freebsd-nq/sys/dev/mii/e1000phy.c

503 lines
14 KiB
C
Raw Normal View History

/*-
* SPDX-License-Identifier: BSD-2-Clause-NetBSD
*
* Principal Author: Parag Patel
* Copyright (c) 2001
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Additional Copyright (c) 2001 by Traakan Software under same licence.
* Secondary Author: Matthew Jacob
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* driver for the Marvell 88E1000 series external 1000/100/10-BT PHY.
*/
/*
* Support added for the Marvell 88E1011 (Alaska) 1000/100/10baseTX and
* 1000baseSX PHY.
* Nathan Binkert <nate@openbsd.org>
* Jung-uk Kim <jkim@niksun.com>
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/bus.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_media.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include "miidevs.h"
#include <dev/mii/e1000phyreg.h>
#include "miibus_if.h"
2006-12-11 10:22:24 +00:00
static int e1000phy_probe(device_t);
static int e1000phy_attach(device_t);
static device_method_t e1000phy_methods[] = {
/* device interface */
DEVMETHOD(device_probe, e1000phy_probe),
DEVMETHOD(device_attach, e1000phy_attach),
DEVMETHOD(device_detach, mii_phy_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
2011-11-23 20:27:26 +00:00
DEVMETHOD_END
};
static devclass_t e1000phy_devclass;
static driver_t e1000phy_driver = {
"e1000phy",
e1000phy_methods,
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
sizeof(struct mii_softc)
};
DRIVER_MODULE(e1000phy, miibus, e1000phy_driver, e1000phy_devclass, 0, 0);
static int e1000phy_service(struct mii_softc *, struct mii_data *, int);
static void e1000phy_status(struct mii_softc *);
static void e1000phy_reset(struct mii_softc *);
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
static int e1000phy_mii_phy_auto(struct mii_softc *, int);
static const struct mii_phydesc e1000phys[] = {
MII_PHY_DESC(MARVELL, E1000),
MII_PHY_DESC(MARVELL, E1011),
MII_PHY_DESC(MARVELL, E1000_3),
MII_PHY_DESC(MARVELL, E1000_5),
MII_PHY_DESC(MARVELL, E1111),
MII_PHY_DESC(xxMARVELL, E1000),
MII_PHY_DESC(xxMARVELL, E1011),
MII_PHY_DESC(xxMARVELL, E1000_3),
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
MII_PHY_DESC(xxMARVELL, E1000S),
MII_PHY_DESC(xxMARVELL, E1000_5),
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
MII_PHY_DESC(xxMARVELL, E1101),
MII_PHY_DESC(xxMARVELL, E3082),
MII_PHY_DESC(xxMARVELL, E1112),
MII_PHY_DESC(xxMARVELL, E1149),
MII_PHY_DESC(xxMARVELL, E1111),
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
MII_PHY_DESC(xxMARVELL, E1116),
MII_PHY_DESC(xxMARVELL, E1116R),
MII_PHY_DESC(xxMARVELL, E1116R_29),
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
MII_PHY_DESC(xxMARVELL, E1118),
MII_PHY_DESC(xxMARVELL, E1145),
MII_PHY_DESC(xxMARVELL, E1149R),
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
MII_PHY_DESC(xxMARVELL, E3016),
MII_PHY_DESC(xxMARVELL, PHYG65G),
MII_PHY_END
};
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
static const struct mii_phy_funcs e1000phy_funcs = {
e1000phy_service,
e1000phy_status,
e1000phy_reset
};
static int
e1000phy_probe(device_t dev)
{
return (mii_phy_dev_probe(dev, e1000phys, BUS_PROBE_DEFAULT));
}
static int
e1000phy_attach(device_t dev)
{
struct mii_softc *sc;
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
sc = device_get_softc(dev);
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
mii_phy_dev_attach(dev, MIIF_NOMANPAUSE, &e1000phy_funcs, 0);
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control support in mii(4): - Merge generic flow control advertisement (which can be enabled by passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD, IFM_FLOW isn't implemented as a global option via the "don't care mask" but instead as a media specific option this. This has the following advantages: o allows flow control advertisement with autonegotiation to be turned on and off via ifconfig(8) with the default typically being off (though MIIF_FORCEPAUSE has been added causing flow control to be always advertised, allowing to easily MFC this changes for drivers that previously used home-grown support for flow control that behaved that way without breaking POLA) o allows to deal with PHY drivers where flow control advertisement with manual selection doesn't work or at least isn't implemented, like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4), by setting MIIF_NOMANPAUSE o the available combinations of media options are readily available from the `ifconfig -m` output - Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so these are understood by ifconfig(8). o Make the master/slave support in mii(4) actually usable: - Change IFM_ETH_MASTER from being implemented as a global option via the "don't care mask" to a media specific one as it actually is only applicable to IFM_1000_T to date. - Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to actually configure manually selected slave mode (like we also do in the PHY specific implementations). - Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it