freebsd-nq/module/zfs/dmu_recv.c

2931 lines
84 KiB
C
Raw Normal View History

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2011, 2015 by Delphix. All rights reserved.
* Copyright (c) 2014, Joyent, Inc. All rights reserved.
* Copyright 2014 HybridCluster. All rights reserved.
* Copyright 2016 RackTop Systems.
* Copyright (c) 2016 Actifio, Inc. All rights reserved.
* Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
*/
#include <sys/dmu.h>
#include <sys/dmu_impl.h>
#include <sys/dmu_tx.h>
#include <sys/dbuf.h>
#include <sys/dnode.h>
#include <sys/zfs_context.h>
#include <sys/dmu_objset.h>
#include <sys/dmu_traverse.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_prop.h>
#include <sys/dsl_pool.h>
#include <sys/dsl_synctask.h>
#include <sys/spa_impl.h>
#include <sys/zfs_ioctl.h>
#include <sys/zap.h>
#include <sys/zio_checksum.h>
#include <sys/zfs_znode.h>
#include <zfs_fletcher.h>
#include <sys/avl.h>
#include <sys/ddt.h>
#include <sys/zfs_onexit.h>
#include <sys/dmu_recv.h>
#include <sys/dsl_destroy.h>
#include <sys/blkptr.h>
#include <sys/dsl_bookmark.h>
#include <sys/zfeature.h>
#include <sys/bqueue.h>
#include <sys/zvol.h>
#include <sys/policy.h>
int zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
static char *dmu_recv_tag = "dmu_recv_tag";
const char *recv_clone_name = "%recv";
static void byteswap_record(dmu_replay_record_t *drr);
typedef struct dmu_recv_begin_arg {
const char *drba_origin;
dmu_recv_cookie_t *drba_cookie;
cred_t *drba_cred;
dsl_crypto_params_t *drba_dcp;
uint64_t drba_snapobj;
} dmu_recv_begin_arg_t;
static int
recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
uint64_t fromguid, uint64_t featureflags)
{
uint64_t val;
uint64_t children;
int error;
dsl_pool_t *dp = ds->ds_dir->dd_pool;
boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
/* temporary clone name must not exist */
error = zap_lookup(dp->dp_meta_objset,
dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
8, 1, &val);
if (error != ENOENT)
return (error == 0 ? EBUSY : error);
/* new snapshot name must not exist */
error = zap_lookup(dp->dp_meta_objset,
dsl_dataset_phys(ds)->ds_snapnames_zapobj,
drba->drba_cookie->drc_tosnap, 8, 1, &val);
if (error != ENOENT)
return (error == 0 ? EEXIST : error);
/* must not have children if receiving a ZVOL */
error = zap_count(dp->dp_meta_objset,
dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children);
if (error != 0)
return (error);
if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS &&
children > 0)
return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
/*
* Check snapshot limit before receiving. We'll recheck again at the
* end, but might as well abort before receiving if we're already over
* the limit.
*
* Note that we do not check the file system limit with
* dsl_dir_fscount_check because the temporary %clones don't count
* against that limit.
*/
error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
NULL, drba->drba_cred);
if (error != 0)
return (error);
if (fromguid != 0) {
dsl_dataset_t *snap;
uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
/* Can't perform a raw receive on top of a non-raw receive */
if (!encrypted && raw)
return (SET_ERROR(EINVAL));
/* Encryption is incompatible with embedded data */
if (encrypted && embed)
return (SET_ERROR(EINVAL));
/* Find snapshot in this dir that matches fromguid. */
while (obj != 0) {
error = dsl_dataset_hold_obj(dp, obj, FTAG,
&snap);
if (error != 0)
return (SET_ERROR(ENODEV));
if (snap->ds_dir != ds->ds_dir) {
dsl_dataset_rele(snap, FTAG);
return (SET_ERROR(ENODEV));
}
if (dsl_dataset_phys(snap)->ds_guid == fromguid)
break;
obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
dsl_dataset_rele(snap, FTAG);
}
if (obj == 0)
return (SET_ERROR(ENODEV));
if (drba->drba_cookie->drc_force) {
drba->drba_snapobj = obj;
} else {
/*
* If we are not forcing, there must be no
* changes since fromsnap.
*/
if (dsl_dataset_modified_since_snap(ds, snap)) {
dsl_dataset_rele(snap, FTAG);
return (SET_ERROR(ETXTBSY));
}
drba->drba_snapobj = ds->ds_prev->ds_object;
}
dsl_dataset_rele(snap, FTAG);
} else {
/* if full, then must be forced */
if (!drba->drba_cookie->drc_force)
return (SET_ERROR(EEXIST));
/*
* We don't support using zfs recv -F to blow away
* encrypted filesystems. This would require the
* dsl dir to point to the old encryption key and
* the new one at the same time during the receive.
*/
if ((!encrypted && raw) || encrypted)
return (SET_ERROR(EINVAL));
/*
* Perform the same encryption checks we would if
* we were creating a new dataset from scratch.
*/
if (!raw) {
boolean_t will_encrypt;
error = dmu_objset_create_crypt_check(
ds->ds_dir->dd_parent, drba->drba_dcp,
&will_encrypt);
if (error != 0)
return (error);
if (will_encrypt && embed)
return (SET_ERROR(EINVAL));
}
drba->drba_snapobj = 0;
}
return (0);
}
static int
dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
{
dmu_recv_begin_arg_t *drba = arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
uint64_t fromguid = drrb->drr_fromguid;
int flags = drrb->drr_flags;
ds_hold_flags_t dsflags = 0;
int error;
uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
dsl_dataset_t *ds;
const char *tofs = drba->drba_cookie->drc_tofs;
/* already checked */
ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
DMU_COMPOUNDSTREAM ||
drrb->drr_type >= DMU_OST_NUMTYPES ||
((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
return (SET_ERROR(EINVAL));
/* Verify pool version supports SA if SA_SPILL feature set */
if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
spa_version(dp->dp_spa) < SPA_VERSION_SA)
return (SET_ERROR(ENOTSUP));
if (drba->drba_cookie->drc_resumable &&
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
return (SET_ERROR(ENOTSUP));
/*
* The receiving code doesn't know how to translate a WRITE_EMBEDDED
* record to a plain WRITE record, so the pool must have the
* EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
* records. Same with WRITE_EMBEDDED records that use LZ4 compression.
*/
if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
return (SET_ERROR(ENOTSUP));
if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
return (SET_ERROR(ENOTSUP));
/*
* The receiving code doesn't know how to translate large blocks
* to smaller ones, so the pool must have the LARGE_BLOCKS
* feature enabled if the stream has LARGE_BLOCKS. Same with
* large dnodes.
*/
if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
return (SET_ERROR(ENOTSUP));
if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE))
return (SET_ERROR(ENOTSUP));
if (featureflags & DMU_BACKUP_FEATURE_RAW) {
/* raw receives require the encryption feature */
if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
return (SET_ERROR(ENOTSUP));
/* embedded data is incompatible with encryption and raw recv */
if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
return (SET_ERROR(EINVAL));
} else {
dsflags |= DS_HOLD_FLAG_DECRYPT;
}
error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
if (error == 0) {
/* target fs already exists; recv into temp clone */
/* Can't recv a clone into an existing fs */
if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(EINVAL));
}
error = recv_begin_check_existing_impl(drba, ds, fromguid,
featureflags);
dsl_dataset_rele_flags(ds, dsflags, FTAG);
} else if (error == ENOENT) {
/* target fs does not exist; must be a full backup or clone */
char buf[ZFS_MAX_DATASET_NAME_LEN];
objset_t *os;
/*
* If it's a non-clone incremental, we are missing the
* target fs, so fail the recv.
*/
if (fromguid != 0 && !(flags & DRR_FLAG_CLONE ||
drba->drba_origin))
return (SET_ERROR(ENOENT));
/*
* If we're receiving a full send as a clone, and it doesn't
* contain all the necessary free records and freeobject
* records, reject it.
*/
if (fromguid == 0 && drba->drba_origin &&
!(flags & DRR_FLAG_FREERECORDS))
return (SET_ERROR(EINVAL));
/* Open the parent of tofs */
ASSERT3U(strlen(tofs), <, sizeof (buf));
(void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
error = dsl_dataset_hold_flags(dp, buf, dsflags, FTAG, &ds);
if (error != 0)
return (error);
if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
drba->drba_origin == NULL) {
boolean_t will_encrypt;
/*
* Check that we aren't breaking any encryption rules
* and that we have all the parameters we need to
* create an encrypted dataset if necessary. If we are
* making an encrypted dataset the stream can't have
* embedded data.
*/
error = dmu_objset_create_crypt_check(ds->ds_dir,
drba->drba_dcp, &will_encrypt);
if (error != 0) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (error);
}
if (will_encrypt &&
(featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(EINVAL));
}
}
/*
* Check filesystem and snapshot limits before receiving. We'll
* recheck snapshot limits again at the end (we create the
* filesystems and increment those counts during begin_sync).
*/
error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred);
if (error != 0) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (error);
}
error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred);
if (error != 0) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (error);
}
/* can't recv below anything but filesystems (eg. no ZVOLs) */
error = dmu_objset_from_ds(ds, &os);
if (error != 0) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (error);
}
if (dmu_objset_type(os) != DMU_OST_ZFS) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
}
if (drba->drba_origin != NULL) {
dsl_dataset_t *origin;
error = dsl_dataset_hold_flags(dp, drba->drba_origin,
dsflags, FTAG, &origin);
if (error != 0) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (error);
}
if (!origin->ds_is_snapshot) {
dsl_dataset_rele_flags(origin, dsflags, FTAG);
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(EINVAL));
}
if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
fromguid != 0) {
dsl_dataset_rele_flags(origin, dsflags, FTAG);
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(ENODEV));
}
if (origin->ds_dir->dd_crypto_obj != 0 &&
(featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
dsl_dataset_rele_flags(origin, dsflags, FTAG);
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(EINVAL));
}
dsl_dataset_rele_flags(origin,
dsflags, FTAG);
}
dsl_dataset_rele_flags(ds, dsflags, FTAG);
error = 0;
}
return (error);
}
static void
dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
{
dmu_recv_begin_arg_t *drba = arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
objset_t *mos = dp->dp_meta_objset;
struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
const char *tofs = drba->drba_cookie->drc_tofs;
uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
dsl_dataset_t *ds, *newds;
objset_t *os;
uint64_t dsobj;
ds_hold_flags_t dsflags = 0;
int error;
uint64_t crflags = 0;
dsl_crypto_params_t dummy_dcp = { 0 };
dsl_crypto_params_t *dcp = drba->drba_dcp;
if (drrb->drr_flags & DRR_FLAG_CI_DATA)
crflags |= DS_FLAG_CI_DATASET;
if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
dsflags |= DS_HOLD_FLAG_DECRYPT;
/*
* Raw, non-incremental recvs always use a dummy dcp with
* the raw cmd set. Raw incremental recvs do not use a dcp
* since the encryption parameters are already set in stone.
