freebsd-nq/module/zfs/dsl_scan.c

1820 lines
52 KiB
C
Raw Normal View History

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
*/
#include <sys/dsl_scan.h>
#include <sys/dsl_pool.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_prop.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_synctask.h>
#include <sys/dnode.h>
#include <sys/dmu_tx.h>
#include <sys/dmu_objset.h>
#include <sys/arc.h>
#include <sys/zap.h>
#include <sys/zio.h>
#include <sys/zfs_context.h>
#include <sys/fs/zfs.h>
#include <sys/zfs_znode.h>
#include <sys/spa_impl.h>
#include <sys/vdev_impl.h>
#include <sys/zil_impl.h>
#include <sys/zio_checksum.h>
#include <sys/ddt.h>
#include <sys/sa.h>
#include <sys/sa_impl.h>
#ifdef _KERNEL
#include <sys/zfs_vfsops.h>
#endif
typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *, const zbookmark_t *);
static scan_cb_t dsl_scan_scrub_cb;
static dsl_syncfunc_t dsl_scan_cancel_sync;
static void dsl_scan_sync_state(dsl_scan_t *, dmu_tx_t *tx);
int zfs_top_maxinflight = 32; /* maximum I/Os per top-level */
int zfs_resilver_delay = 2; /* number of ticks to delay resilver */
int zfs_scrub_delay = 4; /* number of ticks to delay scrub */
int zfs_scan_idle = 50; /* idle window in clock ticks */
int zfs_scan_min_time_ms = 1000; /* min millisecs to scrub per txg */
int zfs_free_min_time_ms = 1000; /* min millisecs to free per txg */
int zfs_resilver_min_time_ms = 3000; /* min millisecs to resilver per txg */
Add missing ZFS tunables This commit adds module options for all existing zfs tunables. Ideally the average user should never need to modify any of these values. However, in practice sometimes you do need to tweak these values for one reason or another. In those cases it's nice not to have to resort to rebuilding from source. All tunables are visable to modinfo and the list is as follows: $ modinfo module/zfs/zfs.ko filename: module/zfs/zfs.ko license: CDDL author: Sun Microsystems/Oracle, Lawrence Livermore National Laboratory description: ZFS srcversion: 8EAB1D71DACE05B5AA61567 depends: spl,znvpair,zcommon,zunicode,zavl vermagic: 2.6.32-131.0.5.el6.x86_64 SMP mod_unload modversions parm: zvol_major:Major number for zvol device (uint) parm: zvol_threads:Number of threads for zvol device (uint) parm: zio_injection_enabled:Enable fault injection (int) parm: zio_bulk_flags:Additional flags to pass to bulk buffers (int) parm: zio_delay_max:Max zio millisec delay before posting event (int) parm: zio_requeue_io_start_cut_in_line:Prioritize requeued I/O (bool) parm: zil_replay_disable:Disable intent logging replay (int) parm: zfs_nocacheflush:Disable cache flushes (bool) parm: zfs_read_chunk_size:Bytes to read per chunk (long) parm: zfs_vdev_max_pending:Max pending per-vdev I/Os (int) parm: zfs_vdev_min_pending:Min pending per-vdev I/Os (int) parm: zfs_vdev_aggregation_limit:Max vdev I/O aggregation size (int) parm: zfs_vdev_time_shift:Deadline time shift for vdev I/O (int) parm: zfs_vdev_ramp_rate:Exponential I/O issue ramp-up rate (int) parm: zfs_vdev_read_gap_limit:Aggregate read I/O over gap (int) parm: zfs_vdev_write_gap_limit:Aggregate write I/O over gap (int) parm: zfs_vdev_scheduler:I/O scheduler (charp) parm: zfs_vdev_cache_max:Inflate reads small than max (int) parm: zfs_vdev_cache_size:Total size of the per-disk cache (int) parm: zfs_vdev_cache_bshift:Shift size to inflate reads too (int) parm: zfs_scrub_limit:Max scrub/resilver I/O per leaf vdev (int) parm: zfs_recover:Set to attempt to recover from fatal errors (int) parm: spa_config_path:SPA config file (/etc/zfs/zpool.cache) (charp) parm: zfs_zevent_len_max:Max event queue length (int) parm: zfs_zevent_cols:Max event column width (int) parm: zfs_zevent_console:Log events to the console (int) parm: zfs_top_maxinflight:Max I/Os per top-level (int) parm: zfs_resilver_delay:Number of ticks to delay resilver (int) parm: zfs_scrub_delay:Number of ticks to delay scrub (int) parm: zfs_scan_idle:Idle window in clock ticks (int) parm: zfs_scan_min_time_ms:Min millisecs to scrub per txg (int) parm: zfs_free_min_time_ms:Min millisecs to free per txg (int) parm: zfs_resilver_min_time_ms:Min millisecs to resilver per txg (int) parm: zfs_no_scrub_io:Set to disable scrub I/O (bool) parm: zfs_no_scrub_prefetch:Set to disable scrub prefetching (bool) parm: zfs_txg_timeout:Max seconds worth of delta per txg (int) parm: zfs_no_write_throttle:Disable write throttling (int) parm: zfs_write_limit_shift:log2(fraction of memory) per txg (int) parm: zfs_txg_synctime_ms:Target milliseconds between tgx sync (int) parm: zfs_write_limit_min:Min tgx write limit (ulong) parm: zfs_write_limit_max:Max tgx write limit (ulong) parm: zfs_write_limit_inflated:Inflated tgx write limit (ulong) parm: zfs_write_limit_override:Override tgx write limit (ulong) parm: zfs_prefetch_disable:Disable all ZFS prefetching (int) parm: zfetch_max_streams:Max number of streams per zfetch (uint) parm: zfetch_min_sec_reap:Min time before stream reclaim (uint) parm: zfetch_block_cap:Max number of blocks to fetch at a time (uint) parm: zfetch_array_rd_sz:Number of bytes in a array_read (ulong) parm: zfs_pd_blks_max:Max number of blocks to prefetch (int) parm: zfs_dedup_prefetch:Enable prefetching dedup-ed blks (int) parm: zfs_arc_min:Min arc size (ulong) parm: zfs_arc_max:Max arc size (ulong) parm: zfs_arc_meta_limit:Meta limit for arc size (ulong) parm: zfs_arc_reduce_dnlc_percent:Meta reclaim percentage (int) parm: zfs_arc_grow_retry:Seconds before growing arc size (int) parm: zfs_arc_shrink_shift:log2(fraction of arc to reclaim) (int) parm: zfs_arc_p_min_shift:arc_c shift to calc min/max arc_p (int)
2011-05-03 22:09:28 +00:00
int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
int zfs_no_scrub_prefetch = B_FALSE; /* set to disable srub prefetching */
enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
int dsl_scan_delay_completion = B_FALSE; /* set to delay scan completion */
#define DSL_SCAN_IS_SCRUB_RESILVER(scn) \
((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
(scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
extern int zfs_txg_timeout;
/* the order has to match pool_scan_type */
static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
NULL,
dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */
dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */
};
int
dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
{
int err;
dsl_scan_t *scn;
spa_t *spa = dp->dp_spa;
uint64_t f;
scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
scn->scn_dp = dp;
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
"scrub_func", sizeof (uint64_t), 1, &f);
if (err == 0) {
/*
* There was an old-style scrub in progress. Restart a
* new-style scrub from the beginning.
*/
scn->scn_restart_txg = txg;
zfs_dbgmsg("old-style scrub was in progress; "
"restarting new-style scrub in txg %llu",
scn->scn_restart_txg);
/*
* Load the queue obj from the old location so that it
* can be freed by dsl_scan_done().
*/
(void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
"scrub_queue", sizeof (uint64_t), 1,
&scn->scn_phys.scn_queue_obj);
} else {
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
&scn->scn_phys);
if (err == ENOENT)
return (0);
else if (err)
return (err);
if (scn->scn_phys.scn_state == DSS_SCANNING &&
spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
/*
* A new-type scrub was in progress on an old
* pool, and the pool was accessed by old
* software. Restart from the beginning, since
* the old software may have changed the pool in
* the meantime.