is understood by ifconfig(8). o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4), e1000phy(4) and ip1000phy(4) to use the generic flow control support instead of home-grown solutions via IFM_FLAGs. This includes changing these PHY drivers and smcphy(4) to no longer unconditionally advertise support for flow control but only if the selected media has IFM_FLOW set (or MIIF_FORCEPAUSE is set) and implemented for these media variants, i.e. typically only for copper. o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0 and some IFM_FLAGn. o Switch brgphy(4) to add at least the the supported copper media based on the contents of the BMSR via mii_phy_add_media() instead of hardcoding them. The latter approach seems to have developed historically, besides causing unnecessary code duplication it was also undesirable because brgphy_mii_phy_auto() already based the capability advertisement on the contents of the BMSR though. o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not just BCM5701. Apparently this was a misinterpretation of a workaround in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but this doesn't mean we can't set these as well on other PHYs for manual media selection. o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so IFM_1000_T master mode support now is generally available with all PHY drivers. o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's not applicable there. Reviewed by: yongari (plus additional testing) Obtained from: NetBSD (partially), OpenBSD (partially) MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
if (mii_dev_mac_match(dev, "msk") &&
(sc->mii_flags & MIIF_MACPRIV0) != 0)
sc->mii_flags |= MIIF_PHYPRIV0;
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
switch (sc->mii_mpd_model) {
case MII_MODEL_xxMARVELL_E1011:
case MII_MODEL_xxMARVELL_E1112:
if (PHY_READ(sc, E1000_ESSR) & E1000_ESSR_FIBER_LINK)
sc->mii_flags |= MIIF_HAVEFIBER;
break;
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
case MII_MODEL_xxMARVELL_E1149:
case MII_MODEL_xxMARVELL_E1149R:
/*
* Some 88E1149 PHY's page select is initialized to
* point to other bank instead of copper/fiber bank
* which in turn resulted in wrong registers were
* accessed during PHY operation. It is believed that
* page 0 should be used for copper PHY so reinitialize
* E1000_EADR to select default copper PHY. If parent
* device know the type of PHY(either copper or fiber),
* that information should be used to select default
* type of PHY.
*/
PHY_WRITE(sc, E1000_EADR, 0);
break;
}
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
PHY_RESET(sc);
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
sc->mii_capabilities = PHY_READ(sc, MII_BMSR) & sc->mii_capmask;
if (sc->mii_capabilities & BMSR_EXTSTAT) {
sc->mii_extcapabilities = PHY_READ(sc, MII_EXTSR);
if ((sc->mii_extcapabilities &
(EXTSR_1000TFDX | EXTSR_1000THDX)) != 0)
sc->mii_flags |= MIIF_HAVE_GTCR;
}
device_printf(dev, " ");
mii_phy_add_media(sc);
printf("\n");
MIIBUS_MEDIAINIT(sc->mii_dev);
2006-12-11 10:22:24 +00:00
return (0);
}
static void
e1000phy_reset(struct mii_softc *sc)
{
uint16_t reg, page;
reg = PHY_READ(sc, E1000_SCR);
if ((sc->mii_flags & MIIF_HAVEFIBER) != 0) {
reg &= ~E1000_SCR_AUTO_X_MODE;
PHY_WRITE(sc, E1000_SCR, reg);
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
if (sc->mii_mpd_model == MII_MODEL_xxMARVELL_E1112) {
/* Select 1000BASE-X only mode. */
page = PHY_READ(sc, E1000_EADR);
PHY_WRITE(sc, E1000_EADR, 2);
reg = PHY_READ(sc, E1000_SCR);
reg &= ~E1000_SCR_MODE_MASK;
reg |= E1000_SCR_MODE_1000BX;
PHY_WRITE(sc, E1000_SCR, reg);
if ((sc->mii_flags & MIIF_PHYPRIV0) != 0) {
/* Set SIGDET polarity low for SFP module. */
PHY_WRITE(sc, E1000_EADR, 1);
reg = PHY_READ(sc, E1000_SCR);
reg |= E1000_SCR_FIB_SIGDET_POLARITY;
PHY_WRITE(sc, E1000_SCR, reg);
}
PHY_WRITE(sc, E1000_EADR, page);
}
} else {
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
switch (sc->mii_mpd_model) {
case MII_MODEL_xxMARVELL_E1111:
case MII_MODEL_xxMARVELL_E1112:
case MII_MODEL_xxMARVELL_E1116:
case MII_MODEL_xxMARVELL_E1116R_29:
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
case MII_MODEL_xxMARVELL_E1118:
case MII_MODEL_xxMARVELL_E1149:
case MII_MODEL_xxMARVELL_E1149R:
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
case MII_MODEL_xxMARVELL_PHYG65G:
/* Disable energy detect mode. */
reg &= ~E1000_SCR_EN_DETECT_MASK;
reg |= E1000_SCR_AUTO_X_MODE;
if (sc->mii_mpd_model == MII_MODEL_xxMARVELL_E1116 ||
sc->mii_mpd_model == MII_MODEL_xxMARVELL_E1116R_29)
reg &= ~E1000_SCR_POWER_DOWN;
reg |= E1000_SCR_ASSERT_CRS_ON_TX;
break;
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
case MII_MODEL_xxMARVELL_E3082:
reg |= (E1000_SCR_AUTO_X_MODE >> 1);
reg |= E1000_SCR_ASSERT_CRS_ON_TX;
break;
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
case MII_MODEL_xxMARVELL_E3016:
reg |= E1000_SCR_AUTO_MDIX;
reg &= ~(E1000_SCR_EN_DETECT |
E1000_SCR_SCRAMBLER_DISABLE);
reg |= E1000_SCR_LPNP;
/* XXX Enable class A driver for Yukon FE+ A0. */
