freebsd-nq/sys/dev/hfa/fore_buffer.c

805 lines
17 KiB
C
Raw Normal View History

/*
*
* ===================================
* HARP | Host ATM Research Platform
* ===================================
*
*
* This Host ATM Research Platform ("HARP") file (the "Software") is
* made available by Network Computing Services, Inc. ("NetworkCS")
* "AS IS". NetworkCS does not provide maintenance, improvements or
* support of any kind.
*
* NETWORKCS MAKES NO WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED,
* INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE, AS TO ANY ELEMENT OF THE
* SOFTWARE OR ANY SUPPORT PROVIDED IN CONNECTION WITH THIS SOFTWARE.
* In no event shall NetworkCS be responsible for any damages, including
* but not limited to consequential damages, arising from or relating to
* any use of the Software or related support.
*
* Copyright 1994-1998 Network Computing Services, Inc.
*
* Copies of this Software may be made, however, the above copyright
* notice must be reproduced on all copies.
*
1999-08-28 01:08:13 +00:00
* @(#) $FreeBSD$
*
*/
/*
* FORE Systems 200-Series Adapter Support
* ---------------------------------------
*
* Buffer Supply queue management
*
*/
#include <sys/param.h>
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/time.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/syslog.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <net/if.h>
#include <netatm/port.h>
#include <netatm/queue.h>
#include <netatm/atm.h>
#include <netatm/atm_sys.h>
#include <netatm/atm_sap.h>
#include <netatm/atm_cm.h>
#include <netatm/atm_if.h>
#include <netatm/atm_stack.h>
#include <netatm/atm_pcb.h>
#include <netatm/atm_var.h>
#include <pci/pcivar.h>
#include <dev/hfa/fore.h>
#include <dev/hfa/fore_aali.h>
#include <dev/hfa/fore_slave.h>
#include <dev/hfa/fore_stats.h>
#include <dev/hfa/fore_var.h>
#include <dev/hfa/fore_include.h>
#ifndef lint
1999-08-28 01:08:13 +00:00
__RCSID("@(#) $FreeBSD$");
#endif
/*
* Local functions
*/
static void fore_buf_drain __P((Fore_unit *));
static void fore_buf_supply_1s __P((Fore_unit *));
static void fore_buf_supply_1l __P((Fore_unit *));
/*
* Allocate Buffer Supply Queues Data Structures
*
* Here we are allocating memory for both Strategy 1 Small and Large
* structures contiguously.
*
* Arguments:
* fup pointer to device unit structure
*
* Returns:
* 0 allocations successful
* else allocation failed
*/
int
fore_buf_allocate(fup)
Fore_unit *fup;
{
caddr_t memp;
/*
* Allocate non-cacheable memory for buffer supply status words
*/
memp = atm_dev_alloc(
sizeof(Q_status) * (BUF1_SM_QUELEN + BUF1_LG_QUELEN),
QSTAT_ALIGN, ATM_DEV_NONCACHE);
if (memp == NULL) {
return (1);
}
fup->fu_buf1s_stat = (Q_status *) memp;
fup->fu_buf1l_stat = ((Q_status *) memp) + BUF1_SM_QUELEN;
memp = DMA_GET_ADDR(fup->fu_buf1s_stat,
sizeof(Q_status) * (BUF1_SM_QUELEN + BUF1_LG_QUELEN),
QSTAT_ALIGN, ATM_DEV_NONCACHE);
if (memp == NULL) {
return (1);
}
fup->fu_buf1s_statd = (Q_status *) memp;
fup->fu_buf1l_statd = ((Q_status *) memp) + BUF1_SM_QUELEN;
/*
* Allocate memory for buffer supply descriptors
*/
memp = atm_dev_alloc(sizeof(Buf_descr) *
((BUF1_SM_QUELEN * BUF1_SM_ENTSIZE) +
(BUF1_LG_QUELEN * BUF1_LG_ENTSIZE)),
BUF_DESCR_ALIGN, 0);
if (memp == NULL) {
return (1);
}
fup->fu_buf1s_desc = (Buf_descr *) memp;
fup->fu_buf1l_desc = ((Buf_descr *) memp) +
(BUF1_SM_QUELEN * BUF1_SM_ENTSIZE);
memp = DMA_GET_ADDR(fup->fu_buf1s_desc, sizeof(Buf_descr) *
((BUF1_SM_QUELEN * BUF1_SM_ENTSIZE) +
(BUF1_LG_QUELEN * BUF1_LG_ENTSIZE)),
BUF_DESCR_ALIGN, 0);
if (memp == NULL) {
return (1);
}
fup->fu_buf1s_descd = (Buf_descr *) memp;
fup->fu_buf1l_descd = ((Buf_descr *) memp) +
(BUF1_SM_QUELEN * BUF1_SM_ENTSIZE);
return (0);
}
/*
* Buffer Supply Queues Initialization
*
* Allocate and initialize the host-resident buffer supply queue structures
* and then initialize the CP-resident queue structures.
