freebsd-nq/sys/dev/ocs_fc/ocs_cam.c

2864 lines
71 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2017 Broadcom. All rights reserved.
* The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
/**
* @defgroup scsi_api_target SCSI Target API
* @defgroup scsi_api_initiator SCSI Initiator API
* @defgroup cam_api Common Access Method (CAM) API
* @defgroup cam_io CAM IO
*/
/**
* @file
* Provides CAM functionality.
*/
#include "ocs.h"
#include "ocs_scsi.h"
#include "ocs_device.h"
/* Default IO timeout value for initiators is 30 seconds */
#define OCS_CAM_IO_TIMEOUT 30
typedef struct {
ocs_scsi_sgl_t *sgl;
uint32_t sgl_max;
uint32_t sgl_count;
int32_t rc;
} ocs_dmamap_load_arg_t;
static void ocs_action(struct cam_sim *, union ccb *);
static void ocs_poll(struct cam_sim *);
static ocs_tgt_resource_t *ocs_tgt_resource_get(ocs_fcport *,
struct ccb_hdr *, uint32_t *);
static int32_t ocs_tgt_resource_abort(struct ocs_softc *, ocs_tgt_resource_t *);
static uint32_t ocs_abort_initiator_io(struct ocs_softc *ocs, union ccb *accb);
static void ocs_abort_inot(struct ocs_softc *ocs, union ccb *ccb);
static void ocs_abort_atio(struct ocs_softc *ocs, union ccb *ccb);
static int32_t ocs_target_tmf_cb(ocs_io_t *, ocs_scsi_io_status_e, uint32_t, void *);
static int32_t ocs_io_abort_cb(ocs_io_t *, ocs_scsi_io_status_e, uint32_t, void *);
static int32_t ocs_task_set_full_or_busy(ocs_io_t *io);
static int32_t ocs_initiator_tmf_cb(ocs_io_t *, ocs_scsi_io_status_e,
ocs_scsi_cmd_resp_t *, uint32_t, void *);
static uint32_t
ocs_fcp_change_role(struct ocs_softc *ocs, ocs_fcport *fcp, uint32_t new_role);
static void ocs_ldt(void *arg);
static void ocs_ldt_task(void *arg, int pending);
static void ocs_delete_target(ocs_t *ocs, ocs_fcport *fcp, int tgt);
uint32_t ocs_add_new_tgt(ocs_node_t *node, ocs_fcport *fcp);
uint32_t ocs_update_tgt(ocs_node_t *node, ocs_fcport *fcp, uint32_t tgt_id);
int32_t ocs_tgt_find(ocs_fcport *fcp, ocs_node_t *node);
static inline ocs_io_t *ocs_scsi_find_io(struct ocs_softc *ocs, uint32_t tag)
{
return ocs_io_get_instance(ocs, tag);
}
static inline void ocs_target_io_free(ocs_io_t *io)
{
io->tgt_io.state = OCS_CAM_IO_FREE;
io->tgt_io.flags = 0;
io->tgt_io.app = NULL;
ocs_scsi_io_complete(io);
if(io->ocs->io_in_use != 0)
atomic_subtract_acq_32(&io->ocs->io_in_use, 1);
}
static int32_t
ocs_attach_port(ocs_t *ocs, int chan)
{
struct cam_sim *sim = NULL;
struct cam_path *path = NULL;
uint32_t max_io = ocs_scsi_get_property(ocs, OCS_SCSI_MAX_IOS);
ocs_fcport *fcp = FCPORT(ocs, chan);
if (NULL == (sim = cam_sim_alloc(ocs_action, ocs_poll,
device_get_name(ocs->dev), ocs,
device_get_unit(ocs->dev), &ocs->sim_lock,
max_io, max_io, ocs->devq))) {
device_printf(ocs->dev, "Can't allocate SIM\n");
return 1;
}
mtx_lock(&ocs->sim_lock);
if (CAM_SUCCESS != xpt_bus_register(sim, ocs->dev, chan)) {
device_printf(ocs->dev, "Can't register bus %d\n", 0);
mtx_unlock(&ocs->sim_lock);
cam_sim_free(sim, FALSE);
return 1;
}
mtx_unlock(&ocs->sim_lock);
if (CAM_REQ_CMP != xpt_create_path(&path, NULL, cam_sim_path(sim),
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD)) {
device_printf(ocs->dev, "Can't create path\n");
xpt_bus_deregister(cam_sim_path(sim));
mtx_unlock(&ocs->sim_lock);
cam_sim_free(sim, FALSE);
return 1;
}
fcp->ocs = ocs;
fcp->sim = sim;
fcp->path = path;
callout_init_mtx(&fcp->ldt, &ocs->sim_lock, 0);
TASK_INIT(&fcp->ltask, 1, ocs_ldt_task, fcp);
return 0;
}
static int32_t
ocs_detach_port(ocs_t *ocs, int32_t chan)
{
ocs_fcport *fcp = NULL;
struct cam_sim *sim = NULL;
struct cam_path *path = NULL;
fcp = FCPORT(ocs, chan);
sim = fcp->sim;
path = fcp->path;
callout_drain(&fcp->ldt);
ocs_ldt_task(fcp, 0);
if (fcp->sim) {
mtx_lock(&ocs->sim_lock);
ocs_tgt_resource_abort(ocs, &fcp->targ_rsrc_wildcard);
if (path) {
xpt_async(AC_LOST_DEVICE, path, NULL);
xpt_free_path(path);
fcp->path = NULL;
}
xpt_bus_deregister(cam_sim_path(sim));
cam_sim_free(sim, FALSE);
fcp->sim = NULL;
mtx_unlock(&ocs->sim_lock);
}
return 0;
}
int32_t
ocs_cam_attach(ocs_t *ocs)
{
struct cam_devq *devq = NULL;
int i = 0;
uint32_t max_io = ocs_scsi_get_property(ocs, OCS_SCSI_MAX_IOS);
if (NULL == (devq = cam_simq_alloc(max_io))) {
device_printf(ocs->dev, "Can't allocate SIMQ\n");
return -1;
}
ocs->devq = devq;
if (mtx_initialized(&ocs->sim_lock) == 0) {
mtx_init(&ocs->sim_lock, "ocs_sim_lock", NULL, MTX_DEF);
}
for (i = 0; i < (ocs->num_vports + 1); i++) {
if (ocs_attach_port(ocs, i)) {
ocs_log_err(ocs, "Attach port failed for chan: %d\n", i);
goto detach_port;
}
}
ocs->io_high_watermark = max_io;
ocs->io_in_use = 0;
return 0;
detach_port:
while (--i >= 0) {
ocs_detach_port(ocs, i);
}
cam_simq_free(ocs->devq);
if (mtx_initialized(&ocs->sim_lock))
mtx_destroy(&ocs->sim_lock);
return 1;
}
int32_t
ocs_cam_detach(ocs_t *ocs)
{
int i = 0;
for (i = (ocs->num_vports); i >= 0; i--) {
ocs_detach_port(ocs, i);
}
cam_simq_free(ocs->devq);
if (mtx_initialized(&ocs->sim_lock))
mtx_destroy(&ocs->sim_lock);
return 0;
}
/***************************************************************************
* Functions required by SCSI base driver API
*/
/**
* @ingroup scsi_api_target
* @brief Attach driver to the BSD SCSI layer (a.k.a CAM)
*
* Allocates + initializes CAM related resources and attaches to the CAM
*
* @param ocs the driver instance's software context
*
* @return 0 on success, non-zero otherwise
*/
int32_t
ocs_scsi_tgt_new_device(ocs_t *ocs)
{
ocs->enable_task_set_full = ocs_scsi_get_property(ocs,
OCS_SCSI_ENABLE_TASK_SET_FULL);
ocs_log_debug(ocs, "task set full processing is %s\n",
ocs->enable_task_set_full ? "enabled" : "disabled");
return 0;
}
/**
* @ingroup scsi_api_target
* @brief Tears down target members of ocs structure.
*
* Called by OS code when device is removed.
*
* @param ocs pointer to ocs
*
* @return returns 0 for success, a negative error code value for failure.
*/
int32_t
ocs_scsi_tgt_del_device(ocs_t *ocs)
{
return 0;
}
/**
* @ingroup scsi_api_target
* @brief accept new domain notification
*
* Called by base drive when new domain is discovered. A target-server
* will use this call to prepare for new remote node notifications
* arising from ocs_scsi_new_initiator().
*
* The domain context has an element <b>ocs_scsi_tgt_domain_t tgt_domain</b>
* which is declared by the target-server code and is used for target-server
* private data.
*
* This function will only be called if the base-driver has been enabled for
* target capability.
*
* Note that this call is made to target-server backends,
* the ocs_scsi_ini_new_domain() function is called to initiator-client backends.
*
* @param domain pointer to domain
*
* @return returns 0 for success, a negative error code value for failure.
*/
int32_t
ocs_scsi_tgt_new_domain(ocs_domain_t *domain)
{
return 0;
}
/**
* @ingroup scsi_api_target
* @brief accept domain lost notification
*
* Called by base-driver when a domain goes away. A target-server will
* use this call to clean up all domain scoped resources.
*
* Note that this call is made to target-server backends,
* the ocs_scsi_ini_del_domain() function is called to initiator-client backends.
*
* @param domain pointer to domain
*
* @return returns 0 for success, a negative error code value for failure.
*/
void
ocs_scsi_tgt_del_domain(ocs_domain_t *domain)
{
}
/**
* @ingroup scsi_api_target
* @brief accept new sli port (sport) notification
*
* Called by base drive when new sport is discovered. A target-server
* will use this call to prepare for new remote node notifications
* arising from ocs_scsi_new_initiator().
*
* The domain context has an element <b>ocs_scsi_tgt_sport_t tgt_sport</b>
* which is declared by the target-server code and is used for
* target-server private data.
*
* This function will only be called if the base-driver has been enabled for
* target capability.
*
* Note that this call is made to target-server backends,
* the ocs_scsi_tgt_new_domain() is called to initiator-client backends.
*
* @param sport pointer to SLI port
*
* @return returns 0 for success, a negative error code value for failure.
*/
int32_t
ocs_scsi_tgt_new_sport(ocs_sport_t *sport)
{
ocs_t *ocs = sport->ocs;
if(!sport->is_vport) {
sport->tgt_data = FCPORT(ocs, 0);
}
return 0;
}
/**
* @ingroup scsi_api_target
* @brief accept SLI port gone notification
*
* Called by base-driver when a sport goes away. A target-server will
* use this call to clean up all sport scoped resources.
*
* Note that this call is made to target-server backends,
* the ocs_scsi_ini_del_sport() is called to initiator-client backends.
*
* @param sport pointer to SLI port
*
* @return returns 0 for success, a negative error code value for failure.
*/
void
ocs_scsi_tgt_del_sport(ocs_sport_t *sport)
{
return;
}
/**
* @ingroup scsi_api_target
* @brief receive notification of a new SCSI initiator node
*
* Sent by base driver to notify a target-server of the presense of a new
* remote initiator. The target-server may use this call to prepare for
* inbound IO from this node.
*
* The ocs_node_t structure has and elment of type ocs_scsi_tgt_node_t named
* tgt_node that is declared and used by a target-server for private
* information.
*
* This function is only called if the target capability is enabled in driver.
*
* @param node pointer to new remote initiator node
*
* @return returns 0 for success, a negative error code value for failure.