PHY_WRITE(sc, 0x1C, PHY_READ(sc, 0x1C) | 0x0001);
break;
default:
reg &= ~E1000_SCR_AUTO_X_MODE;
reg |= E1000_SCR_ASSERT_CRS_ON_TX;
break;
}
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
if (sc->mii_mpd_model != MII_MODEL_xxMARVELL_E3016) {
/* Auto correction for reversed cable polarity. */
reg &= ~E1000_SCR_POLARITY_REVERSAL;
}
PHY_WRITE(sc, E1000_SCR, reg);
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
if (sc->mii_mpd_model == MII_MODEL_xxMARVELL_E1116 ||
sc->mii_mpd_model == MII_MODEL_xxMARVELL_E1116R_29 ||
sc->mii_mpd_model == MII_MODEL_xxMARVELL_E1149 ||
sc->mii_mpd_model == MII_MODEL_xxMARVELL_E1149R) {
PHY_WRITE(sc, E1000_EADR, 2);
reg = PHY_READ(sc, E1000_SCR);
reg |= E1000_SCR_RGMII_POWER_UP;
PHY_WRITE(sc, E1000_SCR, reg);
PHY_WRITE(sc, E1000_EADR, 0);
}
}
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
switch (sc->mii_mpd_model) {
case MII_MODEL_xxMARVELL_E3082:
case MII_MODEL_xxMARVELL_E1112:
case MII_MODEL_xxMARVELL_E1118:
break;
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
case MII_MODEL_xxMARVELL_E1116:
case MII_MODEL_xxMARVELL_E1116R_29:
page = PHY_READ(sc, E1000_EADR);
/* Select page 3, LED control register. */
PHY_WRITE(sc, E1000_EADR, 3);
PHY_WRITE(sc, E1000_SCR,
E1000_SCR_LED_LOS(1) | /* Link/Act */
E1000_SCR_LED_INIT(8) | /* 10Mbps */
E1000_SCR_LED_STAT1(7) | /* 100Mbps */
E1000_SCR_LED_STAT0(7)); /* 1000Mbps */
/* Set blink rate. */
PHY_WRITE(sc, E1000_IER, E1000_PULSE_DUR(E1000_PULSE_170MS) |
E1000_BLINK_RATE(E1000_BLINK_84MS));
PHY_WRITE(sc, E1000_EADR, page);
break;
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
case MII_MODEL_xxMARVELL_E3016:
/* LED2 -> ACT, LED1 -> LINK, LED0 -> SPEED. */
PHY_WRITE(sc, 0x16, 0x0B << 8 | 0x05 << 4 | 0x04);
/* Integrated register calibration workaround. */
PHY_WRITE(sc, 0x1D, 17);
PHY_WRITE(sc, 0x1E, 0x3F60);
break;
default:
/* Force TX_CLK to 25MHz clock. */
reg = PHY_READ(sc, E1000_ESCR);
reg |= E1000_ESCR_TX_CLK_25;
PHY_WRITE(sc, E1000_ESCR, reg);
break;
}
/* Reset the PHY so all changes take effect. */
reg = PHY_READ(sc, E1000_CR);
reg |= E1000_CR_RESET;
PHY_WRITE(sc, E1000_CR, reg);
}
static int
e1000phy_service(struct mii_softc *sc, struct mii_data *mii, int cmd)
{
struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
uint16_t speed, gig;
int reg;
switch (cmd) {
case MII_POLLSTAT:
break;
case MII_MEDIACHG:
if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
e1000phy_mii_phy_auto(sc, ife->ifm_media);
break;
}
speed = 0;
switch (IFM_SUBTYPE(ife->ifm_media)) {
case IFM_1000_T:
if ((sc->mii_flags & MIIF_HAVE_GTCR) == 0)
return (EINVAL);
speed = E1000_CR_SPEED_1000;
break;
case IFM_1000_SX:
if ((sc->mii_extcapabilities &
(EXTSR_1000XFDX | EXTSR_1000XHDX)) == 0)
return (EINVAL);
speed = E1000_CR_SPEED_1000;
break;
case IFM_100_TX:
speed = E1000_CR_SPEED_100;
break;
case IFM_10_T:
speed = E1000_CR_SPEED_10;
break;
case IFM_NONE:
reg = PHY_READ(sc, E1000_CR);
PHY_WRITE(sc, E1000_CR,
reg | E1000_CR_ISOLATE | E1000_CR_POWER_DOWN);
goto done;
default:
return (EINVAL);
}
if ((ife->ifm_media & IFM_FDX) != 0) {
speed |= E1000_CR_FULL_DUPLEX;
gig = E1000_1GCR_1000T_FD;
} else
gig = E1000_1GCR_1000T;
reg = PHY_READ(sc, E1000_CR);
reg &= ~E1000_CR_AUTO_NEG_ENABLE;
PHY_WRITE(sc, E1000_CR, reg | E1000_CR_RESET);
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control support in mii(4): - Merge generic flow control advertisement (which can be enabled by passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD, IFM_FLOW isn't implemented as a global option via the "don't care mask" but instead as a media specific option this. This has the following advantages: o allows flow control advertisement with autonegotiation to be turned on and off via ifconfig(8) with the default typically being off (though MIIF_FORCEPAUSE has been added causing flow control to be always advertised, allowing to easily MFC this changes for drivers that previously used home-grown support for flow control that behaved that way without breaking POLA) o allows to deal with PHY drivers where flow control advertisement with manual selection doesn't work or at least isn't implemented, like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4), by setting MIIF_NOMANPAUSE o the available combinations of media options are readily available from the `ifconfig -m` output - Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so these are understood by ifconfig(8). o Make the master/slave support in mii(4) actually usable: - Change IFM_ETH_MASTER from being implemented as a global option via the "don't care mask" to a media specific one as it actually is only applicable to IFM_1000_T to date. - Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to actually configure manually selected slave mode (like we also do in the PHY specific implementations). - Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it is understood by ifconfig(8). o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4), e1000phy(4) and ip1000phy(4) to use the