freebsd-nq/sys/dev/ral/rt2661.c

2907 lines
72 KiB
C
Raw Normal View History

/* $FreeBSD$ */
/*-
* Copyright (c) 2006
* Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*-
* Ralink Technology RT2561, RT2561S and RT2661 chipset driver
* http://www.ralinktech.com/
*/
#include <sys/param.h>
#include <sys/sysctl.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#include <dev/ral/if_ralrate.h>
#include <dev/ral/rt2661reg.h>
#include <dev/ral/rt2661var.h>
#include <dev/ral/rt2661_ucode.h>
#ifdef RAL_DEBUG
#define DPRINTF(x) do { if (ral_debug > 0) printf x; } while (0)
#define DPRINTFN(n, x) do { if (ral_debug >= (n)) printf x; } while (0)
int ral_debug = 0;
SYSCTL_INT(_debug, OID_AUTO, ral, CTLFLAG_RW, &ral_debug, 0, "ral debug level");
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
static void rt2661_dma_map_addr(void *, bus_dma_segment_t *, int,
int);
static int rt2661_alloc_tx_ring(struct rt2661_softc *,
struct rt2661_tx_ring *, int);
static void rt2661_reset_tx_ring(struct rt2661_softc *,
struct rt2661_tx_ring *);
static void rt2661_free_tx_ring(struct rt2661_softc *,
struct rt2661_tx_ring *);
static int rt2661_alloc_rx_ring(struct rt2661_softc *,
struct rt2661_rx_ring *, int);
static void rt2661_reset_rx_ring(struct rt2661_softc *,
struct rt2661_rx_ring *);
static void rt2661_free_rx_ring(struct rt2661_softc *,
struct rt2661_rx_ring *);
static struct ieee80211_node *rt2661_node_alloc(
struct ieee80211_node_table *);
static int rt2661_media_change(struct ifnet *);
static void rt2661_next_scan(void *);
static int rt2661_newstate(struct ieee80211com *,
enum ieee80211_state, int);
static uint16_t rt2661_eeprom_read(struct rt2661_softc *, uint8_t);
static void rt2661_rx_intr(struct rt2661_softc *);
static void rt2661_tx_intr(struct rt2661_softc *);
static void rt2661_tx_dma_intr(struct rt2661_softc *,
struct rt2661_tx_ring *);
static void rt2661_mcu_beacon_expire(struct rt2661_softc *);
static void rt2661_mcu_wakeup(struct rt2661_softc *);
static void rt2661_mcu_cmd_intr(struct rt2661_softc *);
static int rt2661_ack_rate(struct ieee80211com *, int);
static uint16_t rt2661_txtime(int, int, uint32_t);
static uint8_t rt2661_rxrate(struct rt2661_rx_desc *);
static uint8_t rt2661_plcp_signal(int);
static void rt2661_setup_tx_desc(struct rt2661_softc *,
struct rt2661_tx_desc *, uint32_t, uint16_t, int,
int, const bus_dma_segment_t *, int, int);
static struct mbuf * rt2661_get_rts(struct rt2661_softc *,
struct ieee80211_frame *, uint16_t);
static int rt2661_tx_data(struct rt2661_softc *, struct mbuf *,
struct ieee80211_node *, int);
static int rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *,
struct ieee80211_node *);
static void rt2661_start(struct ifnet *);
static void rt2661_watchdog(struct ifnet *);
static int rt2661_reset(struct ifnet *);
static int rt2661_ioctl(struct ifnet *, u_long, caddr_t);
static void rt2661_bbp_write(struct rt2661_softc *, uint8_t,
uint8_t);
static uint8_t rt2661_bbp_read(struct rt2661_softc *, uint8_t);
static void rt2661_rf_write(struct rt2661_softc *, uint8_t,
uint32_t);
static int rt2661_tx_cmd(struct rt2661_softc *, uint8_t,
uint16_t);
static void rt2661_select_antenna(struct rt2661_softc *);
static void rt2661_enable_mrr(struct rt2661_softc *);
static void rt2661_set_txpreamble(struct rt2661_softc *);
static void rt2661_set_basicrates(struct rt2661_softc *,
const struct ieee80211_rateset *);
static void rt2661_select_band(struct rt2661_softc *,
struct ieee80211_channel *);
static void rt2661_set_chan(struct rt2661_softc *,
struct ieee80211_channel *);
static void rt2661_set_bssid(struct rt2661_softc *,
const uint8_t *);
static void rt2661_set_macaddr(struct rt2661_softc *,
const uint8_t *);
static void rt2661_update_promisc(struct rt2661_softc *);
static int rt2661_wme_update(struct ieee80211com *) __unused;
static void rt2661_update_slot(struct ifnet *);
static const char *rt2661_get_rf(int);
static void rt2661_read_eeprom(struct rt2661_softc *);
static int rt2661_bbp_init(struct rt2661_softc *);
static void rt2661_init(void *);
static void rt2661_stop(void *);
static int rt2661_load_microcode(struct rt2661_softc *,
const uint8_t *, int);
#ifdef notyet
static void rt2661_rx_tune(struct rt2661_softc *);
static void rt2661_radar_start(struct rt2661_softc *);
static int rt2661_radar_stop(struct rt2661_softc *);
#endif
static int rt2661_prepare_beacon(struct rt2661_softc *);
static void rt2661_enable_tsf_sync(struct rt2661_softc *);
static int rt2661_get_rssi(struct rt2661_softc *, uint8_t);
/*
* Supported rates for 802.11a/b/g modes (in 500Kbps unit).
*/
static const struct ieee80211_rateset rt2661_rateset_11a =
{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
static const struct ieee80211_rateset rt2661_rateset_11b =
{ 4, { 2, 4, 11, 22 } };
static const struct ieee80211_rateset rt2661_rateset_11g =
{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
static const struct {
uint32_t reg;
uint32_t val;
} rt2661_def_mac[] = {
RT2661_DEF_MAC
};
static const struct {
uint8_t reg;
uint8_t val;
} rt2661_def_bbp[] = {
RT2661_DEF_BBP
};
static const struct rfprog {
uint8_t chan;
uint32_t r1, r2, r3, r4;
} rt2661_rf5225_1[] = {
RT2661_RF5225_1
}, rt2661_rf5225_2[] = {
RT2661_RF5225_2
};
int
rt2661_attach(device_t dev, int id)
{
struct rt2661_softc *sc = device_get_softc(dev);
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp;
uint32_t val;
const uint8_t *ucode = NULL;
int error, i, ac, ntries, size = 0;
sc->sc_dev = dev;
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF | MTX_RECURSE);
callout_init(&sc->scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
callout_init(&sc->rssadapt_ch, CALLOUT_MPSAFE);
/* wait for NIC to initialize */
for (ntries = 0; ntries < 1000; ntries++) {
if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0)
break;
DELAY(1000);
}
if (ntries == 1000) {
device_printf(sc->sc_dev,
"timeout waiting for NIC to initialize\n");
error = EIO;
goto fail1;
}
/* retrieve RF rev. no and various other things from EEPROM */
rt2661_read_eeprom(sc);
device_printf(dev, "MAC/BBP RT%X, RF %s\n", val,
rt2661_get_rf(sc->rf_rev));
/*
* Load 8051 microcode into NIC.
*/
switch (id) {
case 0x0301:
ucode = rt2561s_ucode;
size = sizeof rt2561s_ucode;
break;
case 0x0302:
ucode = rt2561_ucode;
size = sizeof rt2561_ucode;
break;
case 0x0401:
ucode = rt2661_ucode;
size = sizeof rt2661_ucode;
break;
}
error = rt2661_load_microcode(sc, ucode, size);
if (error != 0) {
device_printf(sc->sc_dev, "could not load 8051 microcode\n");
goto fail1;
}
/*
* Allocate Tx and Rx rings.
*/
for (ac = 0; ac < 4; ac++) {
error = rt2661_alloc_tx_ring(sc, &sc->txq[ac],
RT2661_TX_RING_COUNT);
if (error != 0) {
device_printf(sc->sc_dev,
"could not allocate Tx ring %d\n", ac);
goto fail2;
}
}
error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate Mgt ring\n");
goto fail2;
}
error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate Rx ring\n");
goto fail3;
}
ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(sc->sc_dev, "can not if_alloc()\n");
error = ENOMEM;
goto fail4;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = rt2661_init;
ifp->if_ioctl = rt2661_ioctl;
ifp->if_start = rt2661_start;
ifp->if_watchdog = rt2661_watchdog;
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
IFQ_SET_READY(&ifp->if_snd);
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_IBSS | /* IBSS mode supported */
IEEE80211_C_MONITOR | /* monitor mode supported */
IEEE80211_C_HOSTAP | /* HostAp mode supported */
IEEE80211_C_TXPMGT | /* tx power management */
IEEE80211_C_SHPREAMBLE | /* short preamble supported */
IEEE80211_C_SHSLOT | /* short slot time supported */
#ifdef notyet
IEEE80211_C_WME | /* 802.11e */
#endif
IEEE80211_C_WPA; /* 802.11i */
if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) {
/* set supported .11a rates */
ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2661_rateset_11a;
/* set supported .11a channels */
for (i = 36; i <= 64; i += 4) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
}
for (i = 100; i <= 140; i += 4) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
}
for (i = 149; i <= 165; i += 4) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
}
}
/* set supported .11b and .11g rates */
ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2661_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2661_rateset_11g;
/* set supported .11b and .11g channels (1 through 14) */
for (i = 1; i <= 14; i++) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
ic->ic_channels[i].ic_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
}
ieee80211_ifattach(ic);
ic->ic_node_alloc = rt2661_node_alloc;
/* ic->ic_wme.wme_update = rt2661_wme_update;*/
ic->ic_updateslot = rt2661_update_slot;
ic->ic_reset = rt2661_reset;
/* enable s/w bmiss handling in sta mode */
ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
/* override state transition machine */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = rt2661_newstate;
ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status);
bpfattach2(ifp, DLT_IEEE802_11_RADIO,
sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof sc->sc_txtapu;
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT);
/*
* Add a few sysctl knobs.
