2008-11-20 20:01:55 +00:00
|
|
|
/*
|
|
|
|
* CDDL HEADER START
|
|
|
|
*
|
|
|
|
* The contents of this file are subject to the terms of the
|
|
|
|
* Common Development and Distribution License (the "License").
|
|
|
|
* You may not use this file except in compliance with the License.
|
|
|
|
*
|
|
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
|
|
* See the License for the specific language governing permissions
|
|
|
|
* and limitations under the License.
|
|
|
|
*
|
|
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
|
|
*
|
|
|
|
* CDDL HEADER END
|
|
|
|
*/
|
2012-12-13 23:24:15 +00:00
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
/*
|
2010-05-28 20:45:14 +00:00
|
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
2014-06-25 18:37:59 +00:00
|
|
|
* Copyright (c) 2011, 2014 by Delphix. All rights reserved.
|
2008-11-20 20:01:55 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <stdio.h>
|
2013-03-24 21:24:51 +00:00
|
|
|
#include <unistd.h>
|
2008-11-20 20:01:55 +00:00
|
|
|
#include <stdio_ext.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <ctype.h>
|
|
|
|
#include <sys/zfs_context.h>
|
|
|
|
#include <sys/spa.h>
|
|
|
|
#include <sys/spa_impl.h>
|
|
|
|
#include <sys/dmu.h>
|
|
|
|
#include <sys/zap.h>
|
|
|
|
#include <sys/fs/zfs.h>
|
|
|
|
#include <sys/zfs_znode.h>
|
2010-05-28 20:45:14 +00:00
|
|
|
#include <sys/zfs_sa.h>
|
|
|
|
#include <sys/sa.h>
|
|
|
|
#include <sys/sa_impl.h>
|
2008-11-20 20:01:55 +00:00
|
|
|
#include <sys/vdev.h>
|
|
|
|
#include <sys/vdev_impl.h>
|
|
|
|
#include <sys/metaslab_impl.h>
|
|
|
|
#include <sys/dmu_objset.h>
|
|
|
|
#include <sys/dsl_dir.h>
|
|
|
|
#include <sys/dsl_dataset.h>
|
|
|
|
#include <sys/dsl_pool.h>
|
|
|
|
#include <sys/dbuf.h>
|
|
|
|
#include <sys/zil.h>
|
|
|
|
#include <sys/zil_impl.h>
|
|
|
|
#include <sys/stat.h>
|
|
|
|
#include <sys/resource.h>
|
|
|
|
#include <sys/dmu_traverse.h>
|
|
|
|
#include <sys/zio_checksum.h>
|
|
|
|
#include <sys/zio_compress.h>
|
|
|
|
#include <sys/zfs_fuid.h>
|
2008-12-03 20:09:06 +00:00
|
|
|
#include <sys/arc.h>
|
2010-05-28 20:45:14 +00:00
|
|
|
#include <sys/ddt.h>
|
2012-12-13 23:24:15 +00:00
|
|
|
#include <sys/zfeature.h>
|
2013-08-28 11:45:09 +00:00
|
|
|
#include <zfs_comutil.h>
|
2008-11-20 20:01:55 +00:00
|
|
|
#undef ZFS_MAXNAMELEN
|
|
|
|
#include <libzfs.h>
|
|
|
|
|
2013-01-12 00:42:50 +00:00
|
|
|
#define ZDB_COMPRESS_NAME(idx) ((idx) < ZIO_COMPRESS_FUNCTIONS ? \
|
|
|
|
zio_compress_table[(idx)].ci_name : "UNKNOWN")
|
|
|
|
#define ZDB_CHECKSUM_NAME(idx) ((idx) < ZIO_CHECKSUM_FUNCTIONS ? \
|
|
|
|
zio_checksum_table[(idx)].ci_name : "UNKNOWN")
|
|
|
|
#define ZDB_OT_NAME(idx) ((idx) < DMU_OT_NUMTYPES ? \
|
|
|
|
dmu_ot[(idx)].ot_name : DMU_OT_IS_VALID(idx) ? \
|
|
|
|
dmu_ot_byteswap[DMU_OT_BYTESWAP(idx)].ob_name : "UNKNOWN")
|
|
|
|
#define ZDB_OT_TYPE(idx) ((idx) < DMU_OT_NUMTYPES ? (idx) : \
|
|
|
|
(((idx) == DMU_OTN_ZAP_DATA || (idx) == DMU_OTN_ZAP_METADATA) ? \
|
|
|
|
DMU_OT_ZAP_OTHER : DMU_OT_NUMTYPES))
|
2010-05-28 20:45:14 +00:00
|
|
|
|
|
|
|
#ifndef lint
|
|
|
|
extern int zfs_recover;
|
2014-09-16 20:24:48 +00:00
|
|
|
extern uint64_t zfs_arc_max, zfs_arc_meta_limit;
|
2010-05-28 20:45:14 +00:00
|
|
|
#else
|
|
|
|
int zfs_recover;
|
2014-09-16 20:24:48 +00:00
|
|
|
uint64_t zfs_arc_max, zfs_arc_meta_limit;
|
2010-05-28 20:45:14 +00:00
|
|
|
#endif
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
const char cmdname[] = "zdb";
|
|
|
|
uint8_t dump_opt[256];
|
|
|
|
|
|
|
|
typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size);
|
|
|
|
|
|
|
|
extern void dump_intent_log(zilog_t *);
|
|
|
|
uint64_t *zopt_object = NULL;
|
|
|
|
int zopt_objects = 0;
|
|
|
|
libzfs_handle_t *g_zfs;
|
2014-09-16 20:24:48 +00:00
|
|
|
uint64_t max_inflight = 1000;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2015-04-26 22:27:36 +00:00
|
|
|
static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *);
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
/*
|
|
|
|
* These libumem hooks provide a reasonable set of defaults for the allocator's
|
|
|
|
* debugging facilities.
|
|
|
|
*/
|
|
|
|
const char *
|
2010-08-26 16:52:41 +00:00
|
|
|
_umem_debug_init(void)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
|
|
|
return ("default,verbose"); /* $UMEM_DEBUG setting */
|
|
|
|
}
|
|
|
|
|
|
|
|
const char *
|
|
|
|
_umem_logging_init(void)
|
|
|
|
{
|
|
|
|
return ("fail,contents"); /* $UMEM_LOGGING setting */
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
usage(void)
|
|
|
|
{
|
|
|
|
(void) fprintf(stderr,
|
2014-07-19 20:19:24 +00:00
|
|
|
"Usage: %s [-CumMdibcsDvhLXFPA] [-t txg] [-e [-p path...]] "
|
|
|
|
"[-U config] [-I inflight I/Os] poolname [object...]\n"
|
2013-05-02 23:36:32 +00:00
|
|
|
" %s [-divPA] [-e -p path...] [-U config] dataset "
|
|
|
|
"[object...]\n"
|
2014-07-19 20:19:24 +00:00
|
|
|
" %s -mM [-LXFPA] [-t txg] [-e [-p path...]] [-U config] "
|
2012-02-04 05:44:53 +00:00
|
|
|
"poolname [vdev [metaslab...]]\n"
|
|
|
|
" %s -R [-A] [-e [-p path...]] poolname "
|
|
|
|
"vdev:offset:size[:flags]\n"
|
2013-05-02 23:36:32 +00:00
|
|
|
" %s -S [-PA] [-e [-p path...]] [-U config] poolname\n"
|
2012-02-04 05:44:53 +00:00
|
|
|
" %s -l [-uA] device\n"
|
|
|
|
" %s -C [-A] [-U config]\n\n",
|
2010-05-28 20:45:14 +00:00
|
|
|
cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname);
|
|
|
|
|
|
|
|
(void) fprintf(stderr, " Dataset name must include at least one "
|
|
|
|
"separator character '/' or '@'\n");
|
|
|
|
(void) fprintf(stderr, " If dataset name is specified, only that "
|
|
|
|
"dataset is dumped\n");
|
|
|
|
(void) fprintf(stderr, " If object numbers are specified, only "
|
|
|
|
"those objects are dumped\n\n");
|
|
|
|
(void) fprintf(stderr, " Options to control amount of output:\n");
|
|
|
|
(void) fprintf(stderr, " -u uberblock\n");
|
|
|
|
(void) fprintf(stderr, " -d dataset(s)\n");
|
|
|
|
(void) fprintf(stderr, " -i intent logs\n");
|
|
|
|
(void) fprintf(stderr, " -C config (or cachefile if alone)\n");
|
|
|
|
(void) fprintf(stderr, " -h pool history\n");
|
|
|
|
(void) fprintf(stderr, " -b block statistics\n");
|
|
|
|
(void) fprintf(stderr, " -m metaslabs\n");
|
2014-07-19 20:19:24 +00:00
|
|
|
(void) fprintf(stderr, " -M metaslab groups\n");
|
2010-05-28 20:45:14 +00:00
|
|
|
(void) fprintf(stderr, " -c checksum all metadata (twice for "
|
2009-07-02 22:44:48 +00:00
|
|
|
"all data) blocks\n");
|
2010-05-28 20:45:14 +00:00
|
|
|
(void) fprintf(stderr, " -s report stats on zdb's I/O\n");
|
|
|
|
(void) fprintf(stderr, " -D dedup statistics\n");
|
|
|
|
(void) fprintf(stderr, " -S simulate dedup to measure effect\n");
|
|
|
|
(void) fprintf(stderr, " -v verbose (applies to all others)\n");
|
2008-11-20 20:01:55 +00:00
|
|
|
(void) fprintf(stderr, " -l dump label contents\n");
|
2009-01-15 21:59:39 +00:00
|
|
|
(void) fprintf(stderr, " -L disable leak tracking (do not "
|
|
|
|
"load spacemaps)\n");
|
2008-11-20 20:01:55 +00:00
|
|
|
(void) fprintf(stderr, " -R read and display block from a "
|
2010-05-28 20:45:14 +00:00
|
|
|
"device\n\n");
|
|
|
|
(void) fprintf(stderr, " Below options are intended for use "
|
|
|
|
"with other options (except -l):\n");
|
|
|
|
(void) fprintf(stderr, " -A ignore assertions (-A), enable "
|
|
|
|
"panic recovery (-AA) or both (-AAA)\n");
|
|
|
|
(void) fprintf(stderr, " -F attempt automatic rewind within "
|
|
|
|
"safe range of transaction groups\n");
|
|
|
|
(void) fprintf(stderr, " -U <cachefile_path> -- use alternate "
|
|
|
|
"cachefile\n");
|
|
|
|
(void) fprintf(stderr, " -X attempt extreme rewind (does not "
|
|
|
|
"work with dataset)\n");
|
|
|
|
(void) fprintf(stderr, " -e pool is exported/destroyed/"
|
|
|
|
"has altroot/not in a cachefile\n");
|
|
|
|
(void) fprintf(stderr, " -p <path> -- use one or more with "
|
|
|
|
"-e to specify path to vdev dir\n");
|
2012-02-04 05:44:53 +00:00
|
|
|
(void) fprintf(stderr, " -P print numbers in parseable form\n");
|
2010-05-28 20:45:14 +00:00
|
|
|
(void) fprintf(stderr, " -t <txg> -- highest txg to use when "
|
2009-01-15 21:59:39 +00:00
|
|
|
"searching for uberblocks\n");
|
2014-07-19 20:19:24 +00:00
|
|
|
(void) fprintf(stderr, " -I <number of inflight I/Os> -- "
|
2013-11-01 19:26:11 +00:00
|
|
|
"specify the maximum number of checksumming I/Os "
|
|
|
|
"[default is 200]\n");
|
2008-11-20 20:01:55 +00:00
|
|
|
(void) fprintf(stderr, "Specify an option more than once (e.g. -bb) "
|
|
|
|
"to make only that option verbose\n");
|
|
|
|
(void) fprintf(stderr, "Default is to dump everything non-verbosely\n");
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
|
2009-07-02 22:44:48 +00:00
|
|
|
/*
|
|
|
|
* Called for usage errors that are discovered after a call to spa_open(),
|
|
|
|
* dmu_bonus_hold(), or pool_match(). abort() is called for other errors.
|
|
|
|
*/
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
static void
|
|
|
|
fatal(const char *fmt, ...)
|
|
|
|
{
|
|
|
|
va_list ap;
|
|
|
|
|
|
|
|
va_start(ap, fmt);
|
|
|
|
(void) fprintf(stderr, "%s: ", cmdname);
|
|
|
|
(void) vfprintf(stderr, fmt, ap);
|
|
|
|
va_end(ap);
|
|
|
|
(void) fprintf(stderr, "\n");
|
|
|
|
|
2009-07-02 22:44:48 +00:00
|
|
|
exit(1);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* ARGSUSED */
|
|
|
|
static void
|
|
|
|
dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size)
|
|
|
|
{
|
|
|
|
nvlist_t *nv;
|
|
|
|
size_t nvsize = *(uint64_t *)data;
|
|
|
|
char *packed = umem_alloc(nvsize, UMEM_NOFAIL);
|
|
|
|
|
2009-07-02 22:44:48 +00:00
|
|
|
VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH));
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0);
|
|
|
|
|
|
|
|
umem_free(packed, nvsize);
|
|
|
|
|
|
|
|
dump_nvlist(nv, 8);
|
|
|
|
|
|
|
|
nvlist_free(nv);
|
|
|
|
}
|
|
|
|
|
2013-08-28 11:45:09 +00:00
|
|
|
/* ARGSUSED */
|
|
|
|
static void
|
|
|
|
dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size)
|
|
|
|
{
|
|
|
|
spa_history_phys_t *shp = data;
|
|
|
|
|
|
|
|
if (shp == NULL)
|
|
|
|
return;
|
|
|
|
|
|
|
|
(void) printf("\t\tpool_create_len = %llu\n",
|
|
|
|
(u_longlong_t)shp->sh_pool_create_len);
|
|
|
|
(void) printf("\t\tphys_max_off = %llu\n",
|
|
|
|
(u_longlong_t)shp->sh_phys_max_off);
|
|
|
|
(void) printf("\t\tbof = %llu\n",
|
|
|
|
(u_longlong_t)shp->sh_bof);
|
|
|
|
(void) printf("\t\teof = %llu\n",
|
|
|
|
(u_longlong_t)shp->sh_eof);
|
|
|
|
(void) printf("\t\trecords_lost = %llu\n",
|
|
|
|
(u_longlong_t)shp->sh_records_lost);
|
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
static void
|
|
|
|
zdb_nicenum(uint64_t num, char *buf)
|
|
|
|
{
|
|
|
|
if (dump_opt['P'])
|
|
|
|
(void) sprintf(buf, "%llu", (longlong_t)num);
|
|
|
|
else
|
|
|
|
nicenum(num, buf);
|
|
|
|
}
|
|
|
|
|
2013-03-24 21:24:51 +00:00
|
|
|
const char histo_stars[] = "****************************************";
|
|
|
|
const int histo_width = sizeof (histo_stars) - 1;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
static void
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
dump_histogram(const uint64_t *histo, int size, int offset)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
|
|
|
int i;
|
2013-03-24 21:24:51 +00:00
|
|
|
int minidx = size - 1;
|
2008-11-20 20:01:55 +00:00
|
|
|
int maxidx = 0;
|
|
|
|
uint64_t max = 0;
|
|
|
|
|
2013-03-24 21:24:51 +00:00
|
|
|
for (i = 0; i < size; i++) {
|
2008-11-20 20:01:55 +00:00
|
|
|
if (histo[i] > max)
|
|
|
|
max = histo[i];
|
|
|
|
if (histo[i] > 0 && i > maxidx)
|
|
|
|
maxidx = i;
|
|
|
|
if (histo[i] > 0 && i < minidx)
|
|
|
|
minidx = i;
|
|
|
|
}
|
|
|
|
|
2013-03-24 21:24:51 +00:00
|
|
|
if (max < histo_width)
|
|
|
|
max = histo_width;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-03-24 21:24:51 +00:00
|
|
|
for (i = minidx; i <= maxidx; i++) {
|
|
|
|
(void) printf("\t\t\t%3u: %6llu %s\n",
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
i + offset, (u_longlong_t)histo[i],
|
2013-03-24 21:24:51 +00:00
|
|
|
&histo_stars[(max - histo[i]) * histo_width / max]);
|
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
dump_zap_stats(objset_t *os, uint64_t object)
|
|
|
|
{
|
|
|
|
int error;
|
|
|
|
zap_stats_t zs;
|
|
|
|
|
|
|
|
error = zap_get_stats(os, object, &zs);
|
|
|
|
if (error)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (zs.zs_ptrtbl_len == 0) {
|
|
|
|
ASSERT(zs.zs_num_blocks == 1);
|
|
|
|
(void) printf("\tmicrozap: %llu bytes, %llu entries\n",
|
|
|
|
(u_longlong_t)zs.zs_blocksize,
|
|
|
|
(u_longlong_t)zs.zs_num_entries);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
(void) printf("\tFat ZAP stats:\n");
|
|
|
|
|
|
|
|
(void) printf("\t\tPointer table:\n");
|
|
|
|
(void) printf("\t\t\t%llu elements\n",
|
|
|
|
(u_longlong_t)zs.zs_ptrtbl_len);
|
|
|
|
(void) printf("\t\t\tzt_blk: %llu\n",
|
|
|
|
(u_longlong_t)zs.zs_ptrtbl_zt_blk);
|
|
|
|
(void) printf("\t\t\tzt_numblks: %llu\n",
|
|
|
|
(u_longlong_t)zs.zs_ptrtbl_zt_numblks);
|
|
|
|
(void) printf("\t\t\tzt_shift: %llu\n",
|
|
|
|
(u_longlong_t)zs.zs_ptrtbl_zt_shift);
|
|
|
|
(void) printf("\t\t\tzt_blks_copied: %llu\n",
|
|
|
|
(u_longlong_t)zs.zs_ptrtbl_blks_copied);
|
|
|
|
(void) printf("\t\t\tzt_nextblk: %llu\n",
|
|
|
|
(u_longlong_t)zs.zs_ptrtbl_nextblk);
|
|
|
|
|
|
|
|
(void) printf("\t\tZAP entries: %llu\n",
|
|
|
|
(u_longlong_t)zs.zs_num_entries);
|
|
|
|
(void) printf("\t\tLeaf blocks: %llu\n",
|
|
|
|
(u_longlong_t)zs.zs_num_leafs);
|
|
|
|
(void) printf("\t\tTotal blocks: %llu\n",
|
|
|
|
(u_longlong_t)zs.zs_num_blocks);
|
|
|
|
(void) printf("\t\tzap_block_type: 0x%llx\n",
|
|
|
|
(u_longlong_t)zs.zs_block_type);
|
|
|
|
(void) printf("\t\tzap_magic: 0x%llx\n",
|
|
|
|
(u_longlong_t)zs.zs_magic);
|
|
|
|
(void) printf("\t\tzap_salt: 0x%llx\n",
|
|
|
|
(u_longlong_t)zs.zs_salt);
|
|
|
|
|
|
|
|
(void) printf("\t\tLeafs with 2^n pointers:\n");
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
(void) printf("\t\tBlocks with n*5 entries:\n");
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
(void) printf("\t\tBlocks n/10 full:\n");
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
(void) printf("\t\tEntries with n chunks:\n");
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
(void) printf("\t\tBuckets with n entries:\n");
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*ARGSUSED*/
|
|
|
|
static void
|
|
|
|
dump_none(objset_t *os, uint64_t object, void *data, size_t size)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
/*ARGSUSED*/
|
|
|
|
static void
|
|
|
|
dump_unknown(objset_t *os, uint64_t object, void *data, size_t size)
|
|
|
|
{
|
|
|
|
(void) printf("\tUNKNOWN OBJECT TYPE\n");
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
/*ARGSUSED*/
|
|
|
|
void
|
|
|
|
dump_uint8(objset_t *os, uint64_t object, void *data, size_t size)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
/*ARGSUSED*/
|
|
|
|
static void
|
|
|
|
dump_uint64(objset_t *os, uint64_t object, void *data, size_t size)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
/*ARGSUSED*/
|
|
|
|
static void
|
|
|
|
dump_zap(objset_t *os, uint64_t object, void *data, size_t size)
|
|
|
|
{
|
|
|
|
zap_cursor_t zc;
|
|
|
|
zap_attribute_t attr;
|
|
|
|
void *prop;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
dump_zap_stats(os, object);
|
|
|
|
(void) printf("\n");
|
|
|
|
|
|
|
|
for (zap_cursor_init(&zc, os, object);
|
|
|
|
zap_cursor_retrieve(&zc, &attr) == 0;
|
|
|
|
zap_cursor_advance(&zc)) {
|
|
|
|
(void) printf("\t\t%s = ", attr.za_name);
|
|
|
|
if (attr.za_num_integers == 0) {
|
|
|
|
(void) printf("\n");
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
prop = umem_zalloc(attr.za_num_integers *
|
|
|
|
attr.za_integer_length, UMEM_NOFAIL);
|
|
|
|
(void) zap_lookup(os, object, attr.za_name,
|
|
|
|
attr.za_integer_length, attr.za_num_integers, prop);
|
|
|
|
if (attr.za_integer_length == 1) {
|
|
|
|
(void) printf("%s", (char *)prop);
|
|
|
|
} else {
|
|
|
|
for (i = 0; i < attr.za_num_integers; i++) {
|
|
|
|
switch (attr.za_integer_length) {
|
|
|
|
case 2:
|
|
|
|
(void) printf("%u ",
|
|
|
|
((uint16_t *)prop)[i]);
|
|
|
|
break;
|
|
|
|
case 4:
|
|
|
|
(void) printf("%u ",
|
|
|
|
((uint32_t *)prop)[i]);
|
|
|
|
break;
|
|
|
|
case 8:
|
|
|
|
(void) printf("%lld ",
|
|
|
|
(u_longlong_t)((int64_t *)prop)[i]);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
(void) printf("\n");
|
|
|
|
umem_free(prop, attr.za_num_integers * attr.za_integer_length);
|
|
|
|
}
|
|
|
|
zap_cursor_fini(&zc);
|
|
|
|
}
|
|
|
|
|
2015-04-26 22:27:36 +00:00
|
|
|
static void
|
|
|
|
dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size)
|
|
|
|
{
|
|
|
|
bpobj_phys_t *bpop = data;
|
|
|
|
uint64_t i;
|
|
|
|
char bytes[32], comp[32], uncomp[32];
|
|
|
|
|
|
|
|
if (bpop == NULL)
|
|
|
|
return;
|
|
|
|
|
|
|
|
zdb_nicenum(bpop->bpo_bytes, bytes);
|
|
|
|
zdb_nicenum(bpop->bpo_comp, comp);
|
|
|
|
zdb_nicenum(bpop->bpo_uncomp, uncomp);
|
|
|
|
|
|
|
|
(void) printf("\t\tnum_blkptrs = %llu\n",
|
|
|
|
(u_longlong_t)bpop->bpo_num_blkptrs);
|
|
|
|
(void) printf("\t\tbytes = %s\n", bytes);
|
|
|
|
if (size >= BPOBJ_SIZE_V1) {
|
|
|
|
(void) printf("\t\tcomp = %s\n", comp);
|
|
|
|
(void) printf("\t\tuncomp = %s\n", uncomp);
|
|
|
|
}
|
|
|
|
if (size >= sizeof (*bpop)) {
|
|
|
|
(void) printf("\t\tsubobjs = %llu\n",
|
|
|
|
(u_longlong_t)bpop->bpo_subobjs);
|
|
|
|
(void) printf("\t\tnum_subobjs = %llu\n",
|
|
|
|
(u_longlong_t)bpop->bpo_num_subobjs);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (dump_opt['d'] < 5)
|
|
|
|
return;
|
|
|
|
|
|
|
|
for (i = 0; i < bpop->bpo_num_blkptrs; i++) {
|
|
|
|
char blkbuf[BP_SPRINTF_LEN];
|
|
|
|
blkptr_t bp;
|
|
|
|
|
|
|
|
int err = dmu_read(os, object,
|
|
|
|
i * sizeof (bp), sizeof (bp), &bp, 0);
|
|
|
|
if (err != 0) {
|
|
|
|
(void) printf("got error %u from dmu_read\n", err);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp);
|
|
|
|
(void) printf("\t%s\n", blkbuf);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* ARGSUSED */
|
|
|
|
static void
|
|
|
|
dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size)
|
|
|
|
{
|
|
|
|
dmu_object_info_t doi;
|
|
|
|
uint64_t i;
|
|
|
|
|
|
|
|
VERIFY0(dmu_object_info(os, object, &doi));
|
|
|
|
uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP);
|
|
|
|
|
|
|
|
int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0);
|
|
|
|
if (err != 0) {
|
|
|
|
(void) printf("got error %u from dmu_read\n", err);
|
|
|
|
kmem_free(subobjs, doi.doi_max_offset);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
int64_t last_nonzero = -1;
|
|
|
|
for (i = 0; i < doi.doi_max_offset / 8; i++) {
|
|
|
|
if (subobjs[i] != 0)
|
|
|
|
last_nonzero = i;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i <= last_nonzero; i++) {
|
|
|
|
(void) printf("\t%llu\n", (longlong_t)subobjs[i]);
|
|
|
|
}
|
