freebsd-nq/sys/dev/ata/ata-sata.c

308 lines
8.9 KiB
C
Raw Normal View History

This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
/*-
* Copyright (c) 1998 - 2008 S<EFBFBD>ren Schmidt <sos@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ata.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/ata.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/sema.h>
#include <sys/taskqueue.h>
#include <vm/uma.h>
#include <machine/stdarg.h>
#include <machine/resource.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <dev/ata/ata-all.h>
#include <dev/ata/ata-pci.h>
#include <ata_if.h>
void
ata_sata_phy_check_events(device_t dev)
{
struct ata_channel *ch = device_get_softc(dev);
u_int32_t error = ATA_IDX_INL(ch, ATA_SERROR);
/* clear error bits/interrupt */
ATA_IDX_OUTL(ch, ATA_SERROR, error);
/* if we have a connection event deal with it */
if (error & ATA_SE_PHY_CHANGED) {
if (bootverbose) {
u_int32_t status = ATA_IDX_INL(ch, ATA_SSTATUS);
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
if (((status & ATA_SS_CONWELL_MASK) == ATA_SS_CONWELL_GEN1) ||
((status & ATA_SS_CONWELL_MASK) == ATA_SS_CONWELL_GEN2)) {
device_printf(dev, "CONNECT requested\n");
} else
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
device_printf(dev, "DISCONNECT requested\n");
}
taskqueue_enqueue(taskqueue_thread, &ch->conntask);
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
}
}
static int
ata_sata_connect(struct ata_channel *ch)
{
u_int32_t status;
int timeout;
/* wait up to 1 second for "connect well" */
for (timeout = 0; timeout < 100 ; timeout++) {
status = ATA_IDX_INL(ch, ATA_SSTATUS);
if ((status & ATA_SS_CONWELL_MASK) == ATA_SS_CONWELL_GEN1 ||
(status & ATA_SS_CONWELL_MASK) == ATA_SS_CONWELL_GEN2)
break;
ata_udelay(10000);
}
if (timeout >= 100) {
if (bootverbose)
device_printf(ch->dev, "SATA connect status=%08x\n", status);
return 0;
}
if (bootverbose)
device_printf(ch->dev, "SATA connect time=%dms\n", timeout * 10);
/* clear SATA error register */
ATA_IDX_OUTL(ch, ATA_SERROR, ATA_IDX_INL(ch, ATA_SERROR));
return 1;
}
int
ata_sata_phy_reset(device_t dev)
{
struct ata_channel *ch = device_get_softc(dev);
int loop, retry;
if ((ATA_IDX_INL(ch, ATA_SCONTROL) & ATA_SC_DET_MASK) == ATA_SC_DET_IDLE)
return ata_sata_connect(ch);
for (retry = 0; retry < 10; retry++) {
for (loop = 0; loop < 10; loop++) {
ATA_IDX_OUTL(ch, ATA_SCONTROL, ATA_SC_DET_RESET);
ata_udelay(100);
if ((ATA_IDX_INL(ch, ATA_SCONTROL) & ATA_SC_DET_MASK) ==
ATA_SC_DET_RESET)
break;
}
ata_udelay(5000);
for (loop = 0; loop < 10; loop++) {
ATA_IDX_OUTL(ch, ATA_SCONTROL, ATA_SC_DET_IDLE |
ATA_SC_IPM_DIS_PARTIAL |
ATA_SC_IPM_DIS_SLUMBER);
ata_udelay(100);
if ((ATA_IDX_INL(ch, ATA_SCONTROL) & ATA_SC_DET_MASK) == 0)
return ata_sata_connect(ch);
}
}
return 0;
}
void
ata_sata_setmode(device_t dev, int mode)
{
struct ata_device *atadev = device_get_softc(dev);
/*
* if we detect that the device isn't a real SATA device we limit
* the transfer mode to UDMA5/ATA100.
* this works around the problems some devices has with the
* Marvell 88SX8030 SATA->PATA converters and UDMA6/ATA133.