*/
sc->dwelltime = 200;
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "dwell",
CTLFLAG_RW, &sc->dwelltime, 0,
"channel dwell time (ms) for AP/station scanning");
if (bootverbose)
ieee80211_announce(ic);
return 0;
fail4: rt2661_free_rx_ring(sc, &sc->rxq);
fail3: rt2661_free_tx_ring(sc, &sc->mgtq);
fail2: while (--ac >= 0)
rt2661_free_tx_ring(sc, &sc->txq[ac]);
fail1: mtx_destroy(&sc->sc_mtx);
return error;
}
int
rt2661_detach(void *xsc)
{
struct rt2661_softc *sc = xsc;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
rt2661_stop(sc);
callout_stop(&sc->scan_ch);
callout_stop(&sc->rssadapt_ch);
bpfdetach(ifp);
ieee80211_ifdetach(ic);
rt2661_free_tx_ring(sc, &sc->txq[0]);
rt2661_free_tx_ring(sc, &sc->txq[1]);
rt2661_free_tx_ring(sc, &sc->txq[2]);
rt2661_free_tx_ring(sc, &sc->txq[3]);
rt2661_free_tx_ring(sc, &sc->mgtq);
rt2661_free_rx_ring(sc, &sc->rxq);
if_free(ifp);
mtx_destroy(&sc->sc_mtx);
return 0;
}
void
rt2661_shutdown(void *xsc)
{
struct rt2661_softc *sc = xsc;
rt2661_stop(sc);
}
void
rt2661_suspend(void *xsc)
{
struct rt2661_softc *sc = xsc;
rt2661_stop(sc);
}
void
rt2661_resume(void *xsc)
{
struct rt2661_softc *sc = xsc;
struct ifnet *ifp = sc->sc_ic.ic_ifp;
if (ifp->if_flags & IFF_UP) {
ifp->if_init(ifp->if_softc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
ifp->if_start(ifp);
}
}
static void
rt2661_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
if (error != 0)
return;
KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
*(bus_addr_t *)arg = segs[0].ds_addr;
}
static int
rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring,
int count)
{
int i, error;
ring->count = count;
ring->queued = 0;
ring->cur = ring->next = ring->stat = 0;
error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, count * RT2661_TX_DESC_SIZE, 1,
count * RT2661_TX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create desc DMA tag\n");
goto fail;
}
error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate DMA memory\n");
goto fail;
}
error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
count * RT2661_TX_DESC_SIZE, rt2661_dma_map_addr, &ring->physaddr,
0);
if (error != 0) {
device_printf(sc->sc_dev, "could not load desc DMA map\n");
goto fail;
}
ring->data = malloc(count * sizeof (struct rt2661_tx_data), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (ring->data == NULL) {
device_printf(sc->sc_dev, "could not allocate soft data\n");
error = ENOMEM;
goto fail;
}
error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, RT2661_MAX_SCATTER,
MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create data DMA tag\n");
goto fail;
}
for (i = 0; i < count; i++) {
error = bus_dmamap_create(ring->data_dmat, 0,
&ring->data[i].map);
if (error != 0) {
device_printf(sc->sc_dev, "could not create DMA map\n");
goto fail;
}
}
return 0;
fail: rt2661_free_tx_ring(sc, ring);
return error;
}
static void
rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
{
struct rt2661_tx_desc *desc;
struct rt2661_tx_data *data;
int i;
for (i = 0; i < ring->count; i++) {
desc = &ring->desc[i];
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
if (data->ni != NULL) {
ieee80211_free_node(data->ni);
data->ni = NULL;
}
desc->flags = 0;
}
bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
ring->queued = 0;
ring->cur = ring->next = ring->stat = 0;
}
static void
rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
{
struct rt2661_tx_data *data;
int i;
if (ring->desc != NULL) {
bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
}
if (ring->desc_dmat != NULL)
bus_dma_tag_destroy(ring->desc_dmat);
if (ring->data != NULL) {
for (i = 0; i < ring->count; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
}
if (data->ni != NULL)
ieee80211_free_node(data->ni);
if (data->map != NULL)
bus_dmamap_destroy(ring->data_dmat, data->map);
}
free(ring->data, M_DEVBUF);
}
if (ring->data_dmat != NULL)
bus_dma_tag_destroy(ring->data_dmat);
}
static int
rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring,
int count)
{
struct rt2661_rx_desc *desc;
struct rt2661_rx_data *data;
bus_addr_t physaddr;
int i, error;
ring->count = count;
ring->cur = ring->next = 0;
error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, count * RT2661_RX_DESC_SIZE, 1,
count * RT2661_RX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create desc DMA tag\n");
goto fail;
}
error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate DMA memory\n");
goto fail;
}
error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
count * RT2661_RX_DESC_SIZE, rt2661_dma_map_addr, &ring->physaddr,
0);
if (error != 0) {
device_printf(sc->sc_dev, "could not load desc DMA map\n");
goto fail;
}
ring->data = malloc(count * sizeof (struct rt2661_rx_data), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (ring->data == NULL) {
device_printf(sc->sc_dev, "could not allocate soft data\n");
error = ENOMEM;
goto fail;
}
/*
* Pre-allocate Rx buffers and populate Rx ring.
*/
error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL,
NULL, &ring->data_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create data DMA tag\n");
goto fail;
}
for (i = 0; i < count; i++) {
desc = &sc->rxq.desc[i];
data = &sc->rxq.data[i];
error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
if (error != 0) {
device_printf(sc->sc_dev, "could not create DMA map\n");
goto fail;
}
data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (data->m == NULL) {
device_printf(sc->sc_dev,
"could not allocate rx mbuf\n");
error = ENOMEM;
goto fail;
}
error = bus_dmamap_load(ring->data_dmat, data->map,
mtod(data->m, void *), MCLBYTES, rt2661_dma_map_addr,
&physaddr, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"could not load rx buf DMA map");
goto fail;
}
desc->flags = htole32(RT2661_RX_BUSY);
desc->physaddr = htole32(physaddr);
}
bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
return 0;
fail: rt2661_free_rx_ring(sc, ring);
return error;
}
static void
rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
{
int i;
for (i = 0; i < ring->count; i++)
ring->desc[i].flags = htole32(RT2661_RX_BUSY);
bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
ring->cur = ring->next = 0;
}
static void
rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
{
struct rt2661_rx_data *data;
int i;
if (ring->desc != NULL) {
bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
}
if (ring->desc_dmat != NULL)
bus_dma_tag_destroy(ring->desc_dmat);
if (ring->data != NULL) {
for (i = 0; i < ring->count; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
}
if (data->map != NULL)
bus_dmamap_destroy(ring->data_dmat, data->map);
}
free(ring->data, M_DEVBUF);
}
if (ring->data_dmat != NULL)
bus_dma_tag_destroy(ring->data_dmat);
}
static struct ieee80211_node *
rt2661_node_alloc(struct ieee80211_node_table *nt)
{
struct rt2661_node *rn;
rn = malloc(sizeof (struct rt2661_node), M_80211_NODE,
M_NOWAIT | M_ZERO);
return (rn != NULL) ? &rn->ni : NULL;
}
static int
rt2661_media_change(struct ifnet *ifp)
{
struct rt2661_softc *sc = ifp->if_softc;
int error;
error = ieee80211_media_change(ifp);
if (error != ENETRESET)
return error;
if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
rt2661_init(sc);
return 0;
}
/*
* This function is called periodically (every 200ms) during scanning to
* switch from one channel to another.
*/
static void
rt2661_next_scan(void *arg)
{
struct rt2661_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
if (ic->ic_state == IEEE80211_S_SCAN)
ieee80211_next_scan(ic);
}
/*
* This function is called for each node present in the node station table.
*/
static void
rt2661_iter_func(void *arg, struct ieee80211_node *ni)
{
struct rt2661_node *rn = (struct rt2661_node *)ni;
ral_rssadapt_updatestats(&rn->rssadapt);
}
/*
* This function is called periodically (every 100ms) in RUN state to update
* the rate adaptation statistics.
