freebsd-nq/sys/dev/wpi/if_wpi.c

3904 lines
101 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2006,2007
* Damien Bergamini <damien.bergamini@free.fr>
* Benjamin Close <Benjamin.Close@clearchain.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#define VERSION "20071102"
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
*
* The 3945ABG network adapter doesn't use traditional hardware as
* many other adaptors do. Instead at run time the eeprom is set into a known
* state and told to load boot firmware. The boot firmware loads an init and a
* main binary firmware image into SRAM on the card via DMA.
* Once the firmware is loaded, the driver/hw then
* communicate by way of circular dma rings via the the SRAM to the firmware.
*
* There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
* The 4 tx data rings allow for prioritization QoS.
*
* The rx data ring consists of 32 dma buffers. Two registers are used to
* indicate where in the ring the driver and the firmware are up to. The
* driver sets the initial read index (reg1) and the initial write index (reg2),
* the firmware updates the read index (reg1) on rx of a packet and fires an
* interrupt. The driver then processes the buffers starting at reg1 indicating
* to the firmware which buffers have been accessed by updating reg2. At the
* same time allocating new memory for the processed buffer.
*
* A similar thing happens with the tx rings. The difference is the firmware
* stop processing buffers once the queue is full and until confirmation
* of a successful transmition (tx_intr) has occurred.
*
* The command ring operates in the same manner as the tx queues.
*
* All communication direct to the card (ie eeprom) is classed as Stage1
* communication
*
* All communication via the firmware to the card is classed as State2.
* The firmware consists of 2 parts. A bootstrap firmware and a runtime
* firmware. The bootstrap firmware and runtime firmware are loaded
* from host memory via dma to the card then told to execute. From this point
* on the majority of communications between the driver and the card goes
* via the firmware.
*/
#include <sys/param.h>
#include <sys/sysctl.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/taskqueue.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/linker.h>
#include <sys/firmware.h>
#if (__FreeBSD_version > 700000)
#define WPI_CURRENT
#endif
#include <machine/bus.h>
#include <machine/resource.h>
#ifndef WPI_CURRENT
#include <machine/clock.h>
#endif
#include <sys/rman.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <net80211/ieee80211_regdomain.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#include <dev/wpi/if_wpireg.h>
#include <dev/wpi/if_wpivar.h>
#define WPI_DEBUG
#ifdef WPI_DEBUG
#define DPRINTF(x) do { if (wpi_debug != 0) printf x; } while (0)
#define DPRINTFN(n, x) do { if (wpi_debug & n) printf x; } while (0)
enum {
WPI_DEBUG_UNUSED = 0x00000001, /* Unused */
WPI_DEBUG_HW = 0x00000002, /* Stage 1 (eeprom) debugging */
WPI_DEBUG_TX = 0x00000004, /* Stage 2 TX intrp debugging*/
WPI_DEBUG_RX = 0x00000008, /* Stage 2 RX intrp debugging */
WPI_DEBUG_CMD = 0x00000010, /* Stage 2 CMD intrp debugging*/
WPI_DEBUG_FIRMWARE = 0x00000020, /* firmware(9) loading debug */
WPI_DEBUG_DMA = 0x00000040, /* DMA (de)allocations/syncs */
WPI_DEBUG_SCANNING = 0x00000080, /* Stage 2 Scanning debugging */
WPI_DEBUG_NOTIFY = 0x00000100, /* State 2 Noftif intr debug */
WPI_DEBUG_TEMP = 0x00000200, /* TXPower/Temp Calibration */
WPI_DEBUG_OPS = 0x00000400, /* wpi_ops taskq debug */
WPI_DEBUG_WATCHDOG = 0x00000800, /* Watch dog debug */
WPI_DEBUG_ANY = 0xffffffff
};
int wpi_debug = 0;
SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
struct wpi_ident {
uint16_t vendor;
uint16_t device;
uint16_t subdevice;
const char *name;
};
static const struct wpi_ident wpi_ident_table[] = {
/* The below entries support ABG regardless of the subid */
{ 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" },
{ 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" },
/* The below entries only support BG */
{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945AB" },
{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945AB" },
{ 0x8086, 0x4222, 0x1014, "Intel(R) PRO/Wireless 3945AB" },
{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945AB" },
{ 0, 0, 0, NULL }
};
static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
void **, bus_size_t, bus_size_t, int);
static void wpi_dma_contig_free(struct wpi_dma_info *);
static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
static int wpi_alloc_shared(struct wpi_softc *);
static void wpi_free_shared(struct wpi_softc *);
static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
static void wpi_free_rbuf(void *, void *);
static int wpi_alloc_rpool(struct wpi_softc *);
static void wpi_free_rpool(struct wpi_softc *);
static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
int, int);
static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
static struct ieee80211_node *wpi_node_alloc(struct ieee80211_node_table *);
static int wpi_media_change(struct ifnet *);
static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
static void wpi_mem_lock(struct wpi_softc *);
static void wpi_mem_unlock(struct wpi_softc *);
static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
const uint32_t *, int);
static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
static int wpi_alloc_fwmem(struct wpi_softc *);
static void wpi_free_fwmem(struct wpi_softc *);
static int wpi_load_firmware(struct wpi_softc *);
static void wpi_unload_firmware(struct wpi_softc *);
static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
struct wpi_rx_data *);
static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
static void wpi_notif_intr(struct wpi_softc *);
static void wpi_intr(void *);
static void wpi_ops(void *, int);
static uint8_t wpi_plcp_signal(int);
static int wpi_queue_cmd(struct wpi_softc *, int);
static void wpi_tick(void *);
#if 0
static void wpi_radio_on(void *, int);
static void wpi_radio_off(void *, int);
#endif
static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
struct ieee80211_node *, int);
static void wpi_start(struct ifnet *);
static void wpi_scan_start(struct ieee80211com *);
static void wpi_scan_end(struct ieee80211com *);
static void wpi_set_channel(struct ieee80211com *);
static void wpi_scan_curchan(struct ieee80211com *, unsigned long);
static void wpi_scan_mindwell(struct ieee80211com *);
static void wpi_watchdog(struct ifnet *);
static int wpi_ioctl(struct ifnet *, u_long, caddr_t);
static void wpi_restart(void *, int);
static void wpi_read_eeprom(struct wpi_softc *);
static void wpi_read_eeprom_channels(struct wpi_softc *, int);
static void wpi_read_eeprom_group(struct wpi_softc *, int);
static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
static int wpi_wme_update(struct ieee80211com *);
static int wpi_mrr_setup(struct wpi_softc *);
static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
#if 0
static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
#endif
static int wpi_auth(struct wpi_softc *);
static int wpi_scan(struct wpi_softc *);
static int wpi_config(struct wpi_softc *);
static void wpi_stop_master(struct wpi_softc *);
static int wpi_power_up(struct wpi_softc *);
static int wpi_reset(struct wpi_softc *);
static void wpi_hw_config(struct wpi_softc *);
static void wpi_init(void *);
static void wpi_stop(struct wpi_softc *);
static void wpi_stop_locked(struct wpi_softc *);
static void wpi_iter_func(void *, struct ieee80211_node *);
static void wpi_newassoc(struct ieee80211_node *, int);
static int wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
int);
static void wpi_calib_timeout(void *);
static void wpi_power_calibration(struct wpi_softc *, int);
static int wpi_get_power_index(struct wpi_softc *,
struct wpi_power_group *, struct ieee80211_channel *, int);
static const char *wpi_cmd_str(int);
static int wpi_probe(device_t);
static int wpi_attach(device_t);
static int wpi_detach(device_t);
static int wpi_shutdown(device_t);
static int wpi_suspend(device_t);
static int wpi_resume(device_t);
static device_method_t wpi_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, wpi_probe),
DEVMETHOD(device_attach, wpi_attach),
DEVMETHOD(device_detach, wpi_detach),
DEVMETHOD(device_shutdown, wpi_shutdown),
DEVMETHOD(device_suspend, wpi_suspend),
DEVMETHOD(device_resume, wpi_resume),
{ 0, 0 }
};
static driver_t wpi_driver = {
"wpi",
wpi_methods,
sizeof (struct wpi_softc)
};
static devclass_t wpi_devclass;
DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
static const uint8_t wpi_ridx_to_plcp[] = {
/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
/* R1-R4 (ral/ural is R4-R1) */
0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
/* CCK: device-dependent */
10, 20, 55, 110
};
static const uint8_t wpi_ridx_to_rate[] = {
12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
2, 4, 11, 22 /*CCK */
};
static int
wpi_probe(device_t dev)
{
const struct wpi_ident *ident;
for (ident = wpi_ident_table; ident->name != NULL; ident++) {
if (pci_get_vendor(dev) == ident->vendor &&
pci_get_device(dev) == ident->device) {
device_set_desc(dev, ident->name);
return 0;
}
}
return ENXIO;
}
/**
* Load the firmare image from disk to the allocated dma buffer.
* we also maintain the reference to the firmware pointer as there
* is times where we may need to reload the firmware but we are not
* in a context that can access the filesystem (ie taskq cause by restart)
*
* @return 0 on success, an errno on failure
*/
static int
wpi_load_firmware(struct wpi_softc *sc)
{
#ifdef WPI_CURRENT
const struct firmware *fp ;
#else
struct firmware *fp;
#endif
struct wpi_dma_info *dma = &sc->fw_dma;
const struct wpi_firmware_hdr *hdr;
const uint8_t *itext, *idata, *rtext, *rdata, *btext;
uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
int error;
WPI_LOCK_DECL;
DPRINTFN(WPI_DEBUG_FIRMWARE,
("Attempting Loading Firmware from wpi_fw module\n"));
WPI_UNLOCK(sc);
if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
device_printf(sc->sc_dev,
"could not load firmware image 'wpifw'\n");
error = ENOENT;
WPI_LOCK(sc);
goto fail;
}
fp = sc->fw_fp;
WPI_LOCK(sc);
/* Validate the firmware is minimum a particular version */
if (fp->version < WPI_FW_MINVERSION) {
device_printf(sc->sc_dev,
"firmware version is too old. Need %d, got %d\n",
WPI_FW_MINVERSION,
fp->version);
error = ENXIO;
goto fail;
}
if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
device_printf(sc->sc_dev,
"firmware file too short: %zu bytes\n", fp->datasize);
error = ENXIO;
goto fail;
}
hdr = (const struct wpi_firmware_hdr *)fp->data;
/* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW |
|HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
rtextsz = le32toh(hdr->rtextsz);
rdatasz = le32toh(hdr->rdatasz);
itextsz = le32toh(hdr->itextsz);
idatasz = le32toh(hdr->idatasz);
btextsz = le32toh(hdr->btextsz);
/* check that all firmware segments are present */
if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
rtextsz + rdatasz + itextsz + idatasz + btextsz) {
device_printf(sc->sc_dev,
"firmware file too short: %zu bytes\n", fp->datasize);
error = ENXIO; /* XXX appropriate error code? */
goto fail;
}
/* get pointers to firmware segments */
rtext = (const uint8_t *)(hdr + 1);
rdata = rtext + rtextsz;
itext = rdata + rdatasz;
idata = itext + itextsz;
btext = idata + idatasz;
DPRINTFN(WPI_DEBUG_FIRMWARE,
("Firmware Version: Major %d, Minor %d, Driver %d, \n"
"runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
(le32toh(hdr->version) & 0xff000000) >> 24,
(le32toh(hdr->version) & 0x00ff0000) >> 16,
(le32toh(hdr->version) & 0x0000ffff),
rtextsz, rdatasz,
itextsz, idatasz, btextsz));
DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
/* sanity checks */
if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
idatasz > WPI_FW_INIT_DATA_MAXSZ ||
btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
(btextsz & 3) != 0) {
device_printf(sc->sc_dev, "firmware invalid\n");
error = EINVAL;
goto fail;
}
/* copy initialization images into pre-allocated DMA-safe memory */
memcpy(dma->vaddr, idata, idatasz);
memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
/* tell adapter where to find initialization images */
wpi_mem_lock(sc);
wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
wpi_mem_unlock(sc);
/* load firmware boot code */
if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
device_printf(sc->sc_dev, "Failed to load microcode\n");
goto fail;
}
/* now press "execute" */
WPI_WRITE(sc, WPI_RESET, 0);
/* wait at most one second for the first alive notification */
if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
device_printf(sc->sc_dev,
"timeout waiting for adapter to initialize\n");
goto fail;
}
/* copy runtime images into pre-allocated DMA-sage memory */
memcpy(dma->vaddr, rdata, rdatasz);
memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
/* tell adapter where to find runtime images */
wpi_mem_lock(sc);
wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
wpi_mem_unlock(sc);
/* wait at most one second for the first alive notification */
if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
device_printf(sc->sc_dev,
"timeout waiting for adapter to initialize2\n");
goto fail;
}
DPRINTFN(WPI_DEBUG_FIRMWARE,
("Firmware loaded to driver successfully\n"));
return error;
fail:
wpi_unload_firmware(sc);
return error;
}
/**
* Free the referenced firmware image
*/
static void
wpi_unload_firmware(struct wpi_softc *sc)
{
WPI_LOCK_DECL;
if (sc->fw_fp) {
WPI_UNLOCK(sc);
firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
WPI_LOCK(sc);
sc->fw_fp = NULL;
}
}
static int
wpi_attach(device_t dev)
{
struct wpi_softc *sc = device_get_softc(dev);
struct ifnet *ifp;
struct ieee80211com *ic = &sc->sc_ic;
int ac, error, supportsa = 1;
uint32_t tmp;
const struct wpi_ident *ident;
sc->sc_dev = dev;
if (bootverbose || wpi_debug)
device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
/*
* Some card's only support 802.11b/g not a, check to see if
* this is one such card. A 0x0 in the subdevice table indicates
* the entire subdevice range is to be ignored.