*/
scn->scn_restart_txg = txg;
zfs_dbgmsg("new-style scrub was modified "
"by old software; restarting in txg %llu",
scn->scn_restart_txg);
}
}
spa_scan_stat_init(spa);
return (0);
}
void
dsl_scan_fini(dsl_pool_t *dp)
{
if (dp->dp_scan) {
kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
dp->dp_scan = NULL;
}
}
/* ARGSUSED */
static int
dsl_scan_setup_check(void *arg1, void *arg2, dmu_tx_t *tx)
{
dsl_scan_t *scn = arg1;
if (scn->scn_phys.scn_state == DSS_SCANNING)
return (EBUSY);
return (0);
}
/* ARGSUSED */
static void
dsl_scan_setup_sync(void *arg1, void *arg2, dmu_tx_t *tx)
{
dsl_scan_t *scn = arg1;
pool_scan_func_t *funcp = arg2;
dmu_object_type_t ot = 0;
dsl_pool_t *dp = scn->scn_dp;
spa_t *spa = dp->dp_spa;
ASSERT(scn->scn_phys.scn_state != DSS_SCANNING);
ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
bzero(&scn->scn_phys, sizeof (scn->scn_phys));
scn->scn_phys.scn_func = *funcp;
scn->scn_phys.scn_state = DSS_SCANNING;
scn->scn_phys.scn_min_txg = 0;
scn->scn_phys.scn_max_txg = tx->tx_txg;
scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
scn->scn_phys.scn_start_time = gethrestime_sec();
scn->scn_phys.scn_errors = 0;
scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
scn->scn_restart_txg = 0;
spa_scan_stat_init(spa);
if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
/* rewrite all disk labels */
vdev_config_dirty(spa->spa_root_vdev);
if (vdev_resilver_needed(spa->spa_root_vdev,
&scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
Add linux events This topic branch leverages the Solaris style FMA call points in ZFS to create a user space visible event notification system under Linux. This new system is called zevent and it unifies all previous Solaris style ereports and sysevent notifications. Under this Linux specific scheme when a sysevent or ereport event occurs an nvlist describing the event is created which looks almost exactly like a Solaris ereport. These events are queued up in the kernel when they occur and conditionally logged to the console. It is then up to a user space application to consume the events and do whatever it likes with them. To make this possible the existing /dev/zfs ABI has been extended with two new ioctls which behave as follows. * ZFS_IOC_EVENTS_NEXT Get the next pending event. The kernel will keep track of the last event consumed by the file descriptor and provide the next one if available. If no new events are available the ioctl() will block waiting for the next event. This ioctl may also be called in a non-blocking mode by setting zc.zc_guid = ZEVENT_NONBLOCK. In the non-blocking case if no events are available ENOENT will be returned. It is possible that ESHUTDOWN will be returned if the ioctl() is called while module unloading is in progress. And finally ENOMEM may occur if the provided nvlist buffer is not large enough to contain the entire event. * ZFS_IOC_EVENTS_CLEAR Clear are events queued by the kernel. The kernel will keep a fairly large number of recent events queued, use this ioctl to clear the in kernel list. This will effect all user space processes consuming events. The zpool command has been extended to use this events ABI with the 'events' subcommand. You may run 'zpool events -v' to output a verbose log of all recent events. This is very similar to the Solaris 'fmdump -ev' command with the key difference being it also includes what would be considered sysevents under Solaris. You may also run in follow mode with the '-f' option. To clear the in kernel event queue use the '-c' option. $ sudo cmd/zpool/zpool events -fv TIME CLASS May 13 2010 16:31:15.777711000 ereport.fs.zfs.config.sync class = "ereport.fs.zfs.config.sync" ena = 0x40982b7897700001 detector = (embedded nvlist) version = 0x0 scheme = "zfs" pool = 0xed976600de75dfa6 (end detector) time = 0x4bec8bc3 0x2e5aed98 pool = "zpios" pool_guid = 0xed976600de75dfa6 pool_context = 0x0 While the 'zpool events' command is handy for interactive debugging it is not expected to be the primary consumer of zevents. This ABI was primarily added to facilitate the addition of a user space monitoring daemon. This daemon would consume all events posted by the kernel and based on the type of event perform an action. For most events simply forwarding them on to syslog is likely enough. But this interface also cleanly allows for more sophisticated actions to be taken such as generating an email for a failed drive. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2010-08-26 18:42:43 +00:00
spa_event_notify(spa, NULL, FM_EREPORT_ZFS_RESILVER_START);
} else {
Add linux events This topic branch leverages the Solaris style FMA call points in ZFS to create a user space visible event notification system under Linux. This new system is called zevent and it unifies all previous Solaris style ereports and sysevent notifications. Under this Linux specific scheme when a sysevent or ereport event occurs an nvlist describing the event is created which looks almost exactly like a Solaris ereport. These events are queued up in the kernel when they occur and conditionally logged to the console. It is then up to a user space application to consume the events and do whatever it likes with them. To make this possible the existing /dev/zfs ABI has been extended with two new ioctls which behave as follows. * ZFS_IOC_EVENTS_NEXT Get the next pending event. The kernel will keep track of the last event consumed by the file descriptor and provide the next one if available. If no new events are available the ioctl() will block waiting for the next event. This ioctl may also be called in a non-blocking mode by setting zc.zc_guid = ZEVENT_NONBLOCK. In the non-blocking case if no events are available ENOENT will be returned. It is possible that ESHUTDOWN will be returned if the ioctl() is called while module unloading is in progress. And finally ENOMEM may occur if the provided nvlist buffer is not large enough to contain the entire event. * ZFS_IOC_EVENTS_CLEAR Clear are events queued by the kernel. The kernel will keep a fairly large number of recent events queued, use this ioctl to clear the in kernel list. This will effect all user space processes consuming events. The zpool command has been extended to use this events ABI with the 'events' subcommand. You may run 'zpool events -v' to output a verbose log of all recent events. This is very similar to the Solaris 'fmdump -ev' command with the key difference being it also includes what would be considered sysevents under Solaris. You may also run in follow mode with the '-f' option. To clear the in kernel event queue use the '-c' option. $ sudo cmd/zpool/zpool events -fv TIME CLASS May 13 2010 16:31:15.777711000 ereport.fs.zfs.config.sync class = "ereport.fs.zfs.config.sync" ena = 0x40982b7897700001 detector = (embedded nvlist) version = 0x0 scheme = "zfs" pool = 0xed976600de75dfa6 (end detector) time = 0x4bec8bc3 0x2e5aed98 pool = "zpios" pool_guid = 0xed976600de75dfa6 pool_context = 0x0 While the 'zpool events' command is handy for interactive debugging it is not expected to be the primary consumer of zevents. This ABI was primarily added to facilitate the addition of a user space monitoring daemon. This daemon would consume all events posted by the kernel and based on the type of event perform an action. For most events simply forwarding them on to syslog is likely enough. But this interface also cleanly allows for more sophisticated actions to be taken such as generating an email for a failed drive. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2010-08-26 18:42:43 +00:00
spa_event_notify(spa, NULL, FM_EREPORT_ZFS_SCRUB_START);
}
spa->spa_scrub_started = B_TRUE;
/*
* If this is an incremental scrub, limit the DDT scrub phase
* to just the auto-ditto class (for correctness); the rest
* of the scrub should go faster using top-down pruning.
*/
if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
}
/* back to the generic stuff */
if (dp->dp_blkstats == NULL) {
dp->dp_blkstats = kmem_alloc(sizeof (zfs_all_blkstats_t),
KM_SLEEP | KM_NODEBUG);
}
bzero(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
ot = DMU_OT_ZAP_OTHER;
scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
dsl_scan_sync_state(scn, tx);
spa_history_log_internal(LOG_POOL_SCAN, spa, tx,
"func=%u mintxg=%llu maxtxg=%llu",
*funcp, scn->scn_phys.scn_min_txg, scn->scn_phys.scn_max_txg);
}
/* ARGSUSED */
static void
dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
{
static const char *old_names[] = {
"scrub_bookmark",
"scrub_ddt_bookmark",
"scrub_ddt_class_max",
"scrub_queue",
"scrub_min_txg",
"scrub_max_txg",
"scrub_func",
"scrub_errors",
NULL
};
dsl_pool_t *dp = scn->scn_dp;
spa_t *spa = dp->dp_spa;
int i;
/* Remove any remnants of an old-style scrub. */
for (i = 0; old_names[i]; i++) {
(void) zap_remove(dp->dp_meta_objset,
DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
}
if (scn->scn_phys.scn_queue_obj != 0) {
VERIFY(0 == dmu_object_free(dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj, tx));
scn->scn_phys.scn_queue_obj = 0;
}
/*
* If we were "restarted" from a stopped state, don't bother
* with anything else.
*/
if (scn->scn_phys.scn_state != DSS_SCANNING)
return;
if (complete)
scn->scn_phys.scn_state = DSS_FINISHED;
else
scn->scn_phys.scn_state = DSS_CANCELED;
spa_history_log_internal(LOG_POOL_SCAN_DONE, spa, tx,
"complete=%u", complete);
if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
mutex_enter(&spa->spa_scrub_lock);
while (spa->spa_scrub_inflight > 0) {
cv_wait(&spa->spa_scrub_io_cv,
&spa->spa_scrub_lock);
}
mutex_exit(&spa->spa_scrub_lock);
spa->spa_scrub_started = B_FALSE;
spa->spa_scrub_active = B_FALSE;
/*
* If the scrub/resilver completed, update all DTLs to
* reflect this. Whether it succeeded or not, vacate
* all temporary scrub DTLs.
*/
vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
complete ? scn->scn_phys.scn_max_txg : 0, B_TRUE);
if (complete) {
spa_event_notify(spa, NULL, scn->scn_phys.scn_min_txg ?