generic flow control support instead of home-grown solutions via IFM_FLAGs. This includes changing these PHY drivers and smcphy(4) to no longer unconditionally advertise support for flow control but only if the selected media has IFM_FLOW set (or MIIF_FORCEPAUSE is set) and implemented for these media variants, i.e. typically only for copper. o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0 and some IFM_FLAGn. o Switch brgphy(4) to add at least the the supported copper media based on the contents of the BMSR via mii_phy_add_media() instead of hardcoding them. The latter approach seems to have developed historically, besides causing unnecessary code duplication it was also undesirable because brgphy_mii_phy_auto() already based the capability advertisement on the contents of the BMSR though. o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not just BCM5701. Apparently this was a misinterpretation of a workaround in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but this doesn't mean we can't set these as well on other PHYs for manual media selection. o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so IFM_1000_T master mode support now is generally available with all PHY drivers. o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's not applicable there. Reviewed by: yongari (plus additional testing) Obtained from: NetBSD (partially), OpenBSD (partially) MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
if (IFM_SUBTYPE(ife->ifm_media) == IFM_1000_T) {
gig |= E1000_1GCR_MS_ENABLE;
if ((ife->ifm_media & IFM_ETH_MASTER) != 0)
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control support in mii(4): - Merge generic flow control advertisement (which can be enabled by passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD, IFM_FLOW isn't implemented as a global option via the "don't care mask" but instead as a media specific option this. This has the following advantages: o allows flow control advertisement with autonegotiation to be turned on and off via ifconfig(8) with the default typically being off (though MIIF_FORCEPAUSE has been added causing flow control to be always advertised, allowing to easily MFC this changes for drivers that previously used home-grown support for flow control that behaved that way without breaking POLA) o allows to deal with PHY drivers where flow control advertisement with manual selection doesn't work or at least isn't implemented, like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4), by setting MIIF_NOMANPAUSE o the available combinations of media options are readily available from the `ifconfig -m` output - Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so these are understood by ifconfig(8). o Make the master/slave support in mii(4) actually usable: - Change IFM_ETH_MASTER from being implemented as a global option via the "don't care mask" to a media specific one as it actually is only applicable to IFM_1000_T to date. - Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to actually configure manually selected slave mode (like we also do in the PHY specific implementations). - Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it is understood by ifconfig(8). o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4), e1000phy(4) and ip1000phy(4) to use the generic flow control support instead of home-grown solutions via IFM_FLAGs. This includes changing these PHY drivers and smcphy(4) to no longer unconditionally advertise support for flow control but only if the selected media has IFM_FLOW set (or MIIF_FORCEPAUSE is set) and implemented for these media variants, i.e. typically only for copper. o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0 and some IFM_FLAGn. o Switch brgphy(4) to add at least the the supported copper media based on the contents of the BMSR via mii_phy_add_media() instead of hardcoding them. The latter approach seems to have developed historically, besides causing unnecessary code duplication it was also undesirable because brgphy_mii_phy_auto() already based the capability advertisement on the contents of the BMSR though. o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not just BCM5701. Apparently this was a misinterpretation of a workaround in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but this doesn't mean we can't set these as well on other PHYs for manual media selection. o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so IFM_1000_T master mode support now is generally available with all PHY drivers. o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's not applicable there. Reviewed by: yongari (plus additional testing) Obtained from: NetBSD (partially), OpenBSD (partially) MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
gig |= E1000_1GCR_MS_VALUE;
} else if ((sc->mii_flags & MIIF_HAVE_GTCR) != 0)
gig = 0;
PHY_WRITE(sc, E1000_1GCR, gig);
PHY_WRITE(sc, E1000_AR, E1000_AR_SELECTOR_FIELD);
PHY_WRITE(sc, E1000_CR, speed | E1000_CR_RESET);
done:
break;
case MII_TICK:
