freebsd-nq/sys/arm/econa/econa_machdep.c

396 lines
12 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2009 Yohanes Nugroho <yohanes@gmail.com>
* Copyright (c) 1994-1998 Mark Brinicombe.
* Copyright (c) 1994 Brini.
* All rights reserved.
*
* This code is derived from software written for Brini by Mark Brinicombe
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Brini.
* 4. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#define _ARM32_BUS_DMA_PRIVATE
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysproto.h>
#include <sys/signalvar.h>
#include <sys/imgact.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/linker.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <sys/ptrace.h>
#include <sys/cons.h>
#include <sys/bio.h>
#include <sys/bus.h>
#include <sys/buf.h>
#include <sys/exec.h>
#include <sys/kdb.h>
#include <sys/msgbuf.h>
#include <machine/reg.h>
#include <machine/cpu.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pager.h>
#include <vm/vm_map.h>
#include <vm/vnode_pager.h>
#include <machine/pmap.h>
#include <machine/vmparam.h>
#include <machine/pcb.h>
#include <machine/undefined.h>
#include <machine/machdep.h>
#include <machine/metadata.h>
#include <machine/armreg.h>
#include <machine/bus.h>
#include <sys/reboot.h>
#include "econa_reg.h"
/* Page table for mapping proc0 zero page */
#define KERNEL_PT_SYS 0
#define KERNEL_PT_KERN 1
#define KERNEL_PT_KERN_NUM 22
/* L2 table for mapping after kernel */
#define KERNEL_PT_AFKERNEL KERNEL_PT_KERN + KERNEL_PT_KERN_NUM
#define KERNEL_PT_AFKERNEL_NUM 5
/* this should be evenly divisable by PAGE_SIZE / L2_TABLE_SIZE_REAL (or 4) */
#define NUM_KERNEL_PTS (KERNEL_PT_AFKERNEL + KERNEL_PT_AFKERNEL_NUM)
/* Define various stack sizes in pages */
#define IRQ_STACK_SIZE 1
#define ABT_STACK_SIZE 1
#define UND_STACK_SIZE 1
extern u_int data_abort_handler_address;
extern u_int prefetch_abort_handler_address;
extern u_int undefined_handler_address;
struct pv_addr kernel_pt_table[NUM_KERNEL_PTS];
extern void *_end;
extern int *end;
struct pcpu __pcpu;
struct pcpu *pcpup = &__pcpu;
/* Physical and virtual addresses for some global pages */
vm_paddr_t phys_avail[10];
vm_paddr_t dump_avail[4];
vm_offset_t physical_pages;
struct pv_addr systempage;
struct pv_addr msgbufpv;
struct pv_addr irqstack;
struct pv_addr undstack;
struct pv_addr abtstack;
struct pv_addr kernelstack;
static void *boot_arg1;
static void *boot_arg2;
static struct trapframe proc0_tf;
/* Static device mappings. */
static const struct pmap_devmap econa_devmap[] = {
{
/*
* This maps DDR SDRAM
*/
ECONA_SDRAM_BASE, /*virtual*/
ECONA_SDRAM_BASE, /*physical*/
ECONA_SDRAM_SIZE, /*size*/
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
/*
* Map the on-board devices VA == PA so that we can access them
* with the MMU on or off.
*/
{
/*
* This maps the interrupt controller, the UART
* and the timer.
*/
ECONA_IO_BASE, /*virtual*/
ECONA_IO_BASE, /*physical*/
ECONA_IO_SIZE, /*size*/
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
{
/*
* OHCI + EHCI
*/
ECONA_OHCI_VBASE, /*virtual*/
ECONA_OHCI_PBASE, /*physical*/
ECONA_USB_SIZE, /*size*/
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
{
/*
* CFI
*/
ECONA_CFI_VBASE, /*virtual*/
ECONA_CFI_PBASE, /*physical*/
ECONA_CFI_SIZE,
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
{
0,
0,
0,
0,
0,
}
};
void *
initarm(void *arg, void *arg2)
{
struct pv_addr kernel_l1pt;
volatile uint32_t * ddr = (uint32_t *)0x4000000C;
int loop, i;
u_int l1pagetable;
vm_offset_t afterkern;
vm_offset_t freemempos;
vm_offset_t lastaddr;
uint32_t memsize;
int mem_info;
boot_arg1 = arg;
boot_arg2 = arg2;
boothowto = RB_VERBOSE;
set_cpufuncs();
lastaddr = fake_preload_metadata();
pcpu_init(pcpup, 0, sizeof(struct pcpu));
PCPU_SET(curthread, &thread0);
/* Do basic tuning, hz etc */
init_param1();
freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
/* Define a macro to simplify memory allocation */
#define valloc_pages(var, np) \
alloc_pages((var).pv_va, (np)); \
(var).pv_pa = (var).pv_va + (KERNPHYSADDR - KERNVIRTADDR);
#define alloc_pages(var, np) \
(var) = freemempos; \
freemempos += (np * PAGE_SIZE); \
memset((char *)(var), 0, ((np) * PAGE_SIZE));
while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
freemempos += PAGE_SIZE;
valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
valloc_pages(kernel_pt_table[loop],
L2_TABLE_SIZE / PAGE_SIZE);
} else {
kernel_pt_table[loop].pv_va = freemempos -
(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) *
L2_TABLE_SIZE_REAL;
kernel_pt_table[loop].pv_pa =
kernel_pt_table[loop].pv_va - KERNVIRTADDR +
KERNPHYSADDR;
}
i++;
}
/*
* Allocate a page for the system page mapped to V0x00000000
* This page will just contain the system vectors and can be
* shared by all processes.
