freebsd-nq/sys/pci/if_vr.c

1644 lines
36 KiB
C
Raw Normal View History

/*
* Copyright (c) 1997, 1998
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
1999-08-28 01:08:13 +00:00
* $FreeBSD$
*/
/*
* VIA Rhine fast ethernet PCI NIC driver
*
* Supports various network adapters based on the VIA Rhine
* and Rhine II PCI controllers, including the D-Link DFE530TX.
* Datasheets are available at http://www.via.com.tw.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The VIA Rhine controllers are similar in some respects to the
* the DEC tulip chips, except less complicated. The controller
* uses an MII bus and an external physical layer interface. The
* receiver has a one entry perfect filter and a 64-bit hash table
* multicast filter. Transmit and receive descriptors are similar
* to the tulip.
*
* The Rhine has a serious flaw in its transmit DMA mechanism:
* transmit buffers must be longword aligned. Unfortunately,
* FreeBSD doesn't guarantee that mbufs will be filled in starting
* at longword boundaries, so we have to do a buffer copy before
* transmission.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/bus_pio.h>
#include <machine/bus_memio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <pci/pcireg.h>
#include <pci/pcivar.h>
#define VR_USEIOSPACE
#include <pci/if_vrreg.h>
MODULE_DEPEND(vr, miibus, 1, 1, 1);
/* "controller miibus0" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
#ifndef lint
static const char rcsid[] =
1999-08-28 01:08:13 +00:00
"$FreeBSD$";
#endif
/*
* Various supported device vendors/types and their names.
*/
static struct vr_type vr_devs[] = {
{ VIA_VENDORID, VIA_DEVICEID_RHINE,
"VIA VT3043 Rhine I 10/100BaseTX" },
{ VIA_VENDORID, VIA_DEVICEID_RHINE_II,
"VIA VT86C100A Rhine II 10/100BaseTX" },
{ VIA_VENDORID, VIA_DEVICEID_RHINE_II_2,
"VIA VT6102 Rhine II 10/100BaseTX" },
{ DELTA_VENDORID, DELTA_DEVICEID_RHINE_II,
"Delta Electronics Rhine II 10/100BaseTX" },
{ ADDTRON_VENDORID, ADDTRON_DEVICEID_RHINE_II,
"Addtron Technology Rhine II 10/100BaseTX" },
{ 0, 0, NULL }
};
static int vr_probe __P((device_t));
static int vr_attach __P((device_t));
static int vr_detach __P((device_t));
static int vr_newbuf __P((struct vr_softc *,
struct vr_chain_onefrag *,
struct mbuf *));
static int vr_encap __P((struct vr_softc *, struct vr_chain *,
struct mbuf * ));
static void vr_rxeof __P((struct vr_softc *));
static void vr_rxeoc __P((struct vr_softc *));
static void vr_txeof __P((struct vr_softc *));
static void vr_txeoc __P((struct vr_softc *));
static void vr_tick __P((void *));
static void vr_intr __P((void *));
static void vr_start __P((struct ifnet *));
static int vr_ioctl __P((struct ifnet *, u_long, caddr_t));
static void vr_init __P((void *));
static void vr_stop __P((struct vr_softc *));
static void vr_watchdog __P((struct ifnet *));
static void vr_shutdown __P((device_t));
static int vr_ifmedia_upd __P((struct ifnet *));
static void vr_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
static void vr_mii_sync __P((struct vr_softc *));
static void vr_mii_send __P((struct vr_softc *, u_int32_t, int));
static int vr_mii_readreg __P((struct vr_softc *, struct vr_mii_frame *));
static int vr_mii_writereg __P((struct vr_softc *, struct vr_mii_frame *));
static int vr_miibus_readreg __P((device_t, int, int));
static int vr_miibus_writereg __P((device_t, int, int, int));
static void vr_miibus_statchg __P((device_t));
static void vr_setcfg __P((struct vr_softc *, int));
static u_int8_t vr_calchash __P((u_int8_t *));
static void vr_setmulti __P((struct vr_softc *));
static void vr_reset __P((struct vr_softc *));
static int vr_list_rx_init __P((struct vr_softc *));
static int vr_list_tx_init __P((struct vr_softc *));
#ifdef VR_USEIOSPACE
#define VR_RES SYS_RES_IOPORT
#define VR_RID VR_PCI_LOIO
#else
#define VR_RES SYS_RES_MEMORY
#define VR_RID VR_PCI_LOMEM
#endif
static device_method_t vr_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, vr_probe),
DEVMETHOD(device_attach, vr_attach),
DEVMETHOD(device_detach, vr_detach),
DEVMETHOD(device_shutdown, vr_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, vr_miibus_readreg),
DEVMETHOD(miibus_writereg, vr_miibus_writereg),
DEVMETHOD(miibus_statchg, vr_miibus_statchg),
{ 0, 0 }
};
static driver_t vr_driver = {
"vr",
vr_methods,
sizeof(struct vr_softc)
};
static devclass_t vr_devclass;
DRIVER_MODULE(if_vr, pci, vr_driver, vr_devclass, 0, 0);
Un-do the changes to the DRIVER_MODULE() declarations in these drivers. This whole idea isn't going to work until somebody makes the bus/kld code smarter. The idea here is to change the module's internal name from "foo" to "if_foo" so that ifconfig can tell a network driver from a non-network one. However doing this doesn't work correctly no matter how you slice it. For everything to work, you have to change the name in both the driver_t struct and the DRIVER_MODULE() declaration. The problems are: - If you change the name in both places, then the kernel thinks that the device's name is now "if_foo", so you get things like: if_foo0: <FOO ethernet> irq foo at device foo on pcifoo if_foo0: Ethernet address: foo:foo:foo:foo:foo:foo This is bogus. Now the device name doesn't agree with the logical interface name. There's no reason for this, and it violates the principle of least astonishment. - If you leave the name in the driver_t struct as "foo" and only change the names in the DRIVER_MODULE() declaration to "if_foo" then attaching drivers to child devices doesn't work because the names don't agree. This breaks miibus: drivers that need to have miibuses and PHY drivers attached never get them. In other words: damned if you do, damned if you don't. This needs to be thought through some more. Since the drivers that use miibus are broken, I have to change these all back in order to make them work again. Yes this will stop ifconfig from being able to demand load driver modules. On the whole, I'd rather have that than having the drivers not work at all.