/*
* Only used for autonegotiation.
*/
if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) {
sc->mii_ticks = 0;
break;
}
/*
* check for link.
* Read the status register twice; BMSR_LINK is latch-low.
*/
reg = PHY_READ(sc, MII_BMSR) | PHY_READ(sc, MII_BMSR);
if (reg & BMSR_LINK) {
sc->mii_ticks = 0;
break;
}
/* Announce link loss right after it happens. */
if (sc->mii_ticks++ == 0)
break;
if (sc->mii_ticks <= sc->mii_anegticks)
break;
sc->mii_ticks = 0;
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
PHY_RESET(sc);
e1000phy_mii_phy_auto(sc, ife->ifm_media);
break;
}
/* Update the media status. */
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
PHY_STATUS(sc);
/* Callback if something changed. */
mii_phy_update(sc, cmd);
return (0);
}
static void
e1000phy_status(struct mii_softc *sc)
{
struct mii_data *mii = sc->mii_pdata;
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control support in mii(4): - Merge generic flow control advertisement (which can be enabled by passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD, IFM_FLOW isn't implemented as a global option via the "don't care mask" but instead as a media specific option this. This has the following advantages: o allows flow control advertisement with autonegotiation to be turned on and off via ifconfig(8) with the default typically being off (though MIIF_FORCEPAUSE has been added causing flow control to be always advertised, allowing to easily MFC this changes for drivers that previously used home-grown support for flow control that behaved that way without breaking POLA) o allows to deal with PHY drivers where flow control advertisement with manual selection doesn't work or at least isn't implemented, like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4), by setting MIIF_NOMANPAUSE o the available combinations of media options are readily available from the `ifconfig -m` output - Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so these are understood by ifconfig(8). o Make the master/slave support in mii(4) actually usable: - Change IFM_ETH_MASTER from being implemented as a global option via the "don't care mask" to a media specific one as it actually is only applicable to IFM_1000_T to date. - Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to actually configure manually selected slave mode (like we also do in the PHY specific implementations). - Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it is understood by ifconfig(8). o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4), e1000phy(4) and ip1000phy(4) to use the generic flow control support instead of home-grown solutions via IFM_FLAGs. This includes changing these PHY drivers and smcphy(4) to no longer unconditionally advertise support for flow control but only if the selected media has IFM_FLOW set (or MIIF_FORCEPAUSE is set) and implemented for these media variants, i.e. typically only for copper. o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0 and some IFM_FLAGn. o Switch brgphy(4) to add at least the the supported copper media based on the contents of the BMSR via mii_phy_add_media() instead of hardcoding them. The latter approach seems to have developed historically, besides causing unnecessary code duplication it was also undesirable because brgphy_mii_phy_auto() already based the capability advertisement on the contents of the BMSR though. o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not just BCM5701. Apparently this was a misinterpretation of a workaround in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but this doesn't mean we can't set these as well on other PHYs for manual media selection. o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so IFM_1000_T master mode support now is generally available with all PHY drivers. o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's not applicable there. Reviewed by: yongari (plus additional testing) Obtained from: NetBSD (partially), OpenBSD (partially) MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
int bmcr, bmsr, ssr;
mii->mii_media_status = IFM_AVALID;
mii->mii_media_active = IFM_ETHER;
bmsr = PHY_READ(sc, E1000_SR) | PHY_READ(sc, E1000_SR);
bmcr = PHY_READ(sc, E1000_CR);
ssr = PHY_READ(sc, E1000_SSR);
if (bmsr & E1000_SR_LINK_STATUS)
mii->mii_media_status |= IFM_ACTIVE;
if (bmcr & E1000_CR_LOOPBACK)
mii->mii_media_active |= IFM_LOOP;
if ((bmcr & E1000_CR_AUTO_NEG_ENABLE) != 0 &&
(ssr & E1000_SSR_SPD_DPLX_RESOLVED) == 0) {
/* Erg, still trying, I guess... */
mii->mii_media_active |= IFM_NONE;
return;
}
if ((sc->mii_flags & MIIF_HAVEFIBER) == 0) {
switch (ssr & E1000_SSR_SPEED) {
case E1000_SSR_1000MBS:
mii->mii_media_active |= IFM_1000_T;
break;
case E1000_SSR_100MBS:
mii->mii_media_active |= IFM_100_TX;
break;
case E1000_SSR_10MBS:
mii->mii_media_active |= IFM_10_T;
break;
default:
mii->mii_media_active |= IFM_NONE;
return;
}
} else {
/*
* Some fiber PHY(88E1112) does not seem to set resolved
* speed so always assume we've got IFM_1000_SX.