*
* @note
*/
int32_t
ocs_scsi_new_initiator(ocs_node_t *node)
{
ocs_t *ocs = node->ocs;
struct ac_contract ac;
struct ac_device_changed *adc;
ocs_fcport *fcp = NULL;
fcp = node->sport->tgt_data;
if (fcp == NULL) {
ocs_log_err(ocs, "FCP is NULL \n");
return 1;
}
/*
* Update the IO watermark by decrementing it by the
* number of IOs reserved for each initiator.
*/
atomic_subtract_acq_32(&ocs->io_high_watermark, OCS_RSVD_INI_IO);
ac.contract_number = AC_CONTRACT_DEV_CHG;
adc = (struct ac_device_changed *) ac.contract_data;
adc->wwpn = ocs_node_get_wwpn(node);
adc->port = node->rnode.fc_id;
adc->target = node->instance_index;
adc->arrived = 1;
xpt_async(AC_CONTRACT, fcp->path, &ac);
return 0;
}
/**
* @ingroup scsi_api_target
* @brief validate new initiator
*
* Sent by base driver to validate a remote initiatiator. The target-server
* returns TRUE if this initiator should be accepted.
*
* This function is only called if the target capability is enabled in driver.
*
* @param node pointer to remote initiator node to validate
*
* @return TRUE if initiator should be accepted, FALSE if it should be rejected
*
* @note
*/
int32_t
ocs_scsi_validate_initiator(ocs_node_t *node)
{
return 1;
}
/**
* @ingroup scsi_api_target
* @brief Delete a SCSI initiator node
*
* Sent by base driver to notify a target-server that a remote initiator
* is now gone. The base driver will have terminated all outstanding IOs
* and the target-server will receive appropriate completions.
*
* This function is only called if the base driver is enabled for
* target capability.
*
* @param node pointer node being deleted
* @param reason Reason why initiator is gone.
*
* @return OCS_SCSI_CALL_COMPLETE to indicate that all work was completed
*
* @note
*/
int32_t
ocs_scsi_del_initiator(ocs_node_t *node, ocs_scsi_del_initiator_reason_e reason)
{
ocs_t *ocs = node->ocs;
struct ac_contract ac;
struct ac_device_changed *adc;
ocs_fcport *fcp = NULL;
fcp = node->sport->tgt_data;
if (fcp == NULL) {
ocs_log_err(ocs, "FCP is NULL \n");
return 1;
}
ac.contract_number = AC_CONTRACT_DEV_CHG;
adc = (struct ac_device_changed *) ac.contract_data;
adc->wwpn = ocs_node_get_wwpn(node);
adc->port = node->rnode.fc_id;
adc->target = node->instance_index;
adc->arrived = 0;
xpt_async(AC_CONTRACT, fcp->path, &ac);
if (reason == OCS_SCSI_INITIATOR_MISSING) {
return OCS_SCSI_CALL_COMPLETE;
}
/*
* Update the IO watermark by incrementing it by the
* number of IOs reserved for each initiator.
*/
atomic_add_acq_32(&ocs->io_high_watermark, OCS_RSVD_INI_IO);
return OCS_SCSI_CALL_COMPLETE;
}
/**
* @ingroup scsi_api_target
* @brief receive FCP SCSI Command
*
* Called by the base driver when a new SCSI command has been received. The
* target-server will process the command, and issue data and/or response phase
* requests to the base driver.
*
* The IO context (ocs_io_t) structure has and element of type
* ocs_scsi_tgt_io_t named tgt_io that is declared and used by
* a target-server for private information.
*
* @param io pointer to IO context
* @param lun LUN for this IO
* @param cdb pointer to SCSI CDB
* @param cdb_len length of CDB in bytes
* @param flags command flags
*
* @return returns 0 for success, a negative error code value for failure.
*/
int32_t ocs_scsi_recv_cmd(ocs_io_t *io, uint64_t lun, uint8_t *cdb,
uint32_t cdb_len, uint32_t flags)
{
ocs_t *ocs = io->ocs;
struct ccb_accept_tio *atio = NULL;
ocs_node_t *node = io->node;
ocs_tgt_resource_t *trsrc = NULL;
int32_t rc = -1;
ocs_fcport *fcp = NULL;
fcp = node->sport->tgt_data;
if (fcp == NULL) {
ocs_log_err(ocs, "FCP is NULL \n");
return 1;
}
atomic_add_acq_32(&ocs->io_in_use, 1);
/* set target io timeout */
io->timeout = ocs->target_io_timer_sec;
if (ocs->enable_task_set_full &&
(ocs->io_in_use >= ocs->io_high_watermark)) {
return ocs_task_set_full_or_busy(io);
} else {
atomic_store_rel_32(&io->node->tgt_node.busy_sent, FALSE);
}
if ((lun < OCS_MAX_LUN) && fcp->targ_rsrc[lun].enabled) {
trsrc = &fcp->targ_rsrc[lun];
} else if (fcp->targ_rsrc_wildcard.enabled) {
trsrc = &fcp->targ_rsrc_wildcard;
}
if (trsrc) {
atio = (struct ccb_accept_tio *)STAILQ_FIRST(&trsrc->atio);
}
if (atio) {
STAILQ_REMOVE_HEAD(&trsrc->atio, sim_links.stqe);
atio->ccb_h.status = CAM_CDB_RECVD;
atio->ccb_h.target_lun = lun;
atio->sense_len = 0;
atio->init_id = node->instance_index;
atio->tag_id = io->tag;
atio->ccb_h.ccb_io_ptr = io;
if (flags & OCS_SCSI_CMD_SIMPLE)
atio->tag_action = MSG_SIMPLE_Q_TAG;
else if (flags & OCS_SCSI_CMD_HEAD_OF_QUEUE)
atio->tag_action = MSG_HEAD_OF_Q_TAG;
else if (flags & OCS_SCSI_CMD_ORDERED)
atio->tag_action = MSG_ORDERED_Q_TAG;
else if (flags & OCS_SCSI_CMD_ACA)
atio->tag_action = MSG_ACA_TASK;
else
atio->tag_action = CAM_TAG_ACTION_NONE;
atio->priority = (flags & OCS_SCSI_PRIORITY_MASK) >>
OCS_SCSI_PRIORITY_SHIFT;
atio->cdb_len = cdb_len;
ocs_memcpy(atio->cdb_io.cdb_bytes, cdb, cdb_len);
io->tgt_io.flags = 0;
io->tgt_io.state = OCS_CAM_IO_COMMAND;
io->tgt_io.lun = lun;
xpt_done((union ccb *)atio);
rc = 0;
} else {
device_printf(
ocs->dev, "%s: no ATIO for LUN %lx (en=%s) OX_ID %#x\n",
__func__, (unsigned long)lun,
trsrc ? (trsrc->enabled ? "T" : "F") : "X",
be16toh(io->init_task_tag));
io->tgt_io.state = OCS_CAM_IO_MAX;
ocs_target_io_free(io);
}
return rc;
}
/**
* @ingroup scsi_api_target
* @brief receive FCP SCSI Command with first burst data.
*
* Receive a new FCP SCSI command from the base driver with first burst data.
*
* @param io pointer to IO context
* @param lun LUN for this IO
* @param cdb pointer to SCSI CDB
* @param cdb_len length of CDB in bytes
* @param flags command flags
* @param first_burst_buffers first burst buffers
* @param first_burst_buffer_count The number of bytes received in the first burst
*
* @return returns 0 for success, a negative error code value for failure.
*/
int32_t ocs_scsi_recv_cmd_first_burst(ocs_io_t *io, uint64_t lun, uint8_t *cdb,
uint32_t cdb_len, uint32_t flags,
ocs_dma_t first_burst_buffers[],
uint32_t first_burst_buffer_count)
{
return -1;
}
/**
* @ingroup scsi_api_target
* @brief receive a TMF command IO
*
* Called by the base driver when a SCSI TMF command has been received. The
* target-server will process the command, aborting commands as needed, and post
* a response using ocs_scsi_send_resp()
*
* The IO context (ocs_io_t) structure has and element of type ocs_scsi_tgt_io_t named
* tgt_io that is declared and used by a target-server for private information.
*
* If the target-server walks the nodes active_ios linked list, and starts IO
* abort processing, the code <b>must</b> be sure not to abort the IO passed into the
* ocs_scsi_recv_tmf() command.
*
* @param tmfio pointer to IO context
* @param lun logical unit value
* @param cmd command request
* @param abortio pointer to IO object to abort for TASK_ABORT (NULL for all other TMF)
* @param flags flags
*
* @return returns 0 for success, a negative error code value for failure.
*/
int32_t ocs_scsi_recv_tmf(ocs_io_t *tmfio, uint64_t lun, ocs_scsi_tmf_cmd_e cmd,
ocs_io_t *abortio, uint32_t flags)
{
ocs_t *ocs = tmfio->ocs;
ocs_node_t *node = tmfio->node;
ocs_tgt_resource_t *trsrc = NULL;
struct ccb_immediate_notify *inot = NULL;
int32_t rc = -1;
ocs_fcport *fcp = NULL;
fcp = node->sport->tgt_data;
if (fcp == NULL) {
ocs_log_err(ocs, "FCP is NULL \n");
return 1;
}
if ((lun < OCS_MAX_LUN) && fcp->targ_rsrc[lun].enabled) {
trsrc = &fcp->targ_rsrc[lun];
} else if (fcp->targ_rsrc_wildcard.enabled) {
trsrc = &fcp->targ_rsrc_wildcard;
}
device_printf(tmfio->ocs->dev, "%s: io=%p cmd=%#x LU=%lx en=%s\n",
__func__, tmfio, cmd, (unsigned long)lun,
trsrc ? (trsrc->enabled ? "T" : "F") : "X");
if (trsrc) {
inot = (struct ccb_immediate_notify *)STAILQ_FIRST(&trsrc->inot);
}
if (!inot) {
device_printf(
ocs->dev, "%s: no INOT for LUN %llx (en=%s) OX_ID %#x\n",
__func__, (unsigned long long)lun, trsrc ? (trsrc->enabled ? "T" : "F") : "X",
be16toh(tmfio->init_task_tag));
if (abortio) {
ocs_scsi_io_complete(abortio);
}
ocs_scsi_io_complete(tmfio);
goto ocs_scsi_recv_tmf_out;
}
tmfio->tgt_io.app = abortio;
STAILQ_REMOVE_HEAD(&trsrc->inot, sim_links.stqe);
inot->tag_id = tmfio->tag;
inot->seq_id = tmfio->tag;
if ((lun < OCS_MAX_LUN) && fcp->targ_rsrc[lun].enabled) {
inot->initiator_id = node->instance_index;
} else {
inot->initiator_id = CAM_TARGET_WILDCARD;
}
inot->ccb_h.status = CAM_MESSAGE_RECV;
inot->ccb_h.target_lun = lun;
switch (cmd) {
case OCS_SCSI_TMF_ABORT_TASK:
inot->arg = MSG_ABORT_TASK;
inot->seq_id = abortio->tag;
device_printf(ocs->dev, "%s: ABTS IO.%#x st=%#x\n",
__func__, abortio->tag, abortio->tgt_io.state);
abortio->tgt_io.flags |= OCS_CAM_IO_F_ABORT_RECV;
abortio->tgt_io.flags |= OCS_CAM_IO_F_ABORT_NOTIFY;
break;
case OCS_SCSI_TMF_QUERY_TASK_SET:
device_printf(ocs->dev,
"%s: OCS_SCSI_TMF_QUERY_TASK_SET not supported\n",
__func__);
STAILQ_INSERT_TAIL(&trsrc->inot, &inot->ccb_h, sim_links.stqe);
ocs_scsi_io_complete(tmfio);
goto ocs_scsi_recv_tmf_out;
break;
case OCS_SCSI_TMF_ABORT_TASK_SET:
inot->arg = MSG_ABORT_TASK_SET;
break;
case OCS_SCSI_TMF_CLEAR_TASK_SET:
inot->arg = MSG_CLEAR_TASK_SET;
break;
case OCS_SCSI_TMF_QUERY_ASYNCHRONOUS_EVENT:
inot->arg = MSG_QUERY_ASYNC_EVENT;
break;
case OCS_SCSI_TMF_LOGICAL_UNIT_RESET:
inot->arg = MSG_LOGICAL_UNIT_RESET;
break;
case OCS_SCSI_TMF_CLEAR_ACA:
inot->arg = MSG_CLEAR_ACA;
break;
case OCS_SCSI_TMF_TARGET_RESET:
inot->arg = MSG_TARGET_RESET;
break;
default:
device_printf(ocs->dev, "%s: unsupported TMF %#x\n",
__func__, cmd);
STAILQ_INSERT_TAIL(&trsrc->inot, &inot->ccb_h, sim_links.stqe);
goto ocs_scsi_recv_tmf_out;
}
rc = 0;
xpt_print(inot->ccb_h.path, "%s: func=%#x stat=%#x id=%#x lun=%#x"
" flags=%#x tag=%#x seq=%#x ini=%#x arg=%#x\n",
__func__, inot->ccb_h.func_code, inot->ccb_h.status,
inot->ccb_h.target_id,
(unsigned int)inot->ccb_h.target_lun, inot->ccb_h.flags,
inot->tag_id, inot->seq_id, inot->initiator_id,
inot->arg);
xpt_done((union ccb *)inot);
if (abortio) {
abortio->tgt_io.flags |= OCS_CAM_IO_F_ABORT_DEV;
rc = ocs_scsi_tgt_abort_io(abortio, ocs_io_abort_cb, tmfio);
}
ocs_scsi_recv_tmf_out:
return rc;
}
/**
* @ingroup scsi_api_initiator
* @brief Initializes any initiator fields on the ocs structure.
