freebsd-nq/sys/dev/cxgbe/t4_main.c

2858 lines
73 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2011 Chelsio Communications, Inc.
* All rights reserved.
* Written by: Navdeep Parhar <np@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include <sys/param.h>
#include <sys/conf.h>
#include <sys/priv.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/taskqueue.h>
#include <sys/pciio.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pci_private.h>
#include <sys/firmware.h>
#include <sys/sbuf.h>
#include <sys/smp.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/if_dl.h>
#include "common/t4_hw.h"
#include "common/common.h"
#include "common/t4_regs.h"
#include "common/t4_regs_values.h"
#include "common/t4fw_interface.h"
#include "t4_ioctl.h"
/* T4 bus driver interface */
static int t4_probe(device_t);
static int t4_attach(device_t);
static int t4_detach(device_t);
static device_method_t t4_methods[] = {
DEVMETHOD(device_probe, t4_probe),
DEVMETHOD(device_attach, t4_attach),
DEVMETHOD(device_detach, t4_detach),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
{ 0, 0 }
};
static driver_t t4_driver = {
"t4nex",
t4_methods,
sizeof(struct adapter)
};
/* T4 port (cxgbe) interface */
static int cxgbe_probe(device_t);
static int cxgbe_attach(device_t);
static int cxgbe_detach(device_t);
static device_method_t cxgbe_methods[] = {
DEVMETHOD(device_probe, cxgbe_probe),
DEVMETHOD(device_attach, cxgbe_attach),
DEVMETHOD(device_detach, cxgbe_detach),
{ 0, 0 }
};
static driver_t cxgbe_driver = {
"cxgbe",
cxgbe_methods,
sizeof(struct port_info)
};
static d_ioctl_t t4_ioctl;
static d_open_t t4_open;
static d_close_t t4_close;
static struct cdevsw t4_cdevsw = {
.d_version = D_VERSION,
.d_flags = 0,
.d_open = t4_open,
.d_close = t4_close,
.d_ioctl = t4_ioctl,
.d_name = "t4nex",
};
/* ifnet + media interface */
static void cxgbe_init(void *);
static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t);
static void cxgbe_start(struct ifnet *);
static int cxgbe_transmit(struct ifnet *, struct mbuf *);
static void cxgbe_qflush(struct ifnet *);
static int cxgbe_media_change(struct ifnet *);
static void cxgbe_media_status(struct ifnet *, struct ifmediareq *);
MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4 Ethernet driver and services");
/*
* Tunables.
*/
SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD, 0, "cxgbe driver parameters");
static int force_firmware_install = 0;
TUNABLE_INT("hw.cxgbe.force_firmware_install", &force_firmware_install);
SYSCTL_UINT(_hw_cxgbe, OID_AUTO, force_firmware_install, CTLFLAG_RDTUN,
&force_firmware_install, 0, "install firmware on every attach.");
/*
* Holdoff timer and packet counter values.
*/
static unsigned int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
static unsigned int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
/*
* Max # of tx and rx queues to use for each 10G and 1G port.
*/
static unsigned int max_ntxq_10g = 8;
TUNABLE_INT("hw.cxgbe.max_ntxq_10G_port", &max_ntxq_10g);
SYSCTL_UINT(_hw_cxgbe, OID_AUTO, max_ntxq_10G_port, CTLFLAG_RDTUN,
&max_ntxq_10g, 0, "maximum number of tx queues per 10G port.");
static unsigned int max_nrxq_10g = 8;
TUNABLE_INT("hw.cxgbe.max_nrxq_10G_port", &max_nrxq_10g);
SYSCTL_UINT(_hw_cxgbe, OID_AUTO, max_nrxq_10G_port, CTLFLAG_RDTUN,
&max_nrxq_10g, 0, "maximum number of rxq's (per 10G port).");
static unsigned int max_ntxq_1g = 2;
TUNABLE_INT("hw.cxgbe.max_ntxq_1G_port", &max_ntxq_1g);
SYSCTL_UINT(_hw_cxgbe, OID_AUTO, max_ntxq_1G_port, CTLFLAG_RDTUN,
&max_ntxq_1g, 0, "maximum number of tx queues per 1G port.");
static unsigned int max_nrxq_1g = 2;
TUNABLE_INT("hw.cxgbe.max_nrxq_1G_port", &max_nrxq_1g);
SYSCTL_UINT(_hw_cxgbe, OID_AUTO, max_nrxq_1G_port, CTLFLAG_RDTUN,
&max_nrxq_1g, 0, "maximum number of rxq's (per 1G port).");
/*
* Holdoff parameters for 10G and 1G ports.
*/
static unsigned int tmr_idx_10g = 1;
TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &tmr_idx_10g);
SYSCTL_UINT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_10G, CTLFLAG_RDTUN,
&tmr_idx_10g, 0,
"default timer index for interrupt holdoff (10G ports).");
static int pktc_idx_10g = 2;
TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &pktc_idx_10g);
SYSCTL_UINT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_10G, CTLFLAG_RDTUN,
&pktc_idx_10g, 0,
"default pkt counter index for interrupt holdoff (10G ports).");
static unsigned int tmr_idx_1g = 1;
TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_1G", &tmr_idx_1g);
SYSCTL_UINT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_1G, CTLFLAG_RDTUN,
&tmr_idx_1g, 0,
"default timer index for interrupt holdoff (1G ports).");
static int pktc_idx_1g = 2;
TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_1G", &pktc_idx_1g);
SYSCTL_UINT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_1G, CTLFLAG_RDTUN,
&pktc_idx_1g, 0,
"default pkt counter index for interrupt holdoff (1G ports).");
/*
* Size (# of entries) of each tx and rx queue.
*/
static unsigned int qsize_txq = TX_EQ_QSIZE;
TUNABLE_INT("hw.cxgbe.qsize_txq", &qsize_txq);
SYSCTL_UINT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN,
&qsize_txq, 0, "default queue size of NIC tx queues.");
static unsigned int qsize_rxq = RX_IQ_QSIZE;
TUNABLE_INT("hw.cxgbe.qsize_rxq", &qsize_rxq);
SYSCTL_UINT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN,
&qsize_rxq, 0, "default queue size of NIC rx queues.");
/*
* Interrupt types allowed.
*/
static int intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
TUNABLE_INT("hw.cxgbe.interrupt_types", &intr_types);
SYSCTL_UINT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &intr_types, 0,
"interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively)");
/*
* Force the driver to use interrupt forwarding.
*/
static int intr_fwd = 0;
TUNABLE_INT("hw.cxgbe.interrupt_forwarding", &intr_fwd);
SYSCTL_UINT(_hw_cxgbe, OID_AUTO, interrupt_forwarding, CTLFLAG_RDTUN,
&intr_fwd, 0, "always use forwarded interrupts");
struct intrs_and_queues {
int intr_type; /* INTx, MSI, or MSI-X */
int nirq; /* Number of vectors */
int intr_fwd; /* Interrupts forwarded */
int ntxq10g; /* # of NIC txq's for each 10G port */
int nrxq10g; /* # of NIC rxq's for each 10G port */
int ntxq1g; /* # of NIC txq's for each 1G port */
int nrxq1g; /* # of NIC rxq's for each 1G port */
};
enum {
MEMWIN0_APERTURE = 2048,
MEMWIN0_BASE = 0x1b800,
MEMWIN1_APERTURE = 32768,
MEMWIN1_BASE = 0x28000,
MEMWIN2_APERTURE = 65536,
MEMWIN2_BASE = 0x30000,
};
enum {
XGMAC_MTU = (1 << 0),
XGMAC_PROMISC = (1 << 1),
XGMAC_ALLMULTI = (1 << 2),
XGMAC_VLANEX = (1 << 3),
XGMAC_UCADDR = (1 << 4),
XGMAC_MCADDRS = (1 << 5),
XGMAC_ALL = 0xffff
};
static int map_bars(struct adapter *);
static void setup_memwin(struct adapter *);
static int cfg_itype_and_nqueues(struct adapter *, int, int,
struct intrs_and_queues *);
static int prep_firmware(struct adapter *);
static int get_capabilities(struct adapter *, struct fw_caps_config_cmd *);
static int get_params(struct adapter *, struct fw_caps_config_cmd *);
static void t4_set_desc(struct adapter *);
static void build_medialist(struct port_info *);
static int update_mac_settings(struct port_info *, int);
static int cxgbe_init_locked(struct port_info *);
static int cxgbe_init_synchronized(struct port_info *);
static int cxgbe_uninit_locked(struct port_info *);
static int cxgbe_uninit_synchronized(struct port_info *);
static int first_port_up(struct adapter *);
static int last_port_down(struct adapter *);
static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
iq_intr_handler_t *, void *, char *);
static int t4_free_irq(struct adapter *, struct irq *);
static void reg_block_dump(struct adapter *, uint8_t *, unsigned int,
unsigned int);
static void t4_get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
static void cxgbe_tick(void *);
static int t4_sysctls(struct adapter *);
static int cxgbe_sysctls(struct port_info *);
static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
static inline void txq_start(struct ifnet *, struct sge_txq *);
static int t4_mod_event(module_t, int, void *);
struct t4_pciids {