*/
mii->mii_media_active |= IFM_1000_SX;
}
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control support in mii(4): - Merge generic flow control advertisement (which can be enabled by passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD, IFM_FLOW isn't implemented as a global option via the "don't care mask" but instead as a media specific option this. This has the following advantages: o allows flow control advertisement with autonegotiation to be turned on and off via ifconfig(8) with the default typically being off (though MIIF_FORCEPAUSE has been added causing flow control to be always advertised, allowing to easily MFC this changes for drivers that previously used home-grown support for flow control that behaved that way without breaking POLA) o allows to deal with PHY drivers where flow control advertisement with manual selection doesn't work or at least isn't implemented, like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4), by setting MIIF_NOMANPAUSE o the available combinations of media options are readily available from the `ifconfig -m` output - Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so these are understood by ifconfig(8). o Make the master/slave support in mii(4) actually usable: - Change IFM_ETH_MASTER from being implemented as a global option via the "don't care mask" to a media specific one as it actually is only applicable to IFM_1000_T to date. - Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to actually configure manually selected slave mode (like we also do in the PHY specific implementations). - Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it is understood by ifconfig(8). o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4), e1000phy(4) and ip1000phy(4) to use the generic flow control support instead of home-grown solutions via IFM_FLAGs. This includes changing these PHY drivers and smcphy(4) to no longer unconditionally advertise support for flow control but only if the selected media has IFM_FLOW set (or MIIF_FORCEPAUSE is set) and implemented for these media variants, i.e. typically only for copper. o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0 and some IFM_FLAGn. o Switch brgphy(4) to add at least the the supported copper media based on the contents of the BMSR via mii_phy_add_media() instead of hardcoding them. The latter approach seems to have developed historically, besides causing unnecessary code duplication it was also undesirable because brgphy_mii_phy_auto() already based the capability advertisement on the contents of the BMSR though. o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not just BCM5701. Apparently this was a misinterpretation of a workaround in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but this doesn't mean we can't set these as well on other PHYs for manual media selection. o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so IFM_1000_T master mode support now is generally available with all PHY drivers. o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's not applicable there. Reviewed by: yongari (plus additional testing) Obtained from: NetBSD (partially), OpenBSD (partially) MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
if (ssr & E1000_SSR_DUPLEX) {
mii->mii_media_active |= IFM_FDX;
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control support in mii(4): - Merge generic flow control advertisement (which can be enabled by passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD, IFM_FLOW isn't implemented as a global option via the "don't care mask" but instead as a media specific option this. This has the following advantages: o allows flow control advertisement with autonegotiation to be turned on and off via ifconfig(8) with the default typically being off (though MIIF_FORCEPAUSE has been added causing flow control to be always advertised, allowing to easily MFC this changes for drivers that previously used home-grown support for flow control that behaved that way without breaking POLA) o allows to deal with PHY drivers where flow control advertisement with manual selection doesn't work or at least isn't implemented, like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4), by setting MIIF_NOMANPAUSE o the available combinations of media options are readily available from the `ifconfig -m` output - Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so these are understood by ifconfig(8). o Make the master/slave support in mii(4) actually usable: - Change IFM_ETH_MASTER from being implemented as a global option via the "don't care mask" to a media specific one as it actually is only applicable to IFM_1000_T to date. - Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to actually configure manually selected slave mode (like we also do in the PHY specific implementations). - Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it is understood by ifconfig(8). o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4), e1000phy(4) and ip1000phy(4) to use the generic flow control support instead of home-grown solutions via IFM_FLAGs. This includes changing these PHY drivers and smcphy(4) to no longer unconditionally advertise support for flow control but only if the selected media has IFM_FLOW set (or MIIF_FORCEPAUSE is set) and implemented for these media variants, i.e. typically only for copper. o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0 and some IFM_FLAGn. o Switch brgphy(4) to add at least the the supported copper media based on the contents of the BMSR via mii_phy_add_media() instead of hardcoding them. The latter approach seems to have developed historically, besides causing unnecessary code duplication it was also undesirable because brgphy_mii_phy_auto() already based the capability advertisement on the contents of the BMSR though. o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not just BCM5701. Apparently this was a misinterpretation of a workaround in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but this doesn't mean we can't set these as well on other PHYs for manual media selection. o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so IFM_1000_T master mode support now is generally available with all PHY drivers. o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's not applicable there. Reviewed by: yongari (plus additional testing) Obtained from: NetBSD (partially), OpenBSD (partially) MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