*
* Called by OS initialization code when a new device is discovered.
*
* @param ocs pointer to ocs
*
* @return returns 0 for success, a negative error code value for failure.
*/
int32_t
ocs_scsi_ini_new_device(ocs_t *ocs)
{
return 0;
}
/**
* @ingroup scsi_api_initiator
* @brief Tears down initiator members of ocs structure.
*
* Called by OS code when device is removed.
*
* @param ocs pointer to ocs
*
* @return returns 0 for success, a negative error code value for failure.
*/
int32_t
ocs_scsi_ini_del_device(ocs_t *ocs)
{
return 0;
}
/**
* @ingroup scsi_api_initiator
* @brief accept new domain notification
*
* Called by base drive when new domain is discovered. An initiator-client
* will accept this call to prepare for new remote node notifications
* arising from ocs_scsi_new_target().
*
* The domain context has the element <b>ocs_scsi_ini_domain_t ini_domain</b>
* which is declared by the initiator-client code and is used for
* initiator-client private data.
*
* This function will only be called if the base-driver has been enabled for
* initiator capability.
*
* Note that this call is made to initiator-client backends,
* the ocs_scsi_tgt_new_domain() function is called to target-server backends.
*
* @param domain pointer to domain
*
* @return returns 0 for success, a negative error code value for failure.
*/
int32_t
ocs_scsi_ini_new_domain(ocs_domain_t *domain)
{
return 0;
}
/**
* @ingroup scsi_api_initiator
* @brief accept domain lost notification
*
* Called by base-driver when a domain goes away. An initiator-client will
* use this call to clean up all domain scoped resources.
*
* This function will only be called if the base-driver has been enabled for
* initiator capability.
*
* Note that this call is made to initiator-client backends,
* the ocs_scsi_tgt_del_domain() function is called to target-server backends.
*
* @param domain pointer to domain
*
* @return returns 0 for success, a negative error code value for failure.
*/
void
ocs_scsi_ini_del_domain(ocs_domain_t *domain)
{
}
/**
* @ingroup scsi_api_initiator
* @brief accept new sli port notification
*
* Called by base drive when new sli port (sport) is discovered.
* A target-server will use this call to prepare for new remote node
* notifications arising from ocs_scsi_new_initiator().
*
* This function will only be called if the base-driver has been enabled for
* target capability.
*
* Note that this call is made to target-server backends,
* the ocs_scsi_ini_new_sport() function is called to initiator-client backends.
*
* @param sport pointer to sport
*
* @return returns 0 for success, a negative error code value for failure.
*/
int32_t
ocs_scsi_ini_new_sport(ocs_sport_t *sport)
{
ocs_t *ocs = sport->ocs;
ocs_fcport *fcp = FCPORT(ocs, 0);
if (!sport->is_vport) {
sport->tgt_data = fcp;
fcp->fc_id = sport->fc_id;
}
return 0;
}
/**
* @ingroup scsi_api_initiator
* @brief accept sli port gone notification
*
* Called by base-driver when a sport goes away. A target-server will
* use this call to clean up all sport scoped resources.
*
* Note that this call is made to target-server backends,
* the ocs_scsi_ini_del_sport() function is called to initiator-client backends.
*
* @param sport pointer to SLI port
*
* @return returns 0 for success, a negative error code value for failure.
*/
void
ocs_scsi_ini_del_sport(ocs_sport_t *sport)
{
ocs_t *ocs = sport->ocs;
ocs_fcport *fcp = FCPORT(ocs, 0);
if (!sport->is_vport) {
fcp->fc_id = 0;
}
}
void
ocs_scsi_sport_deleted(ocs_sport_t *sport)
{
ocs_t *ocs = sport->ocs;
ocs_fcport *fcp = NULL;
ocs_xport_stats_t value;
if (!sport->is_vport) {
return;
}
fcp = sport->tgt_data;
ocs_xport_status(ocs->xport, OCS_XPORT_PORT_STATUS, &value);
if (value.value == 0) {
ocs_log_debug(ocs, "PORT offline,.. skipping\n");
return;
}
if ((fcp->role != KNOB_ROLE_NONE)) {
if(fcp->vport->sport != NULL) {
ocs_log_debug(ocs,"sport is not NULL, skipping\n");
return;
}
ocs_sport_vport_alloc(ocs->domain, fcp->vport);
return;
}
}
int32_t
ocs_tgt_find(ocs_fcport *fcp, ocs_node_t *node)
{
ocs_fc_target_t *tgt = NULL;
uint32_t i;
for (i = 0; i < OCS_MAX_TARGETS; i++) {
tgt = &fcp->tgt[i];
if (tgt->state == OCS_TGT_STATE_NONE)
continue;
if (ocs_node_get_wwpn(node) == tgt->wwpn) {
return i;
}
}
return -1;
}
/**
* @ingroup scsi_api_initiator
* @brief receive notification of a new SCSI target node
*
* Sent by base driver to notify an initiator-client of the presense of a new
* remote target. The initiator-server may use this call to prepare for
* inbound IO from this node.
*
* This function is only called if the base driver is enabled for
* initiator capability.
*
* @param node pointer to new remote initiator node
*
* @return none
*
* @note
*/
uint32_t
ocs_update_tgt(ocs_node_t *node, ocs_fcport *fcp, uint32_t tgt_id)
{
ocs_fc_target_t *tgt = NULL;
tgt = &fcp->tgt[tgt_id];
tgt->node_id = node->instance_index;
tgt->state = OCS_TGT_STATE_VALID;
tgt->port_id = node->rnode.fc_id;
tgt->wwpn = ocs_node_get_wwpn(node);
tgt->wwnn = ocs_node_get_wwnn(node);
return 0;
}
uint32_t
ocs_add_new_tgt(ocs_node_t *node, ocs_fcport *fcp)
{
uint32_t i;
struct ocs_softc *ocs = node->ocs;
union ccb *ccb = NULL;
for (i = 0; i < OCS_MAX_TARGETS; i++) {
if (fcp->tgt[i].state == OCS_TGT_STATE_NONE)
break;
}
if (NULL == (ccb = xpt_alloc_ccb_nowait())) {
device_printf(ocs->dev, "%s: ccb allocation failed\n", __func__);
return -1;
}
if (CAM_REQ_CMP != xpt_create_path(&ccb->ccb_h.path, xpt_periph,
cam_sim_path(fcp->sim),
i, CAM_LUN_WILDCARD)) {
device_printf(
ocs->dev, "%s: target path creation failed\n", __func__);
xpt_free_ccb(ccb);
return -1;
}
ocs_update_tgt(node, fcp, i);
xpt_rescan(ccb);
return 0;
}
int32_t
ocs_scsi_new_target(ocs_node_t *node)
{
ocs_fcport *fcp = NULL;
int32_t i;
fcp = node->sport->tgt_data;
if (fcp == NULL) {
printf("%s:FCP is NULL \n", __func__);
return 0;
}
i = ocs_tgt_find(fcp, node);
if (i < 0) {
ocs_add_new_tgt(node, fcp);
return 0;
}
ocs_update_tgt(node, fcp, i);
return 0;
}
static void
ocs_delete_target(ocs_t *ocs, ocs_fcport *fcp, int tgt)
{
struct cam_path *cpath = NULL;
if (!fcp->sim) {
device_printf(ocs->dev, "%s: calling with NULL sim\n", __func__);
return;
}
if (CAM_REQ_CMP == xpt_create_path(&cpath, NULL, cam_sim_path(fcp->sim),
tgt, CAM_LUN_WILDCARD)) {
xpt_async(AC_LOST_DEVICE, cpath, NULL);
xpt_free_path(cpath);
}
}
/*
* Device Lost Timer Function- when we have decided that a device was lost,
* we wait a specific period of time prior to telling the OS about lost device.
*
* This timer function gets activated when the device was lost.
* This function fires once a second and then scans the port database
* for devices that are marked dead but still have a virtual target assigned.
* We decrement a counter for that port database entry, and when it hits zero,
* we tell the OS the device was lost. Timer will be stopped when the device
* comes back active or removed from the OS.
*/
static void
ocs_ldt(void *arg)
{
ocs_fcport *fcp = arg;
taskqueue_enqueue(taskqueue_thread, &fcp->ltask);
}
static void
ocs_ldt_task(void *arg, int pending)
{
ocs_fcport *fcp = arg;
ocs_t *ocs = fcp->ocs;
int i, more_to_do = 0;
ocs_fc_target_t *tgt = NULL;
for (i = 0; i < OCS_MAX_TARGETS; i++) {
tgt = &fcp->tgt[i];
if (tgt->state != OCS_TGT_STATE_LOST) {
continue;
}
if ((tgt->gone_timer != 0) && (ocs->attached)){
tgt->gone_timer -= 1;
more_to_do++;
continue;
}
if (tgt->is_target) {
tgt->is_target = 0;
ocs_delete_target(ocs, fcp, i);
}
tgt->state = OCS_TGT_STATE_NONE;
}
if (more_to_do) {
callout_reset(&fcp->ldt, hz, ocs_ldt, fcp);
} else {
callout_deactivate(&fcp->ldt);
}
}
/**
* @ingroup scsi_api_initiator
* @brief Delete a SCSI target node
*
* Sent by base driver to notify a initiator-client that a remote target
* is now gone. The base driver will have terminated all outstanding IOs
* and the initiator-client will receive appropriate completions.