1999-09-20 19:06:45 +00:00
DRIVER_MODULE(miibus, vr, miibus_driver, miibus_devclass, 0, 0);
#define VR_SETBIT(sc, reg, x) \
CSR_WRITE_1(sc, reg, \
CSR_READ_1(sc, reg) | x)
#define VR_CLRBIT(sc, reg, x) \
CSR_WRITE_1(sc, reg, \
CSR_READ_1(sc, reg) & ~x)
#define VR_SETBIT16(sc, reg, x) \
CSR_WRITE_2(sc, reg, \
CSR_READ_2(sc, reg) | x)
#define VR_CLRBIT16(sc, reg, x) \
CSR_WRITE_2(sc, reg, \
CSR_READ_2(sc, reg) & ~x)
#define VR_SETBIT32(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) | x)
#define VR_CLRBIT32(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) & ~x)
#define SIO_SET(x) \
CSR_WRITE_1(sc, VR_MIICMD, \
CSR_READ_1(sc, VR_MIICMD) | x)
#define SIO_CLR(x) \
CSR_WRITE_1(sc, VR_MIICMD, \
CSR_READ_1(sc, VR_MIICMD) & ~x)
/*
* Sync the PHYs by setting data bit and strobing the clock 32 times.
*/
static void vr_mii_sync(sc)
struct vr_softc *sc;
{
register int i;
SIO_SET(VR_MIICMD_DIR|VR_MIICMD_DATAIN);
for (i = 0; i < 32; i++) {
SIO_SET(VR_MIICMD_CLK);
DELAY(1);
SIO_CLR(VR_MIICMD_CLK);
DELAY(1);
}
return;
}
/*
* Clock a series of bits through the MII.
*/
static void vr_mii_send(sc, bits, cnt)
struct vr_softc *sc;
u_int32_t bits;
int cnt;
{
int i;
SIO_CLR(VR_MIICMD_CLK);
for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
if (bits & i) {
SIO_SET(VR_MIICMD_DATAIN);
} else {
SIO_CLR(VR_MIICMD_DATAIN);
}
DELAY(1);
SIO_CLR(VR_MIICMD_CLK);
DELAY(1);
SIO_SET(VR_MIICMD_CLK);
}
}
/*
* Read an PHY register through the MII.
*/
static int vr_mii_readreg(sc, frame)
struct vr_softc *sc;
struct vr_mii_frame *frame;
{
int i, ack;
VR_LOCK(sc);
/*
* Set up frame for RX.
*/
frame->mii_stdelim = VR_MII_STARTDELIM;
frame->mii_opcode = VR_MII_READOP;
frame->mii_turnaround = 0;
frame->mii_data = 0;
CSR_WRITE_1(sc, VR_MIICMD, 0);
VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
/*
* Turn on data xmit.
*/
SIO_SET(VR_MIICMD_DIR);
vr_mii_sync(sc);
/*
* Send command/address info.
*/
vr_mii_send(sc, frame->mii_stdelim, 2);
vr_mii_send(sc, frame->mii_opcode, 2);
vr_mii_send(sc, frame->mii_phyaddr, 5);
vr_mii_send(sc, frame->mii_regaddr, 5);
/* Idle bit */
SIO_CLR((VR_MIICMD_CLK|VR_MIICMD_DATAIN));
DELAY(1);
SIO_SET(VR_MIICMD_CLK);
DELAY(1);
/* Turn off xmit. */
SIO_CLR(VR_MIICMD_DIR);
/* Check for ack */
SIO_CLR(VR_MIICMD_CLK);
DELAY(1);
SIO_SET(VR_MIICMD_CLK);
DELAY(1);
ack = CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAOUT;
/*
* Now try reading data bits. If the ack failed, we still
* need to clock through 16 cycles to keep the PHY(s) in sync.