*
* Called at interrupt level.
*
* Arguments:
* fup pointer to device unit structure
*
* Returns:
* none
*/
void
fore_buf_initialize(fup)
Fore_unit *fup;
{
Aali *aap = fup->fu_aali;
Buf_queue *cqp;
H_buf_queue *hbp;
Buf_descr *bdp;
Buf_descr *bdp_dma;
Q_status *qsp;
Q_status *qsp_dma;
int i;
/*
* Initialize Strategy 1 Small Queues
*/
/*
* Point to CP-resident buffer supply queue
*/
cqp = (Buf_queue *)(fup->fu_ram + CP_READ(aap->aali_buf1s_q));
/*
* Point to host-resident buffer supply queue structures
*/
hbp = fup->fu_buf1s_q;
qsp = fup->fu_buf1s_stat;
qsp_dma = fup->fu_buf1s_statd;
bdp = fup->fu_buf1s_desc;
bdp_dma = fup->fu_buf1s_descd;
/*
* Loop thru all queue entries and do whatever needs doing
*/
for (i = 0; i < BUF1_SM_QUELEN; i++) {
/*
* Set queue status word to free
*/
*qsp = QSTAT_FREE;
/*
* Set up host queue entry and link into ring
*/
hbp->hbq_cpelem = cqp;
hbp->hbq_status = qsp;
hbp->hbq_descr = bdp;
hbp->hbq_descr_dma = bdp_dma;
if (i == (BUF1_SM_QUELEN - 1))
hbp->hbq_next = fup->fu_buf1s_q;
else
hbp->hbq_next = hbp + 1;
/*
* Now let the CP into the game
*/
cqp->cq_status = (CP_dma) CP_WRITE(qsp_dma);
/*
* Bump all queue pointers
*/
hbp++;
qsp++;
qsp_dma++;
bdp += BUF1_SM_ENTSIZE;
bdp_dma += BUF1_SM_ENTSIZE;
cqp++;
}
/*
* Initialize queue pointers
*/
fup->fu_buf1s_head = fup->fu_buf1s_tail = fup->fu_buf1s_q;
/*
* Initialize Strategy 1 Large Queues
*/
/*
* Point to CP-resident buffer supply queue
*/
cqp = (Buf_queue *)(fup->fu_ram + CP_READ(aap->aali_buf1l_q));
/*
* Point to host-resident buffer supply queue structures
*/
hbp = fup->fu_buf1l_q;
qsp = fup->fu_buf1l_stat;
qsp_dma = fup->fu_buf1l_statd;
bdp = fup->fu_buf1l_desc;
bdp_dma = fup->fu_buf1l_descd;
/*
* Loop thru all queue entries and do whatever needs doing
*/
for (i = 0; i < BUF1_LG_QUELEN; i++) {
/*
* Set queue status word to free
*/
*qsp = QSTAT_FREE;
/*
* Set up host queue entry and link into ring
*/
hbp->hbq_cpelem = cqp;
hbp->hbq_status = qsp;
hbp->hbq_descr = bdp;
hbp->hbq_descr_dma = bdp_dma;
if (i == (BUF1_LG_QUELEN - 1))
hbp->hbq_next = fup->fu_buf1l_q;
else
hbp->hbq_next = hbp + 1;
/*
* Now let the CP into the game
*/
cqp->cq_status = (CP_dma) CP_WRITE(qsp_dma);
/*
* Bump all queue pointers
*/
hbp++;
qsp++;
qsp_dma++;
bdp += BUF1_LG_ENTSIZE;
bdp_dma += BUF1_LG_ENTSIZE;
cqp++;
}
/*
* Initialize queue pointers
*/
fup->fu_buf1l_head = fup->fu_buf1l_tail = fup->fu_buf1l_q;
return;
}
/*
* Supply Buffers to CP
*
* This function will resupply the CP with buffers to be used to
* store incoming data.
*
* May be called in interrupt state.
* Must be called with interrupts locked out.