*/
if (dcp == NULL && drba->drba_snapobj == 0 &&
drba->drba_origin == NULL) {
ASSERT3P(dcp, ==, NULL);
dcp = &dummy_dcp;
if (featureflags & DMU_BACKUP_FEATURE_RAW)
dcp->cp_cmd = DCP_CMD_RAW_RECV;
}
error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
if (error == 0) {
/* create temporary clone */
dsl_dataset_t *snap = NULL;
if (drba->drba_snapobj != 0) {
VERIFY0(dsl_dataset_hold_obj(dp,
drba->drba_snapobj, FTAG, &snap));
ASSERT3P(dcp, ==, NULL);
}
dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
snap, crflags, drba->drba_cred, dcp, tx);
if (drba->drba_snapobj != 0)
dsl_dataset_rele(snap, FTAG);
dsl_dataset_rele_flags(ds, dsflags, FTAG);
} else {
dsl_dir_t *dd;
const char *tail;
dsl_dataset_t *origin = NULL;
VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
if (drba->drba_origin != NULL) {
VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
FTAG, &origin));
ASSERT3P(dcp, ==, NULL);
}
/* Create new dataset. */
dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
origin, crflags, drba->drba_cred, dcp, tx);
if (origin != NULL)
dsl_dataset_rele(origin, FTAG);
dsl_dir_rele(dd, FTAG);
drba->drba_cookie->drc_newfs = B_TRUE;
}
VERIFY0(dsl_dataset_own_obj(dp, dsobj, dsflags, dmu_recv_tag, &newds));
VERIFY0(dmu_objset_from_ds(newds, &os));
if (drba->drba_cookie->drc_resumable) {
dsl_dataset_zapify(newds, tx);
if (drrb->drr_fromguid != 0) {
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
8, 1, &drrb->drr_fromguid, tx));
}
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
8, 1, &drrb->drr_toguid, tx));
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
uint64_t one = 1;
uint64_t zero = 0;
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
8, 1, &one, tx));
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
8, 1, &zero, tx));
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
8, 1, &zero, tx));
if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
8, 1, &one, tx));
}
if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
8, 1, &one, tx));
}
if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
8, 1, &one, tx));
}
if (featureflags & DMU_BACKUP_FEATURE_RAW) {
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
8, 1, &one, tx));
}
}
/*
* Usually the os->os_encrypted value is tied to the presence of a
* DSL Crypto Key object in the dd. However, that will not be received
* until dmu_recv_stream(), so we set the value manually for now.
*/
if (featureflags & DMU_BACKUP_FEATURE_RAW) {
os->os_encrypted = B_TRUE;
drba->drba_cookie->drc_raw = B_TRUE;
}
dmu_buf_will_dirty(newds->ds_dbuf, tx);
dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
/*
* If we actually created a non-clone, we need to create the objset
* in our new dataset. If this is a raw send we postpone this until
* dmu_recv_stream() so that we can allocate the metadnode with the
* properties from the DRR_BEGIN payload.
*/
rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
(featureflags & DMU_BACKUP_FEATURE_RAW) == 0) {
(void) dmu_objset_create_impl(dp->dp_spa,
newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
}
rrw_exit(&newds->ds_bp_rwlock, FTAG);
drba->drba_cookie->drc_ds = newds;
spa_history_log_internal_ds(newds, "receive", tx, "");
}
static int
dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
{
dmu_recv_begin_arg_t *drba = arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
int error;
ds_hold_flags_t dsflags = 0;
uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
dsl_dataset_t *ds;
const char *tofs = drba->drba_cookie->drc_tofs;
/* already checked */
ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING);
if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
DMU_COMPOUNDSTREAM ||
drrb->drr_type >= DMU_OST_NUMTYPES)
return (SET_ERROR(EINVAL));
/* Verify pool version supports SA if SA_SPILL feature set */
if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
spa_version(dp->dp_spa) < SPA_VERSION_SA)
return (SET_ERROR(ENOTSUP));
/*
* The receiving code doesn't know how to translate a WRITE_EMBEDDED
* record to a plain WRITE record, so the pool must have the
* EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
* records. Same with WRITE_EMBEDDED records that use LZ4 compression.
*/
if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
return (SET_ERROR(ENOTSUP));
if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
return (SET_ERROR(ENOTSUP));
/*
* The receiving code doesn't know how to translate large blocks
* to smaller ones, so the pool must have the LARGE_BLOCKS
* feature enabled if the stream has LARGE_BLOCKS. Same with
* large dnodes.
*/
if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
return (SET_ERROR(ENOTSUP));
if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE))
return (SET_ERROR(ENOTSUP));
/* 6 extra bytes for /%recv */
char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
(void) snprintf(recvname, sizeof (recvname), "%s/%s",
tofs, recv_clone_name);
if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
dsflags |= DS_HOLD_FLAG_DECRYPT;
if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
/* %recv does not exist; continue in tofs */
error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
if (error != 0)
return (error);
}
/* check that ds is marked inconsistent */
if (!DS_IS_INCONSISTENT(ds)) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(EINVAL));
}
/* check that there is resuming data, and that the toguid matches */
if (!dsl_dataset_is_zapified(ds)) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(EINVAL));
}
uint64_t val;
error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
if (error != 0 || drrb->drr_toguid != val) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(EINVAL));
}
/*
* Check if the receive is still running. If so, it will be owned.
* Note that nothing else can own the dataset (e.g. after the receive
* fails) because it will be marked inconsistent.
*/
if (dsl_dataset_has_owner(ds)) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(EBUSY));
}
/* There should not be any snapshots of this fs yet. */
if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(EINVAL));
}
/*
* Note: resume point will be checked when we process the first WRITE
* record.
*/
/* check that the origin matches */
val = 0;
(void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
if (drrb->drr_fromguid != val) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(EINVAL));
}
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (0);
}
static void
dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
{
dmu_recv_begin_arg_t *drba = arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
const char *tofs = drba->drba_cookie->drc_tofs;
struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
dsl_dataset_t *ds;
objset_t *os;
ds_hold_flags_t dsflags = 0;
uint64_t dsobj;
/* 6 extra bytes for /%recv */
char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
(void) snprintf(recvname, sizeof (recvname), "%s/%s",
tofs, recv_clone_name);
if (featureflags & DMU_BACKUP_FEATURE_RAW) {
drba->drba_cookie->drc_raw = B_TRUE;
} else {
dsflags |= DS_HOLD_FLAG_DECRYPT;
}
if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
/* %recv does not exist; continue in tofs */
VERIFY0(dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds));
drba->drba_cookie->drc_newfs = B_TRUE;
}
/* clear the inconsistent flag so that we can own it */
ASSERT(DS_IS_INCONSISTENT(ds));
dmu_buf_will_dirty(ds->ds_dbuf, tx);
dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
dsobj = ds->ds_object;
dsl_dataset_rele_flags(ds, dsflags, FTAG);
VERIFY0(dsl_dataset_own_obj(dp, dsobj, dsflags, dmu_recv_tag, &ds));
VERIFY0(dmu_objset_from_ds(ds, &os));
dmu_buf_will_dirty(ds->ds_dbuf, tx);
dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT;
rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
drba->drba_cookie->drc_raw);
rrw_exit(&ds->ds_bp_rwlock, FTAG);
drba->drba_cookie->drc_ds = ds;
spa_history_log_internal_ds(ds, "resume receive", tx, "");
}
/*
* NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
* succeeds; otherwise we will leak the holds on the datasets.
*/
int
dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
boolean_t force, boolean_t resumable, nvlist_t *localprops,
nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc)
{
dmu_recv_begin_arg_t drba = { 0 };
bzero(drc, sizeof (dmu_recv_cookie_t));
drc->drc_drr_begin = drr_begin;
drc->drc_drrb = &drr_begin->drr_u.drr_begin;
drc->drc_tosnap = tosnap;
drc->drc_tofs = tofs;
drc->drc_force = force;
drc->drc_resumable = resumable;
drc->drc_cred = CRED();
drc->drc_clone = (origin != NULL);
if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
drc->drc_byteswap = B_TRUE;
(void) fletcher_4_incremental_byteswap(drr_begin,
sizeof (dmu_replay_record_t), &drc->drc_cksum);
byteswap_record(drr_begin);
} else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
(void) fletcher_4_incremental_native(drr_begin,
sizeof (dmu_replay_record_t), &drc->drc_cksum);
} else {
return (SET_ERROR(EINVAL));
}
drba.drba_origin = origin;
drba.drba_cookie = drc;
drba.drba_cred = CRED();
if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
DMU_BACKUP_FEATURE_RESUMING) {
return (dsl_sync_task(tofs,
dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
&drba, 5, ZFS_SPACE_CHECK_NORMAL));
} else {
int err;
/*
* For non-raw, non-incremental, non-resuming receives the
* user can specify encryption parameters on the command line
* with "zfs recv -o". For these receives we create a dcp and
* pass it to the sync task. Creating the dcp will implicitly
* remove the encryption params from the localprops nvlist,
* which avoids errors when trying to set these normally
* read-only properties. Any other kind of receive that
* attempts to set these properties will fail as a result.