*/
if (ack) {
for(i = 0; i < 16; i++) {
SIO_CLR(VR_MIICMD_CLK);
DELAY(1);
SIO_SET(VR_MIICMD_CLK);
DELAY(1);
}
goto fail;
}
for (i = 0x8000; i; i >>= 1) {
SIO_CLR(VR_MIICMD_CLK);
DELAY(1);
if (!ack) {
if (CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAOUT)
frame->mii_data |= i;
DELAY(1);
}
SIO_SET(VR_MIICMD_CLK);
DELAY(1);
}
fail:
SIO_CLR(VR_MIICMD_CLK);
DELAY(1);
SIO_SET(VR_MIICMD_CLK);
DELAY(1);
VR_UNLOCK(sc);
if (ack)
return(1);
return(0);
}
/*
* Write to a PHY register through the MII.
*/
static int vr_mii_writereg(sc, frame)
struct vr_softc *sc;
struct vr_mii_frame *frame;
{
VR_LOCK(sc);
CSR_WRITE_1(sc, VR_MIICMD, 0);
VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
/*
* Set up frame for TX.
*/
frame->mii_stdelim = VR_MII_STARTDELIM;
frame->mii_opcode = VR_MII_WRITEOP;
frame->mii_turnaround = VR_MII_TURNAROUND;
/*
* Turn on data output.
*/
SIO_SET(VR_MIICMD_DIR);
vr_mii_sync(sc);
vr_mii_send(sc, frame->mii_stdelim, 2);
vr_mii_send(sc, frame->mii_opcode, 2);
vr_mii_send(sc, frame->mii_phyaddr, 5);
vr_mii_send(sc, frame->mii_regaddr, 5);
vr_mii_send(sc, frame->mii_turnaround, 2);
vr_mii_send(sc, frame->mii_data, 16);
/* Idle bit. */
SIO_SET(VR_MIICMD_CLK);
DELAY(1);
SIO_CLR(VR_MIICMD_CLK);
DELAY(1);
/*
* Turn off xmit.
*/
SIO_CLR(VR_MIICMD_DIR);
VR_UNLOCK(sc);
return(0);
}
static int vr_miibus_readreg(dev, phy, reg)
device_t dev;
int phy, reg;
{
struct vr_softc *sc;
struct vr_mii_frame frame;
sc = device_get_softc(dev);
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
vr_mii_readreg(sc, &frame);
return(frame.mii_data);
}
static int vr_miibus_writereg(dev, phy, reg, data)
device_t dev;
u_int16_t phy, reg, data;
{
struct vr_softc *sc;
struct vr_mii_frame frame;
sc = device_get_softc(dev);
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
frame.mii_data = data;
vr_mii_writereg(sc, &frame);
return(0);
}
static void vr_miibus_statchg(dev)
device_t dev;
{
struct vr_softc *sc;
struct mii_data *mii;
sc = device_get_softc(dev);
VR_LOCK(sc);
mii = device_get_softc(sc->vr_miibus);
vr_setcfg(sc, mii->mii_media_active);
VR_UNLOCK(sc);
return;
}
/*
* Calculate CRC of a multicast group address, return the lower 6 bits.
*/
static u_int8_t vr_calchash(addr)
u_int8_t *addr;
{
u_int32_t crc, carry;
int i, j;
u_int8_t c;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (i = 0; i < 6; i++) {
c = *(addr + i);
for (j = 0; j < 8; j++) {
carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
crc <<= 1;
c >>= 1;
if (carry)
crc = (crc ^ 0x04c11db6) | carry;
}
}
/* return the filter bit position */
return((crc >> 26) & 0x0000003F);
}
/*
* Program the 64-bit multicast hash filter.
*/
static void vr_setmulti(sc)
struct vr_softc *sc;
{
struct ifnet *ifp;
int h = 0;
u_int32_t hashes[2] = { 0, 0 };
struct ifmultiaddr *ifma;
u_int8_t rxfilt;
int mcnt = 0;
ifp = &sc->arpcom.ac_if;
rxfilt = CSR_READ_1(sc, VR_RXCFG);
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
rxfilt |= VR_RXCFG_RX_MULTI;
CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
return;
}
/* first, zot all the existing hash bits */
CSR_WRITE_4(sc, VR_MAR0, 0);
CSR_WRITE_4(sc, VR_MAR1, 0);
/* now program new ones */
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
ifma = ifma->ifma_link.le_next) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = vr_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
mcnt++;
}
if (mcnt)
rxfilt |= VR_RXCFG_RX_MULTI;
else
rxfilt &= ~VR_RXCFG_RX_MULTI;
CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
return;
}
/*
* In order to fiddle with the
* 'full-duplex' and '100Mbps' bits in the netconfig register, we
* first have to put the transmit and/or receive logic in the idle state.