uint16_t device;
uint8_t mpf;
char *desc;
} t4_pciids[] = {
{0xa000, 0, "Chelsio Terminator 4 FPGA"},
{0x4400, 4, "Chelsio T440-dbg"},
{0x4401, 4, "Chelsio T420-CR"},
{0x4402, 4, "Chelsio T422-CR"},
{0x4403, 4, "Chelsio T440-CR"},
{0x4404, 4, "Chelsio T420-BCH"},
{0x4405, 4, "Chelsio T440-BCH"},
{0x4406, 4, "Chelsio T440-CH"},
{0x4407, 4, "Chelsio T420-SO"},
{0x4408, 4, "Chelsio T420-CX"},
{0x4409, 4, "Chelsio T420-BT"},
{0x440a, 4, "Chelsio T404-BT"},
};
static int
t4_probe(device_t dev)
{
int i;
uint16_t v = pci_get_vendor(dev);
uint16_t d = pci_get_device(dev);
if (v != PCI_VENDOR_ID_CHELSIO)
return (ENXIO);
for (i = 0; i < ARRAY_SIZE(t4_pciids); i++) {
if (d == t4_pciids[i].device &&
pci_get_function(dev) == t4_pciids[i].mpf) {
device_set_desc(dev, t4_pciids[i].desc);
return (BUS_PROBE_DEFAULT);
}
}
return (ENXIO);
}
static int
t4_attach(device_t dev)
{
struct adapter *sc;
int rc = 0, i, n10g, n1g, rqidx, tqidx;
struct fw_caps_config_cmd caps;
uint32_t p, v;
struct intrs_and_queues iaq;
struct sge *s;
sc = device_get_softc(dev);
sc->dev = dev;
sc->pf = pci_get_function(dev);
sc->mbox = sc->pf;
pci_enable_busmaster(dev);
pci_set_max_read_req(dev, 4096);
snprintf(sc->lockname, sizeof(sc->lockname), "%s",
device_get_nameunit(dev));
mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
rc = map_bars(sc);
if (rc != 0)
goto done; /* error message displayed already */
memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
/* Prepare the adapter for operation */
rc = -t4_prep_adapter(sc);
if (rc != 0) {
device_printf(dev, "failed to prepare adapter: %d.\n", rc);
goto done;
}
/* Do this really early */
sc->cdev = make_dev(&t4_cdevsw, device_get_unit(dev), UID_ROOT,
GID_WHEEL, 0600, "%s", device_get_nameunit(dev));
sc->cdev->si_drv1 = sc;
/* Prepare the firmware for operation */
rc = prep_firmware(sc);
if (rc != 0)
goto done; /* error message displayed already */
/* Get device capabilities and select which ones we'll use */
rc = get_capabilities(sc, &caps);
if (rc != 0) {
device_printf(dev,
"failed to initialize adapter capabilities: %d.\n", rc);
goto done;
}
/* Choose the global RSS mode. */
rc = -t4_config_glbl_rss(sc, sc->mbox,
FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
F_FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
F_FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
if (rc != 0) {
device_printf(dev,
"failed to select global RSS mode: %d.\n", rc);
goto done;
}
/* These are total (sum of all ports) limits for a bus driver */
rc = -t4_cfg_pfvf(sc, sc->mbox, sc->pf, 0,
64, /* max # of egress queues */
64, /* max # of egress Ethernet or control queues */
64, /* max # of ingress queues with fl/interrupt */
0, /* max # of ingress queues without interrupt */
0, /* PCIe traffic class */
4, /* max # of virtual interfaces */
M_FW_PFVF_CMD_CMASK, M_FW_PFVF_CMD_PMASK, 16,
FW_CMD_CAP_PF, FW_CMD_CAP_PF);
if (rc != 0) {
device_printf(dev,
"failed to configure pf/vf resources: %d.\n", rc);
goto done;
}
/* Need this before sge_init */
for (i = 0; i < SGE_NTIMERS; i++)
sc->sge.timer_val[i] = min(intr_timer[i], 200U);
for (i = 0; i < SGE_NCOUNTERS; i++)
sc->sge.counter_val[i] = min(intr_pktcount[i], M_THRESHOLD_0);
/* Also need the cooked value of cclk before sge_init */
p = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &p, &v);
if (rc != 0) {
device_printf(sc->dev,
"failed to obtain core clock value: %d.\n", rc);
goto done;
}
sc->params.vpd.cclk = v;
t4_sge_init(sc);
/*
* XXX: This is the place to call t4_set_filter_mode()
*/
/* get basic stuff going */
rc = -t4_early_init(sc, sc->mbox);
if (rc != 0) {
device_printf(dev, "early init failed: %d.\n", rc);
goto done;
}
rc = get_params(sc, &caps);
if (rc != 0)
goto done; /* error message displayed already */
/* These are finalized by FW initialization, load their values now */
v = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
sc->params.tp.tre = G_TIMERRESOLUTION(v);
sc->params.tp.dack_re = G_DELAYEDACKRESOLUTION(v);
t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
/* tweak some settings */
t4_write_reg(sc, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) | V_RXTSHIFTMAXR1(4) |
V_RXTSHIFTMAXR2(15) | V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) |
V_KEEPALIVEMAXR1(4) | V_KEEPALIVEMAXR2(9));
t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
setup_memwin(sc);
rc = t4_create_dma_tag(sc);
if (rc != 0)
goto done; /* error message displayed already */
/*
* First pass over all the ports - allocate VIs and initialize some
* basic parameters like mac address, port type, etc. We also figure
* out whether a port is 10G or 1G and use that information when
* calculating how many interrupts to attempt to allocate.
*/
n10g = n1g = 0;
for_each_port(sc, i) {
struct port_info *pi;
pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
sc->port[i] = pi;
/* These must be set before t4_port_init */
pi->adapter = sc;
pi->port_id = i;
/* Allocate the vi and initialize parameters like mac addr */
rc = -t4_port_init(pi, sc->mbox, sc->pf, 0);
if (rc != 0) {
device_printf(dev, "unable to initialize port %d: %d\n",
i, rc);
free(pi, M_CXGBE);
sc->port[i] = NULL; /* indicates init failed */
continue;
}
snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
device_get_nameunit(dev), i);
mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
if (is_10G_port(pi)) {
n10g++;
pi->tmr_idx = tmr_idx_10g;
pi->pktc_idx = pktc_idx_10g;
} else {
n1g++;
pi->tmr_idx = tmr_idx_1g;
pi->pktc_idx = pktc_idx_1g;
}
pi->xact_addr_filt = -1;
pi->qsize_rxq = max(qsize_rxq, 128);
while (pi->qsize_rxq & 7)
pi->qsize_rxq++;
pi->qsize_txq = max(qsize_txq, 128);
if (pi->qsize_rxq != qsize_rxq) {
device_printf(dev,
"using %d instead of %d as the rx queue size.\n",
pi->qsize_rxq, qsize_rxq);
}
if (pi->qsize_txq != qsize_txq) {
device_printf(dev,
"using %d instead of %d as the tx queue size.\n",
pi->qsize_txq, qsize_txq);
}
pi->dev = device_add_child(dev, "cxgbe", -1);
if (pi->dev == NULL) {
device_printf(dev,
"failed to add device for port %d.\n", i);
rc = ENXIO;
goto done;
}
device_set_softc(pi->dev, pi);
setbit(&sc->registered_device_map, i);
}
if (sc->registered_device_map == 0) {
device_printf(dev, "no usable ports\n");
rc = ENXIO;
goto done;
}
/*
* Interrupt type, # of interrupts, # of rx/tx queues, etc.
*/
rc = cfg_itype_and_nqueues(sc, n10g, n1g, &iaq);
if (rc != 0)
goto done; /* error message displayed already */
sc->intr_type = iaq.intr_type;
sc->intr_count = iaq.nirq;
s = &sc->sge;
s->nrxq = n10g * iaq.nrxq10g + n1g * iaq.nrxq1g;
s->ntxq = n10g * iaq.ntxq10g + n1g * iaq.ntxq1g;
s->neq = s->ntxq + s->nrxq; /* the fl in an rxq is an eq */
s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */
if (iaq.intr_fwd) {
sc->flags |= INTR_FWD;
s->niq += NFIQ(sc); /* forwarded interrupt queues */
s->fiq = malloc(NFIQ(sc) * sizeof(struct sge_iq), M_CXGBE,
M_ZERO | M_WAITOK);
}
s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
M_ZERO | M_WAITOK);
s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
M_ZERO | M_WAITOK);
s->iqmap = malloc(s->niq * sizeof(struct sge_iq *), M_CXGBE,
M_ZERO | M_WAITOK);
s->eqmap = malloc(s->neq * sizeof(struct sge_eq *), M_CXGBE,
M_ZERO | M_WAITOK);
sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
M_ZERO | M_WAITOK);
t4_sysctls(sc);
/*
* Second pass over the ports. This time we know the number of rx and
* tx queues that each port should get.
*/
rqidx = tqidx = 0;
for_each_port(sc, i) {
struct port_info *pi = sc->port[i];
if (pi == NULL)
continue;
pi->first_rxq = rqidx;
pi->nrxq = is_10G_port(pi) ? iaq.nrxq10g : iaq.nrxq1g;
pi->first_txq = tqidx;
pi->ntxq = is_10G_port(pi) ? iaq.ntxq10g : iaq.ntxq1g;
rqidx += pi->nrxq;
tqidx += pi->ntxq;
}
rc = bus_generic_attach(dev);
if (rc != 0) {
device_printf(dev,
"failed to attach all child ports: %d\n", rc);
goto done;
}
#ifdef INVARIANTS
device_printf(dev,
"%p, %d ports (0x%x), %d intr_type, %d intr_count\n",
sc, sc->params.nports, sc->params.portvec,
sc->intr_type, sc->intr_count);
#endif
t4_set_desc(sc);
done:
if (rc != 0)
t4_detach(dev);
return (rc);
}
/*
* Idempotent
*/
static int
t4_detach(device_t dev)