Add linux events This topic branch leverages the Solaris style FMA call points in ZFS to create a user space visible event notification system under Linux. This new system is called zevent and it unifies all previous Solaris style ereports and sysevent notifications. Under this Linux specific scheme when a sysevent or ereport event occurs an nvlist describing the event is created which looks almost exactly like a Solaris ereport. These events are queued up in the kernel when they occur and conditionally logged to the console. It is then up to a user space application to consume the events and do whatever it likes with them. To make this possible the existing /dev/zfs ABI has been extended with two new ioctls which behave as follows. * ZFS_IOC_EVENTS_NEXT Get the next pending event. The kernel will keep track of the last event consumed by the file descriptor and provide the next one if available. If no new events are available the ioctl() will block waiting for the next event. This ioctl may also be called in a non-blocking mode by setting zc.zc_guid = ZEVENT_NONBLOCK. In the non-blocking case if no events are available ENOENT will be returned. It is possible that ESHUTDOWN will be returned if the ioctl() is called while module unloading is in progress. And finally ENOMEM may occur if the provided nvlist buffer is not large enough to contain the entire event. * ZFS_IOC_EVENTS_CLEAR Clear are events queued by the kernel. The kernel will keep a fairly large number of recent events queued, use this ioctl to clear the in kernel list. This will effect all user space processes consuming events. The zpool command has been extended to use this events ABI with the 'events' subcommand. You may run 'zpool events -v' to output a verbose log of all recent events. This is very similar to the Solaris 'fmdump -ev' command with the key difference being it also includes what would be considered sysevents under Solaris. You may also run in follow mode with the '-f' option. To clear the in kernel event queue use the '-c' option. $ sudo cmd/zpool/zpool events -fv TIME CLASS May 13 2010 16:31:15.777711000 ereport.fs.zfs.config.sync class = "ereport.fs.zfs.config.sync" ena = 0x40982b7897700001 detector = (embedded nvlist) version = 0x0 scheme = "zfs" pool = 0xed976600de75dfa6 (end detector) time = 0x4bec8bc3 0x2e5aed98 pool = "zpios" pool_guid = 0xed976600de75dfa6 pool_context = 0x0 While the 'zpool events' command is handy for interactive debugging it is not expected to be the primary consumer of zevents. This ABI was primarily added to facilitate the addition of a user space monitoring daemon. This daemon would consume all events posted by the kernel and based on the type of event perform an action. For most events simply forwarding them on to syslog is likely enough. But this interface also cleanly allows for more sophisticated actions to be taken such as generating an email for a failed drive. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2010-08-26 18:42:43 +00:00
FM_EREPORT_ZFS_RESILVER_FINISH :
FM_EREPORT_ZFS_SCRUB_FINISH);
}
spa_errlog_rotate(spa);
/*
* We may have finished replacing a device.
* Let the async thread assess this and handle the detach.
*/
spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
}
scn->scn_phys.scn_end_time = gethrestime_sec();
}
/* ARGSUSED */
static int
dsl_scan_cancel_check(void *arg1, void *arg2, dmu_tx_t *tx)
{
dsl_scan_t *scn = arg1;
if (scn->scn_phys.scn_state != DSS_SCANNING)
return (ENOENT);
return (0);
}
/* ARGSUSED */
static void
dsl_scan_cancel_sync(void *arg1, void *arg2, dmu_tx_t *tx)
{
dsl_scan_t *scn = arg1;
dsl_scan_done(scn, B_FALSE, tx);
dsl_scan_sync_state(scn, tx);
}
int
dsl_scan_cancel(dsl_pool_t *dp)
{
boolean_t complete = B_FALSE;
int err;
err = dsl_sync_task_do(dp, dsl_scan_cancel_check,
dsl_scan_cancel_sync, dp->dp_scan, &complete, 3);
return (err);
}
static void dsl_scan_visitbp(blkptr_t *bp,
const zbookmark_t *zb, dnode_phys_t *dnp, arc_buf_t *pbuf,
dsl_dataset_t *ds, dsl_scan_t *scn, dmu_objset_type_t ostype,
dmu_tx_t *tx);
static void dsl_scan_visitdnode(dsl_scan_t *, dsl_dataset_t *ds,
dmu_objset_type_t ostype,
dnode_phys_t *dnp, arc_buf_t *buf, uint64_t object, dmu_tx_t *tx);
void
dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
{
zio_free(dp->dp_spa, txg, bp);
}
void
dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
{
ASSERT(dsl_pool_sync_context(dp));
zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
}
int
dsl_read(zio_t *pio, spa_t *spa, const blkptr_t *bpp, arc_buf_t *pbuf,
arc_done_func_t *done, void *private, int priority, int zio_flags,
uint32_t *arc_flags, const zbookmark_t *zb)
{
return (arc_read(pio, spa, bpp, pbuf, done, private,
priority, zio_flags, arc_flags, zb));
}
int
dsl_read_nolock(zio_t *pio, spa_t *spa, const blkptr_t *bpp,
arc_done_func_t *done, void *private, int priority, int zio_flags,
uint32_t *arc_flags, const zbookmark_t *zb)
{
return (arc_read_nolock(pio, spa, bpp, done, private,
priority, zio_flags, arc_flags, zb));
}
static boolean_t
bookmark_is_zero(const zbookmark_t *zb)
{
return (zb->zb_objset == 0 && zb->zb_object == 0 &&
zb->zb_level == 0 && zb->zb_blkid == 0);
}
/* dnp is the dnode for zb1->zb_object */
static boolean_t
bookmark_is_before(const dnode_phys_t *dnp, const zbookmark_t *zb1,
const zbookmark_t *zb2)
{
uint64_t zb1nextL0, zb2thisobj;
ASSERT(zb1->zb_objset == zb2->zb_objset);
ASSERT(zb2->zb_level == 0);
/*
* A bookmark in the deadlist is considered to be after
* everything else.
*/
if (zb2->zb_object == DMU_DEADLIST_OBJECT)
return (B_TRUE);
/* The objset_phys_t isn't before anything. */
if (dnp == NULL)
return (B_FALSE);
zb1nextL0 = (zb1->zb_blkid + 1) <<
((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
zb2thisobj = zb2->zb_object ? zb2->zb_object :
zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
uint64_t nextobj = zb1nextL0 *
(dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
return (nextobj <= zb2thisobj);
}
if (zb1->zb_object < zb2thisobj)
return (B_TRUE);
if (zb1->zb_object > zb2thisobj)
return (B_FALSE);
if (zb2->zb_object == DMU_META_DNODE_OBJECT)
return (B_FALSE);
return (zb1nextL0 <= zb2->zb_blkid);
}
static uint64_t
dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
{
uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
if (dsl_dataset_is_snapshot(ds))
return (MIN(smt, ds->ds_phys->ds_creation_txg));
return (smt);
}
static void
dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx)
{
VERIFY(0 == zap_update(scn->scn_dp->dp_meta_objset,
DMU_POOL_DIRECTORY_OBJECT,
DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
&scn->scn_phys, tx));
}
static boolean_t
dsl_scan_check_pause(dsl_scan_t *scn, const zbookmark_t *zb)
{
uint64_t elapsed_nanosecs;
int mintime;
/* we never skip user/group accounting objects */
if (zb && (int64_t)zb->zb_object < 0)
return (B_FALSE);
if (scn->scn_pausing)
return (B_TRUE); /* we're already pausing */
if (!bookmark_is_zero(&scn->scn_phys.scn_bookmark))
return (B_FALSE); /* we're resuming */
/* We only know how to resume from level-0 blocks. */
if (zb && zb->zb_level != 0)
return (B_FALSE);
mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
zfs_resilver_min_time_ms : zfs_scan_min_time_ms;
elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
if (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
(elapsed_nanosecs / MICROSEC > mintime &&
txg_sync_waiting(scn->scn_dp)) ||
spa_shutting_down(scn->scn_dp->dp_spa)) {
if (zb) {
dprintf("pausing at bookmark %llx/%llx/%llx/%llx\n",
(longlong_t)zb->zb_objset,
(longlong_t)zb->zb_object,
(longlong_t)zb->zb_level,
(longlong_t)zb->zb_blkid);
scn->scn_phys.scn_bookmark = *zb;
}
dprintf("pausing at DDT bookmark %llx/%llx/%llx/%llx\n",
(longlong_t)scn->scn_phys.scn_ddt_bookmark.ddb_class,
(longlong_t)scn->scn_phys.scn_ddt_bookmark.ddb_type,
(longlong_t)scn->scn_phys.scn_ddt_bookmark.ddb_checksum,
(longlong_t)scn->scn_phys.scn_ddt_bookmark.ddb_cursor);
scn->scn_pausing = B_TRUE;
return (B_TRUE);
}
return (B_FALSE);
}
typedef struct zil_scan_arg {
dsl_pool_t *zsa_dp;
zil_header_t *zsa_zh;
} zil_scan_arg_t;
/* ARGSUSED */
static int
dsl_scan_zil_block(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
{
zil_scan_arg_t *zsa = arg;
dsl_pool_t *dp = zsa->zsa_dp;
dsl_scan_t *scn = dp->dp_scan;
zil_header_t *zh = zsa->zsa_zh;
zbookmark_t zb;
if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
return (0);
/*
* One block ("stubby") can be allocated a long time ago; we
* want to visit that one because it has been allocated
* (on-disk) even if it hasn't been claimed (even though for
* scrub there's nothing to do to it).
