed (can happen when a socket is closed with pending data). Otherwise, the header and trailer are stripped from the original mbufs, a control message is created holding the decrypted TLS header, and the decrypted TLS record is appended to the "normal" socket buffer chain. (Side note: the SBCHECK() infrastucture was very useful as I was able to add assertions there about the TLS chain that caught several bugs during development.) Tested by: rmacklem (various versions) Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D24628
2020-07-23 23:48:18 +00:00
#ifdef KERN_TLS
/*
* Append an mbuf containing encrypted TLS data. The data
* is marked M_NOTREADY until it has been decrypted and
* stored as a TLS record.
*/
static void
sbappend_ktls_rx(struct sockbuf *sb, struct mbuf *m)
{
struct mbuf *n;
SBLASTMBUFCHK(sb);
/* Remove all packet headers and mbuf tags to get a pure data chain. */
m_demote(m, 1, 0);
for (n = m; n != NULL; n = n->m_next)
n->m_flags |= M_NOTREADY;
sbcompress_ktls_rx(sb, m, sb->sb_mtlstail);
ktls_check_rx(sb);
}
#endif
/*
* This version of sbappend() should only be used when the caller absolutely
* knows that there will never be more than one record in the socket buffer,
* that is, a stream protocol (such as TCP).
*/
void
sbappendstream_locked(struct sockbuf *sb, struct mbuf *m, int flags)
{
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK_ASSERT(sb);
KASSERT(m->m_nextpkt == NULL,("sbappendstream 0"));
Add support for KTLS RX via software decryption. Allow TLS records to be decrypted in the kernel after being received by a NIC. At a high level this is somewhat similar to software KTLS for the transmit path except in reverse. Protocols enqueue mbufs containing encrypted TLS records (or portions of records) into the tail of a socket buffer and the KTLS layer decrypts those records before returning them to userland applications. However, there is an important difference: - In the transmit case, the socket buffer is always a single "record" holding a chain of mbufs. Not-yet-encrypted mbufs are marked not ready (M_NOTREADY) and released to protocols for transmit by marking mbufs ready once their data is encrypted. - In the receive case, incoming (encrypted) data appended to the socket buffer is still a single stream of data from the protocol, but decrypted TLS records are stored as separate records in the socket buffer and read individually via recvmsg(). Initially I tried to make this work by marking incoming mbufs as M_NOTREADY, but there didn't seemed to be a non-gross way to deal with picking a portion of the mbuf chain and turning it into a new record in the socket buffer after decrypting the TLS record it contained (along with prepending a control message). Also, such mbufs would also need to be "pinned" in some way while they are being decrypted such that a concurrent sbcut() wouldn't free them out from under the thread performing decryption. As such, I settled on the following solution: - Socket buffers now contain an additional chain of mbufs (sb_mtls, sb_mtlstail, and sb_tlscc) containing encrypted mbufs appended by the protocol layer. These mbufs are still marked M_NOTREADY, but soreceive*() generally don't know about them (except that they will block waiting for data to be decrypted for a blocking read). - Each time a new mbuf is appended to this TLS mbuf chain, the socket buffer peeks at the TLS record header at the head of the chain to determine the encrypted record's length. If enough data is queued for the TLS record, the socket is placed on a per-CPU TLS workqueue (reusing the existing KTLS workqueues and worker threads). - The worker thread loops over the TLS mbuf chain decrypting records until it runs out of data. Each record is detached from the TLS mbuf chain while it is being decrypted to keep the mbufs "pinned". However, a new sb_dtlscc field tracks the character count of the detached record and sbcut()/sbdrop() is updated to account for the detached record. After the record is decrypted, the worker thread first checks to see if sbcut() dropped the record. If so, it is freed (can happen when a socket is closed with pending data). Otherwise, the header and trailer are stripped from the original mbufs, a control message is created holding the decrypted TLS header, and the decrypted TLS record is appended to the "normal" socket buffer chain. (Side note: the SBCHECK() infrastucture was very useful as I was able to add assertions there about the TLS chain that caught several bugs during development.) Tested by: rmacklem (various versions) Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D24628
2020-07-23 23:48:18 +00:00
#ifdef KERN_TLS
/*
* Decrypted TLS records are appended as records via
* sbappendrecord(). TCP passes encrypted TLS records to this
* function which must be scheduled for decryption.
*/
if (sb->sb_flags & SB_TLS_RX) {
sbappend_ktls_rx(sb, m);
return;
}
#endif
KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1"));
SBLASTMBUFCHK(sb);
Add kernel-side support for in-kernel TLS. KTLS adds support for in-kernel framing and encryption of Transport Layer Security (1.0-1.2) data on TCP sockets. KTLS only supports offload of TLS for transmitted data. Key negotation must still be performed in userland. Once completed, transmit session keys for a connection are provided to the kernel via a new TCP_TXTLS_ENABLE socket option. All subsequent data transmitted on the socket is placed into TLS frames and encrypted using the supplied keys. Any data written to a KTLS-enabled socket via write(2), aio_write(2), or sendfile(2) is assumed to be application data and is encoded in TLS frames with an application data type. Individual records can be sent with a custom type (e.g. handshake messages) via sendmsg(2) with a new control message (TLS_SET_RECORD_TYPE) specifying the record type. At present, rekeying is not supported though the in-kernel framework should support rekeying. KTLS makes use of the recently added unmapped mbufs to store TLS frames in the socket buffer. Each TLS frame is described by a single ext_pgs mbuf. The ext_pgs structure contains the header of the TLS record (and trailer for encrypted records) as well as references to the associated TLS session. KTLS supports two primary methods of encrypting TLS frames: software TLS and ifnet TLS. Software TLS marks mbufs holding socket data as not ready via M_NOTREADY similar to sendfile(2) when TLS framing information is added to an unmapped mbuf in ktls_frame(). ktls_enqueue() is then called to schedule TLS frames for encryption. In the case of sendfile_iodone() calls ktls_enqueue() instead of pru_ready() leaving the mbufs marked M_NOTREADY until encryption is completed. For other writes (vn_sendfile when pages are available, write(2), etc.), the PRUS_NOTREADY is set when invoking pru_send() along with invoking ktls_enqueue(). A pool of worker threads (the "KTLS" kernel process) encrypts TLS frames queued via ktls_enqueue(). Each TLS frame is temporarily mapped using the direct map and passed to a software encryption backend to perform the actual encryption. (Note: The use of PHYS_TO_DMAP could be replaced with sf_bufs if someone wished to make this work on architectures without a direct map.) KTLS supports pluggable software encryption backends. Internally, Netflix uses proprietary pure-software backends. This commit includes a simple backend in a new ktls_ocf.ko module that uses the kernel's OpenCrypto framework to provide AES-GCM encryption of TLS frames. As a result, software TLS is now a bit of a misnomer as it can make use of hardware crypto accelerators. Once software encryption has finished, the TLS frame mbufs are marked ready via pru_ready(). At this point, the encrypted data appears as regular payload to the TCP stack stored in unmapped mbufs. ifnet TLS permits a NIC to offload the TLS encryption and TCP segmentation. In this mode, a new send tag type (IF_SND_TAG_TYPE_TLS) is allocated on the interface a socket is routed over and associated with a TLS session. TLS records for a TLS session using ifnet TLS are not marked M_NOTREADY but are passed down the stack unencrypted. The ip_output_send() and ip6_output_send() helper functions that apply send tags to outbound IP packets verify that the send tag of the TLS record matches the outbound interface. If so, the packet is tagged with the TLS send tag and sent to the interface. The NIC device driver must recognize packets with the TLS send tag and schedule them for TLS encryption and TCP segmentation. If the the outbound interface does not match the interface in the TLS send tag, the packet is dropped. In addition, a task is scheduled to refresh the TLS send tag for the TLS session. If a new TLS send tag cannot be allocated, the connection is dropped. If a new TLS send tag is allocated, however, subsequent packets will be tagged with the correct TLS send tag. (This latter case has been tested by configuring both ports of a Chelsio T6 in a lagg and failing over from one port to another. As the connections migrated to the new port, new TLS send tags were allocated for the new port and connections resumed without being dropped.) ifnet TLS can be enabled and disabled on supported network interfaces via new '[-]txtls[46]' options to ifconfig(8). ifnet TLS is supported across both vlan devices and lagg interfaces using failover, lacp with flowid enabled, or lacp with flowid enabled. Applications may request the current KTLS mode of a connection via a new TCP_TXTLS_MODE socket option. They can also use this socket option to toggle between software and ifnet TLS modes. In addition, a testing tool is available in tools/tools/switch_tls. This is modeled on tcpdrop and uses similar syntax. However, instead of dropping connections, -s is used to force KTLS connections to switch to software TLS and -i is used to switch to ifnet TLS. Various sysctls and counters are available under the kern.ipc.tls sysctl node. The kern.ipc.tls.enable node must be set to true to enable KTLS (it is off by default). The use of unmapped mbufs must also be enabled via kern.ipc.mb_use_ext_pgs to enable KTLS. KTLS is enabled via the KERN_TLS kernel option. This patch is the culmination of years of work by several folks including Scott Long and Randall Stewart for the original design and implementation; Drew Gallatin for several optimizations including the use of ext_pgs mbufs, the M_NOTREADY mechanism for TLS records awaiting software encryption, and pluggable software crypto backends; and John Baldwin for modifications to support hardware TLS offload. Reviewed by: gallatin, hselasky, rrs Obtained from: Netflix Sponsored by: Netflix, Chelsio Communications Differential Revision: https://reviews.freebsd.org/D21277
2019-08-27 00:01:56 +00:00
#ifdef KERN_TLS
if (sb->sb_tls_info != NULL)
ktls_seq(sb, m);
#endif
/* Remove all packet headers and mbuf tags to get a pure data chain. */
m_demote(m, 1, flags & PRUS_NOTREADY ? M_NOTREADY : 0);
sbcompress(sb, m, sb->sb_mbtail);
sb->sb_lastrecord = sb->sb_mb;
SBLASTRECORDCHK(sb);
1994-05-24 10:09:53 +00:00
}
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
/*
* This version of sbappend() should only be used when the caller absolutely
* knows that there will never be more than one record in the socket buffer,
* that is, a stream protocol (such as TCP).
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
*/
void
sbappendstream(struct sockbuf *sb, struct mbuf *m, int flags)
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
{
SOCKBUF_LOCK(sb);
sbappendstream_locked(sb, m, flags);
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_UNLOCK(sb);
}
1994-05-24 10:09:53 +00:00
#ifdef SOCKBUF_DEBUG
void
sbcheck(struct sockbuf *sb, const char *file, int line)
1994-05-24 10:09:53 +00:00
{
Merge from projects/sendfile: o Introduce a notion of "not ready" mbufs in socket buffers. These mbufs are now being populated by some I/O in background and are referenced outside. This forces following implications: - An mbuf which is "not ready" can't be taken out of the buffer. - An mbuf that is behind a "not ready" in the queue neither. - If sockbet buffer is flushed, then "not ready" mbufs shouln't be freed. o In struct sockbuf the sb_cc field is split into sb_ccc and sb_acc. The sb_ccc stands for ""claimed character count", or "committed character count". And the sb_acc is "available character count". Consumers of socket buffer API shouldn't already access them directly, but use sbused() and sbavail() respectively. o Not ready mbufs are marked with M_NOTREADY, and ready but blocked ones with M_BLOCKED. o New field sb_fnrdy points to the first not ready mbuf, to avoid linear search. o New function sbready() is provided to activate certain amount of mbufs in a socket buffer. A special note on SCTP: SCTP has its own sockbufs. Unfortunately, FreeBSD stack doesn't yet allow protocol specific sockbufs. Thus, SCTP does some hacks to make itself compatible with FreeBSD: it manages sockbufs on its own, but keeps sb_cc updated to inform the stack of amount of data in them. The new notion of "not ready" data isn't supported by SCTP. Instead, only a mechanical substitute is done: s/sb_cc/sb_ccc/. A proper solution would be to take away struct sockbuf from struct socket and allow protocols to implement their own socket buffers, like SCTP already does. This was discussed with rrs@. Sponsored by: Netflix Sponsored by: Nginx, Inc.
2014-11-30 12:52:33 +00:00
struct mbuf *m, *n, *fnrdy;
u_long acc, ccc, mbcnt;
Add support for KTLS RX via software decryption. Allow TLS records to be decrypted in the kernel after being received by a NIC. At a high level this is somewhat similar to software KTLS for the transmit path except in reverse. Protocols enqueue mbufs containing encrypted TLS records (or portions of records) into the tail of a socket buffer and the KTLS layer decrypts those records before returning them to userland applications. However, there is an important difference: - In the transmit case, the socket buffer is always a single "record" holding a chain of mbufs. Not-yet-encrypted mbufs are marked not ready (M_NOTREADY) and released to protocols for transmit by marking mbufs ready once their data is encrypted. - In the receive case, incoming (encrypted) data appended to the socket buffer is still a single stream of data from the protocol, but decrypted TLS records are stored as separate records in the socket buffer and read individually via recvmsg(). Initially I tried to make this work by marking incoming mbufs as M_NOTREADY, but there didn't seemed to be a non-gross way to deal with picking a portion of the mbuf chain and turning it into a new record in the socket buffer after decrypting the TLS record it contained (along with prepending a control message). Also, such mbufs would also need to be "pinned" in some way while they are being decrypted such that a concurrent sbcut() wouldn't free them out from under the thread performing decryption. As such, I settled on the following solution: - Socket buffers now contain an additional chain of mbufs (sb_mtls, sb_mtlstail, and sb_tlscc) containing encrypted mbufs appended by the protocol layer. These mbufs are still marked M_NOTREADY, but soreceive*() generally don't know about them (except that they will block waiting for data to be decrypted for a blocking read). - Each time a new mbuf is appended to this TLS mbuf chain, the socket buffer peeks at the TLS record header at the head of the chain to determine the encrypted record's length. If enough data is queued for the TLS record, the socket is placed on a per-CPU TLS workqueue (reusing the existing KTLS workqueues and worker threads). - The worker thread loops over the TLS mbuf chain decrypting records until it runs out of data. Each record is detached from the TLS mbuf chain while it is being decrypted to keep the mbufs "pinned". However, a new sb_dtlscc field tracks the character count of the detached record and sbcut()/sbdrop() is updated to account for the detached record. After the record is decrypted, the worker thread first checks to see if sbcut() dropped the record. If so, it is freed (can happen when a socket is closed with pending data). Otherwise, the header and trailer are stripped from the original mbufs, a control message is created holding the decrypted TLS header, and the decrypted TLS record is appended to the "normal" socket buffer chain. (Side note: the SBCHECK() infrastucture was very useful as I was able to add assertions there about the TLS chain that caught several bugs during development.) Tested by: rmacklem (various versions) Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D24628
2020-07-23 23:48:18 +00:00
#ifdef KERN_TLS
u_long tlscc;
#endif
1994-05-24 10:09:53 +00:00
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK_ASSERT(sb);
Merge from projects/sendfile: o Introduce a notion of "not ready" mbufs in socket buffers. These mbufs are now being populated by some I/O in background and are referenced outside. This forces following implications: - An mbuf which is "not ready" can't be taken out of the buffer. - An mbuf that is behind a "not ready" in the queue neither. - If sockbet buffer is flushed, then "not ready" mbufs shouln't be freed. o In struct sockbuf the sb_cc field is split into sb_ccc and sb_acc. The sb_ccc stands for ""claimed character count", or "committed character count". And the sb_acc is "available character count". Consumers of socket buffer API shouldn't already access them directly, but use sbused() and sbavail() respectively. o Not ready mbufs are marked with M_NOTREADY, and ready but blocked ones with M_BLOCKED. o New field sb_fnrdy points to the first not ready mbuf, to avoid linear search. o New function sbready() is provided to activate certain amount of mbufs in a socket buffer. A special note on SCTP: SCTP has its own sockbufs. Unfortunately, FreeBSD stack doesn't yet allow protocol specific sockbufs. Thus, SCTP does some hacks to make itself compatible with FreeBSD: it manages sockbufs on its own, but keeps sb_cc updated to inform the stack of amount of data in them. The new notion of "not ready" data isn't supported by SCTP. Instead, only a mechanical substitute is done: s/sb_cc/sb_ccc/. A proper solution would be to take away struct sockbuf from struct socket and allow protocols to implement their own socket buffers, like SCTP already does. This was discussed with rrs@. Sponsored by: Netflix Sponsored by: Nginx, Inc.