if ((sc->mii_flags & MIIF_HAVEFIBER) == 0)
mii->mii_media_active |= mii_phy_flowstatus(sc);
} else
mii->mii_media_active |= IFM_HDX;
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control support in mii(4): - Merge generic flow control advertisement (which can be enabled by passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD, IFM_FLOW isn't implemented as a global option via the "don't care mask" but instead as a media specific option this. This has the following advantages: o allows flow control advertisement with autonegotiation to be turned on and off via ifconfig(8) with the default typically being off (though MIIF_FORCEPAUSE has been added causing flow control to be always advertised, allowing to easily MFC this changes for drivers that previously used home-grown support for flow control that behaved that way without breaking POLA) o allows to deal with PHY drivers where flow control advertisement with manual selection doesn't work or at least isn't implemented, like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4), by setting MIIF_NOMANPAUSE o the available combinations of media options are readily available from the `ifconfig -m` output - Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so these are understood by ifconfig(8). o Make the master/slave support in mii(4) actually usable: - Change IFM_ETH_MASTER from being implemented as a global option via the "don't care mask" to a media specific one as it actually is only applicable to IFM_1000_T to date. - Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to actually configure manually selected slave mode (like we also do in the PHY specific implementations). - Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it is understood by ifconfig(8). o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4), e1000phy(4) and ip1000phy(4) to use the generic flow control support instead of home-grown solutions via IFM_FLAGs. This includes changing these PHY drivers and smcphy(4) to no longer unconditionally advertise support for flow control but only if the selected media has IFM_FLOW set (or MIIF_FORCEPAUSE is set) and implemented for these media variants, i.e. typically only for copper. o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0 and some IFM_FLAGn. o Switch brgphy(4) to add at least the the supported copper media based on the contents of the BMSR via mii_phy_add_media() instead of hardcoding them. The latter approach seems to have developed historically, besides causing unnecessary code duplication it was also undesirable because brgphy_mii_phy_auto() already based the capability advertisement on the contents of the BMSR though. o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not just BCM5701. Apparently this was a misinterpretation of a workaround in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but this doesn't mean we can't set these as well on other PHYs for manual media selection. o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so IFM_1000_T master mode support now is generally available with all PHY drivers. o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's not applicable there. Reviewed by: yongari (plus additional testing) Obtained from: NetBSD (partially), OpenBSD (partially) MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
if (((PHY_READ(sc, E1000_1GSR) | PHY_READ(sc, E1000_1GSR)) &
E1000_1GSR_MS_CONFIG_RES) != 0)
mii->mii_media_active |= IFM_ETH_MASTER;
}
}
static int
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
e1000phy_mii_phy_auto(struct mii_softc *sc, int media)
{
uint16_t reg;
if ((sc->mii_flags & MIIF_HAVEFIBER) == 0) {
reg = PHY_READ(sc, E1000_AR);
reg &= ~(E1000_AR_PAUSE | E1000_AR_ASM_DIR);
reg |= E1000_AR_10T | E1000_AR_10T_FD |
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control support in mii(4): - Merge generic flow control advertisement (which can be enabled by passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD, IFM_FLOW isn't implemented as a global option via the "don't care mask" but instead as a media specific option this. This has the following advantages: o allows flow control advertisement with autonegotiation to be turned on and off via ifconfig(8) with the default typically being off (though MIIF_FORCEPAUSE has been added causing flow control to be always advertised, allowing to easily MFC this changes for drivers that previously used home-grown support for flow control that behaved that way without breaking POLA) o allows to deal with PHY drivers where flow control advertisement with manual selection doesn't work or at least isn't implemented, like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4), by setting MIIF_NOMANPAUSE o the available combinations of media options are readily available from the `ifconfig -m` output - Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so these are understood by ifconfig(8). o Make the master/slave support in mii(4) actually usable: - Change IFM_ETH_MASTER from being implemented