*/
for (ident = wpi_ident_table; ident->name != NULL; ident++) {
if (ident->subdevice &&
pci_get_subdevice(dev) == ident->subdevice) {
supportsa = 0;
break;
}
}
#if __FreeBSD_version >= 700000
/*
* Create the taskqueues used by the driver. Primarily
* sc_tq handles most the task
*/
sc->sc_tq = taskqueue_create("wpi_taskq", M_NOWAIT | M_ZERO,
taskqueue_thread_enqueue, &sc->sc_tq);
taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
device_get_nameunit(dev));
sc->sc_tq2 = taskqueue_create("wpi_taskq2", M_NOWAIT | M_ZERO,
taskqueue_thread_enqueue, &sc->sc_tq2);
taskqueue_start_threads(&sc->sc_tq2, 1, PI_NET, "%s taskq2",
device_get_nameunit(dev));
#else
#error "Sorry, this driver is not yet ready for FreeBSD < 7.0"
#endif
/* Create the tasks that can be queued */
#if 0
TASK_INIT(&sc->sc_radioontask, 0, wpi_radio_on, sc);
TASK_INIT(&sc->sc_radioofftask, 0, wpi_radio_off, sc);
#endif
TASK_INIT(&sc->sc_opstask, 0, wpi_ops, sc);
TASK_INIT(&sc->sc_restarttask, 0, wpi_restart, sc);
WPI_LOCK_INIT(sc);
WPI_CMD_LOCK_INIT(sc);
callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
device_printf(dev, "chip is in D%d power mode "
"-- setting to D0\n", pci_get_powerstate(dev));
pci_set_powerstate(dev, PCI_POWERSTATE_D0);
}
/* disable the retry timeout register */
pci_write_config(dev, 0x41, 0, 1);
/* enable bus-mastering */
pci_enable_busmaster(dev);
sc->mem_rid = PCIR_BAR(0);
sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
RF_ACTIVE);
if (sc->mem == NULL) {
device_printf(dev, "could not allocate memory resource\n");
error = ENOMEM;
goto fail;
}
sc->sc_st = rman_get_bustag(sc->mem);
sc->sc_sh = rman_get_bushandle(sc->mem);
sc->irq_rid = 0;
sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
RF_ACTIVE | RF_SHAREABLE);
if (sc->irq == NULL) {
device_printf(dev, "could not allocate interrupt resource\n");
error = ENOMEM;
goto fail;
}
/*
* Allocate DMA memory for firmware transfers.
*/
if ((error = wpi_alloc_fwmem(sc)) != 0) {
printf(": could not allocate firmware memory\n");
error = ENOMEM;
goto fail;
}
/*
* Put adapter into a known state.
*/
if ((error = wpi_reset(sc)) != 0) {
device_printf(dev, "could not reset adapter\n");
goto fail;
}
wpi_mem_lock(sc);
tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
if (bootverbose || wpi_debug)
device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
wpi_mem_unlock(sc);
/* Allocate shared page */
if ((error = wpi_alloc_shared(sc)) != 0) {
device_printf(dev, "could not allocate shared page\n");
goto fail;
}
/*
* Allocate the receive buffer pool. The recieve buffers are
* WPI_RBUF_SIZE in length (3k) this is bigger than MCLBYTES
* hence we can't simply use a cluster and used mapped dma memory
* instead.
*/
if ((error = wpi_alloc_rpool(sc)) != 0) {
device_printf(dev, "could not allocate Rx buffers\n");
goto fail;
}
/* tx data queues - 4 for QoS purposes */
for (ac = 0; ac < WME_NUM_AC; ac++) {
error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
if (error != 0) {
device_printf(dev, "could not allocate Tx ring %d\n",ac);
goto fail;
}
}
/* command queue to talk to the card's firmware */
error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
if (error != 0) {
device_printf(dev, "could not allocate command ring\n");
goto fail;
}
/* receive data queue */
error = wpi_alloc_rx_ring(sc, &sc->rxq);
if (error != 0) {
device_printf(dev, "could not allocate Rx ring\n");
goto fail;
}
ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
error = ENOMEM;
goto fail;
}
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_WEP /* s/w WEP */
| IEEE80211_C_MONITOR /* monitor mode supported */
| IEEE80211_C_TXPMGT /* tx power management */
| IEEE80211_C_SHSLOT /* short slot time supported */
| IEEE80211_C_SHPREAMBLE /* short preamble supported */
| IEEE80211_C_WPA /* 802.11i */
/* XXX looks like WME is partly supported? */
#if 0
| IEEE80211_C_IBSS /* IBSS mode support */
| IEEE80211_C_BGSCAN /* capable of bg scanning */
| IEEE80211_C_WME /* 802.11e */
| IEEE80211_C_HOSTAP /* Host access point mode */
#endif
;
/*
* Read in the eeprom and also setup the channels for
* net80211. We don't set the rates as net80211 does this for us
*/
wpi_read_eeprom(sc);
if (bootverbose || wpi_debug) {
device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
device_printf(sc->sc_dev, "Hardware Type: %c\n",
sc->type > 1 ? 'B': '?');
device_printf(sc->sc_dev, "Hardware Revision: %c\n",
((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
supportsa ? "does" : "does not");
/* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
what sc->rev really represents - benjsc 20070615 */
}
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = wpi_init;
ifp->if_ioctl = wpi_ioctl;
ifp->if_start = wpi_start;
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
IFQ_SET_READY(&ifp->if_snd);
ieee80211_ifattach(ic);
/* override default methods */
ic->ic_node_alloc = wpi_node_alloc;
ic->ic_newassoc = wpi_newassoc;
ic->ic_wme.wme_update = wpi_wme_update;
ic->ic_scan_start = wpi_scan_start;
ic->ic_scan_end = wpi_scan_end;
ic->ic_set_channel = wpi_set_channel;
ic->ic_scan_curchan = wpi_scan_curchan;
ic->ic_scan_mindwell = wpi_scan_mindwell;
/* override state transition machine */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = wpi_newstate;
ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
ieee80211_amrr_init(&sc->amrr, ic,
IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD);
/* whilst ieee80211_ifattach will listen for ieee80211 frames,
* we also want to listen for the lower level radio frames
*/
bpfattach2(ifp, DLT_IEEE802_11_RADIO,
sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap),
&sc->sc_drvbpf);
sc->sc_rxtap_len = sizeof sc->sc_rxtap;
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof sc->sc_txtap;
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
/*
* Hook our interrupt after all initialization is complete.
*/
error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE ,
#ifdef WPI_CURRENT
NULL,
#endif
wpi_intr, sc, &sc->sc_ih);
if (error != 0) {
device_printf(dev, "could not set up interrupt\n");
goto fail;
}
ieee80211_announce(ic);
#ifdef XXX_DEBUG
ieee80211_announce_channels(ic);
#endif
return 0;
fail: wpi_detach(dev);
return ENXIO;
}
static int
wpi_detach(device_t dev)
{
struct wpi_softc *sc = device_get_softc(dev);
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
int ac;
WPI_LOCK_DECL;
if (ifp != NULL) {
wpi_stop(sc);
callout_drain(&sc->watchdog_to);
callout_drain(&sc->calib_to);
bpfdetach(ifp);
ieee80211_ifdetach(ic);
}
WPI_LOCK(sc);
if (sc->txq[0].data_dmat) {
for (ac = 0; ac < WME_NUM_AC; ac++)
wpi_free_tx_ring(sc, &sc->txq[ac]);
wpi_free_tx_ring(sc, &sc->cmdq);
wpi_free_rx_ring(sc, &sc->rxq);
wpi_free_rpool(sc);
wpi_free_shared(sc);
}
if (sc->fw_fp != NULL) {
wpi_unload_firmware(sc);
}
if (sc->fw_dma.tag)
wpi_free_fwmem(sc);
WPI_UNLOCK(sc);
if (sc->irq != NULL) {
bus_teardown_intr(dev, sc->irq, sc->sc_ih);
bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
}
if (sc->mem != NULL)
bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
if (ifp != NULL)
if_free(ifp);
taskqueue_free(sc->sc_tq);
taskqueue_free(sc->sc_tq2);
WPI_LOCK_DESTROY(sc);
WPI_CMD_LOCK_DESTROY(sc);
return 0;
}
static void
wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
if (error != 0)
return;
KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
*(bus_addr_t *)arg = segs[0].ds_addr;
}
static int
wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
void **kvap, bus_size_t size, bus_size_t alignment, int flags)
{
int error;
int count = 0;
DPRINTFN(WPI_DEBUG_DMA,
("Size: %zd - alignement %zd\n", size, alignment));
dma->size = size;
dma->tag = NULL;
again:
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
NULL, NULL, size,
1, size, flags,
NULL, NULL, &dma->tag);
if (error != 0) {
device_printf(sc->sc_dev,
"could not create shared page DMA tag\n");
goto fail;
}
error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
flags | BUS_DMA_ZERO, &dma->map);
if (error != 0) {
device_printf(sc->sc_dev,
"could not allocate shared page DMA memory\n");
goto fail;
}
/**
* Sadly FreeBSD can't always align on a 16k boundary, hence we give it
* 10 attempts increasing the size of the allocation by 4k each time.