{
struct adapter *sc;
struct port_info *pi;
int i;
sc = device_get_softc(dev);
if (sc->cdev)
destroy_dev(sc->cdev);
bus_generic_detach(dev);
for (i = 0; i < MAX_NPORTS; i++) {
pi = sc->port[i];
if (pi) {
t4_free_vi(pi->adapter, sc->mbox, sc->pf, 0, pi->viid);
if (pi->dev)
device_delete_child(dev, pi->dev);
mtx_destroy(&pi->pi_lock);
free(pi, M_CXGBE);
}
}
if (sc->flags & FW_OK)
t4_fw_bye(sc, sc->mbox);
if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
pci_release_msi(dev);
if (sc->regs_res)
bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
sc->regs_res);
if (sc->msix_res)
bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
sc->msix_res);
free(sc->irq, M_CXGBE);
free(sc->sge.rxq, M_CXGBE);
free(sc->sge.txq, M_CXGBE);
free(sc->sge.fiq, M_CXGBE);
free(sc->sge.iqmap, M_CXGBE);
free(sc->sge.eqmap, M_CXGBE);
t4_destroy_dma_tag(sc);
mtx_destroy(&sc->sc_lock);
bzero(sc, sizeof(*sc));
return (0);
}
static int
cxgbe_probe(device_t dev)
{
char buf[128];
struct port_info *pi = device_get_softc(dev);
snprintf(buf, sizeof(buf), "Port %d", pi->port_id);
device_set_desc_copy(dev, buf);
return (BUS_PROBE_DEFAULT);
}
#define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
IFCAP_VLAN_HWTSO)
#define T4_CAP_ENABLE (T4_CAP & ~IFCAP_TSO6)
static int
cxgbe_attach(device_t dev)
{
struct port_info *pi = device_get_softc(dev);
struct ifnet *ifp;
/* Allocate an ifnet and set it up */
ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "Cannot allocate ifnet\n");
return (ENOMEM);
}
pi->ifp = ifp;
ifp->if_softc = pi;
callout_init(&pi->tick, CALLOUT_MPSAFE);
pi->tq = taskqueue_create("cxgbe_taskq", M_NOWAIT,
taskqueue_thread_enqueue, &pi->tq);
if (pi->tq == NULL) {
device_printf(dev, "failed to allocate port task queue\n");
if_free(pi->ifp);
return (ENOMEM);
}
taskqueue_start_threads(&pi->tq, 1, PI_NET, "%s taskq",
device_get_nameunit(dev));
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = cxgbe_init;
ifp->if_ioctl = cxgbe_ioctl;
ifp->if_start = cxgbe_start;
ifp->if_transmit = cxgbe_transmit;
ifp->if_qflush = cxgbe_qflush;
ifp->if_snd.ifq_drv_maxlen = 1024;
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
IFQ_SET_READY(&ifp->if_snd);
ifp->if_capabilities = T4_CAP;
ifp->if_capenable = T4_CAP_ENABLE;
ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO;
/* Initialize ifmedia for this port */
ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change,
cxgbe_media_status);
build_medialist(pi);
ether_ifattach(ifp, pi->hw_addr);
#ifdef INVARIANTS
device_printf(dev, "%p, %d txq, %d rxq\n", pi, pi->ntxq, pi->nrxq);
#endif
cxgbe_sysctls(pi);
return (0);
}
static int
cxgbe_detach(device_t dev)
{
struct port_info *pi = device_get_softc(dev);
struct adapter *sc = pi->adapter;
int rc;
/* Tell if_ioctl and if_init that the port is going away */
ADAPTER_LOCK(sc);
SET_DOOMED(pi);
wakeup(&sc->flags);
while (IS_BUSY(sc))
mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
SET_BUSY(sc);
ADAPTER_UNLOCK(sc);
rc = cxgbe_uninit_synchronized(pi);
if (rc != 0)
device_printf(dev, "port uninit failed: %d.\n", rc);
taskqueue_free(pi->tq);
ifmedia_removeall(&pi->media);
ether_ifdetach(pi->ifp);
if_free(pi->ifp);
ADAPTER_LOCK(sc);
CLR_BUSY(sc);
wakeup_one(&sc->flags);
ADAPTER_UNLOCK(sc);
return (0);
}
static void
cxgbe_init(void *arg)
{
struct port_info *pi = arg;
struct adapter *sc = pi->adapter;
ADAPTER_LOCK(sc);
cxgbe_init_locked(pi); /* releases adapter lock */
ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
}
static int
cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data)
{
int rc = 0, mtu, flags;
struct port_info *pi = ifp->if_softc;
struct adapter *sc = pi->adapter;
struct ifreq *ifr = (struct ifreq *)data;
uint32_t mask;
switch (cmd) {
case SIOCSIFMTU:
ADAPTER_LOCK(sc);
rc = IS_DOOMED(pi) ? ENXIO : (IS_BUSY(sc) ? EBUSY : 0);
if (rc) {
fail:
ADAPTER_UNLOCK(sc);
return (rc);
}
mtu = ifr->ifr_mtu;
if ((mtu < ETHERMIN) || (mtu > ETHERMTU_JUMBO)) {
rc = EINVAL;
} else {
ifp->if_mtu = mtu;
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
t4_update_fl_bufsize(ifp);
PORT_LOCK(pi);
rc = update_mac_settings(pi, XGMAC_MTU);
PORT_UNLOCK(pi);
}
}
ADAPTER_UNLOCK(sc);
break;
case SIOCSIFFLAGS:
ADAPTER_LOCK(sc);
if (IS_DOOMED(pi)) {
rc = ENXIO;
goto fail;
}
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
flags = pi->if_flags;
if ((ifp->if_flags ^ flags) &
(IFF_PROMISC | IFF_ALLMULTI)) {
if (IS_BUSY(sc)) {
rc = EBUSY;
goto fail;
}
PORT_LOCK(pi);
rc = update_mac_settings(pi,
XGMAC_PROMISC | XGMAC_ALLMULTI);
PORT_UNLOCK(pi);
}
ADAPTER_UNLOCK(sc);
} else
rc = cxgbe_init_locked(pi);
pi->if_flags = ifp->if_flags;
} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
rc = cxgbe_uninit_locked(pi);
else
ADAPTER_UNLOCK(sc);
ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI: /* these two can be called with a mutex held :-( */
ADAPTER_LOCK(sc);
rc = IS_DOOMED(pi) ? ENXIO : (IS_BUSY(sc) ? EBUSY : 0);
if (rc)
goto fail;
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
PORT_LOCK(pi);
rc = update_mac_settings(pi, XGMAC_MCADDRS);
PORT_UNLOCK(pi);
}
ADAPTER_UNLOCK(sc);
break;
case SIOCSIFCAP:
ADAPTER_LOCK(sc);
rc = IS_DOOMED(pi) ? ENXIO : (IS_BUSY(sc) ? EBUSY : 0);
if (rc)
goto fail;
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
if (mask & IFCAP_TXCSUM) {
ifp->if_capenable ^= IFCAP_TXCSUM;
ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP);
if (IFCAP_TSO & ifp->if_capenable &&
!(IFCAP_TXCSUM & ifp->if_capenable)) {
ifp->if_capenable &= ~IFCAP_TSO;
ifp->if_hwassist &= ~CSUM_TSO;
if_printf(ifp,
"tso disabled due to -txcsum.\n");
}
}
if (mask & IFCAP_RXCSUM)
ifp->if_capenable ^= IFCAP_RXCSUM;
if (mask & IFCAP_TSO4) {
ifp->if_capenable ^= IFCAP_TSO4;
if (IFCAP_TSO & ifp->if_capenable) {
if (IFCAP_TXCSUM & ifp->if_capenable)
ifp->if_hwassist |= CSUM_TSO;
else {
ifp->if_capenable &= ~IFCAP_TSO;
ifp->if_hwassist &= ~CSUM_TSO;
if_printf(ifp,
"enable txcsum first.\n");
rc = EAGAIN;
}
} else
ifp->if_hwassist &= ~CSUM_TSO;
}
if (mask & IFCAP_LRO) {
#ifdef INET
int i;
struct sge_rxq *rxq;
ifp->if_capenable ^= IFCAP_LRO;
for_each_rxq(pi, i, rxq) {
if (ifp->if_capenable & IFCAP_LRO)
rxq->flags |= RXQ_LRO_ENABLED;
else
rxq->flags &= ~RXQ_LRO_ENABLED;
}
#endif
}
#ifndef TCP_OFFLOAD_DISABLE
if (mask & IFCAP_TOE4) {
rc = EOPNOTSUPP;
}
#endif
if (mask & IFCAP_VLAN_HWTAGGING) {
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
PORT_LOCK(pi);
rc = update_mac_settings(pi, XGMAC_VLANEX);
PORT_UNLOCK(pi);
}
}
if (mask & IFCAP_VLAN_MTU) {
ifp->if_capenable ^= IFCAP_VLAN_MTU;
/* Need to find out how to disable auto-mtu-inflation */
}
if (mask & IFCAP_VLAN_HWTSO)
ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
if (mask & IFCAP_VLAN_HWCSUM)
ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
#ifdef VLAN_CAPABILITIES
VLAN_CAPABILITIES(ifp);
#endif
ADAPTER_UNLOCK(sc);
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
ifmedia_ioctl(ifp, ifr, &pi->media, cmd);
break;
default:
rc = ether_ioctl(ifp, cmd, data);
}
return (rc);
}
static void
cxgbe_start(struct ifnet *ifp)
{
struct port_info *pi = ifp->if_softc;
struct sge_txq *txq;
int i;
for_each_txq(pi, i, txq) {
if (TXQ_TRYLOCK(txq)) {
txq_start(ifp, txq);
TXQ_UNLOCK(txq);
}
}
}
static int
cxgbe_transmit(struct ifnet *ifp, struct mbuf *m)
{
struct port_info *pi = ifp->if_softc;
struct adapter *sc = pi->adapter;
struct sge_txq *txq = &sc->sge.txq[pi->first_txq];
struct buf_ring *br;
int rc;
M_ASSERTPKTHDR(m);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
m_freem(m);
return (0);
}
if (m->m_flags & M_FLOWID)
txq += (m->m_pkthdr.flowid % pi->ntxq);
br = txq->eq.br;
if (TXQ_TRYLOCK(txq) == 0) {
/*
* XXX: make sure that this packet really is sent out. There is
* a small race where t4_eth_tx may stop draining the drbr and
* goes away, just before we enqueued this mbuf.
*/
return (drbr_enqueue(ifp, br, m));
}
/*
* txq->m is the mbuf that is held up due to a temporary shortage of
* resources and it should be put on the wire first. Then what's in
* drbr and finally the mbuf that was just passed in to us.
*
* Return code should indicate the fate of the mbuf that was passed in
* this time.