*/
static void
rt2661_update_rssadapt(void *arg)
{
struct rt2661_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
RAL_LOCK(sc);
ieee80211_iterate_nodes(&ic->ic_sta, rt2661_iter_func, arg);
callout_reset(&sc->rssadapt_ch, hz / 10, rt2661_update_rssadapt, sc);
RAL_UNLOCK(sc);
}
static int
rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct rt2661_softc *sc = ic->ic_ifp->if_softc;
enum ieee80211_state ostate;
struct ieee80211_node *ni;
uint32_t tmp;
int error = 0;
ostate = ic->ic_state;
callout_stop(&sc->scan_ch);
switch (nstate) {
case IEEE80211_S_INIT:
callout_stop(&sc->rssadapt_ch);
if (ostate == IEEE80211_S_RUN) {
/* abort TSF synchronization */
tmp = RAL_READ(sc, RT2661_TXRX_CSR9);
RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff);
}
break;
case IEEE80211_S_SCAN:
rt2661_set_chan(sc, ic->ic_curchan);
callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000,
rt2661_next_scan, sc);
break;
case IEEE80211_S_AUTH:
case IEEE80211_S_ASSOC:
rt2661_set_chan(sc, ic->ic_curchan);
break;
case IEEE80211_S_RUN:
rt2661_set_chan(sc, ic->ic_curchan);
ni = ic->ic_bss;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
rt2661_enable_mrr(sc);
rt2661_set_txpreamble(sc);
rt2661_set_basicrates(sc, &ni->ni_rates);
rt2661_set_bssid(sc, ni->ni_bssid);
}
if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
ic->ic_opmode == IEEE80211_M_IBSS) {
if ((error = rt2661_prepare_beacon(sc)) != 0)
break;
}
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
callout_reset(&sc->rssadapt_ch, hz / 10,
rt2661_update_rssadapt, sc);
rt2661_enable_tsf_sync(sc);
}
break;
}
return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
}
/*
* Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
* 93C66).
*/
static uint16_t
rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr)
{
uint32_t tmp;
uint16_t val;
int n;
/* clock C once before the first command */
RT2661_EEPROM_CTL(sc, 0);
RT2661_EEPROM_CTL(sc, RT2661_S);
RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
RT2661_EEPROM_CTL(sc, RT2661_S);
/* write start bit (1) */
RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
/* write READ opcode (10) */
RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
RT2661_EEPROM_CTL(sc, RT2661_S);
RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
/* write address (A5-A0 or A7-A0) */
n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7;
for (; n >= 0; n--) {
RT2661_EEPROM_CTL(sc, RT2661_S |
(((addr >> n) & 1) << RT2661_SHIFT_D));
RT2661_EEPROM_CTL(sc, RT2661_S |
(((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C);
}
RT2661_EEPROM_CTL(sc, RT2661_S);
/* read data Q15-Q0 */
val = 0;
for (n = 15; n >= 0; n--) {
RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
tmp = RAL_READ(sc, RT2661_E2PROM_CSR);
val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n;
RT2661_EEPROM_CTL(sc, RT2661_S);
}
RT2661_EEPROM_CTL(sc, 0);
/* clear Chip Select and clock C */
RT2661_EEPROM_CTL(sc, RT2661_S);
RT2661_EEPROM_CTL(sc, 0);
RT2661_EEPROM_CTL(sc, RT2661_C);
return val;
}
static void
rt2661_tx_intr(struct rt2661_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct rt2661_tx_ring *txq;
struct rt2661_tx_data *data;
struct rt2661_node *rn;
uint32_t val;
int qid, retrycnt;
for (;;) {
val = RAL_READ(sc, RT2661_STA_CSR4);
if (!(val & RT2661_TX_STAT_VALID))
break;
/* retrieve the queue in which this frame was sent */
qid = RT2661_TX_QID(val);
txq = (qid <= 3) ? &sc->txq[qid] : &sc->mgtq;
/* retrieve rate control algorithm context */
data = &txq->data[txq->stat];
rn = (struct rt2661_node *)data->ni;
/* if no frame has been sent, ignore */
if (rn == NULL)
continue;
switch (RT2661_TX_RESULT(val)) {
case RT2661_TX_SUCCESS:
retrycnt = RT2661_TX_RETRYCNT(val);
DPRINTFN(10, ("data frame sent successfully after "
"%d retries\n", retrycnt));
if (retrycnt == 0 && data->id.id_node != NULL) {
ral_rssadapt_raise_rate(ic, &rn->rssadapt,
&data->id);
}
ifp->if_opackets++;
break;
case RT2661_TX_RETRY_FAIL:
DPRINTFN(9, ("sending data frame failed (too much "
"retries)\n"));
if (data->id.id_node != NULL) {
ral_rssadapt_lower_rate(ic, data->ni,
&rn->rssadapt, &data->id);
}
ifp->if_oerrors++;
break;
default:
/* other failure */
device_printf(sc->sc_dev,
"sending data frame failed 0x%08x\n", val);
ifp->if_oerrors++;
}
ieee80211_free_node(data->ni);
data->ni = NULL;
DPRINTFN(15, ("tx done q=%d idx=%u\n", qid, txq->stat));
txq->queued--;
if (++txq->stat >= txq->count) /* faster than % count */
txq->stat = 0;
}
sc->sc_tx_timer = 0;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
rt2661_start(ifp);
}
static void
rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq)
{
struct rt2661_tx_desc *desc;
struct rt2661_tx_data *data;
bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_POSTREAD);
for (;;) {
desc = &txq->desc[txq->next];
data = &txq->data[txq->next];
if ((le32toh(desc->flags) & RT2661_TX_BUSY) ||
!(le32toh(desc->flags) & RT2661_TX_VALID))
break;
bus_dmamap_sync(txq->data_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(txq->data_dmat, data->map);
m_freem(data->m);
data->m = NULL;
/* node reference is released in rt2661_tx_intr() */
/* descriptor is no longer valid */
desc->flags &= ~htole32(RT2661_TX_VALID);
DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next));
if (++txq->next >= txq->count) /* faster than % count */
txq->next = 0;
}
bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
}
static void
rt2661_rx_intr(struct rt2661_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct rt2661_rx_desc *desc;
struct rt2661_rx_data *data;
bus_addr_t physaddr;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct rt2661_node *rn;
struct mbuf *mnew, *m;
int error;
bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
BUS_DMASYNC_POSTREAD);
for (;;) {
desc = &sc->rxq.desc[sc->rxq.cur];
data = &sc->rxq.data[sc->rxq.cur];
if (le32toh(desc->flags) & RT2661_RX_BUSY)
break;
if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) ||
(le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) {
/*
* This should not happen since we did not request
* to receive those frames when we filled TXRX_CSR0.
*/
DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
le32toh(desc->flags)));
ifp->if_ierrors++;
goto skip;
}
if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) {
ifp->if_ierrors++;
goto skip;
}
/*
* Try to allocate a new mbuf for this ring element and load it
* before processing the current mbuf. If the ring element
* cannot be loaded, drop the received packet and reuse the old
* mbuf. In the unlikely case that the old mbuf can't be
* reloaded either, explicitly panic.
*/
mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (mnew == NULL) {
ifp->if_ierrors++;
goto skip;
}
bus_dmamap_sync(sc->rxq.data_dmat, data->map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->rxq.data_dmat, data->map);
error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
mtod(mnew, void *), MCLBYTES, rt2661_dma_map_addr,
&physaddr, 0);
if (error != 0) {
m_freem(mnew);
/* try to reload the old mbuf */
error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
mtod(data->m, void *), MCLBYTES,
rt2661_dma_map_addr, &physaddr, 0);
if (error != 0) {
/* very unlikely that it will fail... */
panic("%s: could not load old rx mbuf",
device_get_name(sc->sc_dev));
}
ifp->if_ierrors++;
goto skip;
}
/*
* New mbuf successfully loaded, update Rx ring and continue
* processing.