* This should eventually align us on a 16k boundary at the cost
* of chewing up dma memory
*/
if ((((uintptr_t)dma->vaddr) & (alignment-1)) && count < 10) {
DPRINTFN(WPI_DEBUG_DMA,
("Memory Unaligned, trying again: %d\n", count++));
wpi_dma_contig_free(dma);
size += 4096;
goto again;
}
DPRINTFN(WPI_DEBUG_DMA,("Memory, allocated & %s Aligned!\n",
count == 10 ? "FAILED" : ""));
if (count == 10) {
device_printf(sc->sc_dev, "Unable to align memory\n");
error = ENOMEM;
goto fail;
}
error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
size, wpi_dma_map_addr, &dma->paddr, flags);
if (error != 0) {
device_printf(sc->sc_dev,
"could not load shared page DMA map\n");
goto fail;
}
if (kvap != NULL)
*kvap = dma->vaddr;
return 0;
fail:
wpi_dma_contig_free(dma);
return error;
}
static void
wpi_dma_contig_free(struct wpi_dma_info *dma)
{
if (dma->tag) {
if (dma->map != NULL) {
if (dma->paddr == 0) {
bus_dmamap_sync(dma->tag, dma->map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(dma->tag, dma->map);
}
bus_dmamem_free(dma->tag, &dma->vaddr, dma->map);
}
bus_dma_tag_destroy(dma->tag);
}
}
/*
* Allocate a shared page between host and NIC.
*/
static int
wpi_alloc_shared(struct wpi_softc *sc)
{
int error;
error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
(void **)&sc->shared, sizeof (struct wpi_shared),
PAGE_SIZE,
BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->sc_dev,
"could not allocate shared area DMA memory\n");
}
return error;
}
static void
wpi_free_shared(struct wpi_softc *sc)
{
wpi_dma_contig_free(&sc->shared_dma);
}
struct wpi_rbuf *
wpi_alloc_rbuf(struct wpi_softc *sc)
{
struct wpi_rbuf *rbuf;
rbuf = SLIST_FIRST(&sc->rxq.freelist);
if (rbuf == NULL)
return NULL;
SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
return rbuf;
}
/*
* This is called automatically by the network stack when the mbuf to which our
* Rx buffer is attached is freed.
*/
static void
wpi_free_rbuf(void *buf, void *arg)
{
struct wpi_rbuf *rbuf = arg;
struct wpi_softc *sc = rbuf->sc;
WPI_LOCK_DECL;
WPI_LOCK(sc);
/* put the buffer back in the free list */
SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
WPI_UNLOCK(sc);
}
static int
wpi_alloc_rpool(struct wpi_softc *sc)
{
struct wpi_rx_ring *ring = &sc->rxq;
struct wpi_rbuf *rbuf;
int i, error;
/* allocate a big chunk of DMA'able memory.. */
error = wpi_dma_contig_alloc(sc, &ring->buf_dma, NULL,
WPI_RBUF_COUNT * WPI_RBUF_SIZE, PAGE_SIZE, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->sc_dev,
"could not allocate Rx buffers DMA memory\n");
return error;
}
/* ..and split it into 3KB chunks */
SLIST_INIT(&ring->freelist);
for (i = 0; i < WPI_RBUF_COUNT; i++) {
rbuf = &ring->rbuf[i];
rbuf->sc = sc; /* backpointer for callbacks */
rbuf->vaddr = ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
}
return 0;
}
static void
wpi_free_rpool(struct wpi_softc *sc)
{
wpi_dma_contig_free(&sc->rxq.buf_dma);
}
static int
wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
{
struct wpi_rx_data *data;
struct wpi_rbuf *rbuf;
int i, error;
ring->cur = 0;
error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
(void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->sc_dev,
"could not allocate rx ring DMA memory\n");
goto fail;
}
/*
* Allocate Rx buffers.
*/
for (i = 0; i < WPI_RX_RING_COUNT; i++) {
data = &ring->data[i];
data->m = m_get(M_DONTWAIT, MT_HEADER);
if (data->m == NULL) {
device_printf(sc->sc_dev,
"could not allocate rx mbuf\n");
error = ENOBUFS;
goto fail;
}
if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
m_freem(data->m);
data->m = NULL;
device_printf(sc->sc_dev,
"could not allocate rx buffer\n");
error = ENOBUFS;
goto fail;
}
/* attach RxBuffer to mbuf */
MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE,wpi_free_rbuf,
rbuf,0,EXT_NET_DRV);
if ((data->m->m_flags & M_EXT) == 0) {
m_freem(data->m);
data->m = NULL;
error = ENOBUFS;
goto fail;
}
ring->desc[i] = htole32(rbuf->paddr);
}
bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
BUS_DMASYNC_PREWRITE);
return 0;
fail:
wpi_free_rx_ring(sc, ring);
return error;
}
static void
wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
{
int ntries;
wpi_mem_lock(sc);
WPI_WRITE(sc, WPI_RX_CONFIG, 0);
for (ntries = 0; ntries < 100; ntries++) {
if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
break;
DELAY(10);
}
wpi_mem_unlock(sc);
#ifdef WPI_DEBUG
if (ntries == 100 && wpi_debug > 0)
device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
#endif
ring->cur = 0;
}
static void
wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
{
int i;
wpi_dma_contig_free(&ring->desc_dma);
for (i = 0; i < WPI_RX_RING_COUNT; i++) {
if (ring->data[i].m != NULL) {
m_freem(ring->data[i].m);
ring->data[i].m = NULL;
}
}
}
static int
wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
int qid)
{
struct wpi_tx_data *data;
int i, error;
ring->qid = qid;
ring->count = count;
ring->queued = 0;
ring->cur = 0;
ring->data = NULL;
error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
goto fail;
}
/* update shared page with ring's base address */
sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->sc_dev,
"could not allocate tx command DMA memory\n");
goto fail;
}
ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (ring->data == NULL) {
device_printf(sc->sc_dev,
"could not allocate tx data slots\n");
goto fail;
}
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
&ring->data_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create data DMA tag\n");
goto fail;
}
for (i = 0; i < count; i++) {
data = &ring->data[i];
error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
if (error != 0) {
device_printf(sc->sc_dev,
"could not create tx buf DMA map\n");
goto fail;
}
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_PREWRITE);
}
return 0;
fail: wpi_free_tx_ring(sc, ring);
return error;
}
static void
wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
{
struct wpi_tx_data *data;
int i, ntries;
wpi_mem_lock(sc);
WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
for (ntries = 0; ntries < 100; ntries++) {
if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
break;
DELAY(10);
}
#ifdef WPI_DEBUG
if (ntries == 100 && wpi_debug > 0) {
device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
ring->qid);
}
#endif
wpi_mem_unlock(sc);
for (i = 0; i < ring->count; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
}
ring->queued = 0;
ring->cur = 0;
}
static void
wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
{
struct wpi_tx_data *data;
int i;
wpi_dma_contig_free(&ring->desc_dma);
wpi_dma_contig_free(&ring->cmd_dma);
if (ring->data != NULL) {
for (i = 0; i < ring->count; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
}
free(ring->data, M_DEVBUF);
}
if (ring->data_dmat != NULL)
bus_dma_tag_destroy(ring->data_dmat);
}
static int
wpi_shutdown(device_t dev)
{
struct wpi_softc *sc = device_get_softc(dev);
WPI_LOCK_DECL;
WPI_LOCK(sc);
wpi_stop_locked(sc);
wpi_unload_firmware(sc);
WPI_UNLOCK(sc);
return 0;
}
static int
wpi_suspend(device_t dev)
{
struct wpi_softc *sc = device_get_softc(dev);
wpi_stop(sc);
return 0;
}
static int
wpi_resume(device_t dev)
{
struct wpi_softc *sc = device_get_softc(dev);
struct ifnet *ifp = sc->sc_ic.ic_ifp;
pci_write_config(dev, 0x41, 0, 1);
if (ifp->if_flags & IFF_UP) {
wpi_init(ifp->if_softc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
wpi_start(ifp);
}
return 0;
}
/* ARGSUSED */
static struct ieee80211_node *
wpi_node_alloc(struct ieee80211_node_table *ic)
{
struct wpi_node *wn;
wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT |M_ZERO);
return &wn->ni;
}
static int
wpi_media_change(struct ifnet *ifp)
{
int error;
error = ieee80211_media_change(ifp);
if (error != ENETRESET)
return error;
if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
wpi_init(ifp->if_softc);
return 0;
}
/**
* Called by net80211 when ever there is a change to 80211 state machine
*/
static int
wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct ifnet *ifp = ic->ic_ifp;
struct wpi_softc *sc = ifp->if_softc;
struct ieee80211_node *ni;
int error;
callout_stop(&sc->calib_to);
switch (nstate) {
case IEEE80211_S_SCAN:
DPRINTF(("NEWSTATE:SCAN\n"));
/* Scanning is handled in net80211 via the scan_start,
* scan_end, scan_curchan functions. Hence all we do when
* changing to the SCAN state is update the leds
*/
/* make the link LED blink while we're scanning */
wpi_set_led(sc, WPI_LED_LINK, 20, 2);
break;
case IEEE80211_S_ASSOC:
DPRINTF(("NEWSTATE:ASSOC\n"));
if (ic->ic_state != IEEE80211_S_RUN)
break;
/* FALLTHROUGH */
case IEEE80211_S_AUTH:
DPRINTF(("NEWSTATE:AUTH\n"));
sc->flags |= WPI_FLAG_AUTH;
sc->config.associd = 0;
sc->config.filter &= ~htole32(WPI_FILTER_BSS);
wpi_queue_cmd(sc,WPI_AUTH);
DPRINTF(("END AUTH\n"));
break;
case IEEE80211_S_RUN:
DPRINTF(("NEWSTATE:RUN\n"));
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
/* link LED blinks while monitoring */
wpi_set_led(sc, WPI_LED_LINK, 5, 5);
break;
}
#if 0
if (ic->ic_opmode != IEEE80211_M_STA) {
(void) wpi_auth(sc); /* XXX */
wpi_setup_beacon(sc, ic->ic_bss);
}
#endif
ni = ic->ic_bss;
wpi_enable_tsf(sc, ni);
/* update adapter's configuration */
sc->config.associd = htole16(ni->ni_associd & ~0xc000);
/* short preamble/slot time are negotiated when associating */
sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
WPI_CONFIG_SHSLOT);
if (ic->ic_flags & IEEE80211_F_SHSLOT)
sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
sc->config.filter |= htole32(WPI_FILTER_BSS);
#if 0
if (ic->ic_opmode != IEEE80211_M_STA)
sc->config.filter |= htole32(WPI_FILTER_BEACON);
#endif
/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
DPRINTF(("config chan %d flags %x\n", sc->config.chan,
sc->config.flags));
error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
sizeof (struct wpi_config), 1);
if (error != 0) {
device_printf(sc->sc_dev,
"could not update configuration\n");
return error;
}
if ((error = wpi_set_txpower(sc, ic->ic_bss->ni_chan, 1)) != 0) {
device_printf(sc->sc_dev,
"could set txpower\n");
return error;
}
if (ic->ic_opmode == IEEE80211_M_STA) {
/* fake a join to init the tx rate */
wpi_newassoc(ic->ic_bss, 1);
}
/* start automatic rate control timer */
callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc);
/* link LED always on while associated */
wpi_set_led(sc, WPI_LED_LINK, 0, 1);
break;
case IEEE80211_S_INIT:
DPRINTF(("NEWSTATE:INIT\n"));
break;
default:
break;
}
return (*sc->sc_newstate)(ic, nstate, arg);
}
/*
* Grab exclusive access to NIC memory.