*/
TXQ_LOCK_ASSERT_OWNED(txq);
if (drbr_needs_enqueue(ifp, br) || txq->m) {
/* Queued for transmission. */
rc = drbr_enqueue(ifp, br, m);
m = txq->m ? txq->m : drbr_dequeue(ifp, br);
(void) t4_eth_tx(ifp, txq, m);
TXQ_UNLOCK(txq);
return (rc);
}
/* Direct transmission. */
rc = t4_eth_tx(ifp, txq, m);
if (rc != 0 && txq->m)
rc = 0; /* held, will be transmitted soon (hopefully) */
TXQ_UNLOCK(txq);
return (rc);
}
static void
cxgbe_qflush(struct ifnet *ifp)
{
struct port_info *pi = ifp->if_softc;
device_printf(pi->dev, "%s unimplemented.\n", __func__);
}
static int
cxgbe_media_change(struct ifnet *ifp)
{
struct port_info *pi = ifp->if_softc;
device_printf(pi->dev, "%s unimplemented.\n", __func__);
return (EOPNOTSUPP);
}
static void
cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct port_info *pi = ifp->if_softc;
struct ifmedia_entry *cur = pi->media.ifm_cur;
int speed = pi->link_cfg.speed;
int data = (pi->port_type << 8) | pi->mod_type;
if (cur->ifm_data != data) {
build_medialist(pi);
cur = pi->media.ifm_cur;
}
ifmr->ifm_status = IFM_AVALID;
if (!pi->link_cfg.link_ok)
return;
ifmr->ifm_status |= IFM_ACTIVE;
/* active and current will differ iff current media is autoselect. */
if (IFM_SUBTYPE(cur->ifm_media) != IFM_AUTO)
return;
ifmr->ifm_active = IFM_ETHER | IFM_FDX;
if (speed == SPEED_10000)
ifmr->ifm_active |= IFM_10G_T;
else if (speed == SPEED_1000)
ifmr->ifm_active |= IFM_1000_T;
else if (speed == SPEED_100)
ifmr->ifm_active |= IFM_100_TX;
else if (speed == SPEED_10)
ifmr->ifm_active |= IFM_10_T;
else
KASSERT(0, ("%s: link up but speed unknown (%u)", __func__,
speed));
}
void
t4_fatal_err(struct adapter *sc)
{
t4_set_reg_field(sc, A_SGE_CONTROL, F_GLOBALENABLE, 0);
t4_intr_disable(sc);
log(LOG_EMERG, "%s: encountered fatal error, adapter stopped.\n",
device_get_nameunit(sc->dev));
}
static int
map_bars(struct adapter *sc)
{
sc->regs_rid = PCIR_BAR(0);
sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
&sc->regs_rid, RF_ACTIVE);
if (sc->regs_res == NULL) {
device_printf(sc->dev, "cannot map registers.\n");
return (ENXIO);
}
sc->bt = rman_get_bustag(sc->regs_res);
sc->bh = rman_get_bushandle(sc->regs_res);
sc->mmio_len = rman_get_size(sc->regs_res);
sc->msix_rid = PCIR_BAR(4);
sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
&sc->msix_rid, RF_ACTIVE);
if (sc->msix_res == NULL) {
device_printf(sc->dev, "cannot map MSI-X BAR.\n");
return (ENXIO);
}
return (0);
}
static void
setup_memwin(struct adapter *sc)
{
u_long bar0;
bar0 = rman_get_start(sc->regs_res);
t4_write_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 0),
(bar0 + MEMWIN0_BASE) | V_BIR(0) |
V_WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
t4_write_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 1),
(bar0 + MEMWIN1_BASE) | V_BIR(0) |
V_WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
t4_write_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2),
(bar0 + MEMWIN2_BASE) | V_BIR(0) |
V_WINDOW(ilog2(MEMWIN2_APERTURE) - 10));
}
static int
cfg_itype_and_nqueues(struct adapter *sc, int n10g, int n1g,
struct intrs_and_queues *iaq)
{
int rc, itype, navail, nc, nrxq10g, nrxq1g;
bzero(iaq, sizeof(*iaq));
nc = mp_ncpus; /* our snapshot of the number of CPUs */
for (itype = INTR_MSIX; itype; itype >>= 1) {
if ((itype & intr_types) == 0)
continue; /* not allowed */
if (itype == INTR_MSIX)
navail = pci_msix_count(sc->dev);
else if (itype == INTR_MSI)
navail = pci_msi_count(sc->dev);
else
navail = 1;
if (navail == 0)
continue;
iaq->intr_type = itype;
iaq->ntxq10g = min(nc, max_ntxq_10g);
iaq->ntxq1g = min(nc, max_ntxq_1g);
nrxq10g = min(nc, max_nrxq_10g);
nrxq1g = min(nc, max_nrxq_1g);
/* Extra 2 is for a) error interrupt b) firmware event */
iaq->nirq = n10g * nrxq10g + n1g * nrxq1g + 2;
if (iaq->nirq <= navail && intr_fwd == 0) {
if (itype == INTR_MSI && !powerof2(iaq->nirq))
goto fwd;
/* One for err, one for fwq, and one for each rxq */
iaq->intr_fwd = 0;
iaq->nrxq10g = nrxq10g;
iaq->nrxq1g = nrxq1g;
} else {
fwd:
iaq->intr_fwd = 1;
if (navail > nc) {
if (itype == INTR_MSIX)
navail = nc + 1;
/* navail is and must remain a pow2 for MSI */
if (itype == INTR_MSI) {
KASSERT(powerof2(navail),
("%d not power of 2", navail));
while (navail / 2 > nc)
navail /= 2;
}
}
iaq->nirq = navail; /* total # of interrupts */
/*
* If we have multiple vectors available reserve one
* exclusively for errors. The rest will be shared by
* the fwq and data.
*/
if (navail > 1)
navail--;
iaq->nrxq10g = min(nrxq10g, navail);
iaq->nrxq1g = min(nrxq1g, navail);
}
navail = iaq->nirq;
rc = 0;
if (itype == INTR_MSIX)
rc = pci_alloc_msix(sc->dev, &navail);
else if (itype == INTR_MSI)
rc = pci_alloc_msi(sc->dev, &navail);
if (rc == 0) {
if (navail == iaq->nirq)
return (0);
/*
* Didn't get the number requested. Use whatever number
* the kernel is willing to allocate (it's in navail).
*/
pci_release_msi(sc->dev);
goto fwd;
}
device_printf(sc->dev,
"failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
itype, rc, iaq->nirq, navail);
}
device_printf(sc->dev,
"failed to find a usable interrupt type. "
"allowed=%d, msi-x=%d, msi=%d, intx=1", intr_types,
pci_msix_count(sc->dev), pci_msi_count(sc->dev));
return (ENXIO);
}
/*
* Install a compatible firmware (if required), establish contact with it,
* become the master, and reset the device.
*/
static int
prep_firmware(struct adapter *sc)
{
const struct firmware *fw;
int rc;
enum dev_state state;
/* Check firmware version and install a different one if necessary */
rc = t4_check_fw_version(sc);
if (rc != 0 || force_firmware_install) {
uint32_t v = 0;
fw = firmware_get(T4_FWNAME);
if (fw != NULL) {
const struct fw_hdr *hdr = (const void *)fw->data;
v = ntohl(hdr->fw_ver);
/*
* The firmware module will not be used if it isn't the
* same major version as what the driver was compiled
* with. This check trumps force_firmware_install.
*/
if (G_FW_HDR_FW_VER_MAJOR(v) != FW_VERSION_MAJOR) {
device_printf(sc->dev,
"Found firmware image but version %d "
"can not be used with this driver (%d)\n",
G_FW_HDR_FW_VER_MAJOR(v), FW_VERSION_MAJOR);
firmware_put(fw, FIRMWARE_UNLOAD);
fw = NULL;
}
}
if (fw == NULL && (rc < 0 || force_firmware_install)) {
device_printf(sc->dev, "No usable firmware. "
"card has %d.%d.%d, driver compiled with %d.%d.%d, "
"force_firmware_install%s set",
G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
FW_VERSION_MAJOR, FW_VERSION_MINOR,
FW_VERSION_MICRO,
force_firmware_install ? "" : " not");
return (EAGAIN);
}
/*
* Always upgrade, even for minor/micro/build mismatches.
* Downgrade only for a major version mismatch or if
* force_firmware_install was specified.
*/
if (fw != NULL && (rc < 0 || force_firmware_install ||
v > sc->params.fw_vers)) {
device_printf(sc->dev,
"installing firmware %d.%d.%d.%d on card.\n",
G_FW_HDR_FW_VER_MAJOR(v), G_FW_HDR_FW_VER_MINOR(v),
G_FW_HDR_FW_VER_MICRO(v), G_FW_HDR_FW_VER_BUILD(v));
rc = -t4_load_fw(sc, fw->data, fw->datasize);
if (rc != 0) {
device_printf(sc->dev,
"failed to install firmware: %d\n", rc);
firmware_put(fw, FIRMWARE_UNLOAD);
return (rc);
} else {
/* refresh */
(void) t4_check_fw_version(sc);
}
}
if (fw != NULL)
firmware_put(fw, FIRMWARE_UNLOAD);
}
/* Contact firmware, request master */
rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MUST, &state);
if (rc < 0) {
rc = -rc;
device_printf(sc->dev,
"failed to connect to the firmware: %d.\n", rc);
return (rc);
}
/* Reset device */
rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST);
if (rc != 0) {
device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
if (rc != ETIMEDOUT && rc != EIO)
t4_fw_bye(sc, sc->mbox);
return (rc);
}
snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
sc->flags |= FW_OK;
return (0);
}
static int
get_capabilities(struct adapter *sc, struct fw_caps_config_cmd *caps)
{
int rc;
bzero(caps, sizeof(*caps));
caps->op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_READ);
caps->retval_len16 = htobe32(FW_LEN16(*caps));
rc = -t4_wr_mbox(sc, sc->mbox, caps, sizeof(*caps), caps);
if (rc != 0)
return (rc);
if (caps->niccaps & htobe16(FW_CAPS_CONFIG_NIC_VM))
caps->niccaps ^= htobe16(FW_CAPS_CONFIG_NIC_VM);
caps->op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
rc = -t4_wr_mbox(sc, sc->mbox, caps, sizeof(*caps), NULL);
return (rc);
}
static int
get_params(struct adapter *sc, struct fw_caps_config_cmd *caps)
{
int rc;
uint32_t params[7], val[7];
#define FW_PARAM_DEV(param) \
(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
#define FW_PARAM_PFVF(param) \
(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
params[0] = FW_PARAM_DEV(PORTVEC);
params[1] = FW_PARAM_PFVF(IQFLINT_START);
params[2] = FW_PARAM_PFVF(EQ_START);
params[3] = FW_PARAM_PFVF(FILTER_START);
params[4] = FW_PARAM_PFVF(FILTER_END);
rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 5, params, val);
if (rc != 0) {
device_printf(sc->dev,
"failed to query parameters: %d.\n", rc);
goto done;
}
sc->params.portvec = val[0];
sc->params.nports = 0;
while (val[0]) {
sc->params.nports++;
val[0] &= val[0] - 1;
}
sc->sge.iq_start = val[1];
sc->sge.eq_start = val[2];
sc->tids.ftid_base = val[3];