2014-11-30 12:52:33 +00:00
acc = ccc = mbcnt = 0;
fnrdy = NULL;
for (m = sb->sb_mb; m; m = n) {
n = m->m_nextpkt;
for (; m; m = m->m_next) {
if (m->m_len == 0) {
printf("sb %p empty mbuf %p\n", sb, m);
goto fail;
}
Merge from projects/sendfile: o Introduce a notion of "not ready" mbufs in socket buffers. These mbufs are now being populated by some I/O in background and are referenced outside. This forces following implications: - An mbuf which is "not ready" can't be taken out of the buffer. - An mbuf that is behind a "not ready" in the queue neither. - If sockbet buffer is flushed, then "not ready" mbufs shouln't be freed. o In struct sockbuf the sb_cc field is split into sb_ccc and sb_acc. The sb_ccc stands for ""claimed character count", or "committed character count". And the sb_acc is "available character count". Consumers of socket buffer API shouldn't already access them directly, but use sbused() and sbavail() respectively. o Not ready mbufs are marked with M_NOTREADY, and ready but blocked ones with M_BLOCKED. o New field sb_fnrdy points to the first not ready mbuf, to avoid linear search. o New function sbready() is provided to activate certain amount of mbufs in a socket buffer. A special note on SCTP: SCTP has its own sockbufs. Unfortunately, FreeBSD stack doesn't yet allow protocol specific sockbufs. Thus, SCTP does some hacks to make itself compatible with FreeBSD: it manages sockbufs on its own, but keeps sb_cc updated to inform the stack of amount of data in them. The new notion of "not ready" data isn't supported by SCTP. Instead, only a mechanical substitute is done: s/sb_cc/sb_ccc/. A proper solution would be to take away struct sockbuf from struct socket and allow protocols to implement their own socket buffers, like SCTP already does. This was discussed with rrs@. Sponsored by: Netflix Sponsored by: Nginx, Inc.
2014-11-30 12:52:33 +00:00
if ((m->m_flags & M_NOTREADY) && fnrdy == NULL) {
if (m != sb->sb_fnrdy) {
printf("sb %p: fnrdy %p != m %p\n",
sb, sb->sb_fnrdy, m);
goto fail;
}
fnrdy = m;
}
if (fnrdy) {
if (!(m->m_flags & M_NOTAVAIL)) {
printf("sb %p: fnrdy %p, m %p is avail\n",
sb, sb->sb_fnrdy, m);
goto fail;
}
} else
acc += m->m_len;
ccc += m->m_len;
1994-05-24 10:09:53 +00:00
mbcnt += MSIZE;
if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
1994-05-24 10:09:53 +00:00
mbcnt += m->m_ext.ext_size;
}
1994-05-24 10:09:53 +00:00
}
Add support for KTLS RX via software decryption. Allow TLS records to be decrypted in the kernel after being received by a NIC. At a high level this is somewhat similar to software KTLS for the transmit path except in reverse. Protocols enqueue mbufs containing encrypted TLS records (or portions of records) into the tail of a socket buffer and the KTLS layer decrypts those records before returning them to userland applications. However, there is an important difference: - In the transmit case, the socket buffer is always a single "record" holding a chain of mbufs. Not-yet-encrypted mbufs are marked not ready (M_NOTREADY) and released to protocols for transmit by marking mbufs ready once their data is encrypted. - In the receive case, incoming (encrypted) data appended to the socket buffer is still a single stream of data from the protocol, but decrypted TLS records are stored as separate records in the socket buffer and read individually via recvmsg(). Initially I tried to make this work by marking incoming mbufs as M_NOTREADY, but there didn't seemed to be a non-gross way to deal with picking a portion of the mbuf chain and turning it into a new record in the socket buffer after decrypting the TLS record it contained (along with prepending a control message). Also, such mbufs would also need to be "pinned" in some way while they are being decrypted such that a concurrent sbcut() wouldn't free them out from under the thread performing decryption. As such, I settled on the following solution: - Socket buffers now contain an additional chain of mbufs (sb_mtls, sb_mtlstail, and sb_tlscc) containing encrypted mbufs appended by the protocol layer. These mbufs are still marked M_NOTREADY, but soreceive*() generally don't know about them (except that they will block waiting for data to be decrypted for a blocking read). - Each time a new mbuf is appended to this TLS mbuf chain, the socket buffer peeks at the TLS record header at the head of the chain to determine the encrypted record's length. If enough data is queued for the TLS record, the socket is placed on a per-CPU TLS workqueue (reusing the existing KTLS workqueues and worker threads). - The worker thread loops over the TLS mbuf chain decrypting records until it runs out of data. Each record is detached from the TLS mbuf chain while it is being decrypted to keep the mbufs "pinned". However, a new sb_dtlscc field tracks the character count of the detached record and sbcut()/sbdrop() is updated to account for the detached record. After the record is decrypted, the worker thread first checks to see if sbcut() dropped the record. If so, it is freed (can happen when a socket is closed with pending data). Otherwise, the header and trailer are stripped from the original mbufs, a control message is created holding the decrypted TLS header, and the decrypted TLS record is appended to the "normal" socket buffer chain. (Side note: the SBCHECK() infrastucture was very useful as I was able to add assertions there about the TLS chain that caught several bugs during development.) Tested by: rmacklem (various versions) Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D24628
2020-07-23 23:48:18 +00:00
#ifdef KERN_TLS
/*
* Account for mbufs "detached" by ktls_detach_record() while
* they are decrypted by ktls_decrypt(). tlsdcc gives a count
* of the detached bytes that are included in ccc. The mbufs
* and clusters are not included in the socket buffer
* accounting.
*/
ccc += sb->sb_tlsdcc;
tlscc = 0;
for (m = sb->sb_mtls; m; m = m->m_next) {
if (m->m_nextpkt != NULL) {
printf("sb %p TLS mbuf %p with nextpkt\n", sb, m);
goto fail;
}
if ((m->m_flags & M_NOTREADY) == 0) {
printf("sb %p TLS mbuf %p ready\n", sb, m);
goto fail;
}
tlscc += m->m_len;
ccc += m->m_len;
mbcnt += MSIZE;
if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
mbcnt += m->m_ext.ext_size;
}
if (sb->sb_tlscc != tlscc) {
printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc,
sb->sb_tlsdcc);
goto fail;
}
#endif
Merge from projects/sendfile: o Introduce a notion of "not ready" mbufs in socket buffers. These mbufs are now being populated by some I/O in background and are referenced outside. This forces following implications: - An mbuf which is "not ready" can't be taken out of the buffer. - An mbuf that is behind a "not ready" in the queue neither. - If sockbet buffer is flushed, then "not ready" mbufs shouln't be freed. o In struct sockbuf the sb_cc field is split into sb_ccc and sb_acc. The sb_ccc stands for ""claimed character count", or "committed character count". And the sb_acc is "available character count". Consumers of socket buffer API shouldn't already access them directly, but use sbused() and sbavail() respectively. o Not ready mbufs are marked with M_NOTREADY, and ready but blocked ones with M_BLOCKED. o New field sb_fnrdy points to the first not ready mbuf, to avoid linear search. o New function sbready() is provided to activate certain amount of mbufs in a socket buffer. A special note on SCTP: SCTP has its own sockbufs. Unfortunately, FreeBSD stack doesn't yet allow protocol specific sockbufs. Thus, SCTP does some hacks to make itself compatible with FreeBSD: it manages sockbufs on its own, but keeps sb_cc updated to inform the stack of amount of data in them. The new notion of "not ready" data isn't supported by SCTP. Instead, only a mechanical substitute is done: s/sb_cc/sb_ccc/. A proper solution would be to take away struct sockbuf from struct socket and allow protocols to implement their own socket buffers, like SCTP already does. This was discussed with rrs@. Sponsored by: Netflix Sponsored by: Nginx, Inc.
2014-11-30 12:52:33 +00:00
if (acc != sb->sb_acc || ccc != sb->sb_ccc || mbcnt != sb->sb_mbcnt) {
printf("acc %ld/%u ccc %ld/%u mbcnt %ld/%u\n",
acc, sb->sb_acc, ccc, sb->sb_ccc, mbcnt, sb->sb_mbcnt);
Add support for KTLS RX via software decryption. Allow TLS records to be decrypted in the kernel after being received by a NIC. At a high level this is somewhat similar to software KTLS for the transmit path except in reverse. Protocols enqueue mbufs containing encrypted TLS records (or portions of records) into the tail of a socket buffer and the KTLS layer decrypts those records before returning them to userland applications. However, there is an important difference: - In the transmit case, the socket buffer is always a single "record" holding a chain of mbufs. Not-yet-encrypted mbufs are marked not ready (M_NOTREADY) and released to protocols for transmit by marking mbufs ready once their data is encrypted. - In the receive case, incoming (encrypted) data appended to the socket buffer is still a single stream of data from the protocol, but decrypted TLS records are stored as separate records in the socket buffer and read individually via recvmsg(). Initially I tried to make this work by marking incoming mbufs as M_NOTREADY, but there didn't seemed to be a non-gross way to deal with picking a portion of the mbuf chain and turning it into a new record in the socket buffer after decrypting the TLS record it contained (along with prepending a control message). Also, such mbufs would also need to be "pinned" in some way while they are being decrypted such that a concurrent sbcut() wouldn't free them out from under the thread performing decryption. As such, I settled on the following solution: - Socket buffers now contain an additional chain of mbufs (sb_mtls, sb_mtlstail, and sb_tlscc) containing encrypted mbufs appended by the protocol layer. These mbufs are still marked M_NOTREADY, but soreceive*() generally don't know about them (except that they will block waiting for data to be decrypted for a blocking read). - Each time a new mbuf is appended to this TLS mbuf chain, the socket buffer peeks at the TLS record header at the head of the chain to determine the encrypted record's length. If enough data is queued for the TLS record, the socket is placed on a per-CPU TLS workqueue (reusing the existing KTLS workqueues and worker threads). - The worker thread loops over the TLS mbuf chain decrypting records until it runs out of data. Each record is detached from the TLS mbuf chain while it is being decrypted to keep the mbufs "pinned". However, a new sb_dtlscc field tracks the character count of the detached record and sbcut()/sbdrop() is updated to account for the detached record. After the record is decrypted, the worker thread first checks to see if sbcut() dropped the record. If so, it is freed (can happen when a socket is closed with pending data). Otherwise, the header and trailer are stripped from the original mbufs, a control message is created holding the decrypted TLS header, and the decrypted TLS record is appended to the "normal" socket buffer chain. (Side note: the SBCHECK() infrastucture was very useful as I was able to add assertions there about the TLS chain that caught several bugs during development.) Tested by: rmacklem (various versions) Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D24628
2020-07-23 23:48:18 +00:00
#ifdef KERN_TLS
printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc,
sb->sb_tlsdcc);
#endif
goto fail;
1994-05-24 10:09:53 +00:00
}
return;
fail:
panic("%s from %s:%u", __func__, file, line);
1994-05-24 10:09:53 +00:00
}
#endif
/*
* As above, except the mbuf chain begins a new record.
1994-05-24 10:09:53 +00:00
*/
void
sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0)
1994-05-24 10:09:53 +00:00
{
struct mbuf *m;
1994-05-24 10:09:53 +00:00
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK_ASSERT(sb);
if (m0 == NULL)
1994-05-24 10:09:53 +00:00
return;
m_clrprotoflags(m0);
1994-05-24 10:09:53 +00:00
/*
* Put the first mbuf on the queue. Note this permits zero length
* records.
1994-05-24 10:09:53 +00:00
*/
sballoc(sb, m0);
SBLASTRECORDCHK(sb);
SBLINKRECORD(sb, m0);
sb->sb_mbtail = m0;
1994-05-24 10:09:53 +00:00
m = m0->m_next;
m0->m_next = 0;
if (m && (m0->m_flags & M_EOR)) {
m0->m_flags &= ~M_EOR;
m->m_flags |= M_EOR;
}
/* always call sbcompress() so it can do SBLASTMBUFCHK() */
1994-05-24 10:09:53 +00:00
sbcompress(sb, m, m0);
}
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
/*
* As above, except the mbuf chain begins a new record.