*/
if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
DMU_BACKUP_FEATURE_RAW) == 0 &&
origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
localprops, hidden_args, &drba.drba_dcp);
if (err != 0)
return (err);
}
err = dsl_sync_task(tofs,
dmu_recv_begin_check, dmu_recv_begin_sync,
&drba, 5, ZFS_SPACE_CHECK_NORMAL);
dsl_crypto_params_free(drba.drba_dcp, !!err);
return (err);
}
}
struct receive_record_arg {
dmu_replay_record_t header;
void *payload; /* Pointer to a buffer containing the payload */
/*
* If the record is a write, pointer to the arc_buf_t containing the
* payload.
*/
arc_buf_t *arc_buf;
int payload_size;
uint64_t bytes_read; /* bytes read from stream when record created */
boolean_t eos_marker; /* Marks the end of the stream */
bqueue_node_t node;
};
struct receive_writer_arg {
objset_t *os;
boolean_t byteswap;
bqueue_t q;
/*
* These three args are used to signal to the main thread that we're
* done.
*/
kmutex_t mutex;
kcondvar_t cv;
boolean_t done;
int err;
/* A map from guid to dataset to help handle dedup'd streams. */
avl_tree_t *guid_to_ds_map;
boolean_t resumable;
boolean_t raw;
uint64_t last_object;
uint64_t last_offset;
uint64_t max_object; /* highest object ID referenced in stream */
uint64_t bytes_read; /* bytes read when current record created */
/* Encryption parameters for the last received DRR_OBJECT_RANGE */
boolean_t or_crypt_params_present;
uint64_t or_firstobj;
uint64_t or_numslots;
uint8_t or_salt[ZIO_DATA_SALT_LEN];
uint8_t or_iv[ZIO_DATA_IV_LEN];
uint8_t or_mac[ZIO_DATA_MAC_LEN];
boolean_t or_byteorder;
};
struct objlist {
list_t list; /* List of struct receive_objnode. */
/*
* Last object looked up. Used to assert that objects are being looked
* up in ascending order.
*/
uint64_t last_lookup;
};
struct receive_objnode {
list_node_t node;
uint64_t object;
};
struct receive_arg {
objset_t *os;
vnode_t *vp; /* The vnode to read the stream from */
uint64_t voff; /* The current offset in the stream */
uint64_t bytes_read;
/*
* A record that has had its payload read in, but hasn't yet been handed
* off to the worker thread.
*/
struct receive_record_arg *rrd;
/* A record that has had its header read in, but not its payload. */
struct receive_record_arg *next_rrd;
zio_cksum_t cksum;
zio_cksum_t prev_cksum;
int err;
boolean_t byteswap;
boolean_t raw;
uint64_t featureflags;
/* Sorted list of objects not to issue prefetches for. */
struct objlist ignore_objlist;
};
typedef struct guid_map_entry {
uint64_t guid;
boolean_t raw;
dsl_dataset_t *gme_ds;
avl_node_t avlnode;
} guid_map_entry_t;
static int
guid_compare(const void *arg1, const void *arg2)
{
const guid_map_entry_t *gmep1 = (const guid_map_entry_t *)arg1;
const guid_map_entry_t *gmep2 = (const guid_map_entry_t *)arg2;
return (AVL_CMP(gmep1->guid, gmep2->guid));
}
static void
free_guid_map_onexit(void *arg)
{
avl_tree_t *ca = arg;
void *cookie = NULL;
guid_map_entry_t *gmep;
while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) {
ds_hold_flags_t dsflags = DS_HOLD_FLAG_DECRYPT;
if (gmep->raw) {
gmep->gme_ds->ds_objset->os_raw_receive = B_FALSE;
dsflags &= ~DS_HOLD_FLAG_DECRYPT;
}
dsl_dataset_disown(gmep->gme_ds, dsflags, gmep);
kmem_free(gmep, sizeof (guid_map_entry_t));
}
avl_destroy(ca);
kmem_free(ca, sizeof (avl_tree_t));
}
static int
receive_read(struct receive_arg *ra, int len, void *buf)
{
int done = 0;
/*
* The code doesn't rely on this (lengths being multiples of 8). See
* comment in dump_bytes.
*/
ASSERT(len % 8 == 0 ||
(ra->featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
while (done < len) {
ssize_t resid;
ra->err = vn_rdwr(UIO_READ, ra->vp,
(char *)buf + done, len - done,
ra->voff, UIO_SYSSPACE, FAPPEND,
RLIM64_INFINITY, CRED(), &resid);
if (resid == len - done) {
/*
* Note: ECKSUM indicates that the receive
* was interrupted and can potentially be resumed.
*/
ra->err = SET_ERROR(ECKSUM);
}
ra->voff += len - done - resid;
done = len - resid;
if (ra->err != 0)
return (ra->err);
}
ra->bytes_read += len;
ASSERT3U(done, ==, len);
return (0);
}
noinline static void
byteswap_record(dmu_replay_record_t *drr)
{
#define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
#define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
drr->drr_type = BSWAP_32(drr->drr_type);
drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
switch (drr->drr_type) {
case DRR_BEGIN:
DO64(drr_begin.drr_magic);
DO64(drr_begin.drr_versioninfo);
DO64(drr_begin.drr_creation_time);
DO32(drr_begin.drr_type);
DO32(drr_begin.drr_flags);
DO64(drr_begin.drr_toguid);
DO64(drr_begin.drr_fromguid);
break;
case DRR_OBJECT:
DO64(drr_object.drr_object);
DO32(drr_object.drr_type);
DO32(drr_object.drr_bonustype);
DO32(drr_object.drr_blksz);
DO32(drr_object.drr_bonuslen);
DO32(drr_object.drr_raw_bonuslen);
DO64(drr_object.drr_toguid);
DO64(drr_object.drr_maxblkid);
break;
case DRR_FREEOBJECTS:
DO64(drr_freeobjects.drr_firstobj);
DO64(drr_freeobjects.drr_numobjs);
DO64(drr_freeobjects.drr_toguid);
break;
case DRR_WRITE:
DO64(drr_write.drr_object);
DO32(drr_write.drr_type);
DO64(drr_write.drr_offset);
DO64(drr_write.drr_logical_size);
DO64(drr_write.drr_toguid);
ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
DO64(drr_write.drr_key.ddk_prop);
DO64(drr_write.drr_compressed_size);
break;
case DRR_WRITE_BYREF:
DO64(drr_write_byref.drr_object);
DO64(drr_write_byref.drr_offset);
DO64(drr_write_byref.drr_length);
DO64(drr_write_byref.drr_toguid);
DO64(drr_write_byref.drr_refguid);
DO64(drr_write_byref.drr_refobject);
DO64(drr_write_byref.drr_refoffset);
ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref.
drr_key.ddk_cksum);
DO64(drr_write_byref.drr_key.ddk_prop);
break;
case DRR_WRITE_EMBEDDED:
DO64(drr_write_embedded.drr_object);
DO64(drr_write_embedded.drr_offset);
DO64(drr_write_embedded.drr_length);
DO64(drr_write_embedded.drr_toguid);
DO32(drr_write_embedded.drr_lsize);
DO32(drr_write_embedded.drr_psize);
break;
case DRR_FREE:
DO64(drr_free.drr_object);
DO64(drr_free.drr_offset);
DO64(drr_free.drr_length);
DO64(drr_free.drr_toguid);
break;
case DRR_SPILL:
DO64(drr_spill.drr_object);
DO64(drr_spill.drr_length);
DO64(drr_spill.drr_toguid);
DO64(drr_spill.drr_compressed_size);
DO32(drr_spill.drr_type);
break;
case DRR_OBJECT_RANGE:
DO64(drr_object_range.drr_firstobj);
DO64(drr_object_range.drr_numslots);
DO64(drr_object_range.drr_toguid);
break;
case DRR_END:
DO64(drr_end.drr_toguid);
ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
break;
default:
break;
}
if (drr->drr_type != DRR_BEGIN) {
ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
}
#undef DO64
#undef DO32
}
static inline uint8_t
deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
{
if (bonus_type == DMU_OT_SA) {
return (1);
} else {
return (1 +
((DN_OLD_MAX_BONUSLEN -
MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
}
}
static void
save_resume_state(struct receive_writer_arg *rwa,
uint64_t object, uint64_t offset, dmu_tx_t *tx)
{
int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
if (!rwa->resumable)
return;
/*
* We use ds_resume_bytes[] != 0 to indicate that we need to
* update this on disk, so it must not be 0.
*/
ASSERT(rwa->bytes_read != 0);
/*
* We only resume from write records, which have a valid
* (non-meta-dnode) object number.
*/
ASSERT(object != 0);
/*
* For resuming to work correctly, we must receive records in order,
* sorted by object,offset. This is checked by the callers, but
* assert it here for good measure.
*/
ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
ASSERT3U(rwa->bytes_read, >=,
rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
}
noinline static int
receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
void *data)
{
dmu_object_info_t doi;
dmu_tx_t *tx;
uint64_t object;
int err;
uint8_t dn_slots = drro->drr_dn_slots != 0 ?
drro->drr_dn_slots : DNODE_MIN_SLOTS;
if (drro->drr_type == DMU_OT_NONE ||
!DMU_OT_IS_VALID(drro->drr_type) ||
!DMU_OT_IS_VALID(drro->drr_bonustype) ||
drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
drro->drr_blksz < SPA_MINBLOCKSIZE ||
drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
drro->drr_bonuslen >
DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
dn_slots >
(spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
return (SET_ERROR(EINVAL));
}
if (rwa->raw) {
/*
* We should have received a DRR_OBJECT_RANGE record
* containing this block and stored it in rwa.
*/
if (drro->drr_object < rwa->or_firstobj ||
drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
drro->drr_raw_bonuslen < drro->drr_bonuslen ||
drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
drro->drr_nlevels > DN_MAX_LEVELS ||
drro->drr_nblkptr > DN_MAX_NBLKPTR ||
DN_SLOTS_TO_BONUSLEN(dn_slots) <
drro->drr_raw_bonuslen)
return (SET_ERROR(EINVAL));
} else {
if (drro->drr_flags != 0 || drro->drr_raw_bonuslen != 0 ||
drro->drr_indblkshift != 0 || drro->drr_nlevels != 0 ||
drro->drr_nblkptr != 0)
return (SET_ERROR(EINVAL));
}
err = dmu_object_info(rwa->os, drro->drr_object, &doi);
if (err != 0 && err != ENOENT && err != EEXIST)
return (SET_ERROR(EINVAL));
if (drro->drr_object > rwa->max_object)
rwa->max_object = drro->drr_object;
/*
* If we are losing blkptrs or changing the block size this must
* be a new file instance. We must clear out the previous file
* contents before we can change this type of metadata in the dnode.