sc->tids.nftids = val[4] - val[3] + 1;
if (caps->toecaps) {
/* query offload-related parameters */
params[0] = FW_PARAM_DEV(NTID);
params[1] = FW_PARAM_PFVF(SERVER_START);
params[2] = FW_PARAM_PFVF(SERVER_END);
params[3] = FW_PARAM_PFVF(TDDP_START);
params[4] = FW_PARAM_PFVF(TDDP_END);
params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, params, val);
if (rc != 0) {
device_printf(sc->dev,
"failed to query TOE parameters: %d.\n", rc);
goto done;
}
sc->tids.ntids = val[0];
sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
sc->tids.stid_base = val[1];
sc->tids.nstids = val[2] - val[1] + 1;
sc->vres.ddp.start = val[3];
sc->vres.ddp.size = val[4] - val[3] + 1;
sc->params.ofldq_wr_cred = val[5];
sc->params.offload = 1;
}
if (caps->rdmacaps) {
params[0] = FW_PARAM_PFVF(STAG_START);
params[1] = FW_PARAM_PFVF(STAG_END);
params[2] = FW_PARAM_PFVF(RQ_START);
params[3] = FW_PARAM_PFVF(RQ_END);
params[4] = FW_PARAM_PFVF(PBL_START);
params[5] = FW_PARAM_PFVF(PBL_END);
rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, params, val);
if (rc != 0) {
device_printf(sc->dev,
"failed to query RDMA parameters: %d.\n", rc);
goto done;
}
sc->vres.stag.start = val[0];
sc->vres.stag.size = val[1] - val[0] + 1;
sc->vres.rq.start = val[2];
sc->vres.rq.size = val[3] - val[2] + 1;
sc->vres.pbl.start = val[4];
sc->vres.pbl.size = val[5] - val[4] + 1;
}
if (caps->iscsicaps) {
params[0] = FW_PARAM_PFVF(ISCSI_START);
params[1] = FW_PARAM_PFVF(ISCSI_END);
rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, params, val);
if (rc != 0) {
device_printf(sc->dev,
"failed to query iSCSI parameters: %d.\n", rc);
goto done;
}
sc->vres.iscsi.start = val[0];
sc->vres.iscsi.size = val[1] - val[0] + 1;
}
#undef FW_PARAM_PFVF
#undef FW_PARAM_DEV
done:
return (rc);
}
static void
t4_set_desc(struct adapter *sc)
{
char buf[128];
struct adapter_params *p = &sc->params;
snprintf(buf, sizeof(buf),
"Chelsio %s (rev %d) %d port %sNIC PCIe-x%d %d %s, S/N:%s, E/C:%s",
p->vpd.id, p->rev, p->nports, is_offload(sc) ? "R" : "",
p->pci.width, sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
(sc->intr_type == INTR_MSI ? "MSI" : "INTx"), p->vpd.sn, p->vpd.ec);
device_set_desc_copy(sc->dev, buf);
}
static void
build_medialist(struct port_info *pi)
{
struct ifmedia *media = &pi->media;
int data, m;
PORT_LOCK(pi);
ifmedia_removeall(media);
m = IFM_ETHER | IFM_FDX;
data = (pi->port_type << 8) | pi->mod_type;
switch(pi->port_type) {
case FW_PORT_TYPE_BT_XFI:
ifmedia_add(media, m | IFM_10G_T, data, NULL);
break;
case FW_PORT_TYPE_BT_XAUI:
ifmedia_add(media, m | IFM_10G_T, data, NULL);
/* fall through */
case FW_PORT_TYPE_BT_SGMII:
ifmedia_add(media, m | IFM_1000_T, data, NULL);
ifmedia_add(media, m | IFM_100_TX, data, NULL);
ifmedia_add(media, IFM_ETHER | IFM_AUTO, data, NULL);
ifmedia_set(media, IFM_ETHER | IFM_AUTO);
break;
case FW_PORT_TYPE_CX4:
ifmedia_add(media, m | IFM_10G_CX4, data, NULL);
ifmedia_set(media, m | IFM_10G_CX4);
break;
case FW_PORT_TYPE_SFP:
case FW_PORT_TYPE_FIBER_XFI:
case FW_PORT_TYPE_FIBER_XAUI:
switch (pi->mod_type) {
case FW_PORT_MOD_TYPE_LR:
ifmedia_add(media, m | IFM_10G_LR, data, NULL);
ifmedia_set(media, m | IFM_10G_LR);
break;
case FW_PORT_MOD_TYPE_SR:
ifmedia_add(media, m | IFM_10G_SR, data, NULL);
ifmedia_set(media, m | IFM_10G_SR);
break;
case FW_PORT_MOD_TYPE_LRM:
ifmedia_add(media, m | IFM_10G_LRM, data, NULL);
ifmedia_set(media, m | IFM_10G_LRM);
break;
case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
ifmedia_add(media, m | IFM_10G_TWINAX, data, NULL);
ifmedia_set(media, m | IFM_10G_TWINAX);
break;
case FW_PORT_MOD_TYPE_NONE:
m &= ~IFM_FDX;
ifmedia_add(media, m | IFM_NONE, data, NULL);
ifmedia_set(media, m | IFM_NONE);
break;
case FW_PORT_MOD_TYPE_NA:
case FW_PORT_MOD_TYPE_ER:
default:
ifmedia_add(media, m | IFM_UNKNOWN, data, NULL);
ifmedia_set(media, m | IFM_UNKNOWN);
break;
}
break;
case FW_PORT_TYPE_KX4:
case FW_PORT_TYPE_KX:
case FW_PORT_TYPE_KR:
default:
ifmedia_add(media, m | IFM_UNKNOWN, data, NULL);
ifmedia_set(media, m | IFM_UNKNOWN);
break;
}
PORT_UNLOCK(pi);
}
/*
* Program the port's XGMAC based on parameters in ifnet. The caller also
* indicates which parameters should be programmed (the rest are left alone).
*/
static int
update_mac_settings(struct port_info *pi, int flags)
{
int rc;
struct ifnet *ifp = pi->ifp;
struct adapter *sc = pi->adapter;
int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
PORT_LOCK_ASSERT_OWNED(pi);
KASSERT(flags, ("%s: not told what to update.", __func__));
if (flags & XGMAC_MTU)
mtu = ifp->if_mtu;
if (flags & XGMAC_PROMISC)
promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0;
if (flags & XGMAC_ALLMULTI)
allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0;
if (flags & XGMAC_VLANEX)
vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0;
rc = -t4_set_rxmode(sc, sc->mbox, pi->viid, mtu, promisc, allmulti, 1,
vlanex, false);
if (rc) {
if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, rc);
return (rc);
}
if (flags & XGMAC_UCADDR) {
uint8_t ucaddr[ETHER_ADDR_LEN];
bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr));
rc = t4_change_mac(sc, sc->mbox, pi->viid, pi->xact_addr_filt,
ucaddr, true, true);
if (rc < 0) {
rc = -rc;
if_printf(ifp, "change_mac failed: %d\n", rc);
return (rc);
} else {
pi->xact_addr_filt = rc;
rc = 0;
}
}
if (flags & XGMAC_MCADDRS) {
const uint8_t *mcaddr;
int del = 1;
uint64_t hash = 0;
struct ifmultiaddr *ifma;
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
mcaddr = LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
rc = t4_alloc_mac_filt(sc, sc->mbox, pi->viid, del, 1,
&mcaddr, NULL, &hash, 0);
if (rc < 0) {
rc = -rc;
if_printf(ifp, "failed to add mc address"
" %02x:%02x:%02x:%02x:%02x:%02x rc=%d\n",
mcaddr[0], mcaddr[1], mcaddr[2], mcaddr[3],
mcaddr[4], mcaddr[5], rc);
goto mcfail;
}
del = 0;
}
rc = -t4_set_addr_hash(sc, sc->mbox, pi->viid, 0, hash, 0);
if (rc != 0)
if_printf(ifp, "failed to set mc address hash: %d", rc);
mcfail:
if_maddr_runlock(ifp);
}
return (rc);
}
static int
cxgbe_init_locked(struct port_info *pi)
{
struct adapter *sc = pi->adapter;
int rc = 0;
ADAPTER_LOCK_ASSERT_OWNED(sc);
while (!IS_DOOMED(pi) && IS_BUSY(sc)) {
if (mtx_sleep(&sc->flags, &sc->sc_lock, PCATCH, "t4init", 0)) {
rc = EINTR;
goto done;
}
}
if (IS_DOOMED(pi)) {
rc = ENXIO;
goto done;
}
KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
/* Give up the adapter lock, port init code can sleep. */
SET_BUSY(sc);
ADAPTER_UNLOCK(sc);
rc = cxgbe_init_synchronized(pi);
done:
ADAPTER_LOCK(sc);
KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
CLR_BUSY(sc);
wakeup_one(&sc->flags);
ADAPTER_UNLOCK(sc);
return (rc);
}
static int
cxgbe_init_synchronized(struct port_info *pi)
{
struct adapter *sc = pi->adapter;
struct ifnet *ifp = pi->ifp;
int rc = 0, i;
uint16_t *rss;
struct sge_rxq *rxq;
ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
if (isset(&sc->open_device_map, pi->port_id)) {
KASSERT(ifp->if_drv_flags & IFF_DRV_RUNNING,
("mismatch between open_device_map and if_drv_flags"));
return (0); /* already running */
}
if (sc->open_device_map == 0 && ((rc = first_port_up(sc)) != 0))
return (rc); /* error message displayed already */
/*
* Allocate tx/rx/fl queues for this port.
*/
rc = t4_setup_eth_queues(pi);
if (rc != 0)
goto done; /* error message displayed already */
/*
* Setup RSS for this port.
*/
rss = malloc(pi->nrxq * sizeof (*rss), M_CXGBE, M_ZERO | M_WAITOK);
for_each_rxq(pi, i, rxq) {
rss[i] = rxq->iq.abs_id;
}
rc = -t4_config_rss_range(sc, sc->mbox, pi->viid, 0, pi->rss_size, rss,
pi->nrxq);
free(rss, M_CXGBE);
if (rc != 0) {
if_printf(ifp, "rss_config failed: %d\n", rc);
goto done;
}
PORT_LOCK(pi);
rc = update_mac_settings(pi, XGMAC_ALL);
PORT_UNLOCK(pi);
if (rc)
goto done; /* error message displayed already */
rc = -t4_link_start(sc, sc->mbox, pi->tx_chan, &pi->link_cfg);
if (rc != 0) {
if_printf(ifp, "start_link failed: %d\n", rc);
goto done;
}
rc = -t4_enable_vi(sc, sc->mbox, pi->viid, true, true);
if (rc != 0) {
if_printf(ifp, "enable_vi failed: %d\n", rc);
goto done;
}
pi->flags |= VI_ENABLED;
/* all ok */
setbit(&sc->open_device_map, pi->port_id);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&pi->tick, hz, cxgbe_tick, pi);
done:
if (rc != 0)
cxgbe_uninit_synchronized(pi);
return (rc);
}
static int
cxgbe_uninit_locked(struct port_info *pi)
{
struct adapter *sc = pi->adapter;
int rc;
ADAPTER_LOCK_ASSERT_OWNED(sc);
while (!IS_DOOMED(pi) && IS_BUSY(sc)) {
if (mtx_sleep(&sc->flags, &sc->sc_lock, PCATCH, "t4uninit", 0)) {
rc = EINTR;
goto done;
}
}
if (IS_DOOMED(pi)) {
rc = ENXIO;
goto done;
}
KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
SET_BUSY(sc);
ADAPTER_UNLOCK(sc);
rc = cxgbe_uninit_synchronized(pi);
ADAPTER_LOCK(sc);
KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
CLR_BUSY(sc);
wakeup_one(&sc->flags);
done:
ADAPTER_UNLOCK(sc);
return (rc);
}
/*
* Idempotent.
*/
static int
cxgbe_uninit_synchronized(struct port_info *pi)
{
struct adapter *sc = pi->adapter;
struct ifnet *ifp = pi->ifp;
int rc;
/*
* taskqueue_drain may cause a deadlock if the adapter lock is held.