*
* The ocs_node_t structure has and elment of type ocs_scsi_ini_node_t named
* ini_node that is declared and used by a target-server for private
* information.
*
* This function is only called if the base driver is enabled for
* initiator capability.
*
* @param node pointer node being deleted
* @param reason reason for deleting the target
*
* @return Returns OCS_SCSI_CALL_ASYNC if target delete is queued for async
* completion and OCS_SCSI_CALL_COMPLETE if call completed or error.
*
* @note
*/
int32_t
ocs_scsi_del_target(ocs_node_t *node, ocs_scsi_del_target_reason_e reason)
{
struct ocs_softc *ocs = node->ocs;
ocs_fcport *fcp = NULL;
ocs_fc_target_t *tgt = NULL;
int32_t tgt_id;
if (ocs == NULL) {
ocs_log_err(ocs,"OCS is NULL \n");
return -1;
}
fcp = node->sport->tgt_data;
if (fcp == NULL) {
ocs_log_err(ocs,"FCP is NULL \n");
return -1;
}
tgt_id = ocs_tgt_find(fcp, node);
if (tgt_id == -1) {
ocs_log_err(ocs,"target is invalid\n");
return -1;
}
tgt = &fcp->tgt[tgt_id];
// IF in shutdown delete target.
if(!ocs->attached) {
ocs_delete_target(ocs, fcp, tgt_id);
} else {
tgt->state = OCS_TGT_STATE_LOST;
tgt->gone_timer = 30;
if (!callout_active(&fcp->ldt)) {
callout_reset(&fcp->ldt, hz, ocs_ldt, fcp);
}
}
return 0;
}
/**
* @brief Initialize SCSI IO
*
* Initialize SCSI IO, this function is called once per IO during IO pool
* allocation so that the target server may initialize any of its own private
* data.
*
* @param io pointer to SCSI IO object
*
* @return returns 0 for success, a negative error code value for failure.
*/
int32_t
ocs_scsi_tgt_io_init(ocs_io_t *io)
{
return 0;
}
/**
* @brief Uninitialize SCSI IO
*
* Uninitialize target server private data in a SCSI io object
*
* @param io pointer to SCSI IO object
*
* @return returns 0 for success, a negative error code value for failure.
*/
int32_t
ocs_scsi_tgt_io_exit(ocs_io_t *io)
{
return 0;
}
/**
* @brief Initialize SCSI IO
*
* Initialize SCSI IO, this function is called once per IO during IO pool
* allocation so that the initiator client may initialize any of its own private
* data.
*
* @param io pointer to SCSI IO object
*
* @return returns 0 for success, a negative error code value for failure.
*/
int32_t
ocs_scsi_ini_io_init(ocs_io_t *io)
{
return 0;
}
/**
* @brief Uninitialize SCSI IO
*
* Uninitialize initiator client private data in a SCSI io object
*
* @param io pointer to SCSI IO object
*
* @return returns 0 for success, a negative error code value for failure.
*/
int32_t
ocs_scsi_ini_io_exit(ocs_io_t *io)
{
return 0;
}
/*
* End of functions required by SCSI base driver API
***************************************************************************/
static __inline void
ocs_set_ccb_status(union ccb *ccb, cam_status status)
{
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= status;
}
static int32_t
ocs_task_set_full_or_busy_cb(ocs_io_t *io, ocs_scsi_io_status_e scsi_status,
uint32_t flags, void *arg)
{
ocs_target_io_free(io);
return 0;
}
/**
* @brief send SCSI task set full or busy status
*
* A SCSI task set full or busy response is sent depending on whether
* another IO is already active on the LUN.
*
* @param io pointer to IO context
*
* @return returns 0 for success, a negative error code value for failure.
*/
static int32_t
ocs_task_set_full_or_busy(ocs_io_t *io)
{
ocs_scsi_cmd_resp_t rsp = { 0 };
ocs_t *ocs = io->ocs;
/*
* If there is another command for the LUN, then send task set full,
* if this is the first one, then send the busy status.
*
* if 'busy sent' is FALSE, set it to TRUE and send BUSY
* otherwise send FULL
*/
if (atomic_cmpset_acq_32(&io->node->tgt_node.busy_sent, FALSE, TRUE)) {
rsp.scsi_status = SCSI_STATUS_BUSY; /* Busy */
printf("%s: busy [%s] tag=%x iiu=%d ihw=%d\n", __func__,
io->node->display_name, io->tag,
io->ocs->io_in_use, io->ocs->io_high_watermark);
} else {
rsp.scsi_status = SCSI_STATUS_TASK_SET_FULL; /* Task set full */
printf("%s: full tag=%x iiu=%d\n", __func__, io->tag,
io->ocs->io_in_use);
}
/* Log a message here indicating a busy or task set full state */
if (OCS_LOG_ENABLE_Q_FULL_BUSY_MSG(ocs)) {
/* Log Task Set Full */
if (rsp.scsi_status == SCSI_STATUS_TASK_SET_FULL) {
/* Task Set Full Message */
ocs_log_info(ocs, "OCS CAM TASK SET FULL. Tasks >= %d\n",
ocs->io_high_watermark);
}
else if (rsp.scsi_status == SCSI_STATUS_BUSY) {
/* Log Busy Message */
ocs_log_info(ocs, "OCS CAM SCSI BUSY\n");
}
}
/* Send the response */
return
ocs_scsi_send_resp(io, 0, &rsp, ocs_task_set_full_or_busy_cb, NULL);
}
/**
* @ingroup cam_io
* @brief Process target IO completions
*
* @param io
* @param scsi_status did the IO complete successfully
* @param flags
* @param arg application specific pointer provided in the call to ocs_target_io()
*
* @todo
*/
static int32_t ocs_scsi_target_io_cb(ocs_io_t *io,
ocs_scsi_io_status_e scsi_status,
uint32_t flags, void *arg)
{
union ccb *ccb = arg;
struct ccb_scsiio *csio = &ccb->csio;
struct ocs_softc *ocs = csio->ccb_h.ccb_ocs_ptr;
uint32_t cam_dir = ccb->ccb_h.flags & CAM_DIR_MASK;
uint32_t io_is_done =
(ccb->ccb_h.flags & CAM_SEND_STATUS) == CAM_SEND_STATUS;
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
if (CAM_DIR_NONE != cam_dir) {
bus_dmasync_op_t op;
if (CAM_DIR_IN == cam_dir) {
op = BUS_DMASYNC_POSTREAD;
} else {
op = BUS_DMASYNC_POSTWRITE;
}
/* Synchronize the DMA memory with the CPU and free the mapping */
bus_dmamap_sync(ocs->buf_dmat, io->tgt_io.dmap, op);
if (io->tgt_io.flags & OCS_CAM_IO_F_DMAPPED) {
bus_dmamap_unload(ocs->buf_dmat, io->tgt_io.dmap);
}
}
if (io->tgt_io.sendresp) {
io->tgt_io.sendresp = 0;
ocs_scsi_cmd_resp_t resp = { 0 };
io->tgt_io.state = OCS_CAM_IO_RESP;
resp.scsi_status = scsi_status;
if (ccb->ccb_h.flags & CAM_SEND_SENSE) {
resp.sense_data = (uint8_t *)&csio->sense_data;
resp.sense_data_length = csio->sense_len;
}
resp.residual = io->exp_xfer_len - io->transferred;
return ocs_scsi_send_resp(io, 0, &resp, ocs_scsi_target_io_cb, ccb);
}
switch (scsi_status) {
case OCS_SCSI_STATUS_GOOD:
ocs_set_ccb_status(ccb, CAM_REQ_CMP);
break;
case OCS_SCSI_STATUS_ABORTED:
ocs_set_ccb_status(ccb, CAM_REQ_ABORTED);
break;
default:
ocs_set_ccb_status(ccb, CAM_REQ_CMP_ERR);
}
if (io_is_done) {
if ((io->tgt_io.flags & OCS_CAM_IO_F_ABORT_NOTIFY) == 0) {
ocs_target_io_free(io);
}
} else {
io->tgt_io.state = OCS_CAM_IO_DATA_DONE;
/*device_printf(ocs->dev, "%s: CTIO state=%d tag=%#x\n",
__func__, io->tgt_io.state, io->tag);*/
}
xpt_done(ccb);
return 0;
}
/**
* @note 1. Since the CCB is assigned to the ocs_io_t on an XPT_CONT_TARGET_IO
* action, if an initiator aborts a command prior to the SIM receiving
* a CTIO, the IO's CCB will be NULL.
*/
static int32_t
ocs_io_abort_cb(ocs_io_t *io, ocs_scsi_io_status_e scsi_status, uint32_t flags, void *arg)
{
struct ocs_softc *ocs = NULL;
ocs_io_t *tmfio = arg;
ocs_scsi_tmf_resp_e tmf_resp = OCS_SCSI_TMF_FUNCTION_COMPLETE;
int32_t rc = 0;
ocs = io->ocs;
io->tgt_io.flags &= ~OCS_CAM_IO_F_ABORT_DEV;
/* A good status indicates the IO was aborted and will be completed in
* the IO's completion handler. Handle the other cases here. */
switch (scsi_status) {
case OCS_SCSI_STATUS_GOOD:
break;
case OCS_SCSI_STATUS_NO_IO:
break;
default:
device_printf(ocs->dev, "%s: unhandled status %d\n",
__func__, scsi_status);
tmf_resp = OCS_SCSI_TMF_FUNCTION_REJECTED;
rc = -1;
}
ocs_scsi_send_tmf_resp(tmfio, tmf_resp, NULL, ocs_target_tmf_cb, NULL);
return rc;
}
/**
* @ingroup cam_io
* @brief Process initiator IO completions
*
* @param io
* @param scsi_status did the IO complete successfully
* @param rsp pointer to response buffer
* @param flags
* @param arg application specific pointer provided in the call to ocs_target_io()
*
* @todo
*/
static int32_t ocs_scsi_initiator_io_cb(ocs_io_t *io,
ocs_scsi_io_status_e scsi_status,
ocs_scsi_cmd_resp_t *rsp,
uint32_t flags, void *arg)
{
union ccb *ccb = arg;
struct ccb_scsiio *csio = &ccb->csio;
struct ocs_softc *ocs = csio->ccb_h.ccb_ocs_ptr;
uint32_t cam_dir = ccb->ccb_h.flags & CAM_DIR_MASK;
cam_status ccb_status= CAM_REQ_CMP_ERR;
if (CAM_DIR_NONE != cam_dir) {
bus_dmasync_op_t op;
if (CAM_DIR_IN == cam_dir) {
op = BUS_DMASYNC_POSTREAD;
} else {
op = BUS_DMASYNC_POSTWRITE;
}
/* Synchronize the DMA memory with the CPU and free the mapping */
bus_dmamap_sync(ocs->buf_dmat, io->tgt_io.dmap, op);
if (io->tgt_io.flags & OCS_CAM_IO_F_DMAPPED) {
bus_dmamap_unload(ocs->buf_dmat, io->tgt_io.dmap);
}
}
if (scsi_status == OCS_SCSI_STATUS_CHECK_RESPONSE) {
csio->scsi_status = rsp->scsi_status;
if (SCSI_STATUS_OK != rsp->scsi_status) {
ccb_status = CAM_SCSI_STATUS_ERROR;
}
csio->resid = rsp->residual;
if (rsp->residual > 0) {
uint32_t length = rsp->response_wire_length;
/* underflow */
if (csio->dxfer_len == (length + csio->resid)) {
ccb_status = CAM_REQ_CMP;
}
} else if (rsp->residual < 0) {
ccb_status = CAM_DATA_RUN_ERR;
}
if ((rsp->sense_data_length) &&
!(ccb->ccb_h.flags & (CAM_SENSE_PHYS | CAM_SENSE_PTR))) {
uint32_t sense_len = 0;
ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
if (rsp->sense_data_length < csio->sense_len) {
csio->sense_resid =
csio->sense_len - rsp->sense_data_length;
sense_len = rsp->sense_data_length;
} else {
csio->sense_resid = 0;
sense_len = csio->sense_len;
}
ocs_memcpy(&csio->sense_data, rsp->sense_data, sense_len);
}
} else if (scsi_status != OCS_SCSI_STATUS_GOOD) {
ccb_status = CAM_REQ_CMP_ERR;
ocs_set_ccb_status(ccb, ccb_status);
csio->ccb_h.status |= CAM_DEV_QFRZN;
xpt_freeze_devq(csio->ccb_h.path, 1);
} else {
ccb_status = CAM_REQ_CMP;
}
ocs_set_ccb_status(ccb, ccb_status);
ocs_scsi_io_free(io);
csio->ccb_h.ccb_io_ptr = NULL;
csio->ccb_h.ccb_ocs_ptr = NULL;
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
xpt_done(ccb);
return 0;
}
/**
* @brief Load scatter-gather list entries into an IO
*
* This routine relies on the driver instance's software context pointer and
* the IO object pointer having been already assigned to hooks in the CCB.