*/
if (claim_txg == 0 && bp->blk_birth >= spa_first_txg(dp->dp_spa))
return (0);
SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
return (0);
}
/* ARGSUSED */
static int
dsl_scan_zil_record(zilog_t *zilog, lr_t *lrc, void *arg, uint64_t claim_txg)
{
if (lrc->lrc_txtype == TX_WRITE) {
zil_scan_arg_t *zsa = arg;
dsl_pool_t *dp = zsa->zsa_dp;
dsl_scan_t *scn = dp->dp_scan;
zil_header_t *zh = zsa->zsa_zh;
lr_write_t *lr = (lr_write_t *)lrc;
blkptr_t *bp = &lr->lr_blkptr;
zbookmark_t zb;
if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
return (0);
/*
* birth can be < claim_txg if this record's txg is
* already txg sync'ed (but this log block contains
* other records that are not synced)
*/
if (claim_txg == 0 || bp->blk_birth < claim_txg)
return (0);
SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
lr->lr_foid, ZB_ZIL_LEVEL,
lr->lr_offset / BP_GET_LSIZE(bp));
VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
}
return (0);
}
static void
dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
{
uint64_t claim_txg = zh->zh_claim_txg;
zil_scan_arg_t zsa = { dp, zh };
zilog_t *zilog;
/*
* We only want to visit blocks that have been claimed but not yet
* replayed (or, in read-only mode, blocks that *would* be claimed).
*/
if (claim_txg == 0 && spa_writeable(dp->dp_spa))
return;
zilog = zil_alloc(dp->dp_meta_objset, zh);
(void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
claim_txg);
zil_free(zilog);
}
/* ARGSUSED */
static void
dsl_scan_prefetch(dsl_scan_t *scn, arc_buf_t *buf, blkptr_t *bp,
uint64_t objset, uint64_t object, uint64_t blkid)
{
zbookmark_t czb;
uint32_t flags = ARC_NOWAIT | ARC_PREFETCH;
if (zfs_no_scrub_prefetch)
return;
if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_min_txg ||
(BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE))
return;
SET_BOOKMARK(&czb, objset, object, BP_GET_LEVEL(bp), blkid);
/*
* XXX need to make sure all of these arc_read() prefetches are
* done before setting xlateall (similar to dsl_read())
*/
(void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa, bp,
buf, NULL, NULL, ZIO_PRIORITY_ASYNC_READ,
ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD, &flags, &czb);
}
static boolean_t
dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
const zbookmark_t *zb)
{
/*
* We never skip over user/group accounting objects (obj<0)
*/
if (!bookmark_is_zero(&scn->scn_phys.scn_bookmark) &&
(int64_t)zb->zb_object >= 0) {
/*
* If we already visited this bp & everything below (in
* a prior txg sync), don't bother doing it again.
*/
if (bookmark_is_before(dnp, zb, &scn->scn_phys.scn_bookmark))
return (B_TRUE);
/*
* If we found the block we're trying to resume from, or
* we went past it to a different object, zero it out to
* indicate that it's OK to start checking for pausing
* again.
*/
if (bcmp(zb, &scn->scn_phys.scn_bookmark, sizeof (*zb)) == 0 ||
zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) {
dprintf("resuming at %llx/%llx/%llx/%llx\n",
(longlong_t)zb->zb_objset,
(longlong_t)zb->zb_object,
(longlong_t)zb->zb_level,
(longlong_t)zb->zb_blkid);
bzero(&scn->scn_phys.scn_bookmark, sizeof (*zb));
}
}
return (B_FALSE);
}
/*
* Return nonzero on i/o error.
* Return new buf to write out in *bufp.
*/
__attribute__((always_inline)) static int
dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
dnode_phys_t *dnp, const blkptr_t *bp,
const zbookmark_t *zb, dmu_tx_t *tx, arc_buf_t **bufp)
{
dsl_pool_t *dp = scn->scn_dp;
int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
int err;
if (BP_GET_LEVEL(bp) > 0) {
uint32_t flags = ARC_WAIT;
int i;
blkptr_t *cbp;
int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
err = arc_read_nolock(NULL, dp->dp_spa, bp,
arc_getbuf_func, bufp,
ZIO_PRIORITY_ASYNC_READ, zio_flags, &flags, zb);
if (err) {
scn->scn_phys.scn_errors++;
return (err);
}
for (i = 0, cbp = (*bufp)->b_data; i < epb; i++, cbp++) {
dsl_scan_prefetch(scn, *bufp, cbp, zb->zb_objset,
zb->zb_object, zb->zb_blkid * epb + i);
}
for (i = 0, cbp = (*bufp)->b_data; i < epb; i++, cbp++) {
zbookmark_t czb;
SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
zb->zb_level - 1,
zb->zb_blkid * epb + i);
dsl_scan_visitbp(cbp, &czb, dnp,
*bufp, ds, scn, ostype, tx);
}
} else if (BP_GET_TYPE(bp) == DMU_OT_USERGROUP_USED) {
uint32_t flags = ARC_WAIT;
err = arc_read_nolock(NULL, dp->dp_spa, bp,
arc_getbuf_func, bufp,
ZIO_PRIORITY_ASYNC_READ, zio_flags, &flags, zb);
if (err) {
scn->scn_phys.scn_errors++;
return (err);
}
} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
uint32_t flags = ARC_WAIT;
dnode_phys_t *cdnp;
int i, j;
int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
err = arc_read_nolock(NULL, dp->dp_spa, bp,
arc_getbuf_func, bufp,
ZIO_PRIORITY_ASYNC_READ, zio_flags, &flags, zb);
if (err) {
scn->scn_phys.scn_errors++;
return (err);
}
for (i = 0, cdnp = (*bufp)->b_data; i < epb; i++, cdnp++) {
for (j = 0; j < cdnp->dn_nblkptr; j++) {
blkptr_t *cbp = &cdnp->dn_blkptr[j];
dsl_scan_prefetch(scn, *bufp, cbp,
zb->zb_objset, zb->zb_blkid * epb + i, j);
}
}
for (i = 0, cdnp = (*bufp)->b_data; i < epb; i++, cdnp++) {
dsl_scan_visitdnode(scn, ds, ostype,
cdnp, *bufp, zb->zb_blkid * epb + i, tx);
}
} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
uint32_t flags = ARC_WAIT;
objset_phys_t *osp;
err = arc_read_nolock(NULL, dp->dp_spa, bp,
arc_getbuf_func, bufp,
ZIO_PRIORITY_ASYNC_READ, zio_flags, &flags, zb);
if (err) {
scn->scn_phys.scn_errors++;
return (err);
}
osp = (*bufp)->b_data;
dsl_scan_visitdnode(scn, ds, osp->os_type,
&osp->os_meta_dnode, *bufp, DMU_META_DNODE_OBJECT, tx);
if (OBJSET_BUF_HAS_USERUSED(*bufp)) {
/*
* We also always visit user/group accounting
* objects, and never skip them, even if we are
* pausing. This is necessary so that the space
* deltas from this txg get integrated.
*/
dsl_scan_visitdnode(scn, ds, osp->os_type,
&osp->os_groupused_dnode, *bufp,
DMU_GROUPUSED_OBJECT, tx);
dsl_scan_visitdnode(scn, ds, osp->os_type,
&osp->os_userused_dnode, *bufp,
DMU_USERUSED_OBJECT, tx);
}
}
return (0);
}
__attribute__((always_inline)) static void
dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
dmu_objset_type_t ostype, dnode_phys_t *dnp, arc_buf_t *buf,
uint64_t object, dmu_tx_t *tx)
{
int j;
for (j = 0; j < dnp->dn_nblkptr; j++) {
zbookmark_t czb;
SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
dnp->dn_nlevels - 1, j);
dsl_scan_visitbp(&dnp->dn_blkptr[j],
&czb, dnp, buf, ds, scn, ostype, tx);
}
if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
zbookmark_t czb;
SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
0, DMU_SPILL_BLKID);
dsl_scan_visitbp(&dnp->dn_spill,
&czb, dnp, buf, ds, scn, ostype, tx);
}
}
/*
* The arguments are in this order because mdb can only print the
* first 5; we want them to be useful.
*/
static void
dsl_scan_visitbp(blkptr_t *bp, const zbookmark_t *zb,
dnode_phys_t *dnp, arc_buf_t *pbuf,
dsl_dataset_t *ds, dsl_scan_t *scn, dmu_objset_type_t ostype,
dmu_tx_t *tx)
{
dsl_pool_t *dp = scn->scn_dp;
arc_buf_t *buf = NULL;
blkptr_t *bp_toread;
bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP);
*bp_toread = *bp;
/* ASSERT(pbuf == NULL || arc_released(pbuf)); */
if (dsl_scan_check_pause(scn, zb))
goto out;
if (dsl_scan_check_resume(scn, dnp, zb))
goto out;
if (bp->blk_birth == 0)
goto out;
scn->scn_visited_this_txg++;
/*
* This debugging is commented out to conserve stack space. This
* function is called recursively and the debugging addes several
* bytes to the stack for each call. It can be commented back in
* if required to debug an issue in dsl_scan_visitbp().