*
* Arguments:
* fup pointer to device unit structure
*
* Returns:
* none
*/
void
fore_buf_supply(fup)
Fore_unit *fup;
{
/*
* First, clean out the supply queues
*/
fore_buf_drain(fup);
/*
* Then, supply the buffers for each queue
*/
fore_buf_supply_1s(fup);
fore_buf_supply_1l(fup);
return;
}
/*
* Supply Strategy 1 Small Buffers to CP
*
* May be called in interrupt state.
* Must be called with interrupts locked out.
*
* Arguments:
* fup pointer to device unit structure
*
* Returns:
* none
*/
static void
fore_buf_supply_1s(fup)
Fore_unit *fup;
{
H_buf_queue *hbp;
Buf_queue *cqp;
Buf_descr *bdp;
Buf_handle *bhp;
KBuffer *m;
int nvcc, nbuf, i;
/*
* Figure out how many buffers we should be giving to the CP.
* We're basing this calculation on the current number of open
* VCCs thru this device, with certain minimum and maximum values
* enforced. This will then allow us to figure out how many more
* buffers we need to supply to the CP. This will be rounded up
* to fill a supply queue entry.
*/
nvcc = MAX(fup->fu_open_vcc, BUF_MIN_VCC);
nbuf = nvcc * 4;
nbuf = MIN(nbuf, BUF1_SM_CPPOOL);
nbuf -= fup->fu_buf1s_cnt;
nbuf = roundup(nbuf, BUF1_SM_ENTSIZE);
/*
* OK, now supply the buffers to the CP
*/
while (nbuf > 0) {
/*
* Acquire a supply queue entry
*/
hbp = fup->fu_buf1s_tail;
if (!((*hbp->hbq_status) & QSTAT_FREE))
break;
bdp = hbp->hbq_descr;
/*
* Get a buffer for each descriptor in the queue entry
*/
for (i = 0; i < BUF1_SM_ENTSIZE; i++, bdp++) {
caddr_t cp;
/*
* Get a small buffer
*/
KB_ALLOCPKT(m, BUF1_SM_SIZE, KB_F_NOWAIT, KB_T_DATA);
if (m == 0) {
break;
}
KB_HEADSET(m, BUF1_SM_DOFF);
/*
* Point to buffer handle structure
*/
bhp = (Buf_handle *)((caddr_t)m + BUF1_SM_HOFF);
bhp->bh_type = BHT_S1_SMALL;
/*
* Setup buffer descriptor
*/
bdp->bsd_handle = bhp;
KB_DATASTART(m, cp, caddr_t);
bhp->bh_dma = bdp->bsd_buffer = (H_dma) DMA_GET_ADDR(
cp, BUF1_SM_SIZE, BUF_DATA_ALIGN, 0);
if (bdp->bsd_buffer == NULL) {
/*
* Unable to assign dma address - free up
* this descriptor's buffer
*/
fup->fu_stats->st_drv.drv_bf_segdma++;
KB_FREEALL(m);
break;
}
/*
* All set, so queue buffer (handle)
*/
ENQUEUE(bhp, Buf_handle, bh_qelem, fup->fu_buf1s_bq);
}
/*
* If we we're not able to fill all the descriptors for
* an entry, free up what's been partially built
*/
if (i != BUF1_SM_ENTSIZE) {
caddr_t cp;
/*
* Clean up each used descriptor
*/
for (bdp = hbp->hbq_descr; i; i--, bdp++) {
bhp = bdp->bsd_handle;
DEQUEUE(bhp, Buf_handle, bh_qelem,
fup->fu_buf1s_bq);
m = (KBuffer *)
((caddr_t)bhp - BUF1_SM_HOFF);
KB_DATASTART(m, cp, caddr_t);
DMA_FREE_ADDR(cp, bhp->bh_dma, BUF1_SM_SIZE, 0);
KB_FREEALL(m);
}
break;
}
/*
* Finally, we've got an entry ready for the CP.
* So claim the host queue entry and setup the CP-resident
* queue entry. The CP will (potentially) grab the supplied
* buffers when the descriptor pointer is set.
*/
fup->fu_buf1s_tail = hbp->hbq_next;
(*hbp->hbq_status) = QSTAT_PENDING;
cqp = hbp->hbq_cpelem;
cqp->cq_descr = (CP_dma) CP_WRITE((u_long)hbp->hbq_descr_dma);
/*
* Update counters, etc for supplied buffers
*/
fup->fu_buf1s_cnt += BUF1_SM_ENTSIZE;
nbuf -= BUF1_SM_ENTSIZE;
}
return;
}
/*
* Supply Strategy 1 Large Buffers to CP
*
* May be called in interrupt state.