|
|
|
kmem_free(subobjs, doi.doi_max_offset);
|
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
/*ARGSUSED*/
|
|
|
|
static void
|
|
|
|
dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size)
|
|
|
|
{
|
|
|
|
dump_zap_stats(os, object);
|
|
|
|
/* contents are printed elsewhere, properly decoded */
|
|
|
|
}
|
|
|
|
|
|
|
|
/*ARGSUSED*/
|
|
|
|
static void
|
|
|
|
dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size)
|
|
|
|
{
|
|
|
|
zap_cursor_t zc;
|
|
|
|
zap_attribute_t attr;
|
|
|
|
|
|
|
|
dump_zap_stats(os, object);
|
|
|
|
(void) printf("\n");
|
|
|
|
|
|
|
|
for (zap_cursor_init(&zc, os, object);
|
|
|
|
zap_cursor_retrieve(&zc, &attr) == 0;
|
|
|
|
zap_cursor_advance(&zc)) {
|
|
|
|
(void) printf("\t\t%s = ", attr.za_name);
|
|
|
|
if (attr.za_num_integers == 0) {
|
|
|
|
(void) printf("\n");
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
(void) printf(" %llx : [%d:%d:%d]\n",
|
|
|
|
(u_longlong_t)attr.za_first_integer,
|
|
|
|
(int)ATTR_LENGTH(attr.za_first_integer),
|
|
|
|
(int)ATTR_BSWAP(attr.za_first_integer),
|
|
|
|
(int)ATTR_NUM(attr.za_first_integer));
|
|
|
|
}
|
|
|
|
zap_cursor_fini(&zc);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*ARGSUSED*/
|
|
|
|
static void
|
|
|
|
dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size)
|
|
|
|
{
|
|
|
|
zap_cursor_t zc;
|
|
|
|
zap_attribute_t attr;
|
|
|
|
uint16_t *layout_attrs;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
dump_zap_stats(os, object);
|
|
|
|
(void) printf("\n");
|
|
|
|
|
|
|
|
for (zap_cursor_init(&zc, os, object);
|
|
|
|
zap_cursor_retrieve(&zc, &attr) == 0;
|
|
|
|
zap_cursor_advance(&zc)) {
|
|
|
|
(void) printf("\t\t%s = [", attr.za_name);
|
|
|
|
if (attr.za_num_integers == 0) {
|
|
|
|
(void) printf("\n");
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
VERIFY(attr.za_integer_length == 2);
|
|
|
|
layout_attrs = umem_zalloc(attr.za_num_integers *
|
|
|
|
attr.za_integer_length, UMEM_NOFAIL);
|
|
|
|
|
|
|
|
VERIFY(zap_lookup(os, object, attr.za_name,
|
|
|
|
attr.za_integer_length,
|
|
|
|
attr.za_num_integers, layout_attrs) == 0);
|
|
|
|
|
|
|
|
for (i = 0; i != attr.za_num_integers; i++)
|
|
|
|
(void) printf(" %d ", (int)layout_attrs[i]);
|
|
|
|
(void) printf("]\n");
|
|
|
|
umem_free(layout_attrs,
|
|
|
|
attr.za_num_integers * attr.za_integer_length);
|
|
|
|
}
|
|
|
|
zap_cursor_fini(&zc);
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
/*ARGSUSED*/
|
|
|
|
static void
|
|
|
|
dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size)
|
|
|
|
{
|
|
|
|
zap_cursor_t zc;
|
|
|
|
zap_attribute_t attr;
|
|
|
|
const char *typenames[] = {
|
|
|
|
/* 0 */ "not specified",
|
|
|
|
/* 1 */ "FIFO",
|
|
|
|
/* 2 */ "Character Device",
|
|
|
|
/* 3 */ "3 (invalid)",
|
|
|
|
/* 4 */ "Directory",
|
|
|
|
/* 5 */ "5 (invalid)",
|
|
|
|
/* 6 */ "Block Device",
|
|
|
|
/* 7 */ "7 (invalid)",
|
|
|
|
/* 8 */ "Regular File",
|
|
|
|
/* 9 */ "9 (invalid)",
|
|
|
|
/* 10 */ "Symbolic Link",
|
|
|
|
/* 11 */ "11 (invalid)",
|
|
|
|
/* 12 */ "Socket",
|
|
|
|
/* 13 */ "Door",
|
|
|
|
/* 14 */ "Event Port",
|
|
|
|
/* 15 */ "15 (invalid)",
|
|
|
|
};
|
|
|
|
|
|
|
|
dump_zap_stats(os, object);
|
|
|
|
(void) printf("\n");
|
|
|
|
|
|
|
|
for (zap_cursor_init(&zc, os, object);
|
|
|
|
zap_cursor_retrieve(&zc, &attr) == 0;
|
|
|
|
zap_cursor_advance(&zc)) {
|
|
|
|
(void) printf("\t\t%s = %lld (type: %s)\n",
|
|
|
|
attr.za_name, ZFS_DIRENT_OBJ(attr.za_first_integer),
|
|
|
|
typenames[ZFS_DIRENT_TYPE(attr.za_first_integer)]);
|
|
|
|
}
|
|
|
|
zap_cursor_fini(&zc);
|
|
|
|
}
|
|
|
|
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
int
|
|
|
|
get_dtl_refcount(vdev_t *vd)
|
|
|
|
{
|
|
|
|
int refcount = 0;
|
|
|
|
int c;
|
|
|
|
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf) {
|
|
|
|
space_map_t *sm = vd->vdev_dtl_sm;
|
|
|
|
|
|
|
|
if (sm != NULL &&
|
|
|
|
sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
|
|
|
|
return (1);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
|
|
refcount += get_dtl_refcount(vd->vdev_child[c]);
|
|
|
|
return (refcount);
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
get_metaslab_refcount(vdev_t *vd)
|
|
|
|
{
|
|
|
|
int refcount = 0;
|
|
|
|
int c, m;
|
|
|
|
|
2014-07-19 20:19:24 +00:00
|
|
|
if (vd->vdev_top == vd && !vd->vdev_removing) {
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
for (m = 0; m < vd->vdev_ms_count; m++) {
|
|
|
|
space_map_t *sm = vd->vdev_ms[m]->ms_sm;
|
|
|
|
|
|
|
|
if (sm != NULL &&
|
|
|
|
sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
|
|
|
|
refcount++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
|
|
refcount += get_metaslab_refcount(vd->vdev_child[c]);
|
|
|
|
|
|
|
|
return (refcount);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
verify_spacemap_refcounts(spa_t *spa)
|
|
|
|
{
|
2013-10-08 17:13:05 +00:00
|
|
|
uint64_t expected_refcount = 0;
|
|
|
|
uint64_t actual_refcount;
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
|
2013-10-08 17:13:05 +00:00
|
|
|
(void) feature_get_refcount(spa,
|
|
|
|
&spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM],
|
|
|
|
&expected_refcount);
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
actual_refcount = get_dtl_refcount(spa->spa_root_vdev);
|
|
|
|
actual_refcount += get_metaslab_refcount(spa->spa_root_vdev);
|
|
|
|
|
|
|
|
if (expected_refcount != actual_refcount) {
|
2013-10-08 17:13:05 +00:00
|
|
|
(void) printf("space map refcount mismatch: expected %lld != "
|
|
|
|
"actual %lld\n",
|
|
|
|
(longlong_t)expected_refcount,
|
|
|
|
(longlong_t)actual_refcount);
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
return (2);
|
|
|
|
}
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
static void
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
dump_spacemap(objset_t *os, space_map_t *sm)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
|
|
|
uint64_t alloc, offset, entry;
|
|
|
|
char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID",
|
|
|
|
"INVALID", "INVALID", "INVALID", "INVALID" };
|
|
|
|
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
if (sm == NULL)
|
2008-11-20 20:01:55 +00:00
|
|
|
return;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Print out the freelist entries in both encoded and decoded form.
|
|
|
|
*/
|
|
|
|
alloc = 0;
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
for (offset = 0; offset < space_map_length(sm);
|
|
|
|
offset += sizeof (entry)) {
|
|
|
|
uint8_t mapshift = sm->sm_shift;
|
|
|
|
|
|
|
|
VERIFY0(dmu_read(os, space_map_object(sm), offset,
|
2009-07-02 22:44:48 +00:00
|
|
|
sizeof (entry), &entry, DMU_READ_PREFETCH));
|
2008-11-20 20:01:55 +00:00
|
|
|
if (SM_DEBUG_DECODE(entry)) {
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
(void) printf("\t [%6llu] %s: txg %llu, pass %llu\n",
|
2008-11-20 20:01:55 +00:00
|
|
|
(u_longlong_t)(offset / sizeof (entry)),
|
|
|
|
ddata[SM_DEBUG_ACTION_DECODE(entry)],
|
|
|
|
(u_longlong_t)SM_DEBUG_TXG_DECODE(entry),
|
|
|
|
(u_longlong_t)SM_DEBUG_SYNCPASS_DECODE(entry));
|
|
|
|
} else {
|
2010-05-28 20:45:14 +00:00
|
|
|
(void) printf("\t [%6llu] %c range:"
|
|
|
|
" %010llx-%010llx size: %06llx\n",
|
2008-11-20 20:01:55 +00:00
|
|
|
(u_longlong_t)(offset / sizeof (entry)),
|
|
|
|
SM_TYPE_DECODE(entry) == SM_ALLOC ? 'A' : 'F',
|
|
|
|
(u_longlong_t)((SM_OFFSET_DECODE(entry) <<
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
mapshift) + sm->sm_start),
|
2008-11-20 20:01:55 +00:00
|
|
|
(u_longlong_t)((SM_OFFSET_DECODE(entry) <<
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
mapshift) + sm->sm_start +
|
|
|
|
(SM_RUN_DECODE(entry) << mapshift)),
|
2008-11-20 20:01:55 +00:00
|
|
|
(u_longlong_t)(SM_RUN_DECODE(entry) << mapshift));
|
|
|
|
if (SM_TYPE_DECODE(entry) == SM_ALLOC)
|
|
|
|
alloc += SM_RUN_DECODE(entry) << mapshift;
|
|
|
|
else
|
|
|
|
alloc -= SM_RUN_DECODE(entry) << mapshift;
|
|
|
|
}
|
|
|
|
}
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
if (alloc != space_map_allocated(sm)) {
|
2008-11-20 20:01:55 +00:00
|
|
|
(void) printf("space_map_object alloc (%llu) INCONSISTENT "
|
|
|
|
"with space map summary (%llu)\n",
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
(u_longlong_t)space_map_allocated(sm), (u_longlong_t)alloc);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2009-07-02 22:44:48 +00:00
|
|
|
static void
|
|
|
|
dump_metaslab_stats(metaslab_t *msp)
|
|
|
|
{
|
2010-05-28 20:45:14 +00:00
|
|
|
char maxbuf[32];
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
range_tree_t *rt = msp->ms_tree;
|
|
|
|
avl_tree_t *t = &msp->ms_size_tree;
|
|
|
|
int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
|
2009-07-02 22:44:48 +00:00
|
|
|
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
zdb_nicenum(metaslab_block_maxsize(msp), maxbuf);
|
2009-07-02 22:44:48 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
(void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n",
|
2009-07-02 22:44:48 +00:00
|
|
|
"segments", avl_numnodes(t), "maxsize", maxbuf,
|
|
|
|
"freepct", free_pct);
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
(void) printf("\tIn-memory histogram:\n");
|
|
|
|
dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
|
2009-07-02 22:44:48 +00:00
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
static void
|
|
|
|
dump_metaslab(metaslab_t *msp)
|
|
|
|
{
|
|
|
|
vdev_t *vd = msp->ms_group->mg_vd;
|
|
|
|
spa_t *spa = vd->vdev_spa;
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
space_map_t *sm = msp->ms_sm;
|
2010-05-28 20:45:14 +00:00
|
|
|
char freebuf[32];
|
2008-11-20 20:01:55 +00:00
|
|
|
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
(void) printf(
|
2010-05-28 20:45:14 +00:00
|
|
|
"\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n",
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
(u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start,
|
|
|
|
(u_longlong_t)space_map_object(sm), freebuf);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
if (dump_opt['m'] > 2 && !dump_opt['L']) {
|
2009-07-02 22:44:48 +00:00
|
|
|
mutex_enter(&msp->ms_lock);
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
metaslab_load_wait(msp);
|
|
|
|
if (!msp->ms_loaded) {
|
|
|
|
VERIFY0(metaslab_load(msp));
|
|
|
|
range_tree_stat_verify(msp->ms_tree);
|
|
|
|
}
|
2009-07-02 22:44:48 +00:00
|
|
|
dump_metaslab_stats(msp);
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
metaslab_unload(msp);
|
2009-07-02 22:44:48 +00:00
|
|
|
mutex_exit(&msp->ms_lock);
|
|
|
|
}
|
|
|
|
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
if (dump_opt['m'] > 1 && sm != NULL &&
|
2013-10-08 17:13:05 +00:00
|
|
|
spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
/*
|
|
|
|
* The space map histogram represents free space in chunks
|
|
|
|
* of sm_shift (i.e. bucket 0 refers to 2^sm_shift).
|
|
|
|
*/
|
2014-07-19 20:19:24 +00:00
|
|
|
(void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n",
|
|
|
|
(u_longlong_t)msp->ms_fragmentation);
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
dump_histogram(sm->sm_phys->smp_histogram,
|
2014-07-19 20:19:24 +00:00
|
|
|
SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift);
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (dump_opt['d'] > 5 || dump_opt['m'] > 3) {
|
|
|
|
ASSERT(msp->ms_size == (1ULL << vd->vdev_ms_shift));
|
2009-07-02 22:44:48 +00:00
|
|
|
|
|
|
|
mutex_enter(&msp->ms_lock);
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
dump_spacemap(spa->spa_meta_objset, msp->ms_sm);
|
2009-07-02 22:44:48 +00:00
|
|
|
mutex_exit(&msp->ms_lock);
|
|
|
|
}
|
2010-05-28 20:45:14 +00:00
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
static void
|
|
|
|
print_vdev_metaslab_header(vdev_t *vd)
|
|
|
|
{
|
|
|
|
(void) printf("\tvdev %10llu\n\t%-10s%5llu %-19s %-15s %-10s\n",
|
|
|
|
(u_longlong_t)vd->vdev_id,
|
|
|
|
"metaslabs", (u_longlong_t)vd->vdev_ms_count,
|
|
|
|
"offset", "spacemap", "free");
|
|
|
|
(void) printf("\t%15s %19s %15s %10s\n",
|
|
|
|
"---------------", "-------------------",
|
|
|
|
"---------------", "-------------");
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2014-07-19 20:19:24 +00:00
|
|
|
static void
|
|
|
|
dump_metaslab_groups(spa_t *spa)
|
|
|
|
{
|
|
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
|
|
metaslab_class_t *mc = spa_normal_class(spa);
|
|
|
|
uint64_t fragmentation;
|
|
|
|
int c;
|
|
|
|
|
|
|
|
metaslab_class_histogram_verify(mc);
|
|
|
|
|
|
|
|
for (c = 0; c < rvd->vdev_children; c++) {
|
|
|
|
vdev_t *tvd = rvd->vdev_child[c];
|
|
|
|
metaslab_group_t *mg = tvd->vdev_mg;
|
|
|
|
|
|
|
|
if (mg->mg_class != mc)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
metaslab_group_histogram_verify(mg);
|
|
|
|
mg->mg_fragmentation = metaslab_group_fragmentation(mg);
|
|
|
|
|
|
|
|
(void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t"
|
|
|
|
"fragmentation",
|
|
|
|
(u_longlong_t)tvd->vdev_id,
|
|
|
|
(u_longlong_t)tvd->vdev_ms_count);
|
|
|
|
if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
|
|
|
|
(void) printf("%3s\n", "-");
|
|
|
|
} else {
|
|
|
|
(void) printf("%3llu%%\n",
|
|
|
|
(u_longlong_t)mg->mg_fragmentation);
|
|
|
|
}
|
|
|
|
dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
(void) printf("\tpool %s\tfragmentation", spa_name(spa));
|
|
|
|
fragmentation = metaslab_class_fragmentation(mc);
|
|
|
|
if (fragmentation == ZFS_FRAG_INVALID)
|
|
|
|
(void) printf("\t%3s\n", "-");
|
|
|
|
else
|
|
|
|
(void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation);
|
|
|
|
dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
static void
|
|
|
|
dump_metaslabs(spa_t *spa)
|
|
|
|
{
|
2010-05-28 20:45:14 +00:00
|
|
|
vdev_t *vd, *rvd = spa->spa_root_vdev;
|
|
|
|
uint64_t m, c = 0, children = rvd->vdev_children;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
(void) printf("\nMetaslabs:\n");
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
if (!dump_opt['d'] && zopt_objects > 0) {
|
|
|
|
c = zopt_object[0];
|
|
|
|
|
|
|
|
if (c >= children)
|
|
|
|
(void) fatal("bad vdev id: %llu", (u_longlong_t)c);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
if (zopt_objects > 1) {
|
|
|
|
vd = rvd->vdev_child[c];
|
|
|
|
print_vdev_metaslab_header(vd);
|
|
|
|
|
|
|
|
for (m = 1; m < zopt_objects; m++) {
|
|
|
|
if (zopt_object[m] < vd->vdev_ms_count)
|
|
|
|
dump_metaslab(
|
|
|
|
vd->vdev_ms[zopt_object[m]]);
|
|
|
|
else
|
|
|
|
(void) fprintf(stderr, "bad metaslab "
|
|
|
|
"number %llu\n",
|
|
|
|
(u_longlong_t)zopt_object[m]);
|
|
|
|
}
|
|
|
|
(void) printf("\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
children = c + 1;
|
|
|
|
}
|
|
|
|
for (; c < children; c++) {
|
|
|
|
vd = rvd->vdev_child[c];
|
|
|
|
print_vdev_metaslab_header(vd);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
for (m = 0; m < vd->vdev_ms_count; m++)
|
|
|
|
dump_metaslab(vd->vdev_ms[m]);
|
|
|
|
(void) printf("\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
static void
|
|
|
|
dump_dde(const ddt_t *ddt, const ddt_entry_t *dde, uint64_t index)
|
|
|
|
{
|
|
|
|
const ddt_phys_t *ddp = dde->dde_phys;
|
|
|
|
const ddt_key_t *ddk = &dde->dde_key;
|
|
|
|
char *types[4] = { "ditto", "single", "double", "triple" };
|
|
|
|
char blkbuf[BP_SPRINTF_LEN];
|
|
|
|
blkptr_t blk;
|
2010-08-26 16:52:39 +00:00
|
|
|
int p;
|
2010-05-28 20:45:14 +00:00
|
|
|
|
2010-08-26 16:52:39 +00:00
|
|
|
for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
|
2010-05-28 20:45:14 +00:00
|
|
|
if (ddp->ddp_phys_birth == 0)
|
|
|
|
continue;
|
|
|
|
ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk);
|
2013-12-09 18:37:51 +00:00
|
|
|
snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk);
|
2010-05-28 20:45:14 +00:00
|
|
|
(void) printf("index %llx refcnt %llu %s %s\n",
|
|
|
|
(u_longlong_t)index, (u_longlong_t)ddp->ddp_refcnt,
|
|
|
|
types[p], blkbuf);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
dump_dedup_ratio(const ddt_stat_t *dds)
|
|
|
|
{
|
|
|
|
double rL, rP, rD, D, dedup, compress, copies;
|
|
|
|
|
|
|
|
if (dds->dds_blocks == 0)
|
|
|
|
return;
|
|
|
|
|
|
|
|
rL = (double)dds->dds_ref_lsize;
|
|
|
|
rP = (double)dds->dds_ref_psize;
|
|
|
|
rD = (double)dds->dds_ref_dsize;
|
|
|
|
D = (double)dds->dds_dsize;
|
|
|
|
|
|
|
|
dedup = rD / D;
|
|
|
|
compress = rL / rP;
|
|
|
|
copies = rD / rP;
|
|
|
|
|
|
|
|
(void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, "
|
|
|
|
"dedup * compress / copies = %.2f\n\n",
|
|
|
|
dedup, compress, copies, dedup * compress / copies);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
dump_ddt(ddt_t *ddt, enum ddt_type type, enum ddt_class class)
|
|
|
|
{
|
|
|
|
char name[DDT_NAMELEN];
|
|
|
|
ddt_entry_t dde;
|
|
|
|
uint64_t walk = 0;
|
|
|
|
dmu_object_info_t doi;
|
|
|
|
uint64_t count, dspace, mspace;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
error = ddt_object_info(ddt, type, class, &doi);
|
|
|
|
|
|
|
|
if (error == ENOENT)
|
|
|
|
return;
|
|
|
|
ASSERT(error == 0);
|
|
|
|
|
2012-10-26 17:01:49 +00:00
|
|
|
error = ddt_object_count(ddt, type, class, &count);
|
|
|
|
ASSERT(error == 0);
|
|
|
|
if (count == 0)
|
2010-08-26 21:24:34 +00:00
|
|
|
return;
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
dspace = doi.doi_physical_blocks_512 << 9;
|
|
|
|
mspace = doi.doi_fill_count * doi.doi_data_block_size;
|
|
|
|
|
|
|
|
ddt_object_name(ddt, type, class, name);
|
|
|
|
|
|
|
|
(void) printf("%s: %llu entries, size %llu on disk, %llu in core\n",
|
|
|
|
name,
|
|
|
|
(u_longlong_t)count,
|
|
|
|
(u_longlong_t)(dspace / count),
|
|
|
|
(u_longlong_t)(mspace / count));
|
|
|
|
|
|
|
|
if (dump_opt['D'] < 3)
|
|
|
|
return;
|
|
|
|
|
|
|
|
zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]);
|
|
|
|
|
|
|
|
if (dump_opt['D'] < 4)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE)
|
|
|
|
return;
|
|
|
|
|
|
|
|
(void) printf("%s contents:\n\n", name);
|
|
|
|
|
|
|
|
while ((error = ddt_object_walk(ddt, type, class, &walk, &dde)) == 0)
|
|
|
|
dump_dde(ddt, &dde, walk);
|
|
|
|
|
|
|
|
ASSERT(error == ENOENT);
|
|
|
|
|
|
|
|
(void) printf("\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
dump_all_ddts(spa_t *spa)
|
|
|
|
{
|
2010-08-26 16:52:39 +00:00
|
|
|
ddt_histogram_t ddh_total;
|
|
|
|
ddt_stat_t dds_total;
|
|
|
|
enum zio_checksum c;
|
|
|
|
enum ddt_type type;
|
|
|
|
enum ddt_class class;
|
2010-05-28 20:45:14 +00:00
|
|
|
|
2010-08-26 16:52:39 +00:00
|
|
|
bzero(&ddh_total, sizeof (ddt_histogram_t));
|
|
|
|
bzero(&dds_total, sizeof (ddt_stat_t));
|
|
|
|
|
|
|
|
for (c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
|
2010-05-28 20:45:14 +00:00
|
|
|
ddt_t *ddt = spa->spa_ddt[c];
|
2010-08-26 16:52:39 +00:00
|
|
|
for (type = 0; type < DDT_TYPES; type++) {
|
|
|
|
for (class = 0; class < DDT_CLASSES;
|