*/
ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
/*
* Clear this port's bit from the open device map, and then drain
* tasks and callouts.
*/
clrbit(&sc->open_device_map, pi->port_id);
PORT_LOCK(pi);
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
callout_stop(&pi->tick);
PORT_UNLOCK(pi);
callout_drain(&pi->tick);
/*
* Stop and then free the queues' resources, including the queues
* themselves.
*
* XXX: we could just stop the queues here (on ifconfig down) and free
* them later (on port detach), but having up/down go through the entire
* allocate/activate/deactivate/free sequence is a good way to find
* leaks and bugs.
*/
rc = t4_teardown_eth_queues(pi);
if (rc != 0)
if_printf(ifp, "teardown failed: %d\n", rc);
if (pi->flags & VI_ENABLED) {
rc = -t4_enable_vi(sc, sc->mbox, pi->viid, false, false);
if (rc)
if_printf(ifp, "disable_vi failed: %d\n", rc);
else
pi->flags &= ~VI_ENABLED;
}
pi->link_cfg.link_ok = 0;
pi->link_cfg.speed = 0;
t4_os_link_changed(sc, pi->port_id, 0);
if (sc->open_device_map == 0)
last_port_down(sc);
return (0);
}
#define T4_ALLOC_IRQ(sc, irqid, rid, handler, arg, name) do { \
rc = t4_alloc_irq(sc, &sc->irq[irqid], rid, handler, arg, name); \
if (rc != 0) \
goto done; \
} while (0)
static int
first_port_up(struct adapter *sc)
{
int rc, i;
char name[8];
ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
/*
* The firmware event queue and the optional forwarded interrupt queues.
*/
rc = t4_setup_adapter_iqs(sc);
if (rc != 0)
goto done;
/*
* Setup interrupts.
*/
if (sc->intr_count == 1) {
KASSERT(sc->flags & INTR_FWD,
("%s: single interrupt but not forwarded?", __func__));
T4_ALLOC_IRQ(sc, 0, 0, t4_intr_all, sc, "all");
} else {
/* Multiple interrupts. The first one is always error intr */
T4_ALLOC_IRQ(sc, 0, 1, t4_intr_err, sc, "err");
if (sc->flags & INTR_FWD) {
/* The rest are shared by the fwq and all data intr */
for (i = 1; i < sc->intr_count; i++) {
snprintf(name, sizeof(name), "mux%d", i - 1);
T4_ALLOC_IRQ(sc, i, i + 1, t4_intr_fwd,
&sc->sge.fiq[i - 1], name);
}
} else {
struct port_info *pi;
int p, q;
T4_ALLOC_IRQ(sc, 1, 2, t4_intr_evt, &sc->sge.fwq,
"evt");
p = q = 0;
pi = sc->port[p];
for (i = 2; i < sc->intr_count; i++) {
snprintf(name, sizeof(name), "p%dq%d", p, q);
if (++q >= pi->nrxq) {
p++;
q = 0;
pi = sc->port[p];
}
T4_ALLOC_IRQ(sc, i, i + 1, t4_intr_data,
&sc->sge.rxq[i - 2], name);
}
}
}
t4_intr_enable(sc);
sc->flags |= FULL_INIT_DONE;
done:
if (rc != 0)
last_port_down(sc);
return (rc);
}
#undef T4_ALLOC_IRQ
/*
* Idempotent.
*/
static int
last_port_down(struct adapter *sc)
{
int i;
ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
t4_intr_disable(sc);
t4_teardown_adapter_iqs(sc);
for (i = 0; i < sc->intr_count; i++)
t4_free_irq(sc, &sc->irq[i]);
sc->flags &= ~FULL_INIT_DONE;
return (0);
}
static int
t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
iq_intr_handler_t *handler, void *arg, char *name)
{
int rc;
irq->rid = rid;
irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
RF_SHAREABLE | RF_ACTIVE);
if (irq->res == NULL) {
device_printf(sc->dev,
"failed to allocate IRQ for rid %d, name %s.\n", rid, name);
return (ENOMEM);
}
rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
NULL, handler, arg, &irq->tag);
if (rc != 0) {
device_printf(sc->dev,
"failed to setup interrupt for rid %d, name %s: %d\n",
rid, name, rc);
} else if (name)
bus_describe_intr(sc->dev, irq->res, irq->tag, name);
return (rc);
}
static int
t4_free_irq(struct adapter *sc, struct irq *irq)
{
if (irq->tag)
bus_teardown_intr(sc->dev, irq->res, irq->tag);
if (irq->res)
bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
bzero(irq, sizeof(*irq));
return (0);
}
static void
reg_block_dump(struct adapter *sc, uint8_t *buf, unsigned int start,
unsigned int end)
{
uint32_t *p = (uint32_t *)(buf + start);
for ( ; start <= end; start += sizeof(uint32_t))
*p++ = t4_read_reg(sc, start);
}
static void
t4_get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
{
int i;
static const unsigned int reg_ranges[] = {
0x1008, 0x1108,
0x1180, 0x11b4,
0x11fc, 0x123c,
0x1300, 0x173c,
0x1800, 0x18fc,
0x3000, 0x30d8,
0x30e0, 0x5924,
0x5960, 0x59d4,
0x5a00, 0x5af8,
0x6000, 0x6098,
0x6100, 0x6150,
0x6200, 0x6208,
0x6240, 0x6248,
0x6280, 0x6338,
0x6370, 0x638c,
0x6400, 0x643c,
0x6500, 0x6524,
0x6a00, 0x6a38,
0x6a60, 0x6a78,
0x6b00, 0x6b84,
0x6bf0, 0x6c84,
0x6cf0, 0x6d84,
0x6df0, 0x6e84,
0x6ef0, 0x6f84,
0x6ff0, 0x7084,
0x70f0, 0x7184,
0x71f0, 0x7284,
0x72f0, 0x7384,
0x73f0, 0x7450,
0x7500, 0x7530,
0x7600, 0x761c,
0x7680, 0x76cc,
0x7700, 0x7798,
0x77c0, 0x77fc,
0x7900, 0x79fc,
0x7b00, 0x7c38,
0x7d00, 0x7efc,
0x8dc0, 0x8e1c,
0x8e30, 0x8e78,
0x8ea0, 0x8f6c,
0x8fc0, 0x9074,
0x90fc, 0x90fc,
0x9400, 0x9458,
0x9600, 0x96bc,
0x9800, 0x9808,
0x9820, 0x983c,
0x9850, 0x9864,
0x9c00, 0x9c6c,
0x9c80, 0x9cec,
0x9d00, 0x9d6c,
0x9d80, 0x9dec,
0x9e00, 0x9e6c,
0x9e80, 0x9eec,
0x9f00, 0x9f6c,
0x9f80, 0x9fec,
0xd004, 0xd03c,
0xdfc0, 0xdfe0,
0xe000, 0xea7c,
0xf000, 0x11190,
0x19040, 0x19124,
0x19150, 0x191b0,
0x191d0, 0x191e8,
0x19238, 0x1924c,
0x193f8, 0x19474,
0x19490, 0x194f8,
0x19800, 0x19f30,
0x1a000, 0x1a06c,
0x1a0b0, 0x1a120,
0x1a128, 0x1a138,
0x1a190, 0x1a1c4,
0x1a1fc, 0x1a1fc,
0x1e040, 0x1e04c,
0x1e240, 0x1e28c,
0x1e2c0, 0x1e2c0,
0x1e2e0, 0x1e2e0,
0x1e300, 0x1e384,
0x1e3c0, 0x1e3c8,
0x1e440, 0x1e44c,
0x1e640, 0x1e68c,
0x1e6c0, 0x1e6c0,
0x1e6e0, 0x1e6e0,
0x1e700, 0x1e784,
0x1e7c0, 0x1e7c8,
0x1e840, 0x1e84c,
0x1ea40, 0x1ea8c,
0x1eac0, 0x1eac0,
0x1eae0, 0x1eae0,
0x1eb00, 0x1eb84,
0x1ebc0, 0x1ebc8,
0x1ec40, 0x1ec4c,
0x1ee40, 0x1ee8c,
0x1eec0, 0x1eec0,
0x1eee0, 0x1eee0,
0x1ef00, 0x1ef84,
0x1efc0, 0x1efc8,
0x1f040, 0x1f04c,
0x1f240, 0x1f28c,
0x1f2c0, 0x1f2c0,
0x1f2e0, 0x1f2e0,
0x1f300, 0x1f384,
0x1f3c0, 0x1f3c8,
0x1f440, 0x1f44c,
0x1f640, 0x1f68c,
0x1f6c0, 0x1f6c0,
0x1f6e0, 0x1f6e0,
0x1f700, 0x1f784,
0x1f7c0, 0x1f7c8,
0x1f840, 0x1f84c,
0x1fa40, 0x1fa8c,
0x1fac0, 0x1fac0,
0x1fae0, 0x1fae0,
0x1fb00, 0x1fb84,
0x1fbc0, 0x1fbc8,
0x1fc40, 0x1fc4c,
0x1fe40, 0x1fe8c,
0x1fec0, 0x1fec0,
0x1fee0, 0x1fee0,
0x1ff00, 0x1ff84,
0x1ffc0, 0x1ffc8,
0x20000, 0x2002c,
0x20100, 0x2013c,
0x20190, 0x201c8,
0x20200, 0x20318,
0x20400, 0x20528,
0x20540, 0x20614,
0x21000, 0x21040,
0x2104c, 0x21060,
0x210c0, 0x210ec,
0x21200, 0x21268,
0x21270, 0x21284,
0x212fc, 0x21388,
0x21400, 0x21404,
0x21500, 0x21518,
0x2152c, 0x2153c,
0x21550, 0x21554,
0x21600, 0x21600,
0x21608, 0x21628,
0x21630, 0x2163c,
0x21700, 0x2171c,
0x21780, 0x2178c,
0x21800, 0x21c38,
0x21c80, 0x21d7c,
0x21e00, 0x21e04,
0x22000, 0x2202c,
0x22100, 0x2213c,
0x22190, 0x221c8,
0x22200, 0x22318,
0x22400, 0x22528,
0x22540, 0x22614,
0x23000, 0x23040,
0x2304c, 0x23060,
0x230c0, 0x230ec,
0x23200, 0x23268,
0x23270, 0x23284,
0x232fc, 0x23388,
0x23400, 0x23404,
0x23500, 0x23518,
0x2352c, 0x2353c,
0x23550, 0x23554,
0x23600, 0x23600,
0x23608, 0x23628,
0x23630, 0x2363c,
0x23700, 0x2371c,
0x23780, 0x2378c,
0x23800, 0x23c38,
0x23c80, 0x23d7c,
0x23e00, 0x23e04,
0x24000, 0x2402c,
0x24100, 0x2413c,
0x24190, 0x241c8,
0x24200, 0x24318,
0x24400, 0x24528,
0x24540, 0x24614,
0x25000, 0x25040,
0x2504c, 0x25060,
0x250c0, 0x250ec,
0x25200, 0x25268,
0x25270, 0x25284,
0x252fc, 0x25388,
0x25400, 0x25404,
0x25500, 0x25518,
0x2552c, 0x2553c,
0x25550, 0x25554,
0x25600, 0x25600,
0x25608, 0x25628,
0x25630, 0x2563c,
0x25700, 0x2571c,
0x25780, 0x2578c,
0x25800, 0x25c38,
0x25c80, 0x25d7c,
0x25e00, 0x25e04,
0x26000, 0x2602c,
0x26100, 0x2613c,
0x26190, 0x261c8,
0x26200, 0x26318,
0x26400, 0x26528,
0x26540, 0x26614,
0x27000, 0x27040,
0x2704c, 0x27060,
0x270c0, 0x270ec,
0x27200, 0x27268,
0x27270, 0x27284,
0x272fc, 0x27388,
0x27400, 0x27404,
0x27500, 0x27518,
0x2752c, 0x2753c,
0x27550, 0x27554,
0x27600, 0x27600,
0x27608, 0x27628,
0x27630, 0x2763c,
0x27700, 0x2771c,
0x27780, 0x2778c,
0x27800, 0x27c38,
0x27c80, 0x27d7c,
0x27e00, 0x27e04
};
regs->version = 4 | (sc->params.rev << 10);
for (i = 0; i < ARRAY_SIZE(reg_ranges); i += 2)
reg_block_dump(sc, buf, reg_ranges[i], reg_ranges[i + 1]);
}
static void
cxgbe_tick(void *arg)
{
struct port_info *pi = arg;
struct ifnet *ifp = pi->ifp;
struct sge_txq *txq;
int i, drops;
struct port_stats *s = &pi->stats;
PORT_LOCK(pi);
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
PORT_UNLOCK(pi);
return; /* without scheduling another callout */
}
t4_get_port_stats(pi->adapter, pi->tx_chan, s);
ifp->if_opackets = s->tx_frames;
ifp->if_ipackets = s->rx_frames;
ifp->if_obytes = s->tx_octets;