* Raw receives will also check that the indirect structure of the
* dnode hasn't changed.
*/
if (err == 0) {
uint32_t indblksz = drro->drr_indblkshift ?
1ULL << drro->drr_indblkshift : 0;
int nblkptr = deduce_nblkptr(drro->drr_bonustype,
drro->drr_bonuslen);
object = drro->drr_object;
/* nblkptr will be bounded by the bonus size and type */
if (rwa->raw && nblkptr != drro->drr_nblkptr)
return (SET_ERROR(EINVAL));
if (drro->drr_blksz != doi.doi_data_block_size ||
nblkptr < doi.doi_nblkptr ||
dn_slots != doi.doi_dnodesize >> DNODE_SHIFT ||
(rwa->raw &&
(indblksz != doi.doi_metadata_block_size ||
drro->drr_nlevels < doi.doi_indirection))) {
err = dmu_free_long_range(rwa->os,
drro->drr_object, 0, DMU_OBJECT_END);
if (err != 0)
return (SET_ERROR(EINVAL));
}
/*
* The dmu does not currently support decreasing nlevels
* on an object. For non-raw sends, this does not matter
* and the new object can just use the previous one's nlevels.
* For raw sends, however, the structure of the received dnode
* (including nlevels) must match that of the send side.
* Therefore, instead of using dmu_object_reclaim(), we must
* free the object completely and call dmu_object_claim_dnsize()
* instead.
*/
if ((rwa->raw && drro->drr_nlevels < doi.doi_indirection) ||
dn_slots != doi.doi_dnodesize >> DNODE_SHIFT) {
err = dmu_free_long_object(rwa->os, drro->drr_object);
if (err != 0)
return (SET_ERROR(EINVAL));
txg_wait_synced(dmu_objset_pool(rwa->os), 0);
object = DMU_NEW_OBJECT;
}
} else if (err == EEXIST) {
/*
* The object requested is currently an interior slot of a
* multi-slot dnode. This will be resolved when the next txg
* is synced out, since the send stream will have told us
* to free this slot when we freed the associated dnode
* earlier in the stream.
*/
txg_wait_synced(dmu_objset_pool(rwa->os), 0);
object = drro->drr_object;
} else {
/* object is free and we are about to allocate a new one */
object = DMU_NEW_OBJECT;
}
/*
* If this is a multi-slot dnode there is a chance that this
* object will expand into a slot that is already used by
* another object from the previous snapshot. We must free
* these objects before we attempt to allocate the new dnode.
*/
if (dn_slots > 1) {
boolean_t need_sync = B_FALSE;
for (uint64_t slot = drro->drr_object + 1;
slot < drro->drr_object + dn_slots;
slot++) {
dmu_object_info_t slot_doi;
err = dmu_object_info(rwa->os, slot, &slot_doi);
if (err == ENOENT || err == EEXIST)
continue;
else if (err != 0)
return (err);
err = dmu_free_long_object(rwa->os, slot);
if (err != 0)
return (err);
need_sync = B_TRUE;
}
if (need_sync)
txg_wait_synced(dmu_objset_pool(rwa->os), 0);
}
tx = dmu_tx_create(rwa->os);
dmu_tx_hold_bonus(tx, object);
dmu_tx_hold_write(tx, object, 0, 0);
err = dmu_tx_assign(tx, TXG_WAIT);
if (err != 0) {
dmu_tx_abort(tx);
return (err);
}
if (object == DMU_NEW_OBJECT) {
/* currently free, want to be allocated */
err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
drro->drr_type, drro->drr_blksz,
drro->drr_bonustype, drro->drr_bonuslen,
dn_slots << DNODE_SHIFT, tx);
} else if (drro->drr_type != doi.doi_type ||
drro->drr_blksz != doi.doi_data_block_size ||
drro->drr_bonustype != doi.doi_bonus_type ||
drro->drr_bonuslen != doi.doi_bonus_size) {
/* currently allocated, but with different properties */
err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
drro->drr_type, drro->drr_blksz,
drro->drr_bonustype, drro->drr_bonuslen,
dn_slots << DNODE_SHIFT, tx);
}
if (err != 0) {
dmu_tx_commit(tx);
return (SET_ERROR(EINVAL));
}
if (rwa->or_crypt_params_present) {
/*
* Set the crypt params for the buffer associated with this
* range of dnodes. This causes the blkptr_t to have the
* same crypt params (byteorder, salt, iv, mac) as on the
* sending side.
*
* Since we are committing this tx now, it is possible for
* the dnode block to end up on-disk with the incorrect MAC,
* if subsequent objects in this block are received in a
* different txg. However, since the dataset is marked as
* inconsistent, no code paths will do a non-raw read (or
* decrypt the block / verify the MAC). The receive code and
* scrub code can safely do raw reads and verify the
* checksum. They don't need to verify the MAC.
*/
dmu_buf_t *db = NULL;
uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
if (err != 0) {
dmu_tx_commit(tx);
return (SET_ERROR(EINVAL));
}
dmu_buf_set_crypt_params(db, rwa->or_byteorder,
rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
dmu_buf_rele(db, FTAG);
rwa->or_crypt_params_present = B_FALSE;
}
dmu_object_set_checksum(rwa->os, drro->drr_object,
drro->drr_checksumtype, tx);
dmu_object_set_compress(rwa->os, drro->drr_object,
drro->drr_compress, tx);
/* handle more restrictive dnode structuring for raw recvs */
if (rwa->raw) {
/*
* Set the indirect block shift and nlevels. This will not fail
* because we ensured all of the blocks were free earlier if
* this is a new object.
*/
VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
drro->drr_blksz, drro->drr_indblkshift, tx));
VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
drro->drr_nlevels, tx));
VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
drro->drr_maxblkid, tx));
}
if (data != NULL) {
dmu_buf_t *db;
dnode_t *dn;
uint32_t flags = DMU_READ_NO_PREFETCH;
if (rwa->raw)
flags |= DMU_READ_NO_DECRYPT;
VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn));
VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags));
dmu_buf_will_dirty(db, tx);
ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
bcopy(data, db->db_data, DRR_OBJECT_PAYLOAD_SIZE(drro));
/*
* Raw bonus buffers have their byteorder determined by the
* DRR_OBJECT_RANGE record.
*/
if (rwa->byteswap && !rwa->raw) {
dmu_object_byteswap_t byteswap =
DMU_OT_BYTESWAP(drro->drr_bonustype);
dmu_ot_byteswap[byteswap].ob_func(db->db_data,
DRR_OBJECT_PAYLOAD_SIZE(drro));
}
dmu_buf_rele(db, FTAG);
dnode_rele(dn, FTAG);
}
dmu_tx_commit(tx);
return (0);
}
/* ARGSUSED */
noinline static int
receive_freeobjects(struct receive_writer_arg *rwa,
struct drr_freeobjects *drrfo)
{
uint64_t obj;
int next_err = 0;
if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
return (SET_ERROR(EINVAL));
for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0;
next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
dmu_object_info_t doi;
int err;
err = dmu_object_info(rwa->os, obj, &doi);
if (err == ENOENT)
continue;
else if (err != 0)
return (err);
err = dmu_free_long_object(rwa->os, obj);
if (err != 0)
return (err);
if (obj > rwa->max_object)
rwa->max_object = obj;
}
if (next_err != ESRCH)
return (next_err);
return (0);
}
noinline static int
receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw,
arc_buf_t *abuf)
{
int err;
dmu_tx_t *tx;
dnode_t *dn;
if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
!DMU_OT_IS_VALID(drrw->drr_type))
return (SET_ERROR(EINVAL));
/*
* For resuming to work, records must be in increasing order
* by (object, offset).
*/
if (drrw->drr_object < rwa->last_object ||
(drrw->drr_object == rwa->last_object &&
drrw->drr_offset < rwa->last_offset)) {
return (SET_ERROR(EINVAL));
}
rwa->last_object = drrw->drr_object;
rwa->last_offset = drrw->drr_offset;
if (rwa->last_object > rwa->max_object)
rwa->max_object = rwa->last_object;
if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0)
return (SET_ERROR(EINVAL));
tx = dmu_tx_create(rwa->os);
dmu_tx_hold_write(tx, drrw->drr_object,
drrw->drr_offset, drrw->drr_logical_size);
err = dmu_tx_assign(tx, TXG_WAIT);
if (err != 0) {
dmu_tx_abort(tx);
return (err);
}
if (rwa->byteswap && !arc_is_encrypted(abuf) &&
arc_get_compression(abuf) == ZIO_COMPRESS_OFF) {
dmu_object_byteswap_t byteswap =
DMU_OT_BYTESWAP(drrw->drr_type);
dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
DRR_WRITE_PAYLOAD_SIZE(drrw));
}
VERIFY0(dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn));
err = dmu_assign_arcbuf_by_dnode(dn, drrw->drr_offset, abuf, tx);
if (err != 0) {
dnode_rele(dn, FTAG);
dmu_tx_commit(tx);
return (err);
}
dnode_rele(dn, FTAG);
/*
* Note: If the receive fails, we want the resume stream to start
* with the same record that we last successfully received (as opposed
* to the next record), so that we can verify that we are
* resuming from the correct location.
*/
save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
dmu_tx_commit(tx);
return (0);
}
/*
* Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed
* streams to refer to a copy of the data that is already on the
* system because it came in earlier in the stream. This function
* finds the earlier copy of the data, and uses that copy instead of
* data from the stream to fulfill this write.