2010-05-28 20:45:14 +00:00
|
|
|
class++) {
|
|
|
|
dump_ddt(ddt, type, class);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ddt_get_dedup_stats(spa, &dds_total);
|
|
|
|
|
|
|
|
if (dds_total.dds_blocks == 0) {
|
|
|
|
(void) printf("All DDTs are empty\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
(void) printf("\n");
|
|
|
|
|
|
|
|
if (dump_opt['D'] > 1) {
|
|
|
|
(void) printf("DDT histogram (aggregated over all DDTs):\n");
|
|
|
|
ddt_get_dedup_histogram(spa, &ddh_total);
|
|
|
|
zpool_dump_ddt(&dds_total, &ddh_total);
|
|
|
|
}
|
|
|
|
|
|
|
|
dump_dedup_ratio(&dds_total);
|
|
|
|
}
|
|
|
|
|
2009-01-15 21:59:39 +00:00
|
|
|
static void
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
dump_dtl_seg(void *arg, uint64_t start, uint64_t size)
|
2009-01-15 21:59:39 +00:00
|
|
|
{
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
char *prefix = arg;
|
2009-01-15 21:59:39 +00:00
|
|
|
|
|
|
|
(void) printf("%s [%llu,%llu) length %llu\n",
|
|
|
|
prefix,
|
|
|
|
(u_longlong_t)start,
|
|
|
|
(u_longlong_t)(start + size),
|
|
|
|
(u_longlong_t)(size));
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
static void
|
|
|
|
dump_dtl(vdev_t *vd, int indent)
|
|
|
|
{
|
2009-01-15 21:59:39 +00:00
|
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
boolean_t required;
|
|
|
|
char *name[DTL_TYPES] = { "missing", "partial", "scrub", "outage" };
|
|
|
|
char prefix[256];
|
2010-08-26 16:52:39 +00:00
|
|
|
int c, t;
|
2009-01-15 21:59:39 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
spa_vdev_state_enter(spa, SCL_NONE);
|
2009-01-15 21:59:39 +00:00
|
|
|
required = vdev_dtl_required(vd);
|
|
|
|
(void) spa_vdev_state_exit(spa, NULL, 0);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
if (indent == 0)
|
|
|
|
(void) printf("\nDirty time logs:\n\n");
|
|
|
|
|
2009-01-15 21:59:39 +00:00
|
|
|
(void) printf("\t%*s%s [%s]\n", indent, "",
|
2008-12-03 20:09:06 +00:00
|
|
|
vd->vdev_path ? vd->vdev_path :
|
2009-01-15 21:59:39 +00:00
|
|
|
vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa),
|
|
|
|
required ? "DTL-required" : "DTL-expendable");
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2010-08-26 16:52:39 +00:00
|
|
|
for (t = 0; t < DTL_TYPES; t++) {
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
range_tree_t *rt = vd->vdev_dtl[t];
|
|
|
|
if (range_tree_space(rt) == 0)
|
2009-01-15 21:59:39 +00:00
|
|
|
continue;
|
|
|
|
(void) snprintf(prefix, sizeof (prefix), "\t%*s%s",
|
|
|
|
indent + 2, "", name[t]);
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
mutex_enter(rt->rt_lock);
|
|
|
|
range_tree_walk(rt, dump_dtl_seg, prefix);
|
|
|
|
mutex_exit(rt->rt_lock);
|
2009-01-15 21:59:39 +00:00
|
|
|
if (dump_opt['d'] > 5 && vd->vdev_children == 0)
|
|
|
|
dump_spacemap(spa->spa_meta_objset,
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
vd->vdev_dtl_sm);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2010-08-26 16:52:39 +00:00
|
|
|
for (c = 0; c < vd->vdev_children; c++)
|
2008-11-20 20:01:55 +00:00
|
|
|
dump_dtl(vd->vdev_child[c], indent + 4);
|
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
static void
|
|
|
|
dump_history(spa_t *spa)
|
|
|
|
{
|
|
|
|
nvlist_t **events = NULL;
|
|
|
|
char buf[SPA_MAXBLOCKSIZE];
|
|
|
|
uint64_t resid, len, off = 0;
|
|
|
|
uint_t num = 0;
|
|
|
|
int error;
|
|
|
|
time_t tsec;
|
|
|
|
struct tm t;
|
|
|
|
char tbuf[30];
|
|
|
|
char internalstr[MAXPATHLEN];
|
2010-08-26 16:52:39 +00:00
|
|
|
int i;
|
2010-05-28 20:45:14 +00:00
|
|
|
|
|
|
|
do {
|
|
|
|
len = sizeof (buf);
|
|
|
|
|
|
|
|
if ((error = spa_history_get(spa, &off, &len, buf)) != 0) {
|
|
|
|
(void) fprintf(stderr, "Unable to read history: "
|
|
|
|
"error %d\n", error);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0)
|
|
|
|
break;
|
|
|
|
|
|
|
|
off -= resid;
|
|
|
|
} while (len != 0);
|
|
|
|
|
|
|
|
(void) printf("\nHistory:\n");
|
2010-08-26 16:52:39 +00:00
|
|
|
for (i = 0; i < num; i++) {
|
2010-05-28 20:45:14 +00:00
|
|
|
uint64_t time, txg, ievent;
|
|
|
|
char *cmd, *intstr;
|
2013-08-28 11:45:09 +00:00
|
|
|
boolean_t printed = B_FALSE;
|
2010-05-28 20:45:14 +00:00
|
|
|
|
|
|
|
if (nvlist_lookup_uint64(events[i], ZPOOL_HIST_TIME,
|
|
|
|
&time) != 0)
|
2013-08-28 11:45:09 +00:00
|
|
|
goto next;
|
2010-05-28 20:45:14 +00:00
|
|
|
if (nvlist_lookup_string(events[i], ZPOOL_HIST_CMD,
|
|
|
|
&cmd) != 0) {
|
|
|
|
if (nvlist_lookup_uint64(events[i],
|
|
|
|
ZPOOL_HIST_INT_EVENT, &ievent) != 0)
|
2013-08-28 11:45:09 +00:00
|
|
|
goto next;
|
2010-05-28 20:45:14 +00:00
|
|
|
verify(nvlist_lookup_uint64(events[i],
|
|
|
|
ZPOOL_HIST_TXG, &txg) == 0);
|
|
|
|
verify(nvlist_lookup_string(events[i],
|
|
|
|
ZPOOL_HIST_INT_STR, &intstr) == 0);
|
2013-08-28 11:45:09 +00:00
|
|
|
if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS)
|
|
|
|
goto next;
|
2010-05-28 20:45:14 +00:00
|
|
|
|
|
|
|
(void) snprintf(internalstr,
|
|
|
|
sizeof (internalstr),
|
|
|
|
"[internal %s txg:%lld] %s",
|
2010-08-26 16:52:39 +00:00
|
|
|
zfs_history_event_names[ievent],
|
|
|
|
(longlong_t)txg, intstr);
|
2010-05-28 20:45:14 +00:00
|
|
|
cmd = internalstr;
|
|
|
|
}
|
|
|
|
tsec = time;
|
|
|
|
(void) localtime_r(&tsec, &t);
|
|
|
|
(void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t);
|
|
|
|
(void) printf("%s %s\n", tbuf, cmd);
|
2013-08-28 11:45:09 +00:00
|
|
|
printed = B_TRUE;
|
|
|
|
|
|
|
|
next:
|
|
|
|
if (dump_opt['h'] > 1) {
|
|
|
|
if (!printed)
|
|
|
|
(void) printf("unrecognized record:\n");
|
|
|
|
dump_nvlist(events[i], 2);
|
|
|
|
}
|
2010-05-28 20:45:14 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
/*ARGSUSED*/
|
|
|
|
static void
|
|
|
|
dump_dnode(objset_t *os, uint64_t object, void *data, size_t size)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static uint64_t
|
2014-06-25 18:37:59 +00:00
|
|
|
blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp,
|
|
|
|
const zbookmark_phys_t *zb)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2010-05-28 20:45:14 +00:00
|
|
|
if (dnp == NULL) {
|
|
|
|
ASSERT(zb->zb_level < 0);
|
|
|
|
if (zb->zb_object == 0)
|
|
|
|
return (zb->zb_blkid);
|
|
|
|
return (zb->zb_blkid * BP_GET_LSIZE(bp));
|
|
|
|
}
|
|
|
|
|
|
|
|
ASSERT(zb->zb_level >= 0);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
return ((zb->zb_blkid <<
|
|
|
|
(zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) *
|
2008-11-20 20:01:55 +00:00
|
|
|
dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2013-12-09 18:37:51 +00:00
|
|
|
snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2010-05-28 20:45:14 +00:00
|
|
|
const dva_t *dva = bp->blk_dva;
|
|
|
|
int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1;
|
2010-08-26 16:52:39 +00:00
|
|
|
int i;
|
2010-05-28 20:45:14 +00:00
|
|
|
|
2013-03-24 21:24:51 +00:00
|
|
|
if (dump_opt['b'] >= 6) {
|
2013-12-09 18:37:51 +00:00
|
|
|
snprintf_blkptr(blkbuf, buflen, bp);
|
2010-05-28 20:45:14 +00:00
|
|
|
return;
|
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2014-06-05 21:19:08 +00:00
|
|
|
if (BP_IS_EMBEDDED(bp)) {
|
|
|
|
(void) sprintf(blkbuf,
|
|
|
|
"EMBEDDED et=%u %llxL/%llxP B=%llu",
|
|
|
|
(int)BPE_GET_ETYPE(bp),
|
|
|
|
(u_longlong_t)BPE_GET_LSIZE(bp),
|
|
|
|
(u_longlong_t)BPE_GET_PSIZE(bp),
|
|
|
|
(u_longlong_t)bp->blk_birth);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
blkbuf[0] = '\0';
|
|
|
|
|
2010-08-26 16:52:39 +00:00
|
|
|
for (i = 0; i < ndvas; i++)
|
2013-12-09 18:37:51 +00:00
|
|
|
(void) snprintf(blkbuf + strlen(blkbuf),
|
|
|
|
buflen - strlen(blkbuf), "%llu:%llx:%llx ",
|
2008-11-20 20:01:55 +00:00
|
|
|
(u_longlong_t)DVA_GET_VDEV(&dva[i]),
|
|
|
|
(u_longlong_t)DVA_GET_OFFSET(&dva[i]),
|
|
|
|
(u_longlong_t)DVA_GET_ASIZE(&dva[i]));
|
|
|
|
|
2013-12-09 18:37:51 +00:00
|
|
|
if (BP_IS_HOLE(bp)) {
|
|
|
|
(void) snprintf(blkbuf + strlen(blkbuf),
|
2015-03-27 02:03:22 +00:00
|
|
|
buflen - strlen(blkbuf),
|
|
|
|
"%llxL B=%llu",
|
|
|
|
(u_longlong_t)BP_GET_LSIZE(bp),
|
2013-12-09 18:37:51 +00:00
|
|
|
(u_longlong_t)bp->blk_birth);
|
|
|
|
} else {
|
|
|
|
(void) snprintf(blkbuf + strlen(blkbuf),
|
|
|
|
buflen - strlen(blkbuf),
|
|
|
|
"%llxL/%llxP F=%llu B=%llu/%llu",
|
|
|
|
(u_longlong_t)BP_GET_LSIZE(bp),
|
|
|
|
(u_longlong_t)BP_GET_PSIZE(bp),
|
2014-06-05 21:19:08 +00:00
|
|
|
(u_longlong_t)BP_GET_FILL(bp),
|
2013-12-09 18:37:51 +00:00
|
|
|
(u_longlong_t)bp->blk_birth,
|
|
|
|
(u_longlong_t)BP_PHYSICAL_BIRTH(bp));
|
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
static void
|
2014-06-25 18:37:59 +00:00
|
|
|
print_indirect(blkptr_t *bp, const zbookmark_phys_t *zb,
|
2008-12-03 20:09:06 +00:00
|
|
|
const dnode_phys_t *dnp)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2008-12-03 20:09:06 +00:00
|
|
|
char blkbuf[BP_SPRINTF_LEN];
|
2008-11-20 20:01:55 +00:00
|
|
|
int l;
|
|
|
|
|
2014-06-05 21:19:08 +00:00
|
|
|
if (!BP_IS_EMBEDDED(bp)) {
|
|
|
|
ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type);
|
|
|
|
ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level);
|
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
(void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb));
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
ASSERT(zb->zb_level >= 0);
|
|
|
|
|
|
|
|
for (l = dnp->dn_nlevels - 1; l >= -1; l--) {
|
|
|
|
if (l == zb->zb_level) {
|
2008-12-03 20:09:06 +00:00
|
|
|
(void) printf("L%llx", (u_longlong_t)zb->zb_level);
|
2008-11-20 20:01:55 +00:00
|
|
|
} else {
|
2008-12-03 20:09:06 +00:00
|
|
|
(void) printf(" ");
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-12-09 18:37:51 +00:00
|
|
|
snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp);
|
2008-12-03 20:09:06 +00:00
|
|
|
(void) printf("%s\n", blkbuf);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
visit_indirect(spa_t *spa, const dnode_phys_t *dnp,
|
2014-06-25 18:37:59 +00:00
|
|
|
blkptr_t *bp, const zbookmark_phys_t *zb)
|
2008-12-03 20:09:06 +00:00
|
|
|
{
|
2010-05-28 20:45:14 +00:00
|
|
|
int err = 0;
|
2008-12-03 20:09:06 +00:00
|
|
|
|
|
|
|
if (bp->blk_birth == 0)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
print_indirect(bp, zb, dnp);
|
|
|
|
|
2013-12-09 18:37:51 +00:00
|
|
|
if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) {
|
2008-12-03 20:09:06 +00:00
|
|
|
uint32_t flags = ARC_WAIT;
|
|
|
|
int i;
|
|
|
|
blkptr_t *cbp;
|
|
|
|
int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
|
|
|
|
arc_buf_t *buf;
|
|
|
|
uint64_t fill = 0;
|
|
|
|
|
2013-07-02 20:26:24 +00:00
|
|
|
err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
|
2008-12-03 20:09:06 +00:00
|
|
|
ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb);
|
|
|
|
if (err)
|
|
|
|
return (err);
|
2010-05-28 20:45:14 +00:00
|
|
|
ASSERT(buf->b_data);
|
2008-12-03 20:09:06 +00:00
|
|
|
|
|
|
|
/* recursively visit blocks below this */
|
|
|
|
cbp = buf->b_data;
|
|
|
|
for (i = 0; i < epb; i++, cbp++) {
|
2014-06-25 18:37:59 +00:00
|
|
|
zbookmark_phys_t czb;
|
2008-12-03 20:09:06 +00:00
|
|
|
|
|
|
|
SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
|
|
|
|
zb->zb_level - 1,
|
|
|
|
zb->zb_blkid * epb + i);
|
|
|
|
err = visit_indirect(spa, dnp, cbp, &czb);
|
|
|
|
if (err)
|
|
|
|
break;
|
2014-06-05 21:19:08 +00:00
|
|
|
fill += BP_GET_FILL(cbp);
|
2008-12-03 20:09:06 +00:00
|
|
|
}
|
2009-01-15 21:59:39 +00:00
|
|
|
if (!err)
|
2014-06-05 21:19:08 +00:00
|
|
|
ASSERT3U(fill, ==, BP_GET_FILL(bp));
|
2008-12-03 20:09:06 +00:00
|
|
|
(void) arc_buf_remove_ref(buf, &buf);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
return (err);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*ARGSUSED*/
|
|
|
|
static void
|
2008-12-03 20:09:06 +00:00
|
|
|
dump_indirect(dnode_t *dn)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2008-12-03 20:09:06 +00:00
|
|
|
dnode_phys_t *dnp = dn->dn_phys;
|
|
|
|
int j;
|
2014-06-25 18:37:59 +00:00
|
|
|
zbookmark_phys_t czb;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
(void) printf("Indirect blocks:\n");
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset),
|
2008-12-03 20:09:06 +00:00
|
|
|
dn->dn_object, dnp->dn_nlevels - 1, 0);
|
|
|
|
for (j = 0; j < dnp->dn_nblkptr; j++) {
|
|
|
|
czb.zb_blkid = j;
|
2010-05-28 20:45:14 +00:00
|
|
|
(void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp,
|
2008-12-03 20:09:06 +00:00
|
|
|
&dnp->dn_blkptr[j], &czb);
|
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
(void) printf("\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
/*ARGSUSED*/
|
|
|
|
static void
|
|
|
|
dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size)
|
|
|
|
{
|
|
|
|
dsl_dir_phys_t *dd = data;
|
|
|
|
time_t crtime;
|
2010-05-28 20:45:14 +00:00
|
|
|
char nice[32];
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
if (dd == NULL)
|
|
|
|
return;
|
|
|
|
|
|
|
|
ASSERT3U(size, >=, sizeof (dsl_dir_phys_t));
|
|
|
|
|
|
|
|
crtime = dd->dd_creation_time;
|
|
|
|
(void) printf("\t\tcreation_time = %s", ctime(&crtime));
|
|
|
|
(void) printf("\t\thead_dataset_obj = %llu\n",
|
|
|
|
(u_longlong_t)dd->dd_head_dataset_obj);
|
|
|
|
(void) printf("\t\tparent_dir_obj = %llu\n",
|
|
|
|
(u_longlong_t)dd->dd_parent_obj);
|
|
|
|
(void) printf("\t\torigin_obj = %llu\n",
|
|
|
|
(u_longlong_t)dd->dd_origin_obj);
|
|
|
|
(void) printf("\t\tchild_dir_zapobj = %llu\n",
|
|
|
|
(u_longlong_t)dd->dd_child_dir_zapobj);
|
2010-05-28 20:45:14 +00:00
|
|
|
zdb_nicenum(dd->dd_used_bytes, nice);
|
2008-12-03 20:09:06 +00:00
|
|
|
(void) printf("\t\tused_bytes = %s\n", nice);
|
2010-05-28 20:45:14 +00:00
|
|
|
zdb_nicenum(dd->dd_compressed_bytes, nice);
|
2008-12-03 20:09:06 +00:00
|
|
|
(void) printf("\t\tcompressed_bytes = %s\n", nice);
|
2010-05-28 20:45:14 +00:00
|
|
|
zdb_nicenum(dd->dd_uncompressed_bytes, nice);
|
2008-12-03 20:09:06 +00:00
|
|
|
(void) printf("\t\tuncompressed_bytes = %s\n", nice);
|
2010-05-28 20:45:14 +00:00
|
|
|
zdb_nicenum(dd->dd_quota, nice);
|
2008-12-03 20:09:06 +00:00
|
|
|
(void) printf("\t\tquota = %s\n", nice);
|
2010-05-28 20:45:14 +00:00
|
|
|
zdb_nicenum(dd->dd_reserved, nice);
|
2008-12-03 20:09:06 +00:00
|
|
|
(void) printf("\t\treserved = %s\n", nice);
|
2008-11-20 20:01:55 +00:00
|
|
|
(void) printf("\t\tprops_zapobj = %llu\n",
|
|
|
|
(u_longlong_t)dd->dd_props_zapobj);
|
|
|
|
(void) printf("\t\tdeleg_zapobj = %llu\n",
|
|
|
|
(u_longlong_t)dd->dd_deleg_zapobj);
|
2008-12-03 20:09:06 +00:00
|
|
|
(void) printf("\t\tflags = %llx\n",
|
|
|
|
(u_longlong_t)dd->dd_flags);
|
|
|
|
|
|
|
|
#define DO(which) \
|
2010-05-28 20:45:14 +00:00
|
|
|
zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice); \
|
2008-12-03 20:09:06 +00:00
|
|
|
(void) printf("\t\tused_breakdown[" #which "] = %s\n", nice)
|
|
|
|
DO(HEAD);
|
|
|
|
DO(SNAP);
|
|
|
|
DO(CHILD);
|
|
|
|
DO(CHILD_RSRV);
|
|
|
|
DO(REFRSRV);
|
|
|
|
#undef DO
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*ARGSUSED*/
|
|
|
|
static void
|
|
|
|
dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size)
|
|
|
|
{
|
|
|
|
dsl_dataset_phys_t *ds = data;
|
|
|
|
time_t crtime;
|
2010-05-28 20:45:14 +00:00
|
|
|
char used[32], compressed[32], uncompressed[32], unique[32];
|
2008-11-20 20:01:55 +00:00
|
|
|
char blkbuf[BP_SPRINTF_LEN];
|
|
|
|
|
|
|
|
if (ds == NULL)
|
|
|
|
return;
|
|
|
|
|
|
|
|
ASSERT(size == sizeof (*ds));
|
|
|
|
crtime = ds->ds_creation_time;
|
2012-12-13 23:24:15 +00:00
|
|
|
zdb_nicenum(ds->ds_referenced_bytes, used);
|
2010-05-28 20:45:14 +00:00
|
|
|
zdb_nicenum(ds->ds_compressed_bytes, compressed);
|
|
|
|
zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed);
|
|
|
|
zdb_nicenum(ds->ds_unique_bytes, unique);
|
2013-12-09 18:37:51 +00:00
|
|
|
snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
(void) printf("\t\tdir_obj = %llu\n",
|
2008-11-20 20:01:55 +00:00
|
|
|
(u_longlong_t)ds->ds_dir_obj);
|
|
|
|
(void) printf("\t\tprev_snap_obj = %llu\n",
|
|
|
|
(u_longlong_t)ds->ds_prev_snap_obj);
|
|
|
|
(void) printf("\t\tprev_snap_txg = %llu\n",
|
|
|
|
(u_longlong_t)ds->ds_prev_snap_txg);
|
|
|
|
(void) printf("\t\tnext_snap_obj = %llu\n",
|
|
|
|
(u_longlong_t)ds->ds_next_snap_obj);
|
|
|
|
(void) printf("\t\tsnapnames_zapobj = %llu\n",
|
|
|
|
(u_longlong_t)ds->ds_snapnames_zapobj);
|
|
|
|
(void) printf("\t\tnum_children = %llu\n",
|
|
|
|
(u_longlong_t)ds->ds_num_children);
|
2009-08-18 18:43:27 +00:00
|
|
|
(void) printf("\t\tuserrefs_obj = %llu\n",
|
|
|
|
(u_longlong_t)ds->ds_userrefs_obj);
|
2008-11-20 20:01:55 +00:00
|
|
|
(void) printf("\t\tcreation_time = %s", ctime(&crtime));
|
|
|
|
(void) printf("\t\tcreation_txg = %llu\n",
|
|
|
|
(u_longlong_t)ds->ds_creation_txg);
|
|
|
|
(void) printf("\t\tdeadlist_obj = %llu\n",
|
|
|
|
(u_longlong_t)ds->ds_deadlist_obj);
|
|
|
|
(void) printf("\t\tused_bytes = %s\n", used);
|
|
|
|
(void) printf("\t\tcompressed_bytes = %s\n", compressed);
|
|
|
|
(void) printf("\t\tuncompressed_bytes = %s\n", uncompressed);
|
|
|
|
(void) printf("\t\tunique = %s\n", unique);
|
|
|
|
(void) printf("\t\tfsid_guid = %llu\n",
|
|
|
|
(u_longlong_t)ds->ds_fsid_guid);
|
|
|
|
(void) printf("\t\tguid = %llu\n",
|
|
|
|
(u_longlong_t)ds->ds_guid);
|
|
|
|
(void) printf("\t\tflags = %llx\n",
|
|
|
|
(u_longlong_t)ds->ds_flags);
|
2008-12-03 20:09:06 +00:00
|
|
|
(void) printf("\t\tnext_clones_obj = %llu\n",
|
|
|
|
(u_longlong_t)ds->ds_next_clones_obj);
|
|
|
|
(void) printf("\t\tprops_obj = %llu\n",
|
|
|
|
(u_longlong_t)ds->ds_props_obj);
|
2008-11-20 20:01:55 +00:00
|
|
|
(void) printf("\t\tbp = %s\n", blkbuf);
|
|
|
|
}
|
|
|
|
|
2012-12-13 23:24:15 +00:00
|
|
|
/* ARGSUSED */
|
|
|
|
static int
|
|
|
|
dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
char blkbuf[BP_SPRINTF_LEN];
|
|
|
|
|
|
|
|
if (bp->blk_birth != 0) {
|
2013-12-09 18:37:51 +00:00
|
|
|
snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
|
2012-12-13 23:24:15 +00:00
|
|
|
(void) printf("\t%s\n", blkbuf);
|
|
|
|
}
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
dump_bptree(objset_t *os, uint64_t obj, char *name)
|
|
|
|
{
|
|
|
|
char bytes[32];
|
|
|
|
bptree_phys_t *bt;
|
|
|
|
dmu_buf_t *db;
|
|
|
|
|
|
|
|
if (dump_opt['d'] < 3)
|
|
|
|
return;
|
|
|
|
|
|
|
|
VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db));
|
|
|
|
bt = db->db_data;
|
|
|
|
zdb_nicenum(bt->bt_bytes, bytes);
|
|
|
|
(void) printf("\n %s: %llu datasets, %s\n",
|
|
|
|
name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes);
|
|
|
|
dmu_buf_rele(db, FTAG);
|
|
|
|
|
|
|
|
if (dump_opt['d'] < 5)
|
|
|
|
return;
|
|
|
|
|
|
|
|
(void) printf("\n");
|
|
|
|
|
|
|
|
(void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL);
|
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
/* ARGSUSED */
|
|
|
|
static int
|
|
|
|
dump_bpobj_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
char blkbuf[BP_SPRINTF_LEN];
|
|
|
|
|
|
|
|
ASSERT(bp->blk_birth != 0);
|
