freebsd-nq/sys/dev/hwpmc/hwpmc_piv.c

1696 lines
50 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2003-2007 Joseph Koshy
* Copyright (c) 2007 The FreeBSD Foundation
* All rights reserved.
*
* Portions of this software were developed by A. Joseph Koshy under
* sponsorship from the FreeBSD Foundation and Google, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/pmc.h>
#include <sys/pmckern.h>
#include <sys/smp.h>
#include <sys/systm.h>
#include <machine/cpu.h>
#include <machine/cpufunc.h>
#include <machine/cputypes.h>
#include <machine/md_var.h>
#include <machine/specialreg.h>
/*
* PENTIUM 4 SUPPORT
*
* The P4 has 18 PMCs, divided into 4 groups with 4,4,4 and 6 PMCs
* respectively. Each PMC comprises of two model specific registers:
* a counter configuration control register (CCCR) and a counter
* register that holds the actual event counts.
*
* Configuring an event requires the use of one of 45 event selection
* control registers (ESCR). Events are associated with specific
* ESCRs. Each PMC group has a set of ESCRs it can use.
*
* - The BPU counter group (4 PMCs) can use the 16 ESCRs:
* BPU_ESCR{0,1}, IS_ESCR{0,1}, MOB_ESCR{0,1}, ITLB_ESCR{0,1},
* PMH_ESCR{0,1}, IX_ESCR{0,1}, FSB_ESCR{0,}, BSU_ESCR{0,1}.
*
* - The MS counter group (4 PMCs) can use the 6 ESCRs: MS_ESCR{0,1},
* TC_ESCR{0,1}, TBPU_ESCR{0,1}.
*
* - The FLAME counter group (4 PMCs) can use the 10 ESCRs:
* FLAME_ESCR{0,1}, FIRM_ESCR{0,1}, SAAT_ESCR{0,1}, U2L_ESCR{0,1},
* DAC_ESCR{0,1}.
*
* - The IQ counter group (6 PMCs) can use the 13 ESCRs: IQ_ESCR{0,1},
* ALF_ESCR{0,1}, RAT_ESCR{0,1}, SSU_ESCR0, CRU_ESCR{0,1,2,3,4,5}.
*
* Even-numbered ESCRs can be used with counters 0, 1 and 4 (if
* present) of a counter group. Odd-numbers ESCRs can be used with
* counters 2, 3 and 5 (if present) of a counter group. The
* 'p4_escrs[]' table describes these restrictions in a form that
* function 'p4_allocate()' uses for making allocation decisions.
*
* SYSTEM-MODE AND THREAD-MODE ALLOCATION
*
* In addition to remembering the state of PMC rows
* ('FREE','STANDALONE', or 'THREAD'), we similar need to track the
* state of ESCR rows. If an ESCR is allocated to a system-mode PMC
* on a CPU we cannot allocate this to a thread-mode PMC. On a
* multi-cpu (multiple physical CPUs) system, ESCR allocation on each
* CPU is tracked by the pc_escrs[] array.
*
* Each system-mode PMC that is using an ESCR records its row-index in
* the appropriate entry and system-mode allocation attempts check
* that an ESCR is available using this array. Process-mode PMCs do
* not use the pc_escrs[] array, since ESCR row itself would have been
* marked as in 'THREAD' mode.
*
* HYPERTHREADING SUPPORT
*
* When HTT is enabled, the FreeBSD kernel treats the two 'logical'
* cpus as independent CPUs and can schedule kernel threads on them
* independently. However, the two logical CPUs share the same set of
* PMC resources. We need to ensure that:
* - PMCs that use the PMC_F_DESCENDANTS semantics are handled correctly,
* and,
* - Threads of multi-threaded processes that get scheduled on the same
* physical CPU are handled correctly.
*
* HTT Detection
*
* Not all HTT capable systems will have HTT enabled. We detect the
* presence of HTT by detecting if 'p4_init()' was called for a secondary
* CPU in a HTT pair.
*
* Note that hwpmc(4) cannot currently deal with a change in HTT status once
* loaded.
*
* Handling HTT READ / WRITE / START / STOP
*
* PMC resources are shared across the CPUs in an HTT pair. We
* designate the lower numbered CPU in a HTT pair as the 'primary'
* CPU. In each primary CPU's state we keep track of a 'runcount'
* which reflects the number of PMC-using processes that have been
* scheduled on its secondary CPU. Process-mode PMC operations will
* actually 'start' or 'stop' hardware only if these are the first or
* last processes respectively to use the hardware. PMC values
* written by a 'write' operation are saved and are transferred to
* hardware at PMC 'start' time if the runcount is 0. If the runcount
* is greater than 0 at the time of a 'start' operation, we keep track
* of the actual hardware value at the time of the 'start' operation
* and use this to adjust the final readings at PMC 'stop' or 'read'
* time.
*
* Execution sequences:
*
* Case 1: CPUx +...- (no overlap)
* CPUy +...-
* RC 0 1 0 1 0
*
* Case 2: CPUx +........- (partial overlap)
* CPUy +........-
* RC 0 1 2 1 0
*
* Case 3: CPUx +..............- (fully overlapped)
* CPUy +.....-
* RC 0 1 2 1 0
*
* Key:
* 'CPU[xy]' : one of the two logical processors on a HTT CPU.
* 'RC' : run count (#threads per physical core).
* '+' : point in time when a thread is put on a CPU.
* '-' : point in time where a thread is taken off a CPU.
*
* Handling HTT CONFIG
*
* Different processes attached to the same PMC may get scheduled on
* the two logical processors in the package. We keep track of config
* and de-config operations using the CFGFLAGS fields of the per-physical
* cpu state.
*/
#define P4_PMCS() \
P4_PMC(BPU_COUNTER0) \
P4_PMC(BPU_COUNTER1) \
P4_PMC(BPU_COUNTER2) \
P4_PMC(BPU_COUNTER3) \