* Although the routine does not return success/fail, callers can look at the
* n_sge member to determine if the mapping failed (0 on failure).
*
* @param arg pointer to the CAM ccb for this IO
* @param seg DMA address/length pairs
* @param nseg number of DMA address/length pairs
* @param error any errors while mapping the IO
*/
static void
ocs_scsi_dmamap_load(void *arg, bus_dma_segment_t *seg, int nseg, int error)
{
ocs_dmamap_load_arg_t *sglarg = (ocs_dmamap_load_arg_t*) arg;
if (error) {
printf("%s: seg=%p nseg=%d error=%d\n",
__func__, seg, nseg, error);
sglarg->rc = -1;
} else {
uint32_t i = 0;
uint32_t c = 0;
if ((sglarg->sgl_count + nseg) > sglarg->sgl_max) {
printf("%s: sgl_count=%d nseg=%d max=%d\n", __func__,
sglarg->sgl_count, nseg, sglarg->sgl_max);
sglarg->rc = -2;
return;
}
for (i = 0, c = sglarg->sgl_count; i < nseg; i++, c++) {
sglarg->sgl[c].addr = seg[i].ds_addr;
sglarg->sgl[c].len = seg[i].ds_len;
}
sglarg->sgl_count = c;
sglarg->rc = 0;
}
}
/**
* @brief Build a scatter-gather list from a CAM CCB
*
* @param ocs the driver instance's software context
* @param ccb pointer to the CCB
* @param io pointer to the previously allocated IO object
* @param sgl pointer to SGL
* @param sgl_max number of entries in sgl
*
* @return 0 on success, non-zero otherwise
*/
static int32_t
ocs_build_scsi_sgl(struct ocs_softc *ocs, union ccb *ccb, ocs_io_t *io,
ocs_scsi_sgl_t *sgl, uint32_t sgl_max)
{
ocs_dmamap_load_arg_t dmaarg;
int32_t err = 0;
if (!ocs || !ccb || !io || !sgl) {
printf("%s: bad param o=%p c=%p i=%p s=%p\n", __func__,
ocs, ccb, io, sgl);
return -1;
}
io->tgt_io.flags &= ~OCS_CAM_IO_F_DMAPPED;
dmaarg.sgl = sgl;
dmaarg.sgl_count = 0;
dmaarg.sgl_max = sgl_max;
dmaarg.rc = 0;
err = bus_dmamap_load_ccb(ocs->buf_dmat, io->tgt_io.dmap, ccb,
ocs_scsi_dmamap_load, &dmaarg, 0);
if (err || dmaarg.rc) {
device_printf(
ocs->dev, "%s: bus_dmamap_load_ccb error (%d %d)\n",
__func__, err, dmaarg.rc);
return -1;
}
io->tgt_io.flags |= OCS_CAM_IO_F_DMAPPED;
return dmaarg.sgl_count;
}
/**
* @ingroup cam_io
* @brief Send a target IO
*
* @param ocs the driver instance's software context
* @param ccb pointer to the CCB
*
* @return 0 on success, non-zero otherwise
*/
static int32_t
ocs_target_io(struct ocs_softc *ocs, union ccb *ccb)
{
struct ccb_scsiio *csio = &ccb->csio;
ocs_io_t *io = NULL;
uint32_t cam_dir = ccb->ccb_h.flags & CAM_DIR_MASK;
bool sendstatus = ccb->ccb_h.flags & CAM_SEND_STATUS;
uint32_t xferlen = csio->dxfer_len;
int32_t rc = 0;
io = ocs_scsi_find_io(ocs, csio->tag_id);
if (io == NULL) {
ocs_set_ccb_status(ccb, CAM_REQ_CMP_ERR);
panic("bad tag value");
return 1;
}
/* Received an ABORT TASK for this IO */
if (io->tgt_io.flags & OCS_CAM_IO_F_ABORT_RECV) {
/*device_printf(ocs->dev,
"%s: XPT_CONT_TARGET_IO state=%d tag=%#x xid=%#x flags=%#x\n",
__func__, io->tgt_io.state, io->tag, io->init_task_tag,
io->tgt_io.flags);*/
io->tgt_io.flags |= OCS_CAM_IO_F_ABORT_CAM;
if (ccb->ccb_h.flags & CAM_SEND_STATUS) {
ocs_set_ccb_status(ccb, CAM_REQ_CMP);
ocs_target_io_free(io);
return 1;
}
ocs_set_ccb_status(ccb, CAM_REQ_ABORTED);
return 1;
}
io->tgt_io.app = ccb;
ocs_set_ccb_status(ccb, CAM_REQ_INPROG);
ccb->ccb_h.status |= CAM_SIM_QUEUED;
csio->ccb_h.ccb_ocs_ptr = ocs;
csio->ccb_h.ccb_io_ptr = io;
if ((sendstatus && (xferlen == 0))) {
ocs_scsi_cmd_resp_t resp = { 0 };
ocs_assert(ccb->ccb_h.flags & CAM_SEND_STATUS, -1);
io->tgt_io.state = OCS_CAM_IO_RESP;
resp.scsi_status = csio->scsi_status;
if (ccb->ccb_h.flags & CAM_SEND_SENSE) {
resp.sense_data = (uint8_t *)&csio->sense_data;
resp.sense_data_length = csio->sense_len;
}
resp.residual = io->exp_xfer_len - io->transferred;
rc = ocs_scsi_send_resp(io, 0, &resp, ocs_scsi_target_io_cb, ccb);
} else if (xferlen != 0) {
ocs_scsi_sgl_t sgl[OCS_FC_MAX_SGL];
int32_t sgl_count = 0;
io->tgt_io.state = OCS_CAM_IO_DATA;
if (sendstatus)
io->tgt_io.sendresp = 1;
sgl_count = ocs_build_scsi_sgl(ocs, ccb, io, sgl, ARRAY_SIZE(sgl));
if (sgl_count > 0) {
if (cam_dir == CAM_DIR_IN) {
rc = ocs_scsi_send_rd_data(io, 0, NULL, sgl,
sgl_count, csio->dxfer_len,
ocs_scsi_target_io_cb, ccb);
} else if (cam_dir == CAM_DIR_OUT) {
rc = ocs_scsi_recv_wr_data(io, 0, NULL, sgl,
sgl_count, csio->dxfer_len,
ocs_scsi_target_io_cb, ccb);
} else {
device_printf(ocs->dev, "%s:"
" unknown CAM direction %#x\n",
__func__, cam_dir);
ocs_set_ccb_status(ccb, CAM_REQ_INVALID);
rc = 1;
}
} else {
device_printf(ocs->dev, "%s: building SGL failed\n",
__func__);
ocs_set_ccb_status(ccb, CAM_REQ_CMP_ERR);
rc = 1;
}
} else {
device_printf(ocs->dev, "%s: Wrong value xfer and sendstatus"
" are 0 \n", __func__);
ocs_set_ccb_status(ccb, CAM_REQ_INVALID);
rc = 1;
}
if (rc) {
ocs_set_ccb_status(ccb, CAM_REQ_CMP_ERR);
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
io->tgt_io.state = OCS_CAM_IO_DATA_DONE;
device_printf(ocs->dev, "%s: CTIO state=%d tag=%#x\n",
__func__, io->tgt_io.state, io->tag);
if ((sendstatus && (xferlen == 0))) {
ocs_target_io_free(io);
}
}
return rc;
}
static int32_t
ocs_target_tmf_cb(ocs_io_t *io, ocs_scsi_io_status_e scsi_status, uint32_t flags,
void *arg)
{
/*device_printf(io->ocs->dev, "%s: tag=%x io=%p s=%#x\n",
__func__, io->tag, io, scsi_status);*/
ocs_scsi_io_complete(io);
return 0;
}
/**
* @ingroup cam_io
* @brief Send an initiator IO
*
* @param ocs the driver instance's software context
* @param ccb pointer to the CCB
*
* @return 0 on success, non-zero otherwise
*/
static int32_t
ocs_initiator_io(struct ocs_softc *ocs, union ccb *ccb)
{
int32_t rc;
struct ccb_scsiio *csio = &ccb->csio;
struct ccb_hdr *ccb_h = &csio->ccb_h;
ocs_node_t *node = NULL;
ocs_io_t *io = NULL;
ocs_scsi_sgl_t sgl[OCS_FC_MAX_SGL];
int32_t flags, sgl_count;
ocs_fcport *fcp;
fcp = FCPORT(ocs, cam_sim_bus(xpt_path_sim((ccb)->ccb_h.path)));
if (fcp->tgt[ccb_h->target_id].state == OCS_TGT_STATE_LOST) {
device_printf(ocs->dev, "%s: device LOST %d\n", __func__,
ccb_h->target_id);
return CAM_REQUEUE_REQ;
}
if (fcp->tgt[ccb_h->target_id].state == OCS_TGT_STATE_NONE) {
device_printf(ocs->dev, "%s: device not ready %d\n", __func__,
ccb_h->target_id);
return CAM_SEL_TIMEOUT;
}
node = ocs_node_get_instance(ocs, fcp->tgt[ccb_h->target_id].node_id);
if (node == NULL) {
device_printf(ocs->dev, "%s: no device %d\n", __func__,
ccb_h->target_id);
return CAM_SEL_TIMEOUT;
}
if (!node->targ) {
device_printf(ocs->dev, "%s: not target device %d\n", __func__,
ccb_h->target_id);
return CAM_SEL_TIMEOUT;
}
io = ocs_scsi_io_alloc(node, OCS_SCSI_IO_ROLE_ORIGINATOR);
if (io == NULL) {
device_printf(ocs->dev, "%s: unable to alloc IO\n", __func__);
return -1;
}
/* eventhough this is INI, use target structure as ocs_build_scsi_sgl
* only references the tgt_io part of an ocs_io_t */
io->tgt_io.app = ccb;
csio->ccb_h.ccb_ocs_ptr = ocs;
csio->ccb_h.ccb_io_ptr = io;
sgl_count = ocs_build_scsi_sgl(ocs, ccb, io, sgl, ARRAY_SIZE(sgl));
if (sgl_count < 0) {
ocs_scsi_io_free(io);
device_printf(ocs->dev, "%s: building SGL failed\n", __func__);
return -1;
}
if (ccb->ccb_h.timeout == CAM_TIME_INFINITY) {
io->timeout = 0;
} else if (ccb->ccb_h.timeout == CAM_TIME_DEFAULT) {
io->timeout = OCS_CAM_IO_TIMEOUT;
} else {
io->timeout = ccb->ccb_h.timeout;
}
switch (csio->tag_action) {
case MSG_HEAD_OF_Q_TAG:
flags = OCS_SCSI_CMD_HEAD_OF_QUEUE;
break;
case MSG_ORDERED_Q_TAG:
flags = OCS_SCSI_CMD_ORDERED;
break;
case MSG_ACA_TASK:
flags = OCS_SCSI_CMD_ACA;
break;
case CAM_TAG_ACTION_NONE:
case MSG_SIMPLE_Q_TAG:
default:
flags = OCS_SCSI_CMD_SIMPLE;
break;
}
flags |= (csio->priority << OCS_SCSI_PRIORITY_SHIFT) &
OCS_SCSI_PRIORITY_MASK;
switch (ccb->ccb_h.flags & CAM_DIR_MASK) {
case CAM_DIR_NONE:
rc = ocs_scsi_send_nodata_io(node, io, ccb_h->target_lun,
ccb->ccb_h.flags & CAM_CDB_POINTER ?
