freebsd-nq/sys/dev/usb2/wlan/if_zyd2.c

3298 lines
83 KiB
C
Raw Normal View History

Bring in USB4BSD, Hans Petter Selasky rework of the USB stack that includes significant features and SMP safety. This commit includes a more or less complete rewrite of the *BSD USB stack, including Host Controller and Device Controller drivers and updating all existing USB drivers to use the new USB API: 1) A brief feature list: - A new and mutex enabled USB API. - Many USB drivers are now running Giant free. - Linux USB kernel compatibility layer. - New UGEN backend and libusb library, finally solves the "driver unloading" problem. The new BSD licensed libusb20 library is fully compatible with libusb-0.1.12 from sourceforge. - New "usbconfig" utility, for easy configuration of USB. - Full support for Split transactions, which means you can use your full speed USB audio device on a high speed USB HUB. - Full support for HS ISOC transactions, which makes writing drivers for various HS webcams possible, for example. - Full support for USB on embedded platforms, mostly cache flushing and buffer invalidating stuff. - Safer parsing of USB descriptors. - Autodetect of annoying USB install disks. - Support for USB device side mode, also called USB gadget mode, using the same API like the USB host side. In other words the new USB stack is symmetric with regard to host and device side. - Support for USB transfers like I/O vectors, means more throughput and less interrupts. - ... see the FreeBSD quarterly status reports under "USB project" 2) To enable the driver in the default kernel build: 2.a) Remove all existing USB device options from your kernel config file. 2.b) Add the following USB device options to your kernel configuration file: # USB core support device usb2_core # USB controller support device usb2_controller device usb2_controller_ehci device usb2_controller_ohci device usb2_controller_uhci # USB mass storage support device usb2_storage device usb2_storage_mass # USB ethernet support, requires miibus device usb2_ethernet device usb2_ethernet_aue device usb2_ethernet_axe device usb2_ethernet_cdce device usb2_ethernet_cue device usb2_ethernet_kue device usb2_ethernet_rue device usb2_ethernet_dav # USB wireless LAN support device usb2_wlan device usb2_wlan_rum device usb2_wlan_ral device usb2_wlan_zyd # USB serial device support device usb2_serial device usb2_serial_ark device usb2_serial_bsa device usb2_serial_bser device usb2_serial_chcom device usb2_serial_cycom device usb2_serial_foma device usb2_serial_ftdi device usb2_serial_gensa device usb2_serial_ipaq device usb2_serial_lpt device usb2_serial_mct device usb2_serial_modem device usb2_serial_moscom device usb2_serial_plcom device usb2_serial_visor device usb2_serial_vscom # USB bluetooth support device usb2_bluetooth device usb2_bluetooth_ng # USB input device support device usb2_input device usb2_input_hid device usb2_input_kbd device usb2_input_ms # USB sound and MIDI device support device usb2_sound 2) To enable the driver at runtime: 2.a) Unload all existing USB modules. If USB is compiled into the kernel then you might have to build a new kernel. 2.b) Load the "usb2_xxx.ko" modules under /boot/kernel having the same base name like the kernel device option. Submitted by: Hans Petter Selasky hselasky at c2i dot net Reviewed by: imp, alfred
2008-11-04 02:31:03 +00:00
/* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */
/* $NetBSD: if_zyd.c,v 1.7 2007/06/21 04:04:29 kiyohara Exp $ */
/* $FreeBSD$ */
/*-
* Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
* Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* ZyDAS ZD1211/ZD1211B USB WLAN driver
*
* NOTE: all function names beginning like "zyd_cfg_" can only
* be called from within the config thread function !
*/
#include <dev/usb2/include/usb2_devid.h>
#include <dev/usb2/include/usb2_standard.h>
#include <dev/usb2/include/usb2_mfunc.h>
#include <dev/usb2/include/usb2_error.h>
#define usb2_config_td_cc zyd_config_copy
#define usb2_config_td_softc zyd_softc
#define USB_DEBUG_VAR zyd_debug
#include <dev/usb2/core/usb2_core.h>
#include <dev/usb2/core/usb2_lookup.h>
#include <dev/usb2/core/usb2_process.h>
#include <dev/usb2/core/usb2_config_td.h>
#include <dev/usb2/core/usb2_debug.h>
#include <dev/usb2/core/usb2_request.h>
#include <dev/usb2/core/usb2_busdma.h>
#include <dev/usb2/core/usb2_util.h>
#include <dev/usb2/wlan/usb2_wlan.h>
#include <dev/usb2/wlan/if_zyd2_reg.h>
#include <dev/usb2/wlan/if_zyd2_fw.h>
#if USB_DEBUG
static int zyd_debug = 0;
SYSCTL_NODE(_hw_usb2, OID_AUTO, zyd, CTLFLAG_RW, 0, "USB zyd");
SYSCTL_INT(_hw_usb2_zyd, OID_AUTO, debug, CTLFLAG_RW, &zyd_debug, 0,
"zyd debug level");
#endif
#undef INDEXES
#define INDEXES(a) (sizeof(a) / sizeof((a)[0]))
static device_probe_t zyd_probe;
static device_attach_t zyd_attach;
static device_detach_t zyd_detach;
static usb2_callback_t zyd_intr_read_clear_stall_callback;
static usb2_callback_t zyd_intr_read_callback;
static usb2_callback_t zyd_intr_write_clear_stall_callback;
static usb2_callback_t zyd_intr_write_callback;
static usb2_callback_t zyd_bulk_read_clear_stall_callback;
static usb2_callback_t zyd_bulk_read_callback;
static usb2_callback_t zyd_bulk_write_clear_stall_callback;
static usb2_callback_t zyd_bulk_write_callback;
static usb2_config_td_command_t zyd_cfg_first_time_setup;
static usb2_config_td_command_t zyd_cfg_update_promisc;
static usb2_config_td_command_t zyd_cfg_set_chan;
static usb2_config_td_command_t zyd_cfg_pre_init;
static usb2_config_td_command_t zyd_cfg_init;
static usb2_config_td_command_t zyd_cfg_pre_stop;
static usb2_config_td_command_t zyd_cfg_stop;
static usb2_config_td_command_t zyd_config_copy;
static usb2_config_td_command_t zyd_cfg_scan_start;
static usb2_config_td_command_t zyd_cfg_scan_end;
static usb2_config_td_command_t zyd_cfg_set_rxfilter;
static usb2_config_td_command_t zyd_cfg_amrr_timeout;
static uint8_t zyd_plcp2ieee(uint8_t signal, uint8_t isofdm);
static void zyd_cfg_usbrequest(struct zyd_softc *sc, struct usb2_device_request *req, uint8_t *data);
static void zyd_cfg_usb2_intr_read(struct zyd_softc *sc, void *data, uint32_t size);
static void zyd_cfg_usb2_intr_write(struct zyd_softc *sc, const void *data, uint16_t code, uint32_t size);
static void zyd_cfg_read16(struct zyd_softc *sc, uint16_t addr, uint16_t *value);
static void zyd_cfg_read32(struct zyd_softc *sc, uint16_t addr, uint32_t *value);
static void zyd_cfg_write16(struct zyd_softc *sc, uint16_t addr, uint16_t value);
static void zyd_cfg_write32(struct zyd_softc *sc, uint16_t addr, uint32_t value);
static void zyd_cfg_rfwrite(struct zyd_softc *sc, uint32_t value);
static uint8_t zyd_cfg_uploadfirmware(struct zyd_softc *sc, const uint8_t *fw_ptr, uint32_t fw_len);
static void zyd_cfg_lock_phy(struct zyd_softc *sc);
static void zyd_cfg_unlock_phy(struct zyd_softc *sc);
static void zyd_cfg_set_beacon_interval(struct zyd_softc *sc, uint32_t interval);
static const char *zyd_rf_name(uint8_t type);
static void zyd_cfg_rf_rfmd_init(struct zyd_softc *sc, struct zyd_rf *rf);
static void zyd_cfg_rf_rfmd_switch_radio(struct zyd_softc *sc, uint8_t onoff);
static void zyd_cfg_rf_rfmd_set_channel(struct zyd_softc *sc, struct zyd_rf *rf, uint8_t channel);
static void zyd_cfg_rf_al2230_switch_radio(struct zyd_softc *sc, uint8_t onoff);
static void zyd_cfg_rf_al2230_init(struct zyd_softc *sc, struct zyd_rf *rf);
static void zyd_cfg_rf_al2230_init_b(struct zyd_softc *sc, struct zyd_rf *rf);
static void zyd_cfg_rf_al2230_set_channel(struct zyd_softc *sc, struct zyd_rf *rf, uint8_t channel);
static uint8_t zyd_cfg_rf_init_hw(struct zyd_softc *sc, struct zyd_rf *rf);
static uint8_t zyd_cfg_hw_init(struct zyd_softc *sc);
static void zyd_cfg_set_mac_addr(struct zyd_softc *sc, const uint8_t *addr);
static void zyd_cfg_switch_radio(struct zyd_softc *sc, uint8_t onoff);
static void zyd_cfg_set_bssid(struct zyd_softc *sc, uint8_t *addr);
static void zyd_start_cb(struct ifnet *ifp);
static void zyd_init_cb(void *arg);
static int zyd_ioctl_cb(struct ifnet *ifp, u_long command, caddr_t data);
static void zyd_watchdog(void *arg);
static void zyd_end_of_commands(struct zyd_softc *sc);
static void zyd_newassoc_cb(struct ieee80211_node *ni, int isnew);
static void zyd_scan_start_cb(struct ieee80211com *ic);
static void zyd_scan_end_cb(struct ieee80211com *ic);
static void zyd_set_channel_cb(struct ieee80211com *ic);
static void zyd_cfg_set_led(struct zyd_softc *sc, uint32_t which, uint8_t on);
static struct ieee80211vap *zyd_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, int opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]);
static void zyd_vap_delete(struct ieee80211vap *);
static struct ieee80211_node *zyd_node_alloc_cb(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]);
static void zyd_cfg_set_run(struct zyd_softc *sc, struct usb2_config_td_cc *cc);
static void zyd_fill_write_queue(struct zyd_softc *sc);
static void zyd_tx_clean_queue(struct zyd_softc *sc);
static void zyd_tx_freem(struct mbuf *m);
static void zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m, struct ieee80211_node *ni);
static struct ieee80211vap *zyd_get_vap(struct zyd_softc *sc);
static void zyd_tx_data(struct zyd_softc *sc, struct mbuf *m, struct ieee80211_node *ni);
static int zyd_raw_xmit_cb(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params);
static void zyd_setup_desc_and_tx(struct zyd_softc *sc, struct mbuf *m, uint16_t rate);
static int zyd_newstate_cb(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg);
static void zyd_cfg_amrr_start(struct zyd_softc *sc);
static void zyd_update_mcast_cb(struct ifnet *ifp);
static void zyd_update_promisc_cb(struct ifnet *ifp);
static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
/* various supported device vendors/products */
#define ZYD_ZD1211 0
#define ZYD_ZD1211B 1
static const struct usb2_device_id zyd_devs[] = {
/* ZYD_ZD1211 */
{USB_VPI(USB_VENDOR_3COM2, USB_PRODUCT_3COM2_3CRUSB10075, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WL54, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_ASUS, USB_PRODUCT_ASUS_WL159G, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_CYBERTAN, USB_PRODUCT_CYBERTAN_TG54USB, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_DRAYTEK, USB_PRODUCT_DRAYTEK_VIGOR550, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54GD, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54GZL, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_PLANEX3, USB_PRODUCT_PLANEX3_GWUS54GZ, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_PLANEX3, USB_PRODUCT_PLANEX3_GWUS54MINI, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_SAGEM, USB_PRODUCT_SAGEM_XG760A, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_SENAO, USB_PRODUCT_SENAO_NUB8301, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_SWEEX, USB_PRODUCT_SWEEX_ZD1211, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_TEKRAM, USB_PRODUCT_TEKRAM_QUICKWLAN, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_TEKRAM, USB_PRODUCT_TEKRAM_ZD1211_1, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_TEKRAM, USB_PRODUCT_TEKRAM_ZD1211_2, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_TWINMOS, USB_PRODUCT_TWINMOS_G240, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_UMEDIA, USB_PRODUCT_UMEDIA_ALL0298V2, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_UMEDIA, USB_PRODUCT_UMEDIA_TEW429UB_A, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_UMEDIA, USB_PRODUCT_UMEDIA_TEW429UB, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_UR055G, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_ZD1211, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_ZYDAS, USB_PRODUCT_ZYDAS_ZD1211, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_AG225H, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_ZYAIRG220, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_G200V2, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_G202, ZYD_ZD1211)},
/* ZYD_ZD1211B */
{USB_VPI(USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_SMCWUSBG, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_ZD1211B, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_ASUS, USB_PRODUCT_ASUS_A9T_WIFI, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050_V4000, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_ZD1211B, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSBF54G, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_FIBERLINE, USB_PRODUCT_FIBERLINE_WL430U, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54L, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_PHILIPS, USB_PRODUCT_PHILIPS_SNU5600, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GW_US54GXS, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_SAGEM, USB_PRODUCT_SAGEM_XG76NA, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_ZD1211B, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_UMEDIA, USB_PRODUCT_UMEDIA_TEW429UBC1, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_USR, USB_PRODUCT_USR_USR5423, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_VTECH, USB_PRODUCT_VTECH_ZD1211B, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_ZD1211B, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_ZYDAS, USB_PRODUCT_ZYDAS_ZD1211B, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_M202, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_G220V2, ZYD_ZD1211B)},