P4_PMC(MS_COUNTER0) \
P4_PMC(MS_COUNTER1) \
P4_PMC(MS_COUNTER2) \
P4_PMC(MS_COUNTER3) \
P4_PMC(FLAME_COUNTER0) \
P4_PMC(FLAME_COUNTER1) \
P4_PMC(FLAME_COUNTER2) \
P4_PMC(FLAME_COUNTER3) \
P4_PMC(IQ_COUNTER0) \
P4_PMC(IQ_COUNTER1) \
P4_PMC(IQ_COUNTER2) \
P4_PMC(IQ_COUNTER3) \
P4_PMC(IQ_COUNTER4) \
P4_PMC(IQ_COUNTER5) \
P4_PMC(NONE)
enum pmc_p4pmc {
#undef P4_PMC
#define P4_PMC(N) P4_PMC_##N ,
P4_PMCS()
};
/*
* P4 ESCR descriptors
*/
#define P4_ESCRS() \
P4_ESCR(BSU_ESCR0, 0x3A0, BPU_COUNTER0, BPU_COUNTER1, NONE) \
P4_ESCR(BSU_ESCR1, 0x3A1, BPU_COUNTER2, BPU_COUNTER3, NONE) \
P4_ESCR(FSB_ESCR0, 0x3A2, BPU_COUNTER0, BPU_COUNTER1, NONE) \
P4_ESCR(FSB_ESCR1, 0x3A3, BPU_COUNTER2, BPU_COUNTER3, NONE) \
P4_ESCR(FIRM_ESCR0, 0x3A4, FLAME_COUNTER0, FLAME_COUNTER1, NONE) \
P4_ESCR(FIRM_ESCR1, 0x3A5, FLAME_COUNTER2, FLAME_COUNTER3, NONE) \
P4_ESCR(FLAME_ESCR0, 0x3A6, FLAME_COUNTER0, FLAME_COUNTER1, NONE) \
P4_ESCR(FLAME_ESCR1, 0x3A7, FLAME_COUNTER2, FLAME_COUNTER3, NONE) \
P4_ESCR(DAC_ESCR0, 0x3A8, FLAME_COUNTER0, FLAME_COUNTER1, NONE) \
P4_ESCR(DAC_ESCR1, 0x3A9, FLAME_COUNTER2, FLAME_COUNTER3, NONE) \
P4_ESCR(MOB_ESCR0, 0x3AA, BPU_COUNTER0, BPU_COUNTER1, NONE) \
P4_ESCR(MOB_ESCR1, 0x3AB, BPU_COUNTER2, BPU_COUNTER3, NONE) \
P4_ESCR(PMH_ESCR0, 0x3AC, BPU_COUNTER0, BPU_COUNTER1, NONE) \
P4_ESCR(PMH_ESCR1, 0x3AD, BPU_COUNTER2, BPU_COUNTER3, NONE) \
P4_ESCR(SAAT_ESCR0, 0x3AE, FLAME_COUNTER0, FLAME_COUNTER1, NONE) \
P4_ESCR(SAAT_ESCR1, 0x3AF, FLAME_COUNTER2, FLAME_COUNTER3, NONE) \
P4_ESCR(U2L_ESCR0, 0x3B0, FLAME_COUNTER0, FLAME_COUNTER1, NONE) \
P4_ESCR(U2L_ESCR1, 0x3B1, FLAME_COUNTER2, FLAME_COUNTER3, NONE) \
P4_ESCR(BPU_ESCR0, 0x3B2, BPU_COUNTER0, BPU_COUNTER1, NONE) \
P4_ESCR(BPU_ESCR1, 0x3B3, BPU_COUNTER2, BPU_COUNTER3, NONE) \
P4_ESCR(IS_ESCR0, 0x3B4, BPU_COUNTER0, BPU_COUNTER1, NONE) \
P4_ESCR(IS_ESCR1, 0x3B5, BPU_COUNTER2, BPU_COUNTER3, NONE) \
P4_ESCR(ITLB_ESCR0, 0x3B6, BPU_COUNTER0, BPU_COUNTER1, NONE) \
P4_ESCR(ITLB_ESCR1, 0x3B7, BPU_COUNTER2, BPU_COUNTER3, NONE) \
P4_ESCR(CRU_ESCR0, 0x3B8, IQ_COUNTER0, IQ_COUNTER1, IQ_COUNTER4) \
P4_ESCR(CRU_ESCR1, 0x3B9, IQ_COUNTER2, IQ_COUNTER3, IQ_COUNTER5) \
P4_ESCR(IQ_ESCR0, 0x3BA, IQ_COUNTER0, IQ_COUNTER1, IQ_COUNTER4) \
P4_ESCR(IQ_ESCR1, 0x3BB, IQ_COUNTER1, IQ_COUNTER3, IQ_COUNTER5) \
P4_ESCR(RAT_ESCR0, 0x3BC, IQ_COUNTER0, IQ_COUNTER1, IQ_COUNTER4) \
P4_ESCR(RAT_ESCR1, 0x3BD, IQ_COUNTER2, IQ_COUNTER3, IQ_COUNTER5) \
P4_ESCR(SSU_ESCR0, 0x3BE, IQ_COUNTER0, IQ_COUNTER2, IQ_COUNTER4) \
P4_ESCR(MS_ESCR0, 0x3C0, MS_COUNTER0, MS_COUNTER1, NONE) \
P4_ESCR(MS_ESCR1, 0x3C1, MS_COUNTER2, MS_COUNTER3, NONE) \
P4_ESCR(TBPU_ESCR0, 0x3C2, MS_COUNTER0, MS_COUNTER1, NONE) \
P4_ESCR(TBPU_ESCR1, 0x3C3, MS_COUNTER2, MS_COUNTER3, NONE) \
P4_ESCR(TC_ESCR0, 0x3C4, MS_COUNTER0, MS_COUNTER1, NONE) \
P4_ESCR(TC_ESCR1, 0x3C5, MS_COUNTER2, MS_COUNTER3, NONE) \
P4_ESCR(IX_ESCR0, 0x3C8, BPU_COUNTER0, BPU_COUNTER1, NONE) \
P4_ESCR(IX_ESCR1, 0x3C9, BPU_COUNTER2, BPU_COUNTER3, NONE) \
P4_ESCR(ALF_ESCR0, 0x3CA, IQ_COUNTER0, IQ_COUNTER1, IQ_COUNTER4) \
P4_ESCR(ALF_ESCR1, 0x3CB, IQ_COUNTER2, IQ_COUNTER3, IQ_COUNTER5) \
P4_ESCR(CRU_ESCR2, 0x3CC, IQ_COUNTER0, IQ_COUNTER1, IQ_COUNTER4) \
P4_ESCR(CRU_ESCR3, 0x3CD, IQ_COUNTER2, IQ_COUNTER3, IQ_COUNTER5) \
P4_ESCR(CRU_ESCR4, 0x3E0, IQ_COUNTER0, IQ_COUNTER1, IQ_COUNTER4) \
P4_ESCR(CRU_ESCR5, 0x3E1, IQ_COUNTER2, IQ_COUNTER3, IQ_COUNTER5) \
P4_ESCR(NONE, ~0, NONE, NONE, NONE)
enum pmc_p4escr {
#define P4_ESCR(N, MSR, P1, P2, P3) P4_ESCR_##N ,
P4_ESCRS()
#undef P4_ESCR
};
struct pmc_p4escr_descr {
const char pm_escrname[PMC_NAME_MAX];
u_short pm_escr_msr;
const enum pmc_p4pmc pm_pmcs[P4_MAX_PMC_PER_ESCR];
};
static struct pmc_p4escr_descr p4_escrs[] =
{
#define P4_ESCR(N, MSR, P1, P2, P3) \
{ \
.pm_escrname = #N, \
.pm_escr_msr = (MSR), \
.pm_pmcs = \
{ \
P4_PMC_##P1, \
P4_PMC_##P2, \
P4_PMC_##P3 \
} \
} ,
P4_ESCRS()
#undef P4_ESCR
};
/*
* P4 Event descriptor
*/
struct p4_event_descr {
const enum pmc_event pm_event;
const uint32_t pm_escr_eventselect;
const uint32_t pm_cccr_select;
const char pm_is_ti_event;
enum pmc_p4escr pm_escrs[P4_MAX_ESCR_PER_EVENT];
};
static struct p4_event_descr p4_events[] = {
#define P4_EVDESCR(NAME, ESCREVENTSEL, CCCRSEL, TI_EVENT, ESCR0, ESCR1) \
{ \
.pm_event = PMC_EV_P4_##NAME, \
.pm_escr_eventselect = (ESCREVENTSEL), \
.pm_cccr_select = (CCCRSEL), \
.pm_is_ti_event = (TI_EVENT), \
.pm_escrs = \
{ \
P4_ESCR_##ESCR0, \
P4_ESCR_##ESCR1 \
} \
}
P4_EVDESCR(TC_DELIVER_MODE, 0x01, 0x01, TRUE, TC_ESCR0, TC_ESCR1),
P4_EVDESCR(BPU_FETCH_REQUEST, 0x03, 0x00, FALSE, BPU_ESCR0, BPU_ESCR1),
P4_EVDESCR(ITLB_REFERENCE, 0x18, 0x03, FALSE, ITLB_ESCR0, ITLB_ESCR1),
P4_EVDESCR(MEMORY_CANCEL, 0x02, 0x05, FALSE, DAC_ESCR0, DAC_ESCR1),
P4_EVDESCR(MEMORY_COMPLETE, 0x08, 0x02, FALSE, SAAT_ESCR0, SAAT_ESCR1),
P4_EVDESCR(LOAD_PORT_REPLAY, 0x04, 0x02, FALSE, SAAT_ESCR0, SAAT_ESCR1),
P4_EVDESCR(STORE_PORT_REPLAY, 0x05, 0x02, FALSE, SAAT_ESCR0, SAAT_ESCR1),
P4_EVDESCR(MOB_LOAD_REPLAY, 0x03, 0x02, FALSE, MOB_ESCR0, MOB_ESCR1),
P4_EVDESCR(PAGE_WALK_TYPE, 0x01, 0x04, TRUE, PMH_ESCR0, PMH_ESCR1),