*/
static void
wpi_mem_lock(struct wpi_softc *sc)
{
int ntries;
uint32_t tmp;
tmp = WPI_READ(sc, WPI_GPIO_CTL);
WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
/* spin until we actually get the lock */
for (ntries = 0; ntries < 100; ntries++) {
if ((WPI_READ(sc, WPI_GPIO_CTL) &
(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
break;
DELAY(10);
}
if (ntries == 100)
device_printf(sc->sc_dev, "could not lock memory\n");
}
/*
* Release lock on NIC memory.
*/
static void
wpi_mem_unlock(struct wpi_softc *sc)
{
uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
}
static uint32_t
wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
{
WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
return WPI_READ(sc, WPI_READ_MEM_DATA);
}
static void
wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
{
WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
}
static void
wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
const uint32_t *data, int wlen)
{
for (; wlen > 0; wlen--, data++, addr+=4)
wpi_mem_write(sc, addr, *data);
}
/*
* Read data from the EEPROM. We access EEPROM through the MAC instead of
* using the traditional bit-bang method. Data is read up until len bytes have
* been obtained.
*/
static uint16_t
wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
{
int ntries;
uint32_t val;
uint8_t *out = data;
wpi_mem_lock(sc);
for (; len > 0; len -= 2, addr++) {
WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
for (ntries = 0; ntries < 10; ntries++) {
if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
break;
DELAY(5);
}
if (ntries == 10) {
device_printf(sc->sc_dev, "could not read EEPROM\n");
return ETIMEDOUT;
}
*out++= val >> 16;
if (len > 1)
*out ++= val >> 24;
}
wpi_mem_unlock(sc);
return 0;
}
/*
* The firmware text and data segments are transferred to the NIC using DMA.
* The driver just copies the firmware into DMA-safe memory and tells the NIC
* where to find it. Once the NIC has copied the firmware into its internal
* memory, we can free our local copy in the driver.
*/
static int
wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
{
int error, ntries;
DPRINTFN(WPI_DEBUG_HW,("Loading microcode size 0x%x\n", size));
size /= sizeof(uint32_t);
wpi_mem_lock(sc);
wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
(const uint32_t *)fw, size);
wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
/* run microcode */
wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
/* wait while the adapter is busy copying the firmware */
for (error = 0, ntries = 0; ntries < 1000; ntries++) {
uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
DPRINTFN(WPI_DEBUG_HW,
("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
if (status & WPI_TX_IDLE(6)) {
DPRINTFN(WPI_DEBUG_HW,
("Status Match! - ntries = %d\n", ntries));
break;
}
DELAY(10);
}
if (ntries == 1000) {
device_printf(sc->sc_dev, "timeout transferring firmware\n");
error = ETIMEDOUT;
}
/* start the microcode executing */
wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
wpi_mem_unlock(sc);
return (error);
}
static void
wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
struct wpi_rx_data *data)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct wpi_rx_ring *ring = &sc->rxq;
struct wpi_rx_stat *stat;
struct wpi_rx_head *head;
struct wpi_rx_tail *tail;
struct wpi_rbuf *rbuf;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct mbuf *m, *mnew;
WPI_LOCK_DECL;
stat = (struct wpi_rx_stat *)(desc + 1);
if (stat->len > WPI_STAT_MAXLEN) {
device_printf(sc->sc_dev, "invalid rx statistic header\n");
ifp->if_ierrors++;
return;
}
head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
"rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
(uintmax_t)le64toh(tail->tstamp)));
m = data->m;
/* finalize mbuf */
m->m_pkthdr.rcvif = ifp;
m->m_data = (caddr_t)(head + 1);
m->m_pkthdr.len = m->m_len = le16toh(head->len);
if ((rbuf = SLIST_FIRST(&sc->rxq.freelist)) != NULL) {
mnew = m_gethdr(M_DONTWAIT,MT_DATA);
if (mnew == NULL) {
ifp->if_ierrors++;
return;
}
/* attach Rx buffer to mbuf */
MEXTADD(mnew,rbuf->vaddr,WPI_RBUF_SIZE, wpi_free_rbuf, rbuf, 0,
EXT_NET_DRV);
SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
data->m = mnew;
/* update Rx descriptor */
ring->desc[ring->cur] = htole32(rbuf->paddr);
} else {
/* no free rbufs, copy frame */
m = m_dup(m, M_DONTWAIT);
if (m == NULL) {
/* no free mbufs either, drop frame */
ifp->if_ierrors++;
return;
}
}
#ifndef WPI_CURRENT
if (sc->sc_drvbpf != NULL) {
#else
if (bpf_peers_present(sc->sc_drvbpf)) {
#endif
struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = 0;
tap->wr_chan_freq =
htole16(ic->ic_channels[head->chan].ic_freq);
tap->wr_chan_flags =
htole16(ic->ic_channels[head->chan].ic_flags);
tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
tap->wr_tsft = tail->tstamp;
tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
switch (head->rate) {
/* CCK rates */
case 10: tap->wr_rate = 2; break;
case 20: tap->wr_rate = 4; break;
case 55: tap->wr_rate = 11; break;
case 110: tap->wr_rate = 22; break;
/* OFDM rates */
case 0xd: tap->wr_rate = 12; break;
case 0xf: tap->wr_rate = 18; break;
case 0x5: tap->wr_rate = 24; break;
case 0x7: tap->wr_rate = 36; break;
case 0x9: tap->wr_rate = 48; break;
case 0xb: tap->wr_rate = 72; break;
case 0x1: tap->wr_rate = 96; break;
case 0x3: tap->wr_rate = 108; break;
/* unknown rate: should not happen */
default: tap->wr_rate = 0;
}
if (le16toh(head->flags) & 0x4)
tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
}
wh = mtod(m, struct ieee80211_frame *);
WPI_UNLOCK(sc);
/* XXX frame length > sizeof(struct ieee80211_frame_min)? */
/* grab a reference to the source node */
ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
/* send the frame to the 802.11 layer */
ieee80211_input(ic, m, ni, stat->rssi, 0, 0);
/* release node reference */
ieee80211_free_node(ni);
WPI_LOCK(sc);
}
static void
wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
{
struct ifnet *ifp = sc->sc_ic.ic_ifp;
struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
struct wpi_tx_data *txdata = &ring->data[desc->idx];
struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
struct wpi_node *wn = (struct wpi_node *)txdata->ni;
DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
"rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
le32toh(stat->status)));
/*
* Update rate control statistics for the node.
* XXX we should not count mgmt frames since they're always sent at
* the lowest available bit-rate.
* XXX frames w/o ACK shouldn't be used either
*/
wn->amn.amn_txcnt++;
if (stat->ntries > 0) {
DPRINTFN(3, ("%d retries\n", stat->ntries));
wn->amn.amn_retrycnt++;
}
/* XXX oerrors should only count errors !maxtries */
if ((le32toh(stat->status) & 0xff) != 1)
ifp->if_oerrors++;
else
ifp->if_opackets++;
bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->data_dmat, txdata->map);
/* XXX handle M_TXCB? */
m_freem(txdata->m);
txdata->m = NULL;
ieee80211_free_node(txdata->ni);
txdata->ni = NULL;
ring->queued--;
sc->sc_tx_timer = 0;
sc->watchdog_cnt = 0;
callout_stop(&sc->watchdog_to);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
wpi_start(ifp);
}
static void
wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
{
struct wpi_tx_ring *ring = &sc->cmdq;
struct wpi_tx_data *data;
DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
"type=%s len=%d\n", desc->qid, desc->idx,
desc->flags, wpi_cmd_str(desc->type),
le32toh(desc->len)));
if ((desc->qid & 7) != 4)
return; /* not a command ack */
data = &ring->data[desc->idx];
/* if the command was mapped in a mbuf, free it */
if (data->m != NULL) {
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
sc->flags &= ~WPI_FLAG_BUSY;
wakeup(&ring->cmd[desc->idx]);
}
static void
wpi_notif_intr(struct wpi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct wpi_rx_desc *desc;
struct wpi_rx_data *data;
uint32_t hw;
hw = le32toh(sc->shared->next);
while (sc->rxq.cur != hw) {
data = &sc->rxq.data[sc->rxq.cur];
desc = (void *)data->m->m_ext.ext_buf;
DPRINTFN(WPI_DEBUG_NOTIFY,
("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
desc->qid,
desc->idx,
desc->flags,
desc->type,
le32toh(desc->len)));
if (!(desc->qid & 0x80)) /* reply to a command */
wpi_cmd_intr(sc, desc);
/* XXX beacon miss handling? */
switch (desc->type) {
case WPI_RX_DONE:
/* a 802.11 frame was received */
wpi_rx_intr(sc, desc, data);
break;
case WPI_TX_DONE:
/* a 802.11 frame has been transmitted */
wpi_tx_intr(sc, desc);
break;
case WPI_UC_READY:
{
struct wpi_ucode_info *uc =
(struct wpi_ucode_info *)(desc + 1);
/* the microcontroller is ready */
DPRINTF(("microcode alive notification version %x "
"alive %x\n", le32toh(uc->version),
le32toh(uc->valid)));
if (le32toh(uc->valid) != 1) {
device_printf(sc->sc_dev,
"microcontroller initialization failed\n");
wpi_stop_locked(sc);
}
break;
}
case WPI_STATE_CHANGED:
{
uint32_t *status = (uint32_t *)(desc + 1);
/* enabled/disabled notification */
DPRINTF(("state changed to %x\n", le32toh(*status)));
if (le32toh(*status) & 1) {
device_printf(sc->sc_dev,
"Radio transmitter is switched off\n");
sc->flags |= WPI_FLAG_HW_RADIO_OFF;
break;
}
sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
break;
}
case WPI_START_SCAN:
{
struct wpi_start_scan *scan =
(struct wpi_start_scan *)(desc + 1);
DPRINTFN(WPI_DEBUG_SCANNING,
("scanning channel %d status %x\n",
scan->chan, le32toh(scan->status)));
/* fix current channel */
ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
break;
}
case WPI_STOP_SCAN:
{
struct wpi_stop_scan *scan =
(struct wpi_stop_scan *)(desc + 1);
DPRINTFN(WPI_DEBUG_SCANNING,
("scan finished nchan=%d status=%d chan=%d\n",
scan->nchan, scan->status, scan->chan));
wpi_queue_cmd(sc, WPI_SCAN_NEXT);
break;
}
}
sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
}
/* tell the firmware what we have processed */
hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
}
static void
wpi_intr(void *arg)
{
struct wpi_softc *sc = arg;
uint32_t r;
WPI_LOCK_DECL;
WPI_LOCK(sc);
r = WPI_READ(sc, WPI_INTR);
if (r == 0 || r == 0xffffffff) {
WPI_UNLOCK(sc);
return;
}
/* disable interrupts */
WPI_WRITE(sc, WPI_MASK, 0);
/* ack interrupts */
WPI_WRITE(sc, WPI_INTR, r);
if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
device_printf(sc->sc_dev, "fatal firmware error\n");
DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
"(Hardware Error)"));
taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask);
sc->flags &= ~WPI_FLAG_BUSY;
WPI_UNLOCK(sc);
return;
}
if (r & WPI_RX_INTR)
wpi_notif_intr(sc);
if (r & WPI_ALIVE_INTR) /* firmware initialized */
wakeup(sc);
/* re-enable interrupts */
if (sc->sc_ifp->if_flags & IFF_UP)
WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
WPI_UNLOCK(sc);
}
static uint8_t
wpi_plcp_signal(int rate)
{
switch (rate) {
/* CCK rates (returned values are device-dependent) */
case 2: return 10;
case 4: return 20;
case 11: return 55;
case 22: return 110;
/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
/* R1-R4 (ral/ural is R4-R1) */
case 12: return 0xd;
case 18: return 0xf;
case 24: return 0x5;
case 36: return 0x7;
case 48: return 0x9;
case 72: return 0xb;
case 96: return 0x1;
case 108: return 0x3;
/* unsupported rates (should not get there) */
default: return 0;
}
}
/* quickly determine if a given rate is CCK or OFDM */
#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
/*
* Construct the data packet for a transmit buffer and acutally put
* the buffer onto the transmit ring, kicking the card to process the
* the buffer.