as a global option via the "don't care mask" to a media specific one as it actually is only applicable to IFM_1000_T to date. - Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to actually configure manually selected slave mode (like we also do in the PHY specific implementations). - Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it is understood by ifconfig(8). o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4), e1000phy(4) and ip1000phy(4) to use the generic flow control support instead of home-grown solutions via IFM_FLAGs. This includes changing these PHY drivers and smcphy(4) to no longer unconditionally advertise support for flow control but only if the selected media has IFM_FLOW set (or MIIF_FORCEPAUSE is set) and implemented for these media variants, i.e. typically only for copper. o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0 and some IFM_FLAGn. o Switch brgphy(4) to add at least the the supported copper media based on the contents of the BMSR via mii_phy_add_media() instead of hardcoding them. The latter approach seems to have developed historically, besides causing unnecessary code duplication it was also undesirable because brgphy_mii_phy_auto() already based the capability advertisement on the contents of the BMSR though. o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not just BCM5701. Apparently this was a misinterpretation of a workaround in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but this doesn't mean we can't set these as well on other PHYs for manual media selection. o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so IFM_1000_T master mode support now is generally available with all PHY drivers. o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's not applicable there. Reviewed by: yongari (plus additional testing) Obtained from: NetBSD (partially), OpenBSD (partially) MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
E1000_AR_100TX | E1000_AR_100TX_FD;
if ((media & IFM_FLOW) != 0 ||
(sc->mii_flags & MIIF_FORCEPAUSE) != 0)
reg |= E1000_AR_PAUSE | E1000_AR_ASM_DIR;
PHY_WRITE(sc, E1000_AR, reg | E1000_AR_SELECTOR_FIELD);
} else
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control support in mii(4): - Merge generic flow control advertisement (which can be enabled by passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD, IFM_FLOW isn't implemented as a global option via the "don't care mask" but instead as a media specific option this. This has the following advantages: o allows flow control advertisement with autonegotiation to be turned on and off via ifconfig(8) with the default typically being off (though MIIF_FORCEPAUSE has been added causing flow control to be always advertised, allowing to easily MFC this changes for drivers that previously used home-grown support for flow control that behaved that way without breaking POLA) o allows to deal with PHY drivers where flow control advertisement with manual selection doesn't work or at least isn't implemented, like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4), by setting MIIF_NOMANPAUSE o the available combinations of media options are readily available from the `ifconfig -m` output - Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so these are understood by ifconfig(8). o Make the master/slave support in mii(4) actually usable: - Change IFM_ETH_MASTER from being implemented as a global option via the "don't care mask" to a media specific one as it actually is only applicable to IFM_1000_T to date. - Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to actually configure manually selected slave mode (like we also do in the PHY specific implementations). - Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it is understood by ifconfig(8). o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4), e1000phy(4) and ip1000phy(4) to use the generic flow control support instead of home-grown solutions via IFM_FLAGs. This includes changing these PHY drivers and smcphy(4) to no longer unconditionally advertise support for flow control but only if the selected media has IFM_FLOW set (or MIIF_FORCEPAUSE is set) and implemented for these media variants, i.e. typically only for copper. o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0 and some IFM_FLAGn. o Switch brgphy(4) to add at least the the supported copper media based on the contents of the BMSR via mii_phy_add_media() instead of hardcoding them. The latter approach seems to have developed historically, besides causing unnecessary code duplication it was also undesirable because brgphy_mii_phy_auto() already based the capability advertisement on the contents of the BMSR though. o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not just BCM5701. Apparently this was a misinterpretation of a workaround in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but this doesn't mean we can't set these as well on other PHYs for manual media selection. o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so IFM_1000_T master mode support now is generally available with all PHY drivers. o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's not applicable there. Reviewed by: yongari (plus additional testing) Obtained from: NetBSD (partially), OpenBSD (partially) MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
PHY_WRITE(sc, E1000_AR, E1000_FA_1000X_FD | E1000_FA_1000X);
if ((sc->mii_flags & MIIF_HAVE_GTCR) != 0) {
reg = 0;
if ((sc->mii_extcapabilities & EXTSR_1000TFDX) != 0)
reg |= E1000_1GCR_1000T_FD;
if ((sc->mii_extcapabilities & EXTSR_1000THDX) != 0)
reg |= E1000_1GCR_1000T;
PHY_WRITE(sc, E1000_1GCR, reg);
}
PHY_WRITE(sc, E1000_CR,
E1000_CR_AUTO_NEG_ENABLE | E1000_CR_RESTART_AUTO_NEG);
return (EJUSTRETURN);
}