P4_EVDESCR(BSQ_CACHE_REFERENCE, 0x0C, 0x07, FALSE, BSU_ESCR0, BSU_ESCR1),
P4_EVDESCR(IOQ_ALLOCATION, 0x03, 0x06, FALSE, FSB_ESCR0, FSB_ESCR1),
P4_EVDESCR(IOQ_ACTIVE_ENTRIES, 0x1A, 0x06, FALSE, FSB_ESCR1, NONE),
P4_EVDESCR(FSB_DATA_ACTIVITY, 0x17, 0x06, TRUE, FSB_ESCR0, FSB_ESCR1),
P4_EVDESCR(BSQ_ALLOCATION, 0x05, 0x07, FALSE, BSU_ESCR0, NONE),
P4_EVDESCR(BSQ_ACTIVE_ENTRIES, 0x06, 0x07, FALSE, BSU_ESCR1, NONE),
/* BSQ_ACTIVE_ENTRIES inherits CPU specificity from BSQ_ALLOCATION */
P4_EVDESCR(SSE_INPUT_ASSIST, 0x34, 0x01, TRUE, FIRM_ESCR0, FIRM_ESCR1),
P4_EVDESCR(PACKED_SP_UOP, 0x08, 0x01, TRUE, FIRM_ESCR0, FIRM_ESCR1),
P4_EVDESCR(PACKED_DP_UOP, 0x0C, 0x01, TRUE, FIRM_ESCR0, FIRM_ESCR1),
P4_EVDESCR(SCALAR_SP_UOP, 0x0A, 0x01, TRUE, FIRM_ESCR0, FIRM_ESCR1),
P4_EVDESCR(SCALAR_DP_UOP, 0x0E, 0x01, TRUE, FIRM_ESCR0, FIRM_ESCR1),
P4_EVDESCR(64BIT_MMX_UOP, 0x02, 0x01, TRUE, FIRM_ESCR0, FIRM_ESCR1),
P4_EVDESCR(128BIT_MMX_UOP, 0x1A, 0x01, TRUE, FIRM_ESCR0, FIRM_ESCR1),
P4_EVDESCR(X87_FP_UOP, 0x04, 0x01, TRUE, FIRM_ESCR0, FIRM_ESCR1),
P4_EVDESCR(X87_SIMD_MOVES_UOP, 0x2E, 0x01, TRUE, FIRM_ESCR0, FIRM_ESCR1),
P4_EVDESCR(GLOBAL_POWER_EVENTS, 0x13, 0x06, FALSE, FSB_ESCR0, FSB_ESCR1),
P4_EVDESCR(TC_MS_XFER, 0x05, 0x00, FALSE, MS_ESCR0, MS_ESCR1),
P4_EVDESCR(UOP_QUEUE_WRITES, 0x09, 0x00, FALSE, MS_ESCR0, MS_ESCR1),
P4_EVDESCR(RETIRED_MISPRED_BRANCH_TYPE,
0x05, 0x02, FALSE, TBPU_ESCR0, TBPU_ESCR1),
P4_EVDESCR(RETIRED_BRANCH_TYPE, 0x04, 0x02, FALSE, TBPU_ESCR0, TBPU_ESCR1),
P4_EVDESCR(RESOURCE_STALL, 0x01, 0x01, FALSE, ALF_ESCR0, ALF_ESCR1),
P4_EVDESCR(WC_BUFFER, 0x05, 0x05, TRUE, DAC_ESCR0, DAC_ESCR1),
P4_EVDESCR(B2B_CYCLES, 0x16, 0x03, TRUE, FSB_ESCR0, FSB_ESCR1),
P4_EVDESCR(BNR, 0x08, 0x03, TRUE, FSB_ESCR0, FSB_ESCR1),
P4_EVDESCR(SNOOP, 0x06, 0x03, TRUE, FSB_ESCR0, FSB_ESCR1),
P4_EVDESCR(RESPONSE, 0x04, 0x03, TRUE, FSB_ESCR0, FSB_ESCR1),
P4_EVDESCR(FRONT_END_EVENT, 0x08, 0x05, FALSE, CRU_ESCR2, CRU_ESCR3),
P4_EVDESCR(EXECUTION_EVENT, 0x0C, 0x05, FALSE, CRU_ESCR2, CRU_ESCR3),
P4_EVDESCR(REPLAY_EVENT, 0x09, 0x05, FALSE, CRU_ESCR2, CRU_ESCR3),
P4_EVDESCR(INSTR_RETIRED, 0x02, 0x04, FALSE, CRU_ESCR0, CRU_ESCR1),
P4_EVDESCR(UOPS_RETIRED, 0x01, 0x04, FALSE, CRU_ESCR0, CRU_ESCR1),
P4_EVDESCR(UOP_TYPE, 0x02, 0x02, FALSE, RAT_ESCR0, RAT_ESCR1),
P4_EVDESCR(BRANCH_RETIRED, 0x06, 0x05, FALSE, CRU_ESCR2, CRU_ESCR3),
P4_EVDESCR(MISPRED_BRANCH_RETIRED, 0x03, 0x04, FALSE, CRU_ESCR0, CRU_ESCR1),
P4_EVDESCR(X87_ASSIST, 0x03, 0x05, FALSE, CRU_ESCR2, CRU_ESCR3),
P4_EVDESCR(MACHINE_CLEAR, 0x02, 0x05, FALSE, CRU_ESCR2, CRU_ESCR3)
#undef P4_EVDESCR
};
#define P4_EVENT_IS_TI(E) ((E)->pm_is_ti_event == TRUE)
#define P4_NEVENTS (PMC_EV_P4_LAST - PMC_EV_P4_FIRST + 1)
/*
* P4 PMC descriptors
*/
struct p4pmc_descr {
struct pmc_descr pm_descr; /* common information */
enum pmc_p4pmc pm_pmcnum; /* PMC number */
uint32_t pm_pmc_msr; /* PERFCTR MSR address */
uint32_t pm_cccr_msr; /* CCCR MSR address */
};
static struct p4pmc_descr p4_pmcdesc[P4_NPMCS] = {
#define P4_PMC_CAPS (PMC_CAP_INTERRUPT | PMC_CAP_USER | PMC_CAP_SYSTEM | \
PMC_CAP_EDGE | PMC_CAP_THRESHOLD | PMC_CAP_READ | PMC_CAP_WRITE | \
PMC_CAP_INVERT | PMC_CAP_QUALIFIER | PMC_CAP_PRECISE | \
PMC_CAP_TAGGING | PMC_CAP_CASCADE)
#define P4_PMCDESCR(N, PMC, CCCR) \
{ \
.pm_descr = \
{ \
.pd_name = #N, \
.pd_class = PMC_CLASS_P4, \
.pd_caps = P4_PMC_CAPS, \
.pd_width = 40 \
}, \
.pm_pmcnum = P4_PMC_##N, \
.pm_cccr_msr = (CCCR), \
.pm_pmc_msr = (PMC) \
}
P4_PMCDESCR(BPU_COUNTER0, 0x300, 0x360),
P4_PMCDESCR(BPU_COUNTER1, 0x301, 0x361),
P4_PMCDESCR(BPU_COUNTER2, 0x302, 0x362),
P4_PMCDESCR(BPU_COUNTER3, 0x303, 0x363),
P4_PMCDESCR(MS_COUNTER0, 0x304, 0x364),
P4_PMCDESCR(MS_COUNTER1, 0x305, 0x365),
P4_PMCDESCR(MS_COUNTER2, 0x306, 0x366),
P4_PMCDESCR(MS_COUNTER3, 0x307, 0x367),
P4_PMCDESCR(FLAME_COUNTER0, 0x308, 0x368),
P4_PMCDESCR(FLAME_COUNTER1, 0x309, 0x369),
P4_PMCDESCR(FLAME_COUNTER2, 0x30A, 0x36A),
P4_PMCDESCR(FLAME_COUNTER3, 0x30B, 0x36B),
P4_PMCDESCR(IQ_COUNTER0, 0x30C, 0x36C),
P4_PMCDESCR(IQ_COUNTER1, 0x30D, 0x36D),
P4_PMCDESCR(IQ_COUNTER2, 0x30E, 0x36E),
P4_PMCDESCR(IQ_COUNTER3, 0x30F, 0x36F),
P4_PMCDESCR(IQ_COUNTER4, 0x310, 0x370),
P4_PMCDESCR(IQ_COUNTER5, 0x311, 0x371),
#undef P4_PMCDESCR
};
/* HTT support */
#define P4_NHTT 2 /* logical processors/chip */
static int p4_system_has_htt;
/*
* Per-CPU data structure for P4 class CPUs
*
* [19 struct pmc_hw structures]
* [45 ESCRs status bytes]
* [per-cpu spin mutex]
* [19 flag fields for holding config flags and a runcount]
* [19*2 hw value fields] (Thread mode PMC support)
* or
* [19*2 EIP values] (Sampling mode PMCs)
* [19*2 pmc value fields] (Thread mode PMC support))
*/
struct p4_cpu {
struct pmc_hw pc_p4pmcs[P4_NPMCS];
char pc_escrs[P4_NESCR];
struct mtx pc_mtx; /* spin lock */
uint32_t pc_intrflag; /* NMI handler flags */
unsigned int pc_intrlock; /* NMI handler spin lock */
unsigned char pc_flags[P4_NPMCS]; /* 4 bits each: {cfg,run}count */
union {
pmc_value_t pc_hw[P4_NPMCS * P4_NHTT];
uintptr_t pc_ip[P4_NPMCS * P4_NHTT];
} pc_si;
pmc_value_t pc_pmc_values[P4_NPMCS * P4_NHTT];
};
static struct p4_cpu **p4_pcpu;