*/
m = data->m;
data->m = mnew;
desc->physaddr = htole32(physaddr);
/* finalize mbuf */
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len =
(le32toh(desc->flags) >> 16) & 0xfff;
Fix the following bpf(4) race condition which can result in a panic: (1) bpf peer attaches to interface netif0 (2) Packet is received by netif0 (3) ifp->if_bpf pointer is checked and handed off to bpf (4) bpf peer detaches from netif0 resulting in ifp->if_bpf being initialized to NULL. (5) ifp->if_bpf is dereferenced by bpf machinery (6) Kaboom This race condition likely explains the various different kernel panics reported around sending SIGINT to tcpdump or dhclient processes. But really this race can result in kernel panics anywhere you have frequent bpf attach and detach operations with high packet per second load. Summary of changes: - Remove the bpf interface's "driverp" member - When we attach bpf interfaces, we now set the ifp->if_bpf member to the bpf interface structure. Once this is done, ifp->if_bpf should never be NULL. [1] - Introduce bpf_peers_present function, an inline operation which will do a lockless read bpf peer list associated with the interface. It should be noted that the bpf code will pickup the bpf_interface lock before adding or removing bpf peers. This should serialize the access to the bpf descriptor list, removing the race. - Expose the bpf_if structure in bpf.h so that the bpf_peers_present function can use it. This also removes the struct bpf_if; hack that was there. - Adjust all consumers of the raw if_bpf structure to use bpf_peers_present Now what happens is: (1) Packet is received by netif0 (2) Check to see if bpf descriptor list is empty (3) Pickup the bpf interface lock (4) Hand packet off to process From the attach/detach side: (1) Pickup the bpf interface lock (2) Add/remove from bpf descriptor list Now that we are storing the bpf interface structure with the ifnet, there is is no need to walk the bpf interface list to locate the correct bpf interface. We now simply look up the interface, and initialize the pointer. This has a nice side effect of changing a bpf interface attach operation from O(N) (where N is the number of bpf interfaces), to O(1). [1] From now on, we can no longer check ifp->if_bpf to tell us whether or not we have any bpf peers that might be interested in receiving packets. In collaboration with: sam@ MFC after: 1 month
2006-06-02 19:59:33 +00:00
if (bpf_peers_present(sc->sc_drvbpf)) {
struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap;
uint32_t tsf_lo, tsf_hi;
/* get timestamp (low and high 32 bits) */
tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13);
tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12);
tap->wr_tsf =
htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
tap->wr_flags = 0;
tap->wr_rate = rt2661_rxrate(desc);
tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
tap->wr_antsignal = desc->rssi;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
}
wh = mtod(m, struct ieee80211_frame *);
ni = ieee80211_find_rxnode(ic,
(struct ieee80211_frame_min *)wh);
/* send the frame to the 802.11 layer */
ieee80211_input(ic, m, ni, desc->rssi, 0);
/* give rssi to the rate adatation algorithm */
rn = (struct rt2661_node *)ni;
ral_rssadapt_input(ic, ni, &rn->rssadapt,
rt2661_get_rssi(sc, desc->rssi));
/* node is no longer needed */
ieee80211_free_node(ni);
skip: desc->flags |= htole32(RT2661_RX_BUSY);
DPRINTFN(15, ("rx intr idx=%u\n", sc->rxq.cur));
sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT;
}
bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
BUS_DMASYNC_PREWRITE);
}
/* ARGSUSED */
static void
rt2661_mcu_beacon_expire(struct rt2661_softc *sc)
{
/* do nothing */
}
static void
rt2661_mcu_wakeup(struct rt2661_softc *sc)
{
RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16);
RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7);
RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18);
RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20);
/* send wakeup command to MCU */
rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0);
}
static void
rt2661_mcu_cmd_intr(struct rt2661_softc *sc)
{
RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR);
RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
}
void
rt2661_intr(void *arg)
{
struct rt2661_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
uint32_t r1, r2;
RAL_LOCK(sc);
/* disable MAC and MCU interrupts */
RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
/* don't re-enable interrupts if we're shutting down */
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
RAL_UNLOCK(sc);
return;
}
r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1);
r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2);
if (r1 & RT2661_MGT_DONE)
rt2661_tx_dma_intr(sc, &sc->mgtq);
if (r1 & RT2661_RX_DONE)
rt2661_rx_intr(sc);
if (r1 & RT2661_TX0_DMA_DONE)
rt2661_tx_dma_intr(sc, &sc->txq[0]);
if (r1 & RT2661_TX1_DMA_DONE)
rt2661_tx_dma_intr(sc, &sc->txq[1]);
if (r1 & RT2661_TX2_DMA_DONE)
rt2661_tx_dma_intr(sc, &sc->txq[2]);
if (r1 & RT2661_TX3_DMA_DONE)
rt2661_tx_dma_intr(sc, &sc->txq[3]);
if (r1 & RT2661_TX_DONE)
rt2661_tx_intr(sc);
if (r2 & RT2661_MCU_CMD_DONE)
rt2661_mcu_cmd_intr(sc);
if (r2 & RT2661_MCU_BEACON_EXPIRE)
rt2661_mcu_beacon_expire(sc);
if (r2 & RT2661_MCU_WAKEUP)
rt2661_mcu_wakeup(sc);
/* re-enable MAC and MCU interrupts */
RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
RAL_UNLOCK(sc);
}
/* quickly determine if a given rate is CCK or OFDM */
#define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
#define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
#define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
#define RAL_SIFS 10 /* us */
/*
* This function is only used by the Rx radiotap code. It returns the rate at
* which a given frame was received.
*/
static uint8_t
rt2661_rxrate(struct rt2661_rx_desc *desc)
{
if (le32toh(desc->flags) & RT2661_RX_OFDM) {
/* reverse function of rt2661_plcp_signal */
switch (desc->rate & 0xf) {
case 0xb: return 12;
case 0xf: return 18;
case 0xa: return 24;
case 0xe: return 36;
case 0x9: return 48;
case 0xd: return 72;
case 0x8: return 96;
case 0xc: return 108;
}
} else {
if (desc->rate == 10)
return 2;
if (desc->rate == 20)
return 4;
if (desc->rate == 55)
return 11;
if (desc->rate == 110)
return 22;
}
return 2; /* should not get there */
}
/*
* Return the expected ack rate for a frame transmitted at rate `rate'.
* XXX: this should depend on the destination node basic rate set.
*/
static int
rt2661_ack_rate(struct ieee80211com *ic, int rate)
{
switch (rate) {
/* CCK rates */
case 2:
return 2;
case 4:
case 11:
case 22:
return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
/* OFDM rates */
case 12:
case 18:
return 12;
case 24:
case 36:
return 24;
case 48:
case 72:
case 96:
case 108:
return 48;
}
/* default to 1Mbps */
return 2;
}
/*
* Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
* The function automatically determines the operating mode depending on the
* given rate. `flags' indicates whether short preamble is in use or not.
*/
static uint16_t
rt2661_txtime(int len, int rate, uint32_t flags)
{
uint16_t txtime;
if (RAL_RATE_IS_OFDM(rate)) {
/* IEEE Std 802.11a-1999, pp. 37 */
txtime = (8 + 4 * len + 3 + rate - 1) / rate;
txtime = 16 + 4 + 4 * txtime + 6;
} else {
/* IEEE Std 802.11b-1999, pp. 28 */
txtime = (16 * len + rate - 1) / rate;
if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
txtime += 72 + 24;
else
txtime += 144 + 48;
}
return txtime;
}
static uint8_t
rt2661_plcp_signal(int rate)
{
switch (rate) {
/* CCK rates (returned values are device-dependent) */
case 2: return 0x0;
case 4: return 0x1;
case 11: return 0x2;
case 22: return 0x3;
/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
case 12: return 0xb;
case 18: return 0xf;
case 24: return 0xa;
case 36: return 0xe;
case 48: return 0x9;
case 72: return 0xd;
case 96: return 0x8;
case 108: return 0xc;
/* unsupported rates (should not get there) */
default: return 0xff;
}
}
static void
rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc,
uint32_t flags, uint16_t xflags, int len, int rate,
const bus_dma_segment_t *segs, int nsegs, int ac)
{
struct ieee80211com *ic = &sc->sc_ic;
uint16_t plcp_length;
int i, remainder;
desc->flags = htole32(flags);
desc->flags |= htole32(len << 16);
desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID);
desc->xflags = htole16(xflags);
desc->xflags |= htole16(nsegs << 13);
desc->wme = htole16(
RT2661_QID(ac) |
RT2661_AIFSN(2) |
RT2661_LOGCWMIN(4) |
RT2661_LOGCWMAX(10));
/*
* Remember in which queue this frame was sent. This field is driver
* private data only. It will be made available by the NIC in STA_CSR4
* on Tx interrupts.