*/
static void vr_setcfg(sc, media)
struct vr_softc *sc;
int media;
{
int restart = 0;
if (CSR_READ_2(sc, VR_COMMAND) & (VR_CMD_TX_ON|VR_CMD_RX_ON)) {
restart = 1;
VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
}
if ((media & IFM_GMASK) == IFM_FDX)
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
else
VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
if (restart)
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
return;
}
static void vr_reset(sc)
struct vr_softc *sc;
{
register int i;
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
for (i = 0; i < VR_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
break;
}
if (i == VR_TIMEOUT)
printf("vr%d: reset never completed!\n", sc->vr_unit);
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
return;
}
/*
* Probe for a VIA Rhine chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int vr_probe(dev)
device_t dev;
{
struct vr_type *t;
t = vr_devs;
while(t->vr_name != NULL) {
if ((pci_get_vendor(dev) == t->vr_vid) &&
(pci_get_device(dev) == t->vr_did)) {
device_set_desc(dev, t->vr_name);
return(0);
}
t++;
}
return(ENXIO);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int vr_attach(dev)
device_t dev;
{
int i;
u_char eaddr[ETHER_ADDR_LEN];
u_int32_t command;
struct vr_softc *sc;
struct ifnet *ifp;
int unit, error = 0, rid;
sc = device_get_softc(dev);
unit = device_get_unit(dev);
bzero(sc, sizeof(struct vr_softc *));
/*
* Handle power management nonsense.
*/
command = pci_read_config(dev, VR_PCI_CAPID, 4) & 0x000000FF;
if (command == 0x01) {
command = pci_read_config(dev, VR_PCI_PWRMGMTCTRL, 4);
if (command & VR_PSTATE_MASK) {
u_int32_t iobase, membase, irq;
/* Save important PCI config data. */
iobase = pci_read_config(dev, VR_PCI_LOIO, 4);
membase = pci_read_config(dev, VR_PCI_LOMEM, 4);
irq = pci_read_config(dev, VR_PCI_INTLINE, 4);
/* Reset the power state. */
printf("vr%d: chip is in D%d power mode "
"-- setting to D0\n", unit, command & VR_PSTATE_MASK);
command &= 0xFFFFFFFC;
pci_write_config(dev, VR_PCI_PWRMGMTCTRL, command, 4);
/* Restore PCI config data. */
pci_write_config(dev, VR_PCI_LOIO, iobase, 4);
pci_write_config(dev, VR_PCI_LOMEM, membase, 4);
pci_write_config(dev, VR_PCI_INTLINE, irq, 4);
}
}
/*
* Map control/status registers.
*/
command = pci_read_config(dev, PCIR_COMMAND, 4);
command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
pci_write_config(dev, PCIR_COMMAND, command, 4);
command = pci_read_config(dev, PCIR_COMMAND, 4);
#ifdef VR_USEIOSPACE
if (!(command & PCIM_CMD_PORTEN)) {
printf("vr%d: failed to enable I/O ports!\n", unit);
free(sc, M_DEVBUF);
goto fail;
}
#else
if (!(command & PCIM_CMD_MEMEN)) {
printf("vr%d: failed to enable memory mapping!\n", unit);
goto fail;
}
#endif
rid = VR_RID;
sc->vr_res = bus_alloc_resource(dev, VR_RES, &rid,
0, ~0, 1, RF_ACTIVE);
if (sc->vr_res == NULL) {
printf("vr%d: couldn't map ports/memory\n", unit);
error = ENXIO;
goto fail;
}
sc->vr_btag = rman_get_bustag(sc->vr_res);
sc->vr_bhandle = rman_get_bushandle(sc->vr_res);
/* Allocate interrupt */
rid = 0;
sc->vr_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
RF_SHAREABLE | RF_ACTIVE);
if (sc->vr_irq == NULL) {
printf("vr%d: couldn't map interrupt\n", unit);
bus_release_resource(dev, VR_RES, VR_RID, sc->vr_res);
error = ENXIO;
goto fail;
}
error = bus_setup_intr(dev, sc->vr_irq, INTR_TYPE_NET,
vr_intr, sc, &sc->vr_intrhand);
if (error) {
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq);
bus_release_resource(dev, VR_RES, VR_RID, sc->vr_res);
printf("vr%d: couldn't set up irq\n", unit);
goto fail;
}
mtx_init(&sc->vr_mtx, device_get_nameunit(dev), MTX_DEF);
VR_LOCK(sc);
/* Reset the adapter. */
vr_reset(sc);
/*
* Get station address. The way the Rhine chips work,
* you're not allowed to directly access the EEPROM once
* they've been programmed a special way. Consequently,
* we need to read the node address from the PAR0 and PAR1
* registers.
*/
VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
DELAY(200);
for (i = 0; i < ETHER_ADDR_LEN; i++)
eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
/*
* A Rhine chip was detected. Inform the world.