};
static const struct usb2_config zyd_config[ZYD_N_TRANSFER] = {
[ZYD_TR_BULK_DT_WR] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.mh.bufsize = ZYD_MAX_TXBUFSZ,
.mh.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
.mh.callback = &zyd_bulk_write_callback,
.ep_index = 0,
.mh.timeout = 10000, /* 10 seconds */
},
[ZYD_TR_BULK_DT_RD] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.mh.bufsize = ZYX_MAX_RXBUFSZ,
.mh.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
.mh.callback = &zyd_bulk_read_callback,
.ep_index = 0,
},
[ZYD_TR_BULK_CS_WR] = {
.type = UE_CONTROL,
.endpoint = 0x00, /* Control pipe */
.direction = UE_DIR_ANY,
.mh.bufsize = sizeof(struct usb2_device_request),
.mh.flags = {},
.mh.callback = &zyd_bulk_write_clear_stall_callback,
.mh.timeout = 1000, /* 1 second */
.mh.interval = 50, /* 50ms */
},
[ZYD_TR_BULK_CS_RD] = {
.type = UE_CONTROL,
.endpoint = 0x00, /* Control pipe */
.direction = UE_DIR_ANY,
.mh.bufsize = sizeof(struct usb2_device_request),
.mh.flags = {},
.mh.callback = &zyd_bulk_read_clear_stall_callback,
.mh.timeout = 1000, /* 1 second */
.mh.interval = 50, /* 50ms */
},
[ZYD_TR_INTR_DT_WR] = {
.type = UE_BULK_INTR,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.mh.bufsize = sizeof(struct zyd_cmd),
.mh.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
.mh.callback = &zyd_intr_write_callback,
.mh.timeout = 1000, /* 1 second */
.ep_index = 1,
},
[ZYD_TR_INTR_DT_RD] = {
.type = UE_BULK_INTR,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.mh.bufsize = sizeof(struct zyd_cmd),
.mh.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
.mh.callback = &zyd_intr_read_callback,
.ep_index = 1,
},
[ZYD_TR_INTR_CS_WR] = {
.type = UE_CONTROL,
.endpoint = 0x00, /* Control pipe */
.direction = UE_DIR_ANY,
.mh.bufsize = sizeof(struct usb2_device_request),
.mh.flags = {},
.mh.callback = &zyd_intr_write_clear_stall_callback,
.mh.timeout = 1000, /* 1 second */
.mh.interval = 50, /* 50ms */
},
[ZYD_TR_INTR_CS_RD] = {
.type = UE_CONTROL,
.endpoint = 0x00, /* Control pipe */
.direction = UE_DIR_ANY,
.mh.bufsize = sizeof(struct usb2_device_request),
.mh.flags = {},
.mh.callback = &zyd_intr_read_clear_stall_callback,
.mh.timeout = 1000, /* 1 second */
.mh.interval = 50, /* 50ms */
},
};
static devclass_t zyd_devclass;
static device_method_t zyd_methods[] = {
DEVMETHOD(device_probe, zyd_probe),
DEVMETHOD(device_attach, zyd_attach),
DEVMETHOD(device_detach, zyd_detach),
{0, 0}
};
static driver_t zyd_driver = {
.name = "zyd",
.methods = zyd_methods,
.size = sizeof(struct zyd_softc),
};
DRIVER_MODULE(zyd, ushub, zyd_driver, zyd_devclass, NULL, 0);
MODULE_DEPEND(zyd, usb2_wlan, 1, 1, 1);
MODULE_DEPEND(zyd, usb2_core, 1, 1, 1);
MODULE_DEPEND(zyd, wlan, 1, 1, 1);
MODULE_DEPEND(zyd, wlan_amrr, 1, 1, 1);
static uint8_t
zyd_plcp2ieee(uint8_t signal, uint8_t isofdm)
{
if (isofdm) {
static const uint8_t ofdmrates[16] =
{0, 0, 0, 0, 0, 0, 0, 96, 48, 24, 12, 108, 72, 36, 18};
return ofdmrates[signal & 0xf];
} else {
static const uint8_t cckrates[16] =
{0, 0, 0, 0, 4, 0, 0, 11, 0, 0, 2, 0, 0, 0, 22, 0};
return cckrates[signal & 0xf];
}
}
/*
* USB request basic wrapper
*/
static void
zyd_cfg_usbrequest(struct zyd_softc *sc, struct usb2_device_request *req, uint8_t *data)
{
usb2_error_t err;
uint16_t length;
if (usb2_config_td_is_gone(&sc->sc_config_td)) {
goto error;
}
err = usb2_do_request_flags
(sc->sc_udev, &sc->sc_mtx, req, data, 0, NULL, 1000);
if (err) {
DPRINTFN(0, "%s: device request failed, err=%s "
"(ignored)\n", sc->sc_name, usb2_errstr(err));
error:
length = UGETW(req->wLength);
if ((req->bmRequestType & UT_READ) && length) {
bzero(data, length);
}
}
return;
}
static void
zyd_intr_read_clear_stall_callback(struct usb2_xfer *xfer)
{
struct zyd_softc *sc = xfer->priv_sc;
struct usb2_xfer *xfer_other = sc->sc_xfer[ZYD_TR_INTR_DT_RD];
if (usb2_clear_stall_callback(xfer, xfer_other)) {
DPRINTF("stall cleared\n");
sc->sc_flags &= ~ZYD_FLAG_INTR_READ_STALL;
usb2_transfer_start(xfer_other);
}
return;
}
/*
* Callback handler for interrupt transfer
*/
static void
zyd_intr_read_callback(struct usb2_xfer *xfer)
{
struct zyd_softc *sc = xfer->priv_sc;
struct zyd_cmd *cmd = &sc->sc_intr_ibuf;
uint32_t actlen;
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
actlen = xfer->actlen;
DPRINTFN(3, "length=%d\n", actlen);
if (actlen > sizeof(sc->sc_intr_ibuf)) {
actlen = sizeof(sc->sc_intr_ibuf);
}
usb2_copy_out(xfer->frbuffers, 0,
&sc->sc_intr_ibuf, actlen);
switch (le16toh(cmd->code)) {
case ZYD_NOTIF_RETRYSTATUS:
Bring in USB4BSD, Hans Petter Selasky rework of the USB stack that includes significant features and SMP safety. This commit includes a more or less complete rewrite of the *BSD USB stack, including Host Controller and Device Controller drivers and updating all existing USB drivers to use the new USB API: 1) A brief feature list: - A new and mutex enabled USB API. - Many USB drivers are now running Giant free. - Linux USB kernel compatibility layer. - New UGEN backend and libusb library, finally solves the "driver unloading" problem. The new BSD licensed libusb20 library is fully compatible with libusb-0.1.12 from sourceforge. - New "usbconfig" utility, for easy configuration of USB. - Full support for Split transactions, which means you can use your full speed USB audio device on a high speed USB HUB. - Full support for HS ISOC transactions, which makes writing drivers for various HS webcams possible, for example. - Full support for USB on embedded platforms, mostly cache flushing and buffer invalidating stuff. - Safer parsing of USB descriptors. - Autodetect of annoying USB install disks. - Support for USB device side mode, also called USB gadget mode, using the same API like the USB host side. In other words the new USB stack is symmetric with regard to host and device side. - Support for USB transfers like I/O vectors, means more throughput and less interrupts. - ... see the FreeBSD quarterly status reports under "USB project" 2) To enable the driver in the default kernel build: 2.a) Remove all existing USB device options from your kernel config file. 2.b) Add the following USB device options to your kernel configuration file: # USB core support device usb2_core # USB controller support device usb2_controller device usb2_controller_ehci device usb2_controller_ohci device usb2_controller_uhci # USB mass storage support device usb2_storage device usb2_storage_mass # USB ethernet support, requires miibus device usb2_ethernet device usb2_ethernet_aue device usb2_ethernet_axe device usb2_ethernet_cdce device usb2_ethernet_cue device usb2_ethernet_kue device usb2_ethernet_rue device usb2_ethernet_dav # USB wireless LAN support device usb2_wlan device usb2_wlan_rum device usb2_wlan_ral device usb2_wlan_zyd # USB serial device support device usb2_serial device usb2_serial_ark device usb2_serial_bsa device usb2_serial_bser device usb2_serial_chcom device usb2_serial_cycom device usb2_serial_foma device usb2_serial_ftdi device usb2_serial_gensa device usb2_serial_ipaq device usb2_serial_lpt device usb2_serial_mct device usb2_serial_modem device usb2_serial_moscom device usb2_serial_plcom device usb2_serial_visor device usb2_serial_vscom # USB bluetooth support device usb2_bluetooth device usb2_bluetooth_ng # USB input device support device usb2_input device usb2_input_hid device usb2_input_kbd device usb2_input_ms # USB sound and MIDI device support device usb2_sound 2) To enable the driver at runtime: 2.a) Unload all existing USB modules. If USB is compiled into the kernel then you might have to build a new kernel. 2.b) Load the "usb2_xxx.ko" modules under /boot/kernel having the same base name like the kernel device option. Submitted by: Hans Petter Selasky hselasky at c2i dot net Reviewed by: imp, alfred
2008-11-04 02:31:03 +00:00
goto handle_notif_retrystatus;
case ZYD_NOTIF_IORD:
Bring in USB4BSD, Hans Petter Selasky rework of the USB stack that includes significant features and SMP safety. This commit includes a more or less complete rewrite of the *BSD USB stack, including Host Controller and Device Controller drivers and updating all existing USB drivers to use the new USB API: 1) A brief feature list: - A new and mutex enabled USB API. - Many USB drivers are now running Giant free. - Linux USB kernel compatibility layer. - New UGEN backend and libusb library, finally solves the "driver unloading" problem. The new BSD licensed libusb20 library is fully compatible with libusb-0.1.12 from sourceforge. - New "usbconfig" utility, for easy configuration of USB. - Full support for Split transactions, which means you can use your full speed USB audio device on a high speed USB HUB. - Full support for HS ISOC transactions, which makes writing drivers for various HS webcams possible, for example. - Full support for USB on embedded platforms, mostly cache flushing and buffer invalidating stuff. - Safer parsing of USB descriptors. - Autodetect of annoying USB install disks. - Support for USB device side mode, also called USB gadget mode, using the same API like the USB host side. In other words the new USB stack is symmetric with regard to host and device side. - Support for USB transfers like I/O vectors, means more throughput and less interrupts. - ... see the FreeBSD quarterly status reports under "USB project" 2) To enable the driver in the default kernel build: 2.a) Remove all existing USB device options from your kernel config file. 2.b) Add the following USB device options to your kernel configuration file: # USB core support device usb2_core # USB controller support device usb2_controller device usb2_controller_ehci device usb2_controller_ohci device usb2_controller_uhci # USB mass storage support device usb2_storage device usb2_storage_mass # USB ethernet support, requires miibus device usb2_ethernet device usb2_ethernet_aue device usb2_ethernet_axe device usb2_ethernet_cdce device usb2_ethernet_cue device usb2_ethernet_kue device usb2_ethernet_rue device usb2_ethernet_dav # USB wireless LAN support device usb2_wlan device usb2_wlan_rum device usb2_wlan_ral device usb2_wlan_zyd # USB serial device support device usb2_serial device usb2_serial_ark device usb2_serial_bsa device usb2_serial_bser device usb2_serial_chcom device usb2_serial_cycom device usb2_serial_foma device usb2_serial_ftdi device usb2_serial_gensa device usb2_serial_ipaq device usb2_serial_lpt device usb2_serial_mct device usb2_serial_modem device usb2_serial_moscom device usb2_serial_plcom device usb2_serial_visor device usb2_serial_vscom # USB bluetooth support device usb2_bluetooth device usb2_bluetooth_ng # USB input device support device usb2_input device usb2_input_hid device usb2_input_kbd device usb2_input_ms # USB sound and MIDI device support device usb2_sound 2) To enable the driver at runtime: 2.a) Unload all existing USB modules. If USB is compiled into the kernel then you might have to build a new kernel. 2.b) Load the "usb2_xxx.ko" modules under /boot/kernel having the same base name like the kernel device option. Submitted by: Hans Petter Selasky hselasky at c2i dot net Reviewed by: imp, alfred
2008-11-04 02:31:03 +00:00
goto handle_notif_iord;
default:
DPRINTFN(2, "unknown indication: 0x%04x\n",
le16toh(cmd->code));
}
/* fallthrough */
case USB_ST_SETUP:
tr_setup:
if (sc->sc_flags & ZYD_FLAG_INTR_READ_STALL) {
usb2_transfer_start(sc->sc_xfer[ZYD_TR_INTR_CS_RD]);
break;
}
xfer->frlengths[0] = xfer->max_data_length;
usb2_start_hardware(xfer);
break;
default: /* Error */
DPRINTFN(3, "error = %s\n",
usb2_errstr(xfer->error));
if (xfer->error != USB_ERR_CANCELLED) {
/* try to clear stall first */
sc->sc_flags |= ZYD_FLAG_INTR_READ_STALL;
usb2_transfer_start(sc->sc_xfer[ZYD_TR_INTR_CS_RD]);
}
break;
}
return;
handle_notif_retrystatus:{
struct zyd_notif_retry *retry = (void *)(cmd->data);
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211vap *vap;
struct ieee80211_node *ni;
DPRINTF("retry intr: rate=0x%x "
"addr=%02x:%02x:%02x:%02x:%02x:%02x count=%d (0x%x)\n",
le16toh(retry->rate), retry->macaddr[0], retry->macaddr[1],
retry->macaddr[2], retry->macaddr[3], retry->macaddr[4],
retry->macaddr[5], le16toh(retry->count) & 0xff,
le16toh(retry->count));
vap = zyd_get_vap(sc);
if ((vap != NULL) && (sc->sc_amrr_timer)) {
/*
* Find the node to which the packet was sent
* and update its retry statistics. In BSS
* mode, this node is the AP we're associated
* to so no lookup is actually needed.