#define P4_PCPU_PMC_VALUE(PC,RI,CPU) (PC)->pc_pmc_values[(RI)*((CPU) & 1)]
#define P4_PCPU_HW_VALUE(PC,RI,CPU) (PC)->pc_si.pc_hw[(RI)*((CPU) & 1)]
#define P4_PCPU_SAVED_IP(PC,RI,CPU) (PC)->pc_si.pc_ip[(RI)*((CPU) & 1)]
#define P4_PCPU_GET_FLAGS(PC,RI,MASK) ((PC)->pc_flags[(RI)] & (MASK))
#define P4_PCPU_SET_FLAGS(PC,RI,MASK,VAL) do { \
char _tmp; \
_tmp = (PC)->pc_flags[(RI)]; \
_tmp &= ~(MASK); \
_tmp |= (VAL) & (MASK); \
(PC)->pc_flags[(RI)] = _tmp; \
} while (0)
#define P4_PCPU_GET_RUNCOUNT(PC,RI) P4_PCPU_GET_FLAGS(PC,RI,0x0F)
#define P4_PCPU_SET_RUNCOUNT(PC,RI,V) P4_PCPU_SET_FLAGS(PC,RI,0x0F,V)
#define P4_PCPU_GET_CFGFLAGS(PC,RI) (P4_PCPU_GET_FLAGS(PC,RI,0xF0) >> 4)
#define P4_PCPU_SET_CFGFLAGS(PC,RI,C) P4_PCPU_SET_FLAGS(PC,RI,0xF0,((C) <<4))
#define P4_CPU_TO_FLAG(C) (P4_CPU_IS_HTT_SECONDARY(cpu) ? 0x2 : 0x1)
#define P4_PCPU_GET_INTRFLAG(PC,I) ((PC)->pc_intrflag & (1 << (I)))
#define P4_PCPU_SET_INTRFLAG(PC,I,V) do { \
uint32_t __mask; \
__mask = 1 << (I); \
if ((V)) \
(PC)->pc_intrflag |= __mask; \
else \
(PC)->pc_intrflag &= ~__mask; \
} while (0)
/*
* A minimal spin lock implementation for use inside the NMI handler.
*
* We don't want to use a regular spin lock here, because curthread
* may not be consistent at the time the handler is invoked.
*/
#define P4_PCPU_ACQ_INTR_SPINLOCK(PC) do { \
while (!atomic_cmpset_acq_int(&pc->pc_intrlock, 0, 1)) \
ia32_pause(); \
} while (0)
#define P4_PCPU_REL_INTR_SPINLOCK(PC) \
atomic_store_rel_int(&pc->pc_intrlock, 0);
/* ESCR row disposition */
static int p4_escrdisp[P4_NESCR];
#define P4_ESCR_ROW_DISP_IS_THREAD(E) (p4_escrdisp[(E)] > 0)
#define P4_ESCR_ROW_DISP_IS_STANDALONE(E) (p4_escrdisp[(E)] < 0)
#define P4_ESCR_ROW_DISP_IS_FREE(E) (p4_escrdisp[(E)] == 0)
#define P4_ESCR_MARK_ROW_STANDALONE(E) do { \
KASSERT(p4_escrdisp[(E)] <= 0, ("[p4,%d] row disposition error",\
__LINE__)); \
atomic_add_int(&p4_escrdisp[(E)], -1); \
KASSERT(p4_escrdisp[(E)] >= (-pmc_cpu_max_active()), \
("[p4,%d] row disposition error", __LINE__)); \
} while (0)
#define P4_ESCR_UNMARK_ROW_STANDALONE(E) do { \
atomic_add_int(&p4_escrdisp[(E)], 1); \
KASSERT(p4_escrdisp[(E)] <= 0, ("[p4,%d] row disposition error",\
__LINE__)); \
} while (0)
#define P4_ESCR_MARK_ROW_THREAD(E) do { \
KASSERT(p4_escrdisp[(E)] >= 0, ("[p4,%d] row disposition error", \
__LINE__)); \
atomic_add_int(&p4_escrdisp[(E)], 1); \
} while (0)
#define P4_ESCR_UNMARK_ROW_THREAD(E) do { \
atomic_add_int(&p4_escrdisp[(E)], -1); \
KASSERT(p4_escrdisp[(E)] >= 0, ("[p4,%d] row disposition error", \
__LINE__)); \
} while (0)
#define P4_PMC_IS_STOPPED(cccr) ((rdmsr(cccr) & P4_CCCR_ENABLE) == 0)
#define P4_CPU_IS_HTT_SECONDARY(cpu) \
(p4_system_has_htt ? ((cpu) & 1) : 0)
#define P4_TO_HTT_PRIMARY(cpu) \
(p4_system_has_htt ? ((cpu) & ~1) : (cpu))
#define P4_CCCR_Tx_MASK (~(P4_CCCR_OVF_PMI_T0|P4_CCCR_OVF_PMI_T1| \
P4_CCCR_ENABLE|P4_CCCR_OVF))
#define P4_ESCR_Tx_MASK (~(P4_ESCR_T0_OS|P4_ESCR_T0_USR|P4_ESCR_T1_OS| \
P4_ESCR_T1_USR))
/*
* support routines
*/
static struct p4_event_descr *
p4_find_event(enum pmc_event ev)
{
int n;
for (n = 0; n < P4_NEVENTS; n++)
if (p4_events[n].pm_event == ev)
break;
if (n == P4_NEVENTS)
return (NULL);
return (&p4_events[n]);
}
/*
* Initialize per-cpu state
*/
static int
p4_pcpu_init(struct pmc_mdep *md, int cpu)
{
char *pescr;
int n, first_ri, phycpu;
struct pmc_hw *phw;
struct p4_cpu *p4c;
struct pmc_cpu *pc, *plc;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[p4,%d] insane cpu number %d", __LINE__, cpu));
PMCDBG(MDP,INI,0, "p4-init cpu=%d is-primary=%d", cpu,
pmc_cpu_is_primary(cpu) != 0);
first_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_P4].pcd_ri;
/*
* The two CPUs in an HT pair share their per-cpu state.
*
* For HT capable CPUs, we assume that the two logical
* processors in the HT pair get two consecutive CPU ids
* starting with an even id #.
*
* The primary CPU (the even numbered CPU of the pair) would
* have been initialized prior to the initialization for the
* secondary.
*/
if (!pmc_cpu_is_primary(cpu) && (cpu & 1)) {
p4_system_has_htt = 1;
phycpu = P4_TO_HTT_PRIMARY(cpu);
pc = pmc_pcpu[phycpu];
plc = pmc_pcpu[cpu];
KASSERT(plc != pc, ("[p4,%d] per-cpu config error", __LINE__));
PMCDBG(MDP,INI,1, "p4-init cpu=%d phycpu=%d pc=%p", cpu,
phycpu, pc);
KASSERT(pc, ("[p4,%d] Null Per-Cpu state cpu=%d phycpu=%d",
__LINE__, cpu, phycpu));
/* PMCs are shared with the physical CPU. */
for (n = 0; n < P4_NPMCS; n++)
plc->pc_hwpmcs[n + first_ri] =
pc->pc_hwpmcs[n + first_ri];
return (0);
}
p4c = malloc(sizeof(struct p4_cpu), M_PMC, M_WAITOK|M_ZERO);
if (p4c == NULL)
return (ENOMEM);
pc = pmc_pcpu[cpu];
KASSERT(pc != NULL, ("[p4,%d] cpu %d null per-cpu", __LINE__, cpu));
p4_pcpu[cpu] = p4c;
phw = p4c->pc_p4pmcs;
for (n = 0; n < P4_NPMCS; n++, phw++) {
phw->phw_state = PMC_PHW_FLAG_IS_ENABLED |
PMC_PHW_CPU_TO_STATE(cpu) | PMC_PHW_INDEX_TO_STATE(n);
phw->phw_pmc = NULL;
pc->pc_hwpmcs[n + first_ri] = phw;
}
pescr = p4c->pc_escrs;
for (n = 0; n < P4_NESCR; n++)
*pescr++ = P4_INVALID_PMC_INDEX;
mtx_init(&p4c->pc_mtx, "p4-pcpu", "pmc-leaf", MTX_SPIN);
return (0);
}
/*
* Destroy per-cpu state.