*/
static int
receive_write_byref(struct receive_writer_arg *rwa,
struct drr_write_byref *drrwbr)
{
dmu_tx_t *tx;
int err;
guid_map_entry_t gmesrch;
guid_map_entry_t *gmep;
avl_index_t where;
objset_t *ref_os = NULL;
int flags = DMU_READ_PREFETCH;
dmu_buf_t *dbp;
if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset)
return (SET_ERROR(EINVAL));
/*
* If the GUID of the referenced dataset is different from the
* GUID of the target dataset, find the referenced dataset.
*/
if (drrwbr->drr_toguid != drrwbr->drr_refguid) {
gmesrch.guid = drrwbr->drr_refguid;
if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch,
&where)) == NULL) {
return (SET_ERROR(EINVAL));
}
if (dmu_objset_from_ds(gmep->gme_ds, &ref_os))
return (SET_ERROR(EINVAL));
} else {
ref_os = rwa->os;
}
if (drrwbr->drr_object > rwa->max_object)
rwa->max_object = drrwbr->drr_object;
if (rwa->raw)
flags |= DMU_READ_NO_DECRYPT;
/* may return either a regular db or an encrypted one */
err = dmu_buf_hold(ref_os, drrwbr->drr_refobject,
drrwbr->drr_refoffset, FTAG, &dbp, flags);
if (err != 0)
return (err);
tx = dmu_tx_create(rwa->os);
dmu_tx_hold_write(tx, drrwbr->drr_object,
drrwbr->drr_offset, drrwbr->drr_length);
err = dmu_tx_assign(tx, TXG_WAIT);
if (err != 0) {
dmu_tx_abort(tx);
return (err);
}
if (rwa->raw) {
dmu_copy_from_buf(rwa->os, drrwbr->drr_object,
drrwbr->drr_offset, dbp, tx);
} else {
dmu_write(rwa->os, drrwbr->drr_object,
drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx);
}
dmu_buf_rele(dbp, FTAG);
/* See comment in restore_write. */
save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx);
dmu_tx_commit(tx);
return (0);
}
static int
receive_write_embedded(struct receive_writer_arg *rwa,
struct drr_write_embedded *drrwe, void *data)
{
dmu_tx_t *tx;
int err;
if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
return (SET_ERROR(EINVAL));
if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
return (SET_ERROR(EINVAL));
if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
return (SET_ERROR(EINVAL));
if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
return (SET_ERROR(EINVAL));
if (rwa->raw)
return (SET_ERROR(EINVAL));
if (drrwe->drr_object > rwa->max_object)
rwa->max_object = drrwe->drr_object;
tx = dmu_tx_create(rwa->os);
dmu_tx_hold_write(tx, drrwe->drr_object,
drrwe->drr_offset, drrwe->drr_length);
err = dmu_tx_assign(tx, TXG_WAIT);
if (err != 0) {
dmu_tx_abort(tx);
return (err);
}
dmu_write_embedded(rwa->os, drrwe->drr_object,
drrwe->drr_offset, data, drrwe->drr_etype,
drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
/* See comment in restore_write. */
save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
dmu_tx_commit(tx);
return (0);
}
static int
receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
arc_buf_t *abuf)
{
dmu_tx_t *tx;
dmu_buf_t *db, *db_spill;
int err;
uint32_t flags = 0;
if (drrs->drr_length < SPA_MINBLOCKSIZE ||
drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
return (SET_ERROR(EINVAL));
if (rwa->raw) {
if (!DMU_OT_IS_VALID(drrs->drr_type) ||
drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
drrs->drr_compressed_size == 0)
return (SET_ERROR(EINVAL));
flags |= DMU_READ_NO_DECRYPT;
}
if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
return (SET_ERROR(EINVAL));
if (drrs->drr_object > rwa->max_object)
rwa->max_object = drrs->drr_object;
VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
&db_spill)) != 0) {
dmu_buf_rele(db, FTAG);
return (err);
}
tx = dmu_tx_create(rwa->os);
dmu_tx_hold_spill(tx, db->db_object);
err = dmu_tx_assign(tx, TXG_WAIT);
if (err != 0) {
dmu_buf_rele(db, FTAG);
dmu_buf_rele(db_spill, FTAG);
dmu_tx_abort(tx);
return (err);
}
if (db_spill->db_size < drrs->drr_length)
VERIFY(0 == dbuf_spill_set_blksz(db_spill,
drrs->drr_length, tx));
if (rwa->byteswap && !arc_is_encrypted(abuf) &&
arc_get_compression(abuf) == ZIO_COMPRESS_OFF) {
dmu_object_byteswap_t byteswap =
DMU_OT_BYTESWAP(drrs->drr_type);
dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
DRR_SPILL_PAYLOAD_SIZE(drrs));
}
dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
dmu_buf_rele(db, FTAG);
dmu_buf_rele(db_spill, FTAG);
dmu_tx_commit(tx);
return (0);
}
/* ARGSUSED */
noinline static int
receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
{
int err;
if (drrf->drr_length != DMU_OBJECT_END &&
drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
return (SET_ERROR(EINVAL));
if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
return (SET_ERROR(EINVAL));
if (drrf->drr_object > rwa->max_object)
rwa->max_object = drrf->drr_object;
err = dmu_free_long_range(rwa->os, drrf->drr_object,
drrf->drr_offset, drrf->drr_length);
return (err);
}
static int
receive_object_range(struct receive_writer_arg *rwa,
struct drr_object_range *drror)
{
/*
* By default, we assume this block is in our native format
* (ZFS_HOST_BYTEORDER). We then take into account whether
* the send stream is byteswapped (rwa->byteswap). Finally,
* we need to byteswap again if this particular block was
* in non-native format on the send side.
*/
boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
!!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
/*
* Since dnode block sizes are constant, we should not need to worry
* about making sure that the dnode block size is the same on the
* sending and receiving sides for the time being. For non-raw sends,
* this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
* record at all). Raw sends require this record type because the
* encryption parameters are used to protect an entire block of bonus
* buffers. If the size of dnode blocks ever becomes variable,
* handling will need to be added to ensure that dnode block sizes
* match on the sending and receiving side.
*/
if (drror->drr_numslots != DNODES_PER_BLOCK ||
P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
!rwa->raw)
return (SET_ERROR(EINVAL));
if (drror->drr_firstobj > rwa->max_object)
rwa->max_object = drror->drr_firstobj;
/*
* The DRR_OBJECT_RANGE handling must be deferred to receive_object()
* so that the block of dnodes is not written out when it's empty,
* and converted to a HOLE BP.
*/
rwa->or_crypt_params_present = B_TRUE;
rwa->or_firstobj = drror->drr_firstobj;
rwa->or_numslots = drror->drr_numslots;
bcopy(drror->drr_salt, rwa->or_salt, ZIO_DATA_SALT_LEN);
bcopy(drror->drr_iv, rwa->or_iv, ZIO_DATA_IV_LEN);
bcopy(drror->drr_mac, rwa->or_mac, ZIO_DATA_MAC_LEN);
rwa->or_byteorder = byteorder;
return (0);
}
/* used to destroy the drc_ds on error */
static void
dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
{
dsl_dataset_t *ds = drc->drc_ds;
ds_hold_flags_t dsflags = (drc->drc_raw) ? 0 : DS_HOLD_FLAG_DECRYPT;
/*
* Wait for the txg sync before cleaning up the receive. For
* resumable receives, this ensures that our resume state has
* been written out to disk. For raw receives, this ensures
* that the user accounting code will not attempt to do anything
* after we stopped receiving the dataset.
*/
txg_wait_synced(ds->ds_dir->dd_pool, 0);
ds->ds_objset->os_raw_receive = B_FALSE;
rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
if (drc->drc_resumable && !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
rrw_exit(&ds->ds_bp_rwlock, FTAG);
dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
} else {
char name[ZFS_MAX_DATASET_NAME_LEN];
rrw_exit(&ds->ds_bp_rwlock, FTAG);
dsl_dataset_name(ds, name);
dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
(void) dsl_destroy_head(name);
}
}
static void
receive_cksum(struct receive_arg *ra, int len, void *buf)
{
if (ra->byteswap) {
(void) fletcher_4_incremental_byteswap(buf, len, &ra->cksum);
} else {
(void) fletcher_4_incremental_native(buf, len, &ra->cksum);
}
}
/*
* Read the payload into a buffer of size len, and update the current record's
* payload field.
* Allocate ra->next_rrd and read the next record's header into
* ra->next_rrd->header.
* Verify checksum of payload and next record.
*/
static int
receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf)
{
int err;
zio_cksum_t cksum_orig;
zio_cksum_t *cksump;
if (len != 0) {
ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
err = receive_read(ra, len, buf);
if (err != 0)
return (err);
receive_cksum(ra, len, buf);
/* note: rrd is NULL when reading the begin record's payload */
if (ra->rrd != NULL) {
ra->rrd->payload = buf;
ra->rrd->payload_size = len;
ra->rrd->bytes_read = ra->bytes_read;
}
} else {
ASSERT3P(buf, ==, NULL);
}
ra->prev_cksum = ra->cksum;
ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP);
err = receive_read(ra, sizeof (ra->next_rrd->header),
&ra->next_rrd->header);
ra->next_rrd->bytes_read = ra->bytes_read;
if (err != 0) {
kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
ra->next_rrd = NULL;
return (err);
}
if (ra->next_rrd->header.drr_type == DRR_BEGIN) {
kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
ra->next_rrd = NULL;
return (SET_ERROR(EINVAL));
}
/*
* Note: checksum is of everything up to but not including the
* checksum itself.
*/
ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
receive_cksum(ra,
offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
&ra->next_rrd->header);
cksum_orig = ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
cksump = &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
if (ra->byteswap)
byteswap_record(&ra->next_rrd->header);
if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
!ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) {
kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
ra->next_rrd = NULL;
return (SET_ERROR(ECKSUM));
}
receive_cksum(ra, sizeof (cksum_orig), &cksum_orig);
return (0);
}
static void
objlist_create(struct objlist *list)
{
list_create(&list->list, sizeof (struct receive_objnode),
offsetof(struct receive_objnode, node));
list->last_lookup = 0;
}
static void
objlist_destroy(struct objlist *list)
{
for (struct receive_objnode *n = list_remove_head(&list->list);
n != NULL; n = list_remove_head(&list->list)) {
kmem_free(n, sizeof (*n));
}
list_destroy(&list->list);
}
/*
* This function looks through the objlist to see if the specified object number
* is contained in the objlist. In the process, it will remove all object
* numbers in the list that are smaller than the specified object number. Thus,
* any lookup of an object number smaller than a previously looked up object
* number will always return false; therefore, all lookups should be done in
* ascending order.