*/
valloc_pages(systempage, 1);
/* Allocate stacks for all modes */
valloc_pages(irqstack, IRQ_STACK_SIZE);
valloc_pages(abtstack, ABT_STACK_SIZE);
valloc_pages(undstack, UND_STACK_SIZE);
valloc_pages(kernelstack, KSTACK_PAGES);
valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
/*
* Now we start construction of the L1 page table
* We start by mapping the L2 page tables into the L1.
* This means that we can replace L1 mappings later on if necessary
*/
l1pagetable = kernel_l1pt.pv_va;
/* Map the L2 pages tables in the L1 page table */
pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
&kernel_pt_table[KERNEL_PT_SYS]);
for (i = 0; i < KERNEL_PT_KERN_NUM; i++)
pmap_link_l2pt(l1pagetable, KERNBASE + i * L1_S_SIZE,
&kernel_pt_table[KERNEL_PT_KERN + i]);
pmap_map_chunk(l1pagetable, KERNBASE, PHYSADDR,
(((uint32_t)lastaddr - KERNBASE) + PAGE_SIZE) & ~(PAGE_SIZE - 1),
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
afterkern = round_page((lastaddr + L1_S_SIZE) & ~(L1_S_SIZE - 1));
for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) {
pmap_link_l2pt(l1pagetable, afterkern + i * L1_S_SIZE,
&kernel_pt_table[KERNEL_PT_AFKERNEL + i]);
}
/* Map the vector page. */
pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
/* Map the stack pages */
pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
KSTACK_PAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
pmap_map_chunk(l1pagetable, msgbufpv.pv_va, msgbufpv.pv_pa,
msgbufsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
}
pmap_devmap_bootstrap(l1pagetable, econa_devmap);
cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
setttb(kernel_l1pt.pv_pa);
cpu_tlb_flushID();
cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
cninit();
mem_info = ((*ddr) >> 4) & 0x3;
memsize = (8<<mem_info)*1024*1024;
physmem = memsize / PAGE_SIZE;
/*
* Pages were allocated during the secondary bootstrap for the
* stacks for different CPU modes.
* We must now set the r13 registers in the different CPU modes to
* point to these stacks.
* Since the ARM stacks use STMFD etc. we must set r13 to the top end
* of the stack memory.
*/
cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
set_stackptr(PSR_IRQ32_MODE,
irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_ABT32_MODE,
abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_UND32_MODE,
undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
/*
* We must now clean the cache again....
* Cleaning may be done by reading new data to displace any
* dirty data in the cache. This will have happened in setttb()
* but since we are boot strapping the addresses used for the read
* may have just been remapped and thus the cache could be out
* of sync. A re-clean after the switch will cure this.
* After booting there are no gross relocations of the kernel thus
* this problem will not occur after initarm().
*/
cpu_idcache_wbinv_all();
/* Set stack for exception handlers */
data_abort_handler_address = (u_int)data_abort_handler;
prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
undefined_handler_address = (u_int)undefinedinstruction_bounce;
undefined_init();
proc_linkup0(&proc0, &thread0);
thread0.td_kstack = kernelstack.pv_va;
thread0.td_pcb = (struct pcb *)
(thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
thread0.td_pcb->pcb_flags = 0;
thread0.td_frame = &proc0_tf;
pcpup->pc_curpcb = thread0.td_pcb;
arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
pmap_curmaxkvaddr = afterkern + L1_S_SIZE * (KERNEL_PT_KERN_NUM - 1);
/*
* ARM_USE_SMALL_ALLOC uses dump_avail, so it must be filled before
* calling pmap_bootstrap.
*/
dump_avail[0] = PHYSADDR;
dump_avail[1] = PHYSADDR + memsize;
dump_avail[2] = 0;
dump_avail[3] = 0;
pmap_bootstrap(freemempos,
KERNVIRTADDR + 3 * memsize,
&kernel_l1pt);
msgbufp = (void*)msgbufpv.pv_va;
msgbufinit(msgbufp, msgbufsize);
mutex_init();
i = 0;
#if PHYSADDR != KERNPHYSADDR
phys_avail[i++] = PHYSADDR;
phys_avail[i++] = KERNPHYSADDR;
#endif
phys_avail[i++] = virtual_avail - KERNVIRTADDR + KERNPHYSADDR;
phys_avail[i++] = PHYSADDR + memsize;
phys_avail[i++] = 0;
phys_avail[i++] = 0;
init_param2(physmem);
kdb_init();
return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
sizeof(struct pcb)));
}