csio->cdb_io.cdb_ptr: csio->cdb_io.cdb_bytes,
csio->cdb_len,
ocs_scsi_initiator_io_cb, ccb, flags);
break;
case CAM_DIR_IN:
rc = ocs_scsi_send_rd_io(node, io, ccb_h->target_lun,
ccb->ccb_h.flags & CAM_CDB_POINTER ?
csio->cdb_io.cdb_ptr: csio->cdb_io.cdb_bytes,
csio->cdb_len,
NULL,
sgl, sgl_count, csio->dxfer_len,
ocs_scsi_initiator_io_cb, ccb, flags);
break;
case CAM_DIR_OUT:
rc = ocs_scsi_send_wr_io(node, io, ccb_h->target_lun,
ccb->ccb_h.flags & CAM_CDB_POINTER ?
csio->cdb_io.cdb_ptr: csio->cdb_io.cdb_bytes,
csio->cdb_len,
NULL,
sgl, sgl_count, csio->dxfer_len,
ocs_scsi_initiator_io_cb, ccb, flags);
break;
default:
panic("%s invalid data direction %08x\n", __func__,
ccb->ccb_h.flags);
break;
}
return rc;
}
static uint32_t
ocs_fcp_change_role(struct ocs_softc *ocs, ocs_fcport *fcp, uint32_t new_role)
{
uint32_t rc = 0, was = 0, i = 0;
ocs_vport_spec_t *vport = fcp->vport;
for (was = 0, i = 0; i < (ocs->num_vports + 1); i++) {
if (FCPORT(ocs, i)->role != KNOB_ROLE_NONE)
was++;
}
// Physical port
if ((was == 0) || (vport == NULL)) {
fcp->role = new_role;
if (vport == NULL) {
ocs->enable_ini = (new_role & KNOB_ROLE_INITIATOR)? 1:0;
ocs->enable_tgt = (new_role & KNOB_ROLE_TARGET)? 1:0;
} else {
vport->enable_ini = (new_role & KNOB_ROLE_INITIATOR)? 1:0;
vport->enable_tgt = (new_role & KNOB_ROLE_TARGET)? 1:0;
}
rc = ocs_xport_control(ocs->xport, OCS_XPORT_PORT_OFFLINE);
if (rc) {
ocs_log_debug(ocs, "port offline failed : %d\n", rc);
}
rc = ocs_xport_control(ocs->xport, OCS_XPORT_PORT_ONLINE);
if (rc) {
ocs_log_debug(ocs, "port online failed : %d\n", rc);
}
return 0;
}
if ((fcp->role != KNOB_ROLE_NONE)){
fcp->role = new_role;
vport->enable_ini = (new_role & KNOB_ROLE_INITIATOR)? 1:0;
vport->enable_tgt = (new_role & KNOB_ROLE_TARGET)? 1:0;
/* New Sport will be created in sport deleted cb */
return ocs_sport_vport_del(ocs, ocs->domain, vport->wwpn, vport->wwnn);
}
fcp->role = new_role;
vport->enable_ini = (new_role & KNOB_ROLE_INITIATOR)? 1:0;
vport->enable_tgt = (new_role & KNOB_ROLE_TARGET)? 1:0;
if (fcp->role != KNOB_ROLE_NONE) {
return ocs_sport_vport_alloc(ocs->domain, vport);
}
return (0);
}
/**
* @ingroup cam_api
* @brief Process CAM actions
*
* The driver supplies this routine to the CAM during intialization and
* is the main entry point for processing CAM Control Blocks (CCB)
*
* @param sim pointer to the SCSI Interface Module
* @param ccb CAM control block
*
* @todo
* - populate path inquiry data via info retrieved from SLI port
*/
static void
ocs_action(struct cam_sim *sim, union ccb *ccb)
{
struct ocs_softc *ocs = (struct ocs_softc *)cam_sim_softc(sim);
struct ccb_hdr *ccb_h = &ccb->ccb_h;
int32_t rc, bus;
bus = cam_sim_bus(sim);
switch (ccb_h->func_code) {
case XPT_SCSI_IO:
if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0) {
if ((ccb->ccb_h.flags & CAM_CDB_PHYS) != 0) {
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
}
rc = ocs_initiator_io(ocs, ccb);
if (0 == rc) {
ocs_set_ccb_status(ccb, CAM_REQ_INPROG | CAM_SIM_QUEUED);
break;
} else {
if (rc == CAM_REQUEUE_REQ) {
cam_freeze_devq(ccb->ccb_h.path);
cam_release_devq(ccb->ccb_h.path, RELSIM_RELEASE_AFTER_TIMEOUT, 0, 100, 0);
ccb->ccb_h.status = CAM_REQUEUE_REQ;
xpt_done(ccb);
break;
}
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
if (rc > 0) {
ocs_set_ccb_status(ccb, rc);
} else {
ocs_set_ccb_status(ccb, CAM_SEL_TIMEOUT);
}
}
xpt_done(ccb);
break;
case XPT_PATH_INQ:
{
struct ccb_pathinq *cpi = &ccb->cpi;
struct ccb_pathinq_settings_fc *fc = &cpi->xport_specific.fc;
ocs_fcport *fcp = FCPORT(ocs, bus);
uint64_t wwn = 0;
ocs_xport_stats_t value;
cpi->version_num = 1;
cpi->protocol = PROTO_SCSI;
cpi->protocol_version = SCSI_REV_SPC;
if (ocs->ocs_xport == OCS_XPORT_FC) {
cpi->transport = XPORT_FC;
} else {
cpi->transport = XPORT_UNKNOWN;
}
cpi->transport_version = 0;
/* Set the transport parameters of the SIM */
ocs_xport_status(ocs->xport, OCS_XPORT_LINK_SPEED, &value);
fc->bitrate = value.value * 1000; /* speed in Mbps */
wwn = *((uint64_t *)ocs_scsi_get_property_ptr(ocs, OCS_SCSI_WWPN));
fc->wwpn = be64toh(wwn);
wwn = *((uint64_t *)ocs_scsi_get_property_ptr(ocs, OCS_SCSI_WWNN));
fc->wwnn = be64toh(wwn);
fc->port = fcp->fc_id;
if (ocs->config_tgt) {
cpi->target_sprt =
PIT_PROCESSOR | PIT_DISCONNECT | PIT_TERM_IO;
}
cpi->hba_misc = PIM_NOBUSRESET | PIM_UNMAPPED;
cpi->hba_misc |= PIM_EXTLUNS | PIM_NOSCAN;
cpi->hba_inquiry = PI_TAG_ABLE;
cpi->max_target = OCS_MAX_TARGETS;
cpi->initiator_id = ocs->max_remote_nodes + 1;
if (!ocs->enable_ini) {
cpi->hba_misc |= PIM_NOINITIATOR;
}
cpi->max_lun = OCS_MAX_LUN;
cpi->bus_id = cam_sim_bus(sim);
/* Need to supply a base transfer speed prior to linking up
* Worst case, this would be FC 1Gbps */
cpi->base_transfer_speed = 1 * 1000 * 1000;
/* Calculate the max IO supported
* Worst case would be an OS page per SGL entry */
cpi->maxio = PAGE_SIZE *
(ocs_scsi_get_property(ocs, OCS_SCSI_MAX_SGL) - 1);
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "Emulex", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_GET_TRAN_SETTINGS:
{
struct ccb_trans_settings *cts = &ccb->cts;
struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi;
struct ccb_trans_settings_fc *fc = &cts->xport_specific.fc;
ocs_xport_stats_t value;
ocs_fcport *fcp = FCPORT(ocs, bus);
ocs_fc_target_t *tgt = NULL;
if (ocs->ocs_xport != OCS_XPORT_FC) {
ocs_set_ccb_status(ccb, CAM_REQ_INVALID);
xpt_done(ccb);
break;
}
if (cts->ccb_h.target_id > OCS_MAX_TARGETS) {
ocs_set_ccb_status(ccb, CAM_DEV_NOT_THERE);
xpt_done(ccb);
break;
}
tgt = &fcp->tgt[cts->ccb_h.target_id];
if (tgt->state == OCS_TGT_STATE_NONE) {
ocs_set_ccb_status(ccb, CAM_DEV_NOT_THERE);
xpt_done(ccb);
break;
}
cts->protocol = PROTO_SCSI;
cts->protocol_version = SCSI_REV_SPC2;
cts->transport = XPORT_FC;
cts->transport_version = 2;
scsi->valid = CTS_SCSI_VALID_TQ;
scsi->flags = CTS_SCSI_FLAGS_TAG_ENB;
/* speed in Mbps */
ocs_xport_status(ocs->xport, OCS_XPORT_LINK_SPEED, &value);
fc->bitrate = value.value * 100;
fc->wwpn = tgt->wwpn;
fc->wwnn = tgt->wwnn;
fc->port = tgt->port_id;
fc->valid = CTS_FC_VALID_SPEED |
CTS_FC_VALID_WWPN |
CTS_FC_VALID_WWNN |
CTS_FC_VALID_PORT;
ocs_set_ccb_status(ccb, CAM_REQ_CMP);
xpt_done(ccb);
break;
}
case XPT_SET_TRAN_SETTINGS:
ocs_set_ccb_status(ccb, CAM_REQ_CMP);