*/
static int
wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
int ac)
{
struct ieee80211com *ic = &sc->sc_ic;
struct wpi_tx_ring *ring = &sc->txq[ac];
struct wpi_tx_desc *desc;
struct wpi_tx_data *data;
struct wpi_tx_cmd *cmd;
struct wpi_cmd_data *tx;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
const struct chanAccParams *cap;
struct mbuf *mnew;
int i, error, nsegs, rate, hdrlen, noack = 0;
bus_dma_segment_t segs[WPI_MAX_SCATTER];
desc = &ring->desc[ring->cur];
data = &ring->data[ring->cur];
wh = mtod(m0, struct ieee80211_frame *);
if (IEEE80211_QOS_HAS_SEQ(wh)) {
hdrlen = sizeof (struct ieee80211_qosframe);
cap = &ic->ic_wme.wme_chanParams;
noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
} else
hdrlen = sizeof (struct ieee80211_frame);
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
m_freem(m0);
return ENOBUFS;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
/* pickup a rate */
if (IEEE80211_IS_MULTICAST(wh->i_addr1)||
((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_MGT)) {
/*
* mgmt/multicast frames are sent at the lowest available
* bit-rate
*/
rate = ni->ni_rates.rs_rates[0];
} else {
if (ic->ic_fixed_rate != -1) {
rate = ic->ic_sup_rates[ic->ic_curmode].
rs_rates[ic->ic_fixed_rate];
} else
rate = ni->ni_rates.rs_rates[ni->ni_txrate];
}
rate &= IEEE80211_RATE_VAL;
#ifndef WPI_CURRENT
if (sc->sc_drvbpf != NULL) {
#else
if (bpf_peers_present(sc->sc_drvbpf)) {
#endif
struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
tap->wt_rate = rate;
tap->wt_hwqueue = ac;
if (wh->i_fc[1] & IEEE80211_FC1_WEP)
tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
}
cmd = &ring->cmd[ring->cur];
cmd->code = WPI_CMD_TX_DATA;
cmd->flags = 0;
cmd->qid = ring->qid;
cmd->idx = ring->cur;
tx = (struct wpi_cmd_data *)cmd->data;
tx->flags = 0;
if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
tx->flags |= htole32(WPI_TX_NEED_ACK);
} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
}
tx->flags |= htole32(WPI_TX_AUTO_SEQ);
tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
WPI_ID_BSS;
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_MGT) {
uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
/* tell h/w to set timestamp in probe responses */
if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
tx->timeout = htole16(3);
else
tx->timeout = htole16(2);
} else
tx->timeout = htole16(0);
tx->rate = wpi_plcp_signal(rate);
/* be very persistant at sending frames out */
tx->rts_ntries = 7;
tx->data_ntries = 15;
tx->ofdm_mask = 0xff;
tx->cck_mask = 0x0f;
tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
tx->len = htole16(m0->m_pkthdr.len);
/* save and trim IEEE802.11 header */
m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
m_adj(m0, hdrlen);
error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
&nsegs, BUS_DMA_NOWAIT);
if (error != 0 && error != EFBIG) {
device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
error);
m_freem(m0);
return error;
}
if (error != 0) {
/* XXX use ath_defrag */
mnew = m_defrag(m0, M_DONTWAIT);
if (mnew == NULL) {
device_printf(sc->sc_dev,
"could not defragment mbuf\n");
m_freem(m0);
return ENOBUFS;
}
m0 = mnew;
error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
m0, segs, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->sc_dev,
"could not map mbuf (error %d)\n", error);
m_freem(m0);
return error;
}
}
data->m = m0;
data->ni = ni;
DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
/* first scatter/gather segment is used by the tx data command */
desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
(1 + nsegs) << 24);
desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
ring->cur * sizeof (struct wpi_tx_cmd));
desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data));
for (i = 1; i <= nsegs; i++) {
desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
desc->segs[i].len = htole32(segs[i - 1].ds_len);
}
bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
BUS_DMASYNC_PREWRITE);
ring->queued++;
/* kick ring */
ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
return 0;
}
/**
* Process data waiting to be sent on the IFNET output queue
*/
static void
wpi_start(struct ifnet *ifp)
{
struct wpi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
struct ether_header *eh;
struct mbuf *m0;
int ac;
WPI_LOCK_DECL;
WPI_LOCK(sc);
for (;;) {
IF_POLL(&ic->ic_mgtq, m0);
if (m0 != NULL) {
IF_DEQUEUE(&ic->ic_mgtq, m0);
ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
m0->m_pkthdr.rcvif = NULL;
/* management frames go into ring 0 */
if (sc->txq[0].queued > sc->txq[0].count - 8) {
ifp->if_oerrors++;
continue;
}
if (wpi_tx_data(sc, m0, ni, 0) != 0) {
ifp->if_oerrors++;
break;
}
} else {
if (ic->ic_state != IEEE80211_S_RUN)
break;
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == NULL)
break;
/*
* Cancel any background scan.
*/
if (ic->ic_flags & IEEE80211_F_SCAN)
ieee80211_cancel_scan(ic);
if (m0->m_len < sizeof (*eh) &&
(m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
ifp->if_oerrors++;
continue;
}
eh = mtod(m0, struct ether_header *);
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
if (ni == NULL) {
m_freem(m0);
ifp->if_oerrors++;
continue;
}
/* classify mbuf so we can find which tx ring to use */
if (ieee80211_classify(ic, m0, ni) != 0) {
m_freem(m0);
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
/* no QoS encapsulation for EAPOL frames */
ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
M_WME_GETAC(m0) : WME_AC_BE;
if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
/* there is no place left in this ring */
IFQ_DRV_PREPEND(&ifp->if_snd, m0);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
BPF_MTAP(ifp, m0);
m0 = ieee80211_encap(ic, m0, ni);
if (m0 == NULL) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
#ifndef WPI_CURRENT
if (ic->ic_rawbpf != NULL)
#else
if (bpf_peers_present(ic->ic_rawbpf))
#endif
bpf_mtap(ic->ic_rawbpf, m0);
if (wpi_tx_data(sc, m0, ni, ac) != 0) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
break;
}
}
sc->sc_tx_timer = 5;
sc->watchdog_cnt = 5;
ic->ic_lastdata = ticks;
}
WPI_UNLOCK(sc);
}
static void
wpi_watchdog(struct ifnet *ifp)
{
struct wpi_softc *sc = ifp->if_softc;
WPI_LOCK_DECL;
WPI_LOCK(sc);
DPRINTFN(WPI_DEBUG_WATCHDOG, ("watchdog_cnt: %d\n", sc->watchdog_cnt));
if (sc->watchdog_cnt == 0 || --sc->watchdog_cnt)
goto done;
if (--sc->sc_tx_timer != 0) {
device_printf(sc->sc_dev,"device timeout\n");
ifp->if_oerrors++;
taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask);
}
done:
WPI_UNLOCK(sc);
}
static int
wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct wpi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int error = 0;
WPI_LOCK_DECL;
WPI_LOCK(sc);
switch (cmd) {
case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_UP)) {
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
wpi_init(sc);
} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
wpi_stop_locked(sc);
break;
default:
WPI_UNLOCK(sc);
error = ieee80211_ioctl(ic, cmd, data);
WPI_LOCK(sc);
}
if (error == ENETRESET) {
if ((ifp->if_flags & IFF_UP) &&
(ifp->if_drv_flags & IFF_DRV_RUNNING) &&
ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
wpi_init(sc);
error = 0;
}
WPI_UNLOCK(sc);
return error;
}
/*
* Extract various information from EEPROM.
*/
static void
wpi_read_eeprom(struct wpi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
int i;
/* read the hardware capabilities, revision and SKU type */
wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
/* read the regulatory domain */
wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
/* read in the hw MAC address */
wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
/* read the list of authorized channels */
for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
wpi_read_eeprom_channels(sc,i);
/* read the power level calibration info for each group */
for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
wpi_read_eeprom_group(sc,i);
}
/*
* Send a command to the firmware.
*/
static int
wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
{
struct wpi_tx_ring *ring = &sc->cmdq;
struct wpi_tx_desc *desc;
struct wpi_tx_cmd *cmd;
#ifdef WPI_DEBUG
if (!async) {
WPI_LOCK_ASSERT(sc);
}
#endif
DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
async));
if (sc->flags & WPI_FLAG_BUSY) {
device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
__func__, code);
return EAGAIN;
}
sc->flags|= WPI_FLAG_BUSY;
KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
code, size));
desc = &ring->desc[ring->cur];
cmd = &ring->cmd[ring->cur];
cmd->code = code;
cmd->flags = 0;
cmd->qid = ring->qid;
cmd->idx = ring->cur;
memcpy(cmd->data, buf, size);
desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
ring->cur * sizeof (struct wpi_tx_cmd));
desc->segs[0].len = htole32(4 + size);
/* kick cmd ring */
ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
if (async) {
sc->flags &= ~ WPI_FLAG_BUSY;
return 0;
}
return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
}
static int
wpi_wme_update(struct ieee80211com *ic)
{
#define WPI_EXP2(v) htole16((1 << (v)) - 1)
#define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
struct wpi_softc *sc = ic->ic_ifp->if_softc;
const struct wmeParams *wmep;
struct wpi_wme_setup wme;
int ac;
/* don't override default WME values if WME is not actually enabled */
if (!(ic->ic_flags & IEEE80211_F_WME))
return 0;
wme.flags = 0;
for (ac = 0; ac < WME_NUM_AC; ac++) {
wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
wme.ac[ac].aifsn = wmep->wmep_aifsn;
wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
"txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
wme.ac[ac].cwmax, wme.ac[ac].txop));
}
return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
#undef WPI_USEC
#undef WPI_EXP2
}
/*
* Configure h/w multi-rate retries.
*/
static int
wpi_mrr_setup(struct wpi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct wpi_mrr_setup mrr;
int i, error;
memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
/* CCK rates (not used with 802.11a) */
for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
mrr.rates[i].flags = 0;
mrr.rates[i].signal = wpi_ridx_to_plcp[i];
/* fallback to the immediate lower CCK rate (if any) */
mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
/* try one time at this rate before falling back to "next" */
mrr.rates[i].ntries = 1;
}
/* OFDM rates (not used with 802.11b) */
for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
mrr.rates[i].flags = 0;
mrr.rates[i].signal = wpi_ridx_to_plcp[i];
/* fallback to the immediate lower OFDM rate (if any) */
/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
mrr.rates[i].next = (i == WPI_OFDM6) ?
((ic->ic_curmode == IEEE80211_MODE_11A) ?