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
*/
void
sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
{
SOCKBUF_LOCK(sb);
sbappendrecord_locked(sb, m0);
SOCKBUF_UNLOCK(sb);
}
/* Helper routine that appends data, control, and address to a sockbuf. */
static int
sbappendaddr_locked_internal(struct sockbuf *sb, const struct sockaddr *asa,
struct mbuf *m0, struct mbuf *control, struct mbuf *ctrl_last)
1994-05-24 10:09:53 +00:00
{
struct mbuf *m, *n, *nlast;
#if MSIZE <= 256
1994-05-24 10:09:53 +00:00
if (asa->sa_len > MLEN)
return (0);
#endif
m = m_get(M_NOWAIT, MT_SONAME);
if (m == NULL)
1994-05-24 10:09:53 +00:00
return (0);
m->m_len = asa->sa_len;
bcopy(asa, mtod(m, caddr_t), asa->sa_len);
if (m0) {
m_clrprotoflags(m0);
2017-04-14 10:21:38 +00:00
m_tag_delete_chain(m0, NULL);
/*
* Clear some persistent info from pkthdr.
* We don't use m_demote(), because some netgraph consumers
* expect M_PKTHDR presence.
*/
m0->m_pkthdr.rcvif = NULL;
m0->m_pkthdr.flowid = 0;
m0->m_pkthdr.csum_flags = 0;
m0->m_pkthdr.fibnum = 0;
m0->m_pkthdr.rsstype = 0;
}
if (ctrl_last)
ctrl_last->m_next = m0; /* concatenate data to control */
1994-05-24 10:09:53 +00:00
else
control = m0;
m->m_next = control;
for (n = m; n->m_next != NULL; n = n->m_next)
1994-05-24 10:09:53 +00:00
sballoc(sb, n);
sballoc(sb, n);
nlast = n;
SBLINKRECORD(sb, m);
sb->sb_mbtail = nlast;
SBLASTMBUFCHK(sb);
SBLASTRECORDCHK(sb);
1994-05-24 10:09:53 +00:00
return (1);
}
/*
* Append address and data, and optionally, control (ancillary) data to the
* receive queue of a socket. If present, m0 must include a packet header
* with total length. Returns 0 if no space in sockbuf or insufficient
* mbufs.
*/
int
sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa,
struct mbuf *m0, struct mbuf *control)
{
struct mbuf *ctrl_last;
int space = asa->sa_len;
SOCKBUF_LOCK_ASSERT(sb);
if (m0 && (m0->m_flags & M_PKTHDR) == 0)
panic("sbappendaddr_locked");
if (m0)
space += m0->m_pkthdr.len;
space += m_length(control, &ctrl_last);
if (space > sbspace(sb))
return (0);
return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
}
/*
* Append address and data, and optionally, control (ancillary) data to the
* receive queue of a socket. If present, m0 must include a packet header
* with total length. Returns 0 if insufficient mbufs. Does not validate space
* on the receiving sockbuf.
*/
int
sbappendaddr_nospacecheck_locked(struct sockbuf *sb, const struct sockaddr *asa,
struct mbuf *m0, struct mbuf *control)
{
struct mbuf *ctrl_last;
SOCKBUF_LOCK_ASSERT(sb);
ctrl_last = (control == NULL) ? NULL : m_last(control);
return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
}
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
/*
* Append address and data, and optionally, control (ancillary) data to the
* receive queue of a socket. If present, m0 must include a packet header
* with total length. Returns 0 if no space in sockbuf or insufficient
* mbufs.
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
*/
int
sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa,
struct mbuf *m0, struct mbuf *control)
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
{
int retval;
SOCKBUF_LOCK(sb);
retval = sbappendaddr_locked(sb, asa, m0, control);
SOCKBUF_UNLOCK(sb);
return (retval);
}
void
sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0,
struct mbuf *control, int flags)
1994-05-24 10:09:53 +00:00
{
struct mbuf *m, *mlast;
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
sbm_clrprotoflags(m0, flags);
m_last(control)->m_next = m0;
SBLASTRECORDCHK(sb);
for (m = control; m->m_next; m = m->m_next)
1994-05-24 10:09:53 +00:00
sballoc(sb, m);
sballoc(sb, m);
mlast = m;
SBLINKRECORD(sb, control);
sb->sb_mbtail = mlast;
SBLASTMBUFCHK(sb);
SBLASTRECORDCHK(sb);
1994-05-24 10:09:53 +00:00
}
void
sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control,
int flags)
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
{
SOCKBUF_LOCK(sb);
sbappendcontrol_locked(sb, m0, control, flags);
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_UNLOCK(sb);
}
1994-05-24 10:09:53 +00:00
/*
* Append the data in mbuf chain (m) into the socket buffer sb following mbuf
* (n). If (n) is NULL, the buffer is presumed empty.
*
* When the data is compressed, mbufs in the chain may be handled in one of
* three ways:
*
* (1) The mbuf may simply be dropped, if it contributes nothing (no data, no
* record boundary, and no change in data type).
*
* (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into
* an mbuf already in the socket buffer. This can occur if an
Merge from projects/sendfile: o Introduce a notion of "not ready" mbufs in socket buffers. These mbufs are now being populated by some I/O in background and are referenced outside. This forces following implications: - An mbuf which is "not ready" can't be taken out of the buffer. - An mbuf that is behind a "not ready" in the queue neither. - If sockbet buffer is flushed, then "not ready" mbufs shouln't be freed. o In struct sockbuf the sb_cc field is split into sb_ccc and sb_acc. The sb_ccc stands for ""claimed character count", or "committed character count". And the sb_acc is "available character count". Consumers of socket buffer API shouldn't already access them directly, but use sbused() and sbavail() respectively. o Not ready mbufs are marked with M_NOTREADY, and ready but blocked ones with M_BLOCKED. o New field sb_fnrdy points to the first not ready mbuf, to avoid linear search. o New function sbready() is provided to activate certain amount of mbufs in a socket buffer. A special note on SCTP: SCTP has its own sockbufs. Unfortunately, FreeBSD stack doesn't yet allow protocol specific sockbufs. Thus, SCTP does some hacks to make itself compatible with FreeBSD: it manages sockbufs on its own, but keeps sb_cc updated to inform the stack of amount of data in them. The new notion of "not ready" data isn't supported by SCTP. Instead, only a mechanical substitute is done: s/sb_cc/sb_ccc/. A proper solution would be to take away struct sockbuf from struct socket and allow protocols to implement their own socket buffers, like SCTP already does. This was discussed with rrs@. Sponsored by: Netflix Sponsored by: Nginx, Inc.
2014-11-30 12:52:33 +00:00
* appropriate mbuf exists, there is room, both mbufs are not marked as
* not ready, and no merging of data types will occur.
*
* (3) The mbuf may be appended to the end of the existing mbuf chain.
*
* If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as
* end-of-record.
1994-05-24 10:09:53 +00:00
*/
void
sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1994-05-24 10:09:53 +00:00
{
int eor = 0;
struct mbuf *o;
1994-05-24 10:09:53 +00:00
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK_ASSERT(sb);
1994-05-24 10:09:53 +00:00
while (m) {
eor |= m->m_flags & M_EOR;
if (m->m_len == 0 &&
(eor == 0 ||
(((o = m->m_next) || (o = n)) &&
o->m_type == m->m_type))) {
if (sb->sb_lastrecord == m)
sb->sb_lastrecord = m->m_next;
1994-05-24 10:09:53 +00:00
m = m_free(m);
continue;
}
if (n && (n->m_flags & M_EOR) == 0 &&
M_WRITABLE(n) &&
((sb->sb_flags & SB_NOCOALESCE) == 0) &&
Merge from projects/sendfile: o Introduce a notion of "not ready" mbufs in socket buffers. These mbufs are now being populated by some I/O in background and are referenced outside. This forces following implications: - An mbuf which is "not ready" can't be taken out of the buffer. - An mbuf that is behind a "not ready" in the queue neither. - If sockbet buffer is flushed, then "not ready" mbufs shouln't be freed. o In struct sockbuf the sb_cc field is split into sb_ccc and sb_acc. The sb_ccc stands for ""claimed character count", or "committed character count". And the sb_acc is "available character count". Consumers of socket buffer API shouldn't already access them directly, but use sbused() and sbavail() respectively. o Not ready mbufs are marked with M_NOTREADY, and ready but blocked ones with M_BLOCKED. o New field sb_fnrdy points to the first not ready mbuf, to avoid linear search. o New function sbready() is provided to activate certain amount of mbufs in a socket buffer. A special note on SCTP: SCTP has its own sockbufs. Unfortunately, FreeBSD stack doesn't yet allow protocol specific sockbufs. Thus, SCTP does some hacks to make itself compatible with FreeBSD: it manages sockbufs on its own, but keeps sb_cc updated to inform the stack of amount of data in them. The new notion of "not ready" data isn't supported by SCTP. Instead, only a mechanical substitute is done: s/sb_cc/sb_ccc/. A proper solution would be to take away struct sockbuf from struct socket and allow protocols to implement their own socket buffers, like SCTP already does. This was discussed with rrs@. Sponsored by: Netflix Sponsored by: Nginx, Inc.
2014-11-30 12:52:33 +00:00
!(m->m_flags & M_NOTREADY) &&
!(n->m_flags & (M_NOTREADY | M_EXTPG)) &&
Add kernel-side support for in-kernel TLS. KTLS adds support for in-kernel framing and encryption of Transport Layer Security (1.0-1.2) data on TCP sockets. KTLS only supports offload of TLS for transmitted data. Key negotation must still be performed in userland. Once completed, transmit session keys for a connection are provided to the kernel via a new TCP_TXTLS_ENABLE socket option. All subsequent data transmitted on the socket is placed into TLS frames and encrypted using the supplied keys. Any data written to a KTLS-enabled socket via write(2), aio_write(2), or sendfile(2) is assumed to be application data and is encoded in TLS frames with an application data type. Individual records can be sent with a custom type (e.g. handshake messages) via sendmsg(2) with a new control message (TLS_SET_RECORD_TYPE) specifying the record type. At present, rekeying is not supported though the in-kernel framework should support rekeying. KTLS makes use of the recently added unmapped mbufs to store TLS frames in the socket buffer. Each TLS frame is described by a single ext_pgs mbuf. The ext_pgs structure contains the header of the TLS record (and trailer for encrypted records) as well as references to the associated TLS session. KTLS supports two primary methods of encrypting TLS frames: software TLS and ifnet TLS. Software TLS marks mbufs holding socket data as not ready via M_NOTREADY similar to sendfile(2) when TLS framing information is added to an unmapped mbuf in ktls_frame(). ktls_enqueue() is then called to schedule TLS frames for encryption. In the case of sendfile_iodone() calls ktls_enqueue() instead of pru_ready() leaving the mbufs marked M_NOTREADY until encryption is completed. For other writes (vn_sendfile when pages are available, write(2), etc.), the PRUS_NOTREADY is set when invoking pru_send() along with invoking ktls_enqueue(). A pool of worker threads (the "KTLS" kernel process) encrypts TLS frames queued via ktls_enqueue(). Each TLS frame is temporarily mapped using the direct map and passed to a software encryption backend to perform the actual encryption. (Note: The use of PHYS_TO_DMAP could be replaced with sf_bufs if someone wished to make this work on architectures without a direct map.) KTLS supports pluggable software encryption backends. Internally, Netflix uses proprietary pure-software backends. This commit includes a simple backend in a new ktls_ocf.ko module that uses the kernel's OpenCrypto framework to provide AES-GCM encryption of TLS frames. As a result, software TLS is now a bit of a misnomer as it can make use of hardware crypto accelerators. Once software encryption has finished, the TLS frame mbufs are marked ready via pru_ready(). At this point, the encrypted data appears as regular payload to the TCP stack stored in unmapped mbufs. ifnet TLS permits a NIC to offload the TLS encryption and TCP segmentation. In this mode, a new send tag type (IF_SND_TAG_TYPE_TLS) is allocated on the interface a socket is routed over and associated with a TLS session. TLS records for a TLS session using ifnet TLS are not marked M_NOTREADY but are passed down the stack unencrypted. The ip_output_send() and ip6_output_send() helper functions that apply send tags to outbound IP packets verify that the send tag of the TLS record matches the outbound interface. If so, the packet is tagged with the TLS send tag and sent to the interface. The NIC device driver must recognize packets with the TLS send tag and schedule them for TLS encryption and TCP segmentation. If the the outbound interface does not match the interface in the TLS send tag, the packet is dropped. In addition, a task is scheduled to refresh the TLS send tag for the TLS session. If a new TLS send tag cannot be allocated, the connection is dropped. If a new TLS send tag is allocated, however, subsequent packets will be tagged with the correct TLS send tag. (This latter case has been tested by configuring both ports of a Chelsio T6 in a lagg and failing over from one port to another. As the connections migrated to the new port, new TLS send tags were allocated for the new port and connections resumed without being dropped.) ifnet TLS can be enabled and disabled on supported network interfaces via new '[-]txtls[46]' options to ifconfig(8). ifnet TLS is supported across both vlan devices and lagg interfaces using failover, lacp with flowid enabled, or lacp with flowid enabled. Applications may request the current KTLS mode of a connection via a new TCP_TXTLS_MODE socket option. They can also use this socket option to toggle between software and ifnet TLS modes. In addition, a testing tool is available in tools/tools/switch_tls. This is modeled on tcpdrop and uses similar syntax. However, instead of dropping connections, -s is used to force KTLS connections to switch to software TLS and -i is used to switch to ifnet TLS. Various sysctls and counters are available under the kern.ipc.tls sysctl node. The kern.ipc.tls.enable node must be set to true to enable KTLS (it is off by default). The use of unmapped mbufs must also be enabled via kern.ipc.mb_use_ext_pgs to enable KTLS. KTLS is enabled via the KERN_TLS kernel option. This patch is the culmination of years of work by several folks including Scott Long and Randall Stewart for the original design and implementation; Drew Gallatin for several optimizations including the use of ext_pgs mbufs, the M_NOTREADY mechanism for TLS records awaiting software encryption, and pluggable software crypto backends; and John Baldwin for modifications to support hardware TLS offload. Reviewed by: gallatin, hselasky, rrs Obtained from: Netflix Sponsored by: Netflix, Chelsio Communications Differential Revision: https://reviews.freebsd.org/D21277
2019-08-27 00:01:56 +00:00
!mbuf_has_tls_session(m) &&
!mbuf_has_tls_session(n) &&
m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
m->m_len <= M_TRAILINGSPACE(n) &&
1994-05-24 10:09:53 +00:00
n->m_type == m->m_type) {
Add an external mbuf buffer type that holds multiple unmapped pages. Unmapped mbufs allow sendfile to carry multiple pages of data in a single mbuf, without mapping those pages. It is a requirement for Netflix's in-kernel TLS, and provides a 5-10% CPU savings on heavy web serving workloads when used by sendfile, due to effectively compressing socket buffers by an order of magnitude, and hence reducing cache misses. For this new external mbuf buffer type (EXT_PGS), the ext_buf pointer now points to a struct mbuf_ext_pgs structure instead of a data buffer. This structure contains an array of physical addresses (this reduces cache misses compared to an earlier version that stored an array of vm_page_t pointers). It also stores additional fields needed for in-kernel TLS such as the TLS header and trailer data that are currently unused. To more easily detect these mbufs, the M_NOMAP flag is set in m_flags in addition to M_EXT. Various functions like m_copydata() have been updated to safely access packet contents (using uiomove_fromphys()), to make things like BPF safe. NIC drivers advertise support for unmapped mbufs on transmit via a new IFCAP_NOMAP capability. This capability can be toggled via the new 'nomap' and '-nomap' ifconfig(8) commands. For NIC drivers that only transmit packet contents via DMA and use bus_dma, adding the capability to if_capabilities and if_capenable should be all that is required. If a NIC does not support unmapped mbufs, they are converted to a chain of mapped mbufs (using sf_bufs to provide the mapping) in ip_output or ip6_output. If an unmapped mbuf requires software checksums, it is also converted to a chain of mapped mbufs before computing the checksum. Submitted by: gallatin (earlier version) Reviewed by: gallatin, hselasky, rrs Discussed with: ae, kp (firewalls) Relnotes: yes Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20616
2019-06-29 00:48:33 +00:00
m_copydata(m, 0, m->m_len, mtodo(n, n->m_len));
1994-05-24 10:09:53 +00:00
n->m_len += m->m_len;
Merge from projects/sendfile: o Introduce a notion of "not ready" mbufs in socket buffers. These mbufs are now being populated by some I/O in background and are referenced outside. This forces following implications: - An mbuf which is "not ready" can't be taken out of the buffer. - An mbuf that is behind a "not ready" in the queue neither. - If sockbet buffer is flushed, then "not ready" mbufs shouln't be freed. o In struct sockbuf the sb_cc field is split into sb_ccc and sb_acc. The sb_ccc stands for ""claimed character count", or "committed character count". And the sb_acc is "available character count". Consumers of socket buffer API shouldn't already access them directly, but use sbused() and sbavail() respectively. o Not ready mbufs are marked with M_NOTREADY, and ready but blocked ones with M_BLOCKED. o New field sb_fnrdy points to the first not ready mbuf, to avoid linear search. o New function sbready() is provided to activate certain amount of mbufs in a socket buffer. A special note on SCTP: SCTP has its own sockbufs. Unfortunately, FreeBSD stack doesn't yet allow protocol specific sockbufs. Thus, SCTP does some hacks to make itself compatible with FreeBSD: it manages sockbufs on its own, but keeps sb_cc updated to inform the stack of amount of data in them. The new notion of "not ready" data isn't supported by SCTP. Instead, only a mechanical substitute is done: s/sb_cc/sb_ccc/. A proper solution would be to take away struct sockbuf from struct socket and allow protocols to implement their own socket buffers, like SCTP already does. This was discussed with rrs@. Sponsored by: Netflix Sponsored by: Nginx, Inc.