2013-12-09 18:37:51 +00:00
|
|
|
snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp);
|
2010-05-28 20:45:14 +00:00
|
|
|
(void) printf("\t%s\n", blkbuf);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
static void
|
2015-04-26 22:27:36 +00:00
|
|
|
dump_full_bpobj(bpobj_t *bpo, char *name, int indent)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2010-05-28 20:45:14 +00:00
|
|
|
char bytes[32];
|
|
|
|
char comp[32];
|
|
|
|
char uncomp[32];
|
2013-07-05 19:37:16 +00:00
|
|
|
uint64_t i;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
if (dump_opt['d'] < 3)
|
|
|
|
return;
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes);
|
2013-07-05 19:37:16 +00:00
|
|
|
if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
|
2010-05-28 20:45:14 +00:00
|
|
|
zdb_nicenum(bpo->bpo_phys->bpo_comp, comp);
|
|
|
|
zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp);
|
2013-07-05 19:37:16 +00:00
|
|
|
(void) printf(" %*s: object %llu, %llu local blkptrs, "
|
2015-04-26 22:27:36 +00:00
|
|
|
"%llu subobjs in object, %llu, %s (%s/%s comp)\n",
|
2013-07-05 19:37:16 +00:00
|
|
|
indent * 8, name,
|
|
|
|
(u_longlong_t)bpo->bpo_object,
|
|
|
|
(u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
|
2010-05-28 20:45:14 +00:00
|
|
|
(u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
|
2015-04-26 22:27:36 +00:00
|
|
|
(u_longlong_t)bpo->bpo_phys->bpo_subobjs,
|
2008-11-20 20:01:55 +00:00
|
|
|
bytes, comp, uncomp);
|
2013-07-05 19:37:16 +00:00
|
|
|
|
|
|
|
for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
|
|
|
|
uint64_t subobj;
|
|
|
|
bpobj_t subbpo;
|
|
|
|
int error;
|
|
|
|
VERIFY0(dmu_read(bpo->bpo_os,
|
|
|
|
bpo->bpo_phys->bpo_subobjs,
|
|
|
|
i * sizeof (subobj), sizeof (subobj), &subobj, 0));
|
|
|
|
error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
|
|
|
|
if (error != 0) {
|
|
|
|
(void) printf("ERROR %u while trying to open "
|
|
|
|
"subobj id %llu\n",
|
|
|
|
error, (u_longlong_t)subobj);
|
|
|
|
continue;
|
|
|
|
}
|
2015-04-26 22:27:36 +00:00
|
|
|
dump_full_bpobj(&subbpo, "subobj", indent + 1);
|
2013-07-05 19:37:16 +00:00
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
} else {
|
2013-07-05 19:37:16 +00:00
|
|
|
(void) printf(" %*s: object %llu, %llu blkptrs, %s\n",
|
|
|
|
indent * 8, name,
|
|
|
|
(u_longlong_t)bpo->bpo_object,
|
|
|
|
(u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
|
|
|
|
bytes);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
if (dump_opt['d'] < 5)
|
2008-11-20 20:01:55 +00:00
|
|
|
return;
|
|
|
|
|
|
|
|
|
2013-07-05 19:37:16 +00:00
|
|
|
if (indent == 0) {
|
|
|
|
(void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL);
|
|
|
|
(void) printf("\n");
|
|
|
|
}
|
2010-05-28 20:45:14 +00:00
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
static void
|
|
|
|
dump_deadlist(dsl_deadlist_t *dl)
|
|
|
|
{
|
|
|
|
dsl_deadlist_entry_t *dle;
|
2013-07-05 19:37:16 +00:00
|
|
|
uint64_t unused;
|
2010-05-28 20:45:14 +00:00
|
|
|
char bytes[32];
|
|
|
|
char comp[32];
|
|
|
|
char uncomp[32];
|
|
|
|
|
|
|
|
if (dump_opt['d'] < 3)
|
|
|
|
return;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2014-09-17 07:14:39 +00:00
|
|
|
if (dl->dl_oldfmt) {
|
2015-04-26 22:27:36 +00:00
|
|
|
dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0);
|
2014-09-17 07:14:39 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
zdb_nicenum(dl->dl_phys->dl_used, bytes);
|
|
|
|
zdb_nicenum(dl->dl_phys->dl_comp, comp);
|
|
|
|
zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp);
|
|
|
|
(void) printf("\n Deadlist: %s (%s/%s comp)\n",
|
|
|
|
bytes, comp, uncomp);
|
|
|
|
|
|
|
|
if (dump_opt['d'] < 4)
|
|
|
|
return;
|
|
|
|
|
|
|
|
(void) printf("\n");
|
|
|
|
|
2013-07-05 19:37:16 +00:00
|
|
|
/* force the tree to be loaded */
|
|
|
|
dsl_deadlist_space_range(dl, 0, UINT64_MAX, &unused, &unused, &unused);
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
for (dle = avl_first(&dl->dl_tree); dle;
|
|
|
|
dle = AVL_NEXT(&dl->dl_tree, dle)) {
|
2013-07-05 19:37:16 +00:00
|
|
|
if (dump_opt['d'] >= 5) {
|
|
|
|
char buf[128];
|
2013-11-01 19:26:11 +00:00
|
|
|
(void) snprintf(buf, sizeof (buf),
|
|
|
|
"mintxg %llu -> obj %llu",
|
2013-07-05 19:37:16 +00:00
|
|
|
(longlong_t)dle->dle_mintxg,
|
|
|
|
(longlong_t)dle->dle_bpobj.bpo_object);
|
2010-05-28 20:45:14 +00:00
|
|
|
|
2015-04-26 22:27:36 +00:00
|
|
|
dump_full_bpobj(&dle->dle_bpobj, buf, 0);
|
2013-07-05 19:37:16 +00:00
|
|
|
} else {
|
|
|
|
(void) printf("mintxg %llu -> obj %llu\n",
|
|
|
|
(longlong_t)dle->dle_mintxg,
|
|
|
|
(longlong_t)dle->dle_bpobj.bpo_object);
|
|
|
|
|
|
|
|
}
|
2010-05-28 20:45:14 +00:00
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static avl_tree_t idx_tree;
|
|
|
|
static avl_tree_t domain_tree;
|
|
|
|
static boolean_t fuid_table_loaded;
|
2010-05-28 20:45:14 +00:00
|
|
|
static boolean_t sa_loaded;
|
|
|
|
sa_attr_type_t *sa_attr_table;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
static void
|
2010-08-26 16:52:41 +00:00
|
|
|
fuid_table_destroy(void)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
|
|
|
if (fuid_table_loaded) {
|
|
|
|
zfs_fuid_table_destroy(&idx_tree, &domain_tree);
|
|
|
|
fuid_table_loaded = B_FALSE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* print uid or gid information.
|
|
|
|
* For normal POSIX id just the id is printed in decimal format.
|
|
|
|
* For CIFS files with FUID the fuid is printed in hex followed by
|
2013-07-05 19:37:16 +00:00
|
|
|
* the domain-rid string.
|
2008-11-20 20:01:55 +00:00
|
|
|
*/
|
|
|
|
static void
|
|
|
|
print_idstr(uint64_t id, const char *id_type)
|
|
|
|
{
|
|
|
|
if (FUID_INDEX(id)) {
|
|
|
|
char *domain;
|
|
|
|
|
|
|
|
domain = zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id));
|
|
|
|
(void) printf("\t%s %llx [%s-%d]\n", id_type,
|
|
|
|
(u_longlong_t)id, domain, (int)FUID_RID(id));
|
|
|
|
} else {
|
|
|
|
(void) printf("\t%s %llu\n", id_type, (u_longlong_t)id);
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2010-05-28 20:45:14 +00:00
|
|
|
dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
|
|
|
uint32_t uid_idx, gid_idx;
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
uid_idx = FUID_INDEX(uid);
|
|
|
|
gid_idx = FUID_INDEX(gid);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
/* Load domain table, if not already loaded */
|
|
|
|
if (!fuid_table_loaded && (uid_idx || gid_idx)) {
|
|
|
|
uint64_t fuid_obj;
|
|
|
|
|
|
|
|
/* first find the fuid object. It lives in the master node */
|
|
|
|
VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES,
|
|
|
|
8, 1, &fuid_obj) == 0);
|
2009-07-02 22:44:48 +00:00
|
|
|
zfs_fuid_avl_tree_create(&idx_tree, &domain_tree);
|
2008-11-20 20:01:55 +00:00
|
|
|
(void) zfs_fuid_table_load(os, fuid_obj,
|
|
|
|
&idx_tree, &domain_tree);
|
|
|
|
fuid_table_loaded = B_TRUE;
|
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
print_idstr(uid, "uid");
|
|
|
|
print_idstr(gid, "gid");
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2013-07-09 12:15:26 +00:00
|
|
|
static void
|
|
|
|
dump_znode_sa_xattr(sa_handle_t *hdl)
|
|
|
|
{
|
|
|
|
nvlist_t *sa_xattr;
|
|
|
|
nvpair_t *elem = NULL;
|
|
|
|
int sa_xattr_size = 0;
|
|
|
|
int sa_xattr_entries = 0;
|
|
|
|
int error;
|
|
|
|
char *sa_xattr_packed;
|
|
|
|
|
|
|
|
error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size);
|
|
|
|
if (error || sa_xattr_size == 0)
|
|
|
|
return;
|
|
|
|
|
|
|
|
sa_xattr_packed = malloc(sa_xattr_size);
|
|
|
|
if (sa_xattr_packed == NULL)
|
|
|
|
return;
|
|
|
|
|
|
|
|
error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR],
|
|
|
|
sa_xattr_packed, sa_xattr_size);
|
|
|
|
if (error) {
|
|
|
|
free(sa_xattr_packed);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0);
|
|
|
|
if (error) {
|
|
|
|
free(sa_xattr_packed);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL)
|
|
|
|
sa_xattr_entries++;
|
|
|
|
|
|
|
|
(void) printf("\tSA xattrs: %d bytes, %d entries\n\n",
|
|
|
|
sa_xattr_size, sa_xattr_entries);
|
|
|
|
while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) {
|
|
|
|
uchar_t *value;
|
|
|
|
uint_t cnt, idx;
|
|
|
|
|
|
|
|
(void) printf("\t\t%s = ", nvpair_name(elem));
|
|
|
|
nvpair_value_byte_array(elem, &value, &cnt);
|
2013-11-01 19:26:11 +00:00
|
|
|
for (idx = 0; idx < cnt; ++idx) {
|
2013-07-09 12:15:26 +00:00
|
|
|
if (isprint(value[idx]))
|
|
|
|
(void) putchar(value[idx]);
|
|
|
|
else
|
|
|
|
(void) printf("\\%3.3o", value[idx]);
|
|
|
|
}
|
|
|
|
(void) putchar('\n');
|
|
|
|
}
|
|
|
|
|
|
|
|
nvlist_free(sa_xattr);
|
|
|
|
free(sa_xattr_packed);
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
/*ARGSUSED*/
|
|
|
|
static void
|
|
|
|
dump_znode(objset_t *os, uint64_t object, void *data, size_t size)
|
|
|
|
{
|
|
|
|
char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */
|
2010-05-28 20:45:14 +00:00
|
|
|
sa_handle_t *hdl;
|
|
|
|
uint64_t xattr, rdev, gen;
|
|
|
|
uint64_t uid, gid, mode, fsize, parent, links;
|
|
|
|
uint64_t pflags;
|
|
|
|
uint64_t acctm[2], modtm[2], chgtm[2], crtm[2];
|
|
|
|
time_t z_crtime, z_atime, z_mtime, z_ctime;
|
|
|
|
sa_bulk_attr_t bulk[12];
|
|
|
|
int idx = 0;
|
2008-11-20 20:01:55 +00:00
|
|
|
int error;
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
if (!sa_loaded) {
|
|
|
|
uint64_t sa_attrs = 0;
|
|
|
|
uint64_t version;
|
|
|
|
|
|
|
|
VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
|
|
|
|
8, 1, &version) == 0);
|
|
|
|
if (version >= ZPL_VERSION_SA) {
|
|
|
|
VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS,
|
|
|
|
8, 1, &sa_attrs) == 0);
|
|
|
|
}
|
2010-08-26 21:24:34 +00:00
|
|
|
if ((error = sa_setup(os, sa_attrs, zfs_attr_table,
|
|
|
|
ZPL_END, &sa_attr_table)) != 0) {
|
|
|
|
(void) printf("sa_setup failed errno %d, can't "
|
|
|
|
"display znode contents\n", error);
|
|
|
|
return;
|
|
|
|
}
|
2010-05-28 20:45:14 +00:00
|
|
|
sa_loaded = B_TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) {
|
|
|
|
(void) printf("Failed to get handle for SA znode\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8);
|
|
|
|
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8);
|
|
|
|
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL,
|
|
|
|
&links, 8);
|
|
|
|
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8);
|
|
|
|
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL,
|
|
|
|
&mode, 8);
|
|
|
|
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT],
|
|
|
|
NULL, &parent, 8);
|
|
|
|
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL,
|
|
|
|
&fsize, 8);
|
|
|
|
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL,
|
|
|
|
acctm, 16);
|
|
|
|
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL,
|
|
|
|
modtm, 16);
|
|
|
|
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL,
|
|
|
|
crtm, 16);
|
|
|
|
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL,
|
|
|
|
chgtm, 16);
|
|
|
|
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL,
|
|
|
|
&pflags, 8);
|
|
|
|
|
|
|
|
if (sa_bulk_lookup(hdl, bulk, idx)) {
|
|
|
|
(void) sa_handle_destroy(hdl);
|
|
|
|
return;
|
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
error = zfs_obj_to_path(os, object, path, sizeof (path));
|
|
|
|
if (error != 0) {
|
|
|
|
(void) snprintf(path, sizeof (path), "\?\?\?<object#%llu>",
|
|
|
|
(u_longlong_t)object);
|
|
|
|
}
|
|
|
|
if (dump_opt['d'] < 3) {
|
|
|
|
(void) printf("\t%s\n", path);
|
2010-05-28 20:45:14 +00:00
|
|
|
(void) sa_handle_destroy(hdl);
|
2008-11-20 20:01:55 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
z_crtime = (time_t)crtm[0];
|
|
|
|
z_atime = (time_t)acctm[0];
|
|
|
|
z_mtime = (time_t)modtm[0];
|
|
|
|
z_ctime = (time_t)chgtm[0];
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
(void) printf("\tpath %s\n", path);
|
2010-05-28 20:45:14 +00:00
|
|
|
dump_uidgid(os, uid, gid);
|
2008-11-20 20:01:55 +00:00
|
|
|
(void) printf("\tatime %s", ctime(&z_atime));
|
|
|
|
(void) printf("\tmtime %s", ctime(&z_mtime));
|
|
|
|
(void) printf("\tctime %s", ctime(&z_ctime));
|
|
|
|
(void) printf("\tcrtime %s", ctime(&z_crtime));
|
2010-05-28 20:45:14 +00:00
|
|
|
(void) printf("\tgen %llu\n", (u_longlong_t)gen);
|
|
|
|
(void) printf("\tmode %llo\n", (u_longlong_t)mode);
|
|
|
|
(void) printf("\tsize %llu\n", (u_longlong_t)fsize);
|
|
|
|
(void) printf("\tparent %llu\n", (u_longlong_t)parent);
|
|
|
|
(void) printf("\tlinks %llu\n", (u_longlong_t)links);
|
|
|
|
(void) printf("\tpflags %llx\n", (u_longlong_t)pflags);
|
|
|
|
if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr,
|
|
|
|
sizeof (uint64_t)) == 0)
|
|
|
|
(void) printf("\txattr %llu\n", (u_longlong_t)xattr);
|
|
|
|
if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev,
|
|
|
|
sizeof (uint64_t)) == 0)
|
|
|
|
(void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev);
|
2013-07-09 12:15:26 +00:00
|
|
|
dump_znode_sa_xattr(hdl);
|
2010-05-28 20:45:14 +00:00
|
|
|
sa_handle_destroy(hdl);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*ARGSUSED*/
|
|
|
|
static void
|
|
|
|
dump_acl(objset_t *os, uint64_t object, void *data, size_t size)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
/*ARGSUSED*/
|
|
|
|
static void
|
|
|
|
dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = {
|
2008-11-20 20:01:55 +00:00
|
|
|
dump_none, /* unallocated */
|
|
|
|
dump_zap, /* object directory */
|
|
|
|
dump_uint64, /* object array */
|
|
|
|
dump_none, /* packed nvlist */
|
|
|
|
dump_packed_nvlist, /* packed nvlist size */
|
2015-04-26 22:27:36 +00:00
|
|
|
dump_none, /* bpobj */
|
|
|
|
dump_bpobj, /* bpobj header */
|
2008-11-20 20:01:55 +00:00
|
|
|
dump_none, /* SPA space map header */
|
|
|
|
dump_none, /* SPA space map */
|
|
|
|
dump_none, /* ZIL intent log */
|
|
|
|
dump_dnode, /* DMU dnode */
|
|
|
|
dump_dmu_objset, /* DMU objset */
|
|
|
|
dump_dsl_dir, /* DSL directory */
|
|
|
|
dump_zap, /* DSL directory child map */
|
|
|
|
dump_zap, /* DSL dataset snap map */
|
|
|
|
dump_zap, /* DSL props */
|
|
|
|
dump_dsl_dataset, /* DSL dataset */
|
|
|
|
dump_znode, /* ZFS znode */
|
|
|
|
dump_acl, /* ZFS V0 ACL */
|
|
|
|
dump_uint8, /* ZFS plain file */
|
|
|
|
dump_zpldir, /* ZFS directory */
|
|
|
|
dump_zap, /* ZFS master node */
|
|
|
|
dump_zap, /* ZFS delete queue */
|
|
|
|
dump_uint8, /* zvol object */
|
|
|
|
dump_zap, /* zvol prop */
|
|
|
|
dump_uint8, /* other uint8[] */
|
|
|
|
dump_uint64, /* other uint64[] */
|
|
|
|
dump_zap, /* other ZAP */
|
|
|
|
dump_zap, /* persistent error log */
|
|
|
|
dump_uint8, /* SPA history */
|
2013-08-28 11:45:09 +00:00
|
|
|
dump_history_offsets, /* SPA history offsets */
|
2008-11-20 20:01:55 +00:00
|
|
|
dump_zap, /* Pool properties */
|
|
|
|
dump_zap, /* DSL permissions */
|
|
|
|
dump_acl, /* ZFS ACL */
|
|
|
|
dump_uint8, /* ZFS SYSACL */
|
|
|
|
dump_none, /* FUID nvlist */
|
|
|
|
dump_packed_nvlist, /* FUID nvlist size */
|
2008-12-03 20:09:06 +00:00
|
|
|
dump_zap, /* DSL dataset next clones */
|
|
|
|
dump_zap, /* DSL scrub queue */
|
2009-07-02 22:44:48 +00:00
|
|
|
dump_zap, /* ZFS user/group used */
|
|
|
|
dump_zap, /* ZFS user/group quota */
|
2009-08-18 18:43:27 +00:00
|
|
|
dump_zap, /* snapshot refcount tags */
|
2010-05-28 20:45:14 +00:00
|
|
|
dump_ddt_zap, /* DDT ZAP object */
|
|
|
|
dump_zap, /* DDT statistics */
|
|
|
|
dump_znode, /* SA object */
|
|
|
|
dump_zap, /* SA Master Node */
|
|
|
|
dump_sa_attrs, /* SA attribute registration */
|
|
|
|
dump_sa_layouts, /* SA attribute layouts */
|
|
|
|
dump_zap, /* DSL scrub translations */
|
|
|
|
dump_none, /* fake dedup BP */
|
|
|
|
dump_zap, /* deadlist */
|
|
|
|
dump_none, /* deadlist hdr */
|
|
|
|
dump_zap, /* dsl clones */
|
2015-04-26 22:27:36 +00:00
|
|
|
dump_bpobj_subobjs, /* bpobj subobjs */
|
2010-05-28 20:45:14 +00:00
|
|
|
dump_unknown, /* Unknown type, must be last */
|
2008-11-20 20:01:55 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
static void
|
|
|
|
dump_object(objset_t *os, uint64_t object, int verbosity, int *print_header)
|
|
|
|
{
|
|
|
|
dmu_buf_t *db = NULL;
|
|
|
|
dmu_object_info_t doi;
|
|
|
|
dnode_t *dn;
|
|
|
|
void *bonus = NULL;
|
|
|
|
size_t bsize = 0;
|
2010-05-28 20:45:14 +00:00
|
|
|
char iblk[32], dblk[32], lsize[32], asize[32], fill[32];
|
|
|
|
char bonus_size[32];
|
2008-11-20 20:01:55 +00:00
|
|
|
char aux[50];
|
|
|
|
int error;
|
|
|
|
|
|
|
|
if (*print_header) {
|
2010-05-28 20:45:14 +00:00
|
|
|
(void) printf("\n%10s %3s %5s %5s %5s %5s %6s %s\n",
|
|
|
|
"Object", "lvl", "iblk", "dblk", "dsize", "lsize",
|
|
|
|
"%full", "type");
|
2008-11-20 20:01:55 +00:00
|
|
|
*print_header = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (object == 0) {
|
2010-08-26 21:24:34 +00:00
|
|
|
dn = DMU_META_DNODE(os);
|
2008-11-20 20:01:55 +00:00
|
|
|
} else {
|
|
|
|
error = dmu_bonus_hold(os, object, FTAG, &db);
|
|
|
|
if (error)
|
|
|
|
fatal("dmu_bonus_hold(%llu) failed, errno %u",
|
|
|
|
object, error);
|
|
|
|
bonus = db->db_data;
|
|
|
|
bsize = db->db_size;
|
2010-08-26 21:24:34 +00:00
|
|
|
dn = DB_DNODE((dmu_buf_impl_t *)db);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
dmu_object_info_from_dnode(dn, &doi);
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
zdb_nicenum(doi.doi_metadata_block_size, iblk);
|
|
|
|
zdb_nicenum(doi.doi_data_block_size, dblk);
|
|
|
|
zdb_nicenum(doi.doi_max_offset, lsize);
|
|
|
|
zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize);
|
|
|
|
zdb_nicenum(doi.doi_bonus_size, bonus_size);
|
|
|
|
(void) sprintf(fill, "%6.2f", 100.0 * doi.doi_fill_count *
|
|
|
|
doi.doi_data_block_size / (object == 0 ? DNODES_PER_BLOCK : 1) /
|
|
|
|
doi.doi_max_offset);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
aux[0] = '\0';
|
|
|
|
|
|
|
|
if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) {
|
|
|
|
(void) snprintf(aux + strlen(aux), sizeof (aux), " (K=%s)",
|
2010-05-28 20:45:14 +00:00
|
|
|
ZDB_CHECKSUM_NAME(doi.doi_checksum));
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) {
|
|
|
|
(void) snprintf(aux + strlen(aux), sizeof (aux), " (Z=%s)",
|
2010-05-28 20:45:14 +00:00
|
|
|
ZDB_COMPRESS_NAME(doi.doi_compress));
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
(void) printf("%10lld %3u %5s %5s %5s %5s %6s %s%s\n",
|
|
|
|
(u_longlong_t)object, doi.doi_indirection, iblk, dblk,
|
|
|
|
asize, lsize, fill, ZDB_OT_NAME(doi.doi_type), aux);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) {
|
2010-05-28 20:45:14 +00:00
|
|
|
(void) printf("%10s %3s %5s %5s %5s %5s %6s %s\n",
|
|
|
|
"", "", "", "", "", bonus_size, "bonus",
|
|
|
|
ZDB_OT_NAME(doi.doi_bonus_type));
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (verbosity >= 4) {
|
2010-05-28 20:45:14 +00:00
|
|
|
(void) printf("\tdnode flags: %s%s%s\n",
|
2009-07-02 22:44:48 +00:00
|
|
|
(dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ?