WPI_OFDM6 : WPI_CCK2) :
i - 1;
/* try one time at this rate before falling back to "next" */
mrr.rates[i].ntries = 1;
}
/* setup MRR for control frames */
mrr.which = htole32(WPI_MRR_CTL);
error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"could not setup MRR for control frames\n");
return error;
}
/* setup MRR for data frames */
mrr.which = htole32(WPI_MRR_DATA);
error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"could not setup MRR for data frames\n");
return error;
}
return 0;
}
static void
wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
{
struct wpi_cmd_led led;
led.which = which;
led.unit = htole32(100000); /* on/off in unit of 100ms */
led.off = off;
led.on = on;
(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
}
static void
wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
{
struct wpi_cmd_tsf tsf;
uint64_t val, mod;
memset(&tsf, 0, sizeof tsf);
memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
tsf.bintval = htole16(ni->ni_intval);
tsf.lintval = htole16(10);
/* compute remaining time until next beacon */
val = (uint64_t)ni->ni_intval * 1024; /* msec -> usec */
mod = le64toh(tsf.tstamp) % val;
tsf.binitval = htole32((uint32_t)(val - mod));
if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
device_printf(sc->sc_dev, "could not enable TSF\n");
}
#if 0
/*
* Build a beacon frame that the firmware will broadcast periodically in
* IBSS or HostAP modes.
*/
static int
wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct wpi_tx_ring *ring = &sc->cmdq;
struct wpi_tx_desc *desc;
struct wpi_tx_data *data;
struct wpi_tx_cmd *cmd;
struct wpi_cmd_beacon *bcn;
struct ieee80211_beacon_offsets bo;
struct mbuf *m0;
bus_addr_t physaddr;
int error;
desc = &ring->desc[ring->cur];
data = &ring->data[ring->cur];
m0 = ieee80211_beacon_alloc(ic, ni, &bo);
if (m0 == NULL) {
device_printf(sc->sc_dev, "could not allocate beacon frame\n");
return ENOMEM;
}
cmd = &ring->cmd[ring->cur];
cmd->code = WPI_CMD_SET_BEACON;
cmd->flags = 0;
cmd->qid = ring->qid;
cmd->idx = ring->cur;
bcn = (struct wpi_cmd_beacon *)cmd->data;
memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
bcn->id = WPI_ID_BROADCAST;
bcn->ofdm_mask = 0xff;
bcn->cck_mask = 0x0f;
bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
bcn->len = htole16(m0->m_pkthdr.len);
bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
wpi_plcp_signal(12) : wpi_plcp_signal(2);
bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
/* save and trim IEEE802.11 header */
m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
m_adj(m0, sizeof (struct ieee80211_frame));
/* assume beacon frame is contiguous */
error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
if (error != 0) {
device_printf(sc->sc_dev, "could not map beacon\n");
m_freem(m0);
return error;
}
data->m = m0;
/* first scatter/gather segment is used by the beacon command */
desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
ring->cur * sizeof (struct wpi_tx_cmd));
desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
desc->segs[1].addr = htole32(physaddr);
desc->segs[1].len = htole32(m0->m_pkthdr.len);
/* kick cmd ring */
ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
return 0;
}
#endif
static int
wpi_auth(struct wpi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
struct wpi_node_info node;
int error;
/* update adapter's configuration */
IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
sc->config.flags |= htole32(WPI_CONFIG_AUTO |
WPI_CONFIG_24GHZ);
}
switch (ic->ic_curmode) {
case IEEE80211_MODE_11A:
sc->config.cck_mask = 0;
sc->config.ofdm_mask = 0x15;
break;
case IEEE80211_MODE_11B:
sc->config.cck_mask = 0x03;
sc->config.ofdm_mask = 0;
break;
default: /* assume 802.11b/g */
sc->config.cck_mask = 0x0f;
sc->config.ofdm_mask = 0x15;
}
DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
sizeof (struct wpi_config), 1);
if (error != 0) {
device_printf(sc->sc_dev, "could not configure\n");
return error;
}
/* configuration has changed, set Tx power accordingly */
if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
device_printf(sc->sc_dev, "could not set Tx power\n");
return error;
}
/* add default node */
memset(&node, 0, sizeof node);
IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
node.id = WPI_ID_BSS;
node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
wpi_plcp_signal(12) : wpi_plcp_signal(2);
node.action = htole32(WPI_ACTION_SET_RATE);
node.antenna = WPI_ANTENNA_BOTH;
error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
if (error != 0) {
device_printf(sc->sc_dev, "could not add BSS node\n");
return error;
}
sc->flags &= ~WPI_FLAG_AUTH;
return 0;
}
/*
* Send a scan request to the firmware. Since this command is huge, we map it
* into a mbufcluster instead of using the pre-allocated set of commands. Note,
* much of this code is similar to that in wpi_cmd but because we must manually
* construct the probe & channels, we duplicate what's needed here. XXX In the
* future, this function should be modified to use wpi_cmd to help cleanup the
* code base.
*/
static int
wpi_scan(struct wpi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct wpi_tx_ring *ring = &sc->cmdq;
struct wpi_tx_desc *desc;
struct wpi_tx_data *data;
struct wpi_tx_cmd *cmd;
struct wpi_scan_hdr *hdr;
struct wpi_scan_chan *chan;
struct ieee80211_frame *wh;
struct ieee80211_rateset *rs;
struct ieee80211_channel *c;
enum ieee80211_phymode mode;
uint8_t *frm;
int nrates, pktlen, error;
bus_addr_t physaddr;
struct ifnet *ifp = ic->ic_ifp;
desc = &ring->desc[ring->cur];
data = &ring->data[ring->cur];
data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (data->m == NULL) {
device_printf(sc->sc_dev,
"could not allocate mbuf for scan command\n");
return ENOMEM;
}
cmd = mtod(data->m, struct wpi_tx_cmd *);
cmd->code = WPI_CMD_SCAN;
cmd->flags = 0;
cmd->qid = ring->qid;
cmd->idx = ring->cur;
hdr = (struct wpi_scan_hdr *)cmd->data;
memset(hdr, 0, sizeof(struct wpi_scan_hdr));
/*
* Move to the next channel if no packets are received within 5 msecs
* after sending the probe request (this helps to reduce the duration
* of active scans).
*/
hdr->quiet = htole16(5);
hdr->threshold = htole16(1);
if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
/* send probe requests at 6Mbps */
hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
/* Enable crc checking */
hdr->promotion = htole16(1);
} else {
hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
/* send probe requests at 1Mbps */
hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
}
hdr->tx.id = WPI_ID_BROADCAST;
hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
/*XXX Need to cater for multiple essids */
memset(&hdr->scan_essids[0], 0, 4 * sizeof(hdr->scan_essids[0]));
hdr->scan_essids[0].id = IEEE80211_ELEMID_SSID;
hdr->scan_essids[0].esslen = ic->ic_des_ssid[0].len;
memcpy(hdr->scan_essids[0].essid, ic->ic_des_ssid[0].ssid,
ic->ic_des_ssid[0].len);
if (wpi_debug & WPI_DEBUG_SCANNING) {
printf("Scanning Essid: ");
ieee80211_print_essid(ic->ic_des_ssid[0].ssid,
ic->ic_des_ssid[0].len);
printf("\n");
}
/*
* Build a probe request frame. Most of the following code is a
* copy & paste of what is done in net80211.
*/
wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
IEEE80211_FC0_SUBTYPE_PROBE_REQ;
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
*(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
*(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
frm = (uint8_t *)(wh + 1);
/* add essid IE, the hardware will fill this in for us */
*frm++ = IEEE80211_ELEMID_SSID;
*frm++ = 0;
mode = ieee80211_chan2mode(ic->ic_curchan);
rs = &ic->ic_sup_rates[mode];
/* add supported rates IE */
*frm++ = IEEE80211_ELEMID_RATES;
nrates = rs->rs_nrates;
if (nrates > IEEE80211_RATE_SIZE)
nrates = IEEE80211_RATE_SIZE;
*frm++ = nrates;
memcpy(frm, rs->rs_rates, nrates);
frm += nrates;
/* add supported xrates IE */
if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
*frm++ = IEEE80211_ELEMID_XRATES;
*frm++ = nrates;
memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
frm += nrates;
}
/* setup length of probe request */
hdr->tx.len = htole16(frm - (uint8_t *)wh);
/*
* Construct information about the channel that we
* want to scan. The firmware expects this to be directly
* after the scan probe request
*/
c = ic->ic_curchan;
chan = (struct wpi_scan_chan *)frm;
chan->chan = ieee80211_chan2ieee(ic, c);
chan->flags = 0;
if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
chan->flags |= WPI_CHAN_ACTIVE;
if (ic->ic_des_ssid[0].len != 0)
chan->flags |= WPI_CHAN_DIRECT;
}
chan->gain_dsp = 0x6e; /* Default level */
if (IEEE80211_IS_CHAN_5GHZ(c)) {
chan->active = htole16(10);
chan->passive = htole16(sc->maxdwell);
chan->gain_radio = 0x3b;
} else {
chan->active = htole16(20);
chan->passive = htole16(sc->maxdwell);
chan->gain_radio = 0x28;
}
DPRINTFN(WPI_DEBUG_SCANNING,
("Scanning %u Passive: %d\n",
chan->chan,
c->ic_flags & IEEE80211_CHAN_PASSIVE));
hdr->nchan++;
chan++;
frm += sizeof (struct wpi_scan_chan);
#if 0
// XXX All Channels....
for (c = &ic->ic_channels[1];
c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
continue;
chan->chan = ieee80211_chan2ieee(ic, c);
chan->flags = 0;
if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
chan->flags |= WPI_CHAN_ACTIVE;
if (ic->ic_des_ssid[0].len != 0)
chan->flags |= WPI_CHAN_DIRECT;
}
chan->gain_dsp = 0x6e; /* Default level */
if (IEEE80211_IS_CHAN_5GHZ(c)) {
chan->active = htole16(10);
chan->passive = htole16(110);
chan->gain_radio = 0x3b;
} else {
chan->active = htole16(20);
chan->passive = htole16(120);
chan->gain_radio = 0x28;
}
DPRINTFN(WPI_DEBUG_SCANNING,
("Scanning %u Passive: %d\n",
chan->chan,
c->ic_flags & IEEE80211_CHAN_PASSIVE));
hdr->nchan++;
chan++;
frm += sizeof (struct wpi_scan_chan);
}
#endif
hdr->len = htole16(frm - (uint8_t *)hdr);
pktlen = frm - (uint8_t *)cmd;
error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->sc_dev, "could not map scan command\n");
m_freem(data->m);
data->m = NULL;
return error;
}
desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
desc->segs[0].addr = htole32(physaddr);
desc->segs[0].len = htole32(pktlen);
bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
/* kick cmd ring */
ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
return 0; /* will be notified async. of failure/success */
}
/**
* Configure the card to listen to a particular channel, this transisions the
* card in to being able to receive frames from remote devices.