*/
printf("vr%d: Ethernet address: %6D\n", unit, eaddr, ":");
sc->vr_unit = unit;
bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
sc->vr_ldata = contigmalloc(sizeof(struct vr_list_data), M_DEVBUF,
M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
if (sc->vr_ldata == NULL) {
printf("vr%d: no memory for list buffers!\n", unit);
bus_teardown_intr(dev, sc->vr_irq, sc->vr_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq);
bus_release_resource(dev, VR_RES, VR_RID, sc->vr_res);
error = ENXIO;
goto fail;
}
bzero(sc->vr_ldata, sizeof(struct vr_list_data));
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_unit = unit;
ifp->if_name = "vr";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = vr_ioctl;
ifp->if_output = ether_output;
ifp->if_start = vr_start;
ifp->if_watchdog = vr_watchdog;
ifp->if_init = vr_init;
ifp->if_baudrate = 10000000;
ifp->if_snd.ifq_maxlen = VR_TX_LIST_CNT - 1;
/*
* Do MII setup.
*/
if (mii_phy_probe(dev, &sc->vr_miibus,
vr_ifmedia_upd, vr_ifmedia_sts)) {
printf("vr%d: MII without any phy!\n", sc->vr_unit);
bus_teardown_intr(dev, sc->vr_irq, sc->vr_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq);
bus_release_resource(dev, VR_RES, VR_RID, sc->vr_res);
contigfree(sc->vr_ldata,
sizeof(struct vr_list_data), M_DEVBUF);
error = ENXIO;
goto fail;
}
callout_handle_init(&sc->vr_stat_ch);
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
VR_UNLOCK(sc);
return(0);
fail:
VR_UNLOCK(sc);
mtx_destroy(&sc->vr_mtx);
return(error);
}
static int vr_detach(dev)
device_t dev;
{
struct vr_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
VR_LOCK(sc);
ifp = &sc->arpcom.ac_if;
vr_stop(sc);
ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
bus_generic_detach(dev);
device_delete_child(dev, sc->vr_miibus);
bus_teardown_intr(dev, sc->vr_irq, sc->vr_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq);
bus_release_resource(dev, VR_RES, VR_RID, sc->vr_res);
contigfree(sc->vr_ldata, sizeof(struct vr_list_data), M_DEVBUF);
VR_UNLOCK(sc);
mtx_destroy(&sc->vr_mtx);
return(0);
}
/*
* Initialize the transmit descriptors.
*/
static int vr_list_tx_init(sc)
struct vr_softc *sc;
{
struct vr_chain_data *cd;
struct vr_list_data *ld;
int i;
cd = &sc->vr_cdata;
ld = sc->vr_ldata;
for (i = 0; i < VR_TX_LIST_CNT; i++) {
cd->vr_tx_chain[i].vr_ptr = &ld->vr_tx_list[i];
if (i == (VR_TX_LIST_CNT - 1))
cd->vr_tx_chain[i].vr_nextdesc =
&cd->vr_tx_chain[0];
else
cd->vr_tx_chain[i].vr_nextdesc =
&cd->vr_tx_chain[i + 1];
}
cd->vr_tx_free = &cd->vr_tx_chain[0];
cd->vr_tx_tail = cd->vr_tx_head = NULL;
return(0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
static int vr_list_rx_init(sc)
struct vr_softc *sc;
{
struct vr_chain_data *cd;
struct vr_list_data *ld;
int i;
cd = &sc->vr_cdata;
ld = sc->vr_ldata;
for (i = 0; i < VR_RX_LIST_CNT; i++) {
cd->vr_rx_chain[i].vr_ptr =
(struct vr_desc *)&ld->vr_rx_list[i];
if (vr_newbuf(sc, &cd->vr_rx_chain[i], NULL) == ENOBUFS)
return(ENOBUFS);
if (i == (VR_RX_LIST_CNT - 1)) {
cd->vr_rx_chain[i].vr_nextdesc =
&cd->vr_rx_chain[0];
ld->vr_rx_list[i].vr_next =
vtophys(&ld->vr_rx_list[0]);
} else {
cd->vr_rx_chain[i].vr_nextdesc =
&cd->vr_rx_chain[i + 1];
ld->vr_rx_list[i].vr_next =
vtophys(&ld->vr_rx_list[i + 1]);
}
}
cd->vr_rx_head = &cd->vr_rx_chain[0];
return(0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
* Note: the length fields are only 11 bits wide, which means the
* largest size we can specify is 2047. This is important because
* MCLBYTES is 2048, so we have to subtract one otherwise we'll
* overflow the field and make a mess.