* Must be called with interrupts locked out.
*
* Arguments:
* fup pointer to device unit structure
*
* Returns:
* none
*/
static void
fore_buf_supply_1l(fup)
Fore_unit *fup;
{
H_buf_queue *hbp;
Buf_queue *cqp;
Buf_descr *bdp;
Buf_handle *bhp;
KBuffer *m;
int nvcc, nbuf, i;
/*
* Figure out how many buffers we should be giving to the CP.
* We're basing this calculation on the current number of open
* VCCs thru this device, with certain minimum and maximum values
* enforced. This will then allow us to figure out how many more
* buffers we need to supply to the CP. This will be rounded up
* to fill a supply queue entry.
*/
nvcc = MAX(fup->fu_open_vcc, BUF_MIN_VCC);
nbuf = nvcc * 4 * RECV_MAX_SEGS;
nbuf = MIN(nbuf, BUF1_LG_CPPOOL);
nbuf -= fup->fu_buf1l_cnt;
nbuf = roundup(nbuf, BUF1_LG_ENTSIZE);
/*
* OK, now supply the buffers to the CP
*/
while (nbuf > 0) {
/*
* Acquire a supply queue entry
*/
hbp = fup->fu_buf1l_tail;
if (!((*hbp->hbq_status) & QSTAT_FREE))
break;
bdp = hbp->hbq_descr;
/*
* Get a buffer for each descriptor in the queue entry
*/
for (i = 0; i < BUF1_LG_ENTSIZE; i++, bdp++) {
caddr_t cp;
/*
* Get a cluster buffer
*/
KB_ALLOCEXT(m, BUF1_LG_SIZE, KB_F_NOWAIT, KB_T_DATA);
if (m == 0) {
break;
}
KB_HEADSET(m, BUF1_LG_DOFF);
/*
* Point to buffer handle structure
*/
bhp = (Buf_handle *)((caddr_t)m + BUF1_LG_HOFF);
bhp->bh_type = BHT_S1_LARGE;
/*
* Setup buffer descriptor
*/
bdp->bsd_handle = bhp;
KB_DATASTART(m, cp, caddr_t);
bhp->bh_dma = bdp->bsd_buffer = (H_dma) DMA_GET_ADDR(
cp, BUF1_LG_SIZE, BUF_DATA_ALIGN, 0);
if (bdp->bsd_buffer == NULL) {
/*
* Unable to assign dma address - free up
* this descriptor's buffer
*/
fup->fu_stats->st_drv.drv_bf_segdma++;
KB_FREEALL(m);
break;
}
/*
* All set, so queue buffer (handle)
*/
ENQUEUE(bhp, Buf_handle, bh_qelem, fup->fu_buf1l_bq);
}
/*
* If we we're not able to fill all the descriptors for
* an entry, free up what's been partially built
*/
if (i != BUF1_LG_ENTSIZE) {
caddr_t cp;
/*
* Clean up each used descriptor
*/
for (bdp = hbp->hbq_descr; i; i--, bdp++) {
bhp = bdp->bsd_handle;
DEQUEUE(bhp, Buf_handle, bh_qelem,
fup->fu_buf1l_bq);
m = (KBuffer *)
((caddr_t)bhp - BUF1_LG_HOFF);
KB_DATASTART(m, cp, caddr_t);
DMA_FREE_ADDR(cp, bhp->bh_dma, BUF1_LG_SIZE, 0);
KB_FREEALL(m);
}
break;
}
/*
* Finally, we've got an entry ready for the CP.
* So claim the host queue entry and setup the CP-resident
* queue entry. The CP will (potentially) grab the supplied
* buffers when the descriptor pointer is set.
*/
fup->fu_buf1l_tail = hbp->hbq_next;
(*hbp->hbq_status) = QSTAT_PENDING;
cqp = hbp->hbq_cpelem;
cqp->cq_descr = (CP_dma) CP_WRITE((u_long)hbp->hbq_descr_dma);
/*
* Update counters, etc for supplied buffers
*/
fup->fu_buf1l_cnt += BUF1_LG_ENTSIZE;
nbuf -= BUF1_LG_ENTSIZE;
}
return;
}
/*
* Drain Buffer Supply Queues
*
* This function will free all completed entries at the head of each
* buffer supply queue. Since we consider the CP to "own" the buffers
* once we put them on a supply queue and since a completed supply queue
* entry is only telling us that the CP has accepted the buffers that we
* gave to it, there's not much to do here.
*
* May be called in interrupt state.
* Must be called with interrupts locked out.