*/
static int
wpi_config(struct wpi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct wpi_power power;
struct wpi_bluetooth bluetooth;
struct wpi_node_info node;
int error;
/* set power mode */
memset(&power, 0, sizeof power);
power.flags = htole32(WPI_POWER_CAM|0x8);
error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
if (error != 0) {
device_printf(sc->sc_dev, "could not set power mode\n");
return error;
}
/* configure bluetooth coexistence */
memset(&bluetooth, 0, sizeof bluetooth);
bluetooth.flags = 3;
bluetooth.lead = 0xaa;
bluetooth.kill = 1;
error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
0);
if (error != 0) {
device_printf(sc->sc_dev,
"could not configure bluetooth coexistence\n");
return error;
}
/* configure adapter */
memset(&sc->config, 0, sizeof (struct wpi_config));
IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
/*set default channel*/
sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
sc->config.flags = htole32(WPI_CONFIG_TSF);
if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
sc->config.flags |= htole32(WPI_CONFIG_AUTO |
WPI_CONFIG_24GHZ);
}
sc->config.filter = 0;
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
case IEEE80211_M_WDS: /* No know setup, use STA for now */
sc->config.mode = WPI_MODE_STA;
sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
break;
case IEEE80211_M_IBSS:
case IEEE80211_M_AHDEMO:
sc->config.mode = WPI_MODE_IBSS;
sc->config.filter |= htole32(WPI_FILTER_BEACON |
WPI_FILTER_MULTICAST);
break;
case IEEE80211_M_HOSTAP:
sc->config.mode = WPI_MODE_HOSTAP;
break;
case IEEE80211_M_MONITOR:
sc->config.mode = WPI_MODE_MONITOR;
sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
WPI_FILTER_CTL | WPI_FILTER_PROMISC);
break;
}
sc->config.cck_mask = 0x0f; /* not yet negotiated */
sc->config.ofdm_mask = 0xff; /* not yet negotiated */
error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
sizeof (struct wpi_config), 0);
if (error != 0) {
device_printf(sc->sc_dev, "configure command failed\n");
return error;
}
/* configuration has changed, set Tx power accordingly */
if ((error = wpi_set_txpower(sc, ic->ic_curchan,0)) != 0) {
device_printf(sc->sc_dev, "could not set Tx power\n");
return error;
}
/* add broadcast node */
memset(&node, 0, sizeof node);
IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
node.id = WPI_ID_BROADCAST;
node.rate = wpi_plcp_signal(2);
error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
if (error != 0) {
device_printf(sc->sc_dev, "could not add broadcast node\n");
return error;
}
/* Setup rate scalling */
error = wpi_mrr_setup(sc);
if (error != 0) {
device_printf(sc->sc_dev, "could not setup MRR\n");
return error;
}
return 0;
}
static void
wpi_stop_master(struct wpi_softc *sc)
{
uint32_t tmp;
int ntries;
DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
tmp = WPI_READ(sc, WPI_RESET);
WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
tmp = WPI_READ(sc, WPI_GPIO_CTL);
if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
return; /* already asleep */
for (ntries = 0; ntries < 100; ntries++) {
if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
break;
DELAY(10);
}
if (ntries == 100) {
device_printf(sc->sc_dev, "timeout waiting for master\n");
}
}
static int
wpi_power_up(struct wpi_softc *sc)
{
uint32_t tmp;
int ntries;
wpi_mem_lock(sc);
tmp = wpi_mem_read(sc, WPI_MEM_POWER);
wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
wpi_mem_unlock(sc);
for (ntries = 0; ntries < 5000; ntries++) {
if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
break;
DELAY(10);
}
if (ntries == 5000) {
device_printf(sc->sc_dev,
"timeout waiting for NIC to power up\n");
return ETIMEDOUT;
}
return 0;
}
static int
wpi_reset(struct wpi_softc *sc)
{
uint32_t tmp;
int ntries;
DPRINTFN(WPI_DEBUG_HW,
("Resetting the card - clearing any uploaded firmware\n"));
/* clear any pending interrupts */
WPI_WRITE(sc, WPI_INTR, 0xffffffff);
tmp = WPI_READ(sc, WPI_PLL_CTL);
WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
tmp = WPI_READ(sc, WPI_CHICKEN);
WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
tmp = WPI_READ(sc, WPI_GPIO_CTL);
WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
/* wait for clock stabilization */
for (ntries = 0; ntries < 25000; ntries++) {
if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
break;
DELAY(10);
}
if (ntries == 25000) {
device_printf(sc->sc_dev,
"timeout waiting for clock stabilization\n");
return ETIMEDOUT;
}
/* initialize EEPROM */
tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
if ((tmp & WPI_EEPROM_VERSION) == 0) {
device_printf(sc->sc_dev, "EEPROM not found\n");
return EIO;
}
WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
return 0;
}
static void
wpi_hw_config(struct wpi_softc *sc)
{
uint32_t rev, hw;
/* voodoo from the Linux "driver".. */
hw = WPI_READ(sc, WPI_HWCONFIG);
rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
if ((rev & 0xc0) == 0x40)
hw |= WPI_HW_ALM_MB;
else if (!(rev & 0x80))
hw |= WPI_HW_ALM_MM;
if (sc->cap == 0x80)
hw |= WPI_HW_SKU_MRC;
hw &= ~WPI_HW_REV_D;
if ((le16toh(sc->rev) & 0xf0) == 0xd0)
hw |= WPI_HW_REV_D;
if (sc->type > 1)
hw |= WPI_HW_TYPE_B;
WPI_WRITE(sc, WPI_HWCONFIG, hw);
}
static void
wpi_init(void *arg)
{
struct wpi_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
uint32_t tmp;
int ntries, error, qid;
WPI_LOCK_DECL;
WPI_LOCK(sc);
wpi_stop_locked(sc);
(void)wpi_reset(sc);
wpi_mem_lock(sc);
wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
DELAY(20);
tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
wpi_mem_unlock(sc);
(void)wpi_power_up(sc);
wpi_hw_config(sc);
/* init Rx ring */
wpi_mem_lock(sc);
WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
offsetof(struct wpi_shared, next));
WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
wpi_mem_unlock(sc);
/* init Tx rings */
wpi_mem_lock(sc);
wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
for (qid = 0; qid < 6; qid++) {
WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
}
wpi_mem_unlock(sc);
/* clear "radio off" and "disable command" bits (reversed logic) */
WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
/* clear any pending interrupts */
WPI_WRITE(sc, WPI_INTR, 0xffffffff);
/* enable interrupts */
WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
if ((error = wpi_load_firmware(sc)) != 0) {
device_printf(sc->sc_dev,
"A problem occurred loading the firmware to the driver\n");
return;
}
/* At this point the firmware is up and running. If the hardware
* RF switch is turned off thermal calibration will fail, though
* the card is still happy to continue to accept commands, catch
* this case and record the hw is disabled.
*/
wpi_mem_lock(sc);
tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
wpi_mem_unlock(sc);
if (!(tmp & 0x1)) {
sc->flags |= WPI_FLAG_HW_RADIO_OFF;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ifp->if_drv_flags |= IFF_DRV_RUNNING;
device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
return;
}
/* wait for thermal sensors to calibrate */
for (ntries = 0; ntries < 1000; ntries++) {
if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
break;
DELAY(10);
}
if (ntries == 1000) {
device_printf(sc->sc_dev,
"timeout waiting for thermal sensors calibration\n");
error = ETIMEDOUT;
return;
}
DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ifp->if_drv_flags |= IFF_DRV_RUNNING;
callout_reset(&sc->watchdog_to, hz, wpi_tick, sc);
WPI_UNLOCK(sc);
if (ic->ic_opmode == IEEE80211_M_MONITOR)
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
else if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
}
static void
wpi_stop(struct wpi_softc *sc)
{
WPI_LOCK_DECL;
WPI_LOCK(sc);
wpi_stop_locked(sc);
WPI_UNLOCK(sc);
}
static void
wpi_stop_locked(struct wpi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
uint32_t tmp;
int ac;
sc->watchdog_cnt = sc->sc_tx_timer = 0;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
/* disable interrupts */
WPI_WRITE(sc, WPI_MASK, 0);
WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
/* Clear any commands left in the command buffer */
memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd));
wpi_mem_lock(sc);
wpi_mem_write(sc, WPI_MEM_MODE, 0);
wpi_mem_unlock(sc);
/* reset all Tx rings */
for (ac = 0; ac < 4; ac++)
wpi_reset_tx_ring(sc, &sc->txq[ac]);
wpi_reset_tx_ring(sc, &sc->cmdq);
/* reset Rx ring */
wpi_reset_rx_ring(sc, &sc->rxq);
wpi_mem_lock(sc);
wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
wpi_mem_unlock(sc);
DELAY(5);
wpi_stop_master(sc);
tmp = WPI_READ(sc, WPI_RESET);
WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
sc->flags &= ~WPI_FLAG_BUSY;
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
}
static void
wpi_iter_func(void *arg, struct ieee80211_node *ni)
{
struct wpi_softc *sc = arg;
struct wpi_node *wn = (struct wpi_node *)ni;
ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
}
static void
wpi_newassoc(struct ieee80211_node *ni, int isnew)
{
struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
int i;
ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
for (i = ni->ni_rates.rs_nrates - 1;
i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
i--);
ni->ni_txrate = i;
}
static void
wpi_calib_timeout(void *arg)
{
struct wpi_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
int temp;
WPI_LOCK_DECL;
/* automatic rate control triggered every 500ms */
if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
WPI_LOCK(sc);
if (ic->ic_opmode == IEEE80211_M_STA)
wpi_iter_func(sc, ic->ic_bss);
else
ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
WPI_UNLOCK(sc);
}
/* update sensor data */
temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
#if 0
//XXX Used by OpenBSD Sensor Framework
sc->sensor.value = temp + 260;
#endif
/* automatic power calibration every 60s */
if (++sc->calib_cnt >= 120) {
wpi_power_calibration(sc, temp);
sc->calib_cnt = 0;
}
callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc);
}
/*
* This function is called periodically (every 60 seconds) to adjust output
* power to temperature changes.
*/
static void
wpi_power_calibration(struct wpi_softc *sc, int temp)
{
/* sanity-check read value */
if (temp < -260 || temp > 25) {
/* this can't be correct, ignore */
DPRINTFN(WPI_DEBUG_TEMP,
("out-of-range temperature reported: %d\n", temp));
return;
}
DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
/* adjust Tx power if need be */
if (abs(temp - sc->temp) <= 6)
return;
sc->temp = temp;
if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan,1) != 0) {
/* just warn, too bad for the automatic calibration... */
device_printf(sc->sc_dev,"could not adjust Tx power\n");
}
}
/**
* Read the eeprom to find out what channels are valid for the given
* band and update net80211 with what we find.
*/
static void
wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
{
struct ieee80211com *ic = &sc->sc_ic;
const struct wpi_chan_band *band = &wpi_bands[n];
struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
int chan, i, offset, passive;
wpi_read_prom_data(sc, band->addr, channels,
band->nchan * sizeof (struct wpi_eeprom_chan));
for (i = 0; i < band->nchan; i++) {
if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
DPRINTFN(WPI_DEBUG_HW,
("Channel Not Valid: %d, band %d\n",
band->chan[i],n));
continue;
}
passive = 0;
chan = band->chan[i];
offset = ic->ic_nchans;
/* is active scan allowed on this channel? */
if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
passive = IEEE80211_CHAN_PASSIVE;
}
if (n == 0) { /* 2GHz band */
ic->ic_channels[offset].ic_ieee = chan;
ic->ic_channels[offset].ic_freq =
ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_B | passive;
offset++;
ic->ic_channels[offset].ic_ieee = chan;
ic->ic_channels[offset].ic_freq =
ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_G | passive;
offset++;
} else { /* 5GHz band */
/*
* Some 3945ABG adapters support channels 7, 8, 11
* and 12 in the 2GHz *and* 5GHz bands.
* Because of limitations in our net80211(9) stack,
* we can't support these channels in 5GHz band.
* XXX not true; just need to map to proper frequency
*/
if (chan <= 14)
continue;
ic->ic_channels[offset].ic_ieee = chan;
ic->ic_channels[offset].ic_freq =
ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_A | passive;
offset++;
}
/* save maximum allowed power for this channel */
sc->maxpwr[chan] = channels[i].maxpwr;
ic->ic_nchans = offset;
#if 0
// XXX We can probably use this an get rid of maxpwr - ben 20070617
ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
//ic->ic_channels[chan].ic_minpower...
//ic->ic_channels[chan].ic_maxregtxpower...