*/
ni = ieee80211_find_txnode(vap, retry->macaddr);
if (ni != NULL) {
ieee80211_amrr_tx_complete(&ZYD_NODE(ni)->amn,
IEEE80211_AMRR_FAILURE, 1);
ieee80211_free_node(ni);
}
}
if (retry->count & htole16(0x100)) {
ifp->if_oerrors++; /* too many retries */
}
goto tr_setup;
}
handle_notif_iord:
if (*(uint16_t *)cmd->data == htole16(ZYD_CR_INTERRUPT)) {
goto tr_setup; /* HMAC interrupt */
}
if (actlen < 4) {
DPRINTFN(0, "too short, %u bytes\n", actlen);
goto tr_setup; /* too short */
}
actlen -= 4;
sc->sc_intr_ilen = actlen;
if (sc->sc_intr_iwakeup) {
sc->sc_intr_iwakeup = 0;
usb2_cv_signal(&sc->sc_intr_cv);
} else {
sc->sc_intr_iwakeup = 1;
}
/*
* We pause reading data from the interrupt endpoint until the
* data has been picked up!
*/
return;
}
/*
* Interrupt call reply transfer, read
*/
static void
zyd_cfg_usb2_intr_read(struct zyd_softc *sc, void *data, uint32_t size)
{
uint16_t actlen;
uint16_t x;
if (size > sizeof(sc->sc_intr_ibuf.data)) {
DPRINTFN(0, "truncating transfer size!\n");
size = sizeof(sc->sc_intr_ibuf.data);
}
if (usb2_config_td_is_gone(&sc->sc_config_td)) {
bzero(data, size);
goto done;
}
if (sc->sc_intr_iwakeup) {
DPRINTF("got data already!\n");
sc->sc_intr_iwakeup = 0;
goto skip0;
}
repeat:
sc->sc_intr_iwakeup = 1;
while (sc->sc_intr_iwakeup) {
/* wait for data */
usb2_transfer_start(sc->sc_xfer[ZYD_TR_INTR_DT_RD]);
if (usb2_cv_timedwait(&sc->sc_intr_cv,
&sc->sc_mtx, hz / 2)) {
/* should not happen */
}
if (usb2_config_td_is_gone(&sc->sc_config_td)) {
bzero(data, size);
goto done;
}
}
skip0:
if (size != sc->sc_intr_ilen) {
DPRINTFN(0, "unexpected length %u != %u\n",
size, sc->sc_intr_ilen);
goto repeat;
}
actlen = sc->sc_intr_ilen;
actlen /= 4;
/* verify register values */
for (x = 0; x != actlen; x++) {
if (sc->sc_intr_obuf.data[(2 * x)] !=
sc->sc_intr_ibuf.data[(4 * x)]) {
/* invalid register */
DPRINTFN(0, "Invalid register (1) at %u!\n", x);
goto repeat;
}
if (sc->sc_intr_obuf.data[(2 * x) + 1] !=
sc->sc_intr_ibuf.data[(4 * x) + 1]) {
/* invalid register */
DPRINTFN(0, "Invalid register (2) at %u!\n", x);
goto repeat;
}
}
bcopy(sc->sc_intr_ibuf.data, data, size);
/*
* We have fetched the data from the shared buffer and it is
* safe to restart the interrupt transfer!
*/
usb2_transfer_start(sc->sc_xfer[ZYD_TR_INTR_DT_RD]);
done:
return;
}
static void
zyd_intr_write_clear_stall_callback(struct usb2_xfer *xfer)
{
struct zyd_softc *sc = xfer->priv_sc;
struct usb2_xfer *xfer_other = sc->sc_xfer[ZYD_TR_INTR_DT_WR];
if (usb2_clear_stall_callback(xfer, xfer_other)) {
DPRINTF("stall cleared\n");
sc->sc_flags &= ~ZYD_FLAG_INTR_WRITE_STALL;
usb2_transfer_start(xfer_other);
}
return;
}
static void
zyd_intr_write_callback(struct usb2_xfer *xfer)
{
struct zyd_softc *sc = xfer->priv_sc;
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
DPRINTFN(3, "length=%d\n", xfer->actlen);
goto wakeup;
case USB_ST_SETUP:
if (sc->sc_flags & ZYD_FLAG_INTR_WRITE_STALL) {
usb2_transfer_start(sc->sc_xfer[ZYD_TR_INTR_CS_WR]);
goto wakeup;
}
if (sc->sc_intr_owakeup) {
usb2_copy_in(xfer->frbuffers, 0, &sc->sc_intr_obuf,
sc->sc_intr_olen);
xfer->frlengths[0] = sc->sc_intr_olen;
usb2_start_hardware(xfer);
}
break;
default: /* Error */
DPRINTFN(3, "error = %s\n",
usb2_errstr(xfer->error));
if (xfer->error != USB_ERR_CANCELLED) {
/* try to clear stall first */
sc->sc_flags |= ZYD_FLAG_INTR_WRITE_STALL;
usb2_transfer_start(sc->sc_xfer[ZYD_TR_INTR_CS_WR]);
}
goto wakeup;
}
return;
wakeup:
if (sc->sc_intr_owakeup) {
sc->sc_intr_owakeup = 0;
usb2_cv_signal(&sc->sc_intr_cv);
}
return;
}
/*
* Interrupt transfer, write.
*
* Not always an "interrupt transfer". If operating in
* full speed mode, EP4 is bulk out, not interrupt out.
*/
static void
zyd_cfg_usb2_intr_write(struct zyd_softc *sc, const void *data,
uint16_t code, uint32_t size)
{
if (size > sizeof(sc->sc_intr_obuf.data)) {
DPRINTFN(0, "truncating transfer size!\n");
size = sizeof(sc->sc_intr_obuf.data);
}
if (usb2_config_td_is_gone(&sc->sc_config_td)) {
goto done;
}
sc->sc_intr_olen = size + 2;
sc->sc_intr_owakeup = 1;
sc->sc_intr_obuf.code = htole16(code);
bcopy(data, sc->sc_intr_obuf.data, size);
usb2_transfer_start(sc->sc_xfer[ZYD_TR_INTR_DT_WR]);
while (sc->sc_intr_owakeup) {
if (usb2_cv_timedwait(&sc->sc_intr_cv,
&sc->sc_mtx, hz / 2)) {
/* should not happen */
}
if (usb2_config_td_is_gone(&sc->sc_config_td)) {
sc->sc_intr_owakeup = 0;
goto done;
}
}
done:
return;
}
static void
zyd_cfg_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, uint16_t ilen,
void *odata, uint16_t olen, uint16_t flags)
{
zyd_cfg_usb2_intr_write(sc, idata, code, ilen);
if (flags & ZYD_CMD_FLAG_READ) {
zyd_cfg_usb2_intr_read(sc, odata, olen);
}
return;
}
static void
zyd_cfg_read16(struct zyd_softc *sc, uint16_t addr, uint16_t *value)
{
struct zyd_pair tmp[1];
addr = htole16(addr);
zyd_cfg_cmd(sc, ZYD_CMD_IORD, &addr, sizeof(addr),
tmp, sizeof(tmp), ZYD_CMD_FLAG_READ);
*value = le16toh(tmp[0].val);
return;
}
static void
zyd_cfg_read32(struct zyd_softc *sc, uint16_t addr, uint32_t *value)
{
struct zyd_pair tmp[2];
uint16_t regs[2];
regs[0] = ZYD_REG32_HI(addr);
regs[1] = ZYD_REG32_LO(addr);
regs[0] = htole16(regs[0]);
regs[1] = htole16(regs[1]);
zyd_cfg_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs),
tmp, sizeof(tmp), ZYD_CMD_FLAG_READ);
*value = (le16toh(tmp[0].val) << 16) | le16toh(tmp[1].val);
return;
}
static void
zyd_cfg_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
{
struct zyd_pair pair[1];
pair[0].reg = htole16(reg);
pair[0].val = htole16(val);
zyd_cfg_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
return;
}
static void
zyd_cfg_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
{
struct zyd_pair pair[2];
pair[0].reg = htole16(ZYD_REG32_HI(reg));
pair[0].val = htole16(val >> 16);
pair[1].reg = htole16(ZYD_REG32_LO(reg));
pair[1].val = htole16(val & 0xffff);
zyd_cfg_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
return;
}
/*------------------------------------------------------------------------*
* zyd_cfg_rfwrite - write RF registers
*------------------------------------------------------------------------*/
static void
zyd_cfg_rfwrite(struct zyd_softc *sc, uint32_t value)
{
struct zyd_rf *rf = &sc->sc_rf;
struct zyd_rfwrite req;
uint16_t cr203;
uint16_t i;
zyd_cfg_read16(sc, ZYD_CR203, &cr203);
cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
req.code = htole16(2);
req.width = htole16(rf->width);
for (i = 0; i != rf->width; i++) {
req.bit[i] = htole16(cr203);
if (value & (1 << (rf->width - 1 - i)))
req.bit[i] |= htole16(ZYD_RF_DATA);
}
zyd_cfg_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + (2 * rf->width), NULL, 0, 0);
return;
}
static void
zyd_bulk_read_clear_stall_callback(struct usb2_xfer *xfer)
{
struct zyd_softc *sc = xfer->priv_sc;
struct usb2_xfer *xfer_other = sc->sc_xfer[ZYD_TR_BULK_DT_RD];
if (usb2_clear_stall_callback(xfer, xfer_other)) {
DPRINTF("stall cleared\n");
sc->sc_flags &= ~ZYD_FLAG_BULK_READ_STALL;
usb2_transfer_start(xfer_other);
}
return;
}
static void
zyd_bulk_read_callback_sub(struct usb2_xfer *xfer, struct zyd_ifq *mq,
uint32_t offset, uint16_t len)
{
enum {
ZYD_OVERHEAD = (ZYD_HW_PADDING + IEEE80211_CRC_LEN),
};
struct zyd_softc *sc = xfer->priv_sc;
struct ifnet *ifp = sc->sc_ifp;
struct zyd_plcphdr plcp;
struct zyd_rx_stat stat;
struct mbuf *m;
if (len < ZYD_OVERHEAD) {
DPRINTF("frame too "
"short (length=%d)\n", len);
ifp->if_ierrors++;
return;
}
usb2_copy_out(xfer->frbuffers, offset, &plcp, sizeof(plcp));
usb2_copy_out(xfer->frbuffers, offset + len - sizeof(stat),
&stat, sizeof(stat));
if (stat.flags & ZYD_RX_ERROR) {
DPRINTF("RX status indicated "
"error (0x%02x)\n", stat.flags);
ifp->if_ierrors++;
return;
}
/* compute actual frame length */
len -= ZYD_OVERHEAD;
/* allocate a mbuf to store the frame */
if (len > MCLBYTES) {
DPRINTF("too large frame, "
"%u bytes\n", len);
return;
} else if (len > MHLEN)
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
else
m = m_gethdr(M_DONTWAIT, MT_DATA);
if (m == NULL) {
DPRINTF("could not allocate rx mbuf\n");
ifp->if_ierrors++;
return;
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = len;
m->m_len = len;
usb2_copy_out(xfer->frbuffers, offset +
sizeof(plcp), m->m_data, len);
if (bpf_peers_present(ifp->if_bpf)) {
struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = 0;
if (stat.flags & (ZYD_RX_BADCRC16 | ZYD_RX_BADCRC32))
tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
/* XXX toss, no way to express errors */
if (stat.flags & ZYD_RX_DECRYPTERR)
tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
tap->wr_rate =
zyd_plcp2ieee(plcp.signal, stat.flags & ZYD_RX_OFDM);
tap->wr_antsignal = stat.rssi + -95;
tap->wr_antnoise = -95; /* XXX */
bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m);
}
if (sizeof(m->m_hdr.pad) > 0) {
m->m_hdr.pad[0] = stat.rssi; /* XXX hack */
}
_IF_ENQUEUE(mq, m);
return;
}
static void
zyd_bulk_read_callback(struct usb2_xfer *xfer)
{
struct zyd_softc *sc = xfer->priv_sc;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211_node *ni;
struct zyd_rx_desc rx_desc;
struct zyd_ifq mq = {NULL, NULL, 0};
struct mbuf *m;
uint32_t offset;
uint16_t len16;
uint8_t x;
uint8_t rssi;
int8_t nf;
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
if (xfer->actlen < MAX(sizeof(rx_desc), ZYD_MIN_FRAGSZ)) {
DPRINTFN(0, "xfer too short, %d bytes\n", xfer->actlen);
ifp->if_ierrors++;
goto tr_setup;
}
usb2_copy_out(xfer->frbuffers, xfer->actlen - sizeof(rx_desc),
&rx_desc, sizeof(rx_desc));
if (UGETW(rx_desc.tag) == ZYD_TAG_MULTIFRAME) {
offset = 0;
DPRINTFN(4, "received multi-frame transfer, "
"%u bytes\n", xfer->actlen);
for (x = 0; x < ZYD_MAX_RXFRAMECNT; x++) {
len16 = UGETW(rx_desc.len[x]);
if ((len16 == 0) || (len16 > xfer->actlen)) {
break;
}
zyd_bulk_read_callback_sub(xfer, &mq, offset, len16);
/*
* next frame is aligned on a 32-bit
* boundary
*/
len16 = (len16 + 3) & ~3;
offset += len16;
if (len16 > xfer->actlen) {
break;
}
xfer->actlen -= len16;
}
} else {
DPRINTFN(4, "received single-frame transfer, "
"%u bytes\n", xfer->actlen);
zyd_bulk_read_callback_sub(xfer, &mq, 0, xfer->actlen);
}
case USB_ST_SETUP:
tr_setup:
DPRINTF("setup\n");
if (sc->sc_flags & ZYD_FLAG_BULK_READ_STALL) {
usb2_transfer_start(sc->sc_xfer[ZYD_TR_BULK_CS_RD]);
} else {
xfer->frlengths[0] = xfer->max_data_length;
usb2_start_hardware(xfer);
}
/*
* At the end of a USB callback it is always safe to unlock
* the private mutex of a device! That is why we do the
* "ieee80211_input" here, and not some lines up!