*/
static int vr_newbuf(sc, c, m)
struct vr_softc *sc;
struct vr_chain_onefrag *c;
struct mbuf *m;
{
struct mbuf *m_new = NULL;
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("vr%d: no memory for rx list "
"-- packet dropped!\n", sc->vr_unit);
return(ENOBUFS);
}
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
printf("vr%d: no memory for rx list "
"-- packet dropped!\n", sc->vr_unit);
m_freem(m_new);
return(ENOBUFS);
}
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_new->m_data = m_new->m_ext.ext_buf;
}
m_adj(m_new, sizeof(u_int64_t));
c->vr_mbuf = m_new;
c->vr_ptr->vr_status = VR_RXSTAT;
c->vr_ptr->vr_data = vtophys(mtod(m_new, caddr_t));
c->vr_ptr->vr_ctl = VR_RXCTL | VR_RXLEN;
return(0);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static void vr_rxeof(sc)
struct vr_softc *sc;
{
struct ether_header *eh;
struct mbuf *m;
struct ifnet *ifp;
struct vr_chain_onefrag *cur_rx;
int total_len = 0;
u_int32_t rxstat;
ifp = &sc->arpcom.ac_if;
while(!((rxstat = sc->vr_cdata.vr_rx_head->vr_ptr->vr_status) &
VR_RXSTAT_OWN)) {
struct mbuf *m0 = NULL;
cur_rx = sc->vr_cdata.vr_rx_head;
sc->vr_cdata.vr_rx_head = cur_rx->vr_nextdesc;
m = cur_rx->vr_mbuf;
/*
* If an error occurs, update stats, clear the
* status word and leave the mbuf cluster in place:
* it should simply get re-used next time this descriptor
* comes up in the ring.
*/
if (rxstat & VR_RXSTAT_RXERR) {
ifp->if_ierrors++;
printf("vr%d: rx error: ", sc->vr_unit);
switch(rxstat & 0x000000FF) {
case VR_RXSTAT_CRCERR:
printf("crc error\n");
break;
case VR_RXSTAT_FRAMEALIGNERR:
printf("frame alignment error\n");
break;
case VR_RXSTAT_FIFOOFLOW:
printf("FIFO overflow\n");
break;
case VR_RXSTAT_GIANT:
printf("received giant packet\n");
break;
case VR_RXSTAT_RUNT:
printf("received runt packet\n");
break;
case VR_RXSTAT_BUSERR:
printf("system bus error\n");
break;
case VR_RXSTAT_BUFFERR:
printf("rx buffer error\n");
break;
default:
printf("unknown rx error\n");
break;
}
vr_newbuf(sc, cur_rx, m);
continue;
}
/* No errors; receive the packet. */
total_len = VR_RXBYTES(cur_rx->vr_ptr->vr_status);
/*
* XXX The VIA Rhine chip includes the CRC with every
* received frame, and there's no way to turn this
* behavior off (at least, I can't find anything in
* the manual that explains how to do it) so we have
* to trim off the CRC manually.
*/
total_len -= ETHER_CRC_LEN;
m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
total_len + ETHER_ALIGN, 0, ifp, NULL);
vr_newbuf(sc, cur_rx, m);
if (m0 == NULL) {
ifp->if_ierrors++;
continue;
}
m_adj(m0, ETHER_ALIGN);
m = m0;
ifp->if_ipackets++;
eh = mtod(m, struct ether_header *);
/* Remove header from mbuf and pass it on. */
m_adj(m, sizeof(struct ether_header));
ether_input(ifp, eh, m);
}
return;
}
void vr_rxeoc(sc)
struct vr_softc *sc;
{
vr_rxeof(sc);
VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
CSR_WRITE_4(sc, VR_RXADDR, vtophys(sc->vr_cdata.vr_rx_head->vr_ptr));
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
return;
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void vr_txeof(sc)
struct vr_softc *sc;
{
struct vr_chain *cur_tx;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
/* Clear the timeout timer. */
ifp->if_timer = 0;
/* Sanity check. */
if (sc->vr_cdata.vr_tx_head == NULL)
return;
/*
* Go through our tx list and free mbufs for those
* frames that have been transmitted.
*/
while(sc->vr_cdata.vr_tx_head->vr_mbuf != NULL) {
u_int32_t txstat;
cur_tx = sc->vr_cdata.vr_tx_head;
txstat = cur_tx->vr_ptr->vr_status;
if (txstat & VR_TXSTAT_OWN)
break;
if (txstat & VR_TXSTAT_ERRSUM) {
ifp->if_oerrors++;
if (txstat & VR_TXSTAT_DEFER)
ifp->if_collisions++;
if (txstat & VR_TXSTAT_LATECOLL)
ifp->if_collisions++;
}
ifp->if_collisions +=(txstat & VR_TXSTAT_COLLCNT) >> 3;
ifp->if_opackets++;
if (cur_tx->vr_mbuf != NULL) {
m_freem(cur_tx->vr_mbuf);
cur_tx->vr_mbuf = NULL;
}
if (sc->vr_cdata.vr_tx_head == sc->vr_cdata.vr_tx_tail) {
sc->vr_cdata.vr_tx_head = NULL;
sc->vr_cdata.vr_tx_tail = NULL;
break;
}
sc->vr_cdata.vr_tx_head = cur_tx->vr_nextdesc;
}
return;
}
/*
* TX 'end of channel' interrupt handler.