2014-11-30 12:52:33 +00:00
sb->sb_ccc += m->m_len;
if (sb->sb_fnrdy == NULL)
sb->sb_acc += m->m_len;
if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
/* XXX: Probably don't need.*/
sb->sb_ctl += m->m_len;
1994-05-24 10:09:53 +00:00
m = m_free(m);
continue;
}
if (m->m_len <= MLEN && (m->m_flags & M_EXTPG) &&
Add kernel-side support for in-kernel TLS. KTLS adds support for in-kernel framing and encryption of Transport Layer Security (1.0-1.2) data on TCP sockets. KTLS only supports offload of TLS for transmitted data. Key negotation must still be performed in userland. Once completed, transmit session keys for a connection are provided to the kernel via a new TCP_TXTLS_ENABLE socket option. All subsequent data transmitted on the socket is placed into TLS frames and encrypted using the supplied keys. Any data written to a KTLS-enabled socket via write(2), aio_write(2), or sendfile(2) is assumed to be application data and is encoded in TLS frames with an application data type. Individual records can be sent with a custom type (e.g. handshake messages) via sendmsg(2) with a new control message (TLS_SET_RECORD_TYPE) specifying the record type. At present, rekeying is not supported though the in-kernel framework should support rekeying. KTLS makes use of the recently added unmapped mbufs to store TLS frames in the socket buffer. Each TLS frame is described by a single ext_pgs mbuf. The ext_pgs structure contains the header of the TLS record (and trailer for encrypted records) as well as references to the associated TLS session. KTLS supports two primary methods of encrypting TLS frames: software TLS and ifnet TLS. Software TLS marks mbufs holding socket data as not ready via M_NOTREADY similar to sendfile(2) when TLS framing information is added to an unmapped mbuf in ktls_frame(). ktls_enqueue() is then called to schedule TLS frames for encryption. In the case of sendfile_iodone() calls ktls_enqueue() instead of pru_ready() leaving the mbufs marked M_NOTREADY until encryption is completed. For other writes (vn_sendfile when pages are available, write(2), etc.), the PRUS_NOTREADY is set when invoking pru_send() along with invoking ktls_enqueue(). A pool of worker threads (the "KTLS" kernel process) encrypts TLS frames queued via ktls_enqueue(). Each TLS frame is temporarily mapped using the direct map and passed to a software encryption backend to perform the actual encryption. (Note: The use of PHYS_TO_DMAP could be replaced with sf_bufs if someone wished to make this work on architectures without a direct map.) KTLS supports pluggable software encryption backends. Internally, Netflix uses proprietary pure-software backends. This commit includes a simple backend in a new ktls_ocf.ko module that uses the kernel's OpenCrypto framework to provide AES-GCM encryption of TLS frames. As a result, software TLS is now a bit of a misnomer as it can make use of hardware crypto accelerators. Once software encryption has finished, the TLS frame mbufs are marked ready via pru_ready(). At this point, the encrypted data appears as regular payload to the TCP stack stored in unmapped mbufs. ifnet TLS permits a NIC to offload the TLS encryption and TCP segmentation. In this mode, a new send tag type (IF_SND_TAG_TYPE_TLS) is allocated on the interface a socket is routed over and associated with a TLS session. TLS records for a TLS session using ifnet TLS are not marked M_NOTREADY but are passed down the stack unencrypted. The ip_output_send() and ip6_output_send() helper functions that apply send tags to outbound IP packets verify that the send tag of the TLS record matches the outbound interface. If so, the packet is tagged with the TLS send tag and sent to the interface. The NIC device driver must recognize packets with the TLS send tag and schedule them for TLS encryption and TCP segmentation. If the the outbound interface does not match the interface in the TLS send tag, the packet is dropped. In addition, a task is scheduled to refresh the TLS send tag for the TLS session. If a new TLS send tag cannot be allocated, the connection is dropped. If a new TLS send tag is allocated, however, subsequent packets will be tagged with the correct TLS send tag. (This latter case has been tested by configuring both ports of a Chelsio T6 in a lagg and failing over from one port to another. As the connections migrated to the new port, new TLS send tags were allocated for the new port and connections resumed without being dropped.) ifnet TLS can be enabled and disabled on supported network interfaces via new '[-]txtls[46]' options to ifconfig(8). ifnet TLS is supported across both vlan devices and lagg interfaces using failover, lacp with flowid enabled, or lacp with flowid enabled. Applications may request the current KTLS mode of a connection via a new TCP_TXTLS_MODE socket option. They can also use this socket option to toggle between software and ifnet TLS modes. In addition, a testing tool is available in tools/tools/switch_tls. This is modeled on tcpdrop and uses similar syntax. However, instead of dropping connections, -s is used to force KTLS connections to switch to software TLS and -i is used to switch to ifnet TLS. Various sysctls and counters are available under the kern.ipc.tls sysctl node. The kern.ipc.tls.enable node must be set to true to enable KTLS (it is off by default). The use of unmapped mbufs must also be enabled via kern.ipc.mb_use_ext_pgs to enable KTLS. KTLS is enabled via the KERN_TLS kernel option. This patch is the culmination of years of work by several folks including Scott Long and Randall Stewart for the original design and implementation; Drew Gallatin for several optimizations including the use of ext_pgs mbufs, the M_NOTREADY mechanism for TLS records awaiting software encryption, and pluggable software crypto backends; and John Baldwin for modifications to support hardware TLS offload. Reviewed by: gallatin, hselasky, rrs Obtained from: Netflix Sponsored by: Netflix, Chelsio Communications Differential Revision: https://reviews.freebsd.org/D21277
2019-08-27 00:01:56 +00:00
(m->m_flags & M_NOTREADY) == 0 &&
!mbuf_has_tls_session(m))
Add an external mbuf buffer type that holds multiple unmapped pages. Unmapped mbufs allow sendfile to carry multiple pages of data in a single mbuf, without mapping those pages. It is a requirement for Netflix's in-kernel TLS, and provides a 5-10% CPU savings on heavy web serving workloads when used by sendfile, due to effectively compressing socket buffers by an order of magnitude, and hence reducing cache misses. For this new external mbuf buffer type (EXT_PGS), the ext_buf pointer now points to a struct mbuf_ext_pgs structure instead of a data buffer. This structure contains an array of physical addresses (this reduces cache misses compared to an earlier version that stored an array of vm_page_t pointers). It also stores additional fields needed for in-kernel TLS such as the TLS header and trailer data that are currently unused. To more easily detect these mbufs, the M_NOMAP flag is set in m_flags in addition to M_EXT. Various functions like m_copydata() have been updated to safely access packet contents (using uiomove_fromphys()), to make things like BPF safe. NIC drivers advertise support for unmapped mbufs on transmit via a new IFCAP_NOMAP capability. This capability can be toggled via the new 'nomap' and '-nomap' ifconfig(8) commands. For NIC drivers that only transmit packet contents via DMA and use bus_dma, adding the capability to if_capabilities and if_capenable should be all that is required. If a NIC does not support unmapped mbufs, they are converted to a chain of mapped mbufs (using sf_bufs to provide the mapping) in ip_output or ip6_output. If an unmapped mbuf requires software checksums, it is also converted to a chain of mapped mbufs before computing the checksum. Submitted by: gallatin (earlier version) Reviewed by: gallatin, hselasky, rrs Discussed with: ae, kp (firewalls) Relnotes: yes Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20616
2019-06-29 00:48:33 +00:00
(void)mb_unmapped_compress(m);
1994-05-24 10:09:53 +00:00
if (n)
n->m_next = m;
else
sb->sb_mb = m;
sb->sb_mbtail = m;
1994-05-24 10:09:53 +00:00
sballoc(sb, m);
n = m;
m->m_flags &= ~M_EOR;
m = m->m_next;
n->m_next = 0;
}
if (eor) {
KASSERT(n != NULL, ("sbcompress: eor && n == NULL"));
n->m_flags |= eor;
1994-05-24 10:09:53 +00:00
}
SBLASTMBUFCHK(sb);
1994-05-24 10:09:53 +00:00
}
Add support for KTLS RX via software decryption. Allow TLS records to be decrypted in the kernel after being received by a NIC. At a high level this is somewhat similar to software KTLS for the transmit path except in reverse. Protocols enqueue mbufs containing encrypted TLS records (or portions of records) into the tail of a socket buffer and the KTLS layer decrypts those records before returning them to userland applications. However, there is an important difference: - In the transmit case, the socket buffer is always a single "record" holding a chain of mbufs. Not-yet-encrypted mbufs are marked not ready (M_NOTREADY) and released to protocols for transmit by marking mbufs ready once their data is encrypted. - In the receive case, incoming (encrypted) data appended to the socket buffer is still a single stream of data from the protocol, but decrypted TLS records are stored as separate records in the socket buffer and read individually via recvmsg(). Initially I tried to make this work by marking incoming mbufs as M_NOTREADY, but there didn't seemed to be a non-gross way to deal with picking a portion of the mbuf chain and turning it into a new record in the socket buffer after decrypting the TLS record it contained (along with prepending a control message). Also, such mbufs would also need to be "pinned" in some way while they are being decrypted such that a concurrent sbcut() wouldn't free them out from under the thread performing decryption. As such, I settled on the following solution: - Socket buffers now contain an additional chain of mbufs (sb_mtls, sb_mtlstail, and sb_tlscc) containing encrypted mbufs appended by the protocol layer. These mbufs are still marked M_NOTREADY, but soreceive*() generally don't know about them (except that they will block waiting for data to be decrypted for a blocking read). - Each time a new mbuf is appended to this TLS mbuf chain, the socket buffer peeks at the TLS record header at the head of the chain to determine the encrypted record's length. If enough data is queued for the TLS record, the socket is placed on a per-CPU TLS workqueue (reusing the existing KTLS workqueues and worker threads). - The worker thread loops over the TLS mbuf chain decrypting records until it runs out of data. Each record is detached from the TLS mbuf chain while it is being decrypted to keep the mbufs "pinned". However, a new sb_dtlscc field tracks the character count of the detached record and sbcut()/sbdrop() is updated to account for the detached record. After the record is decrypted, the worker thread first checks to see if sbcut() dropped the record. If so, it is freed (can happen when a socket is closed with pending data). Otherwise, the header and trailer are stripped from the original mbufs, a control message is created holding the decrypted TLS header, and the decrypted TLS record is appended to the "normal" socket buffer chain. (Side note: the SBCHECK() infrastucture was very useful as I was able to add assertions there about the TLS chain that caught several bugs during development.) Tested by: rmacklem (various versions) Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D24628
2020-07-23 23:48:18 +00:00
#ifdef KERN_TLS
/*
* A version of sbcompress() for encrypted TLS RX mbufs. These mbufs
* are appended to the 'sb_mtls' chain instead of 'sb_mb' and are also
* a bit simpler (no EOR markers, always MT_DATA, etc.).