*/
if (mq.ifq_head) {
mtx_unlock(&sc->sc_mtx);
while (1) {
_IF_DEQUEUE(&mq, m);
if (m == NULL)
break;
rssi = m->m_hdr.pad[0]; /* XXX hack */
rssi = (rssi > 63) ? 127 : 2 * rssi;
nf = -95; /* XXX */
ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
if (ni != NULL) {
if (ieee80211_input(ni, m, rssi, nf, 0)) {
/* ignore */
}
ieee80211_free_node(ni);
} else {
if (ieee80211_input_all(ic, m, rssi, nf, 0)) {
/* ignore */
}
}
}
mtx_lock(&sc->sc_mtx);
}
break;
default: /* Error */
DPRINTF("frame error: %s\n", usb2_errstr(xfer->error));
if (xfer->error != USB_ERR_CANCELLED) {
/* try to clear stall first */
sc->sc_flags |= ZYD_FLAG_BULK_READ_STALL;
usb2_transfer_start(sc->sc_xfer[ZYD_TR_BULK_CS_RD]);
}
break;
}
return;
}
/*------------------------------------------------------------------------*
* zyd_cfg_uploadfirmware
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
static uint8_t
zyd_cfg_uploadfirmware(struct zyd_softc *sc, const uint8_t *fw_ptr,
uint32_t fw_len)
{
struct usb2_device_request req;
uint16_t temp;
uint16_t addr;
uint8_t stat;
DPRINTF("firmware %p size=%u\n", fw_ptr, fw_len);
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = ZYD_DOWNLOADREQ;
USETW(req.wIndex, 0);
temp = 64;
addr = ZYD_FIRMWARE_START_ADDR;
while (fw_len > 0) {
if (fw_len < 64) {
temp = fw_len;
}
DPRINTF("firmware block: fw_len=%u\n", fw_len);
USETW(req.wValue, addr);
USETW(req.wLength, temp);
zyd_cfg_usbrequest(sc, &req,
USB_ADD_BYTES(fw_ptr, 0));
addr += (temp / 2);
fw_len -= temp;
fw_ptr += temp;
}
/* check whether the upload succeeded */
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = ZYD_DOWNLOADSTS;
USETW(req.wValue, 0);
USETW(req.wIndex, 0);
USETW(req.wLength, sizeof(stat));
zyd_cfg_usbrequest(sc, &req, &stat);
return ((stat & 0x80) ? 1 : 0);
}
/*
* Driver OS interface
*/
/*
* Probe for a ZD1211-containing product
*/
static int
zyd_probe(device_t dev)
{
struct usb2_attach_arg *uaa = device_get_ivars(dev);
if (uaa->usb2_mode != USB_MODE_HOST) {
return (ENXIO);
}
if (uaa->info.bConfigIndex != 0) {
return (ENXIO);
}
if (uaa->info.bIfaceIndex != ZYD_IFACE_INDEX) {
return (ENXIO);
}
return (usb2_lookup_id_by_uaa(zyd_devs, sizeof(zyd_devs), uaa));
}
/*
* Attach the interface. Allocate softc structures, do
* setup and ethernet/BPF attach.
*/
static int
zyd_attach(device_t dev)
{
struct usb2_attach_arg *uaa = device_get_ivars(dev);
struct zyd_softc *sc = device_get_softc(dev);
int error;
uint8_t iface_index;
if (sc == NULL) {
return (ENOMEM);
}
if (uaa->info.bcdDevice < 0x4330) {
device_printf(dev, "device version mismatch: 0x%X "
"(only >= 43.30 supported)\n",
uaa->info.bcdDevice);
return (EINVAL);
}
device_set_usb2_desc(dev);
snprintf(sc->sc_name, sizeof(sc->sc_name), "%s",
device_get_nameunit(dev));
sc->sc_unit = device_get_unit(dev);
sc->sc_udev = uaa->device;
sc->sc_mac_rev = USB_GET_DRIVER_INFO(uaa);
mtx_init(&sc->sc_mtx, "zyd lock", MTX_NETWORK_LOCK,
MTX_DEF | MTX_RECURSE);
usb2_cv_init(&sc->sc_intr_cv, "IWAIT");
usb2_callout_init_mtx(&sc->sc_watchdog,
&sc->sc_mtx, CALLOUT_RETURNUNLOCKED);
/*
* Endpoint 1 = Bulk out (512b @ high speed / 64b @ full speed)
* Endpoint 2 = Bulk in (512b @ high speed / 64b @ full speed)
* Endpoint 3 = Intr in (64b)
* Endpoint 4 = Intr out @ high speed / bulk out @ full speed (64b)
*/
iface_index = ZYD_IFACE_INDEX;
error = usb2_transfer_setup(uaa->device, &iface_index,
sc->sc_xfer, zyd_config, ZYD_N_TRANSFER, sc, &sc->sc_mtx);
if (error) {
device_printf(dev, "could not allocate USB "
"transfers: %s\n", usb2_errstr(error));
goto detach;
}
error = usb2_config_td_setup(&sc->sc_config_td, sc, &sc->sc_mtx,
&zyd_end_of_commands, sizeof(struct usb2_config_td_cc), 16);
if (error) {
device_printf(dev, "could not setup config "
"thread!\n");
goto detach;
}
mtx_lock(&sc->sc_mtx);
/* start setup */
usb2_config_td_queue_command
(&sc->sc_config_td, NULL, &zyd_cfg_first_time_setup, 0, 0);
/* start watchdog (will exit mutex) */
zyd_watchdog(sc);
return (0);
detach:
zyd_detach(dev);
return (ENXIO);
}
/*
* Lock PHY registers
*/
static void
zyd_cfg_lock_phy(struct zyd_softc *sc)
{
uint32_t temp;
zyd_cfg_read32(sc, ZYD_MAC_MISC, &temp);
temp &= ~ZYD_UNLOCK_PHY_REGS;
zyd_cfg_write32(sc, ZYD_MAC_MISC, temp);
}
/*
* Unlock PHY registers
*/
static void
zyd_cfg_unlock_phy(struct zyd_softc *sc)
{
uint32_t temp;
zyd_cfg_read32(sc, ZYD_MAC_MISC, &temp);
temp |= ZYD_UNLOCK_PHY_REGS;
zyd_cfg_write32(sc, ZYD_MAC_MISC, temp);
}
static void
zyd_cfg_set_beacon_interval(struct zyd_softc *sc, uint32_t bintval)
{
/* XXX this is probably broken.. */
zyd_cfg_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
zyd_cfg_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1);
zyd_cfg_write32(sc, ZYD_CR_BCN_INTERVAL, bintval);
return;
}
/*
* Get RF name
*/
static const char *
zyd_rf_name(uint8_t type)
{
static const char *const zyd_rfs[] = {
"unknown", "unknown", "UW2451", "UCHIP", "AL2230",
"AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT",
"PV2000", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2",
"PHILIPS"
};
return (zyd_rfs[(type > 15) ? 0 : type]);
}
/*
* RF driver: Init for RFMD chip
*/
static void
zyd_cfg_rf_rfmd_init(struct zyd_softc *sc, struct zyd_rf *rf)
{
static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
static const uint32_t rfini[] = ZYD_RFMD_RF;
uint32_t i;
/* init RF-dependent PHY registers */
for (i = 0; i != INDEXES(phyini); i++) {
zyd_cfg_write16(sc, phyini[i].reg, phyini[i].val);
}
/* init RFMD radio */
for (i = 0; i != INDEXES(rfini); i++) {
zyd_cfg_rfwrite(sc, rfini[i]);
}
return;
}
/*
* RF driver: Switch radio on/off for RFMD chip
*/
static void
zyd_cfg_rf_rfmd_switch_radio(struct zyd_softc *sc, uint8_t on)
{
zyd_cfg_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
zyd_cfg_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
return;
}
/*
* RF driver: Channel setting for RFMD chip
*/
static void
zyd_cfg_rf_rfmd_set_channel(struct zyd_softc *sc, struct zyd_rf *rf,
uint8_t channel)
{
static const struct {
uint32_t r1, r2;
} rfprog[] = ZYD_RFMD_CHANTABLE;
zyd_cfg_rfwrite(sc, rfprog[channel - 1].r1);
zyd_cfg_rfwrite(sc, rfprog[channel - 1].r2);
return;
}
/*
* RF driver: Switch radio on/off for AL2230 chip
*/
static void
zyd_cfg_rf_al2230_switch_radio(struct zyd_softc *sc, uint8_t on)
{
uint8_t on251 = (sc->sc_mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
zyd_cfg_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
zyd_cfg_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
return;
}
/*
* RF driver: Init for AL2230 chip
*/
static void
zyd_cfg_rf_al2230_init(struct zyd_softc *sc, struct zyd_rf *rf)
{
static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
static const uint32_t rfini[] = ZYD_AL2230_RF;
uint32_t i;
/* init RF-dependent PHY registers */
for (i = 0; i != INDEXES(phyini); i++) {
zyd_cfg_write16(sc, phyini[i].reg, phyini[i].val);
}
/* init AL2230 radio */
for (i = 0; i != INDEXES(rfini); i++) {
zyd_cfg_rfwrite(sc, rfini[i]);
}
return;
}
static void
zyd_cfg_rf_al2230_init_b(struct zyd_softc *sc, struct zyd_rf *rf)
{
static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
static const uint32_t rfini[] = ZYD_AL2230_RF_B;
uint32_t i;
/* init RF-dependent PHY registers */
for (i = 0; i != INDEXES(phyini); i++) {
zyd_cfg_write16(sc, phyini[i].reg, phyini[i].val);
}
/* init AL2230 radio */
for (i = 0; i != INDEXES(rfini); i++) {
zyd_cfg_rfwrite(sc, rfini[i]);
}
return;
}
/*
* RF driver: Channel setting for AL2230 chip
*/
static void
zyd_cfg_rf_al2230_set_channel(struct zyd_softc *sc, struct zyd_rf *rf,
uint8_t channel)
{
static const struct {
uint32_t r1, r2, r3;
} rfprog[] = ZYD_AL2230_CHANTABLE;
zyd_cfg_rfwrite(sc, rfprog[channel - 1].r1);
zyd_cfg_rfwrite(sc, rfprog[channel - 1].r2);
zyd_cfg_rfwrite(sc, rfprog[channel - 1].r3);
zyd_cfg_write16(sc, ZYD_CR138, 0x28);
zyd_cfg_write16(sc, ZYD_CR203, 0x06);
return;
}
/*
* AL7230B RF methods.
*/
static void
zyd_cfg_rf_al7230b_switch_radio(struct zyd_softc *sc, uint8_t on)
{
zyd_cfg_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
zyd_cfg_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
return;
}
static void
zyd_cfg_rf_al7230b_init(struct zyd_softc *sc, struct zyd_rf *rf)
{
static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
uint32_t i;
/* for AL7230B, PHY and RF need to be initialized in "phases" */
/* init RF-dependent PHY registers, part one */
for (i = 0; i != INDEXES(phyini_1); i++) {
zyd_cfg_write16(sc, phyini_1[i].reg, phyini_1[i].val);
}
/* init AL7230B radio, part one */
for (i = 0; i != INDEXES(rfini_1); i++) {
zyd_cfg_rfwrite(sc, rfini_1[i]);
}
/* init RF-dependent PHY registers, part two */
for (i = 0; i != INDEXES(phyini_2); i++) {
zyd_cfg_write16(sc, phyini_2[i].reg, phyini_2[i].val);
}
/* init AL7230B radio, part two */
for (i = 0; i != INDEXES(rfini_2); i++) {
zyd_cfg_rfwrite(sc, rfini_2[i]);
}
/* init RF-dependent PHY registers, part three */
for (i = 0; i != INDEXES(phyini_3); i++) {
zyd_cfg_write16(sc, phyini_3[i].reg, phyini_3[i].val);
}
return;
}
static void
zyd_cfg_rf_al7230b_set_channel(struct zyd_softc *sc, struct zyd_rf *rf,
uint8_t channel)
{
static const struct {
uint32_t r1, r2;
} rfprog[] = ZYD_AL7230B_CHANTABLE;
static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
uint32_t i;
zyd_cfg_write16(sc, ZYD_CR240, 0x57);
zyd_cfg_write16(sc, ZYD_CR251, 0x2f);
for (i = 0; i != INDEXES(rfsc); i++) {
zyd_cfg_rfwrite(sc, rfsc[i]);
}
zyd_cfg_write16(sc, ZYD_CR128, 0x14);
zyd_cfg_write16(sc, ZYD_CR129, 0x12);
zyd_cfg_write16(sc, ZYD_CR130, 0x10);
zyd_cfg_write16(sc, ZYD_CR38, 0x38);
zyd_cfg_write16(sc, ZYD_CR136, 0xdf);
zyd_cfg_rfwrite(sc, rfprog[channel - 1].r1);
zyd_cfg_rfwrite(sc, rfprog[channel - 1].r2);
zyd_cfg_rfwrite(sc, 0x3c9000);
zyd_cfg_write16(sc, ZYD_CR251, 0x3f);
zyd_cfg_write16(sc, ZYD_CR203, 0x06);
zyd_cfg_write16(sc, ZYD_CR240, 0x08);
return;
}
/*
* AL2210 RF methods.