*/
static void vr_txeoc(sc)
struct vr_softc *sc;
{
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
if (sc->vr_cdata.vr_tx_head == NULL) {
ifp->if_flags &= ~IFF_OACTIVE;
sc->vr_cdata.vr_tx_tail = NULL;
}
return;
}
static void vr_tick(xsc)
void *xsc;
{
struct vr_softc *sc;
struct mii_data *mii;
sc = xsc;
VR_LOCK(sc);
mii = device_get_softc(sc->vr_miibus);
mii_tick(mii);
sc->vr_stat_ch = timeout(vr_tick, sc, hz);
VR_UNLOCK(sc);
return;
}
static void vr_intr(arg)
void *arg;
{
struct vr_softc *sc;
struct ifnet *ifp;
u_int16_t status;
sc = arg;
VR_LOCK(sc);
ifp = &sc->arpcom.ac_if;
/* Supress unwanted interrupts. */
if (!(ifp->if_flags & IFF_UP)) {
vr_stop(sc);
VR_UNLOCK(sc);
return;
}
/* Disable interrupts. */
CSR_WRITE_2(sc, VR_IMR, 0x0000);
for (;;) {
status = CSR_READ_2(sc, VR_ISR);
if (status)
CSR_WRITE_2(sc, VR_ISR, status);
if ((status & VR_INTRS) == 0)
break;
if (status & VR_ISR_RX_OK)
vr_rxeof(sc);
if ((status & VR_ISR_RX_ERR) || (status & VR_ISR_RX_NOBUF) ||
(status & VR_ISR_RX_NOBUF) || (status & VR_ISR_RX_OFLOW) ||
(status & VR_ISR_RX_DROPPED)) {
vr_rxeof(sc);
vr_rxeoc(sc);
}
if (status & VR_ISR_TX_OK) {
vr_txeof(sc);
vr_txeoc(sc);
}
if ((status & VR_ISR_TX_UNDERRUN)||(status & VR_ISR_TX_ABRT)){
ifp->if_oerrors++;
vr_txeof(sc);
if (sc->vr_cdata.vr_tx_head != NULL) {
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
}
}
if (status & VR_ISR_BUSERR) {
vr_reset(sc);
vr_init(sc);
}
}
/* Re-enable interrupts. */
CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
if (ifp->if_snd.ifq_head != NULL) {
vr_start(ifp);
}
VR_UNLOCK(sc);
return;
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int vr_encap(sc, c, m_head)
struct vr_softc *sc;
struct vr_chain *c;
struct mbuf *m_head;
{
int frag = 0;
struct vr_desc *f = NULL;
int total_len;
struct mbuf *m;
m = m_head;
total_len = 0;
/*
* The VIA Rhine wants packet buffers to be longword
* aligned, but very often our mbufs aren't. Rather than
* waste time trying to decide when to copy and when not
* to copy, just do it all the time.
*/
if (m != NULL) {
struct mbuf *m_new = NULL;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("vr%d: no memory for tx list", sc->vr_unit);
return(1);
}
if (m_head->m_pkthdr.len > MHLEN) {
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
printf("vr%d: no memory for tx list",
sc->vr_unit);
return(1);
}
}
m_copydata(m_head, 0, m_head->m_pkthdr.len,
mtod(m_new, caddr_t));
m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
m_freem(m_head);
m_head = m_new;
/*
* The Rhine chip doesn't auto-pad, so we have to make
* sure to pad short frames out to the minimum frame length
* ourselves.
*/
if (m_head->m_len < VR_MIN_FRAMELEN) {
m_new->m_pkthdr.len += VR_MIN_FRAMELEN - m_new->m_len;
m_new->m_len = m_new->m_pkthdr.len;
}
f = c->vr_ptr;
f->vr_data = vtophys(mtod(m_new, caddr_t));
f->vr_ctl = total_len = m_new->m_len;
f->vr_ctl |= VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG;
f->vr_status = 0;
frag = 1;
}
c->vr_mbuf = m_head;
c->vr_ptr->vr_ctl |= VR_TXCTL_LASTFRAG|VR_TXCTL_FINT;
c->vr_ptr->vr_next = vtophys(c->vr_nextdesc->vr_ptr);
return(0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit lists. We also save a
* copy of the pointers since the transmit list fragment pointers are
* physical addresses.
*/
static void vr_start(ifp)
struct ifnet *ifp;
{
struct vr_softc *sc;
struct mbuf *m_head = NULL;
struct vr_chain *cur_tx = NULL, *start_tx;
sc = ifp->if_softc;
VR_LOCK(sc);
if (ifp->if_flags & IFF_OACTIVE) {
VR_UNLOCK(sc);
return;
}
/*
* Check for an available queue slot. If there are none,
* punt.