|
|
|
|
"USED_BYTES " : "",
|
|
|
|
(dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ?
|
2010-05-28 20:45:14 +00:00
|
|
|
"USERUSED_ACCOUNTED " : "",
|
|
|
|
(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ?
|
|
|
|
"SPILL_BLKPTR" : "");
|
2009-07-02 22:44:48 +00:00
|
|
|
(void) printf("\tdnode maxblkid: %llu\n",
|
|
|
|
(longlong_t)dn->dn_phys->dn_maxblkid);
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os, object,
|
|
|
|
bonus, bsize);
|
|
|
|
object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object, NULL, 0);
|
2008-11-20 20:01:55 +00:00
|
|
|
*print_header = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (verbosity >= 5)
|
2008-12-03 20:09:06 +00:00
|
|
|
dump_indirect(dn);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
if (verbosity >= 5) {
|
|
|
|
/*
|
|
|
|
* Report the list of segments that comprise the object.
|
|
|
|
*/
|
|
|
|
uint64_t start = 0;
|
|
|
|
uint64_t end;
|
|
|
|
uint64_t blkfill = 1;
|
|
|
|
int minlvl = 1;
|
|
|
|
|
|
|
|
if (dn->dn_type == DMU_OT_DNODE) {
|
|
|
|
minlvl = 0;
|
|
|
|
blkfill = DNODES_PER_BLOCK;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (;;) {
|
2010-05-28 20:45:14 +00:00
|
|
|
char segsize[32];
|
2008-12-03 20:09:06 +00:00
|
|
|
error = dnode_next_offset(dn,
|
|
|
|
0, &start, minlvl, blkfill, 0);
|
2008-11-20 20:01:55 +00:00
|
|
|
if (error)
|
|
|
|
break;
|
|
|
|
end = start;
|
2008-12-03 20:09:06 +00:00
|
|
|
error = dnode_next_offset(dn,
|
|
|
|
DNODE_FIND_HOLE, &end, minlvl, blkfill, 0);
|
2010-05-28 20:45:14 +00:00
|
|
|
zdb_nicenum(end - start, segsize);
|
2008-11-20 20:01:55 +00:00
|
|
|
(void) printf("\t\tsegment [%016llx, %016llx)"
|
|
|
|
" size %5s\n", (u_longlong_t)start,
|
|
|
|
(u_longlong_t)end, segsize);
|
|
|
|
if (error)
|
|
|
|
break;
|
|
|
|
start = end;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (db != NULL)
|
|
|
|
dmu_buf_rele(db, FTAG);
|
|
|
|
}
|
|
|
|
|
|
|
|
static char *objset_types[DMU_OST_NUMTYPES] = {
|
|
|
|
"NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" };
|
|
|
|
|
|
|
|
static void
|
|
|
|
dump_dir(objset_t *os)
|
|
|
|
{
|
|
|
|
dmu_objset_stats_t dds;
|
|
|
|
uint64_t object, object_count;
|
|
|
|
uint64_t refdbytes, usedobjs, scratch;
|
2010-05-28 20:45:14 +00:00
|
|
|
char numbuf[32];
|
2009-07-02 22:44:48 +00:00
|
|
|
char blkbuf[BP_SPRINTF_LEN + 20];
|
2008-11-20 20:01:55 +00:00
|
|
|
char osname[MAXNAMELEN];
|
|
|
|
char *type = "UNKNOWN";
|
|
|
|
int verbosity = dump_opt['d'];
|
|
|
|
int print_header = 1;
|
|
|
|
int i, error;
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
|
2008-11-20 20:01:55 +00:00
|
|
|
dmu_objset_fast_stat(os, &dds);
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
if (dds.dds_type < DMU_OST_NUMTYPES)
|
|
|
|
type = objset_types[dds.dds_type];
|
|
|
|
|
|
|
|
if (dds.dds_type == DMU_OST_META) {
|
|
|
|
dds.dds_creation_txg = TXG_INITIAL;
|
2014-06-05 21:19:08 +00:00
|
|
|
usedobjs = BP_GET_FILL(os->os_rootbp);
|
2015-04-01 15:14:34 +00:00
|
|
|
refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)->
|
|
|
|
dd_used_bytes;
|
2008-11-20 20:01:55 +00:00
|
|
|
} else {
|
|
|
|
dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch);
|
|
|
|
}
|
|
|
|
|
2014-06-05 21:19:08 +00:00
|
|
|
ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp));
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
zdb_nicenum(refdbytes, numbuf);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
if (verbosity >= 4) {
|
2013-12-09 18:37:51 +00:00
|
|
|
(void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp ");
|
|
|
|
(void) snprintf_blkptr(blkbuf + strlen(blkbuf),
|
|
|
|
sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp);
|
2008-11-20 20:01:55 +00:00
|
|
|
} else {
|
|
|
|
blkbuf[0] = '\0';
|
|
|
|
}
|
|
|
|
|
|
|
|
dmu_objset_name(os, osname);
|
|
|
|
|
|
|
|
(void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, "
|
|
|
|
"%s, %llu objects%s\n",
|
|
|
|
osname, type, (u_longlong_t)dmu_objset_id(os),
|
|
|
|
(u_longlong_t)dds.dds_creation_txg,
|
|
|
|
numbuf, (u_longlong_t)usedobjs, blkbuf);
|
|
|
|
|
|
|
|
if (zopt_objects != 0) {
|
|
|
|
for (i = 0; i < zopt_objects; i++)
|
|
|
|
dump_object(os, zopt_object[i], verbosity,
|
|
|
|
&print_header);
|
|
|
|
(void) printf("\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
if (dump_opt['i'] != 0 || verbosity >= 2)
|
|
|
|
dump_intent_log(dmu_objset_zil(os));
|
|
|
|
|
|
|
|
if (dmu_objset_ds(os) != NULL)
|
|
|
|
dump_deadlist(&dmu_objset_ds(os)->ds_deadlist);
|
|
|
|
|
|
|
|
if (verbosity < 2)
|
|
|
|
return;
|
|
|
|
|
2013-12-09 18:37:51 +00:00
|
|
|
if (BP_IS_HOLE(os->os_rootbp))
|
2010-05-28 20:45:14 +00:00
|
|
|
return;
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
dump_object(os, 0, verbosity, &print_header);
|
2009-07-02 22:44:48 +00:00
|
|
|
object_count = 0;
|
2010-08-26 21:24:34 +00:00
|
|
|
if (DMU_USERUSED_DNODE(os) != NULL &&
|
|
|
|
DMU_USERUSED_DNODE(os)->dn_type != 0) {
|
2009-07-02 22:44:48 +00:00
|
|
|
dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header);
|
|
|
|
dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header);
|
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
object = 0;
|
|
|
|
while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) {
|
|
|
|
dump_object(os, object, verbosity, &print_header);
|
|
|
|
object_count++;
|
|
|
|
}
|
|
|
|
|
|
|
|
ASSERT3U(object_count, ==, usedobjs);
|
|
|
|
|
|
|
|
(void) printf("\n");
|
|
|
|
|
2009-07-02 22:44:48 +00:00
|
|
|
if (error != ESRCH) {
|
|
|
|
(void) fprintf(stderr, "dmu_object_next() = %d\n", error);
|
|
|
|
abort();
|
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2010-05-28 20:45:14 +00:00
|
|
|
dump_uberblock(uberblock_t *ub, const char *header, const char *footer)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
|
|
|
time_t timestamp = ub->ub_timestamp;
|
|
|
|
|
2010-08-26 16:52:40 +00:00
|
|
|
(void) printf("%s", header ? header : "");
|
2008-11-20 20:01:55 +00:00
|
|
|
(void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic);
|
|
|
|
(void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version);
|
|
|
|
(void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg);
|
|
|
|
(void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum);
|
|
|
|
(void) printf("\ttimestamp = %llu UTC = %s",
|
|
|
|
(u_longlong_t)ub->ub_timestamp, asctime(localtime(×tamp)));
|
|
|
|
if (dump_opt['u'] >= 3) {
|
|
|
|
char blkbuf[BP_SPRINTF_LEN];
|
2013-12-09 18:37:51 +00:00
|
|
|
snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp);
|
2008-11-20 20:01:55 +00:00
|
|
|
(void) printf("\trootbp = %s\n", blkbuf);
|
|
|
|
}
|
2010-08-26 16:52:40 +00:00
|
|
|
(void) printf("%s", footer ? footer : "");
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2010-05-28 20:45:14 +00:00
|
|
|
dump_config(spa_t *spa)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2010-05-28 20:45:14 +00:00
|
|
|
dmu_buf_t *db;
|
|
|
|
size_t nvsize = 0;
|
|
|
|
int error = 0;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
error = dmu_bonus_hold(spa->spa_meta_objset,
|
|
|
|
spa->spa_config_object, FTAG, &db);
|
|
|
|
|
|
|
|
if (error == 0) {
|
|
|
|
nvsize = *(uint64_t *)db->db_data;
|
|
|
|
dmu_buf_rele(db, FTAG);
|
|
|
|
|
|
|
|
(void) printf("\nMOS Configuration:\n");
|
|
|
|
dump_packed_nvlist(spa->spa_meta_objset,
|
|
|
|
spa->spa_config_object, (void *)&nvsize, 1);
|
|
|
|
} else {
|
|
|
|
(void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d",
|
|
|
|
(u_longlong_t)spa->spa_config_object, error);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2008-12-03 20:09:06 +00:00
|
|
|
dump_cachefile(const char *cachefile)
|
|
|
|
{
|
|
|
|
int fd;
|
|
|
|
struct stat64 statbuf;
|
|
|
|
char *buf;
|
|
|
|
nvlist_t *config;
|
|
|
|
|
|
|
|
if ((fd = open64(cachefile, O_RDONLY)) < 0) {
|
|
|
|
(void) printf("cannot open '%s': %s\n", cachefile,
|
|
|
|
strerror(errno));
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (fstat64(fd, &statbuf) != 0) {
|
|
|
|
(void) printf("failed to stat '%s': %s\n", cachefile,
|
|
|
|
strerror(errno));
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((buf = malloc(statbuf.st_size)) == NULL) {
|
|
|
|
(void) fprintf(stderr, "failed to allocate %llu bytes\n",
|
|
|
|
(u_longlong_t)statbuf.st_size);
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
|
|
|
|
(void) fprintf(stderr, "failed to read %llu bytes\n",
|
|
|
|
(u_longlong_t)statbuf.st_size);
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
(void) close(fd);
|
|
|
|
|
|
|
|
if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) {
|
|
|
|
(void) fprintf(stderr, "failed to unpack nvlist\n");
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
free(buf);
|
|
|
|
|
|
|
|
dump_nvlist(config, 0);
|
|
|
|
|
|
|
|
nvlist_free(config);
|
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
#define ZDB_MAX_UB_HEADER_SIZE 32
|
|
|
|
|
|
|
|
static void
|
|
|
|
dump_label_uberblocks(vdev_label_t *lbl, uint64_t ashift)
|
|
|
|
{
|
|
|
|
vdev_t vd;
|
|
|
|
vdev_t *vdp = &vd;
|
|
|
|
char header[ZDB_MAX_UB_HEADER_SIZE];
|
2010-08-26 16:52:39 +00:00
|
|
|
int i;
|
2010-05-28 20:45:14 +00:00
|
|
|
|
|
|
|
vd.vdev_ashift = ashift;
|
|
|
|
vdp->vdev_top = vdp;
|
|
|
|
|
2010-08-26 16:52:39 +00:00
|
|
|
for (i = 0; i < VDEV_UBERBLOCK_COUNT(vdp); i++) {
|
2010-05-28 20:45:14 +00:00
|
|
|
uint64_t uoff = VDEV_UBERBLOCK_OFFSET(vdp, i);
|
|
|
|
uberblock_t *ub = (void *)((char *)lbl + uoff);
|
|
|
|
|
|
|
|
if (uberblock_verify(ub))
|
|
|
|
continue;
|
|
|
|
(void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE,
|
|
|
|
"Uberblock[%d]\n", i);
|
|
|
|
dump_uberblock(ub, header, "");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
static void
|
|
|
|
dump_label(const char *dev)
|
|
|
|
{
|
|
|
|
int fd;
|
|
|
|
vdev_label_t label;
|
2010-05-28 20:45:14 +00:00
|
|
|
char *path, *buf = label.vl_vdev_phys.vp_nvlist;
|
2008-11-20 20:01:55 +00:00
|
|
|
size_t buflen = sizeof (label.vl_vdev_phys.vp_nvlist);
|
|
|
|
struct stat64 statbuf;
|
2010-05-28 20:45:14 +00:00
|
|
|
uint64_t psize, ashift;
|
|
|
|
int len = strlen(dev) + 1;
|
2010-08-26 16:52:39 +00:00
|
|
|
int l;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
if (strncmp(dev, "/dev/dsk/", 9) == 0) {
|
|
|
|
len++;
|
|
|
|
path = malloc(len);
|
|
|
|
(void) snprintf(path, len, "%s%s", "/dev/rdsk/", dev + 9);
|
|
|
|
} else {
|
|
|
|
path = strdup(dev);
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((fd = open64(path, O_RDONLY)) < 0) {
|
|
|
|
(void) printf("cannot open '%s': %s\n", path, strerror(errno));
|
|
|
|
free(path);
|
2008-11-20 20:01:55 +00:00
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
|
2010-12-14 17:50:37 +00:00
|
|
|
if (fstat64_blk(fd, &statbuf) != 0) {
|
2010-05-28 20:45:14 +00:00
|
|
|
(void) printf("failed to stat '%s': %s\n", path,
|
2008-11-20 20:01:55 +00:00
|
|
|
strerror(errno));
|
2010-05-28 20:45:14 +00:00
|
|
|
free(path);
|
|
|
|
(void) close(fd);
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
psize = statbuf.st_size;
|
|
|
|
psize = P2ALIGN(psize, (uint64_t)sizeof (vdev_label_t));
|
|
|
|
|
2010-08-26 16:52:39 +00:00
|
|
|
for (l = 0; l < VDEV_LABELS; l++) {
|
2008-11-20 20:01:55 +00:00
|
|
|
nvlist_t *config = NULL;
|
|
|
|
|
|
|
|
(void) printf("--------------------------------------------\n");
|
|
|
|
(void) printf("LABEL %d\n", l);
|
|
|
|
(void) printf("--------------------------------------------\n");
|
|
|
|
|
|
|
|
if (pread64(fd, &label, sizeof (label),
|
|
|
|
vdev_label_offset(psize, l, 0)) != sizeof (label)) {
|
|
|
|
(void) printf("failed to read label %d\n", l);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (nvlist_unpack(buf, buflen, &config, 0) != 0) {
|
|
|
|
(void) printf("failed to unpack label %d\n", l);
|
2010-05-28 20:45:14 +00:00
|
|
|
ashift = SPA_MINBLOCKSHIFT;
|
|
|
|
} else {
|
|
|
|
nvlist_t *vdev_tree = NULL;
|
|
|
|
|
|
|
|
dump_nvlist(config, 4);
|
|
|
|
if ((nvlist_lookup_nvlist(config,
|
|
|
|
ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) ||
|
|
|
|
(nvlist_lookup_uint64(vdev_tree,
|
|
|
|
ZPOOL_CONFIG_ASHIFT, &ashift) != 0))
|
|
|
|
ashift = SPA_MINBLOCKSHIFT;
|
|
|
|
nvlist_free(config);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
2010-05-28 20:45:14 +00:00
|
|
|
if (dump_opt['u'])
|
|
|
|
dump_label_uberblocks(&label, ashift);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
2010-05-28 20:45:14 +00:00
|
|
|
|
|
|
|
free(path);
|
|
|
|
(void) close(fd);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2014-11-03 20:15:08 +00:00
|
|
|
static uint64_t num_large_blocks;
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
/*ARGSUSED*/
|
|
|
|
static int
|
2010-05-28 20:45:14 +00:00
|
|
|
dump_one_dir(const char *dsname, void *arg)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
|
|
|
int error;
|
|
|
|
objset_t *os;
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
error = dmu_objset_own(dsname, DMU_OST_ANY, B_TRUE, FTAG, &os);
|
2008-11-20 20:01:55 +00:00
|
|
|
if (error) {
|
2010-05-28 20:45:14 +00:00
|
|
|
(void) printf("Could not open %s, error %d\n", dsname, error);
|
2008-11-20 20:01:55 +00:00
|
|
|
return (0);
|
|
|
|
}
|
2014-11-03 20:15:08 +00:00
|
|
|
if (dmu_objset_ds(os)->ds_large_blocks)
|
|
|
|
num_large_blocks++;
|
2008-11-20 20:01:55 +00:00
|
|
|
dump_dir(os);
|
2010-05-28 20:45:14 +00:00
|
|
|
dmu_objset_disown(os, FTAG);
|
2008-11-20 20:01:55 +00:00
|
|
|
fuid_table_destroy();
|
2010-05-28 20:45:14 +00:00
|
|
|
sa_loaded = B_FALSE;
|
2008-11-20 20:01:55 +00:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2010-05-28 20:45:14 +00:00
|
|
|
* Block statistics.
|
2008-11-20 20:01:55 +00:00
|
|
|
*/
|
2014-11-03 20:15:08 +00:00
|
|
|
#define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2)
|
2008-11-20 20:01:55 +00:00
|
|
|
typedef struct zdb_blkstats {
|
2013-03-24 21:24:51 +00:00
|
|
|
uint64_t zb_asize;
|
|
|
|
uint64_t zb_lsize;
|
|
|
|
uint64_t zb_psize;
|
|
|
|
uint64_t zb_count;
|
2014-11-03 19:12:40 +00:00
|
|
|
uint64_t zb_gangs;
|
|
|
|
uint64_t zb_ditto_samevdev;
|
2013-03-24 21:24:51 +00:00
|
|
|
uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE];
|
2008-11-20 20:01:55 +00:00
|
|
|
} zdb_blkstats_t;
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
/*
|
|
|
|
* Extended object types to report deferred frees and dedup auto-ditto blocks.
|
|
|
|
*/
|
|
|
|
#define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0)
|
|
|
|
#define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1)
|
2012-12-13 23:24:15 +00:00
|
|
|
#define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2)
|
|
|
|
#define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3)
|
2010-05-28 20:45:14 +00:00
|
|
|
|
|
|
|
static char *zdb_ot_extname[] = {
|
|
|
|
"deferred free",
|
|
|
|
"dedup ditto",
|
2012-12-13 23:24:15 +00:00
|
|
|
"other",
|
2010-05-28 20:45:14 +00:00
|
|
|
"Total",
|
|
|
|
};
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
#define ZB_TOTAL DN_MAX_LEVELS
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
typedef struct zdb_cb {
|
2010-05-28 20:45:14 +00:00
|
|
|
zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1];
|
|
|
|
uint64_t zcb_dedup_asize;
|
|
|
|
uint64_t zcb_dedup_blocks;
|
2014-06-05 21:19:08 +00:00
|
|
|
uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES];
|
|
|
|
uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES]
|
|
|
|
[BPE_PAYLOAD_SIZE];
|
2013-03-24 21:24:51 +00:00
|
|
|
uint64_t zcb_start;
|
|
|
|
uint64_t zcb_lastprint;
|
|
|
|
uint64_t zcb_totalasize;
|
2008-11-20 20:01:55 +00:00
|
|
|
uint64_t zcb_errors[256];
|
|
|
|
int zcb_readfails;
|
|
|
|
int zcb_haderrors;
|
2010-05-28 20:45:14 +00:00
|
|
|
spa_t *zcb_spa;
|
2008-11-20 20:01:55 +00:00
|
|
|
} zdb_cb_t;
|
|
|
|
|
|
|
|
static void
|
2010-05-28 20:45:14 +00:00
|
|
|
zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp,
|
|
|
|
dmu_object_type_t type)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2010-05-28 20:45:14 +00:00
|
|
|
uint64_t refcnt = 0;
|
2010-08-26 16:52:39 +00:00
|
|
|
int i;
|
2010-05-28 20:45:14 +00:00
|
|
|
|
|
|
|
ASSERT(type < ZDB_OT_TOTAL);
|
|
|
|
|
|
|
|
if (zilog && zil_bp_tree_add(zilog, bp) != 0)
|
|
|
|
return;
|
|
|
|
|
2010-08-26 16:52:39 +00:00
|
|
|
for (i = 0; i < 4; i++) {
|
2008-11-20 20:01:55 +00:00
|
|
|
int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL;
|
2010-05-28 20:45:14 +00:00
|
|
|
int t = (i & 1) ? type : ZDB_OT_TOTAL;
|
2014-11-03 19:12:40 +00:00
|
|
|
int equal;
|
2008-11-20 20:01:55 +00:00
|
|
|
zdb_blkstats_t *zb = &zcb->zcb_type[l][t];
|
|
|
|
|
|
|
|
zb->zb_asize += BP_GET_ASIZE(bp);
|
|
|
|
zb->zb_lsize += BP_GET_LSIZE(bp);
|
|
|
|
zb->zb_psize += BP_GET_PSIZE(bp);
|
|
|
|
zb->zb_count++;
|
2014-11-03 20:15:08 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The histogram is only big enough to record blocks up to
|
|
|
|
* SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last,
|
|
|
|
* "other", bucket.