*
* Arguments:
* fup pointer to device unit structure
*
* Returns:
* none
*/
static void
fore_buf_drain(fup)
Fore_unit *fup;
{
H_buf_queue *hbp;
/*
* Drain Strategy 1 Small Queue
*/
/*
* Process each completed entry
*/
while (*fup->fu_buf1s_head->hbq_status & QSTAT_COMPLETED) {
hbp = fup->fu_buf1s_head;
if (*hbp->hbq_status & QSTAT_ERROR) {
/*
* XXX - what does this mean???
*/
log(LOG_ERR, "fore_buf_drain: buf1s queue error\n");
}
/*
* Mark this entry free for use and bump head pointer
* to the next entry in the queue
*/
*hbp->hbq_status = QSTAT_FREE;
fup->fu_buf1s_head = hbp->hbq_next;
}
/*
* Drain Strategy 1 Large Queue
*/
/*
* Process each completed entry
*/
while (*fup->fu_buf1l_head->hbq_status & QSTAT_COMPLETED) {
hbp = fup->fu_buf1l_head;
if (*hbp->hbq_status & QSTAT_ERROR) {
/*
* XXX - what does this mean???
*/
log(LOG_ERR, "fore_buf_drain: buf1l queue error\n");
}
/*
* Mark this entry free for use and bump head pointer
* to the next entry in the queue
*/
*hbp->hbq_status = QSTAT_FREE;
fup->fu_buf1l_head = hbp->hbq_next;
}
return;
}
/*
* Free Buffer Supply Queue Data Structures
*
* Arguments:
* fup pointer to device unit structure
*
* Returns:
* none
*/
void
fore_buf_free(fup)
Fore_unit *fup;
{
Buf_handle *bhp;
KBuffer *m;
/*
* Free any previously supplied and not returned buffers
*/
if (fup->fu_flags & CUF_INITED) {
/*
* Run through Strategy 1 Small queue
*/
while ((bhp = Q_HEAD(fup->fu_buf1s_bq, Buf_handle)) != NULL) {
caddr_t cp;
/*
* Back off to buffer
*/
m = (KBuffer *)((caddr_t)bhp - BUF1_SM_HOFF);
/*
* Dequeue handle and free buffer
*/
DEQUEUE(bhp, Buf_handle, bh_qelem, fup->fu_buf1s_bq);
KB_DATASTART(m, cp, caddr_t);
DMA_FREE_ADDR(cp, bhp->bh_dma, BUF1_SM_SIZE, 0);
KB_FREEALL(m);
}
/*
* Run through Strategy 1 Large queue
*/
while ((bhp = Q_HEAD(fup->fu_buf1l_bq, Buf_handle)) != NULL) {
caddr_t cp;
/*
* Back off to buffer
*/
m = (KBuffer *)((caddr_t)bhp - BUF1_LG_HOFF);
/*
* Dequeue handle and free buffer
*/
DEQUEUE(bhp, Buf_handle, bh_qelem, fup->fu_buf1l_bq);
KB_DATASTART(m, cp, caddr_t);
DMA_FREE_ADDR(cp, bhp->bh_dma, BUF1_LG_SIZE, 0);
KB_FREEALL(m);
}
}
/*
* Free the status words
*/
if (fup->fu_buf1s_stat) {
if (fup->fu_buf1s_statd) {
DMA_FREE_ADDR(fup->fu_buf1s_stat, fup->fu_buf1s_statd,
sizeof(Q_status) *
(BUF1_SM_QUELEN + BUF1_LG_QUELEN),
ATM_DEV_NONCACHE);
}
atm_dev_free((volatile void *)fup->fu_buf1s_stat);
fup->fu_buf1s_stat = NULL;
fup->fu_buf1s_statd = NULL;
fup->fu_buf1l_stat = NULL;
fup->fu_buf1l_statd = NULL;
}
/*
* Free the transmit descriptors
*/
if (fup->fu_buf1s_desc) {
if (fup->fu_buf1s_descd) {
DMA_FREE_ADDR(fup->fu_buf1s_desc, fup->fu_buf1s_descd,
sizeof(Buf_descr) *
((BUF1_SM_QUELEN * BUF1_SM_ENTSIZE) +
(BUF1_LG_QUELEN * BUF1_LG_ENTSIZE)),
0);
}
atm_dev_free(fup->fu_buf1s_desc);
fup->fu_buf1s_desc = NULL;
fup->fu_buf1s_descd = NULL;
fup->fu_buf1l_desc = NULL;
fup->fu_buf1l_descd = NULL;
}
return;
}