xpt_done(ccb);
break;
case XPT_CALC_GEOMETRY:
cam_calc_geometry(&ccb->ccg, TRUE);
xpt_done(ccb);
break;
case XPT_GET_SIM_KNOB:
{
struct ccb_sim_knob *knob = &ccb->knob;
uint64_t wwn = 0;
ocs_fcport *fcp = FCPORT(ocs, bus);
if (ocs->ocs_xport != OCS_XPORT_FC) {
ocs_set_ccb_status(ccb, CAM_REQ_INVALID);
xpt_done(ccb);
break;
}
if (bus == 0) {
wwn = *((uint64_t *)ocs_scsi_get_property_ptr(ocs,
OCS_SCSI_WWNN));
knob->xport_specific.fc.wwnn = be64toh(wwn);
wwn = *((uint64_t *)ocs_scsi_get_property_ptr(ocs,
OCS_SCSI_WWPN));
knob->xport_specific.fc.wwpn = be64toh(wwn);
} else {
knob->xport_specific.fc.wwnn = fcp->vport->wwnn;
knob->xport_specific.fc.wwpn = fcp->vport->wwpn;
}
knob->xport_specific.fc.role = fcp->role;
knob->xport_specific.fc.valid = KNOB_VALID_ADDRESS |
KNOB_VALID_ROLE;
ocs_set_ccb_status(ccb, CAM_REQ_CMP);
xpt_done(ccb);
break;
}
case XPT_SET_SIM_KNOB:
{
struct ccb_sim_knob *knob = &ccb->knob;
bool role_changed = FALSE;
ocs_fcport *fcp = FCPORT(ocs, bus);
if (ocs->ocs_xport != OCS_XPORT_FC) {
ocs_set_ccb_status(ccb, CAM_REQ_INVALID);
xpt_done(ccb);
break;
}
if (knob->xport_specific.fc.valid & KNOB_VALID_ADDRESS) {
device_printf(ocs->dev,
"%s: XPT_SET_SIM_KNOB wwnn=%llx wwpn=%llx\n",
__func__,
(unsigned long long)knob->xport_specific.fc.wwnn,
(unsigned long long)knob->xport_specific.fc.wwpn);
}
if (knob->xport_specific.fc.valid & KNOB_VALID_ROLE) {
switch (knob->xport_specific.fc.role) {
case KNOB_ROLE_NONE:
if (fcp->role != KNOB_ROLE_NONE) {
role_changed = TRUE;
}
break;
case KNOB_ROLE_TARGET:
if (fcp->role != KNOB_ROLE_TARGET) {
role_changed = TRUE;
}
break;
case KNOB_ROLE_INITIATOR:
if (fcp->role != KNOB_ROLE_INITIATOR) {
role_changed = TRUE;
}
break;
case KNOB_ROLE_BOTH:
if (fcp->role != KNOB_ROLE_BOTH) {
role_changed = TRUE;
}
break;
default:
device_printf(ocs->dev,
"%s: XPT_SET_SIM_KNOB unsupported role: %d\n",
__func__, knob->xport_specific.fc.role);
}
if (role_changed) {
device_printf(ocs->dev,
"BUS:%d XPT_SET_SIM_KNOB old_role: %d new_role: %d\n",
bus, fcp->role, knob->xport_specific.fc.role);
ocs_fcp_change_role(ocs, fcp, knob->xport_specific.fc.role);
}
}
ocs_set_ccb_status(ccb, CAM_REQ_CMP);
xpt_done(ccb);
break;
}
case XPT_ABORT:
{
union ccb *accb = ccb->cab.abort_ccb;
switch (accb->ccb_h.func_code) {
case XPT_ACCEPT_TARGET_IO:
ocs_abort_atio(ocs, ccb);
break;
case XPT_IMMEDIATE_NOTIFY:
ocs_abort_inot(ocs, ccb);
break;
case XPT_SCSI_IO:
rc = ocs_abort_initiator_io(ocs, accb);
if (rc) {
ccb->ccb_h.status = CAM_UA_ABORT;
} else {
ccb->ccb_h.status = CAM_REQ_CMP;
}
break;
default:
printf("abort of unknown func %#x\n",
accb->ccb_h.func_code);
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
break;
}
case XPT_RESET_BUS:
if (ocs_xport_control(ocs->xport, OCS_XPORT_PORT_OFFLINE) == 0) {
rc = ocs_xport_control(ocs->xport, OCS_XPORT_PORT_ONLINE);
if (rc) {
ocs_log_debug(ocs, "Failed to bring port online"
" : %d\n", rc);
}
ocs_set_ccb_status(ccb, CAM_REQ_CMP);
} else {
ocs_set_ccb_status(ccb, CAM_REQ_CMP_ERR);
}
xpt_done(ccb);
break;
case XPT_RESET_DEV:
{
ocs_node_t *node = NULL;
ocs_io_t *io = NULL;
int32_t rc = 0;
ocs_fcport *fcp = FCPORT(ocs, bus);
node = ocs_node_get_instance(ocs, fcp->tgt[ccb_h->target_id].node_id);
if (node == NULL) {
device_printf(ocs->dev, "%s: no device %d\n",
__func__, ccb_h->target_id);
ocs_set_ccb_status(ccb, CAM_DEV_NOT_THERE);
xpt_done(ccb);
break;
}
io = ocs_scsi_io_alloc(node, OCS_SCSI_IO_ROLE_ORIGINATOR);
if (io == NULL) {
device_printf(ocs->dev, "%s: unable to alloc IO\n",
__func__);
ocs_set_ccb_status(ccb, CAM_REQ_CMP_ERR);
xpt_done(ccb);
break;
}
rc = ocs_scsi_send_tmf(node, io, NULL, ccb_h->target_lun,
OCS_SCSI_TMF_LOGICAL_UNIT_RESET,
NULL, 0, 0, /* sgl, sgl_count, length */
ocs_initiator_tmf_cb, NULL/*arg*/);
if (rc) {
ocs_set_ccb_status(ccb, CAM_REQ_CMP_ERR);
} else {
ocs_set_ccb_status(ccb, CAM_REQ_CMP);
}
if (node->fcp2device) {
ocs_reset_crn(node, ccb_h->target_lun);
}
xpt_done(ccb);
break;
}
case XPT_EN_LUN: /* target support */
{
ocs_tgt_resource_t *trsrc = NULL;
uint32_t status = 0;
ocs_fcport *fcp = FCPORT(ocs, bus);
device_printf(ocs->dev, "XPT_EN_LUN %sable %d:%d\n",
ccb->cel.enable ? "en" : "dis",
ccb->ccb_h.target_id,
(unsigned int)ccb->ccb_h.target_lun);
trsrc = ocs_tgt_resource_get(fcp, &ccb->ccb_h, &status);
if (trsrc) {
trsrc->enabled = ccb->cel.enable;
/* Abort all ATIO/INOT on LUN disable */
if (trsrc->enabled == FALSE) {
ocs_tgt_resource_abort(ocs, trsrc);
} else {
STAILQ_INIT(&trsrc->atio);
STAILQ_INIT(&trsrc->inot);
}
status = CAM_REQ_CMP;
}
ocs_set_ccb_status(ccb, status);
xpt_done(ccb);
break;
}
/*
* The flow of target IOs in CAM is:
* - CAM supplies a number of CCBs to the driver used for received
* commands.
* - when the driver receives a command, it copies the relevant
* information to the CCB and returns it to the CAM using xpt_done()
* - after the target server processes the request, it creates
* a new CCB containing information on how to continue the IO and
* passes that to the driver
* - the driver processes the "continue IO" (a.k.a CTIO) CCB
* - once the IO completes, the driver returns the CTIO to the CAM
* using xpt_done()
*/
case XPT_ACCEPT_TARGET_IO: /* used to inform upper layer of
received CDB (a.k.a. ATIO) */
case XPT_IMMEDIATE_NOTIFY: /* used to inform upper layer of other
event (a.k.a. INOT) */
{
ocs_tgt_resource_t *trsrc = NULL;
uint32_t status = 0;
ocs_fcport *fcp = FCPORT(ocs, bus);
/*printf("XPT_%s %p\n", ccb_h->func_code == XPT_ACCEPT_TARGET_IO ?
"ACCEPT_TARGET_IO" : "IMMEDIATE_NOTIFY", ccb);*/
trsrc = ocs_tgt_resource_get(fcp, &ccb->ccb_h, &status);
if (trsrc == NULL) {
ocs_set_ccb_status(ccb, CAM_DEV_NOT_THERE);
xpt_done(ccb);
break;
}
if (XPT_ACCEPT_TARGET_IO == ccb->ccb_h.func_code) {
struct ccb_accept_tio *atio = NULL;
atio = (struct ccb_accept_tio *)ccb;
atio->init_id = 0x0badbeef;
atio->tag_id = 0xdeadc0de;
STAILQ_INSERT_TAIL(&trsrc->atio, &ccb->ccb_h,
sim_links.stqe);
} else {
STAILQ_INSERT_TAIL(&trsrc->inot, &ccb->ccb_h,
sim_links.stqe);
}
ccb->ccb_h.ccb_io_ptr = NULL;
ccb->ccb_h.ccb_ocs_ptr = ocs;
ocs_set_ccb_status(ccb, CAM_REQ_INPROG);
/*
* These actions give resources to the target driver.
* If we didn't return here, this function would call
* xpt_done(), signaling to the upper layers that an
* IO or other event had arrived.