*/
desc->qid = ac;
/* setup PLCP fields */
desc->plcp_signal = rt2661_plcp_signal(rate);
desc->plcp_service = 4;
len += IEEE80211_CRC_LEN;
if (RAL_RATE_IS_OFDM(rate)) {
desc->flags |= htole32(RT2661_TX_OFDM);
plcp_length = len & 0xfff;
desc->plcp_length_hi = plcp_length >> 6;
desc->plcp_length_lo = plcp_length & 0x3f;
} else {
plcp_length = (16 * len + rate - 1) / rate;
if (rate == 22) {
remainder = (16 * len) % 22;
if (remainder != 0 && remainder < 7)
desc->plcp_service |= RT2661_PLCP_LENGEXT;
}
desc->plcp_length_hi = plcp_length >> 8;
desc->plcp_length_lo = plcp_length & 0xff;
if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
desc->plcp_signal |= 0x08;
}
/* RT2x61 supports scatter with up to 5 segments */
for (i = 0; i < nsegs; i++) {
desc->addr[i] = htole32(segs[i].ds_addr);
desc->len [i] = htole16(segs[i].ds_len);
}
}
static int
rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0,
struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct rt2661_tx_desc *desc;
struct rt2661_tx_data *data;
struct ieee80211_frame *wh;
bus_dma_segment_t segs[RT2661_MAX_SCATTER];
uint16_t dur;
uint32_t flags = 0; /* XXX HWSEQ */
int nsegs, rate, error;
desc = &sc->mgtq.desc[sc->mgtq.cur];
data = &sc->mgtq.data[sc->mgtq.cur];
/* send mgt frames at the lowest available rate */
rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
error = bus_dmamap_load_mbuf_sg(sc->mgtq.data_dmat, data->map, m0,
segs, &nsegs, 0);
if (error != 0) {
device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
error);
m_freem(m0);
return error;
}
Fix the following bpf(4) race condition which can result in a panic: (1) bpf peer attaches to interface netif0 (2) Packet is received by netif0 (3) ifp->if_bpf pointer is checked and handed off to bpf (4) bpf peer detaches from netif0 resulting in ifp->if_bpf being initialized to NULL. (5) ifp->if_bpf is dereferenced by bpf machinery (6) Kaboom This race condition likely explains the various different kernel panics reported around sending SIGINT to tcpdump or dhclient processes. But really this race can result in kernel panics anywhere you have frequent bpf attach and detach operations with high packet per second load. Summary of changes: - Remove the bpf interface's "driverp" member - When we attach bpf interfaces, we now set the ifp->if_bpf member to the bpf interface structure. Once this is done, ifp->if_bpf should never be NULL. [1] - Introduce bpf_peers_present function, an inline operation which will do a lockless read bpf peer list associated with the interface. It should be noted that the bpf code will pickup the bpf_interface lock before adding or removing bpf peers. This should serialize the access to the bpf descriptor list, removing the race. - Expose the bpf_if structure in bpf.h so that the bpf_peers_present function can use it. This also removes the struct bpf_if; hack that was there. - Adjust all consumers of the raw if_bpf structure to use bpf_peers_present Now what happens is: (1) Packet is received by netif0 (2) Check to see if bpf descriptor list is empty (3) Pickup the bpf interface lock (4) Hand packet off to process From the attach/detach side: (1) Pickup the bpf interface lock (2) Add/remove from bpf descriptor list Now that we are storing the bpf interface structure with the ifnet, there is is no need to walk the bpf interface list to locate the correct bpf interface. We now simply look up the interface, and initialize the pointer. This has a nice side effect of changing a bpf interface attach operation from O(N) (where N is the number of bpf interfaces), to O(1). [1] From now on, we can no longer check ifp->if_bpf to tell us whether or not we have any bpf peers that might be interested in receiving packets. In collaboration with: sam@ MFC after: 1 month
2006-06-02 19:59:33 +00:00
if (bpf_peers_present(sc->sc_drvbpf)) {
struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
}
data->m = m0;
data->ni = ni;
wh = mtod(m0, struct ieee80211_frame *);
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
flags |= RT2661_TX_NEED_ACK;
dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
RAL_SIFS;
*(uint16_t *)wh->i_dur = htole16(dur);
/* tell hardware to add timestamp in probe responses */
if ((wh->i_fc[0] &
(IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
(IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
flags |= RT2661_TX_TIMESTAMP;
}
rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */,
m0->m_pkthdr.len, rate, segs, nsegs, RT2661_QID_MGT);
bus_dmamap_sync(sc->mgtq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->mgtq.desc_dmat, sc->mgtq.desc_map,
BUS_DMASYNC_PREWRITE);
DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
m0->m_pkthdr.len, sc->mgtq.cur, rate));
/* kick mgt */
sc->mgtq.queued++;
sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT;
RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT);
return 0;
}
/*
* Build a RTS control frame.
*/
static struct mbuf *
rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh,
uint16_t dur)
{
struct ieee80211_frame_rts *rts;
struct mbuf *m;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
sc->sc_ic.ic_stats.is_tx_nobuf++;
device_printf(sc->sc_dev, "could not allocate RTS frame\n");
return NULL;
}
rts = mtod(m, struct ieee80211_frame_rts *);
rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
IEEE80211_FC0_SUBTYPE_RTS;
rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
*(uint16_t *)rts->i_dur = htole16(dur);
IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
return m;
}
static int
rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0,
struct ieee80211_node *ni, int ac)
{
struct ieee80211com *ic = &sc->sc_ic;
struct rt2661_tx_ring *txq = &sc->txq[ac];
struct rt2661_tx_desc *desc;
struct rt2661_tx_data *data;
struct rt2661_node *rn;
struct ieee80211_rateset *rs;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
const struct chanAccParams *cap;
struct mbuf *mnew;
bus_dma_segment_t segs[RT2661_MAX_SCATTER];
uint16_t dur;
uint32_t flags = 0;
int error, nsegs, rate, noack = 0;
wh = mtod(m0, struct ieee80211_frame *);
if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
rs = &ic->ic_sup_rates[ic->ic_curmode];
rate = rs->rs_rates[ic->ic_fixed_rate];
} else {
rs = &ni->ni_rates;
rn = (struct rt2661_node *)ni;
ni->ni_txrate = ral_rssadapt_choose(&rn->rssadapt, rs,
wh, m0->m_pkthdr.len, NULL, 0);
rate = rs->rs_rates[ni->ni_txrate];
}
rate &= IEEE80211_RATE_VAL;
if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
cap = &ic->ic_wme.wme_chanParams;
noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
}
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, ni, m0);
if (k == NULL) {
m_freem(m0);
return ENOBUFS;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
/*
* IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
* for directed frames only when the length of the MPDU is greater
* than the length threshold indicated by [...]" ic_rtsthreshold.
*/
if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
m0->m_pkthdr.len > ic->ic_rtsthreshold) {
struct mbuf *m;
uint16_t dur;
int rtsrate, ackrate;
rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
ackrate = rt2661_ack_rate(ic, rate);
dur = rt2661_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
rt2661_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
/* XXX: noack (QoS)? */
rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
3 * RAL_SIFS;
m = rt2661_get_rts(sc, wh, dur);
desc = &txq->desc[txq->cur];
data = &txq->data[txq->cur];
error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m,
segs, &nsegs, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"could not map mbuf (error %d)\n", error);
m_freem(m);
m_freem(m0);
return error;
}
/* avoid multiple free() of the same node for each fragment */
ieee80211_ref_node(ni);
data->m = m;
data->ni = ni;
/* RTS frames are not taken into account for rssadapt */
data->id.id_node = NULL;
rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK |
RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len, rtsrate, segs,
nsegs, ac);
bus_dmamap_sync(txq->data_dmat, data->map,
BUS_DMASYNC_PREWRITE);
txq->queued++;
txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
/*
* IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
* asynchronous data frame shall be transmitted after the CTS
* frame and a SIFS period.