*/
static int
p4_pcpu_fini(struct pmc_mdep *md, int cpu)
{
int first_ri, i;
struct p4_cpu *p4c;
struct pmc_cpu *pc;
PMCDBG(MDP,INI,0, "p4-cleanup cpu=%d", cpu);
pc = pmc_pcpu[cpu];
first_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_P4].pcd_ri;
for (i = 0; i < P4_NPMCS; i++)
pc->pc_hwpmcs[i + first_ri] = NULL;
if (!pmc_cpu_is_primary(cpu) && (cpu & 1))
return (0);
p4c = p4_pcpu[cpu];
KASSERT(p4c != NULL, ("[p4,%d] NULL pcpu", __LINE__));
/* Turn off all PMCs on this CPU */
for (i = 0; i < P4_NPMCS - 1; i++)
wrmsr(P4_CCCR_MSR_FIRST + i,
rdmsr(P4_CCCR_MSR_FIRST + i) & ~P4_CCCR_ENABLE);
mtx_destroy(&p4c->pc_mtx);
free(p4c, M_PMC);
p4_pcpu[cpu] = NULL;
return (0);
}
/*
* Read a PMC
*/
static int
p4_read_pmc(int cpu, int ri, pmc_value_t *v)
{
struct pmc *pm;
pmc_value_t tmp;
struct p4_cpu *pc;
enum pmc_mode mode;
struct p4pmc_descr *pd;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[p4,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < P4_NPMCS,
("[p4,%d] illegal row-index %d", __LINE__, ri));
pc = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
pm = pc->pc_p4pmcs[ri].phw_pmc;
pd = &p4_pmcdesc[ri];
KASSERT(pm != NULL,
("[p4,%d] No owner for HWPMC [cpu%d,pmc%d]", __LINE__, cpu, ri));
KASSERT(pd->pm_descr.pd_class == PMC_TO_CLASS(pm),
("[p4,%d] class mismatch pd %d != id class %d", __LINE__,
pd->pm_descr.pd_class, PMC_TO_CLASS(pm)));
mode = PMC_TO_MODE(pm);
PMCDBG(MDP,REA,1, "p4-read cpu=%d ri=%d mode=%d", cpu, ri, mode);
KASSERT(pd->pm_descr.pd_class == PMC_CLASS_P4,
("[p4,%d] unknown PMC class %d", __LINE__, pd->pm_descr.pd_class));
tmp = rdmsr(p4_pmcdesc[ri].pm_pmc_msr);
if (PMC_IS_VIRTUAL_MODE(mode)) {
if (tmp < P4_PCPU_HW_VALUE(pc,ri,cpu)) /* 40 bit overflow */
tmp += (P4_PERFCTR_MASK + 1) -
P4_PCPU_HW_VALUE(pc,ri,cpu);
else
tmp -= P4_PCPU_HW_VALUE(pc,ri,cpu);
tmp += P4_PCPU_PMC_VALUE(pc,ri,cpu);
}
if (PMC_IS_SAMPLING_MODE(mode)) /* undo transformation */
*v = P4_PERFCTR_VALUE_TO_RELOAD_COUNT(tmp);
else
*v = tmp;
PMCDBG(MDP,REA,2, "p4-read -> %jx", *v);
return (0);
}
/*
* Write a PMC
*/
static int
p4_write_pmc(int cpu, int ri, pmc_value_t v)
{
enum pmc_mode mode;
struct pmc *pm;
struct p4_cpu *pc;
const struct pmc_hw *phw;
const struct p4pmc_descr *pd;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[amd,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < P4_NPMCS,
("[amd,%d] illegal row-index %d", __LINE__, ri));
pc = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
phw = &pc->pc_p4pmcs[ri];
pm = phw->phw_pmc;
pd = &p4_pmcdesc[ri];
KASSERT(pm != NULL,
("[p4,%d] No owner for HWPMC [cpu%d,pmc%d]", __LINE__,
cpu, ri));
mode = PMC_TO_MODE(pm);
PMCDBG(MDP,WRI,1, "p4-write cpu=%d ri=%d mode=%d v=%jx", cpu, ri,
mode, v);
/*
* write the PMC value to the register/saved value: for
* sampling mode PMCs, the value to be programmed into the PMC
* counter is -(C+1) where 'C' is the requested sample rate.
*/
if (PMC_IS_SAMPLING_MODE(mode))
v = P4_RELOAD_COUNT_TO_PERFCTR_VALUE(v);
if (PMC_IS_SYSTEM_MODE(mode))
wrmsr(pd->pm_pmc_msr, v);
else
P4_PCPU_PMC_VALUE(pc,ri,cpu) = v;
return (0);
}
/*
* Configure a PMC 'pm' on the given CPU and row-index.
*
* 'pm' may be NULL to indicate de-configuration.
*
* On HTT systems, a PMC may get configured twice, once for each
* "logical" CPU. We track this using the CFGFLAGS field of the
* per-cpu state; this field is a bit mask with one bit each for
* logical CPUs 0 & 1.
*/
static int
p4_config_pmc(int cpu, int ri, struct pmc *pm)
{
struct pmc_hw *phw;
struct p4_cpu *pc;
int cfgflags, cpuflag;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[p4,%d] illegal CPU %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < P4_NPMCS,
("[p4,%d] illegal row-index %d", __LINE__, ri));
PMCDBG(MDP,CFG,1, "cpu=%d ri=%d pm=%p", cpu, ri, pm);
pc = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
phw = &pc->pc_p4pmcs[ri];
KASSERT(pm == NULL || phw->phw_pmc == NULL ||
(p4_system_has_htt && phw->phw_pmc == pm),
("[p4,%d] hwpmc not unconfigured before re-config", __LINE__));
mtx_lock_spin(&pc->pc_mtx);
cfgflags = P4_PCPU_GET_CFGFLAGS(pc,ri);
KASSERT(cfgflags >= 0 || cfgflags <= 3,
("[p4,%d] illegal cfgflags cfg=%d on cpu=%d ri=%d", __LINE__,
cfgflags, cpu, ri));
KASSERT(cfgflags == 0 || phw->phw_pmc,
("[p4,%d] cpu=%d ri=%d pmc configured with zero cfg count",
__LINE__, cpu, ri));
cpuflag = P4_CPU_TO_FLAG(cpu);
if (pm) { /* config */
if (cfgflags == 0)
phw->phw_pmc = pm;
KASSERT(phw->phw_pmc == pm,
("[p4,%d] cpu=%d ri=%d config %p != hw %p",
__LINE__, cpu, ri, pm, phw->phw_pmc));
cfgflags |= cpuflag;
} else { /* unconfig */
cfgflags &= ~cpuflag;
if (cfgflags == 0)
phw->phw_pmc = NULL;
}
KASSERT(cfgflags >= 0 || cfgflags <= 3,
("[p4,%d] illegal runcount cfg=%d on cpu=%d ri=%d", __LINE__,
cfgflags, cpu, ri));
P4_PCPU_SET_CFGFLAGS(pc,ri,cfgflags);
mtx_unlock_spin(&pc->pc_mtx);
return (0);
}
/*
* Retrieve a configured PMC pointer from hardware state.