*/
break;
}
case XPT_NOTIFY_ACKNOWLEDGE:
{
ocs_io_t *io = NULL;
ocs_io_t *abortio = NULL;
/* Get the IO reference for this tag */
io = ocs_scsi_find_io(ocs, ccb->cna2.tag_id);
if (io == NULL) {
device_printf(ocs->dev,
"%s: XPT_NOTIFY_ACKNOWLEDGE no IO with tag %#x\n",
__func__, ccb->cna2.tag_id);
ocs_set_ccb_status(ccb, CAM_REQ_CMP_ERR);
xpt_done(ccb);
break;
}
abortio = io->tgt_io.app;
if (abortio) {
abortio->tgt_io.flags &= ~OCS_CAM_IO_F_ABORT_NOTIFY;
device_printf(ocs->dev,
"%s: XPT_NOTIFY_ACK state=%d tag=%#x xid=%#x"
" flags=%#x\n", __func__, abortio->tgt_io.state,
abortio->tag, abortio->init_task_tag,
abortio->tgt_io.flags);
/* TMF response was sent in abort callback */
} else {
ocs_scsi_send_tmf_resp(io,
OCS_SCSI_TMF_FUNCTION_COMPLETE,
NULL, ocs_target_tmf_cb, NULL);
}
ocs_set_ccb_status(ccb, CAM_REQ_CMP);
xpt_done(ccb);
break;
}
case XPT_CONT_TARGET_IO: /* continue target IO, sending data/response (a.k.a. CTIO) */
if (ocs_target_io(ocs, ccb)) {
device_printf(ocs->dev,
"XPT_CONT_TARGET_IO failed flags=%x tag=%#x\n",
ccb->ccb_h.flags, ccb->csio.tag_id);
xpt_done(ccb);
}
break;
default:
device_printf(ocs->dev, "unhandled func_code = %#x\n",
ccb_h->func_code);
ccb_h->status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
}
/**
* @ingroup cam_api
* @brief Process events
*
* @param sim pointer to the SCSI Interface Module
*
*/
static void
ocs_poll(struct cam_sim *sim)
{
printf("%s\n", __func__);
}
static int32_t
ocs_initiator_tmf_cb(ocs_io_t *io, ocs_scsi_io_status_e scsi_status,
ocs_scsi_cmd_resp_t *rsp, uint32_t flags, void *arg)
{
int32_t rc = 0;
switch (scsi_status) {
case OCS_SCSI_STATUS_GOOD:
case OCS_SCSI_STATUS_NO_IO:
break;
case OCS_SCSI_STATUS_CHECK_RESPONSE:
if (rsp->response_data_length == 0) {
ocs_log_test(io->ocs, "check response without data?!?\n");
rc = -1;
break;
}
if (rsp->response_data[3] != 0) {
ocs_log_test(io->ocs, "TMF status %08x\n",
be32toh(*((uint32_t *)rsp->response_data)));
rc = -1;
break;
}
break;
default:
ocs_log_test(io->ocs, "status=%#x\n", scsi_status);
rc = -1;
}
ocs_scsi_io_free(io);
return rc;
}
/**
* @brief lookup target resource structure
*
* Arbitrarily support
* - wildcard target ID + LU
* - 0 target ID + non-wildcard LU
*
* @param ocs the driver instance's software context
* @param ccb_h pointer to the CCB header
* @param status returned status value
*
* @return pointer to the target resource, NULL if none available (e.g. if LU
* is not enabled)
*/
static ocs_tgt_resource_t *ocs_tgt_resource_get(ocs_fcport *fcp,
struct ccb_hdr *ccb_h, uint32_t *status)
{
target_id_t tid = ccb_h->target_id;
lun_id_t lun = ccb_h->target_lun;
if (CAM_TARGET_WILDCARD == tid) {
if (CAM_LUN_WILDCARD != lun) {
*status = CAM_LUN_INVALID;
return NULL;
}
return &fcp->targ_rsrc_wildcard;
} else {
if (lun < OCS_MAX_LUN) {
return &fcp->targ_rsrc[lun];
} else {
*status = CAM_LUN_INVALID;
return NULL;
}
}
}
static int32_t
ocs_tgt_resource_abort(struct ocs_softc *ocs, ocs_tgt_resource_t *trsrc)
{
union ccb *ccb = NULL;
uint32_t count;
count = 0;
do {
ccb = (union ccb *)STAILQ_FIRST(&trsrc->atio);
if (ccb) {
STAILQ_REMOVE_HEAD(&trsrc->atio, sim_links.stqe);
ccb->ccb_h.status = CAM_REQ_ABORTED;
xpt_done(ccb);
count++;
}
} while (ccb);
count = 0;
do {
ccb = (union ccb *)STAILQ_FIRST(&trsrc->inot);
if (ccb) {
STAILQ_REMOVE_HEAD(&trsrc->inot, sim_links.stqe);
ccb->ccb_h.status = CAM_REQ_ABORTED;
xpt_done(ccb);
count++;
}
} while (ccb);
return 0;
}
static void
ocs_abort_atio(struct ocs_softc *ocs, union ccb *ccb)
{
ocs_io_t *aio = NULL;
ocs_tgt_resource_t *trsrc = NULL;
uint32_t status = CAM_REQ_INVALID;
struct ccb_hdr *cur = NULL;
union ccb *accb = ccb->cab.abort_ccb;
int bus = cam_sim_bus(xpt_path_sim((ccb)->ccb_h.path));
ocs_fcport *fcp = FCPORT(ocs, bus);
trsrc = ocs_tgt_resource_get(fcp, &accb->ccb_h, &status);
if (trsrc != NULL) {
STAILQ_FOREACH(cur, &trsrc->atio, sim_links.stqe) {
if (cur != &accb->ccb_h)
continue;
STAILQ_REMOVE(&trsrc->atio, cur, ccb_hdr,
sim_links.stqe);
accb->ccb_h.status = CAM_REQ_ABORTED;
xpt_done(accb);
ocs_set_ccb_status(ccb, CAM_REQ_CMP);
return;
}
}
/* if the ATIO has a valid IO pointer, CAM is telling
* the driver that the ATIO (which represents the entire
* exchange) has been aborted. */
aio = accb->ccb_h.ccb_io_ptr;
if (aio == NULL) {
ccb->ccb_h.status = CAM_UA_ABORT;
return;
}
device_printf(ocs->dev,
"%s: XPT_ABORT ATIO state=%d tag=%#x"
" xid=%#x flags=%#x\n", __func__,
aio->tgt_io.state, aio->tag,
aio->init_task_tag, aio->tgt_io.flags);
/* Expectations are:
* - abort task was received
* - already aborted IO in the DEVICE
* - already received NOTIFY ACKNOWLEDGE */
if ((aio->tgt_io.flags & OCS_CAM_IO_F_ABORT_RECV) == 0) {
device_printf(ocs->dev, "%s: abort not received or io completed \n", __func__);
ocs_set_ccb_status(ccb, CAM_REQ_CMP);
return;
}
aio->tgt_io.flags |= OCS_CAM_IO_F_ABORT_CAM;
ocs_target_io_free(aio);
ocs_set_ccb_status(ccb, CAM_REQ_CMP);
return;
}
static void
ocs_abort_inot(struct ocs_softc *ocs, union ccb *ccb)
{
ocs_tgt_resource_t *trsrc = NULL;
uint32_t status = CAM_REQ_INVALID;
struct ccb_hdr *cur = NULL;
union ccb *accb = ccb->cab.abort_ccb;
int bus = cam_sim_bus(xpt_path_sim((ccb)->ccb_h.path));
ocs_fcport *fcp = FCPORT(ocs, bus);
trsrc = ocs_tgt_resource_get(fcp, &accb->ccb_h, &status);
if (trsrc) {
STAILQ_FOREACH(cur, &trsrc->inot, sim_links.stqe) {
if (cur != &accb->ccb_h)
continue;
STAILQ_REMOVE(&trsrc->inot, cur, ccb_hdr,
sim_links.stqe);
accb->ccb_h.status = CAM_REQ_ABORTED;
xpt_done(accb);
ocs_set_ccb_status(ccb, CAM_REQ_CMP);
return;
}
}
ocs_set_ccb_status(ccb, CAM_UA_ABORT);
return;
}
static uint32_t
ocs_abort_initiator_io(struct ocs_softc *ocs, union ccb *accb)
{
ocs_node_t *node = NULL;
ocs_io_t *io = NULL;
int32_t rc = 0;
struct ccb_scsiio *csio = &accb->csio;
ocs_fcport *fcp = FCPORT(ocs, cam_sim_bus(xpt_path_sim((accb)->ccb_h.path)));
node = ocs_node_get_instance(ocs, fcp->tgt[accb->ccb_h.target_id].node_id);
if (node == NULL) {
device_printf(ocs->dev, "%s: no device %d\n",
__func__, accb->ccb_h.target_id);
ocs_set_ccb_status(accb, CAM_DEV_NOT_THERE);
xpt_done(accb);
return (-1);
}
io = ocs_scsi_io_alloc(node, OCS_SCSI_IO_ROLE_ORIGINATOR);
if (io == NULL) {
device_printf(ocs->dev,
"%s: unable to alloc IO\n", __func__);
ocs_set_ccb_status(accb, CAM_REQ_CMP_ERR);
xpt_done(accb);
return (-1);
}
rc = ocs_scsi_send_tmf(node, io,
(ocs_io_t *)csio->ccb_h.ccb_io_ptr,
accb->ccb_h.target_lun,
OCS_SCSI_TMF_ABORT_TASK,
NULL, 0, 0,
ocs_initiator_tmf_cb, NULL/*arg*/);
return rc;
}
void
ocs_scsi_ini_ddump(ocs_textbuf_t *textbuf, ocs_scsi_ddump_type_e type, void *obj)
{
switch(type) {
case OCS_SCSI_DDUMP_DEVICE: {
//ocs_t *ocs = obj;
break;
}
case OCS_SCSI_DDUMP_DOMAIN: {
//ocs_domain_t *domain = obj;
break;
}
case OCS_SCSI_DDUMP_SPORT: {
//ocs_sport_t *sport = obj;
break;
}
case OCS_SCSI_DDUMP_NODE: {
//ocs_node_t *node = obj;
break;
}
case OCS_SCSI_DDUMP_IO: {
//ocs_io_t *io = obj;
break;
}
default: {
break;
}
}
}
void
ocs_scsi_tgt_ddump(ocs_textbuf_t *textbuf, ocs_scsi_ddump_type_e type, void *obj)
{
switch(type) {
case OCS_SCSI_DDUMP_DEVICE: {
//ocs_t *ocs = obj;
break;
}
case OCS_SCSI_DDUMP_DOMAIN: {
//ocs_domain_t *domain = obj;
break;
}
case OCS_SCSI_DDUMP_SPORT: {
//ocs_sport_t *sport = obj;
break;
}
case OCS_SCSI_DDUMP_NODE: {
//ocs_node_t *node = obj;
break;
}
case OCS_SCSI_DDUMP_IO: {
ocs_io_t *io = obj;
char *state_str = NULL;
switch (io->tgt_io.state) {
case OCS_CAM_IO_FREE:
state_str = "FREE";
break;
case OCS_CAM_IO_COMMAND:
state_str = "COMMAND";
break;
case OCS_CAM_IO_DATA:
state_str = "DATA";
break;
case OCS_CAM_IO_DATA_DONE:
state_str = "DATA_DONE";
break;
case OCS_CAM_IO_RESP:
state_str = "RESP";
break;
default:
state_str = "xxx BAD xxx";
}
ocs_ddump_value(textbuf, "cam_st", "%s", state_str);
if (io->tgt_io.app) {
ocs_ddump_value(textbuf, "cam_flags", "%#x",
((union ccb *)(io->tgt_io.app))->ccb_h.flags);
ocs_ddump_value(textbuf, "cam_status", "%#x",
((union ccb *)(io->tgt_io.app))->ccb_h.status);
}
break;
}
default: {
break;
}
}
}
int32_t ocs_scsi_get_block_vaddr(ocs_io_t *io, uint64_t blocknumber,
ocs_scsi_vaddr_len_t addrlen[],
uint32_t max_addrlen, void **dif_vaddr)
{
return -1;
}
uint32_t
ocs_get_crn(ocs_node_t *node, uint8_t *crn, uint64_t lun)
{
uint32_t idx;
struct ocs_lun_crn *lcrn = NULL;
idx = lun % OCS_MAX_LUN;
lcrn = node->ini_node.lun_crn[idx];
if (lcrn == NULL) {
lcrn = ocs_malloc(node->ocs, sizeof(struct ocs_lun_crn),
M_ZERO|M_NOWAIT);
if (lcrn == NULL) {
return (1);
}
lcrn->lun = lun;
node->ini_node.lun_crn[idx] = lcrn;
}
if (lcrn->lun != lun) {
return (1);
}
if (lcrn->crnseed == 0)
lcrn->crnseed = 1;
*crn = lcrn->crnseed++;
return (0);
}
void
ocs_del_crn(ocs_node_t *node)
{
uint32_t i;
struct ocs_lun_crn *lcrn = NULL;
for(i = 0; i < OCS_MAX_LUN; i++) {
lcrn = node->ini_node.lun_crn[i];
if (lcrn) {
ocs_free(node->ocs, lcrn, sizeof(*lcrn));
}
}
return;
}
void
ocs_reset_crn(ocs_node_t *node, uint64_t lun)
{
uint32_t idx;
struct ocs_lun_crn *lcrn = NULL;
idx = lun % OCS_MAX_LUN;
lcrn = node->ini_node.lun_crn[idx];
if (lcrn)
lcrn->crnseed = 0;
return;
}