#endif
DPRINTF(("adding chan %d flags=0x%x maxpwr=%d, offset %d\n",
chan, channels[i].flags, sc->maxpwr[chan], offset));
}
}
static void
wpi_read_eeprom_group(struct wpi_softc *sc, int n)
{
struct wpi_power_group *group = &sc->groups[n];
struct wpi_eeprom_group rgroup;
int i;
wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
sizeof rgroup);
/* save power group information */
group->chan = rgroup.chan;
group->maxpwr = rgroup.maxpwr;
/* temperature at which the samples were taken */
group->temp = (int16_t)le16toh(rgroup.temp);
DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
group->chan, group->maxpwr, group->temp));
for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
group->samples[i].index = rgroup.samples[i].index;
group->samples[i].power = rgroup.samples[i].power;
DPRINTF(("\tsample %d: index=%d power=%d\n", i,
group->samples[i].index, group->samples[i].power));
}
}
/*
* Update Tx power to match what is defined for channel `c'.
*/
static int
wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
{
struct ieee80211com *ic = &sc->sc_ic;
struct wpi_power_group *group;
struct wpi_cmd_txpower txpower;
u_int chan;
int i;
/* get channel number */
chan = ieee80211_chan2ieee(ic, c);
/* find the power group to which this channel belongs */
if (IEEE80211_IS_CHAN_5GHZ(c)) {
for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
if (chan <= group->chan)
break;
} else
group = &sc->groups[0];
memset(&txpower, 0, sizeof txpower);
txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
txpower.channel = htole16(chan);
/* set Tx power for all OFDM and CCK rates */
for (i = 0; i <= 11 ; i++) {
/* retrieve Tx power for this channel/rate combination */
int idx = wpi_get_power_index(sc, group, c,
wpi_ridx_to_rate[i]);
txpower.rates[i].rate = wpi_ridx_to_plcp[i];
if (IEEE80211_IS_CHAN_5GHZ(c)) {
txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
} else {
txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
}
DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
chan, wpi_ridx_to_rate[i], idx));
}
return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
}
/*
* Determine Tx power index for a given channel/rate combination.
* This takes into account the regulatory information from EEPROM and the
* current temperature.
*/
static int
wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
struct ieee80211_channel *c, int rate)
{
/* fixed-point arithmetic division using a n-bit fractional part */
#define fdivround(a, b, n) \
((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
/* linear interpolation */
#define interpolate(x, x1, y1, x2, y2, n) \
((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
struct ieee80211com *ic = &sc->sc_ic;
struct wpi_power_sample *sample;
int pwr, idx;
u_int chan;
/* get channel number */
chan = ieee80211_chan2ieee(ic, c);
/* default power is group's maximum power - 3dB */
pwr = group->maxpwr / 2;
/* decrease power for highest OFDM rates to reduce distortion */
switch (rate) {
case 72: /* 36Mb/s */
pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
break;
case 96: /* 48Mb/s */
pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
break;
case 108: /* 54Mb/s */
pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
break;
}
/* never exceed channel's maximum allowed Tx power */
pwr = min(pwr, sc->maxpwr[chan]);
/* retrieve power index into gain tables from samples */
for (sample = group->samples; sample < &group->samples[3]; sample++)
if (pwr > sample[1].power)
break;
/* fixed-point linear interpolation using a 19-bit fractional part */
idx = interpolate(pwr, sample[0].power, sample[0].index,
sample[1].power, sample[1].index, 19);
/*
* Adjust power index based on current temperature
* - if colder than factory-calibrated: decreate output power
* - if warmer than factory-calibrated: increase output power
*/
idx -= (sc->temp - group->temp) * 11 / 100;
/* decrease power for CCK rates (-5dB) */
if (!WPI_RATE_IS_OFDM(rate))
idx += 10;
/* keep power index in a valid range */
if (idx < 0)
return 0;
if (idx > WPI_MAX_PWR_INDEX)
return WPI_MAX_PWR_INDEX;
return idx;
#undef interpolate
#undef fdivround
}
#if 0
static void
wpi_radio_on(void *arg, int pending)
{
struct wpi_softc *sc = arg;
device_printf(sc->sc_dev, "radio turned on\n");
}
static void
wpi_radio_off(void *arg, int pending)
{
struct wpi_softc *sc = arg;
device_printf(sc->sc_dev, "radio turned off\n");
}
#endif
/**
* Called by net80211 framework to indicate that a scan
* is starting. This function doesn't actually do the scan,
* wpi_scan_curchan starts things off. This function is more
* of an early warning from the framework we should get ready
* for the scan.
*/
static void
wpi_scan_start(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct wpi_softc *sc = ifp->if_softc;
wpi_queue_cmd(sc, WPI_SCAN_START);
}
/**
* Called by the net80211 framework, indicates that the
* scan has ended. If there is a scan in progress on the card
* then it should be aborted.
*/
static void
wpi_scan_end(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct wpi_softc *sc = ifp->if_softc;
wpi_queue_cmd(sc, WPI_SCAN_STOP);
}
/**
* Called by the net80211 framework to indicate to the driver
* that the channel should be changed
*/
static void
wpi_set_channel(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct wpi_softc *sc = ifp->if_softc;
wpi_queue_cmd(sc, WPI_SET_CHAN);
}
/**
* Called by net80211 to indicate that we need to scan the current
* channel. The channel is previously be set via the wpi_set_channel
* callback.
*/
static void
wpi_scan_curchan(struct ieee80211com *ic, unsigned long maxdwell)
{
struct ifnet *ifp = ic->ic_ifp;
struct wpi_softc *sc = ifp->if_softc;
sc->maxdwell = maxdwell;
wpi_queue_cmd(sc, WPI_SCAN_CURCHAN);
}
/**
* Called by the net80211 framework to indicate
* the minimum dwell time has been met, terminate the scan.
* We don't actually terminate the scan as the firmware will notify
* us when it's finished and we have no way to interrupt it.
*/
static void
wpi_scan_mindwell(struct ieee80211com *ic)
{
/* NB: don't try to abort scan; wait for firmware to finish */
}
/**
* The ops function is called to perform some actual work.
* because we can't sleep from any of the ic callbacks, we queue an
* op task with wpi_queue_cmd and have the taskqueue process that task.
* The task that gets cued is a op task, which ends up calling this function.
*/
static void
wpi_ops(void *arg, int pending)
{
struct wpi_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
WPI_LOCK_DECL;
int cmd;
again:
WPI_CMD_LOCK(sc);
cmd = sc->sc_cmd[sc->sc_cmd_cur];
if (cmd == 0) {
/* No more commands to process */
WPI_CMD_UNLOCK(sc);
return;
}
sc->sc_cmd[sc->sc_cmd_cur] = 0; /* free the slot */
sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % WPI_CMD_MAXOPS;
WPI_CMD_UNLOCK(sc);
WPI_LOCK(sc);
if (!(sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING)) {
WPI_UNLOCK(sc);
return;
}
{
const char *name[]={"SCAN_START", "SCAN_CURCHAN",0,"STOP",0,0,0,"CHAN",
0,0,0,0,0,0,"AUTH",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,"NEXT"};
DPRINTFN(WPI_DEBUG_OPS,("wpi_ops: command: %d %s\n", cmd, name[cmd-1]));
}
switch (cmd) {
case WPI_SCAN_START:
if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
DPRINTF(("HERER\n"));
ieee80211_cancel_scan(ic);
} else
sc->flags |= WPI_FLAG_SCANNING;
break;
case WPI_SCAN_STOP:
sc->flags &= ~WPI_FLAG_SCANNING;
break;
case WPI_SCAN_NEXT:
DPRINTF(("NEXT\n"));
WPI_UNLOCK(sc);
ieee80211_scan_next(ic);
WPI_LOCK(sc);
break;
case WPI_SCAN_CURCHAN:
if (wpi_scan(sc))
ieee80211_cancel_scan(ic);
break;
case WPI_SET_CHAN:
if (sc->flags&WPI_FLAG_AUTH) {
DPRINTF(("Authenticating, not changing channel\n"));
break;
}
if (wpi_config(sc)) {
DPRINTF(("Scan cancelled\n"));
WPI_UNLOCK(sc);
ieee80211_cancel_scan(ic);
WPI_LOCK(sc);
sc->flags &= ~WPI_FLAG_SCANNING;
wpi_restart(sc,0);
WPI_UNLOCK(sc);
return;
}
break;
case WPI_AUTH:
if (wpi_auth(sc) != 0) {
device_printf(sc->sc_dev,
"could not send authentication request\n");
wpi_stop_locked(sc);
WPI_UNLOCK(sc);
return;
}
WPI_UNLOCK(sc);
ieee80211_node_authorize(ic->ic_bss);
ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
WPI_LOCK(sc);
break;
}
WPI_UNLOCK(sc);
/* Take another pass */
goto again;
}
/**
* queue a command for later execution in a different thread.
* This is needed as the net80211 callbacks do not allow
* sleeping, since we need to sleep to confirm commands have
* been processed by the firmware, we must defer execution to
* a sleep enabled thread.
*/
static int
wpi_queue_cmd(struct wpi_softc *sc, int cmd)
{
WPI_CMD_LOCK(sc);
if (sc->sc_cmd[sc->sc_cmd_next] != 0) {
WPI_CMD_UNLOCK(sc);
DPRINTF(("%s: command %d dropped\n", __func__, cmd));
return (EBUSY);
}
sc->sc_cmd[sc->sc_cmd_next] = cmd;
sc->sc_cmd_next = (sc->sc_cmd_next + 1) % WPI_CMD_MAXOPS;
taskqueue_enqueue(sc->sc_tq, &sc->sc_opstask);
WPI_CMD_UNLOCK(sc);
return 0;
}
static void
wpi_restart(void * arg, int pending)
{
#if 0
struct wpi_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
WPI_LOCK_DECL;
DPRINTF(("Device failed, restarting device\n"));
WPI_LOCK(sc);
wpi_stop(sc);
wpi_init(sc);
WPI_UNLOCK(sc);
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
#endif
}
/*
* Allocate DMA-safe memory for firmware transfer.
*/
static int
wpi_alloc_fwmem(struct wpi_softc *sc)
{
/* allocate enough contiguous space to store text and data */
return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
BUS_DMA_NOWAIT);
}
static void
wpi_free_fwmem(struct wpi_softc *sc)
{
wpi_dma_contig_free(&sc->fw_dma);
}
/**
* Called every second, wpi_tick used by the watch dog timer
* to check that the card is still alive
*/
static void
wpi_tick(void *arg)
{
struct wpi_softc *sc = arg;
DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
wpi_watchdog(sc->sc_ifp);
callout_reset(&sc->watchdog_to, hz, wpi_tick, sc);
}
#ifdef WPI_DEBUG
static const char *wpi_cmd_str(int cmd)
{
switch(cmd) {
case WPI_DISABLE_CMD: return "WPI_DISABLE_CMD";
case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE";
case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE";
case WPI_CMD_SET_WME: return "WPI_CMD_SET_WME";
case WPI_CMD_TSF: return "WPI_CMD_TSF";
case WPI_CMD_ADD_NODE: return "WPI_CMD_ADD_NODE";
case WPI_CMD_TX_DATA: return "WPI_CMD_TX_DATA";
case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP";
case WPI_CMD_SET_LED: return "WPI_CMD_SET_LED";
case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
case WPI_CMD_SCAN: return "WPI_CMD_SCAN";
case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
case WPI_CMD_TXPOWER: return "WPI_CMD_TXPOWER";
case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH";
default:
KASSERT(1, ("Unknown Command: %d\n", cmd));
return "UNKNOWN CMD"; // Make the compiler happy
}
}
#endif
MODULE_DEPEND(wpi, pci, 1, 1, 1);
MODULE_DEPEND(wpi, wlan, 1, 1, 1);
MODULE_DEPEND(wpi, firmware, 1, 1, 1);
MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);