*/
static int
p4_get_config(int cpu, int ri, struct pmc **ppm)
{
int cfgflags;
struct p4_cpu *pc;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[p4,%d] illegal CPU %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < P4_NPMCS,
("[p4,%d] illegal row-index %d", __LINE__, ri));
pc = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
mtx_lock_spin(&pc->pc_mtx);
cfgflags = P4_PCPU_GET_CFGFLAGS(pc,ri);
mtx_unlock_spin(&pc->pc_mtx);
if (cfgflags & P4_CPU_TO_FLAG(cpu))
*ppm = pc->pc_p4pmcs[ri].phw_pmc; /* PMC config'ed on this CPU */
else
*ppm = NULL;
return 0;
}
/*
* Allocate a PMC.
*
* The allocation strategy differs between HTT and non-HTT systems.
*
* The non-HTT case:
* - Given the desired event and the PMC row-index, lookup the
* list of valid ESCRs for the event.
* - For each valid ESCR:
* - Check if the ESCR is free and the ESCR row is in a compatible
* mode (i.e., system or process))
* - Check if the ESCR is usable with a P4 PMC at the desired row-index.
* If everything matches, we determine the appropriate bit values for the
* ESCR and CCCR registers.
*
* The HTT case:
*
* - Process mode PMCs require special care. The FreeBSD scheduler could
* schedule any two processes on the same physical CPU. We need to ensure
* that a given PMC row-index is never allocated to two different
* PMCs owned by different user-processes.
* This is ensured by always allocating a PMC from a 'FREE' PMC row
* if the system has HTT active.
* - A similar check needs to be done for ESCRs; we do not want two PMCs
* using the same ESCR to be scheduled at the same time. Thus ESCR
* allocation is also restricted to FREE rows if the system has HTT
* enabled.
* - Thirdly, some events are 'thread-independent' terminology, i.e.,
* the PMC hardware cannot distinguish between events caused by
* different logical CPUs. This makes it impossible to assign events
* to a given thread of execution. If the system has HTT enabled,
* these events are not allowed for process-mode PMCs.
*/
static int
p4_allocate_pmc(int cpu, int ri, struct pmc *pm,
const struct pmc_op_pmcallocate *a)
{
int found, n, m;
uint32_t caps, cccrvalue, escrvalue, tflags;
enum pmc_p4escr escr;
struct p4_cpu *pc;
struct p4_event_descr *pevent;
const struct p4pmc_descr *pd;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[p4,%d] illegal CPU %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < P4_NPMCS,
("[p4,%d] illegal row-index value %d", __LINE__, ri));
pd = &p4_pmcdesc[ri];
PMCDBG(MDP,ALL,1, "p4-allocate ri=%d class=%d pmccaps=0x%x "
"reqcaps=0x%x", ri, pd->pm_descr.pd_class, pd->pm_descr.pd_caps,
pm->pm_caps);
/* check class */
if (pd->pm_descr.pd_class != a->pm_class)
return (EINVAL);
/* check requested capabilities */
caps = a->pm_caps;
if ((pd->pm_descr.pd_caps & caps) != caps)
return (EPERM);
/*
* If the system has HTT enabled, and the desired allocation
* mode is process-private, and the PMC row disposition is not
* FREE (0), decline the allocation.
*/
if (p4_system_has_htt &&
PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)) &&
pmc_getrowdisp(ri) != 0)
return (EBUSY);
KASSERT(pd->pm_descr.pd_class == PMC_CLASS_P4,
("[p4,%d] unknown PMC class %d", __LINE__,
pd->pm_descr.pd_class));
if (pm->pm_event < PMC_EV_P4_FIRST ||
pm->pm_event > PMC_EV_P4_LAST)
return (EINVAL);
if ((pevent = p4_find_event(pm->pm_event)) == NULL)
return (ESRCH);
PMCDBG(MDP,ALL,2, "pevent={ev=%d,escrsel=0x%x,cccrsel=0x%x,isti=%d}",
pevent->pm_event, pevent->pm_escr_eventselect,
pevent->pm_cccr_select, pevent->pm_is_ti_event);
/*
* Some PMC events are 'thread independent'and therefore
* cannot be used for process-private modes if HTT is being
* used.
*/
if (P4_EVENT_IS_TI(pevent) &&
PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)) &&
p4_system_has_htt)
return (EINVAL);
pc = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
found = 0;
/* look for a suitable ESCR for this event */
for (n = 0; n < P4_MAX_ESCR_PER_EVENT && !found; n++) {
if ((escr = pevent->pm_escrs[n]) == P4_ESCR_NONE)
break; /* out of ESCRs */
/*
* Check ESCR row disposition.
*
* If the request is for a system-mode PMC, then the
* ESCR row should not be in process-virtual mode, and
* should also be free on the current CPU.
*/
if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
if (P4_ESCR_ROW_DISP_IS_THREAD(escr) ||
pc->pc_escrs[escr] != P4_INVALID_PMC_INDEX)
continue;
}
/*
* If the request is for a process-virtual PMC, and if
* HTT is not enabled, we can use an ESCR row that is
* either FREE or already in process mode.
*
* If HTT is enabled, then we need to ensure that a
* given ESCR is never allocated to two PMCS that
* could run simultaneously on the two logical CPUs of
* a CPU package. We ensure this be only allocating
* ESCRs from rows marked as 'FREE'.
*/
if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm))) {
if (p4_system_has_htt) {
if (!P4_ESCR_ROW_DISP_IS_FREE(escr))
continue;
} else
if (P4_ESCR_ROW_DISP_IS_STANDALONE(escr))
continue;
}
/*
* We found a suitable ESCR for this event. Now check if
* this escr can work with the PMC at row-index 'ri'.
*/
for (m = 0; m < P4_MAX_PMC_PER_ESCR; m++)
if (p4_escrs[escr].pm_pmcs[m] == pd->pm_pmcnum) {
found = 1;
break;
}
}
if (found == 0)
return (ESRCH);
KASSERT((int) escr >= 0 && escr < P4_NESCR,
("[p4,%d] illegal ESCR value %d", __LINE__, escr));
/* mark ESCR row mode */
if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
pc->pc_escrs[escr] = ri; /* mark ESCR as in use on this cpu */
P4_ESCR_MARK_ROW_STANDALONE(escr);
} else {
KASSERT(pc->pc_escrs[escr] == P4_INVALID_PMC_INDEX,
("[p4,%d] escr[%d] already in use", __LINE__, escr));
P4_ESCR_MARK_ROW_THREAD(escr);
}
pm->pm_md.pm_p4.pm_p4_escrmsr = p4_escrs[escr].pm_escr_msr;
pm->pm_md.pm_p4.pm_p4_escr = escr;
cccrvalue = P4_CCCR_TO_ESCR_SELECT(pevent->pm_cccr_select);
escrvalue = P4_ESCR_TO_EVENT_SELECT(pevent->pm_escr_eventselect);
/* CCCR fields */
if (caps & PMC_CAP_THRESHOLD)
cccrvalue |= (a->pm_md.pm_p4.pm_p4_cccrconfig &
P4_CCCR_THRESHOLD_MASK) | P4_CCCR_COMPARE;
if (caps & PMC_CAP_EDGE)
cccrvalue |= P4_CCCR_EDGE;
if (caps & PMC_CAP_INVERT)
cccrvalue |= P4_CCCR_COMPLEMENT;
if (p4_system_has_htt)
cccrvalue |= a->pm_md.pm_p4.pm_p4_cccrconfig &
P4_CCCR_ACTIVE_THREAD_MASK;
else /* no HTT; thread field should be '11b' */
cccrvalue |= P4_CCCR_TO_ACTIVE_THREAD(0x3);
if (caps & PMC_CAP_CASCADE)
cccrvalue |= P4_CCCR_CASCADE;
/* On HTT systems the PMI T0 field may get moved to T1 at pmc start */
if (caps & PMC_CAP_INTERRUPT)
cccrvalue |= P4_CCCR_OVF_PMI_T0;
/* ESCR fields */
if (caps & PMC_CAP_QUALIFIER)
escrvalue |= a->pm_md.pm_p4.pm_p4_escrconfig &
P4_ESCR_EVENT_MASK_MASK;
if (caps & PMC_CAP_TAGGING)
escrvalue |= (a->pm_md.pm_p4.pm_p4_escrconfig &
P4_ESCR_TAG_VALUE_MASK) | P4_ESCR_TAG_ENABLE;
if (caps & PMC_CAP_QUALIFIER)
escrvalue |= (a->pm_md.pm_p4.pm_p4_escrconfig &
P4_ESCR_EVENT_MASK_MASK);
/* HTT: T0_{OS,USR} bits may get moved to T1 at pmc start */
tflags = 0;
if (caps & PMC_CAP_SYSTEM)
tflags |= P4_ESCR_T0_OS;
if (caps & PMC_CAP_USER)
tflags |= P4_ESCR_T0_USR;
if (tflags == 0)
tflags = (P4_ESCR_T0_OS|P4_ESCR_T0_USR);
escrvalue |= tflags;
pm->pm_md.pm_p4.pm_p4_cccrvalue = cccrvalue;
pm->pm_md.pm_p4.pm_p4_escrvalue = escrvalue;
PMCDBG(MDP,ALL,2, "p4-allocate cccrsel=0x%x cccrval=0x%x "
"escr=%d escrmsr=0x%x escrval=0x%x", pevent->pm_cccr_select,
cccrvalue, escr, pm->pm_md.pm_p4.pm_p4_escrmsr, escrvalue);
return (0);
}
/*
* release a PMC.