*/
static boolean_t
objlist_exists(struct objlist *list, uint64_t object)
{
struct receive_objnode *node = list_head(&list->list);
ASSERT3U(object, >=, list->last_lookup);
list->last_lookup = object;
while (node != NULL && node->object < object) {
VERIFY3P(node, ==, list_remove_head(&list->list));
kmem_free(node, sizeof (*node));
node = list_head(&list->list);
}
return (node != NULL && node->object == object);
}
/*
* The objlist is a list of object numbers stored in ascending order. However,
* the insertion of new object numbers does not seek out the correct location to
* store a new object number; instead, it appends it to the list for simplicity.
* Thus, any users must take care to only insert new object numbers in ascending
* order.
*/
static void
objlist_insert(struct objlist *list, uint64_t object)
{
struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP);
node->object = object;
#ifdef ZFS_DEBUG
{
struct receive_objnode *last_object = list_tail(&list->list);
uint64_t last_objnum = (last_object != NULL ? last_object->object : 0);
ASSERT3U(node->object, >, last_objnum);
}
#endif
list_insert_tail(&list->list, node);
}
/*
* Issue the prefetch reads for any necessary indirect blocks.
*
* We use the object ignore list to tell us whether or not to issue prefetches
* for a given object. We do this for both correctness (in case the blocksize
* of an object has changed) and performance (if the object doesn't exist, don't
* needlessly try to issue prefetches). We also trim the list as we go through
* the stream to prevent it from growing to an unbounded size.
*
* The object numbers within will always be in sorted order, and any write
* records we see will also be in sorted order, but they're not sorted with
* respect to each other (i.e. we can get several object records before
* receiving each object's write records). As a result, once we've reached a
* given object number, we can safely remove any reference to lower object
* numbers in the ignore list. In practice, we receive up to 32 object records
* before receiving write records, so the list can have up to 32 nodes in it.
*/
/* ARGSUSED */
static void
receive_read_prefetch(struct receive_arg *ra,
uint64_t object, uint64_t offset, uint64_t length)
{
if (!objlist_exists(&ra->ignore_objlist, object)) {
dmu_prefetch(ra->os, object, 1, offset, length,
ZIO_PRIORITY_SYNC_READ);
}
}
/*
* Read records off the stream, issuing any necessary prefetches.
*/
static int
receive_read_record(struct receive_arg *ra)
{
int err;
switch (ra->rrd->header.drr_type) {
case DRR_OBJECT:
{
struct drr_object *drro = &ra->rrd->header.drr_u.drr_object;
uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
void *buf = NULL;
dmu_object_info_t doi;
if (size != 0)
buf = kmem_zalloc(size, KM_SLEEP);
err = receive_read_payload_and_next_header(ra, size, buf);
if (err != 0) {
kmem_free(buf, size);
return (err);
}
err = dmu_object_info(ra->os, drro->drr_object, &doi);
/*
* See receive_read_prefetch for an explanation why we're
* storing this object in the ignore_obj_list.
*/
if (err == ENOENT || err == EEXIST ||
(err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
objlist_insert(&ra->ignore_objlist, drro->drr_object);
err = 0;
}
return (err);
}
case DRR_FREEOBJECTS:
{
err = receive_read_payload_and_next_header(ra, 0, NULL);
return (err);
}
case DRR_WRITE:
{
struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write;
arc_buf_t *abuf;
boolean_t is_meta = DMU_OT_IS_METADATA(drrw->drr_type);
if (ra->raw) {
boolean_t byteorder = ZFS_HOST_BYTEORDER ^
!!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
ra->byteswap;
abuf = arc_loan_raw_buf(dmu_objset_spa(ra->os),
drrw->drr_object, byteorder, drrw->drr_salt,
drrw->drr_iv, drrw->drr_mac, drrw->drr_type,
drrw->drr_compressed_size, drrw->drr_logical_size,
drrw->drr_compressiontype);
} else if (DRR_WRITE_COMPRESSED(drrw)) {
ASSERT3U(drrw->drr_compressed_size, >, 0);
ASSERT3U(drrw->drr_logical_size, >=,
drrw->drr_compressed_size);
ASSERT(!is_meta);
abuf = arc_loan_compressed_buf(
dmu_objset_spa(ra->os),
drrw->drr_compressed_size, drrw->drr_logical_size,
drrw->drr_compressiontype);
} else {
abuf = arc_loan_buf(dmu_objset_spa(ra->os),
is_meta, drrw->drr_logical_size);
}
err = receive_read_payload_and_next_header(ra,
DRR_WRITE_PAYLOAD_SIZE(drrw), abuf->b_data);
if (err != 0) {
dmu_return_arcbuf(abuf);
return (err);
}
ra->rrd->arc_buf = abuf;
receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset,
drrw->drr_logical_size);
return (err);
}
case DRR_WRITE_BYREF:
{
struct drr_write_byref *drrwb =
&ra->rrd->header.drr_u.drr_write_byref;
err = receive_read_payload_and_next_header(ra, 0, NULL);
receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset,
drrwb->drr_length);
return (err);
}
case DRR_WRITE_EMBEDDED:
{
struct drr_write_embedded *drrwe =
&ra->rrd->header.drr_u.drr_write_embedded;
uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
void *buf = kmem_zalloc(size, KM_SLEEP);
err = receive_read_payload_and_next_header(ra, size, buf);
if (err != 0) {
kmem_free(buf, size);
return (err);
}
receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset,
drrwe->drr_length);
return (err);
}
case DRR_FREE:
{
/*
* It might be beneficial to prefetch indirect blocks here, but
* we don't really have the data to decide for sure.
*/
err = receive_read_payload_and_next_header(ra, 0, NULL);
return (err);
}
case DRR_END:
{
struct drr_end *drre = &ra->rrd->header.drr_u.drr_end;
if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum))
return (SET_ERROR(ECKSUM));
return (0);
}
case DRR_SPILL:
{
struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill;
arc_buf_t *abuf;
int len = DRR_SPILL_PAYLOAD_SIZE(drrs);
/* DRR_SPILL records are either raw or uncompressed */
if (ra->raw) {
boolean_t byteorder = ZFS_HOST_BYTEORDER ^
!!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
ra->byteswap;
abuf = arc_loan_raw_buf(dmu_objset_spa(ra->os),
dmu_objset_id(ra->os), byteorder, drrs->drr_salt,
drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
drrs->drr_compressed_size, drrs->drr_length,
drrs->drr_compressiontype);
} else {
abuf = arc_loan_buf(dmu_objset_spa(ra->os),
DMU_OT_IS_METADATA(drrs->drr_type),
drrs->drr_length);
}
err = receive_read_payload_and_next_header(ra, len,
abuf->b_data);
if (err != 0) {
dmu_return_arcbuf(abuf);
return (err);
}
ra->rrd->arc_buf = abuf;
return (err);
}
case DRR_OBJECT_RANGE:
{
err = receive_read_payload_and_next_header(ra, 0, NULL);
return (err);
}
default:
return (SET_ERROR(EINVAL));
}
}
static void
dprintf_drr(struct receive_record_arg *rrd, int err)
{
#ifdef ZFS_DEBUG
switch (rrd->header.drr_type) {
case DRR_OBJECT:
{
struct drr_object *drro = &rrd->header.drr_u.drr_object;
dprintf("drr_type = OBJECT obj = %llu type = %u "
"bonustype = %u blksz = %u bonuslen = %u cksumtype = %u "
"compress = %u dn_slots = %u err = %d\n",
drro->drr_object, drro->drr_type, drro->drr_bonustype,
drro->drr_blksz, drro->drr_bonuslen,
drro->drr_checksumtype, drro->drr_compress,
drro->drr_dn_slots, err);
break;
}
case DRR_FREEOBJECTS:
{
struct drr_freeobjects *drrfo =
&rrd->header.drr_u.drr_freeobjects;
dprintf("drr_type = FREEOBJECTS firstobj = %llu "
"numobjs = %llu err = %d\n",
drrfo->drr_firstobj, drrfo->drr_numobjs, err);
break;
}
case DRR_WRITE:
{
struct drr_write *drrw = &rrd->header.drr_u.drr_write;
dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu "
"lsize = %llu cksumtype = %u cksumflags = %u "
"compress = %u psize = %llu err = %d\n",
drrw->drr_object, drrw->drr_type, drrw->drr_offset,
drrw->drr_logical_size, drrw->drr_checksumtype,
drrw->drr_flags, drrw->drr_compressiontype,
drrw->drr_compressed_size, err);
break;
}
case DRR_WRITE_BYREF:
{
struct drr_write_byref *drrwbr =
&rrd->header.drr_u.drr_write_byref;
dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu "
"length = %llu toguid = %llx refguid = %llx "
"refobject = %llu refoffset = %llu cksumtype = %u "
"cksumflags = %u err = %d\n",
drrwbr->drr_object, drrwbr->drr_offset,
drrwbr->drr_length, drrwbr->drr_toguid,
drrwbr->drr_refguid, drrwbr->drr_refobject,
drrwbr->drr_refoffset, drrwbr->drr_checksumtype,
drrwbr->drr_flags, err);
break;
}
case DRR_WRITE_EMBEDDED:
{
struct drr_write_embedded *drrwe =
&rrd->header.drr_u.drr_write_embedded;
dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu "
"length = %llu compress = %u etype = %u lsize = %u "
"psize = %u err = %d\n",
drrwe->drr_object, drrwe->drr_offset, drrwe->drr_length,
drrwe->drr_compression, drrwe->drr_etype,
drrwe->drr_lsize, drrwe->drr_psize, err);
break;
}
case DRR_FREE:
{
struct drr_free *drrf = &rrd->header.drr_u.drr_free;
dprintf("drr_type = FREE obj = %llu offset = %llu "
"length = %lld err = %d\n",
drrf->drr_object, drrf->drr_offset, drrf->drr_length,
err);
break;
}
case DRR_SPILL:
{
struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
dprintf("drr_type = SPILL obj = %llu length = %llu "
"err = %d\n", drrs->drr_object, drrs->drr_length, err);
break;
}
default:
return;
}
#endif
}
/*
* Commit the records to the pool.