*/
if (atadev->param.satacapabilities != 0x0000 &&
atadev->param.satacapabilities != 0xffff) {
struct ata_channel *ch = device_get_softc(device_get_parent(dev));
/* on some drives we need to set the transfer mode */
ata_controlcmd(dev, ATA_SETFEATURES, ATA_SF_SETXFER, 0,
ata_limit_mode(dev, mode, ATA_UDMA6));
/* query SATA STATUS for the speed */
if (ch->r_io[ATA_SSTATUS].res &&
((ATA_IDX_INL(ch, ATA_SSTATUS) & ATA_SS_CONWELL_MASK) ==
ATA_SS_CONWELL_GEN2))
atadev->mode = ATA_SA300;
else
atadev->mode = ATA_SA150;
}
else {
mode = ata_limit_mode(dev, mode, ATA_UDMA5);
if (!ata_controlcmd(dev, ATA_SETFEATURES, ATA_SF_SETXFER, 0, mode))
atadev->mode = mode;
}
}
int
ata_request2fis_h2d(struct ata_request *request, u_int8_t *fis)
{
struct ata_device *atadev = device_get_softc(request->dev);
if (request->flags & ATA_R_ATAPI) {
fis[0] = 0x27; /* host to device */
fis[1] = 0x80 | (atadev->unit & 0x0f);
fis[2] = ATA_PACKET_CMD;
if (request->flags & (ATA_R_READ | ATA_R_WRITE))
fis[3] = ATA_F_DMA;
else {
fis[5] = request->transfersize;
fis[6] = request->transfersize >> 8;
}
fis[7] = ATA_D_LBA;
fis[15] = ATA_A_4BIT;
return 20;
}
else {
ata_modify_if_48bit(request);
fis[0] = 0x27; /* host to device */
fis[1] = 0x80 | (atadev->unit & 0x0f);
fis[2] = request->u.ata.command;
fis[3] = request->u.ata.feature;
fis[4] = request->u.ata.lba;
fis[5] = request->u.ata.lba >> 8;
fis[6] = request->u.ata.lba >> 16;
fis[7] = ATA_D_LBA;
if (!(atadev->flags & ATA_D_48BIT_ACTIVE))
fis[7] |= (ATA_D_IBM | (request->u.ata.lba >> 24 & 0x0f));
fis[8] = request->u.ata.lba >> 24;
fis[9] = request->u.ata.lba >> 32;
fis[10] = request->u.ata.lba >> 40;
fis[11] = request->u.ata.feature >> 8;
fis[12] = request->u.ata.count;
fis[13] = request->u.ata.count >> 8;
fis[15] = ATA_A_4BIT;
return 20;
}
return 0;
}
void
ata_pm_identify(device_t dev)
{
struct ata_channel *ch = device_get_softc(dev);
u_int32_t pm_chipid, pm_revision, pm_ports;
int port;
/* get PM vendor & product data */
if (ch->hw.pm_read(dev, ATA_PM, 0, &pm_chipid)) {
device_printf(dev, "error getting PM vendor data\n");
return;
}
/* get PM revision data */
if (ch->hw.pm_read(dev, ATA_PM, 1, &pm_revision)) {
device_printf(dev, "error getting PM revison data\n");
return;
}
/* get number of HW ports on the PM */
if (ch->hw.pm_read(dev, ATA_PM, 2, &pm_ports)) {
device_printf(dev, "error getting PM port info\n");
return;
}
pm_ports &= 0x0000000f;
/* chip specific quirks */
switch (pm_chipid) {
case 0x37261095:
/* Some of these bogusly reports 6 ports */
pm_ports = 5;
device_printf(dev, "SiI 3726 r%x Portmultiplier with %d ports\n",
pm_revision, pm_ports);
break;
default:
device_printf(dev, "Portmultiplier (id=%08x rev=%x) with %d ports\n",
pm_chipid, pm_revision, pm_ports);
}
/* realloc space for needed DMA slots */
ch->dma.dma_slots = pm_ports;
/* reset all ports and register if anything connected */
for (port=0; port < pm_ports; port++) {
u_int32_t signature, status;
int timeout;
if (ch->hw.pm_write(dev, port, 2, ATA_SC_DET_RESET)) {
device_printf(dev, "p%d: writing ATA_SC_DET_RESET failed\n", port);
continue;
}
ata_udelay(5000);
if (ch->hw.pm_write(dev, port, 2, ATA_SC_DET_IDLE)) {
device_printf(dev, "p%d: writing ATA_SC_DET_idle failed\n", port);
continue;
}
ata_udelay(5000);
/* wait up to 1 second for "connect well" */
for (timeout = 0; timeout < 100 ; timeout++) {
ch->hw.pm_read(dev, port, 0, &status);
if ((status & ATA_SS_CONWELL_MASK) == ATA_SS_CONWELL_GEN1 ||
(status & ATA_SS_CONWELL_MASK) == ATA_SS_CONWELL_GEN2)
break;
ata_udelay(10000);
}
if (timeout >= 100) {
if (bootverbose)
device_printf(dev, "p%d: connect status=%08x\n", port, status);
continue;
}
if (bootverbose)
device_printf(dev, "p%d: connect time %dms\n", port, timeout * 10);
/* clear SERROR register */
ch->hw.pm_write(dev, port, 1, 0xffffffff);
signature = ch->hw.softreset(dev, port);
if (bootverbose)
device_printf(dev, "p%d: SIGNATURE=%08x\n", port, signature);
/* figure out whats there */
switch (signature >> 16) {
case 0x0000:
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
ch->devices |= (ATA_ATA_MASTER << port);
continue;
case 0xeb14:
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
ch->devices |= (ATA_ATAPI_MASTER << port);
continue;
}
}
}