*/
static void
zyd_cfg_rf_al2210_switch_radio(struct zyd_softc *sc, uint8_t on)
{
}
static void
zyd_cfg_rf_al2210_init(struct zyd_softc *sc, struct zyd_rf *rf)
{
static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
static const uint32_t rfini[] = ZYD_AL2210_RF;
uint32_t tmp;
uint32_t i;
zyd_cfg_write32(sc, ZYD_CR18, 2);
/* init RF-dependent PHY registers */
for (i = 0; i != INDEXES(phyini); i++) {
zyd_cfg_write16(sc, phyini[i].reg, phyini[i].val);
}
/* init AL2210 radio */
for (i = 0; i != INDEXES(rfini); i++) {
zyd_cfg_rfwrite(sc, rfini[i]);
}
zyd_cfg_write16(sc, ZYD_CR47, 0x1e);
zyd_cfg_read32(sc, ZYD_CR_RADIO_PD, &tmp);
zyd_cfg_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
zyd_cfg_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
zyd_cfg_write32(sc, ZYD_CR_RFCFG, 0x05);
zyd_cfg_write32(sc, ZYD_CR_RFCFG, 0x00);
zyd_cfg_write16(sc, ZYD_CR47, 0x1e);
zyd_cfg_write32(sc, ZYD_CR18, 3);
return;
}
static void
zyd_cfg_rf_al2210_set_channel(struct zyd_softc *sc, struct zyd_rf *rf,
uint8_t channel)
{
static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
uint32_t tmp;
zyd_cfg_write32(sc, ZYD_CR18, 2);
zyd_cfg_write16(sc, ZYD_CR47, 0x1e);
zyd_cfg_read32(sc, ZYD_CR_RADIO_PD, &tmp);
zyd_cfg_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
zyd_cfg_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
zyd_cfg_write32(sc, ZYD_CR_RFCFG, 0x05);
zyd_cfg_write32(sc, ZYD_CR_RFCFG, 0x00);
zyd_cfg_write16(sc, ZYD_CR47, 0x1e);
/* actually set the channel */
zyd_cfg_rfwrite(sc, rfprog[channel - 1]);
zyd_cfg_write32(sc, ZYD_CR18, 3);
return;
}
/*
* GCT RF methods.
*/
static void
zyd_cfg_rf_gct_switch_radio(struct zyd_softc *sc, uint8_t on)
{
/* vendor driver does nothing for this RF chip */
return;
}
static void
zyd_cfg_rf_gct_init(struct zyd_softc *sc, struct zyd_rf *rf)
{
static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
static const uint32_t rfini[] = ZYD_GCT_RF;
uint32_t i;
/* init RF-dependent PHY registers */
for (i = 0; i != INDEXES(phyini); i++) {
zyd_cfg_write16(sc, phyini[i].reg, phyini[i].val);
}
/* init cgt radio */
for (i = 0; i != INDEXES(rfini); i++) {
zyd_cfg_rfwrite(sc, rfini[i]);
}
return;
}
static void
zyd_cfg_rf_gct_set_channel(struct zyd_softc *sc, struct zyd_rf *rf,
uint8_t channel)
{
static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
zyd_cfg_rfwrite(sc, 0x1c0000);
zyd_cfg_rfwrite(sc, rfprog[channel - 1]);
zyd_cfg_rfwrite(sc, 0x1c0008);
return;
}
/*
* Maxim RF methods.
*/
static void
zyd_cfg_rf_maxim_switch_radio(struct zyd_softc *sc, uint8_t on)
{
/* vendor driver does nothing for this RF chip */
return;
}
static void
zyd_cfg_rf_maxim_init(struct zyd_softc *sc, struct zyd_rf *rf)
{
static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
static const uint32_t rfini[] = ZYD_MAXIM_RF;
uint16_t tmp;
uint32_t i;
/* init RF-dependent PHY registers */
for (i = 0; i != INDEXES(phyini); i++) {
zyd_cfg_write16(sc, phyini[i].reg, phyini[i].val);
}
zyd_cfg_read16(sc, ZYD_CR203, &tmp);
zyd_cfg_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
/* init maxim radio */
for (i = 0; i != INDEXES(rfini); i++) {
zyd_cfg_rfwrite(sc, rfini[i]);
}
zyd_cfg_read16(sc, ZYD_CR203, &tmp);
zyd_cfg_write16(sc, ZYD_CR203, tmp | (1 << 4));
return;
}
static void
zyd_cfg_rf_maxim_set_channel(struct zyd_softc *sc, struct zyd_rf *rf,
uint8_t channel)
{
static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
static const uint32_t rfini[] = ZYD_MAXIM_RF;
static const struct {
uint32_t r1, r2;
} rfprog[] = ZYD_MAXIM_CHANTABLE;
uint16_t tmp;
uint32_t i;
/*
* Do the same as we do when initializing it, except for the channel
* values coming from the two channel tables.
*/
/* init RF-dependent PHY registers */
for (i = 0; i != INDEXES(phyini); i++) {
zyd_cfg_write16(sc, phyini[i].reg, phyini[i].val);
}
zyd_cfg_read16(sc, ZYD_CR203, &tmp);
zyd_cfg_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
/* first two values taken from the chantables */
zyd_cfg_rfwrite(sc, rfprog[channel - 1].r1);
zyd_cfg_rfwrite(sc, rfprog[channel - 1].r2);
/* init maxim radio - skipping the two first values */
if (INDEXES(rfini) > 2) {
for (i = 2; i != INDEXES(rfini); i++) {
zyd_cfg_rfwrite(sc, rfini[i]);
}
}
zyd_cfg_read16(sc, ZYD_CR203, &tmp);
zyd_cfg_write16(sc, ZYD_CR203, tmp | (1 << 4));
return;
}
/*
* Maxim2 RF methods.
*/
static void
zyd_cfg_rf_maxim2_switch_radio(struct zyd_softc *sc, uint8_t on)
{
/* vendor driver does nothing for this RF chip */
return;
}
static void
zyd_cfg_rf_maxim2_init(struct zyd_softc *sc, struct zyd_rf *rf)
{
static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
static const uint32_t rfini[] = ZYD_MAXIM2_RF;
uint16_t tmp;
uint32_t i;
/* init RF-dependent PHY registers */
for (i = 0; i != INDEXES(phyini); i++) {
zyd_cfg_write16(sc, phyini[i].reg, phyini[i].val);
}
zyd_cfg_read16(sc, ZYD_CR203, &tmp);
zyd_cfg_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
/* init maxim2 radio */
for (i = 0; i != INDEXES(rfini); i++) {
zyd_cfg_rfwrite(sc, rfini[i]);
}
zyd_cfg_read16(sc, ZYD_CR203, &tmp);
zyd_cfg_write16(sc, ZYD_CR203, tmp | (1 << 4));
return;
}
static void
zyd_cfg_rf_maxim2_set_channel(struct zyd_softc *sc, struct zyd_rf *rf,
uint8_t channel)
{
static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
static const uint32_t rfini[] = ZYD_MAXIM2_RF;
static const struct {
uint32_t r1, r2;
} rfprog[] = ZYD_MAXIM2_CHANTABLE;
uint16_t tmp;
uint32_t i;
/*
* Do the same as we do when initializing it, except for the channel
* values coming from the two channel tables.
*/
/* init RF-dependent PHY registers */
for (i = 0; i != INDEXES(phyini); i++) {
zyd_cfg_write16(sc, phyini[i].reg, phyini[i].val);
}
zyd_cfg_read16(sc, ZYD_CR203, &tmp);
zyd_cfg_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
/* first two values taken from the chantables */
zyd_cfg_rfwrite(sc, rfprog[channel - 1].r1);
zyd_cfg_rfwrite(sc, rfprog[channel - 1].r2);
/* init maxim2 radio - skipping the two first values */
if (INDEXES(rfini) > 2) {
for (i = 2; i != INDEXES(rfini); i++) {
zyd_cfg_rfwrite(sc, rfini[i]);
}
}
zyd_cfg_read16(sc, ZYD_CR203, &tmp);
zyd_cfg_write16(sc, ZYD_CR203, tmp | (1 << 4));
return;
}
/*
* Assign drivers and init the RF
*/
static uint8_t
zyd_cfg_rf_init_hw(struct zyd_softc *sc, struct zyd_rf *rf)
{
; /* fix for indent */
switch (sc->sc_rf_rev) {
case ZYD_RF_RFMD:
rf->cfg_init_hw = zyd_cfg_rf_rfmd_init;
rf->cfg_switch_radio = zyd_cfg_rf_rfmd_switch_radio;
rf->cfg_set_channel = zyd_cfg_rf_rfmd_set_channel;
rf->width = 24; /* 24-bit RF values */
break;
case ZYD_RF_AL2230:
if (sc->sc_mac_rev == ZYD_ZD1211B)
rf->cfg_init_hw = zyd_cfg_rf_al2230_init_b;
else
rf->cfg_init_hw = zyd_cfg_rf_al2230_init;
rf->cfg_switch_radio = zyd_cfg_rf_al2230_switch_radio;
rf->cfg_set_channel = zyd_cfg_rf_al2230_set_channel;
rf->width = 24; /* 24-bit RF values */
break;
case ZYD_RF_AL7230B:
rf->cfg_init_hw = zyd_cfg_rf_al7230b_init;
rf->cfg_switch_radio = zyd_cfg_rf_al7230b_switch_radio;
rf->cfg_set_channel = zyd_cfg_rf_al7230b_set_channel;
rf->width = 24; /* 24-bit RF values */
break;
case ZYD_RF_AL2210:
rf->cfg_init_hw = zyd_cfg_rf_al2210_init;
rf->cfg_switch_radio = zyd_cfg_rf_al2210_switch_radio;
rf->cfg_set_channel = zyd_cfg_rf_al2210_set_channel;
rf->width = 24; /* 24-bit RF values */
break;
case ZYD_RF_GCT:
rf->cfg_init_hw = zyd_cfg_rf_gct_init;
rf->cfg_switch_radio = zyd_cfg_rf_gct_switch_radio;
rf->cfg_set_channel = zyd_cfg_rf_gct_set_channel;
rf->width = 21; /* 21-bit RF values */
break;
case ZYD_RF_MAXIM_NEW:
rf->cfg_init_hw = zyd_cfg_rf_maxim_init;
rf->cfg_switch_radio = zyd_cfg_rf_maxim_switch_radio;
rf->cfg_set_channel = zyd_cfg_rf_maxim_set_channel;
rf->width = 18; /* 18-bit RF values */
break;
case ZYD_RF_MAXIM_NEW2:
rf->cfg_init_hw = zyd_cfg_rf_maxim2_init;
rf->cfg_switch_radio = zyd_cfg_rf_maxim2_switch_radio;
rf->cfg_set_channel = zyd_cfg_rf_maxim2_set_channel;
rf->width = 18; /* 18-bit RF values */
break;
default:
DPRINTFN(0, "%s: Sorry, radio %s is not supported yet\n",
sc->sc_name, zyd_rf_name(sc->sc_rf_rev));
return (1);
}
zyd_cfg_lock_phy(sc);
(rf->cfg_init_hw) (sc, rf);
zyd_cfg_unlock_phy(sc);
return (0); /* success */
}
/*
* Init the hardware
*/
static uint8_t
zyd_cfg_hw_init(struct zyd_softc *sc)
{
const struct zyd_phy_pair *phyp;
uint32_t tmp;
/* specify that the plug and play is finished */
zyd_cfg_write32(sc, ZYD_MAC_AFTER_PNP, 1);
zyd_cfg_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->sc_firmware_base);
DPRINTF("firmware base address=0x%04x\n", sc->sc_firmware_base);
/* retrieve firmware revision number */
zyd_cfg_read16(sc, sc->sc_firmware_base + ZYD_FW_FIRMWARE_REV, &sc->sc_fw_rev);
zyd_cfg_write32(sc, ZYD_CR_GPI_EN, 0);
zyd_cfg_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
/* disable interrupts */
zyd_cfg_write32(sc, ZYD_CR_INTERRUPT, 0);
/* PHY init */
zyd_cfg_lock_phy(sc);
phyp = (sc->sc_mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
for (; phyp->reg != 0; phyp++) {
zyd_cfg_write16(sc, phyp->reg, phyp->val);
}
if (sc->sc_fix_cr157) {
zyd_cfg_read32(sc, ZYD_EEPROM_PHY_REG, &tmp);
zyd_cfg_write32(sc, ZYD_CR157, tmp >> 8);
}
zyd_cfg_unlock_phy(sc);
/* HMAC init */
zyd_cfg_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
zyd_cfg_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
if (sc->sc_mac_rev == ZYD_ZD1211) {
zyd_cfg_write32(sc, ZYD_MAC_RETRY, 0x00000002);
} else {
zyd_cfg_write32(sc, ZYD_MACB_MAX_RETRY, 0x02020202);
zyd_cfg_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
zyd_cfg_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
zyd_cfg_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
zyd_cfg_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
zyd_cfg_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
zyd_cfg_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
zyd_cfg_write32(sc, ZYD_MACB_TXOP, 0x01800824);
}
zyd_cfg_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
zyd_cfg_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
zyd_cfg_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
zyd_cfg_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
zyd_cfg_write32(sc, ZYD_MAC_MISC, 0x000000a4);
zyd_cfg_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
zyd_cfg_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
zyd_cfg_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