*
* dprintf_bp(bp,
* "visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx buf=%p bp=%p",
* ds, ds ? ds->ds_object : 0,
* zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid,
* pbuf, bp);
*/
if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
goto out;
if (BP_GET_TYPE(bp) != DMU_OT_USERGROUP_USED) {
/*
* For non-user-accounting blocks, we need to read the
* new bp (from a deleted snapshot, found in
* check_existing_xlation). If we used the old bp,
* pointers inside this block from before we resumed
* would be untranslated.
*
* For user-accounting blocks, we need to read the old
* bp, because we will apply the entire space delta to
* it (original untranslated -> translations from
* deleted snap -> now).
*/
*bp_toread = *bp;
}
if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx,
&buf) != 0)
goto out;
/*
* If dsl_scan_ddt() has aready visited this block, it will have
* already done any translations or scrubbing, so don't call the
* callback again.
*/
if (ddt_class_contains(dp->dp_spa,
scn->scn_phys.scn_ddt_class_max, bp)) {
ASSERT(buf == NULL);
goto out;
}
/*
* If this block is from the future (after cur_max_txg), then we
* are doing this on behalf of a deleted snapshot, and we will
* revisit the future block on the next pass of this dataset.
* Don't scan it now unless we need to because something
* under it was modified.
*/
if (bp->blk_birth <= scn->scn_phys.scn_cur_max_txg) {
scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
}
if (buf)
(void) arc_buf_remove_ref(buf, &buf);
out:
kmem_free(bp_toread, sizeof(blkptr_t));
}
static void
dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
dmu_tx_t *tx)
{
zbookmark_t zb;
SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
dsl_scan_visitbp(bp, &zb, NULL, NULL,
ds, scn, DMU_OST_NONE, tx);
dprintf_ds(ds, "finished scan%s", "");
}
void
dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
{
dsl_pool_t *dp = ds->ds_dir->dd_pool;
dsl_scan_t *scn = dp->dp_scan;
uint64_t mintxg;
if (scn->scn_phys.scn_state != DSS_SCANNING)
return;
if (scn->scn_phys.scn_bookmark.zb_objset == ds->ds_object) {
if (dsl_dataset_is_snapshot(ds)) {
/* Note, scn_cur_{min,max}_txg stays the same. */
scn->scn_phys.scn_bookmark.zb_objset =
ds->ds_phys->ds_next_snap_obj;
zfs_dbgmsg("destroying ds %llu; currently traversing; "
"reset zb_objset to %llu",
(u_longlong_t)ds->ds_object,
(u_longlong_t)ds->ds_phys->ds_next_snap_obj);
scn->scn_phys.scn_flags |= DSF_VISIT_DS_AGAIN;
} else {
SET_BOOKMARK(&scn->scn_phys.scn_bookmark,
ZB_DESTROYED_OBJSET, 0, 0, 0);
zfs_dbgmsg("destroying ds %llu; currently traversing; "
"reset bookmark to -1,0,0,0",
(u_longlong_t)ds->ds_object);
}
} else if (zap_lookup_int_key(dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj, ds->ds_object, &mintxg) == 0) {
ASSERT3U(ds->ds_phys->ds_num_children, <=, 1);
VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
if (dsl_dataset_is_snapshot(ds)) {
/*
* We keep the same mintxg; it could be >
* ds_creation_txg if the previous snapshot was
* deleted too.
*/
VERIFY(zap_add_int_key(dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj,
ds->ds_phys->ds_next_snap_obj, mintxg, tx) == 0);
zfs_dbgmsg("destroying ds %llu; in queue; "
"replacing with %llu",
(u_longlong_t)ds->ds_object,
(u_longlong_t)ds->ds_phys->ds_next_snap_obj);
} else {
zfs_dbgmsg("destroying ds %llu; in queue; removing",
(u_longlong_t)ds->ds_object);
}
} else {
zfs_dbgmsg("destroying ds %llu; ignoring",
(u_longlong_t)ds->ds_object);
}
/*
* dsl_scan_sync() should be called after this, and should sync
* out our changed state, but just to be safe, do it here.
*/
dsl_scan_sync_state(scn, tx);
}
void
dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
{
dsl_pool_t *dp = ds->ds_dir->dd_pool;
dsl_scan_t *scn = dp->dp_scan;
uint64_t mintxg;
if (scn->scn_phys.scn_state != DSS_SCANNING)
return;
ASSERT(ds->ds_phys->ds_prev_snap_obj != 0);
if (scn->scn_phys.scn_bookmark.zb_objset == ds->ds_object) {
scn->scn_phys.scn_bookmark.zb_objset =
ds->ds_phys->ds_prev_snap_obj;
zfs_dbgmsg("snapshotting ds %llu; currently traversing; "
"reset zb_objset to %llu",
(u_longlong_t)ds->ds_object,
(u_longlong_t)ds->ds_phys->ds_prev_snap_obj);
} else if (zap_lookup_int_key(dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj, ds->ds_object, &mintxg) == 0) {
VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
VERIFY(zap_add_int_key(dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj,
ds->ds_phys->ds_prev_snap_obj, mintxg, tx) == 0);
zfs_dbgmsg("snapshotting ds %llu; in queue; "
"replacing with %llu",
(u_longlong_t)ds->ds_object,
(u_longlong_t)ds->ds_phys->ds_prev_snap_obj);
}
dsl_scan_sync_state(scn, tx);
}
void
dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
{
dsl_pool_t *dp = ds1->ds_dir->dd_pool;
dsl_scan_t *scn = dp->dp_scan;
uint64_t mintxg;
if (scn->scn_phys.scn_state != DSS_SCANNING)
return;
if (scn->scn_phys.scn_bookmark.zb_objset == ds1->ds_object) {
scn->scn_phys.scn_bookmark.zb_objset = ds2->ds_object;
zfs_dbgmsg("clone_swap ds %llu; currently traversing; "
"reset zb_objset to %llu",
(u_longlong_t)ds1->ds_object,
(u_longlong_t)ds2->ds_object);
} else if (scn->scn_phys.scn_bookmark.zb_objset == ds2->ds_object) {
scn->scn_phys.scn_bookmark.zb_objset = ds1->ds_object;
zfs_dbgmsg("clone_swap ds %llu; currently traversing; "
"reset zb_objset to %llu",
(u_longlong_t)ds2->ds_object,
(u_longlong_t)ds1->ds_object);
}
if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
ds1->ds_object, &mintxg) == 0) {
int err;
ASSERT3U(mintxg, ==, ds1->ds_phys->ds_prev_snap_txg);
ASSERT3U(mintxg, ==, ds2->ds_phys->ds_prev_snap_txg);
VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
err = zap_add_int_key(dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg, tx);
VERIFY(err == 0 || err == EEXIST);
if (err == EEXIST) {
/* Both were there to begin with */
VERIFY(0 == zap_add_int_key(dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj,
ds1->ds_object, mintxg, tx));
}
zfs_dbgmsg("clone_swap ds %llu; in queue; "
"replacing with %llu",
(u_longlong_t)ds1->ds_object,
(u_longlong_t)ds2->ds_object);
} else if (zap_lookup_int_key(dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg) == 0) {
ASSERT3U(mintxg, ==, ds1->ds_phys->ds_prev_snap_txg);
ASSERT3U(mintxg, ==, ds2->ds_phys->ds_prev_snap_txg);
VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
VERIFY(0 == zap_add_int_key(dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg, tx));
zfs_dbgmsg("clone_swap ds %llu; in queue; "
"replacing with %llu",
(u_longlong_t)ds2->ds_object,
(u_longlong_t)ds1->ds_object);
}
dsl_scan_sync_state(scn, tx);
}
struct enqueue_clones_arg {
dmu_tx_t *tx;
uint64_t originobj;
};
/* ARGSUSED */
static int
enqueue_clones_cb(spa_t *spa, uint64_t dsobj, const char *dsname, void *arg)
{
struct enqueue_clones_arg *eca = arg;
dsl_dataset_t *ds;
int err;
dsl_pool_t *dp = spa->spa_dsl_pool;
dsl_scan_t *scn = dp->dp_scan;
err = dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds);
if (err)
return (err);
if (ds->ds_dir->dd_phys->dd_origin_obj == eca->originobj) {
while (ds->ds_phys->ds_prev_snap_obj != eca->originobj) {
dsl_dataset_t *prev;
err = dsl_dataset_hold_obj(dp,
ds->ds_phys->ds_prev_snap_obj, FTAG, &prev);
dsl_dataset_rele(ds, FTAG);
if (err)
return (err);
ds = prev;
}
VERIFY(zap_add_int_key(dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj, ds->ds_object,
ds->ds_phys->ds_prev_snap_txg, eca->tx) == 0);
}
dsl_dataset_rele(ds, FTAG);
return (0);
}
static void
dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
{
dsl_pool_t *dp = scn->scn_dp;
dsl_dataset_t *ds;
objset_t *os;
char *dsname;
VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
if (dmu_objset_from_ds(ds, &os))
goto out;
/*
* Only the ZIL in the head (non-snapshot) is valid. Even though
* snapshots can have ZIL block pointers (which may be the same
* BP as in the head), they must be ignored. So we traverse the
* ZIL here, rather than in scan_recurse(), because the regular
* snapshot block-sharing rules don't apply to it.