*/
static void
sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
{
SOCKBUF_LOCK_ASSERT(sb);
while (m) {
KASSERT((m->m_flags & M_EOR) == 0,
("TLS RX mbuf %p with EOR", m));
KASSERT(m->m_type == MT_DATA,
("TLS RX mbuf %p is not MT_DATA", m));
KASSERT((m->m_flags & M_NOTREADY) != 0,
("TLS RX mbuf %p ready", m));
KASSERT((m->m_flags & M_EXTPG) == 0,
("TLS RX mbuf %p unmapped", m));
if (m->m_len == 0) {
m = m_free(m);
continue;
}
/*
* Even though both 'n' and 'm' are NOTREADY, it's ok
* to coalesce the data.
*/
if (n &&
M_WRITABLE(n) &&
((sb->sb_flags & SB_NOCOALESCE) == 0) &&
!(n->m_flags & (M_EXTPG)) &&
m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
m->m_len <= M_TRAILINGSPACE(n)) {
m_copydata(m, 0, m->m_len, mtodo(n, n->m_len));
n->m_len += m->m_len;
sb->sb_ccc += m->m_len;
sb->sb_tlscc += m->m_len;
m = m_free(m);
continue;
}
if (n)
n->m_next = m;
else
sb->sb_mtls = m;
sb->sb_mtlstail = m;
sballoc_ktls_rx(sb, m);
n = m;
m = m->m_next;
n->m_next = NULL;
}
SBLASTMBUFCHK(sb);
}
#endif
1994-05-24 10:09:53 +00:00
/*
* Free all mbufs in a sockbuf. Check that all resources are reclaimed.
1994-05-24 10:09:53 +00:00
*/
static void
sbflush_internal(struct sockbuf *sb)
1994-05-24 10:09:53 +00:00
{
Add support for KTLS RX via software decryption. Allow TLS records to be decrypted in the kernel after being received by a NIC. At a high level this is somewhat similar to software KTLS for the transmit path except in reverse. Protocols enqueue mbufs containing encrypted TLS records (or portions of records) into the tail of a socket buffer and the KTLS layer decrypts those records before returning them to userland applications. However, there is an important difference: - In the transmit case, the socket buffer is always a single "record" holding a chain of mbufs. Not-yet-encrypted mbufs are marked not ready (M_NOTREADY) and released to protocols for transmit by marking mbufs ready once their data is encrypted. - In the receive case, incoming (encrypted) data appended to the socket buffer is still a single stream of data from the protocol, but decrypted TLS records are stored as separate records in the socket buffer and read individually via recvmsg(). Initially I tried to make this work by marking incoming mbufs as M_NOTREADY, but there didn't seemed to be a non-gross way to deal with picking a portion of the mbuf chain and turning it into a new record in the socket buffer after decrypting the TLS record it contained (along with prepending a control message). Also, such mbufs would also need to be "pinned" in some way while they are being decrypted such that a concurrent sbcut() wouldn't free them out from under the thread performing decryption. As such, I settled on the following solution: - Socket buffers now contain an additional chain of mbufs (sb_mtls, sb_mtlstail, and sb_tlscc) containing encrypted mbufs appended by the protocol layer. These mbufs are still marked M_NOTREADY, but soreceive*() generally don't know about them (except that they will block waiting for data to be decrypted for a blocking read). - Each time a new mbuf is appended to this TLS mbuf chain, the socket buffer peeks at the TLS record header at the head of the chain to determine the encrypted record's length. If enough data is queued for the TLS record, the socket is placed on a per-CPU TLS workqueue (reusing the existing KTLS workqueues and worker threads). - The worker thread loops over the TLS mbuf chain decrypting records until it runs out of data. Each record is detached from the TLS mbuf chain while it is being decrypted to keep the mbufs "pinned". However, a new sb_dtlscc field tracks the character count of the detached record and sbcut()/sbdrop() is updated to account for the detached record. After the record is decrypted, the worker thread first checks to see if sbcut() dropped the record. If so, it is freed (can happen when a socket is closed with pending data). Otherwise, the header and trailer are stripped from the original mbufs, a control message is created holding the decrypted TLS header, and the decrypted TLS record is appended to the "normal" socket buffer chain. (Side note: the SBCHECK() infrastucture was very useful as I was able to add assertions there about the TLS chain that caught several bugs during development.) Tested by: rmacklem (various versions) Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D24628
2020-07-23 23:48:18 +00:00
while (sb->sb_mbcnt || sb->sb_tlsdcc) {
/*
2014-01-17 11:09:05 +00:00
* Don't call sbcut(sb, 0) if the leading mbuf is non-empty:
* we would loop forever. Panic instead.
*/
Merge from projects/sendfile: o Introduce a notion of "not ready" mbufs in socket buffers. These mbufs are now being populated by some I/O in background and are referenced outside. This forces following implications: - An mbuf which is "not ready" can't be taken out of the buffer. - An mbuf that is behind a "not ready" in the queue neither. - If sockbet buffer is flushed, then "not ready" mbufs shouln't be freed. o In struct sockbuf the sb_cc field is split into sb_ccc and sb_acc. The sb_ccc stands for ""claimed character count", or "committed character count". And the sb_acc is "available character count". Consumers of socket buffer API shouldn't already access them directly, but use sbused() and sbavail() respectively. o Not ready mbufs are marked with M_NOTREADY, and ready but blocked ones with M_BLOCKED. o New field sb_fnrdy points to the first not ready mbuf, to avoid linear search. o New function sbready() is provided to activate certain amount of mbufs in a socket buffer. A special note on SCTP: SCTP has its own sockbufs. Unfortunately, FreeBSD stack doesn't yet allow protocol specific sockbufs. Thus, SCTP does some hacks to make itself compatible with FreeBSD: it manages sockbufs on its own, but keeps sb_cc updated to inform the stack of amount of data in them. The new notion of "not ready" data isn't supported by SCTP. Instead, only a mechanical substitute is done: s/sb_cc/sb_ccc/. A proper solution would be to take away struct sockbuf from struct socket and allow protocols to implement their own socket buffers, like SCTP already does. This was discussed with rrs@. Sponsored by: Netflix Sponsored by: Nginx, Inc.
2014-11-30 12:52:33 +00:00
if (sb->sb_ccc == 0 && (sb->sb_mb == NULL || sb->sb_mb->m_len))
break;
Merge from projects/sendfile: o Introduce a notion of "not ready" mbufs in socket buffers. These mbufs are now being populated by some I/O in background and are referenced outside. This forces following implications: - An mbuf which is "not ready" can't be taken out of the buffer. - An mbuf that is behind a "not ready" in the queue neither. - If sockbet buffer is flushed, then "not ready" mbufs shouln't be freed. o In struct sockbuf the sb_cc field is split into sb_ccc and sb_acc. The sb_ccc stands for ""claimed character count", or "committed character count". And the sb_acc is "available character count". Consumers of socket buffer API shouldn't already access them directly, but use sbused() and sbavail() respectively. o Not ready mbufs are marked with M_NOTREADY, and ready but blocked ones with M_BLOCKED. o New field sb_fnrdy points to the first not ready mbuf, to avoid linear search. o New function sbready() is provided to activate certain amount of mbufs in a socket buffer. A special note on SCTP: SCTP has its own sockbufs. Unfortunately, FreeBSD stack doesn't yet allow protocol specific sockbufs. Thus, SCTP does some hacks to make itself compatible with FreeBSD: it manages sockbufs on its own, but keeps sb_cc updated to inform the stack of amount of data in them. The new notion of "not ready" data isn't supported by SCTP. Instead, only a mechanical substitute is done: s/sb_cc/sb_ccc/. A proper solution would be to take away struct sockbuf from struct socket and allow protocols to implement their own socket buffers, like SCTP already does. This was discussed with rrs@. Sponsored by: Netflix Sponsored by: Nginx, Inc.
2014-11-30 12:52:33 +00:00
m_freem(sbcut_internal(sb, (int)sb->sb_ccc));
}
Merge from projects/sendfile: o Introduce a notion of "not ready" mbufs in socket buffers. These mbufs are now being populated by some I/O in background and are referenced outside. This forces following implications: - An mbuf which is "not ready" can't be taken out of the buffer. - An mbuf that is behind a "not ready" in the queue neither. - If sockbet buffer is flushed, then "not ready" mbufs shouln't be freed. o In struct sockbuf the sb_cc field is split into sb_ccc and sb_acc. The sb_ccc stands for ""claimed character count", or "committed character count". And the sb_acc is "available character count". Consumers of socket buffer API shouldn't already access them directly, but use sbused() and sbavail() respectively. o Not ready mbufs are marked with M_NOTREADY, and ready but blocked ones with M_BLOCKED. o New field sb_fnrdy points to the first not ready mbuf, to avoid linear search. o New function sbready() is provided to activate certain amount of mbufs in a socket buffer. A special note on SCTP: SCTP has its own sockbufs. Unfortunately, FreeBSD stack doesn't yet allow protocol specific sockbufs. Thus, SCTP does some hacks to make itself compatible with FreeBSD: it manages sockbufs on its own, but keeps sb_cc updated to inform the stack of amount of data in them. The new notion of "not ready" data isn't supported by SCTP. Instead, only a mechanical substitute is done: s/sb_cc/sb_ccc/. A proper solution would be to take away struct sockbuf from struct socket and allow protocols to implement their own socket buffers, like SCTP already does. This was discussed with rrs@. Sponsored by: Netflix Sponsored by: Nginx, Inc.
2014-11-30 12:52:33 +00:00
KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0,
("%s: ccc %u mb %p mbcnt %u", __func__,
sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt));
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
}
void
sbflush_locked(struct sockbuf *sb)
{
SOCKBUF_LOCK_ASSERT(sb);
sbflush_internal(sb);
}
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
void
sbflush(struct sockbuf *sb)
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
{
SOCKBUF_LOCK(sb);
sbflush_locked(sb);
SOCKBUF_UNLOCK(sb);
1994-05-24 10:09:53 +00:00
}
/*
* Cut data from (the front of) a sockbuf.
1994-05-24 10:09:53 +00:00
*/
static struct mbuf *
sbcut_internal(struct sockbuf *sb, int len)
1994-05-24 10:09:53 +00:00
{
Merge from projects/sendfile: o Introduce a notion of "not ready" mbufs in socket buffers. These mbufs are now being populated by some I/O in background and are referenced outside. This forces following implications: - An mbuf which is "not ready" can't be taken out of the buffer. - An mbuf that is behind a "not ready" in the queue neither. - If sockbet buffer is flushed, then "not ready" mbufs shouln't be freed. o In struct sockbuf the sb_cc field is split into sb_ccc and sb_acc. The sb_ccc stands for ""claimed character count", or "committed character count". And the sb_acc is "available character count". Consumers of socket buffer API shouldn't already access them directly, but use sbused() and sbavail() respectively. o Not ready mbufs are marked with M_NOTREADY, and ready but blocked ones with M_BLOCKED. o New field sb_fnrdy points to the first not ready mbuf, to avoid linear search. o New function sbready() is provided to activate certain amount of mbufs in a socket buffer. A special note on SCTP: SCTP has its own sockbufs. Unfortunately, FreeBSD stack doesn't yet allow protocol specific sockbufs. Thus, SCTP does some hacks to make itself compatible with FreeBSD: it manages sockbufs on its own, but keeps sb_cc updated to inform the stack of amount of data in them. The new notion of "not ready" data isn't supported by SCTP. Instead, only a mechanical substitute is done: s/sb_cc/sb_ccc/. A proper solution would be to take away struct sockbuf from struct socket and allow protocols to implement their own socket buffers, like SCTP already does. This was discussed with rrs@. Sponsored by: Netflix Sponsored by: Nginx, Inc.