zyd_cfg_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
zyd_cfg_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
zyd_cfg_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
zyd_cfg_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
zyd_cfg_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
zyd_cfg_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
zyd_cfg_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
zyd_cfg_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
zyd_cfg_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
/* init beacon interval to 100ms */
zyd_cfg_set_beacon_interval(sc, 100);
return (0); /* success */
}
/*
* Read information from EEPROM
*/
static void
zyd_cfg_read_eeprom(struct zyd_softc *sc)
{
uint32_t tmp;
uint16_t i;
uint16_t val;
/* read MAC address */
zyd_cfg_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
sc->sc_myaddr[0] = tmp & 0xff;
sc->sc_myaddr[1] = tmp >> 8;
sc->sc_myaddr[2] = tmp >> 16;
sc->sc_myaddr[3] = tmp >> 24;
zyd_cfg_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
sc->sc_myaddr[4] = tmp & 0xff;
sc->sc_myaddr[5] = tmp >> 8;
zyd_cfg_read32(sc, ZYD_EEPROM_POD, &tmp);
sc->sc_rf_rev = tmp & 0x0f;
sc->sc_fix_cr47 = (tmp >> 8) & 0x01;
sc->sc_fix_cr157 = (tmp >> 13) & 0x01;
sc->sc_pa_rev = (tmp >> 16) & 0x0f;
/* read regulatory domain (currently unused) */
zyd_cfg_read32(sc, ZYD_EEPROM_SUBID, &tmp);
sc->sc_regdomain = tmp >> 16;
DPRINTF("regulatory domain %x\n", sc->sc_regdomain);
/* read Tx power calibration tables */
for (i = 0; i < 7; i++) {
zyd_cfg_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
sc->sc_pwr_cal[(i * 2)] = val >> 8;
sc->sc_pwr_cal[(i * 2) + 1] = val & 0xff;
zyd_cfg_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
sc->sc_pwr_int[(i * 2)] = val >> 8;
sc->sc_pwr_int[(i * 2) + 1] = val & 0xff;
zyd_cfg_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
sc->sc_ofdm36_cal[(i * 2)] = val >> 8;
sc->sc_ofdm36_cal[(i * 2) + 1] = val & 0xff;
zyd_cfg_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
sc->sc_ofdm48_cal[(i * 2)] = val >> 8;
sc->sc_ofdm48_cal[(i * 2) + 1] = val & 0xff;
zyd_cfg_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
sc->sc_ofdm54_cal[(i * 2)] = val >> 8;
sc->sc_ofdm54_cal[(i * 2) + 1] = val & 0xff;
}
return;
}
static void
zyd_cfg_set_mac_addr(struct zyd_softc *sc, const uint8_t *addr)
{
uint32_t tmp;
tmp = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
zyd_cfg_write32(sc, ZYD_MAC_MACADRL, tmp);
tmp = (addr[5] << 8) | addr[4];
zyd_cfg_write32(sc, ZYD_MAC_MACADRH, tmp);
return;
}
/*
* Switch radio on/off
*/
static void
zyd_cfg_switch_radio(struct zyd_softc *sc, uint8_t onoff)
{
zyd_cfg_lock_phy(sc);
(sc->sc_rf.cfg_switch_radio) (sc, onoff);
zyd_cfg_unlock_phy(sc);
return;
}
/*
* Set BSSID
*/
static void
zyd_cfg_set_bssid(struct zyd_softc *sc, uint8_t *addr)
{
uint32_t tmp;
tmp = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
zyd_cfg_write32(sc, ZYD_MAC_BSSADRL, tmp);
tmp = (addr[5] << 8) | addr[4];
zyd_cfg_write32(sc, ZYD_MAC_BSSADRH, tmp);
return;
}
/*
* Complete the attach process
*/
static void
zyd_cfg_first_time_setup(struct zyd_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
struct usb2_config_descriptor *cd;
struct ieee80211com *ic;
struct ifnet *ifp;
const uint8_t *fw_ptr;
uint32_t fw_len;
uint8_t bands;
usb2_error_t err;
/* setup RX tap header */
sc->sc_rxtap_len = sizeof(sc->sc_rxtap);
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
/* setup TX tap header */
sc->sc_txtap_len = sizeof(sc->sc_txtap);
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
if (sc->sc_mac_rev == ZYD_ZD1211) {
fw_ptr = zd1211_firmware;
fw_len = sizeof(zd1211_firmware);
} else {
fw_ptr = zd1211b_firmware;
fw_len = sizeof(zd1211b_firmware);
}
if (zyd_cfg_uploadfirmware(sc, fw_ptr, fw_len)) {
DPRINTFN(0, "%s: could not "
"upload firmware!\n", sc->sc_name);
return;
}
cd = usb2_get_config_descriptor(sc->sc_udev);
/* reset device */
err = usb2_req_set_config(sc->sc_udev, &sc->sc_mtx,
cd->bConfigurationValue);
if (err) {
DPRINTF("reset failed (ignored)\n");
}
/* Read MAC and other stuff rom EEPROM */
zyd_cfg_read_eeprom(sc);
/* Init hardware */
if (zyd_cfg_hw_init(sc)) {
DPRINTFN(0, "%s: HW init failed!\n", sc->sc_name);
return;
}
/* Now init the RF chip */
if (zyd_cfg_rf_init_hw(sc, &sc->sc_rf)) {
DPRINTFN(0, "%s: RF init failed!\n", sc->sc_name);
return;
}
printf("%s: HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %02x:%02x:%02x:%02x:%02x:%02x\n",
sc->sc_name, (sc->sc_mac_rev == ZYD_ZD1211) ? "" : "B",
sc->sc_fw_rev >> 8, sc->sc_fw_rev & 0xff, zyd_rf_name(sc->sc_rf_rev),
sc->sc_pa_rev, sc->sc_myaddr[0],
sc->sc_myaddr[1], sc->sc_myaddr[2],
sc->sc_myaddr[3], sc->sc_myaddr[4],
sc->sc_myaddr[5]);
mtx_unlock(&sc->sc_mtx);
ifp = if_alloc(IFT_IEEE80211);
mtx_lock(&sc->sc_mtx);
if (ifp == NULL) {
DPRINTFN(0, "%s: could not if_alloc()!\n",
sc->sc_name);
goto done;
}
sc->sc_evilhack = ifp;
sc->sc_ifp = ifp;
ic = ifp->if_l2com;
ifp->if_softc = sc;
if_initname(ifp, "zyd", sc->sc_unit);
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = &zyd_init_cb;
ifp->if_ioctl = &zyd_ioctl_cb;
ifp->if_start = &zyd_start_cb;
ifp->if_watchdog = NULL;
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
IFQ_SET_READY(&ifp->if_snd);
bcopy(sc->sc_myaddr, ic->ic_myaddr, sizeof(ic->ic_myaddr));
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM;
ic->ic_opmode = IEEE80211_M_STA;
/* Set device capabilities */
ic->ic_caps =
IEEE80211_C_STA /* station mode supported */
| IEEE80211_C_MONITOR /* monitor mode */
| IEEE80211_C_SHPREAMBLE /* short preamble supported */
| IEEE80211_C_SHSLOT /* short slot time supported */
| IEEE80211_C_BGSCAN /* capable of bg scanning */
| IEEE80211_C_WPA /* 802.11i */
;
bands = 0;
setbit(&bands, IEEE80211_MODE_11B);
setbit(&bands, IEEE80211_MODE_11G);
ieee80211_init_channels(ic, NULL, &bands);
mtx_unlock(&sc->sc_mtx);
ieee80211_ifattach(ic);
mtx_lock(&sc->sc_mtx);
ic->ic_node_alloc = &zyd_node_alloc_cb;
ic->ic_raw_xmit = &zyd_raw_xmit_cb;
ic->ic_newassoc = &zyd_newassoc_cb;
ic->ic_scan_start = &zyd_scan_start_cb;
ic->ic_scan_end = &zyd_scan_end_cb;
ic->ic_set_channel = &zyd_set_channel_cb;
ic->ic_vap_create = &zyd_vap_create;
ic->ic_vap_delete = &zyd_vap_delete;
ic->ic_update_mcast = &zyd_update_mcast_cb;
ic->ic_update_promisc = &zyd_update_promisc_cb;
sc->sc_rates = ieee80211_get_ratetable(ic->ic_curchan);
mtx_unlock(&sc->sc_mtx);
bpfattach(ifp, DLT_IEEE802_11_RADIO,
sizeof(struct ieee80211_frame) +
sizeof(sc->sc_txtap));
mtx_lock(&sc->sc_mtx);
if (bootverbose) {
ieee80211_announce(ic);
}
usb2_transfer_start(sc->sc_xfer[ZYD_TR_INTR_DT_RD]);
done:
return;
}
/*
* Detach device
*/
static int
zyd_detach(device_t dev)
{
struct zyd_softc *sc = device_get_softc(dev);
struct ieee80211com *ic;
struct ifnet *ifp;
usb2_config_td_drain(&sc->sc_config_td);
mtx_lock(&sc->sc_mtx);
usb2_callout_stop(&sc->sc_watchdog);
zyd_cfg_pre_stop(sc, NULL, 0);
ifp = sc->sc_ifp;
ic = ifp->if_l2com;
mtx_unlock(&sc->sc_mtx);
/* stop all USB transfers first */
usb2_transfer_unsetup(sc->sc_xfer, ZYD_N_TRANSFER);
/* get rid of any late children */
bus_generic_detach(dev);
if (ifp) {
bpfdetach(ifp);
ieee80211_ifdetach(ic);
if_free(ifp);
}
usb2_config_td_unsetup(&sc->sc_config_td);
usb2_callout_drain(&sc->sc_watchdog);
usb2_cv_destroy(&sc->sc_intr_cv);
mtx_destroy(&sc->sc_mtx);
return (0);
}
static void
zyd_cfg_newstate(struct zyd_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
struct zyd_vap *uvp = ZYD_VAP(vap);
enum ieee80211_state ostate;
enum ieee80211_state nstate;
int arg;
ostate = vap->iv_state;
nstate = sc->sc_ns_state;
arg = sc->sc_ns_arg;
switch (nstate) {
case IEEE80211_S_INIT:
break;
case IEEE80211_S_RUN:
zyd_cfg_set_run(sc, cc);
break;
default:
break;
}
mtx_unlock(&sc->sc_mtx);
IEEE80211_LOCK(ic);
uvp->newstate(vap, nstate, arg);
if (vap->iv_newstate_cb != NULL)
vap->iv_newstate_cb(vap, nstate, arg);
IEEE80211_UNLOCK(ic);
mtx_lock(&sc->sc_mtx);
return;
}
static void
zyd_cfg_set_run(struct zyd_softc *sc,
struct usb2_config_td_cc *cc)
{
zyd_cfg_set_chan(sc, cc, 0);
if (cc->ic_opmode != IEEE80211_M_MONITOR) {
/* turn link LED on */
zyd_cfg_set_led(sc, ZYD_LED1, 1);
/* make data LED blink upon Tx */
zyd_cfg_write32(sc, sc->sc_firmware_base + ZYD_FW_LINK_STATUS, 1);
zyd_cfg_set_bssid(sc, cc->iv_bss.ni_bssid);
}
if (cc->iv_bss.fixed_rate_none) {
/* enable automatic rate adaptation */
zyd_cfg_amrr_start(sc);
}
return;
}
static int
zyd_newstate_cb(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
struct zyd_vap *uvp = ZYD_VAP(vap);
struct ieee80211com *ic = vap->iv_ic;
struct zyd_softc *sc = ic->ic_ifp->if_softc;
DPRINTF("setting new state: %d\n", nstate);
mtx_lock(&sc->sc_mtx);
if (usb2_config_td_is_gone(&sc->sc_config_td)) {
mtx_unlock(&sc->sc_mtx);
/* Special case which happens at detach. */
if (nstate == IEEE80211_S_INIT) {
(uvp->newstate) (vap, nstate, arg);
}
return (0); /* nothing to do */
}
/* store next state */
sc->sc_ns_state = nstate;
sc->sc_ns_arg = arg;
/* stop timers */
sc->sc_amrr_timer = 0;
/*
* USB configuration can only be done from the USB configuration
* thread:
*/
usb2_config_td_queue_command
(&sc->sc_config_td, &zyd_config_copy,
&zyd_cfg_newstate, 0, 0);
mtx_unlock(&sc->sc_mtx);
return EINPROGRESS;
}
static void
zyd_cfg_update_promisc(struct zyd_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
uint32_t low;
uint32_t high;
if ((cc->ic_opmode == IEEE80211_M_MONITOR) ||
(cc->if_flags & (IFF_ALLMULTI | IFF_PROMISC))) {
low = 0xffffffff;
high = 0xffffffff;
} else {
low = cc->zyd_multi_low;
high = cc->zyd_multi_high;
}
/* reprogram multicast global hash table */
zyd_cfg_write32(sc, ZYD_MAC_GHTBL, low);
zyd_cfg_write32(sc, ZYD_MAC_GHTBH, high);
return;
}
/*
* Rate-to-bit-converter (Field "rate" in zyd_controlsetformat)
*/
static uint8_t
zyd_plcp_signal(uint8_t rate)
{
; /* fix for indent */
switch (rate) {
/* CCK rates (NB: not IEEE std, device-specific) */
case 2:
return (0x0);
case 4:
return (0x1);
case 11:
return (0x2);
case 22:
return (0x3);
/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
case 12:
return (0xb);
case 18:
return (0xf);
case 24:
return (0xa);
case 36:
return (0xe);
case 48:
return (0x9);
case 72:
return (0xd);
case 96:
return (0x8);
case 108:
return (0xc);
/* XXX unsupported/unknown rate */