*/
flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS;
}
data = &txq->data[txq->cur];
desc = &txq->desc[txq->cur];
error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs,
&nsegs, 0);
if (error != 0 && error != EFBIG) {
device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
error);
m_freem(m0);
return error;
}
if (error != 0) {
mnew = m_defrag(m0, M_DONTWAIT);
if (mnew == NULL) {
device_printf(sc->sc_dev,
"could not defragment mbuf\n");
m_freem(m0);
return ENOBUFS;
}
m0 = mnew;
error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0,
segs, &nsegs, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"could not map mbuf (error %d)\n", error);
m_freem(m0);
return error;
}
/* packet header have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
Fix the following bpf(4) race condition which can result in a panic: (1) bpf peer attaches to interface netif0 (2) Packet is received by netif0 (3) ifp->if_bpf pointer is checked and handed off to bpf (4) bpf peer detaches from netif0 resulting in ifp->if_bpf being initialized to NULL. (5) ifp->if_bpf is dereferenced by bpf machinery (6) Kaboom This race condition likely explains the various different kernel panics reported around sending SIGINT to tcpdump or dhclient processes. But really this race can result in kernel panics anywhere you have frequent bpf attach and detach operations with high packet per second load. Summary of changes: - Remove the bpf interface's "driverp" member - When we attach bpf interfaces, we now set the ifp->if_bpf member to the bpf interface structure. Once this is done, ifp->if_bpf should never be NULL. [1] - Introduce bpf_peers_present function, an inline operation which will do a lockless read bpf peer list associated with the interface. It should be noted that the bpf code will pickup the bpf_interface lock before adding or removing bpf peers. This should serialize the access to the bpf descriptor list, removing the race. - Expose the bpf_if structure in bpf.h so that the bpf_peers_present function can use it. This also removes the struct bpf_if; hack that was there. - Adjust all consumers of the raw if_bpf structure to use bpf_peers_present Now what happens is: (1) Packet is received by netif0 (2) Check to see if bpf descriptor list is empty (3) Pickup the bpf interface lock (4) Hand packet off to process From the attach/detach side: (1) Pickup the bpf interface lock (2) Add/remove from bpf descriptor list Now that we are storing the bpf interface structure with the ifnet, there is is no need to walk the bpf interface list to locate the correct bpf interface. We now simply look up the interface, and initialize the pointer. This has a nice side effect of changing a bpf interface attach operation from O(N) (where N is the number of bpf interfaces), to O(1). [1] From now on, we can no longer check ifp->if_bpf to tell us whether or not we have any bpf peers that might be interested in receiving packets. In collaboration with: sam@ MFC after: 1 month
2006-06-02 19:59:33 +00:00
if (bpf_peers_present(sc->sc_drvbpf)) {
struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
}
data->m = m0;
data->ni = ni;
/* remember link conditions for rate adaptation algorithm */
if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
data->id.id_len = m0->m_pkthdr.len;
data->id.id_rateidx = ni->ni_txrate;
data->id.id_node = ni;
data->id.id_rssi = ni->ni_rssi;
} else
data->id.id_node = NULL;
if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
flags |= RT2661_TX_NEED_ACK;
dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate),
ic->ic_flags) + RAL_SIFS;
*(uint16_t *)wh->i_dur = htole16(dur);
}
rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate, segs,
nsegs, ac);
bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
m0->m_pkthdr.len, txq->cur, rate));
/* kick Tx */
txq->queued++;
txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1 << ac);
return 0;
}
static void
rt2661_start(struct ifnet *ifp)
{
struct rt2661_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct mbuf *m0;
struct ether_header *eh;
struct ieee80211_node *ni;
int ac;
RAL_LOCK(sc);
/* prevent management frames from being sent if we're not ready */
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
RAL_UNLOCK(sc);
return;
}
for (;;) {
IF_POLL(&ic->ic_mgtq, m0);
if (m0 != NULL) {
if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
IF_DEQUEUE(&ic->ic_mgtq, m0);
ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
m0->m_pkthdr.rcvif = NULL;
2006-06-02 23:14:40 +00:00
if (bpf_peers_present(ic->ic_rawbpf))
bpf_mtap(ic->ic_rawbpf, m0);
if (rt2661_tx_mgt(sc, m0, ni) != 0)
break;
} else {
if (ic->ic_state != IEEE80211_S_RUN)
break;
IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL)
break;
if (m0->m_len < sizeof (struct ether_header) &&
!(m0 = m_pullup(m0, sizeof (struct ether_header))))
continue;
eh = mtod(m0, struct ether_header *);
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
if (ni == NULL) {
m_freem(m0);
ifp->if_oerrors++;
continue;
}
/* classify mbuf so we can find which tx ring to use */
if (ieee80211_classify(ic, m0, ni) != 0) {
m_freem(m0);
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
/* no QoS encapsulation for EAPOL frames */
ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
M_WME_GETAC(m0) : WME_AC_BE;
if (sc->txq[ac].queued >= RT2661_TX_RING_COUNT - 1) {
/* there is no place left in this ring */
IFQ_DRV_PREPEND(&ifp->if_snd, m0);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
BPF_MTAP(ifp, m0);
m0 = ieee80211_encap(ic, m0, ni);
if (m0 == NULL) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
2006-06-02 23:14:40 +00:00
if (bpf_peers_present(ic->ic_rawbpf))
bpf_mtap(ic->ic_rawbpf, m0);
if (rt2661_tx_data(sc, m0, ni, ac) != 0) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
break;
}
}
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
RAL_UNLOCK(sc);
}
static void
rt2661_watchdog(struct ifnet *ifp)
{
struct rt2661_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
RAL_LOCK(sc);
ifp->if_timer = 0;
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
device_printf(sc->sc_dev, "device timeout\n");
rt2661_init(sc);
ifp->if_oerrors++;
RAL_UNLOCK(sc);
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(ic);
RAL_UNLOCK(sc);
}
/*
* This function allows for fast channel switching in monitor mode (used by
* net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
* generate a new beacon frame.
*/
static int
rt2661_reset(struct ifnet *ifp)
{
struct rt2661_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
if (ic->ic_opmode != IEEE80211_M_MONITOR)
return ENETRESET;
rt2661_set_chan(sc, ic->ic_curchan);
return 0;
}
static int
rt2661_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct rt2661_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int error = 0;
RAL_LOCK(sc);
switch (cmd) {
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
rt2661_update_promisc(sc);
else
rt2661_init(sc);
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
rt2661_stop(sc);
}
break;
default:
error = ieee80211_ioctl(ic, cmd, data);
}
if (error == ENETRESET) {
if ((ifp->if_flags & IFF_UP) &&
(ifp->if_drv_flags & IFF_DRV_RUNNING) &&
(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
rt2661_init(sc);
error = 0;
}
RAL_UNLOCK(sc);
return error;
}
static void
rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val)
{
uint32_t tmp;
int ntries;
for (ntries = 0; ntries < 100; ntries++) {
if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
break;
DELAY(1);
}
if (ntries == 100) {
device_printf(sc->sc_dev, "could not write to BBP\n");
return;
}
tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val;
RAL_WRITE(sc, RT2661_PHY_CSR3, tmp);
DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
}
static uint8_t
rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg)
{
uint32_t val;
int ntries;
for (ntries = 0; ntries < 100; ntries++) {
if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
break;
DELAY(1);
}
if (ntries == 100) {
device_printf(sc->sc_dev, "could not read from BBP\n");
return 0;
}
val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8;
RAL_WRITE(sc, RT2661_PHY_CSR3, val);
for (ntries = 0; ntries < 100; ntries++) {
val = RAL_READ(sc, RT2661_PHY_CSR3);
if (!(val & RT2661_BBP_BUSY))
return val & 0xff;
DELAY(1);
}
device_printf(sc->sc_dev, "could not read from BBP\n");
return 0;
}
static void
rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val)
{
uint32_t tmp;
int ntries;
for (ntries = 0; ntries < 100; ntries++) {
if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY))
break;
DELAY(1);
}
if (ntries == 100) {
device_printf(sc->sc_dev, "could not write to RF\n");
return;
}
tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 |
(reg & 3);
RAL_WRITE(sc, RT2661_PHY_CSR4, tmp);
/* remember last written value in sc */
sc->rf_regs[reg] = val;
DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff));
}
static int
rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg)
{
if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY)
return EIO; /* there is already a command pending */
RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg);
RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd);
return 0;
}
static void
rt2661_select_antenna(struct rt2661_softc *sc)
{
uint8_t bbp4, bbp77;
uint32_t tmp;
bbp4 = rt2661_bbp_read(sc, 4);
bbp77 = rt2661_bbp_read(sc, 77);
/* TBD */
/* make sure Rx is disabled before switching antenna */
tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
rt2661_bbp_write(sc, 4, bbp4);
rt2661_bbp_write(sc, 77, bbp77);
/* restore Rx filter */
RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
}
/*
* Enable multi-rate retries for frames sent at OFDM rates.
* In 802.11b/g mode, allow fallback to CCK rates.
*/
static void
rt2661_enable_mrr(struct rt2661_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
tmp &= ~RT2661_MRR_CCK_FALLBACK;
if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
tmp |= RT2661_MRR_CCK_FALLBACK;
tmp |= RT2661_MRR_ENABLED;
RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
}
static void
rt2661_set_txpreamble(struct rt2661_softc *sc)
{
uint32_t tmp;
tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
tmp &= ~RT2661_SHORT_PREAMBLE;
if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
tmp |= RT2661_SHORT_PREAMBLE;
RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
}
static void
rt2661_set_basicrates(struct rt2661_softc *sc,
const struct ieee80211_rateset *rs)
{
#define RV(r) ((r) & IEEE80211_RATE_VAL)
uint32_t mask = 0;
uint8_t rate;
int i, j;
for (i = 0; i < rs->rs_nrates; i++) {
rate = rs->rs_rates[i];
if (!(rate & IEEE80211_RATE_BASIC))
continue;
/*
* Find h/w rate index. We know it exists because the rate
* set has already been negotiated.
*/
for (j = 0; rt2661_rateset_11g.rs_rates[j] != RV(rate); j++);
mask |= 1 << j;
}
RAL_WRITE(sc, RT2661_TXRX_CSR5, mask);
DPRINTF(("Setting basic rate mask to 0x%x\n", mask));
#undef RV
}
/*
* Reprogram MAC/BBP to switch to a new band. Values taken from the reference
* driver.
*/
static void
rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c)
{
uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
uint32_t tmp;
/* update all BBP registers that depend on the band */
bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
if (IEEE80211_IS_CHAN_5GHZ(c)) {
bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
}
if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
(IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
}
rt2661_bbp_write(sc, 17, bbp17);
rt2661_bbp_write(sc, 96, bbp96);
rt2661_bbp_write(sc, 104, bbp104);
if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
(IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
rt2661_bbp_write(sc, 75, 0x80);
rt2661_bbp_write(sc, 86, 0x80);
rt2661_bbp_write(sc, 88, 0x80);
}
rt2661_bbp_write(sc, 35, bbp35);
rt2661_bbp_write(sc, 97, bbp97);
rt2661_bbp_write(sc, 98, bbp98);
tmp = RAL_READ(sc, RT2661_PHY_CSR0);
tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ);
if (IEEE80211_IS_CHAN_2GHZ(c))
tmp |= RT2661_PA_PE_2GHZ;
else
tmp |= RT2661_PA_PE_5GHZ;
RAL_WRITE(sc, RT2661_PHY_CSR0, tmp);
}
static void
rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c)
{
struct ieee80211com *ic = &sc->sc_ic;
const struct rfprog *rfprog;
uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT;
int8_t power;
u_int i, chan;
chan = ieee80211_chan2ieee(ic, c);
if (chan == 0 || chan == IEEE80211_CHAN_ANY)
return;
/* select the appropriate RF settings based on what EEPROM says */
rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2;
/* find the settings for this channel (we know it exists) */
for (i = 0; rfprog[i].chan != chan; i++);
power = sc->txpow[i];
if (power < 0) {
bbp94 += power;
power = 0;
} else if (power > 31) {
bbp94 += power - 31;
power = 31;
}
/*
* If we are switching from the 2GHz band to the 5GHz band or
* vice-versa, BBP registers need to be reprogrammed.