|
|
|
|
*/
|
|
|
|
int idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT;
|
|
|
|
idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1);
|
|
|
|
zb->zb_psize_histogram[idx]++;
|
2014-11-03 19:12:40 +00:00
|
|
|
|
|
|
|
zb->zb_gangs += BP_COUNT_GANG(bp);
|
|
|
|
|
|
|
|
switch (BP_GET_NDVAS(bp)) {
|
|
|
|
case 2:
|
|
|
|
if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
|
|
|
|
DVA_GET_VDEV(&bp->blk_dva[1]))
|
|
|
|
zb->zb_ditto_samevdev++;
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
|
|
|
|
DVA_GET_VDEV(&bp->blk_dva[1])) +
|
|
|
|
(DVA_GET_VDEV(&bp->blk_dva[0]) ==
|
|
|
|
DVA_GET_VDEV(&bp->blk_dva[2])) +
|
|
|
|
(DVA_GET_VDEV(&bp->blk_dva[1]) ==
|
|
|
|
DVA_GET_VDEV(&bp->blk_dva[2]));
|
|
|
|
if (equal != 0)
|
|
|
|
zb->zb_ditto_samevdev++;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2014-06-05 21:19:08 +00:00
|
|
|
if (BP_IS_EMBEDDED(bp)) {
|
|
|
|
zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++;
|
|
|
|
zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)]
|
|
|
|
[BPE_GET_PSIZE(bp)]++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
if (dump_opt['L'])
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (BP_GET_DEDUP(bp)) {
|
|
|
|
ddt_t *ddt;
|
|
|
|
ddt_entry_t *dde;
|
|
|
|
|
|
|
|
ddt = ddt_select(zcb->zcb_spa, bp);
|
|
|
|
ddt_enter(ddt);
|
|
|
|
dde = ddt_lookup(ddt, bp, B_FALSE);
|
|
|
|
|
|
|
|
if (dde == NULL) {
|
|
|
|
refcnt = 0;
|
|
|
|
} else {
|
|
|
|
ddt_phys_t *ddp = ddt_phys_select(dde, bp);
|
|
|
|
ddt_phys_decref(ddp);
|
|
|
|
refcnt = ddp->ddp_refcnt;
|
|
|
|
if (ddt_phys_total_refcnt(dde) == 0)
|
|
|
|
ddt_remove(ddt, dde);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
2010-05-28 20:45:14 +00:00
|
|
|
ddt_exit(ddt);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
VERIFY3U(zio_wait(zio_claim(NULL, zcb->zcb_spa,
|
|
|
|
refcnt ? 0 : spa_first_txg(zcb->zcb_spa),
|
|
|
|
bp, NULL, NULL, ZIO_FLAG_CANFAIL)), ==, 0);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2013-05-02 23:36:32 +00:00
|
|
|
static void
|
|
|
|
zdb_blkptr_done(zio_t *zio)
|
|
|
|
{
|
|
|
|
spa_t *spa = zio->io_spa;
|
|
|
|
blkptr_t *bp = zio->io_bp;
|
|
|
|
int ioerr = zio->io_error;
|
|
|
|
zdb_cb_t *zcb = zio->io_private;
|
2014-06-25 18:37:59 +00:00
|
|
|
zbookmark_phys_t *zb = &zio->io_bookmark;
|
2013-05-02 23:36:32 +00:00
|
|
|
|
|
|
|
zio_data_buf_free(zio->io_data, zio->io_size);
|
|
|
|
|
|
|
|
mutex_enter(&spa->spa_scrub_lock);
|
|
|
|
spa->spa_scrub_inflight--;
|
|
|
|
cv_broadcast(&spa->spa_scrub_io_cv);
|
|
|
|
|
|
|
|
if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
|
|
|
|
char blkbuf[BP_SPRINTF_LEN];
|
|
|
|
|
|
|
|
zcb->zcb_haderrors = 1;
|
|
|
|
zcb->zcb_errors[ioerr]++;
|
|
|
|
|
|
|
|
if (dump_opt['b'] >= 2)
|
2013-12-09 18:37:51 +00:00
|
|
|
snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
|
2013-05-02 23:36:32 +00:00
|
|
|
else
|
|
|
|
blkbuf[0] = '\0';
|
|
|
|
|
|
|
|
(void) printf("zdb_blkptr_cb: "
|
|
|
|
"Got error %d reading "
|
|
|
|
"<%llu, %llu, %lld, %llx> %s -- skipping\n",
|
|
|
|
ioerr,
|
|
|
|
(u_longlong_t)zb->zb_objset,
|
|
|
|
(u_longlong_t)zb->zb_object,
|
|
|
|
(u_longlong_t)zb->zb_level,
|
|
|
|
(u_longlong_t)zb->zb_blkid,
|
|
|
|
blkbuf);
|
|
|
|
}
|
|
|
|
mutex_exit(&spa->spa_scrub_lock);
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
static int
|
2013-07-02 20:26:24 +00:00
|
|
|
zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
|
2014-06-25 18:37:59 +00:00
|
|
|
const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
|
|
|
zdb_cb_t *zcb = arg;
|
2009-07-02 22:44:48 +00:00
|
|
|
dmu_object_type_t type;
|
2010-05-28 20:45:14 +00:00
|
|
|
boolean_t is_metadata;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-12-09 18:37:51 +00:00
|
|
|
if (dump_opt['b'] >= 5 && bp->blk_birth > 0) {
|
|
|
|
char blkbuf[BP_SPRINTF_LEN];
|
|
|
|
snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
|
|
|
|
(void) printf("objset %llu object %llu "
|
|
|
|
"level %lld offset 0x%llx %s\n",
|
|
|
|
(u_longlong_t)zb->zb_objset,
|
|
|
|
(u_longlong_t)zb->zb_object,
|
|
|
|
(longlong_t)zb->zb_level,
|
|
|
|
(u_longlong_t)blkid2offset(dnp, bp, zb),
|
|
|
|
blkbuf);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (BP_IS_HOLE(bp))
|
2008-12-03 20:09:06 +00:00
|
|
|
return (0);
|
|
|
|
|
2009-07-02 22:44:48 +00:00
|
|
|
type = BP_GET_TYPE(bp);
|
|
|
|
|
2012-12-13 23:24:15 +00:00
|
|
|
zdb_count_block(zcb, zilog, bp,
|
|
|
|
(type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type);
|
2008-12-03 20:09:06 +00:00
|
|
|
|
2012-12-13 23:24:15 +00:00
|
|
|
is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type));
|
2010-05-28 20:45:14 +00:00
|
|
|
|
2014-06-05 21:19:08 +00:00
|
|
|
if (!BP_IS_EMBEDDED(bp) &&
|
|
|
|
(dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) {
|
2010-05-28 20:45:14 +00:00
|
|
|
size_t size = BP_GET_PSIZE(bp);
|
2013-05-02 23:36:32 +00:00
|
|
|
void *data = zio_data_buf_alloc(size);
|
2010-05-28 20:45:14 +00:00
|
|
|
int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW;
|
2009-07-02 22:44:48 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
/* If it's an intent log block, failure is expected. */
|
|
|
|
if (zb->zb_level == ZB_ZIL_LEVEL)
|
|
|
|
flags |= ZIO_FLAG_SPECULATIVE;
|
2008-12-03 20:09:06 +00:00
|
|
|
|
2013-05-02 23:36:32 +00:00
|
|
|
mutex_enter(&spa->spa_scrub_lock);
|
|
|
|
while (spa->spa_scrub_inflight > max_inflight)
|
|
|
|
cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
|
|
|
|
spa->spa_scrub_inflight++;
|
|
|
|
mutex_exit(&spa->spa_scrub_lock);
|
2010-05-28 20:45:14 +00:00
|
|
|
|
2013-05-02 23:36:32 +00:00
|
|
|
zio_nowait(zio_read(NULL, spa, bp, data, size,
|
|
|
|
zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb));
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
zcb->zcb_readfails = 0;
|
|
|
|
|
2014-09-16 20:24:48 +00:00
|
|
|
if (dump_opt['b'] < 5 &&
|
2013-03-24 21:24:51 +00:00
|
|
|
gethrtime() > zcb->zcb_lastprint + NANOSEC) {
|
|
|
|
uint64_t now = gethrtime();
|
|
|
|
char buf[10];
|
|
|
|
uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize;
|
|
|
|
int kb_per_sec =
|
|
|
|
1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000));
|
|
|
|
int sec_remaining =
|
|
|
|
(zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec;
|
|
|
|
|
|
|
|
zfs_nicenum(bytes, buf, sizeof (buf));
|
|
|
|
(void) fprintf(stderr,
|
|
|
|
"\r%5s completed (%4dMB/s) "
|
|
|
|
"estimated time remaining: %uhr %02umin %02usec ",
|
|
|
|
buf, kb_per_sec / 1024,
|
|
|
|
sec_remaining / 60 / 60,
|
|
|
|
sec_remaining / 60 % 60,
|
|
|
|
sec_remaining % 60);
|
|
|
|
|
|
|
|
zcb->zcb_lastprint = now;
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
static void
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
zdb_leak(void *arg, uint64_t start, uint64_t size)
|
2010-05-28 20:45:14 +00:00
|
|
|
{
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
vdev_t *vd = arg;
|
2010-05-28 20:45:14 +00:00
|
|
|
|
|
|
|
(void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n",
|
|
|
|
(u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size);
|
|
|
|
}
|
|
|
|
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
static metaslab_ops_t zdb_metaslab_ops = {
|
2014-07-19 20:19:24 +00:00
|
|
|
NULL /* alloc */
|
2010-05-28 20:45:14 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
static void
|
|
|
|
zdb_ddt_leak_init(spa_t *spa, zdb_cb_t *zcb)
|
|
|
|
{
|
|
|
|
ddt_bookmark_t ddb = { 0 };
|
|
|
|
ddt_entry_t dde;
|
|
|
|
int error;
|
2010-08-26 16:52:39 +00:00
|
|
|
int p;
|
2010-05-28 20:45:14 +00:00
|
|
|
|
|
|
|
while ((error = ddt_walk(spa, &ddb, &dde)) == 0) {
|
|
|
|
blkptr_t blk;
|
|
|
|
ddt_phys_t *ddp = dde.dde_phys;
|
|
|
|
|
|
|
|
if (ddb.ddb_class == DDT_CLASS_UNIQUE)
|
|
|
|
return;
|
|
|
|
|
|
|
|
ASSERT(ddt_phys_total_refcnt(&dde) > 1);
|
|
|
|
|
2010-08-26 16:52:39 +00:00
|
|
|
for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
|
2010-05-28 20:45:14 +00:00
|
|
|
if (ddp->ddp_phys_birth == 0)
|
|
|
|
continue;
|
|
|
|
ddt_bp_create(ddb.ddb_checksum,
|
|
|
|
&dde.dde_key, ddp, &blk);
|
|
|
|
if (p == DDT_PHYS_DITTO) {
|
|
|
|
zdb_count_block(zcb, NULL, &blk, ZDB_OT_DITTO);
|
|
|
|
} else {
|
|
|
|
zcb->zcb_dedup_asize +=
|
|
|
|
BP_GET_ASIZE(&blk) * (ddp->ddp_refcnt - 1);
|
|
|
|
zcb->zcb_dedup_blocks++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (!dump_opt['L']) {
|
|
|
|
ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum];
|
|
|
|
ddt_enter(ddt);
|
|
|
|
VERIFY(ddt_lookup(ddt, &blk, B_TRUE) != NULL);
|
|
|
|
ddt_exit(ddt);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ASSERT(error == ENOENT);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
zdb_leak_init(spa_t *spa, zdb_cb_t *zcb)
|
|
|
|
{
|
|
|
|
zcb->zcb_spa = spa;
|
2014-09-16 20:24:48 +00:00
|
|
|
uint64_t c, m;
|
2010-05-28 20:45:14 +00:00
|
|
|
|
|
|
|
if (!dump_opt['L']) {
|
|
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
2010-08-26 16:52:39 +00:00
|
|
|
for (c = 0; c < rvd->vdev_children; c++) {
|
2010-05-28 20:45:14 +00:00
|
|
|
vdev_t *vd = rvd->vdev_child[c];
|
2010-08-26 16:52:39 +00:00
|
|
|
for (m = 0; m < vd->vdev_ms_count; m++) {
|
2010-05-28 20:45:14 +00:00
|
|
|
metaslab_t *msp = vd->vdev_ms[m];
|
|
|
|
mutex_enter(&msp->ms_lock);
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
metaslab_unload(msp);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* For leak detection, we overload the metaslab
|
|
|
|
* ms_tree to contain allocated segments
|
|
|
|
* instead of free segments. As a result,
|
|
|
|
* we can't use the normal metaslab_load/unload
|
|
|
|
* interfaces.
|
|
|
|
*/
|
|
|
|
if (msp->ms_sm != NULL) {
|
2014-09-16 20:24:48 +00:00
|
|
|
(void) fprintf(stderr,
|
|
|
|
"\rloading space map for "
|
|
|
|
"vdev %llu of %llu, "
|
|
|
|
"metaslab %llu of %llu ...",
|
|
|
|
(longlong_t)c,
|
|
|
|
(longlong_t)rvd->vdev_children,
|
|
|
|
(longlong_t)m,
|
|
|
|
(longlong_t)vd->vdev_ms_count);
|
|
|
|
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
msp->ms_ops = &zdb_metaslab_ops;
|
|
|
|
VERIFY0(space_map_load(msp->ms_sm,
|
|
|
|
msp->ms_tree, SM_ALLOC));
|
|
|
|
msp->ms_loaded = B_TRUE;
|
|
|
|
}
|
2010-05-28 20:45:14 +00:00
|
|
|
mutex_exit(&msp->ms_lock);
|
|
|
|
}
|
|
|
|
}
|
2014-09-16 20:24:48 +00:00
|
|
|
(void) fprintf(stderr, "\n");
|
2010-05-28 20:45:14 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
|
|
|
|
|
|
|
|
zdb_ddt_leak_init(spa, zcb);
|
|
|
|
|
|
|
|
spa_config_exit(spa, SCL_CONFIG, FTAG);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
zdb_leak_fini(spa_t *spa)
|
|
|
|
{
|
2010-08-26 16:52:39 +00:00
|
|
|
int c, m;
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
if (!dump_opt['L']) {
|
|
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
2010-08-26 16:52:39 +00:00
|
|
|
for (c = 0; c < rvd->vdev_children; c++) {
|
2010-05-28 20:45:14 +00:00
|
|
|
vdev_t *vd = rvd->vdev_child[c];
|
2010-08-26 16:52:39 +00:00
|
|
|
for (m = 0; m < vd->vdev_ms_count; m++) {
|
2010-05-28 20:45:14 +00:00
|
|
|
metaslab_t *msp = vd->vdev_ms[m];
|
|
|
|
mutex_enter(&msp->ms_lock);
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The ms_tree has been overloaded to
|
|
|
|
* contain allocated segments. Now that we
|
|
|
|
* finished traversing all blocks, any
|
|
|
|
* block that remains in the ms_tree
|
|
|
|
* represents an allocated block that we
|
|
|
|
* did not claim during the traversal.
|
|
|
|
* Claimed blocks would have been removed
|
|
|
|
* from the ms_tree.
|
|
|
|
*/
|
|
|
|
range_tree_vacate(msp->ms_tree, zdb_leak, vd);
|
|
|
|
msp->ms_loaded = B_FALSE;
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
mutex_exit(&msp->ms_lock);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* ARGSUSED */
|
|
|
|
static int
|
|
|
|
count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
zdb_cb_t *zcb = arg;
|
|
|
|
|
2013-03-24 21:24:51 +00:00
|
|
|
if (dump_opt['b'] >= 5) {
|
2010-05-28 20:45:14 +00:00
|
|
|
char blkbuf[BP_SPRINTF_LEN];
|
2013-12-09 18:37:51 +00:00
|
|
|
snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
|
2010-05-28 20:45:14 +00:00
|
|
|
(void) printf("[%s] %s\n",
|
|
|
|
"deferred free", blkbuf);
|
|
|
|
}
|
|
|
|
zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
static int
|
|
|
|
dump_block_stats(spa_t *spa)
|
|
|
|
{
|
2010-08-26 16:52:41 +00:00
|
|
|
zdb_cb_t zcb;
|
2008-11-20 20:01:55 +00:00
|
|
|
zdb_blkstats_t *zb, *tzb;
|
2010-05-28 20:45:14 +00:00
|
|
|
uint64_t norm_alloc, norm_space, total_alloc, total_found;
|
|
|
|
int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | TRAVERSE_HARD;
|
2014-06-05 21:19:08 +00:00
|
|
|
boolean_t leaks = B_FALSE;
|
2014-09-17 06:59:43 +00:00
|
|
|
int e, c;
|
2014-06-05 21:19:08 +00:00
|
|
|
bp_embedded_type_t i;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-03-24 21:24:51 +00:00
|
|
|
(void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n",
|
2010-05-28 20:45:14 +00:00
|
|
|
(dump_opt['c'] || !dump_opt['L']) ? "to verify " : "",
|
|
|
|
(dump_opt['c'] == 1) ? "metadata " : "",
|
|
|
|
dump_opt['c'] ? "checksums " : "",
|
|
|
|
(dump_opt['c'] && !dump_opt['L']) ? "and verify " : "",
|
|
|
|
!dump_opt['L'] ? "nothing leaked " : "");
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
/*
|
2008-12-03 20:09:06 +00:00
|
|
|
* Load all space maps as SM_ALLOC maps, then traverse the pool
|
|
|
|
* claiming each block we discover. If the pool is perfectly
|
|
|
|
* consistent, the space maps will be empty when we're done.
|
|
|
|
* Anything left over is a leak; any block we can't claim (because
|
|
|
|
* it's not part of any space map) is a double allocation,
|
|
|
|
* reference to a freed block, or an unclaimed log block.
|
2008-11-20 20:01:55 +00:00
|
|
|
*/
|
2013-11-01 19:26:11 +00:00
|
|
|
bzero(&zcb, sizeof (zdb_cb_t));
|
2010-05-28 20:45:14 +00:00
|
|
|
zdb_leak_init(spa, &zcb);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If there's a deferred-free bplist, process that first.
|
|
|
|
*/
|
2010-05-28 20:45:14 +00:00
|
|
|
(void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj,
|
|
|
|
count_block_cb, &zcb, NULL);
|
2013-09-04 12:00:57 +00:00
|
|
|
if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
|
|
|
|
(void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj,
|
|
|
|
count_block_cb, &zcb, NULL);
|
|
|
|
}
|
2013-10-08 17:13:05 +00:00
|
|
|
if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
|
2012-12-13 23:24:15 +00:00
|
|
|
VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset,
|
|
|
|
spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb,
|
|
|
|
&zcb, NULL));
|
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
if (dump_opt['c'] > 1)
|
|
|
|
flags |= TRAVERSE_PREFETCH_DATA;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-03-24 21:24:51 +00:00
|
|
|
zcb.zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa));
|
|
|
|
zcb.zcb_start = zcb.zcb_lastprint = gethrtime();
|
2010-05-28 20:45:14 +00:00
|
|
|
zcb.zcb_haderrors |= traverse_pool(spa, 0, flags, zdb_blkptr_cb, &zcb);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-05-02 23:36:32 +00:00
|
|
|
/*
|
|
|
|
* If we've traversed the data blocks then we need to wait for those
|
|
|
|
* I/Os to complete. We leverage "The Godfather" zio to wait on
|
|
|
|
* all async I/Os to complete.
|
|
|
|
*/
|
|
|
|
if (dump_opt['c']) {
|
2014-09-17 06:59:43 +00:00
|
|
|
for (c = 0; c < max_ncpus; c++) {
|
|
|
|
(void) zio_wait(spa->spa_async_zio_root[c]);
|
|
|
|
spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL,
|
|
|
|
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
|
|
|
|
ZIO_FLAG_GODFATHER);
|
|
|
|
}
|
2013-05-02 23:36:32 +00:00
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
if (zcb.zcb_haderrors) {
|
2008-11-20 20:01:55 +00:00
|
|
|
(void) printf("\nError counts:\n\n");
|
|
|
|
(void) printf("\t%5s %s\n", "errno", "count");
|
2010-08-26 16:52:39 +00:00
|
|
|
for (e = 0; e < 256; e++) {
|
2008-11-20 20:01:55 +00:00
|
|
|
if (zcb.zcb_errors[e] != 0) {
|
|
|
|
(void) printf("\t%5d %llu\n",
|
|
|
|
e, (u_longlong_t)zcb.zcb_errors[e]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Report any leaked segments.