*/
if (DSL_SCAN_IS_SCRUB_RESILVER(scn) && !dsl_dataset_is_snapshot(ds))
dsl_scan_zil(dp, &os->os_zil_header);
/*
* Iterate over the bps in this ds.
*/
dmu_buf_will_dirty(ds->ds_dbuf, tx);
dsl_scan_visit_rootbp(scn, ds, &ds->ds_phys->ds_bp, tx);
dsname = kmem_alloc(ZFS_MAXNAMELEN, KM_SLEEP);
dsl_dataset_name(ds, dsname);
zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
"pausing=%u",
(longlong_t)dsobj, dsname,
(longlong_t)scn->scn_phys.scn_cur_min_txg,
(longlong_t)scn->scn_phys.scn_cur_max_txg,
(int)scn->scn_pausing);
kmem_free(dsname, ZFS_MAXNAMELEN);
if (scn->scn_pausing)
goto out;
/*
* We've finished this pass over this dataset.
*/
/*
* If we did not completely visit this dataset, do another pass.
*/
if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
zfs_dbgmsg("incomplete pass; visiting again");
scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
VERIFY(zap_add_int_key(dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj, ds->ds_object,
scn->scn_phys.scn_cur_max_txg, tx) == 0);
goto out;
}
/*
* Add descendent datasets to work queue.
*/
if (ds->ds_phys->ds_next_snap_obj != 0) {
VERIFY(zap_add_int_key(dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj, ds->ds_phys->ds_next_snap_obj,
ds->ds_phys->ds_creation_txg, tx) == 0);
}
if (ds->ds_phys->ds_num_children > 1) {
boolean_t usenext = B_FALSE;
if (ds->ds_phys->ds_next_clones_obj != 0) {
uint64_t count;
/*
* A bug in a previous version of the code could
* cause upgrade_clones_cb() to not set
* ds_next_snap_obj when it should, leading to a
* missing entry. Therefore we can only use the
* next_clones_obj when its count is correct.
*/
int err = zap_count(dp->dp_meta_objset,
ds->ds_phys->ds_next_clones_obj, &count);
if (err == 0 &&
count == ds->ds_phys->ds_num_children - 1)
usenext = B_TRUE;
}
if (usenext) {
VERIFY(zap_join_key(dp->dp_meta_objset,
ds->ds_phys->ds_next_clones_obj,
scn->scn_phys.scn_queue_obj,
ds->ds_phys->ds_creation_txg, tx) == 0);
} else {
struct enqueue_clones_arg eca;
eca.tx = tx;
eca.originobj = ds->ds_object;
(void) dmu_objset_find_spa(ds->ds_dir->dd_pool->dp_spa,
NULL, enqueue_clones_cb, &eca, DS_FIND_CHILDREN);
}
}
out:
dsl_dataset_rele(ds, FTAG);
}
/* ARGSUSED */
static int
enqueue_cb(spa_t *spa, uint64_t dsobj, const char *dsname, void *arg)
{
dmu_tx_t *tx = arg;
dsl_dataset_t *ds;
int err;
dsl_pool_t *dp = spa->spa_dsl_pool;
dsl_scan_t *scn = dp->dp_scan;
err = dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds);
if (err)
return (err);
while (ds->ds_phys->ds_prev_snap_obj != 0) {
dsl_dataset_t *prev;
err = dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj,
FTAG, &prev);
if (err) {
dsl_dataset_rele(ds, FTAG);
return (err);
}
/*
* If this is a clone, we don't need to worry about it for now.
*/
if (prev->ds_phys->ds_next_snap_obj != ds->ds_object) {
dsl_dataset_rele(ds, FTAG);
dsl_dataset_rele(prev, FTAG);
return (0);
}
dsl_dataset_rele(ds, FTAG);
ds = prev;
}
VERIFY(zap_add_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
ds->ds_object, ds->ds_phys->ds_prev_snap_txg, tx) == 0);
dsl_dataset_rele(ds, FTAG);
return (0);
}
/*
* Scrub/dedup interaction.
*
* If there are N references to a deduped block, we don't want to scrub it
* N times -- ideally, we should scrub it exactly once.
*
* We leverage the fact that the dde's replication class (enum ddt_class)
* is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
* (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
*
* To prevent excess scrubbing, the scrub begins by walking the DDT
* to find all blocks with refcnt > 1, and scrubs each of these once.
* Since there are two replication classes which contain blocks with
* refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
* Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
*
* There would be nothing more to say if a block's refcnt couldn't change
* during a scrub, but of course it can so we must account for changes
* in a block's replication class.
*
* Here's an example of what can occur:
*
* If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
* when visited during the top-down scrub phase, it will be scrubbed twice.
* This negates our scrub optimization, but is otherwise harmless.
*
* If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
* on each visit during the top-down scrub phase, it will never be scrubbed.
* To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
* reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
* DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
* while a scrub is in progress, it scrubs the block right then.
*/
static void
dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
{
ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
ddt_entry_t dde;
int error;
uint64_t n = 0;
bzero(&dde, sizeof (ddt_entry_t));
while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) {
ddt_t *ddt;
if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
break;
dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
(longlong_t)ddb->ddb_class,
(longlong_t)ddb->ddb_type,
(longlong_t)ddb->ddb_checksum,
(longlong_t)ddb->ddb_cursor);
/* There should be no pending changes to the dedup table */
ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
ASSERT(avl_first(&ddt->ddt_tree) == NULL);
dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx);
n++;
if (dsl_scan_check_pause(scn, NULL))
break;
}
zfs_dbgmsg("scanned %llu ddt entries with class_max = %u; pausing=%u",
(longlong_t)n, (int)scn->scn_phys.scn_ddt_class_max,
(int)scn->scn_pausing);
ASSERT(error == 0 || error == ENOENT);
ASSERT(error != ENOENT ||
ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
}
/* ARGSUSED */
void
dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
ddt_entry_t *dde, dmu_tx_t *tx)
{
const ddt_key_t *ddk = &dde->dde_key;
ddt_phys_t *ddp = dde->dde_phys;
blkptr_t bp;
zbookmark_t zb = { 0 };
int p;
if (scn->scn_phys.scn_state != DSS_SCANNING)
return;
for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
if (ddp->ddp_phys_birth == 0 ||
ddp->ddp_phys_birth > scn->scn_phys.scn_cur_max_txg)
continue;
ddt_bp_create(checksum, ddk, ddp, &bp);
scn->scn_visited_this_txg++;
scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
}
}
static void
dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
{
dsl_pool_t *dp = scn->scn_dp;
zap_cursor_t *zc;
zap_attribute_t *za;
if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
scn->scn_phys.scn_ddt_class_max) {
scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
dsl_scan_ddt(scn, tx);
if (scn->scn_pausing)
return;
}
if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
/* First do the MOS & ORIGIN */
scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
dsl_scan_visit_rootbp(scn, NULL,
&dp->dp_meta_rootbp, tx);
spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
if (scn->scn_pausing)
return;
if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
VERIFY(0 == dmu_objset_find_spa(dp->dp_spa,
NULL, enqueue_cb, tx, DS_FIND_CHILDREN));
} else {
dsl_scan_visitds(scn,
dp->dp_origin_snap->ds_object, tx);
}
ASSERT(!scn->scn_pausing);
} else if (scn->scn_phys.scn_bookmark.zb_objset !=
ZB_DESTROYED_OBJSET) {
/*
* If we were paused, continue from here. Note if the
* ds we were paused on was deleted, the zb_objset may
* be -1, so we will skip this and find a new objset
* below.
*/
dsl_scan_visitds(scn, scn->scn_phys.scn_bookmark.zb_objset, tx);
if (scn->scn_pausing)
return;
}
/*
* In case we were paused right at the end of the ds, zero the
* bookmark so we don't think that we're still trying to resume.
*/
bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_t));
zc = kmem_alloc(sizeof(zap_cursor_t), KM_SLEEP);
za = kmem_alloc(sizeof(zap_attribute_t), KM_SLEEP);
/* keep pulling things out of the zap-object-as-queue */
while (zap_cursor_init(zc, dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj),
zap_cursor_retrieve(zc, za) == 0) {
dsl_dataset_t *ds;
uint64_t dsobj;
dsobj = strtonum(za->za_name, NULL);
VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj, dsobj, tx));
/* Set up min/max txg */
VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
if (za->za_first_integer != 0) {
scn->scn_phys.scn_cur_min_txg =
MAX(scn->scn_phys.scn_min_txg,
za->za_first_integer);
} else {
scn->scn_phys.scn_cur_min_txg =
MAX(scn->scn_phys.scn_min_txg,
ds->ds_phys->ds_prev_snap_txg);
}
scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
dsl_dataset_rele(ds, FTAG);
dsl_scan_visitds(scn, dsobj, tx);
zap_cursor_fini(zc);
if (scn->scn_pausing)
goto out;
}
zap_cursor_fini(zc);
out:
kmem_free(za, sizeof(zap_attribute_t));
kmem_free(zc, sizeof(zap_cursor_t));
}
static int
dsl_scan_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
{
dsl_scan_t *scn = arg;
uint64_t elapsed_nanosecs;
elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
if (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
(elapsed_nanosecs / MICROSEC > zfs_free_min_time_ms &&
txg_sync_waiting(scn->scn_dp)) ||
spa_shutting_down(scn->scn_dp->dp_spa))
return (ERESTART);
zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
dmu_tx_get_txg(tx), bp, 0));
dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
-bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
-BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
scn->scn_visited_this_txg++;
return (0);
}
boolean_t
dsl_scan_active(dsl_scan_t *scn)
{
spa_t *spa = scn->scn_dp->dp_spa;
uint64_t used = 0, comp, uncomp;
if (spa->spa_load_state != SPA_LOAD_NONE)
return (B_FALSE);
if (spa_shutting_down(spa))
return (B_FALSE);
if (scn->scn_phys.scn_state == DSS_SCANNING)
return (B_TRUE);
if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
(void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
&used, &comp, &uncomp);
}
return (used != 0);
}
void
dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
{
dsl_scan_t *scn = dp->dp_scan;
spa_t *spa = dp->dp_spa;
int err;
/*
* Check for scn_restart_txg before checking spa_load_state, so
* that we can restart an old-style scan while the pool is being
* imported (see dsl_scan_init).