*/
if (c->ic_flags != sc->sc_curchan->ic_flags) {
rt2661_select_band(sc, c);
rt2661_select_antenna(sc);
}
sc->sc_curchan = c;
rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
DELAY(200);
rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1);
rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
DELAY(200);
rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
/* enable smart mode for MIMO-capable RFs */
bbp3 = rt2661_bbp_read(sc, 3);
bbp3 &= ~RT2661_SMART_MODE;
if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529)
bbp3 |= RT2661_SMART_MODE;
rt2661_bbp_write(sc, 3, bbp3);
if (bbp94 != RT2661_BBPR94_DEFAULT)
rt2661_bbp_write(sc, 94, bbp94);
/* 5GHz radio needs a 1ms delay here */
if (IEEE80211_IS_CHAN_5GHZ(c))
DELAY(1000);
}
static void
rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid)
{
uint32_t tmp;
tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
RAL_WRITE(sc, RT2661_MAC_CSR4, tmp);
tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16;
RAL_WRITE(sc, RT2661_MAC_CSR5, tmp);
}
static void
rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr)
{
uint32_t tmp;
tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
RAL_WRITE(sc, RT2661_MAC_CSR2, tmp);
tmp = addr[4] | addr[5] << 8;
RAL_WRITE(sc, RT2661_MAC_CSR3, tmp);
}
static void
rt2661_update_promisc(struct rt2661_softc *sc)
{
struct ifnet *ifp = sc->sc_ic.ic_ifp;
uint32_t tmp;
tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
tmp &= ~RT2661_DROP_NOT_TO_ME;
if (!(ifp->if_flags & IFF_PROMISC))
tmp |= RT2661_DROP_NOT_TO_ME;
RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
"entering" : "leaving"));
}
/*
* Update QoS (802.11e) settings for each h/w Tx ring.
*/
static int
rt2661_wme_update(struct ieee80211com *ic)
{
struct rt2661_softc *sc = ic->ic_ifp->if_softc;
const struct wmeParams *wmep;
wmep = ic->ic_wme.wme_chanParams.cap_wmeParams;
/* XXX: not sure about shifts. */
/* XXX: the reference driver plays with AC_VI settings too. */
/* update TxOp */
RAL_WRITE(sc, RT2661_AC_TXOP_CSR0,
wmep[WME_AC_BE].wmep_txopLimit << 16 |
wmep[WME_AC_BK].wmep_txopLimit);
RAL_WRITE(sc, RT2661_AC_TXOP_CSR1,
wmep[WME_AC_VI].wmep_txopLimit << 16 |
wmep[WME_AC_VO].wmep_txopLimit);
/* update CWmin */
RAL_WRITE(sc, RT2661_CWMIN_CSR,
wmep[WME_AC_BE].wmep_logcwmin << 12 |
wmep[WME_AC_BK].wmep_logcwmin << 8 |
wmep[WME_AC_VI].wmep_logcwmin << 4 |
wmep[WME_AC_VO].wmep_logcwmin);
/* update CWmax */
RAL_WRITE(sc, RT2661_CWMAX_CSR,
wmep[WME_AC_BE].wmep_logcwmax << 12 |
wmep[WME_AC_BK].wmep_logcwmax << 8 |
wmep[WME_AC_VI].wmep_logcwmax << 4 |
wmep[WME_AC_VO].wmep_logcwmax);
/* update Aifsn */
RAL_WRITE(sc, RT2661_AIFSN_CSR,
wmep[WME_AC_BE].wmep_aifsn << 12 |
wmep[WME_AC_BK].wmep_aifsn << 8 |
wmep[WME_AC_VI].wmep_aifsn << 4 |
wmep[WME_AC_VO].wmep_aifsn);
return 0;
}
static void
rt2661_update_slot(struct ifnet *ifp)
{
struct rt2661_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint8_t slottime;
uint32_t tmp;
slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
tmp = RAL_READ(sc, RT2661_MAC_CSR9);
tmp = (tmp & ~0xff) | slottime;
RAL_WRITE(sc, RT2661_MAC_CSR9, tmp);
}
static const char *
rt2661_get_rf(int rev)
{
switch (rev) {
case RT2661_RF_5225: return "RT5225";
case RT2661_RF_5325: return "RT5325 (MIMO XR)";
case RT2661_RF_2527: return "RT2527";
case RT2661_RF_2529: return "RT2529 (MIMO XR)";
default: return "unknown";
}
}
static void
rt2661_read_eeprom(struct rt2661_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint16_t val;
int i;
/* read MAC address */
val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01);
ic->ic_myaddr[0] = val & 0xff;
ic->ic_myaddr[1] = val >> 8;
val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23);
ic->ic_myaddr[2] = val & 0xff;
ic->ic_myaddr[3] = val >> 8;
val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45);
ic->ic_myaddr[4] = val & 0xff;
ic->ic_myaddr[5] = val >> 8;
val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA);
/* XXX: test if different from 0xffff? */
sc->rf_rev = (val >> 11) & 0x1f;
sc->hw_radio = (val >> 10) & 0x1;
sc->rx_ant = (val >> 4) & 0x3;
sc->tx_ant = (val >> 2) & 0x3;
sc->nb_ant = val & 0x3;
DPRINTF(("RF revision=%d\n", sc->rf_rev));
val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2);
sc->ext_5ghz_lna = (val >> 6) & 0x1;
sc->ext_2ghz_lna = (val >> 4) & 0x1;
DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
sc->ext_2ghz_lna, sc->ext_5ghz_lna));
val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET);
if ((val & 0xff) != 0xff)
sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET);
if ((val & 0xff) != 0xff)
sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
/* adjust RSSI correction for external low-noise amplifier */
if (sc->ext_2ghz_lna)
sc->rssi_2ghz_corr -= 14;
if (sc->ext_5ghz_lna)
sc->rssi_5ghz_corr -= 14;
DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET);
if ((val >> 8) != 0xff)
sc->rfprog = (val >> 8) & 0x3;
if ((val & 0xff) != 0xff)
sc->rffreq = val & 0xff;
DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq));
/* read Tx power for all a/b/g channels */
for (i = 0; i < 19; i++) {
val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i);
sc->txpow[i * 2] = (int8_t)(val >> 8); /* signed */
DPRINTF(("Channel=%d Tx power=%d\n",
rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2]));
sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff); /* signed */
DPRINTF(("Channel=%d Tx power=%d\n",
rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1]));
}
/* read vendor-specific BBP values */
for (i = 0; i < 16; i++) {
val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i);
if (val == 0 || val == 0xffff)
continue; /* skip invalid entries */
sc->bbp_prom[i].reg = val >> 8;
sc->bbp_prom[i].val = val & 0xff;
DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
sc->bbp_prom[i].val));
}
}
static int
rt2661_bbp_init(struct rt2661_softc *sc)
{
#define N(a) (sizeof (a) / sizeof ((a)[0]))
int i, ntries;
uint8_t val;
/* wait for BBP to be ready */
for (ntries = 0; ntries < 100; ntries++) {
val = rt2661_bbp_read(sc, 0);
if (val != 0 && val != 0xff)
break;
DELAY(100);
}
if (ntries == 100) {
device_printf(sc->sc_dev, "timeout waiting for BBP\n");
return EIO;
}
/* initialize BBP registers to default values */
for (i = 0; i < N(rt2661_def_bbp); i++) {
rt2661_bbp_write(sc, rt2661_def_bbp[i].reg,
rt2661_def_bbp[i].val);
}
/* write vendor-specific BBP values (from EEPROM) */
for (i = 0; i < 16; i++) {
if (sc->bbp_prom[i].reg == 0)
continue;
rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
}
return 0;
#undef N
}
static void
rt2661_init(void *priv)
{
#define N(a) (sizeof (a) / sizeof ((a)[0]))
struct rt2661_softc *sc = priv;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
uint32_t tmp, sta[3];
int i, ntries;
RAL_LOCK(sc);
rt2661_stop(sc);
/* initialize Tx rings */
RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr);
RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr);
RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr);
RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr);
/* initialize Mgt ring */
RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr);
/* initialize Rx ring */
RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr);
/* initialize Tx rings sizes */
RAL_WRITE(sc, RT2661_TX_RING_CSR0,
RT2661_TX_RING_COUNT << 24 |
RT2661_TX_RING_COUNT << 16 |
RT2661_TX_RING_COUNT << 8 |
RT2661_TX_RING_COUNT);
RAL_WRITE(sc, RT2661_TX_RING_CSR1,
RT2661_TX_DESC_WSIZE << 16 |
RT2661_TX_RING_COUNT << 8 | /* XXX: HCCA ring unused */
RT2661_MGT_RING_COUNT);
/* initialize Rx rings */
RAL_WRITE(sc, RT2661_RX_RING_CSR,
RT2661_RX_DESC_BACK << 16 |
RT2661_RX_DESC_WSIZE << 8 |
RT2661_RX_RING_COUNT);
/* XXX: some magic here */
RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa);
/* load base addresses of all 5 Tx rings (4 data + 1 mgt) */
RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f);
/* load base address of Rx ring */
RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2);
/* initialize MAC registers to default values */
for (i = 0; i < N(rt2661_def_mac); i++)
RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val);
IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
rt2661_set_macaddr(sc, ic->ic_myaddr);
/* set host ready */
RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
/* wait for BBP/RF to wakeup */
for (ntries = 0; ntries < 1000; ntries++) {
if (RAL_READ(sc, RT2661_MAC_CSR12) & 8)
break;
DELAY(1000);
}
if (ntries == 1000) {
printf("timeout waiting for BBP/RF to wakeup\n");
rt2661_stop(sc);
RAL_UNLOCK(sc);
return;
}
if (rt2661_bbp_init(sc) != 0) {
rt2661_stop(sc);
RAL_UNLOCK(sc);
return;
}
/* select default channel */
sc->sc_curchan = ic->ic_curchan;
rt2661_select_band(sc, sc->sc_curchan);
rt2661_select_antenna(sc);
rt2661_set_chan(sc, sc->sc_curchan);
/* update Rx filter */
tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff;
tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR |
RT2661_DROP_ACKCTS;
if (ic->ic_opmode != IEEE80211_M_HOSTAP)
tmp |= RT2661_DROP_TODS;
if (!(ifp->if_flags & IFF_PROMISC))
tmp |= RT2661_DROP_NOT_TO_ME;
}
RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
/* clear STA registers */
RAL_READ_REGION_4(sc, RT2661_STA_CSR0, sta, N(sta));
/* initialize ASIC */
RAL_WRITE(sc, RT2661_MAC_CSR1, 4);
/* clear any pending interrupt */
RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
/* enable interrupts */
RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
/* kick Rx */
RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ifp->if_drv_flags |= IFF_DRV_RUNNING;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
} else
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
RAL_UNLOCK(sc);
#undef N
}
void
rt2661_stop(void *priv)
{
struct rt2661_softc *sc = priv;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
uint32_t tmp;
sc->sc_tx_timer = 0;
ifp->if_timer = 0;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
/* abort Tx (for all 5 Tx rings) */
RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16);
/* disable Rx (value remains after reset!) */
tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
/* reset ASIC */
RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
/* disable interrupts */
RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffffff);
RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
/* clear any pending interrupt */
RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff);
/* reset Tx and Rx rings */
rt2661_reset_tx_ring(sc, &sc->txq[0]);
rt2661_reset_tx_ring(sc, &sc->txq[1]);
rt2661_reset_tx_ring(sc, &sc->txq[2]);
rt2661_reset_tx_ring(sc, &sc->txq[3]);
rt2661_reset_tx_ring(sc, &sc->mgtq);
rt2661_reset_rx_ring(sc, &sc->rxq);
}
static int
rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size)
{
int ntries;
/* reset 8051 */
RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
/* cancel any pending Host to MCU command */
RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0);
RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0);
/* write 8051's microcode */
RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL);
RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size);
RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
/* kick 8051's ass */
RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0);
/* wait for 8051 to initialize */
for (ntries = 0; ntries < 500; ntries++) {
if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY)
break;
DELAY(100);
}
if (ntries == 500) {
printf("timeout waiting for MCU to initialize\n");
return EIO;
}
return 0;
}
#ifdef notyet
/*
* Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and
* false CCA count. This function is called periodically (every seconds) when
* in the RUN state. Values taken from the reference driver.
*/
static void
rt2661_rx_tune(struct rt2661_softc *sc)
{
uint8_t bbp17;
uint16_t cca;
int lo, hi, dbm;
/*
* Tuning range depends on operating band and on the presence of an
* external low-noise amplifier.
*/
lo = 0x20;
if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan))
lo += 0x08;
if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) ||
(IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna))
lo += 0x10;
hi = lo + 0x20;
/* retrieve false CCA count since last call (clear on read) */
cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff;
if (dbm >= -35) {
bbp17 = 0x60;
} else if (dbm >= -58) {
bbp17 = hi;
} else if (dbm >= -66) {
bbp17 = lo + 0x10;
} else if (dbm >= -74) {
bbp17 = lo + 0x08;
} else {
/* RSSI < -74dBm, tune using false CCA count */
bbp17 = sc->bbp17; /* current value */
hi -= 2 * (-74 - dbm);
if (hi < lo)
hi = lo;
if (bbp17 > hi) {
bbp17 = hi;
} else if (cca > 512) {
if (++bbp17 > hi)
bbp17 = hi;
} else if (cca < 100) {
if (--bbp17 < lo)
bbp17 = lo;
}
}
if (bbp17 != sc->bbp17) {
rt2661_bbp_write(sc, 17, bbp17);
sc->bbp17 = bbp17;
}
}
/*
* Enter/Leave radar detection mode.
* This is for 802.11h additional regulatory domains.
*/
static void
rt2661_radar_start(struct rt2661_softc *sc)
{
uint32_t tmp;
/* disable Rx */
tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
rt2661_bbp_write(sc, 82, 0x20);
rt2661_bbp_write(sc, 83, 0x00);
rt2661_bbp_write(sc, 84, 0x40);
/* save current BBP registers values */
sc->bbp18 = rt2661_bbp_read(sc, 18);
sc->bbp21 = rt2661_bbp_read(sc, 21);
sc->bbp22 = rt2661_bbp_read(sc, 22);
sc->bbp16 = rt2661_bbp_read(sc, 16);
sc->bbp17 = rt2661_bbp_read(sc, 17);
sc->bbp64 = rt2661_bbp_read(sc, 64);
rt2661_bbp_write(sc, 18, 0xff);
rt2661_bbp_write(sc, 21, 0x3f);
rt2661_bbp_write(sc, 22, 0x3f);
rt2661_bbp_write(sc, 16, 0xbd);
rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34);
rt2661_bbp_write(sc, 64, 0x21);
/* restore Rx filter */
RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
}
static int
rt2661_radar_stop(struct rt2661_softc *sc)
{
uint8_t bbp66;
/* read radar detection result */
bbp66 = rt2661_bbp_read(sc, 66);
/* restore BBP registers values */
rt2661_bbp_write(sc, 16, sc->bbp16);
rt2661_bbp_write(sc, 17, sc->bbp17);
rt2661_bbp_write(sc, 18, sc->bbp18);
rt2661_bbp_write(sc, 21, sc->bbp21);
rt2661_bbp_write(sc, 22, sc->bbp22);
rt2661_bbp_write(sc, 64, sc->bbp64);
return bbp66 == 1;
}
#endif
static int
rt2661_prepare_beacon(struct rt2661_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_beacon_offsets bo;
struct rt2661_tx_desc desc;
struct mbuf *m0;
int rate;
m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo);
if (m0 == NULL) {
device_printf(sc->sc_dev, "could not allocate beacon frame\n");
return ENOBUFS;
}
/* send beacons at the lowest available rate */
rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2;
rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ,
m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT);
/* copy the first 24 bytes of Tx descriptor into NIC memory */
RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
/* copy beacon header and payload into NIC memory */
RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24,
mtod(m0, uint8_t *), m0->m_pkthdr.len);
m_freem(m0);
return 0;
}
/*
* Enable TSF synchronization and tell h/w to start sending beacons for IBSS
* and HostAP operating modes.
*/
static void
rt2661_enable_tsf_sync(struct rt2661_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
if (ic->ic_opmode != IEEE80211_M_STA) {
/*
* Change default 16ms TBTT adjustment to 8ms.
* Must be done before enabling beacon generation.
*/
RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8);
}
tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000;
/* set beacon interval (in 1/16ms unit) */
tmp |= ic->ic_bss->ni_intval * 16;
tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT;
if (ic->ic_opmode == IEEE80211_M_STA)
tmp |= RT2661_TSF_MODE(1);
else
tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON;
RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp);
}
/*
* Retrieve the "Received Signal Strength Indicator" from the raw values
* contained in Rx descriptors. The computation depends on which band the
* frame was received. Correction values taken from the reference driver.
*/
static int
rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw)
{
int lna, agc, rssi;
lna = (raw >> 5) & 0x3;
agc = raw & 0x1f;
rssi = 2 * agc;
if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
rssi += sc->rssi_2ghz_corr;
if (lna == 1)
rssi -= 64;
else if (lna == 2)
rssi -= 74;
else if (lna == 3)
rssi -= 90;
} else {
rssi += sc->rssi_5ghz_corr;
if (lna == 1)
rssi -= 64;
else if (lna == 2)
rssi -= 86;
else if (lna == 3)
rssi -= 100;
}
return rssi;
}