|
|
|
|
*/
|
2010-05-28 20:45:14 +00:00
|
|
|
zdb_leak_fini(spa);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
tzb = &zcb.zcb_type[ZB_TOTAL][ZDB_OT_TOTAL];
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
|
|
|
|
norm_space = metaslab_class_get_space(spa_normal_class(spa));
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
total_alloc = norm_alloc + metaslab_class_get_alloc(spa_log_class(spa));
|
|
|
|
total_found = tzb->zb_asize - zcb.zcb_dedup_asize;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
if (total_found == total_alloc) {
|
2009-01-15 21:59:39 +00:00
|
|
|
if (!dump_opt['L'])
|
|
|
|
(void) printf("\n\tNo leaks (block sum matches space"
|
|
|
|
" maps exactly)\n");
|
2008-11-20 20:01:55 +00:00
|
|
|
} else {
|
|
|
|
(void) printf("block traversal size %llu != alloc %llu "
|
2009-01-15 21:59:39 +00:00
|
|
|
"(%s %lld)\n",
|
2010-05-28 20:45:14 +00:00
|
|
|
(u_longlong_t)total_found,
|
|
|
|
(u_longlong_t)total_alloc,
|
2009-01-15 21:59:39 +00:00
|
|
|
(dump_opt['L']) ? "unreachable" : "leaked",
|
2010-05-28 20:45:14 +00:00
|
|
|
(longlong_t)(total_alloc - total_found));
|
2014-06-05 21:19:08 +00:00
|
|
|
leaks = B_TRUE;
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (tzb->zb_count == 0)
|
|
|
|
return (2);
|
|
|
|
|
|
|
|
(void) printf("\n");
|
|
|
|
(void) printf("\tbp count: %10llu\n",
|
|
|
|
(u_longlong_t)tzb->zb_count);
|
2014-11-03 19:12:40 +00:00
|
|
|
(void) printf("\tganged count: %10llu\n",
|
|
|
|
(longlong_t)tzb->zb_gangs);
|
2010-05-28 20:45:14 +00:00
|
|
|
(void) printf("\tbp logical: %10llu avg: %6llu\n",
|
2008-11-20 20:01:55 +00:00
|
|
|
(u_longlong_t)tzb->zb_lsize,
|
|
|
|
(u_longlong_t)(tzb->zb_lsize / tzb->zb_count));
|
2010-05-28 20:45:14 +00:00
|
|
|
(void) printf("\tbp physical: %10llu avg:"
|
|
|
|
" %6llu compression: %6.2f\n",
|
2008-11-20 20:01:55 +00:00
|
|
|
(u_longlong_t)tzb->zb_psize,
|
|
|
|
(u_longlong_t)(tzb->zb_psize / tzb->zb_count),
|
|
|
|
(double)tzb->zb_lsize / tzb->zb_psize);
|
2010-05-28 20:45:14 +00:00
|
|
|
(void) printf("\tbp allocated: %10llu avg:"
|
|
|
|
" %6llu compression: %6.2f\n",
|
2008-11-20 20:01:55 +00:00
|
|
|
(u_longlong_t)tzb->zb_asize,
|
|
|
|
(u_longlong_t)(tzb->zb_asize / tzb->zb_count),
|
|
|
|
(double)tzb->zb_lsize / tzb->zb_asize);
|
2010-05-28 20:45:14 +00:00
|
|
|
(void) printf("\tbp deduped: %10llu ref>1:"
|
|
|
|
" %6llu deduplication: %6.2f\n",
|
|
|
|
(u_longlong_t)zcb.zcb_dedup_asize,
|
|
|
|
(u_longlong_t)zcb.zcb_dedup_blocks,
|
|
|
|
(double)zcb.zcb_dedup_asize / tzb->zb_asize + 1.0);
|
|
|
|
(void) printf("\tSPA allocated: %10llu used: %5.2f%%\n",
|
|
|
|
(u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2014-06-05 21:19:08 +00:00
|
|
|
for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) {
|
|
|
|
if (zcb.zcb_embedded_blocks[i] == 0)
|
|
|
|
continue;
|
|
|
|
(void) printf("\n");
|
|
|
|
(void) printf("\tadditional, non-pointer bps of type %u: "
|
|
|
|
"%10llu\n",
|
|
|
|
i, (u_longlong_t)zcb.zcb_embedded_blocks[i]);
|
|
|
|
|
|
|
|
if (dump_opt['b'] >= 3) {
|
|
|
|
(void) printf("\t number of (compressed) bytes: "
|
|
|
|
"number of bps\n");
|
|
|
|
dump_histogram(zcb.zcb_embedded_histogram[i],
|
|
|
|
sizeof (zcb.zcb_embedded_histogram[i]) /
|
|
|
|
sizeof (zcb.zcb_embedded_histogram[i][0]), 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-11-03 19:12:40 +00:00
|
|
|
if (tzb->zb_ditto_samevdev != 0) {
|
|
|
|
(void) printf("\tDittoed blocks on same vdev: %llu\n",
|
|
|
|
(longlong_t)tzb->zb_ditto_samevdev);
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
if (dump_opt['b'] >= 2) {
|
|
|
|
int l, t, level;
|
|
|
|
(void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE"
|
|
|
|
"\t avg\t comp\t%%Total\tType\n");
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
for (t = 0; t <= ZDB_OT_TOTAL; t++) {
|
|
|
|
char csize[32], lsize[32], psize[32], asize[32];
|
2014-11-03 19:12:40 +00:00
|
|
|
char avg[32], gang[32];
|
2008-11-20 20:01:55 +00:00
|
|
|
char *typename;
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
if (t < DMU_OT_NUMTYPES)
|
|
|
|
typename = dmu_ot[t].ot_name;
|
|
|
|
else
|
|
|
|
typename = zdb_ot_extname[t - DMU_OT_NUMTYPES];
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
if (zcb.zcb_type[ZB_TOTAL][t].zb_asize == 0) {
|
|
|
|
(void) printf("%6s\t%5s\t%5s\t%5s"
|
|
|
|
"\t%5s\t%5s\t%6s\t%s\n",
|
|
|
|
"-",
|
|
|
|
"-",
|
|
|
|
"-",
|
|
|
|
"-",
|
|
|
|
"-",
|
|
|
|
"-",
|
|
|
|
"-",
|
|
|
|
typename);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (l = ZB_TOTAL - 1; l >= -1; l--) {
|
|
|
|
level = (l == -1 ? ZB_TOTAL : l);
|
|
|
|
zb = &zcb.zcb_type[level][t];
|
|
|
|
|
|
|
|
if (zb->zb_asize == 0)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (dump_opt['b'] < 3 && level != ZB_TOTAL)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (level == 0 && zb->zb_asize ==
|
|
|
|
zcb.zcb_type[ZB_TOTAL][t].zb_asize)
|
|
|
|
continue;
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
zdb_nicenum(zb->zb_count, csize);
|
|
|
|
zdb_nicenum(zb->zb_lsize, lsize);
|
|
|
|
zdb_nicenum(zb->zb_psize, psize);
|
|
|
|
zdb_nicenum(zb->zb_asize, asize);
|
|
|
|
zdb_nicenum(zb->zb_asize / zb->zb_count, avg);
|
2014-11-03 19:12:40 +00:00
|
|
|
zdb_nicenum(zb->zb_gangs, gang);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
(void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
|
|
|
|
"\t%5.2f\t%6.2f\t",
|
|
|
|
csize, lsize, psize, asize, avg,
|
|
|
|
(double)zb->zb_lsize / zb->zb_psize,
|
|
|
|
100.0 * zb->zb_asize / tzb->zb_asize);
|
|
|
|
|
|
|
|
if (level == ZB_TOTAL)
|
|
|
|
(void) printf("%s\n", typename);
|
|
|
|
else
|
|
|
|
(void) printf(" L%d %s\n",
|
|
|
|
level, typename);
|
2013-03-24 21:24:51 +00:00
|
|
|
|
2014-11-03 19:12:40 +00:00
|
|
|
if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) {
|
|
|
|
(void) printf("\t number of ganged "
|
|
|
|
"blocks: %s\n", gang);
|
|
|
|
}
|
|
|
|
|
2013-03-24 21:24:51 +00:00
|
|
|
if (dump_opt['b'] >= 4) {
|
|
|
|
(void) printf("psize "
|
|
|
|
"(in 512-byte sectors): "
|
|
|
|
"number of blocks\n");
|
|
|
|
dump_histogram(zb->zb_psize_histogram,
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
PSIZE_HISTO_SIZE, 0);
|
2013-03-24 21:24:51 +00:00
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
(void) printf("\n");
|
|
|
|
|
|
|
|
if (leaks)
|
|
|
|
return (2);
|
|
|
|
|
|
|
|
if (zcb.zcb_haderrors)
|
|
|
|
return (3);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
typedef struct zdb_ddt_entry {
|
|
|
|
ddt_key_t zdde_key;
|
|
|
|
uint64_t zdde_ref_blocks;
|
|
|
|
uint64_t zdde_ref_lsize;
|
|
|
|
uint64_t zdde_ref_psize;
|
|
|
|
uint64_t zdde_ref_dsize;
|
|
|
|
avl_node_t zdde_node;
|
|
|
|
} zdb_ddt_entry_t;
|
|
|
|
|
|
|
|
/* ARGSUSED */
|
|
|
|
static int
|
|
|
|
zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
|
2014-06-25 18:37:59 +00:00
|
|
|
const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
|
2010-05-28 20:45:14 +00:00
|
|
|
{
|
|
|
|
avl_tree_t *t = arg;
|
|
|
|
avl_index_t where;
|
|
|
|
zdb_ddt_entry_t *zdde, zdde_search;
|
|
|
|
|
2014-06-05 21:19:08 +00:00
|
|
|
if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
|
2010-05-28 20:45:14 +00:00
|
|
|
return (0);
|
|
|
|
|
|
|
|
if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) {
|
|
|
|
(void) printf("traversing objset %llu, %llu objects, "
|
|
|
|
"%lu blocks so far\n",
|
|
|
|
(u_longlong_t)zb->zb_objset,
|
2014-06-05 21:19:08 +00:00
|
|
|
(u_longlong_t)BP_GET_FILL(bp),
|
2010-05-28 20:45:14 +00:00
|
|
|
avl_numnodes(t));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF ||
|
2012-12-13 23:24:15 +00:00
|
|
|
BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp)))
|
2010-05-28 20:45:14 +00:00
|
|
|
return (0);
|
|
|
|
|
|
|
|
ddt_key_fill(&zdde_search.zdde_key, bp);
|
|
|
|
|
|
|
|
zdde = avl_find(t, &zdde_search, &where);
|
|
|
|
|
|
|
|
if (zdde == NULL) {
|
|
|
|
zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL);
|
|
|
|
zdde->zdde_key = zdde_search.zdde_key;
|
|
|
|
avl_insert(t, zdde, where);
|
|
|
|
}
|
|
|
|
|
|
|
|
zdde->zdde_ref_blocks += 1;
|
|
|
|
zdde->zdde_ref_lsize += BP_GET_LSIZE(bp);
|
|
|
|
zdde->zdde_ref_psize += BP_GET_PSIZE(bp);
|
|
|
|
zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
dump_simulated_ddt(spa_t *spa)
|
|
|
|
{
|
|
|
|
avl_tree_t t;
|
|
|
|
void *cookie = NULL;
|
|
|
|
zdb_ddt_entry_t *zdde;
|
2010-08-26 16:52:41 +00:00
|
|
|
ddt_histogram_t ddh_total;
|
|
|
|
ddt_stat_t dds_total;
|
|
|
|
|
|
|
|
bzero(&ddh_total, sizeof (ddt_histogram_t));
|
|
|
|
bzero(&dds_total, sizeof (ddt_stat_t));
|
2010-05-28 20:45:14 +00:00
|
|
|
|
|
|
|
avl_create(&t, ddt_entry_compare,
|
|
|
|
sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node));
|
|
|
|
|
|
|
|
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
|
|
|
|
|
|
|
|
(void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
|
|
|
|
zdb_ddt_add_cb, &t);
|
|
|
|
|
|
|
|
spa_config_exit(spa, SCL_CONFIG, FTAG);
|
|
|
|
|
|
|
|
while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) {
|
|
|
|
ddt_stat_t dds;
|
|
|
|
uint64_t refcnt = zdde->zdde_ref_blocks;
|
|
|
|
ASSERT(refcnt != 0);
|
|
|
|
|
|
|
|
dds.dds_blocks = zdde->zdde_ref_blocks / refcnt;
|
|
|
|
dds.dds_lsize = zdde->zdde_ref_lsize / refcnt;
|
|
|
|
dds.dds_psize = zdde->zdde_ref_psize / refcnt;
|
|
|
|
dds.dds_dsize = zdde->zdde_ref_dsize / refcnt;
|
|
|
|
|
|
|
|
dds.dds_ref_blocks = zdde->zdde_ref_blocks;
|
|
|
|
dds.dds_ref_lsize = zdde->zdde_ref_lsize;
|
|
|
|
dds.dds_ref_psize = zdde->zdde_ref_psize;
|
|
|
|
dds.dds_ref_dsize = zdde->zdde_ref_dsize;
|
|
|
|
|
2014-04-16 03:40:22 +00:00
|
|
|
ddt_stat_add(&ddh_total.ddh_stat[highbit64(refcnt) - 1],
|
|
|
|
&dds, 0);
|
2010-05-28 20:45:14 +00:00
|
|
|
|
|
|
|
umem_free(zdde, sizeof (*zdde));
|
|
|
|
}
|
|
|
|
|
|
|
|
avl_destroy(&t);
|
|
|
|
|
|
|
|
ddt_histogram_stat(&dds_total, &ddh_total);
|
|
|
|
|
|
|
|
(void) printf("Simulated DDT histogram:\n");
|
|
|
|
|
|
|
|
zpool_dump_ddt(&dds_total, &ddh_total);
|
|
|
|
|
|
|
|
dump_dedup_ratio(&dds_total);
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
static void
|
|
|
|
dump_zpool(spa_t *spa)
|
|
|
|
{
|
|
|
|
dsl_pool_t *dp = spa_get_dsl(spa);
|
|
|
|
int rc = 0;
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
if (dump_opt['S']) {
|
|
|
|
dump_simulated_ddt(spa);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!dump_opt['e'] && dump_opt['C'] > 1) {
|
|
|
|
(void) printf("\nCached configuration:\n");
|
|
|
|
dump_nvlist(spa->spa_config, 8);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (dump_opt['C'])
|
|
|
|
dump_config(spa);
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
if (dump_opt['u'])
|
2010-05-28 20:45:14 +00:00
|
|
|
dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n");
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
if (dump_opt['D'])
|
|
|
|
dump_all_ddts(spa);
|
|
|
|
|
|
|
|
if (dump_opt['d'] > 2 || dump_opt['m'])
|
|
|
|
dump_metaslabs(spa);
|
2014-07-19 20:19:24 +00:00
|
|
|
if (dump_opt['M'])
|
|
|
|
dump_metaslab_groups(spa);
|
2010-05-28 20:45:14 +00:00
|
|
|
|
|
|
|
if (dump_opt['d'] || dump_opt['i']) {
|
2014-11-03 20:15:08 +00:00
|
|
|
uint64_t refcount;
|
2008-11-20 20:01:55 +00:00
|
|
|
dump_dir(dp->dp_meta_objset);
|
|
|
|
if (dump_opt['d'] >= 3) {
|
2015-04-26 22:27:36 +00:00
|
|
|
dump_full_bpobj(&spa->spa_deferred_bpobj,
|
2013-07-05 19:37:16 +00:00
|
|
|
"Deferred frees", 0);
|
2010-05-28 20:45:14 +00:00
|
|
|
if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
|
2015-04-26 22:27:36 +00:00
|
|
|
dump_full_bpobj(
|
|
|
|
&spa->spa_dsl_pool->dp_free_bpobj,
|
2013-07-05 19:37:16 +00:00
|
|
|
"Pool snapshot frees", 0);
|
2012-12-13 23:24:15 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (spa_feature_is_active(spa,
|
2013-10-08 17:13:05 +00:00
|
|
|
SPA_FEATURE_ASYNC_DESTROY)) {
|
2012-12-13 23:24:15 +00:00
|
|
|
dump_bptree(spa->spa_meta_objset,
|
|
|
|
spa->spa_dsl_pool->dp_bptree_obj,
|
|
|
|
"Pool dataset frees");
|
2010-05-28 20:45:14 +00:00
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
dump_dtl(spa->spa_root_vdev, 0);
|
|
|
|
}
|
2010-05-28 20:45:14 +00:00
|
|
|
(void) dmu_objset_find(spa_name(spa), dump_one_dir,
|
|
|
|
NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
|
2014-11-03 20:15:08 +00:00
|
|
|
|
|
|
|
(void) feature_get_refcount(spa,
|
|
|
|
&spa_feature_table[SPA_FEATURE_LARGE_BLOCKS], &refcount);
|
|
|
|
if (num_large_blocks != refcount) {
|
|
|
|
(void) printf("large_blocks feature refcount mismatch: "
|
|
|
|
"expected %lld != actual %lld\n",
|
|
|
|
(longlong_t)num_large_blocks,
|
|
|
|
(longlong_t)refcount);
|
|
|
|
rc = 2;
|
|
|
|
} else {
|
|
|
|
(void) printf("Verified large_blocks feature refcount "
|
|
|
|
"is correct (%llu)\n", (longlong_t)refcount);
|
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
2014-11-03 20:15:08 +00:00
|
|
|
if (rc == 0 && (dump_opt['b'] || dump_opt['c']))
|
2008-11-20 20:01:55 +00:00
|
|
|
rc = dump_block_stats(spa);
|
|
|
|
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
if (rc == 0)
|
|
|
|
rc = verify_spacemap_refcounts(spa);
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
if (dump_opt['s'])
|
|
|
|
show_pool_stats(spa);
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
if (dump_opt['h'])
|
|
|
|
dump_history(spa);
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
if (rc != 0)
|
|
|
|
exit(rc);
|
|
|
|
}
|
|
|
|
|
|
|
|
#define ZDB_FLAG_CHECKSUM 0x0001
|
|
|
|
#define ZDB_FLAG_DECOMPRESS 0x0002
|
|
|
|
#define ZDB_FLAG_BSWAP 0x0004
|
|
|
|
#define ZDB_FLAG_GBH 0x0008
|
|
|
|
#define ZDB_FLAG_INDIRECT 0x0010
|
|
|
|
#define ZDB_FLAG_PHYS 0x0020
|
|
|
|
#define ZDB_FLAG_RAW 0x0040
|
|
|
|
#define ZDB_FLAG_PRINT_BLKPTR 0x0080
|
|
|
|
|
|
|
|
int flagbits[256];
|
|
|
|
|
|
|
|
static void
|
|
|
|
zdb_print_blkptr(blkptr_t *bp, int flags)
|
|
|
|
{
|
2010-05-28 20:45:14 +00:00
|
|
|
char blkbuf[BP_SPRINTF_LEN];
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
if (flags & ZDB_FLAG_BSWAP)
|
|
|
|
byteswap_uint64_array((void *)bp, sizeof (blkptr_t));
|
2010-05-28 20:45:14 +00:00
|
|
|
|
2013-12-09 18:37:51 +00:00
|
|
|
snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
|
2010-05-28 20:45:14 +00:00
|
|
|
(void) printf("%s\n", blkbuf);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
zdb_dump_indirect(blkptr_t *bp, int nbps, int flags)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < nbps; i++)
|
|
|
|
zdb_print_blkptr(&bp[i], flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
zdb_dump_gbh(void *buf, int flags)
|
|
|
|
{
|
|
|
|
zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
zdb_dump_block_raw(void *buf, uint64_t size, int flags)
|
|
|
|
{
|
|
|
|
if (flags & ZDB_FLAG_BSWAP)
|
|
|
|
byteswap_uint64_array(buf, size);
|
2010-08-26 16:52:40 +00:00
|
|
|
VERIFY(write(fileno(stdout), buf, size) == size);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
zdb_dump_block(char *label, void *buf, uint64_t size, int flags)
|
|
|
|
{
|
|
|
|
uint64_t *d = (uint64_t *)buf;
|
|
|
|
int nwords = size / sizeof (uint64_t);
|
|
|
|
int do_bswap = !!(flags & ZDB_FLAG_BSWAP);
|
|
|
|
int i, j;
|
|
|
|
char *hdr, *c;
|
|
|
|
|
|
|
|
|
|
|
|
if (do_bswap)
|
|
|
|
hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8";
|
|
|
|
else
|
|
|
|
hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f";
|
|
|
|
|
|
|
|
(void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr);
|
|
|
|
|
|
|
|
for (i = 0; i < nwords; i += 2) {
|
|
|
|
(void) printf("%06llx: %016llx %016llx ",
|
|
|
|
(u_longlong_t)(i * sizeof (uint64_t)),
|
|
|
|
(u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]),
|
|
|
|
(u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1]));
|
|
|
|
|
|
|
|
c = (char *)&d[i];
|
|
|
|
for (j = 0; j < 2 * sizeof (uint64_t); j++)
|
|
|
|
(void) printf("%c", isprint(c[j]) ? c[j] : '.');
|
|
|
|
(void) printf("\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* There are two acceptable formats:
|
|
|
|
* leaf_name - For example: c1t0d0 or /tmp/ztest.0a
|
|
|
|
* child[.child]* - For example: 0.1.1
|
|
|
|
*
|
|
|
|
* The second form can be used to specify arbitrary vdevs anywhere
|
|
|
|
* in the heirarchy. For example, in a pool with a mirror of
|
|
|
|
* RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 .
|
|
|
|
*/
|
|
|
|
static vdev_t *
|
|
|
|
zdb_vdev_lookup(vdev_t *vdev, char *path)
|
|
|
|
{
|
|
|
|
char *s, *p, *q;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if (vdev == NULL)
|
|
|
|
return (NULL);
|
|
|
|
|
|
|
|
/* First, assume the x.x.x.x format */
|
|
|
|
i = (int)strtoul(path, &s, 10);
|
|
|
|
if (s == path || (s && *s != '.' && *s != '\0'))
|
|
|
|
goto name;
|
|
|
|
if (i < 0 || i >= vdev->vdev_children)
|
|
|
|
return (NULL);
|
|
|
|
|
|
|
|
vdev = vdev->vdev_child[i];
|
|
|
|
if (*s == '\0')
|
|
|
|
return (vdev);
|
|
|
|
return (zdb_vdev_lookup(vdev, s+1));
|
|
|
|
|
|
|
|
name:
|
|
|
|
for (i = 0; i < vdev->vdev_children; i++) {
|
|
|
|
vdev_t *vc = vdev->vdev_child[i];
|
|
|
|
|
|
|
|
if (vc->vdev_path == NULL) {
|
|
|
|
vc = zdb_vdev_lookup(vc, path);
|
|
|
|
if (vc == NULL)
|
|
|
|
continue;
|
|
|
|
else
|
|
|
|
return (vc);
|
|
|
|
}
|
|
|
|
|
|
|
|
p = strrchr(vc->vdev_path, '/');
|
|
|
|
p = p ? p + 1 : vc->vdev_path;
|
|
|
|
q = &vc->vdev_path[strlen(vc->vdev_path) - 2];
|
|
|
|
|
|
|
|
if (strcmp(vc->vdev_path, path) == 0)
|
|
|
|
return (vc);
|
|
|
|
if (strcmp(p, path) == 0)
|
|
|
|
return (vc);
|
|
|
|
if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0)
|
|
|
|
return (vc);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Read a block from a pool and print it out. The syntax of the
|
|
|
|
* block descriptor is:
|
|
|
|
*
|
|
|
|
* pool:vdev_specifier:offset:size[:flags]
|
|
|
|
*
|
|
|
|
* pool - The name of the pool you wish to read from
|
|
|
|
* vdev_specifier - Which vdev (see comment for zdb_vdev_lookup)
|
|
|
|
* offset - offset, in hex, in bytes
|
|
|
|
* size - Amount of data to read, in hex, in bytes
|
|
|
|
* flags - A string of characters specifying options
|
|
|
|
* b: Decode a blkptr at given offset within block
|
|
|
|
* *c: Calculate and display checksums
|
2010-05-28 20:45:14 +00:00
|
|
|
* d: Decompress data before dumping
|
2008-11-20 20:01:55 +00:00
|
|
|
* e: Byteswap data before dumping
|
2010-05-28 20:45:14 +00:00
|
|
|
* g: Display data as a gang block header
|
|
|
|
* i: Display as an indirect block
|
2008-11-20 20:01:55 +00:00
|
|
|
* p: Do I/O to physical offset
|
|
|
|
* r: Dump raw data to stdout
|
|
|
|
*
|
|
|
|
* * = not yet implemented
|
|
|
|
*/
|
|
|
|
static void
|
2010-05-28 20:45:14 +00:00
|
|
|
zdb_read_block(char *thing, spa_t *spa)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2010-05-28 20:45:14 +00:00
|
|
|
blkptr_t blk, *bp = &blk;
|
|
|
|
dva_t *dva = bp->blk_dva;
|
2008-11-20 20:01:55 +00:00
|
|
|
int flags = 0;
|
2010-05-28 20:45:14 +00:00
|
|
|
uint64_t offset = 0, size = 0, psize = 0, lsize = 0, blkptr_offset = 0;
|
2008-11-20 20:01:55 +00:00
|
|
|
zio_t *zio;
|
|
|
|
vdev_t *vd;
|
2010-05-28 20:45:14 +00:00
|
|
|
void *pbuf, *lbuf, *buf;
|
|
|
|
char *s, *p, *dup, *vdev, *flagstr;
|
|
|
|
int i, error;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
dup = strdup(thing);
|
|
|
|
s = strtok(dup, ":");
|
|
|
|
vdev = s ? s : "";
|
|
|
|
s = strtok(NULL, ":");
|
|
|
|
offset = strtoull(s ? s : "", NULL, 16);
|
|
|
|
s = strtok(NULL, ":");
|
|
|
|
size = strtoull(s ? s : "", NULL, 16);
|
|
|
|
s = strtok(NULL, ":");
|
|
|
|
flagstr = s ? s : "";
|
|
|
|
|
|
|
|
s = NULL;
|
|
|
|
if (size == 0)
|
|
|
|
s = "size must not be zero";
|
|
|
|
if (!IS_P2ALIGNED(size, DEV_BSIZE))
|
|
|
|
s = "size must be a multiple of sector size";
|
|
|
|
if (!IS_P2ALIGNED(offset, DEV_BSIZE))
|
|
|
|
s = "offset must be a multiple of sector size";
|
|
|
|
if (s) {
|
|
|
|
(void) printf("Invalid block specifier: %s - %s\n", thing, s);
|
|
|
|
free(dup);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (s = strtok(flagstr, ":"); s; s = strtok(NULL, ":")) {
|
|
|
|
for (i = 0; flagstr[i]; i++) {
|
|
|
|
int bit = flagbits[(uchar_t)flagstr[i]];
|
|
|
|
|
|
|
|
if (bit == 0) {
|
|
|
|
(void) printf("***Invalid flag: %c\n",
|
|
|
|
flagstr[i]);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
flags |= bit;
|
|
|
|
|
|
|
|
/* If it's not something with an argument, keep going */
|
2010-05-28 20:45:14 +00:00
|
|
|
if ((bit & (ZDB_FLAG_CHECKSUM |
|
2008-11-20 20:01:55 +00:00
|
|
|
ZDB_FLAG_PRINT_BLKPTR)) == 0)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
p = &flagstr[i + 1];
|
|
|
|
if (bit == ZDB_FLAG_PRINT_BLKPTR)
|
|
|
|
blkptr_offset = strtoull(p, &p, 16);
|
|
|
|
if (*p != ':' && *p != '\0') {
|
|
|
|
(void) printf("***Invalid flag arg: '%s'\n", s);
|
|
|
|
free(dup);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev);
|
|
|
|
if (vd == NULL) {
|
|
|
|
(void) printf("***Invalid vdev: %s\n", vdev);
|
|
|
|
free(dup);
|
|
|
|
return;
|
|
|
|
} else {
|
|
|
|
if (vd->vdev_path)
|
2010-05-28 20:45:14 +00:00
|
|
|
(void) fprintf(stderr, "Found vdev: %s\n",
|
|
|
|
vd->vdev_path);
|
2008-11-20 20:01:55 +00:00
|
|
|
else
|
2010-05-28 20:45:14 +00:00
|
|
|
(void) fprintf(stderr, "Found vdev type: %s\n",
|
2008-11-20 20:01:55 +00:00
|
|
|
vd->vdev_ops->vdev_op_type);
|
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
psize = size;
|
|
|
|
lsize = size;
|
|
|
|
|
2013-07-04 04:02:05 +00:00
|
|
|
pbuf = umem_alloc_aligned(SPA_MAXBLOCKSIZE, 512, UMEM_NOFAIL);
|
2010-05-28 20:45:14 +00:00
|
|
|
lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
|
|
|
|
|
|
|
|
BP_ZERO(bp);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
DVA_SET_VDEV(&dva[0], vd->vdev_id);
|
|
|
|
DVA_SET_OFFSET(&dva[0], offset);
|
|
|
|
DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH));
|
|
|
|
DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize));
|
|
|
|
|
|
|
|
BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
|
|
|
|
|
|
|
|
BP_SET_LSIZE(bp, lsize);
|
|
|
|
BP_SET_PSIZE(bp, psize);
|
|
|
|
BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
|
|
|
|
BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
|
|
|
|
BP_SET_TYPE(bp, DMU_OT_NONE);
|
|
|
|
BP_SET_LEVEL(bp, 0);
|
|
|
|
BP_SET_DEDUP(bp, 0);
|
|
|
|
BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
|
2008-11-20 20:01:55 +00:00
|
|
|
zio = zio_root(spa, NULL, NULL, 0);
|
2010-05-28 20:45:14 +00:00
|
|
|
|
|
|
|
if (vd == vd->vdev_top) {
|
|
|
|
/*
|
|
|
|
* Treat this as a normal block read.