*/
static int
p4_release_pmc(int cpu, int ri, struct pmc *pm)
{
enum pmc_p4escr escr;
struct p4_cpu *pc;
KASSERT(ri >= 0 && ri < P4_NPMCS,
("[p4,%d] illegal row-index %d", __LINE__, ri));
escr = pm->pm_md.pm_p4.pm_p4_escr;
PMCDBG(MDP,REL,1, "p4-release cpu=%d ri=%d escr=%d", cpu, ri, escr);
if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
pc = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
KASSERT(pc->pc_p4pmcs[ri].phw_pmc == NULL,
("[p4,%d] releasing configured PMC ri=%d", __LINE__, ri));
P4_ESCR_UNMARK_ROW_STANDALONE(escr);
KASSERT(pc->pc_escrs[escr] == ri,
("[p4,%d] escr[%d] not allocated to ri %d", __LINE__,
escr, ri));
pc->pc_escrs[escr] = P4_INVALID_PMC_INDEX; /* mark as free */
} else
P4_ESCR_UNMARK_ROW_THREAD(escr);
return (0);
}
/*
* Start a PMC
*/
static int
p4_start_pmc(int cpu, int ri)
{
int rc;
struct pmc *pm;
struct p4_cpu *pc;
struct p4pmc_descr *pd;
uint32_t cccrvalue, cccrtbits, escrvalue, escrmsr, escrtbits;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[p4,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < P4_NPMCS,
("[p4,%d] illegal row-index %d", __LINE__, ri));
pc = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
pm = pc->pc_p4pmcs[ri].phw_pmc;
pd = &p4_pmcdesc[ri];
KASSERT(pm != NULL,
("[p4,%d] starting cpu%d,pmc%d with null pmc", __LINE__, cpu, ri));
PMCDBG(MDP,STA,1, "p4-start cpu=%d ri=%d", cpu, ri);
KASSERT(pd->pm_descr.pd_class == PMC_CLASS_P4,
("[p4,%d] wrong PMC class %d", __LINE__,
pd->pm_descr.pd_class));
/* retrieve the desired CCCR/ESCR values from the PMC */
cccrvalue = pm->pm_md.pm_p4.pm_p4_cccrvalue;
escrvalue = pm->pm_md.pm_p4.pm_p4_escrvalue;
escrmsr = pm->pm_md.pm_p4.pm_p4_escrmsr;
/* extract and zero the logical processor selection bits */
cccrtbits = cccrvalue & P4_CCCR_OVF_PMI_T0;
escrtbits = escrvalue & (P4_ESCR_T0_OS|P4_ESCR_T0_USR);
cccrvalue &= ~P4_CCCR_OVF_PMI_T0;
escrvalue &= ~(P4_ESCR_T0_OS|P4_ESCR_T0_USR);
if (P4_CPU_IS_HTT_SECONDARY(cpu)) { /* shift T0 bits to T1 position */
cccrtbits <<= 1;
escrtbits >>= 2;
}
/* start system mode PMCs directly */
if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
wrmsr(escrmsr, escrvalue | escrtbits);
wrmsr(pd->pm_cccr_msr, cccrvalue | cccrtbits | P4_CCCR_ENABLE);
return 0;
}
/*
* Thread mode PMCs
*
* On HTT machines, the same PMC could be scheduled on the
* same physical CPU twice (once for each logical CPU), for
* example, if two threads of a multi-threaded process get
* scheduled on the same CPU.
*
*/
mtx_lock_spin(&pc->pc_mtx);
rc = P4_PCPU_GET_RUNCOUNT(pc,ri);
KASSERT(rc == 0 || rc == 1,
("[p4,%d] illegal runcount cpu=%d ri=%d rc=%d", __LINE__, cpu, ri,
rc));
if (rc == 0) { /* 1st CPU and the non-HTT case */
KASSERT(P4_PMC_IS_STOPPED(pd->pm_cccr_msr),
("[p4,%d] cpu=%d ri=%d cccr=0x%x not stopped", __LINE__,
cpu, ri, pd->pm_cccr_msr));
/* write out the low 40 bits of the saved value to hardware */
wrmsr(pd->pm_pmc_msr,
P4_PCPU_PMC_VALUE(pc,ri,cpu) & P4_PERFCTR_MASK);
} else if (rc == 1) { /* 2nd CPU */
/*
* Stop the PMC and retrieve the CCCR and ESCR values
* from their MSRs, and turn on the additional T[0/1]
* bits for the 2nd CPU.
*/
cccrvalue = rdmsr(pd->pm_cccr_msr);
wrmsr(pd->pm_cccr_msr, cccrvalue & ~P4_CCCR_ENABLE);
/* check that the configuration bits read back match the PMC */
KASSERT((cccrvalue & P4_CCCR_Tx_MASK) ==
(pm->pm_md.pm_p4.pm_p4_cccrvalue & P4_CCCR_Tx_MASK),
("[p4,%d] Extra CCCR bits cpu=%d rc=%d ri=%d "
"cccr=0x%x PMC=0x%x", __LINE__, cpu, rc, ri,
cccrvalue & P4_CCCR_Tx_MASK,
pm->pm_md.pm_p4.pm_p4_cccrvalue & P4_CCCR_Tx_MASK));
KASSERT(cccrvalue & P4_CCCR_ENABLE,
("[p4,%d] 2nd cpu rc=%d cpu=%d ri=%d not running",
__LINE__, rc, cpu, ri));
KASSERT((cccrvalue & cccrtbits) == 0,
("[p4,%d] CCCR T0/T1 mismatch rc=%d cpu=%d ri=%d"
"cccrvalue=0x%x tbits=0x%x", __LINE__, rc, cpu, ri,
cccrvalue, cccrtbits));
escrvalue = rdmsr(escrmsr);
KASSERT((escrvalue & P4_ESCR_Tx_MASK) ==
(pm->pm_md.pm_p4.pm_p4_escrvalue & P4_ESCR_Tx_MASK),
("[p4,%d] Extra ESCR bits cpu=%d rc=%d ri=%d "
"escr=0x%x pm=0x%x", __LINE__, cpu, rc, ri,
escrvalue & P4_ESCR_Tx_MASK,
pm->pm_md.pm_p4.pm_p4_escrvalue & P4_ESCR_Tx_MASK));
KASSERT((escrvalue & escrtbits) == 0,
("[p4,%d] ESCR T0/T1 mismatch rc=%d cpu=%d ri=%d "
"escrmsr=0x%x escrvalue=0x%x tbits=0x%x", __LINE__,
rc, cpu, ri, escrmsr, escrvalue, escrtbits));
}
/* Enable the correct bits for this CPU. */
escrvalue |= escrtbits;
cccrvalue |= cccrtbits | P4_CCCR_ENABLE;
/* Save HW value at the time of starting hardware */
P4_PCPU_HW_VALUE(pc,ri,cpu) = rdmsr(pd->pm_pmc_msr);
/* Program the ESCR and CCCR and start the PMC */
wrmsr(escrmsr, escrvalue);
wrmsr(pd->pm_cccr_msr, cccrvalue);
++rc;
P4_PCPU_SET_RUNCOUNT(pc,ri,rc);
mtx_unlock_spin(&pc->pc_mtx);
PMCDBG(MDP,STA,2,"p4-start cpu=%d rc=%d ri=%d escr=%d "
"escrmsr=0x%x escrvalue=0x%x cccr_config=0x%x v=%jx", cpu, rc,
ri, pm->pm_md.pm_p4.pm_p4_escr, escrmsr, escrvalue,
cccrvalue, P4_PCPU_HW_VALUE(pc,ri,cpu));
return (0);
}
/*
* Stop a PMC.