2014-11-30 12:52:33 +00:00
struct mbuf *m, *next, *mfree;
Add support for KTLS RX via software decryption. Allow TLS records to be decrypted in the kernel after being received by a NIC. At a high level this is somewhat similar to software KTLS for the transmit path except in reverse. Protocols enqueue mbufs containing encrypted TLS records (or portions of records) into the tail of a socket buffer and the KTLS layer decrypts those records before returning them to userland applications. However, there is an important difference: - In the transmit case, the socket buffer is always a single "record" holding a chain of mbufs. Not-yet-encrypted mbufs are marked not ready (M_NOTREADY) and released to protocols for transmit by marking mbufs ready once their data is encrypted. - In the receive case, incoming (encrypted) data appended to the socket buffer is still a single stream of data from the protocol, but decrypted TLS records are stored as separate records in the socket buffer and read individually via recvmsg(). Initially I tried to make this work by marking incoming mbufs as M_NOTREADY, but there didn't seemed to be a non-gross way to deal with picking a portion of the mbuf chain and turning it into a new record in the socket buffer after decrypting the TLS record it contained (along with prepending a control message). Also, such mbufs would also need to be "pinned" in some way while they are being decrypted such that a concurrent sbcut() wouldn't free them out from under the thread performing decryption. As such, I settled on the following solution: - Socket buffers now contain an additional chain of mbufs (sb_mtls, sb_mtlstail, and sb_tlscc) containing encrypted mbufs appended by the protocol layer. These mbufs are still marked M_NOTREADY, but soreceive*() generally don't know about them (except that they will block waiting for data to be decrypted for a blocking read). - Each time a new mbuf is appended to this TLS mbuf chain, the socket buffer peeks at the TLS record header at the head of the chain to determine the encrypted record's length. If enough data is queued for the TLS record, the socket is placed on a per-CPU TLS workqueue (reusing the existing KTLS workqueues and worker threads). - The worker thread loops over the TLS mbuf chain decrypting records until it runs out of data. Each record is detached from the TLS mbuf chain while it is being decrypted to keep the mbufs "pinned". However, a new sb_dtlscc field tracks the character count of the detached record and sbcut()/sbdrop() is updated to account for the detached record. After the record is decrypted, the worker thread first checks to see if sbcut() dropped the record. If so, it is freed (can happen when a socket is closed with pending data). Otherwise, the header and trailer are stripped from the original mbufs, a control message is created holding the decrypted TLS header, and the decrypted TLS record is appended to the "normal" socket buffer chain. (Side note: the SBCHECK() infrastucture was very useful as I was able to add assertions there about the TLS chain that caught several bugs during development.) Tested by: rmacklem (various versions) Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D24628
2020-07-23 23:48:18 +00:00
bool is_tls;
1994-05-24 10:09:53 +00:00
KASSERT(len >= 0, ("%s: len is %d but it is supposed to be >= 0",
__func__, len));
KASSERT(len <= sb->sb_ccc, ("%s: len: %d is > ccc: %u",
__func__, len, sb->sb_ccc));
1994-05-24 10:09:53 +00:00
next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
Add support for KTLS RX via software decryption. Allow TLS records to be decrypted in the kernel after being received by a NIC. At a high level this is somewhat similar to software KTLS for the transmit path except in reverse. Protocols enqueue mbufs containing encrypted TLS records (or portions of records) into the tail of a socket buffer and the KTLS layer decrypts those records before returning them to userland applications. However, there is an important difference: - In the transmit case, the socket buffer is always a single "record" holding a chain of mbufs. Not-yet-encrypted mbufs are marked not ready (M_NOTREADY) and released to protocols for transmit by marking mbufs ready once their data is encrypted. - In the receive case, incoming (encrypted) data appended to the socket buffer is still a single stream of data from the protocol, but decrypted TLS records are stored as separate records in the socket buffer and read individually via recvmsg(). Initially I tried to make this work by marking incoming mbufs as M_NOTREADY, but there didn't seemed to be a non-gross way to deal with picking a portion of the mbuf chain and turning it into a new record in the socket buffer after decrypting the TLS record it contained (along with prepending a control message). Also, such mbufs would also need to be "pinned" in some way while they are being decrypted such that a concurrent sbcut() wouldn't free them out from under the thread performing decryption. As such, I settled on the following solution: - Socket buffers now contain an additional chain of mbufs (sb_mtls, sb_mtlstail, and sb_tlscc) containing encrypted mbufs appended by the protocol layer. These mbufs are still marked M_NOTREADY, but soreceive*() generally don't know about them (except that they will block waiting for data to be decrypted for a blocking read). - Each time a new mbuf is appended to this TLS mbuf chain, the socket buffer peeks at the TLS record header at the head of the chain to determine the encrypted record's length. If enough data is queued for the TLS record, the socket is placed on a per-CPU TLS workqueue (reusing the existing KTLS workqueues and worker threads). - The worker thread loops over the TLS mbuf chain decrypting records until it runs out of data. Each record is detached from the TLS mbuf chain while it is being decrypted to keep the mbufs "pinned". However, a new sb_dtlscc field tracks the character count of the detached record and sbcut()/sbdrop() is updated to account for the detached record. After the record is decrypted, the worker thread first checks to see if sbcut() dropped the record. If so, it is freed (can happen when a socket is closed with pending data). Otherwise, the header and trailer are stripped from the original mbufs, a control message is created holding the decrypted TLS header, and the decrypted TLS record is appended to the "normal" socket buffer chain. (Side note: the SBCHECK() infrastucture was very useful as I was able to add assertions there about the TLS chain that caught several bugs during development.) Tested by: rmacklem (various versions) Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D24628
2020-07-23 23:48:18 +00:00
is_tls = false;
mfree = NULL;
1994-05-24 10:09:53 +00:00
while (len > 0) {
if (m == NULL) {
Add support for KTLS RX via software decryption. Allow TLS records to be decrypted in the kernel after being received by a NIC. At a high level this is somewhat similar to software KTLS for the transmit path except in reverse. Protocols enqueue mbufs containing encrypted TLS records (or portions of records) into the tail of a socket buffer and the KTLS layer decrypts those records before returning them to userland applications. However, there is an important difference: - In the transmit case, the socket buffer is always a single "record" holding a chain of mbufs. Not-yet-encrypted mbufs are marked not ready (M_NOTREADY) and released to protocols for transmit by marking mbufs ready once their data is encrypted. - In the receive case, incoming (encrypted) data appended to the socket buffer is still a single stream of data from the protocol, but decrypted TLS records are stored as separate records in the socket buffer and read individually via recvmsg(). Initially I tried to make this work by marking incoming mbufs as M_NOTREADY, but there didn't seemed to be a non-gross way to deal with picking a portion of the mbuf chain and turning it into a new record in the socket buffer after decrypting the TLS record it contained (along with prepending a control message). Also, such mbufs would also need to be "pinned" in some way while they are being decrypted such that a concurrent sbcut() wouldn't free them out from under the thread performing decryption. As such, I settled on the following solution: - Socket buffers now contain an additional chain of mbufs (sb_mtls, sb_mtlstail, and sb_tlscc) containing encrypted mbufs appended by the protocol layer. These mbufs are still marked M_NOTREADY, but soreceive*() generally don't know about them (except that they will block waiting for data to be decrypted for a blocking read). - Each time a new mbuf is appended to this TLS mbuf chain, the socket buffer peeks at the TLS record header at the head of the chain to determine the encrypted record's length. If enough data is queued for the TLS record, the socket is placed on a per-CPU TLS workqueue (reusing the existing KTLS workqueues and worker threads). - The worker thread loops over the TLS mbuf chain decrypting records until it runs out of data. Each record is detached from the TLS mbuf chain while it is being decrypted to keep the mbufs "pinned". However, a new sb_dtlscc field tracks the character count of the detached record and sbcut()/sbdrop() is updated to account for the detached record. After the record is decrypted, the worker thread first checks to see if sbcut() dropped the record. If so, it is freed (can happen when a socket is closed with pending data). Otherwise, the header and trailer are stripped from the original mbufs, a control message is created holding the decrypted TLS header, and the decrypted TLS record is appended to the "normal" socket buffer chain. (Side note: the SBCHECK() infrastucture was very useful as I was able to add assertions there about the TLS chain that caught several bugs during development.) Tested by: rmacklem (various versions) Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D24628
2020-07-23 23:48:18 +00:00
#ifdef KERN_TLS
if (next == NULL && !is_tls) {
if (sb->sb_tlsdcc != 0) {
MPASS(len >= sb->sb_tlsdcc);
len -= sb->sb_tlsdcc;
sb->sb_ccc -= sb->sb_tlsdcc;
sb->sb_tlsdcc = 0;
if (len == 0)
break;
}
next = sb->sb_mtls;
is_tls = true;
}
#endif
KASSERT(next, ("%s: no next, len %d", __func__, len));
1994-05-24 10:09:53 +00:00
m = next;
next = m->m_nextpkt;
}
if (m->m_len > len) {
Merge from projects/sendfile: o Introduce a notion of "not ready" mbufs in socket buffers. These mbufs are now being populated by some I/O in background and are referenced outside. This forces following implications: - An mbuf which is "not ready" can't be taken out of the buffer. - An mbuf that is behind a "not ready" in the queue neither. - If sockbet buffer is flushed, then "not ready" mbufs shouln't be freed. o In struct sockbuf the sb_cc field is split into sb_ccc and sb_acc. The sb_ccc stands for ""claimed character count", or "committed character count". And the sb_acc is "available character count". Consumers of socket buffer API shouldn't already access them directly, but use sbused() and sbavail() respectively. o Not ready mbufs are marked with M_NOTREADY, and ready but blocked ones with M_BLOCKED. o New field sb_fnrdy points to the first not ready mbuf, to avoid linear search. o New function sbready() is provided to activate certain amount of mbufs in a socket buffer. A special note on SCTP: SCTP has its own sockbufs. Unfortunately, FreeBSD stack doesn't yet allow protocol specific sockbufs. Thus, SCTP does some hacks to make itself compatible with FreeBSD: it manages sockbufs on its own, but keeps sb_cc updated to inform the stack of amount of data in them. The new notion of "not ready" data isn't supported by SCTP. Instead, only a mechanical substitute is done: s/sb_cc/sb_ccc/. A proper solution would be to take away struct sockbuf from struct socket and allow protocols to implement their own socket buffers, like SCTP already does. This was discussed with rrs@. Sponsored by: Netflix Sponsored by: Nginx, Inc.
2014-11-30 12:52:33 +00:00
KASSERT(!(m->m_flags & M_NOTAVAIL),
("%s: m %p M_NOTAVAIL", __func__, m));
1994-05-24 10:09:53 +00:00
m->m_len -= len;
m->m_data += len;
Merge from projects/sendfile: o Introduce a notion of "not ready" mbufs in socket buffers. These mbufs are now being populated by some I/O in background and are referenced outside. This forces following implications: - An mbuf which is "not ready" can't be taken out of the buffer. - An mbuf that is behind a "not ready" in the queue neither. - If sockbet buffer is flushed, then "not ready" mbufs shouln't be freed. o In struct sockbuf the sb_cc field is split into sb_ccc and sb_acc. The sb_ccc stands for ""claimed character count", or "committed character count". And the sb_acc is "available character count". Consumers of socket buffer API shouldn't already access them directly, but use sbused() and sbavail() respectively. o Not ready mbufs are marked with M_NOTREADY, and ready but blocked ones with M_BLOCKED. o New field sb_fnrdy points to the first not ready mbuf, to avoid linear search. o New function sbready() is provided to activate certain amount of mbufs in a socket buffer. A special note on SCTP: SCTP has its own sockbufs. Unfortunately, FreeBSD stack doesn't yet allow protocol specific sockbufs. Thus, SCTP does some hacks to make itself compatible with FreeBSD: it manages sockbufs on its own, but keeps sb_cc updated to inform the stack of amount of data in them. The new notion of "not ready" data isn't supported by SCTP. Instead, only a mechanical substitute is done: s/sb_cc/sb_ccc/. A proper solution would be to take away struct sockbuf from struct socket and allow protocols to implement their own socket buffers, like SCTP already does. This was discussed with rrs@. Sponsored by: Netflix Sponsored by: Nginx, Inc.
2014-11-30 12:52:33 +00:00
sb->sb_ccc -= len;
sb->sb_acc -= len;
if (sb->sb_sndptroff != 0)
sb->sb_sndptroff -= len;
if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
sb->sb_ctl -= len;
1994-05-24 10:09:53 +00:00
break;
}
len -= m->m_len;
Add support for KTLS RX via software decryption. Allow TLS records to be decrypted in the kernel after being received by a NIC. At a high level this is somewhat similar to software KTLS for the transmit path except in reverse. Protocols enqueue mbufs containing encrypted TLS records (or portions of records) into the tail of a socket buffer and the KTLS layer decrypts those records before returning them to userland applications. However, there is an important difference: - In the transmit case, the socket buffer is always a single "record" holding a chain of mbufs. Not-yet-encrypted mbufs are marked not ready (M_NOTREADY) and released to protocols for transmit by marking mbufs ready once their data is encrypted. - In the receive case, incoming (encrypted) data appended to the socket buffer is still a single stream of data from the protocol, but decrypted TLS records are stored as separate records in the socket buffer and read individually via recvmsg(). Initially I tried to make this work by marking incoming mbufs as M_NOTREADY, but there didn't seemed to be a non-gross way to deal with picking a portion of the mbuf chain and turning it into a new record in the socket buffer after decrypting the TLS record it contained (along with prepending a control message). Also, such mbufs would also need to be "pinned" in some way while they are being decrypted such that a concurrent sbcut() wouldn't free them out from under the thread performing decryption. As such, I settled on the following solution: - Socket buffers now contain an additional chain of mbufs (sb_mtls, sb_mtlstail, and sb_tlscc) containing encrypted mbufs appended by the protocol layer. These mbufs are still marked M_NOTREADY, but soreceive*() generally don't know about them (except that they will block waiting for data to be decrypted for a blocking read). - Each time a new mbuf is appended to this TLS mbuf chain, the socket buffer peeks at the TLS record header at the head of the chain to determine the encrypted record's length. If enough data is queued for the TLS record, the socket is placed on a per-CPU TLS workqueue (reusing the existing KTLS workqueues and worker threads). - The worker thread loops over the TLS mbuf chain decrypting records until it runs out of data. Each record is detached from the TLS mbuf chain while it is being decrypted to keep the mbufs "pinned". However, a new sb_dtlscc field tracks the character count of the detached record and sbcut()/sbdrop() is updated to account for the detached record. After the record is decrypted, the worker thread first checks to see if sbcut() dropped the record. If so, it is freed (can happen when a socket is closed with pending data). Otherwise, the header and trailer are stripped from the original mbufs, a control message is created holding the decrypted TLS header, and the decrypted TLS record is appended to the "normal" socket buffer chain. (Side note: the SBCHECK() infrastucture was very useful as I was able to add assertions there about the TLS chain that caught several bugs during development.) Tested by: rmacklem (various versions) Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D24628
2020-07-23 23:48:18 +00:00
#ifdef KERN_TLS
if (is_tls)
sbfree_ktls_rx(sb, m);
else
#endif
sbfree(sb, m);
Merge from projects/sendfile: o Introduce a notion of "not ready" mbufs in socket buffers. These mbufs are now being populated by some I/O in background and are referenced outside. This forces following implications: - An mbuf which is "not ready" can't be taken out of the buffer. - An mbuf that is behind a "not ready" in the queue neither. - If sockbet buffer is flushed, then "not ready" mbufs shouln't be freed. o In struct sockbuf the sb_cc field is split into sb_ccc and sb_acc. The sb_ccc stands for ""claimed character count", or "committed character count". And the sb_acc is "available character count". Consumers of socket buffer API shouldn't already access them directly, but use sbused() and sbavail() respectively. o Not ready mbufs are marked with M_NOTREADY, and ready but blocked ones with M_BLOCKED. o New field sb_fnrdy points to the first not ready mbuf, to avoid linear search. o New function sbready() is provided to activate certain amount of mbufs in a socket buffer. A special note on SCTP: SCTP has its own sockbufs. Unfortunately, FreeBSD stack doesn't yet allow protocol specific sockbufs. Thus, SCTP does some hacks to make itself compatible with FreeBSD: it manages sockbufs on its own, but keeps sb_cc updated to inform the stack of amount of data in them. The new notion of "not ready" data isn't supported by SCTP. Instead, only a mechanical substitute is done: s/sb_cc/sb_ccc/. A proper solution would be to take away struct sockbuf from struct socket and allow protocols to implement their own socket buffers, like SCTP already does. This was discussed with rrs@. Sponsored by: Netflix Sponsored by: Nginx, Inc.
2014-11-30 12:52:33 +00:00
/*
* Do not put M_NOTREADY buffers to the free list, they
* are referenced from outside.