default:
return (0xff);
}
}
static void
zyd_std_command(struct ieee80211com *ic, usb2_config_td_command_t *func)
{
struct zyd_softc *sc = ic->ic_ifp->if_softc;
mtx_lock(&sc->sc_mtx);
sc->sc_rates = ieee80211_get_ratetable(ic->ic_curchan);
usb2_config_td_queue_command
(&sc->sc_config_td, &zyd_config_copy, func, 0, 0);
mtx_unlock(&sc->sc_mtx);
return;
}
static void
zyd_scan_start_cb(struct ieee80211com *ic)
{
zyd_std_command(ic, &zyd_cfg_scan_start);
return;
}
static void
zyd_scan_end_cb(struct ieee80211com *ic)
{
zyd_std_command(ic, &zyd_cfg_scan_end);
return;
}
static void
zyd_set_channel_cb(struct ieee80211com *ic)
{
zyd_std_command(ic, &zyd_cfg_set_chan);
return;
}
/*========================================================================*
* configure sub-routines, zyd_cfg_xxx
*========================================================================*/
static void
zyd_cfg_scan_start(struct zyd_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
zyd_cfg_set_bssid(sc, cc->if_broadcastaddr);
return;
}
static void
zyd_cfg_scan_end(struct zyd_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
zyd_cfg_set_bssid(sc, cc->iv_bss.ni_bssid);
return;
}
static void
zyd_cfg_set_chan(struct zyd_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
uint32_t chan;
uint32_t tmp;
chan = cc->ic_curchan.chan_to_ieee;
DPRINTF("Will try %d\n", chan);
if ((chan == 0) || (chan == IEEE80211_CHAN_ANY)) {
DPRINTF("0 or ANY, exiting\n");
return;
}
zyd_cfg_lock_phy(sc);
(sc->sc_rf.cfg_set_channel) (sc, &sc->sc_rf, chan);
/* update Tx power */
zyd_cfg_write16(sc, ZYD_CR31, sc->sc_pwr_int[chan - 1]);
if (sc->sc_mac_rev == ZYD_ZD1211B) {
zyd_cfg_write16(sc, ZYD_CR67, sc->sc_ofdm36_cal[chan - 1]);
zyd_cfg_write16(sc, ZYD_CR66, sc->sc_ofdm48_cal[chan - 1]);
zyd_cfg_write16(sc, ZYD_CR65, sc->sc_ofdm54_cal[chan - 1]);
zyd_cfg_write16(sc, ZYD_CR68, sc->sc_pwr_cal[chan - 1]);
zyd_cfg_write16(sc, ZYD_CR69, 0x28);
zyd_cfg_write16(sc, ZYD_CR69, 0x2a);
}
if (sc->sc_fix_cr47) {
/* set CCK baseband gain from EEPROM */
zyd_cfg_read32(sc, ZYD_EEPROM_PHY_REG, &tmp);
zyd_cfg_write16(sc, ZYD_CR47, tmp & 0xff);
}
zyd_cfg_write32(sc, ZYD_CR_CONFIG_PHILIPS, 0);
zyd_cfg_unlock_phy(sc);
sc->sc_rxtap.wr_chan_freq =
sc->sc_txtap.wt_chan_freq =
htole16(cc->ic_curchan.ic_freq);
sc->sc_rxtap.wr_chan_flags =
sc->sc_txtap.wt_chan_flags =
htole16(cc->ic_flags);
return;
}
/*
* Interface: init
*/
/* immediate configuration */
static void
zyd_cfg_pre_init(struct zyd_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
zyd_cfg_pre_stop(sc, cc, 0);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
sc->sc_flags |= ZYD_FLAG_HL_READY;
IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
return;
}
/* delayed configuration */
static void
zyd_cfg_init(struct zyd_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
zyd_cfg_stop(sc, cc, 0);
/* Do initial setup */
zyd_cfg_set_mac_addr(sc, cc->ic_myaddr);
zyd_cfg_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
/* promiscuous mode */
zyd_cfg_write32(sc, ZYD_MAC_SNIFFER,
(cc->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
/* multicast setup */
zyd_cfg_update_promisc(sc, cc, refcount);
zyd_cfg_set_rxfilter(sc, cc, refcount);
/* switch radio transmitter ON */
zyd_cfg_switch_radio(sc, 1);
/* XXX wrong, can't set here */
/* set basic rates */
if (cc->ic_curmode == IEEE80211_MODE_11B)
zyd_cfg_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
else if (cc->ic_curmode == IEEE80211_MODE_11A)
zyd_cfg_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
else /* assumes 802.11b/g */
zyd_cfg_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
/* set mandatory rates */
if (cc->ic_curmode == IEEE80211_MODE_11B)
zyd_cfg_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
else if (cc->ic_curmode == IEEE80211_MODE_11A)
zyd_cfg_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
else /* assumes 802.11b/g */
zyd_cfg_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
/* set default BSS channel */
zyd_cfg_set_chan(sc, cc, 0);
/* enable interrupts */
zyd_cfg_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
/* make sure that the transfers get started */
sc->sc_flags |= (
ZYD_FLAG_BULK_READ_STALL |
ZYD_FLAG_BULK_WRITE_STALL |
ZYD_FLAG_LL_READY);
if ((sc->sc_flags & ZYD_FLAG_LL_READY) &&
(sc->sc_flags & ZYD_FLAG_HL_READY)) {
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
/*
* start the USB transfers, if not already started:
*/
usb2_transfer_start(sc->sc_xfer[1]);
usb2_transfer_start(sc->sc_xfer[0]);
/*
* start IEEE802.11 layer
*/
mtx_unlock(&sc->sc_mtx);
ieee80211_start_all(ic);
mtx_lock(&sc->sc_mtx);
}
return;
}
/* immediate configuration */
static void
zyd_cfg_pre_stop(struct zyd_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
struct ifnet *ifp = sc->sc_ifp;
if (cc) {
/* copy the needed configuration */
zyd_config_copy(sc, cc, refcount);
}
if (ifp) {
/* clear flags */
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
}
sc->sc_flags &= ~(ZYD_FLAG_HL_READY |
ZYD_FLAG_LL_READY);
/*
* stop all the transfers, if not already stopped:
*/
usb2_transfer_stop(sc->sc_xfer[ZYD_TR_BULK_DT_WR]);
usb2_transfer_stop(sc->sc_xfer[ZYD_TR_BULK_DT_RD]);
usb2_transfer_stop(sc->sc_xfer[ZYD_TR_BULK_CS_WR]);
usb2_transfer_stop(sc->sc_xfer[ZYD_TR_BULK_CS_RD]);
/* clean up transmission */
zyd_tx_clean_queue(sc);
return;
}
/* delayed configuration */
static void
zyd_cfg_stop(struct zyd_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
/* switch radio transmitter OFF */
zyd_cfg_switch_radio(sc, 0);
/* disable Rx */
zyd_cfg_write32(sc, ZYD_MAC_RXFILTER, 0);
/* disable interrupts */
zyd_cfg_write32(sc, ZYD_CR_INTERRUPT, 0);
return;
}
static void
zyd_update_mcast_cb(struct ifnet *ifp)
{
struct zyd_softc *sc = ifp->if_softc;
mtx_lock(&sc->sc_mtx);
usb2_config_td_queue_command
(&sc->sc_config_td, &zyd_config_copy,
&zyd_cfg_update_promisc, 0, 0);
mtx_unlock(&sc->sc_mtx);
return;
}
static void
zyd_update_promisc_cb(struct ifnet *ifp)
{
struct zyd_softc *sc = ifp->if_softc;
mtx_lock(&sc->sc_mtx);
usb2_config_td_queue_command
(&sc->sc_config_td, &zyd_config_copy,
&zyd_cfg_update_promisc, 0, 0);
mtx_unlock(&sc->sc_mtx);
return;
}
static void
zyd_cfg_set_rxfilter(struct zyd_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
uint32_t rxfilter;
switch (cc->ic_opmode) {
case IEEE80211_M_STA:
rxfilter = ZYD_FILTER_BSS;
break;
case IEEE80211_M_IBSS:
case IEEE80211_M_HOSTAP:
rxfilter = ZYD_FILTER_HOSTAP;
break;
case IEEE80211_M_MONITOR:
rxfilter = ZYD_FILTER_MONITOR;
break;
default:
/* should not get there */
return;
}
zyd_cfg_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
return;
}
static void
zyd_cfg_set_led(struct zyd_softc *sc, uint32_t which, uint8_t on)
{
uint32_t tmp;
zyd_cfg_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
if (on)
tmp |= which;
else
tmp &= ~which;
zyd_cfg_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
return;
}
static void
zyd_start_cb(struct ifnet *ifp)
{
struct zyd_softc *sc = ifp->if_softc;
mtx_lock(&sc->sc_mtx);
usb2_transfer_start(sc->sc_xfer[ZYD_TR_BULK_DT_WR]);
mtx_unlock(&sc->sc_mtx);
return;
}
static void
zyd_bulk_write_clear_stall_callback(struct usb2_xfer *xfer)
{
struct zyd_softc *sc = xfer->priv_sc;
struct usb2_xfer *xfer_other = sc->sc_xfer[ZYD_TR_BULK_DT_WR];
if (usb2_clear_stall_callback(xfer, xfer_other)) {
DPRINTF("stall cleared\n");
sc->sc_flags &= ~ZYD_FLAG_BULK_WRITE_STALL;
usb2_transfer_start(xfer_other);
}
return;
}
/*
* We assume that "m->m_pkthdr.rcvif" is pointing to the "ni" that
* should be freed, when "zyd_setup_desc_and_tx" is called.
*/
static void
zyd_setup_desc_and_tx(struct zyd_softc *sc, struct mbuf *m,
uint16_t rate)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct mbuf *mm;
enum ieee80211_phytype phytype;
uint16_t len;
uint16_t totlen;
uint16_t pktlen;
uint8_t remainder;
if (sc->sc_tx_queue.ifq_len >= IFQ_MAXLEN) {
/* free packet */
zyd_tx_freem(m);
ifp->if_oerrors++;
return;
}
if (!((sc->sc_flags & ZYD_FLAG_LL_READY) &&
(sc->sc_flags & ZYD_FLAG_HL_READY))) {
/* free packet */
zyd_tx_freem(m);
ifp->if_oerrors++;
return;
}
if (rate < 2) {
DPRINTF("rate < 2!\n");
/* avoid division by zero */
rate = 2;
}
ic->ic_lastdata = ticks;
if (bpf_peers_present(ifp->if_bpf)) {
struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m);
}
len = m->m_pkthdr.len;
totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
phytype = ieee80211_rate2phytype(sc->sc_rates, rate);
sc->sc_tx_desc.len = htole16(totlen);
sc->sc_tx_desc.phy = zyd_plcp_signal(rate);
if (phytype == IEEE80211_T_OFDM) {
sc->sc_tx_desc.phy |= ZYD_TX_PHY_OFDM;
if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
sc->sc_tx_desc.phy |= ZYD_TX_PHY_5GHZ;
} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
sc->sc_tx_desc.phy |= ZYD_TX_PHY_SHPREAMBLE;
/* actual transmit length (XXX why +10?) */
pktlen = sizeof(struct zyd_tx_desc) + 10;
if (sc->sc_mac_rev == ZYD_ZD1211)
pktlen += totlen;
sc->sc_tx_desc.pktlen = htole16(pktlen);
sc->sc_tx_desc.plcp_length = ((16 * totlen) + rate - 1) / rate;
sc->sc_tx_desc.plcp_service = 0;
if (rate == 22) {
remainder = (16 * totlen) % 22;
if ((remainder != 0) && (remainder < 7))
sc->sc_tx_desc.plcp_service |= ZYD_PLCP_LENGEXT;
}
if (sizeof(sc->sc_tx_desc) > MHLEN) {
DPRINTF("No room for header structure!\n");
zyd_tx_freem(m);
return;
}
mm = m_gethdr(M_NOWAIT, MT_DATA);
if (mm == NULL) {
DPRINTF("Could not allocate header mbuf!\n");
zyd_tx_freem(m);
return;
}
bcopy(&sc->sc_tx_desc, mm->m_data, sizeof(sc->sc_tx_desc));
mm->m_len = sizeof(sc->sc_tx_desc);
mm->m_next = m;
mm->m_pkthdr.len = mm->m_len + m->m_pkthdr.len;
mm->m_pkthdr.rcvif = NULL;
/* start write transfer, if not started */
_IF_ENQUEUE(&sc->sc_tx_queue, mm);
usb2_transfer_start(sc->sc_xfer[0]);
return;
}
static void
zyd_bulk_write_callback(struct usb2_xfer *xfer)
{
struct zyd_softc *sc = xfer->priv_sc;
struct ifnet *ifp = sc->sc_ifp;
struct mbuf *m;
uint16_t temp_len;
DPRINTF("\n");
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
DPRINTFN(11, "transfer complete\n");
ifp->if_opackets++;
case USB_ST_SETUP:
if (sc->sc_flags & ZYD_FLAG_BULK_WRITE_STALL) {
usb2_transfer_start(sc->sc_xfer[ZYD_TR_BULK_CS_WR]);
DPRINTFN(11, "write stalled\n");
break;
}
if (sc->sc_flags & ZYD_FLAG_WAIT_COMMAND) {
/*
* don't send anything while a command is pending !