*/
if (scn->scn_restart_txg != 0 &&
scn->scn_restart_txg <= tx->tx_txg) {
pool_scan_func_t func = POOL_SCAN_SCRUB;
dsl_scan_done(scn, B_FALSE, tx);
if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
func = POOL_SCAN_RESILVER;
zfs_dbgmsg("restarting scan func=%u txg=%llu",
func, tx->tx_txg);
dsl_scan_setup_sync(scn, &func, tx);
}
if (!dsl_scan_active(scn) ||
spa_sync_pass(dp->dp_spa) > 1)
return;
scn->scn_visited_this_txg = 0;
scn->scn_pausing = B_FALSE;
scn->scn_sync_start_time = gethrtime();
spa->spa_scrub_active = B_TRUE;
/*
* First process the free list. If we pause the free, don't do
* any scanning. This ensures that there is no free list when
* we are scanning, so the scan code doesn't have to worry about
* traversing it.
*/
if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
NULL, ZIO_FLAG_MUSTSUCCEED);
err = bpobj_iterate(&dp->dp_free_bpobj,
dsl_scan_free_cb, scn, tx);
VERIFY3U(0, ==, zio_wait(scn->scn_zio_root));
if (scn->scn_visited_this_txg) {
zfs_dbgmsg("freed %llu blocks in %llums from "
"free_bpobj txg %llu",
(longlong_t)scn->scn_visited_this_txg,
(longlong_t)
(gethrtime() - scn->scn_sync_start_time) / MICROSEC,
(longlong_t)tx->tx_txg);
scn->scn_visited_this_txg = 0;
/*
* Re-sync the ddt so that we can further modify
* it when doing bprewrite.
*/
ddt_sync(spa, tx->tx_txg);
}
if (err == ERESTART)
return;
}
if (scn->scn_phys.scn_state != DSS_SCANNING)
return;
if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
scn->scn_phys.scn_ddt_class_max) {
zfs_dbgmsg("doing scan sync txg %llu; "
"ddt bm=%llu/%llu/%llu/%llx",
(longlong_t)tx->tx_txg,
(longlong_t)scn->scn_phys.scn_ddt_bookmark.ddb_class,
(longlong_t)scn->scn_phys.scn_ddt_bookmark.ddb_type,
(longlong_t)scn->scn_phys.scn_ddt_bookmark.ddb_checksum,
(longlong_t)scn->scn_phys.scn_ddt_bookmark.ddb_cursor);
ASSERT(scn->scn_phys.scn_bookmark.zb_objset == 0);
ASSERT(scn->scn_phys.scn_bookmark.zb_object == 0);
ASSERT(scn->scn_phys.scn_bookmark.zb_level == 0);
ASSERT(scn->scn_phys.scn_bookmark.zb_blkid == 0);
} else {
zfs_dbgmsg("doing scan sync txg %llu; bm=%llu/%llu/%llu/%llu",
(longlong_t)tx->tx_txg,
(longlong_t)scn->scn_phys.scn_bookmark.zb_objset,
(longlong_t)scn->scn_phys.scn_bookmark.zb_object,
(longlong_t)scn->scn_phys.scn_bookmark.zb_level,
(longlong_t)scn->scn_phys.scn_bookmark.zb_blkid);
}
scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
NULL, ZIO_FLAG_CANFAIL);
dsl_scan_visit(scn, tx);
(void) zio_wait(scn->scn_zio_root);
scn->scn_zio_root = NULL;
zfs_dbgmsg("visited %llu blocks in %llums",
(longlong_t)scn->scn_visited_this_txg,
(longlong_t)(gethrtime() - scn->scn_sync_start_time) / MICROSEC);
if (!scn->scn_pausing) {
/* finished with scan. */
zfs_dbgmsg("finished scan txg %llu", (longlong_t)tx->tx_txg);
dsl_scan_done(scn, B_TRUE, tx);
}
if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
mutex_enter(&spa->spa_scrub_lock);
while (spa->spa_scrub_inflight > 0) {
cv_wait(&spa->spa_scrub_io_cv,
&spa->spa_scrub_lock);
}
mutex_exit(&spa->spa_scrub_lock);
}
dsl_scan_sync_state(scn, tx);
}
/*
* This will start a new scan, or restart an existing one.
*/
void
dsl_resilver_restart(dsl_pool_t *dp, uint64_t txg)
{
if (txg == 0) {
dmu_tx_t *tx;
tx = dmu_tx_create_dd(dp->dp_mos_dir);
VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT));
txg = dmu_tx_get_txg(tx);
dp->dp_scan->scn_restart_txg = txg;
dmu_tx_commit(tx);
} else {
dp->dp_scan->scn_restart_txg = txg;
}
zfs_dbgmsg("restarting resilver txg=%llu", txg);
}
boolean_t
dsl_scan_resilvering(dsl_pool_t *dp)
{
return (dp->dp_scan->scn_phys.scn_state == DSS_SCANNING &&
dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
}
/*
* scrub consumers
*/
static void
count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp)
{
int i;
/*
* If we resume after a reboot, zab will be NULL; don't record
* incomplete stats in that case.
*/
if (zab == NULL)
return;
for (i = 0; i < 4; i++) {
int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
zfs_blkstat_t *zb = &zab->zab_type[l][t];
int equal;
zb->zb_count++;
zb->zb_asize += BP_GET_ASIZE(bp);
zb->zb_lsize += BP_GET_LSIZE(bp);
zb->zb_psize += BP_GET_PSIZE(bp);
zb->zb_gangs += BP_COUNT_GANG(bp);
switch (BP_GET_NDVAS(bp)) {
case 2:
if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
DVA_GET_VDEV(&bp->blk_dva[1]))
zb->zb_ditto_2_of_2_samevdev++;
break;
case 3:
equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
DVA_GET_VDEV(&bp->blk_dva[1])) +
(DVA_GET_VDEV(&bp->blk_dva[0]) ==
DVA_GET_VDEV(&bp->blk_dva[2])) +
(DVA_GET_VDEV(&bp->blk_dva[1]) ==
DVA_GET_VDEV(&bp->blk_dva[2]));
if (equal == 1)
zb->zb_ditto_2_of_3_samevdev++;
else if (equal == 3)
zb->zb_ditto_3_of_3_samevdev++;
break;
}
}
}
static void
dsl_scan_scrub_done(zio_t *zio)
{
spa_t *spa = zio->io_spa;
zio_data_buf_free(zio->io_data, zio->io_size);
mutex_enter(&spa->spa_scrub_lock);
spa->spa_scrub_inflight--;
cv_broadcast(&spa->spa_scrub_io_cv);
if (zio->io_error && (zio->io_error != ECKSUM ||
!(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors++;
}
mutex_exit(&spa->spa_scrub_lock);
}
static int
dsl_scan_scrub_cb(dsl_pool_t *dp,
const blkptr_t *bp, const zbookmark_t *zb)
{
dsl_scan_t *scn = dp->dp_scan;
size_t size = BP_GET_PSIZE(bp);
spa_t *spa = dp->dp_spa;
uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp);
boolean_t needs_io = B_FALSE;
int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
int zio_priority = 0;
int scan_delay = 0;
int d;
if (phys_birth <= scn->scn_phys.scn_min_txg ||
phys_birth >= scn->scn_phys.scn_max_txg)
return (0);
count_block(dp->dp_blkstats, bp);
ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
zio_flags |= ZIO_FLAG_SCRUB;
zio_priority = ZIO_PRIORITY_SCRUB;
needs_io = B_TRUE;
scan_delay = zfs_scrub_delay;
} else if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) {
zio_flags |= ZIO_FLAG_RESILVER;
zio_priority = ZIO_PRIORITY_RESILVER;
needs_io = B_FALSE;
scan_delay = zfs_resilver_delay;
}
/* If it's an intent log block, failure is expected. */
if (zb->zb_level == ZB_ZIL_LEVEL)
zio_flags |= ZIO_FLAG_SPECULATIVE;
for (d = 0; d < BP_GET_NDVAS(bp); d++) {
vdev_t *vd = vdev_lookup_top(spa,
DVA_GET_VDEV(&bp->blk_dva[d]));
/*
* Keep track of how much data we've examined so that
* zpool(1M) status can make useful progress reports.