*/
Add support for KTLS RX via software decryption. Allow TLS records to be decrypted in the kernel after being received by a NIC. At a high level this is somewhat similar to software KTLS for the transmit path except in reverse. Protocols enqueue mbufs containing encrypted TLS records (or portions of records) into the tail of a socket buffer and the KTLS layer decrypts those records before returning them to userland applications. However, there is an important difference: - In the transmit case, the socket buffer is always a single "record" holding a chain of mbufs. Not-yet-encrypted mbufs are marked not ready (M_NOTREADY) and released to protocols for transmit by marking mbufs ready once their data is encrypted. - In the receive case, incoming (encrypted) data appended to the socket buffer is still a single stream of data from the protocol, but decrypted TLS records are stored as separate records in the socket buffer and read individually via recvmsg(). Initially I tried to make this work by marking incoming mbufs as M_NOTREADY, but there didn't seemed to be a non-gross way to deal with picking a portion of the mbuf chain and turning it into a new record in the socket buffer after decrypting the TLS record it contained (along with prepending a control message). Also, such mbufs would also need to be "pinned" in some way while they are being decrypted such that a concurrent sbcut() wouldn't free them out from under the thread performing decryption. As such, I settled on the following solution: - Socket buffers now contain an additional chain of mbufs (sb_mtls, sb_mtlstail, and sb_tlscc) containing encrypted mbufs appended by the protocol layer. These mbufs are still marked M_NOTREADY, but soreceive*() generally don't know about them (except that they will block waiting for data to be decrypted for a blocking read). - Each time a new mbuf is appended to this TLS mbuf chain, the socket buffer peeks at the TLS record header at the head of the chain to determine the encrypted record's length. If enough data is queued for the TLS record, the socket is placed on a per-CPU TLS workqueue (reusing the existing KTLS workqueues and worker threads). - The worker thread loops over the TLS mbuf chain decrypting records until it runs out of data. Each record is detached from the TLS mbuf chain while it is being decrypted to keep the mbufs "pinned". However, a new sb_dtlscc field tracks the character count of the detached record and sbcut()/sbdrop() is updated to account for the detached record. After the record is decrypted, the worker thread first checks to see if sbcut() dropped the record. If so, it is freed (can happen when a socket is closed with pending data). Otherwise, the header and trailer are stripped from the original mbufs, a control message is created holding the decrypted TLS header, and the decrypted TLS record is appended to the "normal" socket buffer chain. (Side note: the SBCHECK() infrastucture was very useful as I was able to add assertions there about the TLS chain that caught several bugs during development.) Tested by: rmacklem (various versions) Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D24628
2020-07-23 23:48:18 +00:00
if (m->m_flags & M_NOTREADY && !is_tls)
Merge from projects/sendfile: o Introduce a notion of "not ready" mbufs in socket buffers. These mbufs are now being populated by some I/O in background and are referenced outside. This forces following implications: - An mbuf which is "not ready" can't be taken out of the buffer. - An mbuf that is behind a "not ready" in the queue neither. - If sockbet buffer is flushed, then "not ready" mbufs shouln't be freed. o In struct sockbuf the sb_cc field is split into sb_ccc and sb_acc. The sb_ccc stands for ""claimed character count", or "committed character count". And the sb_acc is "available character count". Consumers of socket buffer API shouldn't already access them directly, but use sbused() and sbavail() respectively. o Not ready mbufs are marked with M_NOTREADY, and ready but blocked ones with M_BLOCKED. o New field sb_fnrdy points to the first not ready mbuf, to avoid linear search. o New function sbready() is provided to activate certain amount of mbufs in a socket buffer. A special note on SCTP: SCTP has its own sockbufs. Unfortunately, FreeBSD stack doesn't yet allow protocol specific sockbufs. Thus, SCTP does some hacks to make itself compatible with FreeBSD: it manages sockbufs on its own, but keeps sb_cc updated to inform the stack of amount of data in them. The new notion of "not ready" data isn't supported by SCTP. Instead, only a mechanical substitute is done: s/sb_cc/sb_ccc/. A proper solution would be to take away struct sockbuf from struct socket and allow protocols to implement their own socket buffers, like SCTP already does. This was discussed with rrs@. Sponsored by: Netflix Sponsored by: Nginx, Inc.
2014-11-30 12:52:33 +00:00
m = m->m_next;
else {
struct mbuf *n;
n = m->m_next;
m->m_next = mfree;
mfree = m;
m = n;
}
1994-05-24 10:09:53 +00:00
}
/*
* Free any zero-length mbufs from the buffer.
* For SOCK_DGRAM sockets such mbufs represent empty records.
* XXX: For SOCK_STREAM sockets such mbufs can appear in the buffer,
* when sosend_generic() needs to send only control data.
*/
while (m && m->m_len == 0) {
struct mbuf *n;
sbfree(sb, m);
n = m->m_next;
m->m_next = mfree;
mfree = m;
m = n;
}
Add support for KTLS RX via software decryption. Allow TLS records to be decrypted in the kernel after being received by a NIC. At a high level this is somewhat similar to software KTLS for the transmit path except in reverse. Protocols enqueue mbufs containing encrypted TLS records (or portions of records) into the tail of a socket buffer and the KTLS layer decrypts those records before returning them to userland applications. However, there is an important difference: - In the transmit case, the socket buffer is always a single "record" holding a chain of mbufs. Not-yet-encrypted mbufs are marked not ready (M_NOTREADY) and released to protocols for transmit by marking mbufs ready once their data is encrypted. - In the receive case, incoming (encrypted) data appended to the socket buffer is still a single stream of data from the protocol, but decrypted TLS records are stored as separate records in the socket buffer and read individually via recvmsg(). Initially I tried to make this work by marking incoming mbufs as M_NOTREADY, but there didn't seemed to be a non-gross way to deal with picking a portion of the mbuf chain and turning it into a new record in the socket buffer after decrypting the TLS record it contained (along with prepending a control message). Also, such mbufs would also need to be "pinned" in some way while they are being decrypted such that a concurrent sbcut() wouldn't free them out from under the thread performing decryption. As such, I settled on the following solution: - Socket buffers now contain an additional chain of mbufs (sb_mtls, sb_mtlstail, and sb_tlscc) containing encrypted mbufs appended by the protocol layer. These mbufs are still marked M_NOTREADY, but soreceive*() generally don't know about them (except that they will block waiting for data to be decrypted for a blocking read). - Each time a new mbuf is appended to this TLS mbuf chain, the socket buffer peeks at the TLS record header at the head of the chain to determine the encrypted record's length. If enough data is queued for the TLS record, the socket is placed on a per-CPU TLS workqueue (reusing the existing KTLS workqueues and worker threads). - The worker thread loops over the TLS mbuf chain decrypting records until it runs out of data. Each record is detached from the TLS mbuf chain while it is being decrypted to keep the mbufs "pinned". However, a new sb_dtlscc field tracks the character count of the detached record and sbcut()/sbdrop() is updated to account for the detached record. After the record is decrypted, the worker thread first checks to see if sbcut() dropped the record. If so, it is freed (can happen when a socket is closed with pending data). Otherwise, the header and trailer are stripped from the original mbufs, a control message is created holding the decrypted TLS header, and the decrypted TLS record is appended to the "normal" socket buffer chain. (Side note: the SBCHECK() infrastucture was very useful as I was able to add assertions there about the TLS chain that caught several bugs during development.) Tested by: rmacklem (various versions) Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D24628
2020-07-23 23:48:18 +00:00
#ifdef KERN_TLS
if (is_tls) {
sb->sb_mb = NULL;
sb->sb_mtls = m;
if (m == NULL)
sb->sb_mtlstail = NULL;
} else
#endif
1994-05-24 10:09:53 +00:00
if (m) {
sb->sb_mb = m;
m->m_nextpkt = next;
} else
sb->sb_mb = next;
/*
* First part is an inline SB_EMPTY_FIXUP(). Second part makes sure
* sb_lastrecord is up-to-date if we dropped part of the last record.
*/
m = sb->sb_mb;
if (m == NULL) {
sb->sb_mbtail = NULL;
sb->sb_lastrecord = NULL;
} else if (m->m_nextpkt == NULL) {
sb->sb_lastrecord = m;
}
return (mfree);
1994-05-24 10:09:53 +00:00
}
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
/*
* Drop data from (the front of) a sockbuf.
*/
void
sbdrop_locked(struct sockbuf *sb, int len)
{
SOCKBUF_LOCK_ASSERT(sb);
m_freem(sbcut_internal(sb, len));
}
/*
* Drop data from (the front of) a sockbuf,
* and return it to caller.
*/
struct mbuf *
sbcut_locked(struct sockbuf *sb, int len)
{
SOCKBUF_LOCK_ASSERT(sb);
return (sbcut_internal(sb, len));
}
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
void
sbdrop(struct sockbuf *sb, int len)
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
{
struct mbuf *mfree;
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK(sb);
mfree = sbcut_internal(sb, len);
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_UNLOCK(sb);
m_freem(mfree);
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
}
struct mbuf *
sbsndptr_noadv(struct sockbuf *sb, uint32_t off, uint32_t *moff)
{
struct mbuf *m;
KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
*moff = off;
if (sb->sb_sndptr == NULL) {
sb->sb_sndptr = sb->sb_mb;
sb->sb_sndptroff = 0;
}
return (sb->sb_mb);
} else {
m = sb->sb_sndptr;
off -= sb->sb_sndptroff;
}
*moff = off;
return (m);
}
void
sbsndptr_adv(struct sockbuf *sb, struct mbuf *mb, uint32_t len)
{
/*
* A small copy was done, advance forward the sb_sbsndptr to cover
* it.
*/
struct mbuf *m;
if (mb != sb->sb_sndptr) {
/* Did not copyout at the same mbuf */
return;
}
m = mb;
while (m && (len > 0)) {
if (len >= m->m_len) {
len -= m->m_len;
if (m->m_next) {
sb->sb_sndptroff += m->m_len;
sb->sb_sndptr = m->m_next;
}
m = m->m_next;
} else {
len = 0;
}
}
}
/*
* Return the first mbuf and the mbuf data offset for the provided
* send offset without changing the "sb_sndptroff" field.
*/
struct mbuf *
sbsndmbuf(struct sockbuf *sb, u_int off, u_int *moff)
{
struct mbuf *m;
KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
/*
* If the "off" is below the stored offset, which happens on
* retransmits, just use "sb_mb":
*/
if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
m = sb->sb_mb;
} else {
m = sb->sb_sndptr;
off -= sb->sb_sndptroff;
}
while (off > 0 && m != NULL) {
if (off < m->m_len)
break;
off -= m->m_len;
m = m->m_next;
}
*moff = off;
return (m);
}
1994-05-24 10:09:53 +00:00
/*
* Drop a record off the front of a sockbuf and move the next record to the
* front.
1994-05-24 10:09:53 +00:00
*/
void
sbdroprecord_locked(struct sockbuf *sb)
1994-05-24 10:09:53 +00:00
{
struct mbuf *m;
1994-05-24 10:09:53 +00:00
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK_ASSERT(sb);
1994-05-24 10:09:53 +00:00
m = sb->sb_mb;
if (m) {
sb->sb_mb = m->m_nextpkt;
do {
sbfree(sb, m);
m = m_free(m);
} while (m);
1994-05-24 10:09:53 +00:00
}
SB_EMPTY_FIXUP(sb);
1994-05-24 10:09:53 +00:00
}
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
/*
* Drop a record off the front of a sockbuf and move the next record to the
* front.
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
*/
void
sbdroprecord(struct sockbuf *sb)
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
{
SOCKBUF_LOCK(sb);
sbdroprecord_locked(sb);
SOCKBUF_UNLOCK(sb);
}
/*
* Create a "control" mbuf containing the specified data with the specified
* type for presentation on a socket buffer.