ifp->if_ibytes = s->rx_octets;
ifp->if_omcasts = s->tx_mcast_frames;
ifp->if_imcasts = s->rx_mcast_frames;
ifp->if_iqdrops = s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
s->rx_ovflow3;
drops = s->tx_drop;
for_each_txq(pi, i, txq)
drops += txq->eq.br->br_drops;
ifp->if_snd.ifq_drops = drops;
ifp->if_oerrors = s->tx_error_frames;
ifp->if_ierrors = s->rx_jabber + s->rx_runt + s->rx_too_long +
s->rx_fcs_err + s->rx_len_err;
callout_schedule(&pi->tick, hz);
PORT_UNLOCK(pi);
}
static int
t4_sysctls(struct adapter *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid *oid;
struct sysctl_oid_list *children;
ctx = device_get_sysctl_ctx(sc->dev);
oid = device_get_sysctl_tree(sc->dev);
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD,
&sc->params.nports, 0, "# of ports");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
&sc->params.rev, 0, "chip hardware revision");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
CTLFLAG_RD, &sc->fw_version, 0, "firmware version");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "TOE", CTLFLAG_RD,
&sc->params.offload, 0, "hardware is capable of TCP offload");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD,
&sc->params.vpd.cclk, 0, "core clock frequency (in KHz)");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
CTLTYPE_STRING | CTLFLAG_RD, &intr_timer, sizeof(intr_timer),
sysctl_int_array, "A", "interrupt holdoff timer values (us)");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
CTLTYPE_STRING | CTLFLAG_RD, &intr_pktcount, sizeof(intr_pktcount),
sysctl_int_array, "A", "interrupt holdoff packet counter values");
return (0);
}
static int
cxgbe_sysctls(struct port_info *pi)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid *oid;
struct sysctl_oid_list *children;
ctx = device_get_sysctl_ctx(pi->dev);
/*
* dev.cxgbe.X.
*/
oid = device_get_sysctl_tree(pi->dev);
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
&pi->nrxq, 0, "# of rx queues");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
&pi->ntxq, 0, "# of tx queues");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
&pi->first_rxq, 0, "index of first rx queue");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
&pi->first_txq, 0, "index of first tx queue");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_holdoff_tmr_idx, "I",
"holdoff timer index");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_holdoff_pktc_idx, "I",
"holdoff packet counter index");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_qsize_rxq, "I",
"rx queue size");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_qsize_txq, "I",
"tx queue size");
/*
* dev.cxgbe.X.stats.
*/
oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD,
NULL, "port statistics");
children = SYSCTL_CHILDREN(oid);
#define SYSCTL_ADD_T4_REG64(pi, name, desc, reg) \
SYSCTL_ADD_OID(ctx, children, OID_AUTO, name, \
CTLTYPE_U64 | CTLFLAG_RD, pi->adapter, reg, \
sysctl_handle_t4_reg64, "QU", desc)
SYSCTL_ADD_T4_REG64(pi, "tx_octets", "# of octets in good frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BYTES_L));
SYSCTL_ADD_T4_REG64(pi, "tx_frames", "total # of good frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_FRAMES_L));
SYSCTL_ADD_T4_REG64(pi, "tx_bcast_frames", "# of broadcast frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BCAST_L));
SYSCTL_ADD_T4_REG64(pi, "tx_mcast_frames", "# of multicast frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_MCAST_L));
SYSCTL_ADD_T4_REG64(pi, "tx_ucast_frames", "# of unicast frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_UCAST_L));
SYSCTL_ADD_T4_REG64(pi, "tx_error_frames", "# of error frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_ERROR_L));
SYSCTL_ADD_T4_REG64(pi, "tx_frames_64",
"# of tx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_64B_L));
SYSCTL_ADD_T4_REG64(pi, "tx_frames_65_127",
"# of tx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_65B_127B_L));
SYSCTL_ADD_T4_REG64(pi, "tx_frames_128_255",
"# of tx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_128B_255B_L));
SYSCTL_ADD_T4_REG64(pi, "tx_frames_256_511",
"# of tx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_256B_511B_L));
SYSCTL_ADD_T4_REG64(pi, "tx_frames_512_1023",
"# of tx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_512B_1023B_L));
SYSCTL_ADD_T4_REG64(pi, "tx_frames_1024_1518",
"# of tx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1024B_1518B_L));
SYSCTL_ADD_T4_REG64(pi, "tx_frames_1519_max",
"# of tx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1519B_MAX_L));
SYSCTL_ADD_T4_REG64(pi, "tx_drop", "# of dropped tx frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_DROP_L));
SYSCTL_ADD_T4_REG64(pi, "tx_pause", "# of pause frames transmitted",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PAUSE_L));
SYSCTL_ADD_T4_REG64(pi, "tx_ppp0", "# of PPP prio 0 frames transmitted",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP0_L));
SYSCTL_ADD_T4_REG64(pi, "tx_ppp1", "# of PPP prio 1 frames transmitted",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP1_L));
SYSCTL_ADD_T4_REG64(pi, "tx_ppp2", "# of PPP prio 2 frames transmitted",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP2_L));
SYSCTL_ADD_T4_REG64(pi, "tx_ppp3", "# of PPP prio 3 frames transmitted",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP3_L));
SYSCTL_ADD_T4_REG64(pi, "tx_ppp4", "# of PPP prio 4 frames transmitted",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP4_L));
SYSCTL_ADD_T4_REG64(pi, "tx_ppp5", "# of PPP prio 5 frames transmitted",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP5_L));
SYSCTL_ADD_T4_REG64(pi, "tx_ppp6", "# of PPP prio 6 frames transmitted",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP6_L));
SYSCTL_ADD_T4_REG64(pi, "tx_ppp7", "# of PPP prio 7 frames transmitted",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP7_L));
SYSCTL_ADD_T4_REG64(pi, "rx_octets", "# of octets in good frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BYTES_L));
SYSCTL_ADD_T4_REG64(pi, "rx_frames", "total # of good frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_FRAMES_L));
SYSCTL_ADD_T4_REG64(pi, "rx_bcast_frames", "# of broadcast frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BCAST_L));
SYSCTL_ADD_T4_REG64(pi, "rx_mcast_frames", "# of multicast frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MCAST_L));
SYSCTL_ADD_T4_REG64(pi, "rx_ucast_frames", "# of unicast frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_UCAST_L));
SYSCTL_ADD_T4_REG64(pi, "rx_too_long", "# of frames exceeding MTU",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_ERROR_L));
SYSCTL_ADD_T4_REG64(pi, "rx_jabber", "# of jabber frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_CRC_ERROR_L));
SYSCTL_ADD_T4_REG64(pi, "rx_fcs_err",
"# of frames received with bad FCS",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L));
SYSCTL_ADD_T4_REG64(pi, "rx_len_err",
"# of frames received with length error",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LEN_ERROR_L));
SYSCTL_ADD_T4_REG64(pi, "rx_symbol_err", "symbol errors",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_SYM_ERROR_L));
SYSCTL_ADD_T4_REG64(pi, "rx_runt", "# of short frames received",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LESS_64B_L));
SYSCTL_ADD_T4_REG64(pi, "rx_frames_64",
"# of rx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_64B_L));
SYSCTL_ADD_T4_REG64(pi, "rx_frames_65_127",
"# of rx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_65B_127B_L));
SYSCTL_ADD_T4_REG64(pi, "rx_frames_128_255",
"# of rx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_128B_255B_L));
SYSCTL_ADD_T4_REG64(pi, "rx_frames_256_511",
"# of rx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_256B_511B_L));
SYSCTL_ADD_T4_REG64(pi, "rx_frames_512_1023",
"# of rx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_512B_1023B_L));
SYSCTL_ADD_T4_REG64(pi, "rx_frames_1024_1518",
"# of rx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1024B_1518B_L));
SYSCTL_ADD_T4_REG64(pi, "rx_frames_1519_max",
"# of rx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1519B_MAX_L));
SYSCTL_ADD_T4_REG64(pi, "rx_pause", "# of pause frames received",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PAUSE_L));
SYSCTL_ADD_T4_REG64(pi, "rx_ppp0", "# of PPP prio 0 frames received",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP0_L));