*/
static int
receive_process_record(struct receive_writer_arg *rwa,
struct receive_record_arg *rrd)
{
int err;
/* Processing in order, therefore bytes_read should be increasing. */
ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
rwa->bytes_read = rrd->bytes_read;
switch (rrd->header.drr_type) {
case DRR_OBJECT:
{
struct drr_object *drro = &rrd->header.drr_u.drr_object;
err = receive_object(rwa, drro, rrd->payload);
kmem_free(rrd->payload, rrd->payload_size);
rrd->payload = NULL;
break;
}
case DRR_FREEOBJECTS:
{
struct drr_freeobjects *drrfo =
&rrd->header.drr_u.drr_freeobjects;
err = receive_freeobjects(rwa, drrfo);
break;
}
case DRR_WRITE:
{
struct drr_write *drrw = &rrd->header.drr_u.drr_write;
err = receive_write(rwa, drrw, rrd->arc_buf);
/* if receive_write() is successful, it consumes the arc_buf */
if (err != 0)
dmu_return_arcbuf(rrd->arc_buf);
rrd->arc_buf = NULL;
rrd->payload = NULL;
break;
}
case DRR_WRITE_BYREF:
{
struct drr_write_byref *drrwbr =
&rrd->header.drr_u.drr_write_byref;
err = receive_write_byref(rwa, drrwbr);
break;
}
case DRR_WRITE_EMBEDDED:
{
struct drr_write_embedded *drrwe =
&rrd->header.drr_u.drr_write_embedded;
err = receive_write_embedded(rwa, drrwe, rrd->payload);
kmem_free(rrd->payload, rrd->payload_size);
rrd->payload = NULL;
break;
}
case DRR_FREE:
{
struct drr_free *drrf = &rrd->header.drr_u.drr_free;
err = receive_free(rwa, drrf);
break;
}
case DRR_SPILL:
{
struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
err = receive_spill(rwa, drrs, rrd->arc_buf);
/* if receive_spill() is successful, it consumes the arc_buf */
if (err != 0)
dmu_return_arcbuf(rrd->arc_buf);
rrd->arc_buf = NULL;
rrd->payload = NULL;
break;
}
case DRR_OBJECT_RANGE:
{
struct drr_object_range *drror =
&rrd->header.drr_u.drr_object_range;
return (receive_object_range(rwa, drror));
}
default:
return (SET_ERROR(EINVAL));
}
if (err != 0)
dprintf_drr(rrd, err);
return (err);
}
/*
* dmu_recv_stream's worker thread; pull records off the queue, and then call
* receive_process_record When we're done, signal the main thread and exit.
*/
static void
receive_writer_thread(void *arg)
{
struct receive_writer_arg *rwa = arg;
struct receive_record_arg *rrd;
fstrans_cookie_t cookie = spl_fstrans_mark();
for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
rrd = bqueue_dequeue(&rwa->q)) {
/*
* If there's an error, the main thread will stop putting things
* on the queue, but we need to clear everything in it before we
* can exit.
*/
if (rwa->err == 0) {
rwa->err = receive_process_record(rwa, rrd);
} else if (rrd->arc_buf != NULL) {
dmu_return_arcbuf(rrd->arc_buf);
rrd->arc_buf = NULL;
rrd->payload = NULL;
} else if (rrd->payload != NULL) {
kmem_free(rrd->payload, rrd->payload_size);
rrd->payload = NULL;
}
kmem_free(rrd, sizeof (*rrd));
}
kmem_free(rrd, sizeof (*rrd));
mutex_enter(&rwa->mutex);
rwa->done = B_TRUE;
cv_signal(&rwa->cv);
mutex_exit(&rwa->mutex);
spl_fstrans_unmark(cookie);
thread_exit();
}
static int
resume_check(struct receive_arg *ra, nvlist_t *begin_nvl)
{
uint64_t val;
objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset;
uint64_t dsobj = dmu_objset_id(ra->os);
uint64_t resume_obj, resume_off;
if (nvlist_lookup_uint64(begin_nvl,
"resume_object", &resume_obj) != 0 ||
nvlist_lookup_uint64(begin_nvl,
"resume_offset", &resume_off) != 0) {
return (SET_ERROR(EINVAL));
}
VERIFY0(zap_lookup(mos, dsobj,
DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
if (resume_obj != val)
return (SET_ERROR(EINVAL));
VERIFY0(zap_lookup(mos, dsobj,
DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
if (resume_off != val)
return (SET_ERROR(EINVAL));
return (0);
}
/*
* Read in the stream's records, one by one, and apply them to the pool. There
* are two threads involved; the thread that calls this function will spin up a
* worker thread, read the records off the stream one by one, and issue
* prefetches for any necessary indirect blocks. It will then push the records
* onto an internal blocking queue. The worker thread will pull the records off
* the queue, and actually write the data into the DMU. This way, the worker
* thread doesn't have to wait for reads to complete, since everything it needs
* (the indirect blocks) will be prefetched.
*
* NB: callers *must* call dmu_recv_end() if this succeeds.
*/
int
dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp,
int cleanup_fd, uint64_t *action_handlep)
{
int err = 0;
struct receive_arg *ra;
struct receive_writer_arg *rwa;
int featureflags;
uint32_t payloadlen;
void *payload;
nvlist_t *begin_nvl = NULL;
ra = kmem_zalloc(sizeof (*ra), KM_SLEEP);
rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
ra->byteswap = drc->drc_byteswap;
ra->raw = drc->drc_raw;
ra->cksum = drc->drc_cksum;
ra->vp = vp;
ra->voff = *voffp;
if (dsl_dataset_is_zapified(drc->drc_ds)) {
(void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
sizeof (ra->bytes_read), 1, &ra->bytes_read);
}
objlist_create(&ra->ignore_objlist);
/* these were verified in dmu_recv_begin */
ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
DMU_SUBSTREAM);
ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
/*
* Open the objset we are modifying.
*/
VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra->os));
ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
ra->featureflags = featureflags;
ASSERT0(ra->os->os_encrypted &&
(featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
/* if this stream is dedup'ed, set up the avl tree for guid mapping */
if (featureflags & DMU_BACKUP_FEATURE_DEDUP) {
minor_t minor;
if (cleanup_fd == -1) {
err = SET_ERROR(EBADF);
goto out;
}
err = zfs_onexit_fd_hold(cleanup_fd, &minor);
if (err != 0) {
cleanup_fd = -1;
goto out;
}
if (*action_handlep == 0) {
rwa->guid_to_ds_map =
kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
avl_create(rwa->guid_to_ds_map, guid_compare,
sizeof (guid_map_entry_t),
offsetof(guid_map_entry_t, avlnode));
err = zfs_onexit_add_cb(minor,
free_guid_map_onexit, rwa->guid_to_ds_map,
action_handlep);
if (err != 0)
goto out;
} else {
err = zfs_onexit_cb_data(minor, *action_handlep,
(void **)&rwa->guid_to_ds_map);
if (err != 0)
goto out;
}
drc->drc_guid_to_ds_map = rwa->guid_to_ds_map;
}
payloadlen = drc->drc_drr_begin->drr_payloadlen;
payload = NULL;
if (payloadlen != 0)
payload = kmem_alloc(payloadlen, KM_SLEEP);
err = receive_read_payload_and_next_header(ra, payloadlen, payload);
if (err != 0) {
if (payloadlen != 0)
kmem_free(payload, payloadlen);
goto out;
}
if (payloadlen != 0) {
err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP);
kmem_free(payload, payloadlen);
if (err != 0)
goto out;
}
/* handle DSL encryption key payload */
if (featureflags & DMU_BACKUP_FEATURE_RAW) {
nvlist_t *keynvl = NULL;
ASSERT(ra->os->os_encrypted);
ASSERT(drc->drc_raw);
err = nvlist_lookup_nvlist(begin_nvl, "crypt_keydata", &keynvl);
if (err != 0)
goto out;
/*
* If this is a new dataset we set the key immediately.
* Otherwise we don't want to change the key until we
* are sure the rest of the receive succeeded so we stash
* the keynvl away until then.
*/
err = dsl_crypto_recv_raw(spa_name(ra->os->os_spa),
drc->drc_ds->ds_object, drc->drc_drrb->drr_type,
keynvl, drc->drc_newfs);
if (err != 0)
goto out;
if (!drc->drc_newfs)
drc->drc_keynvl = fnvlist_dup(keynvl);
}
if (featureflags & DMU_BACKUP_FEATURE_RESUMING) {
err = resume_check(ra, begin_nvl);
if (err != 0)
goto out;
}
(void) bqueue_init(&rwa->q,
MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
offsetof(struct receive_record_arg, node));
cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
rwa->os = ra->os;
rwa->byteswap = drc->drc_byteswap;
rwa->resumable = drc->drc_resumable;
rwa->raw = drc->drc_raw;
rwa->os->os_raw_receive = drc->drc_raw;
(void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
TS_RUN, minclsyspri);
/*
* We're reading rwa->err without locks, which is safe since we are the
* only reader, and the worker thread is the only writer. It's ok if we
* miss a write for an iteration or two of the loop, since the writer
* thread will keep freeing records we send it until we send it an eos
* marker.
*
* We can leave this loop in 3 ways: First, if rwa->err is
* non-zero. In that case, the writer thread will free the rrd we just
* pushed. Second, if we're interrupted; in that case, either it's the
* first loop and ra->rrd was never allocated, or it's later and ra->rrd
* has been handed off to the writer thread who will free it. Finally,
* if receive_read_record fails or we're at the end of the stream, then
* we free ra->rrd and exit.