*/
struct mbuf *
Add support for KTLS RX via software decryption. Allow TLS records to be decrypted in the kernel after being received by a NIC. At a high level this is somewhat similar to software KTLS for the transmit path except in reverse. Protocols enqueue mbufs containing encrypted TLS records (or portions of records) into the tail of a socket buffer and the KTLS layer decrypts those records before returning them to userland applications. However, there is an important difference: - In the transmit case, the socket buffer is always a single "record" holding a chain of mbufs. Not-yet-encrypted mbufs are marked not ready (M_NOTREADY) and released to protocols for transmit by marking mbufs ready once their data is encrypted. - In the receive case, incoming (encrypted) data appended to the socket buffer is still a single stream of data from the protocol, but decrypted TLS records are stored as separate records in the socket buffer and read individually via recvmsg(). Initially I tried to make this work by marking incoming mbufs as M_NOTREADY, but there didn't seemed to be a non-gross way to deal with picking a portion of the mbuf chain and turning it into a new record in the socket buffer after decrypting the TLS record it contained (along with prepending a control message). Also, such mbufs would also need to be "pinned" in some way while they are being decrypted such that a concurrent sbcut() wouldn't free them out from under the thread performing decryption. As such, I settled on the following solution: - Socket buffers now contain an additional chain of mbufs (sb_mtls, sb_mtlstail, and sb_tlscc) containing encrypted mbufs appended by the protocol layer. These mbufs are still marked M_NOTREADY, but soreceive*() generally don't know about them (except that they will block waiting for data to be decrypted for a blocking read). - Each time a new mbuf is appended to this TLS mbuf chain, the socket buffer peeks at the TLS record header at the head of the chain to determine the encrypted record's length. If enough data is queued for the TLS record, the socket is placed on a per-CPU TLS workqueue (reusing the existing KTLS workqueues and worker threads). - The worker thread loops over the TLS mbuf chain decrypting records until it runs out of data. Each record is detached from the TLS mbuf chain while it is being decrypted to keep the mbufs "pinned". However, a new sb_dtlscc field tracks the character count of the detached record and sbcut()/sbdrop() is updated to account for the detached record. After the record is decrypted, the worker thread first checks to see if sbcut() dropped the record. If so, it is freed (can happen when a socket is closed with pending data). Otherwise, the header and trailer are stripped from the original mbufs, a control message is created holding the decrypted TLS header, and the decrypted TLS record is appended to the "normal" socket buffer chain. (Side note: the SBCHECK() infrastucture was very useful as I was able to add assertions there about the TLS chain that caught several bugs during development.) Tested by: rmacklem (various versions) Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D24628
2020-07-23 23:48:18 +00:00
sbcreatecontrol_how(void *p, int size, int type, int level, int wait)
{
struct cmsghdr *cp;
struct mbuf *m;
Add support for KTLS RX via software decryption. Allow TLS records to be decrypted in the kernel after being received by a NIC. At a high level this is somewhat similar to software KTLS for the transmit path except in reverse. Protocols enqueue mbufs containing encrypted TLS records (or portions of records) into the tail of a socket buffer and the KTLS layer decrypts those records before returning them to userland applications. However, there is an important difference: - In the transmit case, the socket buffer is always a single "record" holding a chain of mbufs. Not-yet-encrypted mbufs are marked not ready (M_NOTREADY) and released to protocols for transmit by marking mbufs ready once their data is encrypted. - In the receive case, incoming (encrypted) data appended to the socket buffer is still a single stream of data from the protocol, but decrypted TLS records are stored as separate records in the socket buffer and read individually via recvmsg(). Initially I tried to make this work by marking incoming mbufs as M_NOTREADY, but there didn't seemed to be a non-gross way to deal with picking a portion of the mbuf chain and turning it into a new record in the socket buffer after decrypting the TLS record it contained (along with prepending a control message). Also, such mbufs would also need to be "pinned" in some way while they are being decrypted such that a concurrent sbcut() wouldn't free them out from under the thread performing decryption. As such, I settled on the following solution: - Socket buffers now contain an additional chain of mbufs (sb_mtls, sb_mtlstail, and sb_tlscc) containing encrypted mbufs appended by the protocol layer. These mbufs are still marked M_NOTREADY, but soreceive*() generally don't know about them (except that they will block waiting for data to be decrypted for a blocking read). - Each time a new mbuf is appended to this TLS mbuf chain, the socket buffer peeks at the TLS record header at the head of the chain to determine the encrypted record's length. If enough data is queued for the TLS record, the socket is placed on a per-CPU TLS workqueue (reusing the existing KTLS workqueues and worker threads). - The worker thread loops over the TLS mbuf chain decrypting records until it runs out of data. Each record is detached from the TLS mbuf chain while it is being decrypted to keep the mbufs "pinned". However, a new sb_dtlscc field tracks the character count of the detached record and sbcut()/sbdrop() is updated to account for the detached record. After the record is decrypted, the worker thread first checks to see if sbcut() dropped the record. If so, it is freed (can happen when a socket is closed with pending data). Otherwise, the header and trailer are stripped from the original mbufs, a control message is created holding the decrypted TLS header, and the decrypted TLS record is appended to the "normal" socket buffer chain. (Side note: the SBCHECK() infrastucture was very useful as I was able to add assertions there about the TLS chain that caught several bugs during development.) Tested by: rmacklem (various versions) Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D24628
2020-07-23 23:48:18 +00:00
MBUF_CHECKSLEEP(wait);
if (CMSG_SPACE((u_int)size) > MCLBYTES)
return ((struct mbuf *) NULL);
if (CMSG_SPACE((u_int)size) > MLEN)
Add support for KTLS RX via software decryption. Allow TLS records to be decrypted in the kernel after being received by a NIC. At a high level this is somewhat similar to software KTLS for the transmit path except in reverse. Protocols enqueue mbufs containing encrypted TLS records (or portions of records) into the tail of a socket buffer and the KTLS layer decrypts those records before returning them to userland applications. However, there is an important difference: - In the transmit case, the socket buffer is always a single "record" holding a chain of mbufs. Not-yet-encrypted mbufs are marked not ready (M_NOTREADY) and released to protocols for transmit by marking mbufs ready once their data is encrypted. - In the receive case, incoming (encrypted) data appended to the socket buffer is still a single stream of data from the protocol, but decrypted TLS records are stored as separate records in the socket buffer and read individually via recvmsg(). Initially I tried to make this work by marking incoming mbufs as M_NOTREADY, but there didn't seemed to be a non-gross way to deal with picking a portion of the mbuf chain and turning it into a new record in the socket buffer after decrypting the TLS record it contained (along with prepending a control message). Also, such mbufs would also need to be "pinned" in some way while they are being decrypted such that a concurrent sbcut() wouldn't free them out from under the thread performing decryption. As such, I settled on the following solution: - Socket buffers now contain an additional chain of mbufs (sb_mtls, sb_mtlstail, and sb_tlscc) containing encrypted mbufs appended by the protocol layer. These mbufs are still marked M_NOTREADY, but soreceive*() generally don't know about them (except that they will block waiting for data to be decrypted for a blocking read). - Each time a new mbuf is appended to this TLS mbuf chain, the socket buffer peeks at the TLS record header at the head of the chain to determine the encrypted record's length. If enough data is queued for the TLS record, the socket is placed on a per-CPU TLS workqueue (reusing the existing KTLS workqueues and worker threads). - The worker thread loops over the TLS mbuf chain decrypting records until it runs out of data. Each record is detached from the TLS mbuf chain while it is being decrypted to keep the mbufs "pinned". However, a new sb_dtlscc field tracks the character count of the detached record and sbcut()/sbdrop() is updated to account for the detached record. After the record is decrypted, the worker thread first checks to see if sbcut() dropped the record. If so, it is freed (can happen when a socket is closed with pending data). Otherwise, the header and trailer are stripped from the original mbufs, a control message is created holding the decrypted TLS header, and the decrypted TLS record is appended to the "normal" socket buffer chain. (Side note: the SBCHECK() infrastucture was very useful as I was able to add assertions there about the TLS chain that caught several bugs during development.) Tested by: rmacklem (various versions) Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D24628
2020-07-23 23:48:18 +00:00
m = m_getcl(wait, MT_CONTROL, 0);
else
Add support for KTLS RX via software decryption. Allow TLS records to be decrypted in the kernel after being received by a NIC. At a high level this is somewhat similar to software KTLS for the transmit path except in reverse. Protocols enqueue mbufs containing encrypted TLS records (or portions of records) into the tail of a socket buffer and the KTLS layer decrypts those records before returning them to userland applications. However, there is an important difference: - In the transmit case, the socket buffer is always a single "record" holding a chain of mbufs. Not-yet-encrypted mbufs are marked not ready (M_NOTREADY) and released to protocols for transmit by marking mbufs ready once their data is encrypted. - In the receive case, incoming (encrypted) data appended to the socket buffer is still a single stream of data from the protocol, but decrypted TLS records are stored as separate records in the socket buffer and read individually via recvmsg(). Initially I tried to make this work by marking incoming mbufs as M_NOTREADY, but there didn't seemed to be a non-gross way to deal with picking a portion of the mbuf chain and turning it into a new record in the socket buffer after decrypting the TLS record it contained (along with prepending a control message). Also, such mbufs would also need to be "pinned" in some way while they are being decrypted such that a concurrent sbcut() wouldn't free them out from under the thread performing decryption. As such, I settled on the following solution: - Socket buffers now contain an additional chain of mbufs (sb_mtls, sb_mtlstail, and sb_tlscc) containing encrypted mbufs appended by the protocol layer. These mbufs are still marked M_NOTREADY, but soreceive*() generally don't know about them (except that they will block waiting for data to be decrypted for a blocking read). - Each time a new mbuf is appended to this TLS mbuf chain, the socket buffer peeks at the TLS record header at the head of the chain to determine the encrypted record's length. If enough data is queued for the TLS record, the socket is placed on a per-CPU TLS workqueue (reusing the existing KTLS workqueues and worker threads). - The worker thread loops over the TLS mbuf chain decrypting records until it runs out of data. Each record is detached from the TLS mbuf chain while it is being decrypted to keep the mbufs "pinned". However, a new sb_dtlscc field tracks the character count of the detached record and sbcut()/sbdrop() is updated to account for the detached record. After the record is decrypted, the worker thread first checks to see if sbcut() dropped the record. If so, it is freed (can happen when a socket is closed with pending data). Otherwise, the header and trailer are stripped from the original mbufs, a control message is created holding the decrypted TLS header, and the decrypted TLS record is appended to the "normal" socket buffer chain. (Side note: the SBCHECK() infrastucture was very useful as I was able to add assertions there about the TLS chain that caught several bugs during development.) Tested by: rmacklem (various versions) Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D24628
2020-07-23 23:48:18 +00:00
m = m_get(wait, MT_CONTROL);
if (m == NULL)
return ((struct mbuf *) NULL);
cp = mtod(m, struct cmsghdr *);
m->m_len = 0;
KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m),
("sbcreatecontrol: short mbuf"));
/*
* Don't leave the padding between the msg header and the
* cmsg data and the padding after the cmsg data un-initialized.
*/
bzero(cp, CMSG_SPACE((u_int)size));
if (p != NULL)
(void)memcpy(CMSG_DATA(cp), p, size);
m->m_len = CMSG_SPACE(size);
cp->cmsg_len = CMSG_LEN(size);
cp->cmsg_level = level;
cp->cmsg_type = type;
return (m);
}
Add support for KTLS RX via software decryption. Allow TLS records to be decrypted in the kernel after being received by a NIC. At a high level this is somewhat similar to software KTLS for the transmit path except in reverse. Protocols enqueue mbufs containing encrypted TLS records (or portions of records) into the tail of a socket buffer and the KTLS layer decrypts those records before returning them to userland applications. However, there is an important difference: - In the transmit case, the socket buffer is always a single "record" holding a chain of mbufs. Not-yet-encrypted mbufs are marked not ready (M_NOTREADY) and released to protocols for transmit by marking mbufs ready once their data is encrypted. - In the receive case, incoming (encrypted) data appended to the socket buffer is still a single stream of data from the protocol, but decrypted TLS records are stored as separate records in the socket buffer and read individually via recvmsg(). Initially I tried to make this work by marking incoming mbufs as M_NOTREADY, but there didn't seemed to be a non-gross way to deal with picking a portion of the mbuf chain and turning it into a new record in the socket buffer after decrypting the TLS record it contained (along with prepending a control message). Also, such mbufs would also need to be "pinned" in some way while they are being decrypted such that a concurrent sbcut() wouldn't free them out from under the thread performing decryption. As such, I settled on the following solution: - Socket buffers now contain an additional chain of mbufs (sb_mtls, sb_mtlstail, and sb_tlscc) containing encrypted mbufs appended by the protocol layer. These mbufs are still marked M_NOTREADY, but soreceive*() generally don't know about them (except that they will block waiting for data to be decrypted for a blocking read). - Each time a new mbuf is appended to this TLS mbuf chain, the socket buffer peeks at the TLS record header at the head of the chain to determine the encrypted record's length. If enough data is queued for the TLS record, the socket is placed on a per-CPU TLS workqueue (reusing the existing KTLS workqueues and worker threads). - The worker thread loops over the TLS mbuf chain decrypting records until it runs out of data. Each record is detached from the TLS mbuf chain while it is being decrypted to keep the mbufs "pinned". However, a new sb_dtlscc field tracks the character count of the detached record and sbcut()/sbdrop() is updated to account for the detached record. After the record is decrypted, the worker thread first checks to see if sbcut() dropped the record. If so, it is freed (can happen when a socket is closed with pending data). Otherwise, the header and trailer are stripped from the original mbufs, a control message is created holding the decrypted TLS header, and the decrypted TLS record is appended to the "normal" socket buffer chain. (Side note: the SBCHECK() infrastucture was very useful as I was able to add assertions there about the TLS chain that caught several bugs during development.) Tested by: rmacklem (various versions) Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D24628
2020-07-23 23:48:18 +00:00
struct mbuf *
sbcreatecontrol(caddr_t p, int size, int type, int level)
{
return (sbcreatecontrol_how(p, size, type, level, M_NOWAIT));
}
/*
* This does the same for socket buffers that sotoxsocket does for sockets:
* generate an user-format data structure describing the socket buffer. Note
* that the xsockbuf structure, since it is always embedded in a socket, does
* not include a self pointer nor a length. We make this entry point public
* in case some other mechanism needs it.
*/
void
sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
{
Merge from projects/sendfile: o Introduce a notion of "not ready" mbufs in socket buffers. These mbufs are now being populated by some I/O in background and are referenced outside. This forces following implications: - An mbuf which is "not ready" can't be taken out of the buffer. - An mbuf that is behind a "not ready" in the queue neither. - If sockbet buffer is flushed, then "not ready" mbufs shouln't be freed. o In struct sockbuf the sb_cc field is split into sb_ccc and sb_acc. The sb_ccc stands for ""claimed character count", or "committed character count". And the sb_acc is "available character count". Consumers of socket buffer API shouldn't already access them directly, but use sbused() and sbavail() respectively. o Not ready mbufs are marked with M_NOTREADY, and ready but blocked ones with M_BLOCKED. o New field sb_fnrdy points to the first not ready mbuf, to avoid linear search. o New function sbready() is provided to activate certain amount of mbufs in a socket buffer. A special note on SCTP: SCTP has its own sockbufs. Unfortunately, FreeBSD stack doesn't yet allow protocol specific sockbufs. Thus, SCTP does some hacks to make itself compatible with FreeBSD: it manages sockbufs on its own, but keeps sb_cc updated to inform the stack of amount of data in them. The new notion of "not ready" data isn't supported by SCTP. Instead, only a mechanical substitute is done: s/sb_cc/sb_ccc/. A proper solution would be to take away struct sockbuf from struct socket and allow protocols to implement their own socket buffers, like SCTP already does. This was discussed with rrs@. Sponsored by: Netflix Sponsored by: Nginx, Inc.
2014-11-30 12:52:33 +00:00
xsb->sb_cc = sb->sb_ccc;
xsb->sb_hiwat = sb->sb_hiwat;
xsb->sb_mbcnt = sb->sb_mbcnt;
xsb->sb_mcnt = sb->sb_mcnt;
xsb->sb_ccnt = sb->sb_ccnt;
xsb->sb_mbmax = sb->sb_mbmax;
xsb->sb_lowat = sb->sb_lowat;
xsb->sb_flags = sb->sb_flags;
xsb->sb_timeo = sb->sb_timeo;
}
/* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
static int dummy;
SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW | CTLFLAG_SKIP, &dummy, 0, "");
SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf,
CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sb_max, 0,
sysctl_handle_sb_max, "LU",
"Maximum socket buffer size");
SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
&sb_efficiency, 0, "Socket buffer size waste factor");