*/
scn->scn_phys.scn_examined += DVA_GET_ASIZE(&bp->blk_dva[d]);
spa->spa_scan_pass_exam += DVA_GET_ASIZE(&bp->blk_dva[d]);
/* if it's a resilver, this may not be in the target range */
if (!needs_io) {
if (DVA_GET_GANG(&bp->blk_dva[d])) {
/*
* Gang members may be spread across multiple
* vdevs, so the best estimate we have is the
* scrub range, which has already been checked.
* XXX -- it would be better to change our
* allocation policy to ensure that all
* gang members reside on the same vdev.
*/
needs_io = B_TRUE;
} else {
needs_io = vdev_dtl_contains(vd, DTL_PARTIAL,
phys_birth, 1);
}
}
}
if (needs_io && !zfs_no_scrub_io) {
vdev_t *rvd = spa->spa_root_vdev;
uint64_t maxinflight = rvd->vdev_children * zfs_top_maxinflight;
void *data = zio_data_buf_alloc(size);
mutex_enter(&spa->spa_scrub_lock);
while (spa->spa_scrub_inflight >= maxinflight)
cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
spa->spa_scrub_inflight++;
mutex_exit(&spa->spa_scrub_lock);
/*
* If we're seeing recent (zfs_scan_idle) "important" I/Os
* then throttle our workload to limit the impact of a scan.
*/
if (ddi_get_lbolt64() - spa->spa_last_io <= zfs_scan_idle)
delay(scan_delay);
zio_nowait(zio_read(NULL, spa, bp, data, size,
dsl_scan_scrub_done, NULL, zio_priority,
zio_flags, zb));
}
/* do not relocate this block */
return (0);
}
int
dsl_scan(dsl_pool_t *dp, pool_scan_func_t func)
{
spa_t *spa = dp->dp_spa;
/*
* Purge all vdev caches and probe all devices. We do this here
* rather than in sync context because this requires a writer lock
* on the spa_config lock, which we can't do from sync context. The
* spa_scrub_reopen flag indicates that vdev_open() should not
* attempt to start another scrub.
*/
spa_vdev_state_enter(spa, SCL_NONE);
spa->spa_scrub_reopen = B_TRUE;
vdev_reopen(spa->spa_root_vdev);
spa->spa_scrub_reopen = B_FALSE;
(void) spa_vdev_state_exit(spa, NULL, 0);
return (dsl_sync_task_do(dp, dsl_scan_setup_check,
dsl_scan_setup_sync, dp->dp_scan, &func, 0));
}
Add missing ZFS tunables This commit adds module options for all existing zfs tunables. Ideally the average user should never need to modify any of these values. However, in practice sometimes you do need to tweak these values for one reason or another. In those cases it's nice not to have to resort to rebuilding from source. All tunables are visable to modinfo and the list is as follows: $ modinfo module/zfs/zfs.ko filename: module/zfs/zfs.ko license: CDDL author: Sun Microsystems/Oracle, Lawrence Livermore National Laboratory description: ZFS srcversion: 8EAB1D71DACE05B5AA61567 depends: spl,znvpair,zcommon,zunicode,zavl vermagic: 2.6.32-131.0.5.el6.x86_64 SMP mod_unload modversions parm: zvol_major:Major number for zvol device (uint) parm: zvol_threads:Number of threads for zvol device (uint) parm: zio_injection_enabled:Enable fault injection (int) parm: zio_bulk_flags:Additional flags to pass to bulk buffers (int) parm: zio_delay_max:Max zio millisec delay before posting event (int) parm: zio_requeue_io_start_cut_in_line:Prioritize requeued I/O (bool) parm: zil_replay_disable:Disable intent logging replay (int) parm: zfs_nocacheflush:Disable cache flushes (bool) parm: zfs_read_chunk_size:Bytes to read per chunk (long) parm: zfs_vdev_max_pending:Max pending per-vdev I/Os (int) parm: zfs_vdev_min_pending:Min pending per-vdev I/Os (int) parm: zfs_vdev_aggregation_limit:Max vdev I/O aggregation size (int) parm: zfs_vdev_time_shift:Deadline time shift for vdev I/O (int) parm: zfs_vdev_ramp_rate:Exponential I/O issue ramp-up rate (int) parm: zfs_vdev_read_gap_limit:Aggregate read I/O over gap (int) parm: zfs_vdev_write_gap_limit:Aggregate write I/O over gap (int) parm: zfs_vdev_scheduler:I/O scheduler (charp) parm: zfs_vdev_cache_max:Inflate reads small than max (int) parm: zfs_vdev_cache_size:Total size of the per-disk cache (int) parm: zfs_vdev_cache_bshift:Shift size to inflate reads too (int) parm: zfs_scrub_limit:Max scrub/resilver I/O per leaf vdev (int) parm: zfs_recover:Set to attempt to recover from fatal errors (int) parm: spa_config_path:SPA config file (/etc/zfs/zpool.cache) (charp) parm: zfs_zevent_len_max:Max event queue length (int) parm: zfs_zevent_cols:Max event column width (int) parm: zfs_zevent_console:Log events to the console (int) parm: zfs_top_maxinflight:Max I/Os per top-level (int) parm: zfs_resilver_delay:Number of ticks to delay resilver (int) parm: zfs_scrub_delay:Number of ticks to delay scrub (int) parm: zfs_scan_idle:Idle window in clock ticks (int) parm: zfs_scan_min_time_ms:Min millisecs to scrub per txg (int) parm: zfs_free_min_time_ms:Min millisecs to free per txg (int) parm: zfs_resilver_min_time_ms:Min millisecs to resilver per txg (int) parm: zfs_no_scrub_io:Set to disable scrub I/O (bool) parm: zfs_no_scrub_prefetch:Set to disable scrub prefetching (bool) parm: zfs_txg_timeout:Max seconds worth of delta per txg (int) parm: zfs_no_write_throttle:Disable write throttling (int) parm: zfs_write_limit_shift:log2(fraction of memory) per txg (int) parm: zfs_txg_synctime_ms:Target milliseconds between tgx sync (int) parm: zfs_write_limit_min:Min tgx write limit (ulong) parm: zfs_write_limit_max:Max tgx write limit (ulong) parm: zfs_write_limit_inflated:Inflated tgx write limit (ulong) parm: zfs_write_limit_override:Override tgx write limit (ulong) parm: zfs_prefetch_disable:Disable all ZFS prefetching (int) parm: zfetch_max_streams:Max number of streams per zfetch (uint) parm: zfetch_min_sec_reap:Min time before stream reclaim (uint) parm: zfetch_block_cap:Max number of blocks to fetch at a time (uint) parm: zfetch_array_rd_sz:Number of bytes in a array_read (ulong) parm: zfs_pd_blks_max:Max number of blocks to prefetch (int) parm: zfs_dedup_prefetch:Enable prefetching dedup-ed blks (int) parm: zfs_arc_min:Min arc size (ulong) parm: zfs_arc_max:Max arc size (ulong) parm: zfs_arc_meta_limit:Meta limit for arc size (ulong) parm: zfs_arc_reduce_dnlc_percent:Meta reclaim percentage (int) parm: zfs_arc_grow_retry:Seconds before growing arc size (int) parm: zfs_arc_shrink_shift:log2(fraction of arc to reclaim) (int) parm: zfs_arc_p_min_shift:arc_c shift to calc min/max arc_p (int)
2011-05-03 22:09:28 +00:00
#if defined(_KERNEL) && defined(HAVE_SPL)
module_param(zfs_top_maxinflight, int, 0644);
MODULE_PARM_DESC(zfs_top_maxinflight, "Max I/Os per top-level");
module_param(zfs_resilver_delay, int, 0644);
MODULE_PARM_DESC(zfs_resilver_delay, "Number of ticks to delay resilver");
module_param(zfs_scrub_delay, int, 0644);
MODULE_PARM_DESC(zfs_scrub_delay, "Number of ticks to delay scrub");
module_param(zfs_scan_idle, int, 0644);
MODULE_PARM_DESC(zfs_scan_idle, "Idle window in clock ticks");
module_param(zfs_scan_min_time_ms, int, 0644);
MODULE_PARM_DESC(zfs_scan_min_time_ms, "Min millisecs to scrub per txg");
module_param(zfs_free_min_time_ms, int, 0644);
MODULE_PARM_DESC(zfs_free_min_time_ms, "Min millisecs to free per txg");
module_param(zfs_resilver_min_time_ms, int, 0644);
MODULE_PARM_DESC(zfs_resilver_min_time_ms, "Min millisecs to resilver per txg");
module_param(zfs_no_scrub_io, int, 0644);
MODULE_PARM_DESC(zfs_no_scrub_io, "Set to disable scrub I/O");
module_param(zfs_no_scrub_prefetch, int, 0644);
MODULE_PARM_DESC(zfs_no_scrub_prefetch, "Set to disable scrub prefetching");
module_param(zfs_txg_timeout, int, 0644);
MODULE_PARM_DESC(zfs_txg_timeout, "Max seconds worth of delta per txg");
#endif