*/
while (rwa->err == 0) {
if (issig(JUSTLOOKING) && issig(FORREAL)) {
err = SET_ERROR(EINTR);
break;
}
ASSERT3P(ra->rrd, ==, NULL);
ra->rrd = ra->next_rrd;
ra->next_rrd = NULL;
/* Allocates and loads header into ra->next_rrd */
err = receive_read_record(ra);
if (ra->rrd->header.drr_type == DRR_END || err != 0) {
kmem_free(ra->rrd, sizeof (*ra->rrd));
ra->rrd = NULL;
break;
}
bqueue_enqueue(&rwa->q, ra->rrd,
sizeof (struct receive_record_arg) + ra->rrd->payload_size);
ra->rrd = NULL;
}
if (ra->next_rrd == NULL)
ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP);
ra->next_rrd->eos_marker = B_TRUE;
bqueue_enqueue(&rwa->q, ra->next_rrd, 1);
mutex_enter(&rwa->mutex);
while (!rwa->done) {
cv_wait(&rwa->cv, &rwa->mutex);
}
mutex_exit(&rwa->mutex);
/*
* If we are receiving a full stream as a clone, all object IDs which
* are greater than the maximum ID referenced in the stream are
* by definition unused and must be freed.
*/
if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
uint64_t obj = rwa->max_object + 1;
int free_err = 0;
int next_err = 0;
while (next_err == 0) {
free_err = dmu_free_long_object(rwa->os, obj);
if (free_err != 0 && free_err != ENOENT)
break;
next_err = dmu_object_next(rwa->os, &obj, FALSE, 0);
}
if (err == 0) {
if (free_err != 0 && free_err != ENOENT)
err = free_err;
else if (next_err != ESRCH)
err = next_err;
}
}
cv_destroy(&rwa->cv);
mutex_destroy(&rwa->mutex);
bqueue_destroy(&rwa->q);
if (err == 0)
err = rwa->err;
out:
nvlist_free(begin_nvl);
if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1))
zfs_onexit_fd_rele(cleanup_fd);
if (err != 0) {
/*
* Clean up references. If receive is not resumable,
* destroy what we created, so we don't leave it in
* the inconsistent state.
*/
dmu_recv_cleanup_ds(drc);
nvlist_free(drc->drc_keynvl);
}
*voffp = ra->voff;
objlist_destroy(&ra->ignore_objlist);
kmem_free(ra, sizeof (*ra));
kmem_free(rwa, sizeof (*rwa));
return (err);
}
static int
dmu_recv_end_check(void *arg, dmu_tx_t *tx)
{
dmu_recv_cookie_t *drc = arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
int error;
ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
if (!drc->drc_newfs) {
dsl_dataset_t *origin_head;
error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
if (error != 0)
return (error);
if (drc->drc_force) {
/*
* We will destroy any snapshots in tofs (i.e. before
* origin_head) that are after the origin (which is
* the snap before drc_ds, because drc_ds can not
* have any snaps of its own).
*/
uint64_t obj;
obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
while (obj !=
dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
dsl_dataset_t *snap;
error = dsl_dataset_hold_obj(dp, obj, FTAG,
&snap);
if (error != 0)
break;
if (snap->ds_dir != origin_head->ds_dir)
error = SET_ERROR(EINVAL);
if (error == 0) {
error = dsl_destroy_snapshot_check_impl(
snap, B_FALSE);
}
obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
dsl_dataset_rele(snap, FTAG);
if (error != 0)
break;
}
if (error != 0) {
dsl_dataset_rele(origin_head, FTAG);
return (error);
}
}
if (drc->drc_keynvl != NULL) {
error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
drc->drc_keynvl, tx);
if (error != 0) {
dsl_dataset_rele(origin_head, FTAG);
return (error);
}
}
error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
origin_head, drc->drc_force, drc->drc_owner, tx);
if (error != 0) {
dsl_dataset_rele(origin_head, FTAG);
return (error);
}
error = dsl_dataset_snapshot_check_impl(origin_head,
drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
dsl_dataset_rele(origin_head, FTAG);
if (error != 0)
return (error);
error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
} else {
error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
}
return (error);
}
static void
dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
{
dmu_recv_cookie_t *drc = arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
tx, "snap=%s", drc->drc_tosnap);
drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
if (!drc->drc_newfs) {
dsl_dataset_t *origin_head;
VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
&origin_head));
if (drc->drc_force) {
/*
* Destroy any snapshots of drc_tofs (origin_head)
* after the origin (the snap before drc_ds).
*/
uint64_t obj;
obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
while (obj !=
dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
dsl_dataset_t *snap;
VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
&snap));
ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
dsl_destroy_snapshot_sync_impl(snap,
B_FALSE, tx);
dsl_dataset_rele(snap, FTAG);
}
}
if (drc->drc_keynvl != NULL) {
dsl_crypto_recv_raw_key_sync(drc->drc_ds,
drc->drc_keynvl, tx);
nvlist_free(drc->drc_keynvl);
drc->drc_keynvl = NULL;
}
VERIFY3P(drc->drc_ds->ds_prev, ==, origin_head->ds_prev);
dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
origin_head, tx);
dsl_dataset_snapshot_sync_impl(origin_head,
drc->drc_tosnap, tx);
/* set snapshot's creation time and guid */
dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
drc->drc_drrb->drr_creation_time;
dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
drc->drc_drrb->drr_toguid;
dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
~DS_FLAG_INCONSISTENT;
dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
dsl_dataset_phys(origin_head)->ds_flags &=
~DS_FLAG_INCONSISTENT;
drc->drc_newsnapobj =
dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
dsl_dataset_rele(origin_head, FTAG);
dsl_destroy_head_sync_impl(drc->drc_ds, tx);
if (drc->drc_owner != NULL)
VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
} else {
dsl_dataset_t *ds = drc->drc_ds;
dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
/* set snapshot's creation time and guid */
dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
drc->drc_drrb->drr_creation_time;
dsl_dataset_phys(ds->ds_prev)->ds_guid =
drc->drc_drrb->drr_toguid;
dsl_dataset_phys(ds->ds_prev)->ds_flags &=
~DS_FLAG_INCONSISTENT;
dmu_buf_will_dirty(ds->ds_dbuf, tx);
dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
if (dsl_dataset_has_resume_receive_state(ds)) {
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
DS_FIELD_RESUME_FROMGUID, tx);
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
DS_FIELD_RESUME_OBJECT, tx);
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
DS_FIELD_RESUME_OFFSET, tx);
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
DS_FIELD_RESUME_BYTES, tx);
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
DS_FIELD_RESUME_TOGUID, tx);
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
DS_FIELD_RESUME_TONAME, tx);
}
drc->drc_newsnapobj =
dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
}
zvol_create_minors(dp->dp_spa, drc->drc_tofs, B_TRUE);
/*
* Release the hold from dmu_recv_begin. This must be done before
* we return to open context, so that when we free the dataset's dnode
* we can evict its bonus buffer. Since the dataset may be destroyed
* at this point (and therefore won't have a valid pointer to the spa)
* we release the key mapping manually here while we do have a valid
* pointer, if it exists.
*/
if (!drc->drc_raw && encrypted) {
(void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
drc->drc_ds->ds_object, drc->drc_ds);
}
dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
drc->drc_ds = NULL;
}
static int
add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj,
boolean_t raw)
{
dsl_pool_t *dp;
dsl_dataset_t *snapds;
guid_map_entry_t *gmep;
objset_t *os;
ds_hold_flags_t dsflags = (raw) ? 0 : DS_HOLD_FLAG_DECRYPT;
int err;
ASSERT(guid_map != NULL);
err = dsl_pool_hold(name, FTAG, &dp);
if (err != 0)
return (err);
gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP);
err = dsl_dataset_own_obj(dp, snapobj, dsflags, gmep, &snapds);
if (err == 0) {
/*
* If this is a deduplicated raw send stream, we need
* to make sure that we can still read raw blocks from
* earlier datasets in the stream, so we set the
* os_raw_receive flag now.
*/
if (raw) {
err = dmu_objset_from_ds(snapds, &os);
if (err != 0) {
dsl_dataset_disown(snapds, dsflags, FTAG);
dsl_pool_rele(dp, FTAG);
kmem_free(gmep, sizeof (*gmep));
return (err);
}
os->os_raw_receive = B_TRUE;
}
gmep->raw = raw;
gmep->guid = dsl_dataset_phys(snapds)->ds_guid;
gmep->gme_ds = snapds;
avl_add(guid_map, gmep);
} else {
kmem_free(gmep, sizeof (*gmep));
}
dsl_pool_rele(dp, FTAG);
return (err);
}
static int dmu_recv_end_modified_blocks = 3;
static int
dmu_recv_existing_end(dmu_recv_cookie_t *drc)
{
#ifdef _KERNEL
/*
* We will be destroying the ds; make sure its origin is unmounted if
* necessary.
*/
char name[ZFS_MAX_DATASET_NAME_LEN];
dsl_dataset_name(drc->drc_ds, name);
zfs_destroy_unmount_origin(name);
#endif
return (dsl_sync_task(drc->drc_tofs,
dmu_recv_end_check, dmu_recv_end_sync, drc,
dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
}
static int
dmu_recv_new_end(dmu_recv_cookie_t *drc)
{
return (dsl_sync_task(drc->drc_tofs,
dmu_recv_end_check, dmu_recv_end_sync, drc,
dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
}
int
dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
{
int error;
drc->drc_owner = owner;
if (drc->drc_newfs)
error = dmu_recv_new_end(drc);
else
error = dmu_recv_existing_end(drc);
if (error != 0) {
dmu_recv_cleanup_ds(drc);
nvlist_free(drc->drc_keynvl);
} else if (drc->drc_guid_to_ds_map != NULL) {
(void) add_ds_to_guidmap(drc->drc_tofs, drc->drc_guid_to_ds_map,
drc->drc_newsnapobj, drc->drc_raw);
}
return (error);
}
/*
* Return TRUE if this objset is currently being received into.
*/
boolean_t
dmu_objset_is_receiving(objset_t *os)
{
return (os->os_dsl_dataset != NULL &&
os->os_dsl_dataset->ds_owner == dmu_recv_tag);
}
#if defined(_KERNEL)
module_param(zfs_recv_queue_length, int, 0644);
MODULE_PARM_DESC(zfs_recv_queue_length, "Maximum receive queue length");
#endif