*/
DPRINTFN(11, "wait command\n");
break;
}
zyd_fill_write_queue(sc);
_IF_DEQUEUE(&sc->sc_tx_queue, m);
if (m) {
if (m->m_pkthdr.len > ZYD_MAX_TXBUFSZ) {
DPRINTFN(0, "data overflow, %u bytes\n",
m->m_pkthdr.len);
m->m_pkthdr.len = ZYD_MAX_TXBUFSZ;
}
usb2_m_copy_in(xfer->frbuffers, 0,
m, 0, m->m_pkthdr.len);
/* get transfer length */
temp_len = m->m_pkthdr.len;
DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
m->m_pkthdr.len, temp_len);
xfer->frlengths[0] = temp_len;
usb2_start_hardware(xfer);
/* free mbuf and node */
zyd_tx_freem(m);
}
break;
default: /* Error */
DPRINTFN(11, "transfer error, %s\n",
usb2_errstr(xfer->error));
if (xfer->error != USB_ERR_CANCELLED) {
/* try to clear stall first */
sc->sc_flags |= ZYD_FLAG_BULK_WRITE_STALL;
usb2_transfer_start(sc->sc_xfer[ZYD_TR_BULK_CS_WR]);
}
ifp->if_oerrors++;
break;
}
return;
}
static void
zyd_init_cb(void *arg)
{
struct zyd_softc *sc = arg;
mtx_lock(&sc->sc_mtx);
usb2_config_td_queue_command
(&sc->sc_config_td, &zyd_cfg_pre_init,
&zyd_cfg_init, 0, 0);
mtx_unlock(&sc->sc_mtx);
return;
}
static int
zyd_ioctl_cb(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct zyd_softc *sc = ifp->if_softc;
struct ieee80211com *ic = ifp->if_l2com;
int error;
switch (cmd) {
case SIOCSIFFLAGS:
mtx_lock(&sc->sc_mtx);
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
usb2_config_td_queue_command
(&sc->sc_config_td, &zyd_cfg_pre_init,
&zyd_cfg_init, 0, 0);
}
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
usb2_config_td_queue_command
(&sc->sc_config_td, &zyd_cfg_pre_stop,
&zyd_cfg_stop, 0, 0);
}
}
mtx_unlock(&sc->sc_mtx);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCADDMULTI:
case SIOCDELMULTI:
error = ifmedia_ioctl(ifp, (void *)data, &ic->ic_media, cmd);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
static void
zyd_watchdog(void *arg)
{
struct zyd_softc *sc = arg;
mtx_assert(&sc->sc_mtx, MA_OWNED);
if (sc->sc_amrr_timer) {
usb2_config_td_queue_command
(&sc->sc_config_td, NULL,
&zyd_cfg_amrr_timeout, 0, 0);
}
usb2_callout_reset(&sc->sc_watchdog,
hz, &zyd_watchdog, sc);
mtx_unlock(&sc->sc_mtx);
return;
}
static void
zyd_config_copy_chan(struct zyd_config_copy_chan *cc,
struct ieee80211com *ic, struct ieee80211_channel *c)
{
if (!c)
return;
cc->chan_to_ieee =
ieee80211_chan2ieee(ic, c);
if (c != IEEE80211_CHAN_ANYC) {
cc->chan_to_mode =
ieee80211_chan2mode(c);
cc->ic_freq = c->ic_freq;
if (IEEE80211_IS_CHAN_B(c))
cc->chan_is_b = 1;
if (IEEE80211_IS_CHAN_A(c))
cc->chan_is_a = 1;
if (IEEE80211_IS_CHAN_2GHZ(c))
cc->chan_is_2ghz = 1;
if (IEEE80211_IS_CHAN_5GHZ(c))
cc->chan_is_5ghz = 1;
if (IEEE80211_IS_CHAN_ANYG(c))
cc->chan_is_g = 1;
}
return;
}
static void
zyd_config_copy(struct zyd_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
const struct ieee80211_txparam *tp;
struct ieee80211vap *vap;
struct ifmultiaddr *ifma;
struct ieee80211_node *ni;
struct ieee80211com *ic;
struct ifnet *ifp;
bzero(cc, sizeof(*cc));
ifp = sc->sc_ifp;
if (ifp) {
cc->if_flags = ifp->if_flags;
bcopy(ifp->if_broadcastaddr, cc->if_broadcastaddr,
sizeof(cc->if_broadcastaddr));
cc->zyd_multi_low = 0x00000000;
cc->zyd_multi_high = 0x80000000;
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
uint8_t v;
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
v = ((uint8_t *)LLADDR((struct sockaddr_dl *)
ifma->ifma_addr))[5] >> 2;
if (v < 32)
cc->zyd_multi_low |= 1 << v;
else
cc->zyd_multi_high |= 1 << (v - 32);
}
IF_ADDR_UNLOCK(ifp);
ic = ifp->if_l2com;
if (ic) {
zyd_config_copy_chan(&cc->ic_curchan, ic, ic->ic_curchan);
zyd_config_copy_chan(&cc->ic_bsschan, ic, ic->ic_bsschan);
vap = TAILQ_FIRST(&ic->ic_vaps);
if (vap) {
ni = vap->iv_bss;
if (ni) {
cc->iv_bss.ni_intval = ni->ni_intval;
bcopy(ni->ni_bssid, cc->iv_bss.ni_bssid,
sizeof(cc->iv_bss.ni_bssid));
}
tp = vap->iv_txparms + cc->ic_bsschan.chan_to_mode;
if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) {
cc->iv_bss.fixed_rate_none = 1;
}
}
cc->ic_opmode = ic->ic_opmode;
cc->ic_flags = ic->ic_flags;
cc->ic_txpowlimit = ic->ic_txpowlimit;
cc->ic_curmode = ic->ic_curmode;
bcopy(ic->ic_myaddr, cc->ic_myaddr,
sizeof(cc->ic_myaddr));
}
}
sc->sc_flags |= ZYD_FLAG_WAIT_COMMAND;
return;
}
static void
zyd_end_of_commands(struct zyd_softc *sc)
{
sc->sc_flags &= ~ZYD_FLAG_WAIT_COMMAND;
/* start write transfer, if not started */
usb2_transfer_start(sc->sc_xfer[0]);
return;
}
static void
zyd_newassoc_cb(struct ieee80211_node *ni, int isnew)
{
struct ieee80211vap *vap = ni->ni_vap;
ieee80211_amrr_node_init(&ZYD_VAP(vap)->amrr, &ZYD_NODE(ni)->amn, ni);
return;
}
static void
zyd_cfg_amrr_timeout(struct zyd_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
struct ieee80211vap *vap;
struct ieee80211_node *ni;
vap = zyd_get_vap(sc);
if (vap == NULL) {
return;
}
ni = vap->iv_bss;
if (ni == NULL) {
return;
}
if ((sc->sc_flags & ZYD_FLAG_LL_READY) &&
(sc->sc_flags & ZYD_FLAG_HL_READY)) {
if (sc->sc_amrr_timer) {
if (ieee80211_amrr_choose(ni, &ZYD_NODE(ni)->amn)) {
/* ignore */
}
}
}
return;
}
static void
zyd_cfg_amrr_start(struct zyd_softc *sc)
{
struct ieee80211vap *vap;
struct ieee80211_node *ni;
vap = zyd_get_vap(sc);
if (vap == NULL) {
return;
}
ni = vap->iv_bss;
if (ni == NULL) {
return;
}
/* init AMRR */
ieee80211_amrr_node_init(&ZYD_VAP(vap)->amrr, &ZYD_NODE(ni)->amn, ni);
/* enable AMRR timer */
sc->sc_amrr_timer = 1;
return;
}
static struct ieee80211vap *
zyd_vap_create(struct ieee80211com *ic,
const char name[IFNAMSIZ], int unit, int opmode, int flags,
const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct zyd_vap *zvp;
struct ieee80211vap *vap;
struct zyd_softc *sc = ic->ic_ifp->if_softc;
/* Need to sync with config thread: */
mtx_lock(&sc->sc_mtx);
if (usb2_config_td_sync(&sc->sc_config_td)) {
mtx_unlock(&sc->sc_mtx);
/* config thread is gone */
return (NULL);
}
mtx_unlock(&sc->sc_mtx);
if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
return NULL;
zvp = (struct zyd_vap *)malloc(sizeof(struct zyd_vap),
M_80211_VAP, M_NOWAIT | M_ZERO);
if (zvp == NULL)
return NULL;
vap = &zvp->vap;
/* enable s/w bmiss handling for sta mode */
ieee80211_vap_setup(ic, vap, name, unit, opmode,
flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
/* override state transition machine */
zvp->newstate = vap->iv_newstate;
vap->iv_newstate = &zyd_newstate_cb;
ieee80211_amrr_init(&zvp->amrr, vap,
IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
1000 /* 1 sec */ );
/* complete setup */
ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
ic->ic_opmode = opmode;
return (vap);
}
static void
zyd_vap_delete(struct ieee80211vap *vap)
{
struct zyd_vap *zvp = ZYD_VAP(vap);
struct zyd_softc *sc = vap->iv_ic->ic_ifp->if_softc;
/* Need to sync with config thread: */
mtx_lock(&sc->sc_mtx);
if (usb2_config_td_sync(&sc->sc_config_td)) {
/* ignore */
}
mtx_unlock(&sc->sc_mtx);
ieee80211_amrr_cleanup(&zvp->amrr);
ieee80211_vap_detach(vap);
free(zvp, M_80211_VAP);
return;
}
/* ARGUSED */
static struct ieee80211_node *
zyd_node_alloc_cb(struct ieee80211vap *vap __unused,
const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
{
struct zyd_node *zn;
zn = malloc(sizeof(struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
return ((zn != NULL) ? &zn->ni : NULL);
}
static void
zyd_fill_write_queue(struct zyd_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211_node *ni;
struct mbuf *m;
/*
* We only fill up half of the queue with data frames. The rest is
* reserved for other kinds of frames.
*/
while (sc->sc_tx_queue.ifq_len < (IFQ_MAXLEN / 2)) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
ni = (void *)(m->m_pkthdr.rcvif);
m = ieee80211_encap(ni, m);
if (m == NULL) {
ieee80211_free_node(ni);
continue;
}
zyd_tx_data(sc, m, ni);
}
return;
}
static void
zyd_tx_clean_queue(struct zyd_softc *sc)
{
struct mbuf *m;
for (;;) {
_IF_DEQUEUE(&sc->sc_tx_queue, m);
if (!m) {
break;
}
zyd_tx_freem(m);
}
return;
}
static void
zyd_tx_freem(struct mbuf *m)
{
struct ieee80211_node *ni;
while (m) {
ni = (void *)(m->m_pkthdr.rcvif);
if (!ni) {
m = m_free(m);
continue;
}
if (m->m_flags & M_TXCB) {
ieee80211_process_callback(ni, m, 0);
}
m_freem(m);
ieee80211_free_node(ni);
break;
}
return;
}
static void
zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
const struct ieee80211_txparam *tp;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
uint16_t totlen;
uint16_t rate;
tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
rate = tp->mgmtrate;
wh = mtod(m, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ni, m);
if (k == NULL) {
m_freem(m);
ieee80211_free_node(ni);
return;
}
wh = mtod(m, struct ieee80211_frame *);
}
/* fill Tx descriptor */
sc->sc_tx_desc.flags = ZYD_TX_FLAG_BACKOFF;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
/* get total length */
totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
/* multicast frames are not sent at OFDM rates in 802.11b/g */
if (totlen > vap->iv_rtsthreshold) {
sc->sc_tx_desc.flags |= ZYD_TX_FLAG_RTS;
} else if (ZYD_RATE_IS_OFDM(rate) &&
(ic->ic_flags & IEEE80211_F_USEPROT)) {
if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
sc->sc_tx_desc.flags |= ZYD_TX_FLAG_CTS_TO_SELF;
else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
sc->sc_tx_desc.flags |= ZYD_TX_FLAG_RTS;
}
} else
sc->sc_tx_desc.flags |= ZYD_TX_FLAG_MULTICAST;
if ((wh->i_fc[0] &
(IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
(IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
sc->sc_tx_desc.flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
m->m_pkthdr.rcvif = (void *)ni;
zyd_setup_desc_and_tx(sc, m, rate);
return;
}
static void
zyd_tx_data(struct zyd_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
const struct ieee80211_txparam *tp;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
uint16_t rate;
wh = mtod(m, struct ieee80211_frame *);
sc->sc_tx_desc.flags = ZYD_TX_FLAG_BACKOFF;
tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
rate = tp->mcastrate;
sc->sc_tx_desc.flags |= ZYD_TX_FLAG_MULTICAST;
} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
rate = tp->ucastrate;
} else
rate = ni->ni_txrate;
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ni, m);
if (k == NULL) {
m_freem(m);
ieee80211_free_node(ni);
return;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m, struct ieee80211_frame *);
}
/* fill Tx descriptor */
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
uint16_t totlen;
totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
/* multicast frames are not sent at OFDM rates in 802.11b/g */
if (totlen > vap->iv_rtsthreshold) {
sc->sc_tx_desc.flags |= ZYD_TX_FLAG_RTS;
} else if (ZYD_RATE_IS_OFDM(rate) &&
(ic->ic_flags & IEEE80211_F_USEPROT)) {
if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
sc->sc_tx_desc.flags |= ZYD_TX_FLAG_CTS_TO_SELF;
else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
sc->sc_tx_desc.flags |= ZYD_TX_FLAG_RTS;
}
}
if ((wh->i_fc[0] &
(IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
(IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
sc->sc_tx_desc.flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
m->m_pkthdr.rcvif = (void *)ni;
zyd_setup_desc_and_tx(sc, m, rate);
return;
}
static int
zyd_raw_xmit_cb(struct ieee80211_node *ni, struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
struct ieee80211com *ic = ni->ni_ic;
struct ifnet *ifp = ic->ic_ifp;
struct zyd_softc *sc = ifp->if_softc;
mtx_lock(&sc->sc_mtx);
if (params == NULL) {
/*
* Legacy path; interpret frame contents to decide
* precisely how to send the frame.
*/
zyd_tx_mgt(sc, m, ni);
} else {
/*
* Caller supplied explicit parameters to use in
* sending the frame.
*/
zyd_tx_mgt(sc, m, ni); /* XXX zyd_tx_raw() */
}
mtx_unlock(&sc->sc_mtx);
return (0);
}
static struct ieee80211vap *
zyd_get_vap(struct zyd_softc *sc)
{
struct ifnet *ifp;
struct ieee80211com *ic;
if (sc == NULL) {
return NULL;
}
ifp = sc->sc_ifp;
if (ifp == NULL) {
return NULL;
}
ic = ifp->if_l2com;
if (ic == NULL) {
return NULL;
}
return TAILQ_FIRST(&ic->ic_vaps);
}