|
|
|
|
*/
|
|
|
|
zio_nowait(zio_read(zio, spa, bp, pbuf, psize, NULL, NULL,
|
|
|
|
ZIO_PRIORITY_SYNC_READ,
|
|
|
|
ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL));
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* Treat this as a vdev child I/O.
|
|
|
|
*/
|
|
|
|
zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pbuf, psize,
|
|
|
|
ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ,
|
|
|
|
ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE |
|
|
|
|
ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
|
|
|
|
ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL, NULL));
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
error = zio_wait(zio);
|
2008-12-03 20:09:06 +00:00
|
|
|
spa_config_exit(spa, SCL_STATE, FTAG);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
if (error) {
|
|
|
|
(void) printf("Read of %s failed, error: %d\n", thing, error);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
if (flags & ZDB_FLAG_DECOMPRESS) {
|
|
|
|
/*
|
|
|
|
* We don't know how the data was compressed, so just try
|
|
|
|
* every decompress function at every inflated blocksize.
|
|
|
|
*/
|
|
|
|
enum zio_compress c;
|
|
|
|
void *pbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
|
|
|
|
void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
|
|
|
|
|
|
|
|
bcopy(pbuf, pbuf2, psize);
|
|
|
|
|
|
|
|
VERIFY(random_get_pseudo_bytes((uint8_t *)pbuf + psize,
|
|
|
|
SPA_MAXBLOCKSIZE - psize) == 0);
|
|
|
|
|
|
|
|
VERIFY(random_get_pseudo_bytes((uint8_t *)pbuf2 + psize,
|
|
|
|
SPA_MAXBLOCKSIZE - psize) == 0);
|
|
|
|
|
|
|
|
for (lsize = SPA_MAXBLOCKSIZE; lsize > psize;
|
|
|
|
lsize -= SPA_MINBLOCKSIZE) {
|
|
|
|
for (c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++) {
|
|
|
|
if (zio_decompress_data(c, pbuf, lbuf,
|
|
|
|
psize, lsize) == 0 &&
|
|
|
|
zio_decompress_data(c, pbuf2, lbuf2,
|
|
|
|
psize, lsize) == 0 &&
|
|
|
|
bcmp(lbuf, lbuf2, lsize) == 0)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (c != ZIO_COMPRESS_FUNCTIONS)
|
|
|
|
break;
|
|
|
|
lsize -= SPA_MINBLOCKSIZE;
|
|
|
|
}
|
|
|
|
|
|
|
|
umem_free(pbuf2, SPA_MAXBLOCKSIZE);
|
|
|
|
umem_free(lbuf2, SPA_MAXBLOCKSIZE);
|
|
|
|
|
|
|
|
if (lsize <= psize) {
|
|
|
|
(void) printf("Decompress of %s failed\n", thing);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
buf = lbuf;
|
|
|
|
size = lsize;
|
|
|
|
} else {
|
|
|
|
buf = pbuf;
|
|
|
|
size = psize;
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
if (flags & ZDB_FLAG_PRINT_BLKPTR)
|
|
|
|
zdb_print_blkptr((blkptr_t *)(void *)
|
|
|
|
((uintptr_t)buf + (uintptr_t)blkptr_offset), flags);
|
|
|
|
else if (flags & ZDB_FLAG_RAW)
|
|
|
|
zdb_dump_block_raw(buf, size, flags);
|
|
|
|
else if (flags & ZDB_FLAG_INDIRECT)
|
|
|
|
zdb_dump_indirect((blkptr_t *)buf, size / sizeof (blkptr_t),
|
|
|
|
flags);
|
|
|
|
else if (flags & ZDB_FLAG_GBH)
|
|
|
|
zdb_dump_gbh(buf, flags);
|
|
|
|
else
|
|
|
|
zdb_dump_block(thing, buf, size, flags);
|
|
|
|
|
|
|
|
out:
|
2010-05-28 20:45:14 +00:00
|
|
|
umem_free(pbuf, SPA_MAXBLOCKSIZE);
|
|
|
|
umem_free(lbuf, SPA_MAXBLOCKSIZE);
|
2008-11-20 20:01:55 +00:00
|
|
|
free(dup);
|
|
|
|
}
|
|
|
|
|
|
|
|
static boolean_t
|
2010-05-28 20:45:14 +00:00
|
|
|
pool_match(nvlist_t *cfg, char *tgt)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2010-05-28 20:45:14 +00:00
|
|
|
uint64_t v, guid = strtoull(tgt, NULL, 0);
|
2008-11-20 20:01:55 +00:00
|
|
|
char *s;
|
|
|
|
|
|
|
|
if (guid != 0) {
|
2010-05-28 20:45:14 +00:00
|
|
|
if (nvlist_lookup_uint64(cfg, ZPOOL_CONFIG_POOL_GUID, &v) == 0)
|
|
|
|
return (v == guid);
|
2008-11-20 20:01:55 +00:00
|
|
|
} else {
|
2010-05-28 20:45:14 +00:00
|
|
|
if (nvlist_lookup_string(cfg, ZPOOL_CONFIG_POOL_NAME, &s) == 0)
|
|
|
|
return (strcmp(s, tgt) == 0);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
2010-05-28 20:45:14 +00:00
|
|
|
return (B_FALSE);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
static char *
|
|
|
|
find_zpool(char **target, nvlist_t **configp, int dirc, char **dirv)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
|
|
|
nvlist_t *pools;
|
|
|
|
nvlist_t *match = NULL;
|
2010-05-28 20:45:14 +00:00
|
|
|
char *name = NULL;
|
|
|
|
char *sepp = NULL;
|
2010-08-26 16:58:04 +00:00
|
|
|
char sep = 0;
|
2010-05-28 20:45:14 +00:00
|
|
|
int count = 0;
|
|
|
|
importargs_t args = { 0 };
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
args.paths = dirc;
|
|
|
|
args.path = dirv;
|
|
|
|
args.can_be_active = B_TRUE;
|
|
|
|
|
|
|
|
if ((sepp = strpbrk(*target, "/@")) != NULL) {
|
|
|
|
sep = *sepp;
|
|
|
|
*sepp = '\0';
|
|
|
|
}
|
|
|
|
|
|
|
|
pools = zpool_search_import(g_zfs, &args);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
if (pools != NULL) {
|
|
|
|
nvpair_t *elem = NULL;
|
|
|
|
while ((elem = nvlist_next_nvpair(pools, elem)) != NULL) {
|
|
|
|
verify(nvpair_value_nvlist(elem, configp) == 0);
|
2010-05-28 20:45:14 +00:00
|
|
|
if (pool_match(*configp, *target)) {
|
|
|
|
count++;
|
2008-11-20 20:01:55 +00:00
|
|
|
if (match != NULL) {
|
2010-05-28 20:45:14 +00:00
|
|
|
/* print previously found config */
|
|
|
|
if (name != NULL) {
|
|
|
|
(void) printf("%s\n", name);
|
|
|
|
dump_nvlist(match, 8);
|
|
|
|
name = NULL;
|
|
|
|
}
|
|
|
|
(void) printf("%s\n",
|
|
|
|
nvpair_name(elem));
|
|
|
|
dump_nvlist(*configp, 8);
|
2008-11-20 20:01:55 +00:00
|
|
|
} else {
|
|
|
|
match = *configp;
|
2010-05-28 20:45:14 +00:00
|
|
|
name = nvpair_name(elem);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2010-05-28 20:45:14 +00:00
|
|
|
if (count > 1)
|
|
|
|
(void) fatal("\tMatched %d pools - use pool GUID "
|
|
|
|
"instead of pool name or \n"
|
|
|
|
"\tpool name part of a dataset name to select pool", count);
|
|
|
|
|
|
|
|
if (sepp)
|
|
|
|
*sepp = sep;
|
|
|
|
/*
|
|
|
|
* If pool GUID was specified for pool id, replace it with pool name
|
|
|
|
*/
|
|
|
|
if (name && (strstr(*target, name) != *target)) {
|
|
|
|
int sz = 1 + strlen(name) + ((sepp) ? strlen(sepp) : 0);
|
|
|
|
|
|
|
|
*target = umem_alloc(sz, UMEM_NOFAIL);
|
|
|
|
(void) snprintf(*target, sz, "%s%s", name, sepp ? sepp : "");
|
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
*configp = name ? match : NULL;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
return (name);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
main(int argc, char **argv)
|
|
|
|
{
|
|
|
|
int i, c;
|
|
|
|
struct rlimit rl = { 1024, 1024 };
|
2010-05-28 20:45:14 +00:00
|
|
|
spa_t *spa = NULL;
|
2008-11-20 20:01:55 +00:00
|
|
|
objset_t *os = NULL;
|
|
|
|
int dump_all = 1;
|
|
|
|
int verbose = 0;
|
2010-05-28 20:45:14 +00:00
|
|
|
int error = 0;
|
|
|
|
char **searchdirs = NULL;
|
|
|
|
int nsearch = 0;
|
|
|
|
char *target;
|
|
|
|
nvlist_t *policy = NULL;
|
|
|
|
uint64_t max_txg = UINT64_MAX;
|
2014-06-08 18:10:14 +00:00
|
|
|
int flags = ZFS_IMPORT_MISSING_LOG;
|
2010-05-28 20:45:14 +00:00
|
|
|
int rewind = ZPOOL_NEVER_REWIND;
|
2013-06-24 06:45:20 +00:00
|
|
|
char *spa_config_path_env;
|
2014-07-19 20:19:24 +00:00
|
|
|
const char *opts = "bcdhilmMI:suCDRSAFLXevp:t:U:P";
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
(void) setrlimit(RLIMIT_NOFILE, &rl);
|
|
|
|
(void) enable_extended_FILE_stdio(-1, -1);
|
|
|
|
|
|
|
|
dprintf_setup(&argc, argv);
|
|
|
|
|
2013-06-24 06:45:20 +00:00
|
|
|
/*
|
|
|
|
* If there is an environment variable SPA_CONFIG_PATH it overrides
|
|
|
|
* default spa_config_path setting. If -U flag is specified it will
|
|
|
|
* override this environment variable settings once again.
|
|
|
|
*/
|
|
|
|
spa_config_path_env = getenv("SPA_CONFIG_PATH");
|
|
|
|
if (spa_config_path_env != NULL)
|
|
|
|
spa_config_path = spa_config_path_env;
|
|
|
|
|
2014-06-08 18:10:14 +00:00
|
|
|
while ((c = getopt(argc, argv, opts)) != -1) {
|
2008-11-20 20:01:55 +00:00
|
|
|
switch (c) {
|
|
|
|
case 'b':
|
|
|
|
case 'c':
|
2010-05-28 20:45:14 +00:00
|
|
|
case 'd':
|
|
|
|
case 'h':
|
|
|
|
case 'i':
|
|
|
|
case 'l':
|
2009-07-02 22:44:48 +00:00
|
|
|
case 'm':
|
2008-11-20 20:01:55 +00:00
|
|
|
case 's':
|
2010-05-28 20:45:14 +00:00
|
|
|
case 'u':
|
2008-11-20 20:01:55 +00:00
|
|
|
case 'C':
|
2010-05-28 20:45:14 +00:00
|
|
|
case 'D':
|
2014-07-19 20:19:24 +00:00
|
|
|
case 'M':
|
2008-11-20 20:01:55 +00:00
|
|
|
case 'R':
|
2010-05-28 20:45:14 +00:00
|
|
|
case 'S':
|
2008-11-20 20:01:55 +00:00
|
|
|
dump_opt[c]++;
|
|
|
|
dump_all = 0;
|
|
|
|
break;
|
2010-05-28 20:45:14 +00:00
|
|
|
case 'A':
|
|
|
|
case 'F':
|
2009-01-15 21:59:39 +00:00
|
|
|
case 'L':
|
2010-05-28 20:45:14 +00:00
|
|
|
case 'X':
|
|
|
|
case 'e':
|
|
|
|
case 'P':
|
2009-01-15 21:59:39 +00:00
|
|
|
dump_opt[c]++;
|
|
|
|
break;
|
2014-06-08 18:10:14 +00:00
|
|
|
case 'V':
|
|
|
|
flags = ZFS_IMPORT_VERBATIM;
|
|
|
|
break;
|
2014-07-19 20:19:24 +00:00
|
|
|
case 'I':
|
2013-05-02 23:36:32 +00:00
|
|
|
max_inflight = strtoull(optarg, NULL, 0);
|
|
|
|
if (max_inflight == 0) {
|
|
|
|
(void) fprintf(stderr, "maximum number "
|
|
|
|
"of inflight I/Os must be greater "
|
|
|
|
"than 0\n");
|
|
|
|
usage();
|
|
|
|
}
|
|
|
|
break;
|
2008-11-20 20:01:55 +00:00
|
|
|
case 'p':
|
2010-05-28 20:45:14 +00:00
|
|
|
if (searchdirs == NULL) {
|
|
|
|
searchdirs = umem_alloc(sizeof (char *),
|
|
|
|
UMEM_NOFAIL);
|
|
|
|
} else {
|
|
|
|
char **tmp = umem_alloc((nsearch + 1) *
|
|
|
|
sizeof (char *), UMEM_NOFAIL);
|
|
|
|
bcopy(searchdirs, tmp, nsearch *
|
|
|
|
sizeof (char *));
|
|
|
|
umem_free(searchdirs,
|
|
|
|
nsearch * sizeof (char *));
|
|
|
|
searchdirs = tmp;
|
|
|
|
}
|
|
|
|
searchdirs[nsearch++] = optarg;
|
2008-11-20 20:01:55 +00:00
|
|
|
break;
|
2009-01-15 21:59:39 +00:00
|
|
|
case 't':
|
2010-05-28 20:45:14 +00:00
|
|
|
max_txg = strtoull(optarg, NULL, 0);
|
|
|
|
if (max_txg < TXG_INITIAL) {
|
2009-01-15 21:59:39 +00:00
|
|
|
(void) fprintf(stderr, "incorrect txg "
|
|
|
|
"specified: %s\n", optarg);
|
|
|
|
usage();
|
|
|
|
}
|
|
|
|
break;
|
2010-05-28 20:45:14 +00:00
|
|
|
case 'U':
|
|
|
|
spa_config_path = optarg;
|
|
|
|
break;
|
2014-07-19 20:19:24 +00:00
|
|
|
case 'v':
|
|
|
|
verbose++;
|
|
|
|
break;
|
2008-11-20 20:01:55 +00:00
|
|
|
default:
|
|
|
|
usage();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
if (!dump_opt['e'] && searchdirs != NULL) {
|
2008-12-03 20:09:06 +00:00
|
|
|
(void) fprintf(stderr, "-p option requires use of -e\n");
|
|
|
|
usage();
|
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2014-10-23 22:26:49 +00:00
|
|
|
#if defined(_LP64)
|
2014-09-16 20:24:48 +00:00
|
|
|
/*
|
|
|
|
* ZDB does not typically re-read blocks; therefore limit the ARC
|
|
|
|
* to 256 MB, which can be used entirely for metadata.
|
|
|
|
*/
|
|
|
|
zfs_arc_max = zfs_arc_meta_limit = 256 * 1024 * 1024;
|
2014-10-23 22:26:49 +00:00
|
|
|
#endif
|
2014-09-16 20:24:48 +00:00
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
kernel_init(FREAD);
|
2010-08-26 18:57:29 +00:00
|
|
|
if ((g_zfs = libzfs_init()) == NULL)
|
|
|
|
return (1);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
if (dump_all)
|
|
|
|
verbose = MAX(verbose, 1);
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
for (c = 0; c < 256; c++) {
|
2010-05-28 20:45:14 +00:00
|
|
|
if (dump_all && !strchr("elAFLRSXP", c))
|
2008-11-20 20:01:55 +00:00
|
|
|
dump_opt[c] = 1;
|
|
|
|
if (dump_opt[c])
|
|
|
|
dump_opt[c] += verbose;
|
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
aok = (dump_opt['A'] == 1) || (dump_opt['A'] > 2);
|
|
|
|
zfs_recover = (dump_opt['A'] > 1);
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
argc -= optind;
|
|
|
|
argv += optind;
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
if (argc < 2 && dump_opt['R'])
|
|
|
|
usage();
|
2008-11-20 20:01:55 +00:00
|
|
|
if (argc < 1) {
|
2010-05-28 20:45:14 +00:00
|
|
|
if (!dump_opt['e'] && dump_opt['C']) {
|
2008-12-03 20:09:06 +00:00
|
|
|
dump_cachefile(spa_config_path);
|
2008-11-20 20:01:55 +00:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
usage();
|
|
|
|
}
|
|
|
|
|
|
|
|
if (dump_opt['l']) {
|
|
|
|
dump_label(argv[0]);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
if (dump_opt['X'] || dump_opt['F'])
|
|
|
|
rewind = ZPOOL_DO_REWIND |
|
|
|
|
(dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 ||
|
|
|
|
nvlist_add_uint64(policy, ZPOOL_REWIND_REQUEST_TXG, max_txg) != 0 ||
|
|
|
|
nvlist_add_uint32(policy, ZPOOL_REWIND_REQUEST, rewind) != 0)
|
|
|
|
fatal("internal error: %s", strerror(ENOMEM));
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
error = 0;
|
2010-05-28 20:45:14 +00:00
|
|
|
target = argv[0];
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
if (dump_opt['e']) {
|
|
|
|
nvlist_t *cfg = NULL;
|
|
|
|
char *name = find_zpool(&target, &cfg, nsearch, searchdirs);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
error = ENOENT;
|
|
|
|
if (name) {
|
|
|
|
if (dump_opt['C'] > 1) {
|
|
|
|
(void) printf("\nConfiguration for import:\n");
|
|
|
|
dump_nvlist(cfg, 8);
|
|
|
|
}
|
|
|
|
if (nvlist_add_nvlist(cfg,
|
|
|
|
ZPOOL_REWIND_POLICY, policy) != 0) {
|
|
|
|
fatal("can't open '%s': %s",
|
|
|
|
target, strerror(ENOMEM));
|
|
|
|
}
|
2014-06-08 18:10:14 +00:00
|
|
|
error = spa_import(name, cfg, NULL, flags);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
2008-12-03 20:09:06 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (error == 0) {
|
2010-05-28 20:45:14 +00:00
|
|
|
if (strpbrk(target, "/@") == NULL || dump_opt['R']) {
|
|
|
|
error = spa_open_rewind(target, &spa, FTAG, policy,
|
|
|
|
NULL);
|
|
|
|
if (error) {
|
|
|
|
/*
|
|
|
|
* If we're missing the log device then
|
|
|
|
* try opening the pool after clearing the
|
|
|
|
* log state.
|
|
|
|
*/
|
|
|
|
mutex_enter(&spa_namespace_lock);
|
|
|
|
if ((spa = spa_lookup(target)) != NULL &&
|
|
|
|
spa->spa_log_state == SPA_LOG_MISSING) {
|
|
|
|
spa->spa_log_state = SPA_LOG_CLEAR;
|
|
|
|
error = 0;
|
|
|
|
}
|
|
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
|
|
|
|
if (!error) {
|
|
|
|
error = spa_open_rewind(target, &spa,
|
|
|
|
FTAG, policy, NULL);
|
|
|
|
}
|
|
|
|
}
|
2008-12-03 20:09:06 +00:00
|
|
|
} else {
|
2010-05-28 20:45:14 +00:00
|
|
|
error = dmu_objset_own(target, DMU_OST_ANY,
|
|
|
|
B_TRUE, FTAG, &os);
|
2008-12-03 20:09:06 +00:00
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
2010-05-28 20:45:14 +00:00
|
|
|
nvlist_free(policy);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
if (error)
|
2010-05-28 20:45:14 +00:00
|
|
|
fatal("can't open '%s': %s", target, strerror(error));
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
argv++;
|
2010-05-28 20:45:14 +00:00
|
|
|
argc--;
|
|
|
|
if (!dump_opt['R']) {
|
|
|
|
if (argc > 0) {
|
|
|
|
zopt_objects = argc;
|
|
|
|
zopt_object = calloc(zopt_objects, sizeof (uint64_t));
|
|
|
|
for (i = 0; i < zopt_objects; i++) {
|
|
|
|
errno = 0;
|
|
|
|
zopt_object[i] = strtoull(argv[i], NULL, 0);
|
|
|
|
if (zopt_object[i] == 0 && errno != 0)
|
|
|
|
fatal("bad number %s: %s",
|
|
|
|
argv[i], strerror(errno));
|
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
2013-01-12 00:42:50 +00:00
|
|
|
if (os != NULL) {
|
|
|
|
dump_dir(os);
|
|
|
|
} else if (zopt_objects > 0 && !dump_opt['m']) {
|
|
|
|
dump_dir(spa->spa_meta_objset);
|
|
|
|
} else {
|
|
|
|
dump_zpool(spa);
|
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
} else {
|
2010-05-28 20:45:14 +00:00
|
|
|
flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR;
|
|
|
|
flagbits['c'] = ZDB_FLAG_CHECKSUM;
|
|
|
|
flagbits['d'] = ZDB_FLAG_DECOMPRESS;
|
|
|
|
flagbits['e'] = ZDB_FLAG_BSWAP;
|
|
|
|
flagbits['g'] = ZDB_FLAG_GBH;
|
|
|
|
flagbits['i'] = ZDB_FLAG_INDIRECT;
|
|
|
|
flagbits['p'] = ZDB_FLAG_PHYS;
|
|
|
|
flagbits['r'] = ZDB_FLAG_RAW;
|
|
|
|
|
|
|
|
for (i = 0; i < argc; i++)
|
|
|
|
zdb_read_block(argv[i], spa);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
(os != NULL) ? dmu_objset_disown(os, FTAG) : spa_close(spa, FTAG);
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
fuid_table_destroy();
|
2010-05-28 20:45:14 +00:00
|
|
|
sa_loaded = B_FALSE;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
libzfs_fini(g_zfs);
|
|
|
|
kernel_fini();
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|