SYSCTL_ADD_T4_REG64(pi, "rx_ppp1", "# of PPP prio 1 frames received",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP1_L));
SYSCTL_ADD_T4_REG64(pi, "rx_ppp2", "# of PPP prio 2 frames received",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP2_L));
SYSCTL_ADD_T4_REG64(pi, "rx_ppp3", "# of PPP prio 3 frames received",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP3_L));
SYSCTL_ADD_T4_REG64(pi, "rx_ppp4", "# of PPP prio 4 frames received",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP4_L));
SYSCTL_ADD_T4_REG64(pi, "rx_ppp5", "# of PPP prio 5 frames received",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP5_L));
SYSCTL_ADD_T4_REG64(pi, "rx_ppp6", "# of PPP prio 6 frames received",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP6_L));
SYSCTL_ADD_T4_REG64(pi, "rx_ppp7", "# of PPP prio 7 frames received",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP7_L));
#undef SYSCTL_ADD_T4_REG64
#define SYSCTL_ADD_T4_PORTSTAT(name, desc) \
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \
&pi->stats.name, desc)
/* We get these from port_stats and they may be stale by upto 1s */
SYSCTL_ADD_T4_PORTSTAT(rx_ovflow0,
"# drops due to buffer-group 0 overflows");
SYSCTL_ADD_T4_PORTSTAT(rx_ovflow1,
"# drops due to buffer-group 1 overflows");
SYSCTL_ADD_T4_PORTSTAT(rx_ovflow2,
"# drops due to buffer-group 2 overflows");
SYSCTL_ADD_T4_PORTSTAT(rx_ovflow3,
"# drops due to buffer-group 3 overflows");
SYSCTL_ADD_T4_PORTSTAT(rx_trunc0,
"# of buffer-group 0 truncated packets");
SYSCTL_ADD_T4_PORTSTAT(rx_trunc1,
"# of buffer-group 1 truncated packets");
SYSCTL_ADD_T4_PORTSTAT(rx_trunc2,
"# of buffer-group 2 truncated packets");
SYSCTL_ADD_T4_PORTSTAT(rx_trunc3,
"# of buffer-group 3 truncated packets");
#undef SYSCTL_ADD_T4_PORTSTAT
return (0);
}
static int
sysctl_int_array(SYSCTL_HANDLER_ARGS)
{
int rc, *i;
struct sbuf sb;
sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
for (i = arg1; arg2; arg2 -= sizeof(int), i++)
sbuf_printf(&sb, "%d ", *i);
sbuf_trim(&sb);
sbuf_finish(&sb);
rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
sbuf_delete(&sb);
return (rc);
}
static int
sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
{
struct port_info *pi = arg1;
struct adapter *sc = pi->adapter;
struct sge_rxq *rxq;
int idx, rc, i;
idx = pi->tmr_idx;
rc = sysctl_handle_int(oidp, &idx, 0, req);
if (rc != 0 || req->newptr == NULL)
return (rc);
if (idx < 0 || idx >= SGE_NTIMERS)
return (EINVAL);
ADAPTER_LOCK(sc);
rc = IS_DOOMED(pi) ? ENXIO : (IS_BUSY(sc) ? EBUSY : 0);
if (rc == 0) {
for_each_rxq(pi, i, rxq) {
rxq->iq.intr_params = V_QINTR_TIMER_IDX(idx) |
V_QINTR_CNT_EN(pi->pktc_idx != -1);
}
pi->tmr_idx = idx;
}
ADAPTER_UNLOCK(sc);
return (rc);
}
static int
sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
{
struct port_info *pi = arg1;
struct adapter *sc = pi->adapter;
int idx, rc;
idx = pi->pktc_idx;
rc = sysctl_handle_int(oidp, &idx, 0, req);
if (rc != 0 || req->newptr == NULL)
return (rc);
if (idx < -1 || idx >= SGE_NCOUNTERS)
return (EINVAL);
ADAPTER_LOCK(sc);
rc = IS_DOOMED(pi) ? ENXIO : (IS_BUSY(sc) ? EBUSY : 0);
if (rc == 0 && pi->ifp->if_drv_flags & IFF_DRV_RUNNING)
rc = EBUSY; /* can be changed only when port is down */
if (rc == 0)
pi->pktc_idx = idx;
ADAPTER_UNLOCK(sc);
return (rc);
}
static int
sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
{
struct port_info *pi = arg1;
struct adapter *sc = pi->adapter;
int qsize, rc;
qsize = pi->qsize_rxq;
rc = sysctl_handle_int(oidp, &qsize, 0, req);
if (rc != 0 || req->newptr == NULL)
return (rc);
if (qsize < 128 || (qsize & 7))
return (EINVAL);
ADAPTER_LOCK(sc);
rc = IS_DOOMED(pi) ? ENXIO : (IS_BUSY(sc) ? EBUSY : 0);
if (rc == 0 && pi->ifp->if_drv_flags & IFF_DRV_RUNNING)
rc = EBUSY; /* can be changed only when port is down */
if (rc == 0)
pi->qsize_rxq = qsize;
ADAPTER_UNLOCK(sc);
return (rc);
}
static int
sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
{
struct port_info *pi = arg1;
struct adapter *sc = pi->adapter;
int qsize, rc;
qsize = pi->qsize_txq;
rc = sysctl_handle_int(oidp, &qsize, 0, req);
if (rc != 0 || req->newptr == NULL)
return (rc);
if (qsize < 128)
return (EINVAL);
ADAPTER_LOCK(sc);
rc = IS_DOOMED(pi) ? ENXIO : (IS_BUSY(sc) ? EBUSY : 0);
if (rc == 0 && pi->ifp->if_drv_flags & IFF_DRV_RUNNING)
rc = EBUSY; /* can be changed only when port is down */
if (rc == 0)
pi->qsize_txq = qsize;
ADAPTER_UNLOCK(sc);
return (rc);
}
static int
sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
int reg = arg2;
uint64_t val;
val = t4_read_reg64(sc, reg);
return (sysctl_handle_64(oidp, &val, 0, req));
}
static inline void
txq_start(struct ifnet *ifp, struct sge_txq *txq)
{
struct buf_ring *br;
struct mbuf *m;
TXQ_LOCK_ASSERT_OWNED(txq);
br = txq->eq.br;
m = txq->m ? txq->m : drbr_dequeue(ifp, br);
if (m)
t4_eth_tx(ifp, txq, m);
}
void
cxgbe_txq_start(void *arg, int count)
{
struct sge_txq *txq = arg;
TXQ_LOCK(txq);
txq_start(txq->ifp, txq);
TXQ_UNLOCK(txq);
}
int
t4_os_find_pci_capability(struct adapter *sc, int cap)
{
device_t dev;
struct pci_devinfo *dinfo;
pcicfgregs *cfg;
uint32_t status;
uint8_t ptr;
dev = sc->dev;
dinfo = device_get_ivars(dev);
cfg = &dinfo->cfg;
status = pci_read_config(dev, PCIR_STATUS, 2);
if (!(status & PCIM_STATUS_CAPPRESENT))
return (0);
switch (cfg->hdrtype & PCIM_HDRTYPE) {
case 0:
case 1:
ptr = PCIR_CAP_PTR;
break;
case 2:
ptr = PCIR_CAP_PTR_2;
break;
default:
return (0);
break;
}
ptr = pci_read_config(dev, ptr, 1);
while (ptr != 0) {
if (pci_read_config(dev, ptr + PCICAP_ID, 1) == cap)
return (ptr);
ptr = pci_read_config(dev, ptr + PCICAP_NEXTPTR, 1);
}
return (0);
}
int
t4_os_pci_save_state(struct adapter *sc)
{
device_t dev;
struct pci_devinfo *dinfo;
dev = sc->dev;
dinfo = device_get_ivars(dev);
pci_cfg_save(dev, dinfo, 0);
return (0);
}
int
t4_os_pci_restore_state(struct adapter *sc)
{
device_t dev;
struct pci_devinfo *dinfo;
dev = sc->dev;
dinfo = device_get_ivars(dev);
pci_cfg_restore(dev, dinfo);
return (0);
}
void
t4_os_portmod_changed(const struct adapter *sc, int idx)
{
struct port_info *pi = sc->port[idx];
static const char *mod_str[] = {
NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX"
};
if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
if_printf(pi->ifp, "transceiver unplugged.\n");
else if (pi->mod_type > 0 && pi->mod_type < ARRAY_SIZE(mod_str)) {
if_printf(pi->ifp, "%s transceiver inserted.\n",
mod_str[pi->mod_type]);
} else {
if_printf(pi->ifp, "transceiver (type %d) inserted.\n",
pi->mod_type);
}
}
void
t4_os_link_changed(struct adapter *sc, int idx, int link_stat)
{
struct port_info *pi = sc->port[idx];
struct ifnet *ifp = pi->ifp;
if (link_stat) {
ifp->if_baudrate = IF_Mbps(pi->link_cfg.speed);
if_link_state_change(ifp, LINK_STATE_UP);
} else
if_link_state_change(ifp, LINK_STATE_DOWN);
}
static int
t4_open(struct cdev *dev, int flags, int type, struct thread *td)
{
return (0);
}
static int
t4_close(struct cdev *dev, int flags, int type, struct thread *td)
{
return (0);
}
static int
t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
struct thread *td)
{
int rc;
struct adapter *sc = dev->si_drv1;
rc = priv_check(td, PRIV_DRIVER);
if (rc != 0)
return (rc);
switch (cmd) {
case CHELSIO_T4_GETREG32: {
struct t4_reg32 *edata = (struct t4_reg32 *)data;
if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
return (EFAULT);
edata->val = t4_read_reg(sc, edata->addr);
break;
}
case CHELSIO_T4_SETREG32: {
struct t4_reg32 *edata = (struct t4_reg32 *)data;
if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
return (EFAULT);
t4_write_reg(sc, edata->addr, edata->val);
break;
}
case CHELSIO_T4_REGDUMP: {
struct t4_regdump *regs = (struct t4_regdump *)data;
int reglen = T4_REGDUMP_SIZE;
uint8_t *buf;
if (regs->len < reglen) {
regs->len = reglen; /* hint to the caller */
return (ENOBUFS);
}
regs->len = reglen;
buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
t4_get_regs(sc, regs, buf);
rc = copyout(buf, regs->data, reglen);
free(buf, M_CXGBE);
break;
}
default:
rc = EINVAL;
}
return (rc);
}
static int
t4_mod_event(module_t mod, int cmd, void *arg)
{
if (cmd == MOD_LOAD)
t4_sge_modload();
return (0);
}
static devclass_t t4_devclass;
static devclass_t cxgbe_devclass;
DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, t4_mod_event, 0);
MODULE_VERSION(t4nex, 1);
DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0);
MODULE_VERSION(cxgbe, 1);