*/
if (sc->vr_cdata.vr_tx_free->vr_mbuf != NULL) {
ifp->if_flags |= IFF_OACTIVE;
return;
}
start_tx = sc->vr_cdata.vr_tx_free;
while(sc->vr_cdata.vr_tx_free->vr_mbuf == NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/* Pick a descriptor off the free list. */
cur_tx = sc->vr_cdata.vr_tx_free;
sc->vr_cdata.vr_tx_free = cur_tx->vr_nextdesc;
/* Pack the data into the descriptor. */
vr_encap(sc, cur_tx, m_head);
if (cur_tx != start_tx)
VR_TXOWN(cur_tx) = VR_TXSTAT_OWN;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp, cur_tx->vr_mbuf);
VR_TXOWN(cur_tx) = VR_TXSTAT_OWN;
VR_SETBIT16(sc, VR_COMMAND, /*VR_CMD_TX_ON|*/VR_CMD_TX_GO);
}
/*
* If there are no frames queued, bail.
*/
if (cur_tx == NULL) {
VR_UNLOCK(sc);
return;
}
sc->vr_cdata.vr_tx_tail = cur_tx;
if (sc->vr_cdata.vr_tx_head == NULL)
sc->vr_cdata.vr_tx_head = start_tx;
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
VR_UNLOCK(sc);
return;
}
static void vr_init(xsc)
void *xsc;
{
struct vr_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
struct mii_data *mii;
VR_LOCK(sc);
mii = device_get_softc(sc->vr_miibus);
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
vr_stop(sc);
vr_reset(sc);
VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
/* Init circular RX list. */
if (vr_list_rx_init(sc) == ENOBUFS) {
printf("vr%d: initialization failed: no "
"memory for rx buffers\n", sc->vr_unit);
vr_stop(sc);
VR_UNLOCK(sc);
return;
}
/*
* Init tx descriptors.
*/
vr_list_tx_init(sc);
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC)
VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
else
VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
/* Set capture broadcast bit to capture broadcast frames. */
if (ifp->if_flags & IFF_BROADCAST)
VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
else
VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
/*
* Program the multicast filter, if necessary.
*/
vr_setmulti(sc);
/*
* Load the address of the RX list.
*/
CSR_WRITE_4(sc, VR_RXADDR, vtophys(sc->vr_cdata.vr_rx_head->vr_ptr));
/* Enable receiver and transmitter. */
CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
VR_CMD_TX_ON|VR_CMD_RX_ON|
VR_CMD_RX_GO);
CSR_WRITE_4(sc, VR_TXADDR, vtophys(&sc->vr_ldata->vr_tx_list[0]));
/*
* Enable interrupts.
*/
CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
mii_mediachg(mii);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
sc->vr_stat_ch = timeout(vr_tick, sc, hz);
VR_UNLOCK(sc);
return;
}
/*
* Set media options.
*/
static int vr_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct vr_softc *sc;
sc = ifp->if_softc;
if (ifp->if_flags & IFF_UP)
vr_init(sc);
return(0);
}
/*
* Report current media status.
*/
static void vr_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct vr_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->vr_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
return;
}
static int vr_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct vr_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii;
int error = 0;
VR_LOCK(sc);
switch(command) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
vr_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
vr_stop(sc);
}
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
vr_setmulti(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->vr_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
default:
error = EINVAL;
break;
}
VR_UNLOCK(sc);
return(error);
}
static void vr_watchdog(ifp)
struct ifnet *ifp;
{
struct vr_softc *sc;
sc = ifp->if_softc;
VR_LOCK(sc);
ifp->if_oerrors++;
printf("vr%d: watchdog timeout\n", sc->vr_unit);
vr_stop(sc);
vr_reset(sc);
vr_init(sc);
if (ifp->if_snd.ifq_head != NULL)
vr_start(ifp);
VR_UNLOCK(sc);
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void vr_stop(sc)
struct vr_softc *sc;
{
register int i;
struct ifnet *ifp;
VR_LOCK(sc);
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
untimeout(vr_tick, sc, sc->vr_stat_ch);
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
CSR_WRITE_2(sc, VR_IMR, 0x0000);
CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
/*
* Free data in the RX lists.
*/
for (i = 0; i < VR_RX_LIST_CNT; i++) {
if (sc->vr_cdata.vr_rx_chain[i].vr_mbuf != NULL) {
m_freem(sc->vr_cdata.vr_rx_chain[i].vr_mbuf);
sc->vr_cdata.vr_rx_chain[i].vr_mbuf = NULL;
}
}
bzero((char *)&sc->vr_ldata->vr_rx_list,
sizeof(sc->vr_ldata->vr_rx_list));
/*
* Free the TX list buffers.
*/
for (i = 0; i < VR_TX_LIST_CNT; i++) {
if (sc->vr_cdata.vr_tx_chain[i].vr_mbuf != NULL) {
m_freem(sc->vr_cdata.vr_tx_chain[i].vr_mbuf);
sc->vr_cdata.vr_tx_chain[i].vr_mbuf = NULL;
}
}
bzero((char *)&sc->vr_ldata->vr_tx_list,
sizeof(sc->vr_ldata->vr_tx_list));
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
VR_UNLOCK(sc);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void vr_shutdown(dev)
device_t dev;
{
struct vr_softc *sc;
sc = device_get_softc(dev);
vr_stop(sc);
return;
}