*/
static int
p4_stop_pmc(int cpu, int ri)
{
int rc;
uint32_t cccrvalue, cccrtbits, escrvalue, escrmsr, escrtbits;
struct pmc *pm;
struct p4_cpu *pc;
struct p4pmc_descr *pd;
pmc_value_t tmp;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[p4,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < P4_NPMCS,
("[p4,%d] illegal row index %d", __LINE__, ri));
pd = &p4_pmcdesc[ri];
pc = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
pm = pc->pc_p4pmcs[ri].phw_pmc;
KASSERT(pm != NULL,
("[p4,%d] null pmc for cpu%d, ri%d", __LINE__, cpu, ri));
PMCDBG(MDP,STO,1, "p4-stop cpu=%d ri=%d", cpu, ri);
if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
wrmsr(pd->pm_cccr_msr,
pm->pm_md.pm_p4.pm_p4_cccrvalue & ~P4_CCCR_ENABLE);
return (0);
}
/*
* Thread mode PMCs.
*
* On HTT machines, this PMC may be in use by two threads
* running on two logical CPUS. Thus we look at the
* 'runcount' field and only turn off the appropriate TO/T1
* bits (and keep the PMC running) if two logical CPUs were
* using the PMC.
*
*/
/* bits to mask */
cccrtbits = P4_CCCR_OVF_PMI_T0;
escrtbits = P4_ESCR_T0_OS | P4_ESCR_T0_USR;
if (P4_CPU_IS_HTT_SECONDARY(cpu)) {
cccrtbits <<= 1;
escrtbits >>= 2;
}
mtx_lock_spin(&pc->pc_mtx);
rc = P4_PCPU_GET_RUNCOUNT(pc,ri);
KASSERT(rc == 2 || rc == 1,
("[p4,%d] illegal runcount cpu=%d ri=%d rc=%d", __LINE__, cpu, ri,
rc));
--rc;
P4_PCPU_SET_RUNCOUNT(pc,ri,rc);
/* Stop this PMC */
cccrvalue = rdmsr(pd->pm_cccr_msr);
wrmsr(pd->pm_cccr_msr, cccrvalue & ~P4_CCCR_ENABLE);
escrmsr = pm->pm_md.pm_p4.pm_p4_escrmsr;
escrvalue = rdmsr(escrmsr);
/* The current CPU should be running on this PMC */
KASSERT(escrvalue & escrtbits,
("[p4,%d] ESCR T0/T1 mismatch cpu=%d rc=%d ri=%d escrmsr=0x%x "
"escrvalue=0x%x tbits=0x%x", __LINE__, cpu, rc, ri, escrmsr,
escrvalue, escrtbits));
KASSERT(PMC_IS_COUNTING_MODE(PMC_TO_MODE(pm)) ||
(cccrvalue & cccrtbits),
("[p4,%d] CCCR T0/T1 mismatch cpu=%d ri=%d cccrvalue=0x%x "
"tbits=0x%x", __LINE__, cpu, ri, cccrvalue, cccrtbits));
/* get the current hardware reading */
tmp = rdmsr(pd->pm_pmc_msr);
if (rc == 1) { /* need to keep the PMC running */
escrvalue &= ~escrtbits;
cccrvalue &= ~cccrtbits;
wrmsr(escrmsr, escrvalue);
wrmsr(pd->pm_cccr_msr, cccrvalue);
}
mtx_unlock_spin(&pc->pc_mtx);
PMCDBG(MDP,STO,2, "p4-stop cpu=%d rc=%d ri=%d escrmsr=0x%x "
"escrval=0x%x cccrval=0x%x v=%jx", cpu, rc, ri, escrmsr,
escrvalue, cccrvalue, tmp);
if (tmp < P4_PCPU_HW_VALUE(pc,ri,cpu)) /* 40 bit counter overflow */
tmp += (P4_PERFCTR_MASK + 1) - P4_PCPU_HW_VALUE(pc,ri,cpu);
else
tmp -= P4_PCPU_HW_VALUE(pc,ri,cpu);
P4_PCPU_PMC_VALUE(pc,ri,cpu) += tmp;
return 0;
}
/*
* Handle an interrupt.
*
* The hardware sets the CCCR_OVF whenever a counter overflow occurs,
* so the handler examines all the 18 CCCR registers, processing the
* counters that have overflowed.
*
* On HTT machines, the CCCR register is shared and will interrupt
* both logical processors if so configured. Thus multiple logical
* CPUs could enter the NMI service routine at the same time. These
* will get serialized using a per-cpu spinlock dedicated for use in
* the NMI handler.
*/
static int
p4_intr(int cpu, struct trapframe *tf)
{
uint32_t cccrval, ovf_mask, ovf_partner;
int did_interrupt, error, ri;
struct p4_cpu *pc;
struct pmc *pm;
pmc_value_t v;
PMCDBG(MDP,INT, 1, "cpu=%d tf=0x%p um=%d", cpu, (void *) tf,
TRAPF_USERMODE(tf));
pc = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
ovf_mask = P4_CPU_IS_HTT_SECONDARY(cpu) ?
P4_CCCR_OVF_PMI_T1 : P4_CCCR_OVF_PMI_T0;
ovf_mask |= P4_CCCR_OVF;
if (p4_system_has_htt)
ovf_partner = P4_CPU_IS_HTT_SECONDARY(cpu) ?
P4_CCCR_OVF_PMI_T0 : P4_CCCR_OVF_PMI_T1;
else
ovf_partner = 0;
did_interrupt = 0;
if (p4_system_has_htt)
P4_PCPU_ACQ_INTR_SPINLOCK(pc);
/*
* Loop through all CCCRs, looking for ones that have
* interrupted this CPU.
*/
for (ri = 0; ri < P4_NPMCS; ri++) {
/*
* Check if our partner logical CPU has already marked
* this PMC has having interrupted it. If so, reset
* the flag and process the interrupt, but leave the
* hardware alone.
*/
if (p4_system_has_htt && P4_PCPU_GET_INTRFLAG(pc,ri)) {
P4_PCPU_SET_INTRFLAG(pc,ri,0);
did_interrupt = 1;
/*
* Ignore de-configured or stopped PMCs.
* Ignore PMCs not in sampling mode.
*/
pm = pc->pc_p4pmcs[ri].phw_pmc;
if (pm == NULL ||
pm->pm_state != PMC_STATE_RUNNING ||
!PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
continue;
}
(void) pmc_process_interrupt(cpu, pm, tf,
TRAPF_USERMODE(tf));
continue;
}
/*
* Fresh interrupt. Look for the CCCR_OVF bit
* and the OVF_Tx bit for this logical
* processor being set.
*/
cccrval = rdmsr(P4_CCCR_MSR_FIRST + ri);
if ((cccrval & ovf_mask) != ovf_mask)
continue;
/*
* If the other logical CPU would also have been
* interrupted due to the PMC being shared, record
* this fact in the per-cpu saved interrupt flag
* bitmask.
*/
if (p4_system_has_htt && (cccrval & ovf_partner))
P4_PCPU_SET_INTRFLAG(pc, ri, 1);
v = rdmsr(P4_PERFCTR_MSR_FIRST + ri);
PMCDBG(MDP,INT, 2, "ri=%d v=%jx", ri, v);
/* Stop the counter, and reset the overflow bit */
cccrval &= ~(P4_CCCR_OVF | P4_CCCR_ENABLE);
wrmsr(P4_CCCR_MSR_FIRST + ri, cccrval);
did_interrupt = 1;
/*
* Ignore de-configured or stopped PMCs. Ignore PMCs
* not in sampling mode.
*/
pm = pc->pc_p4pmcs[ri].phw_pmc;
if (pm == NULL ||
pm->pm_state != PMC_STATE_RUNNING ||
!PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
continue;
}
/*
* Process the interrupt. Re-enable the PMC if
* processing was successful.
*/
error = pmc_process_interrupt(cpu, pm, tf,
TRAPF_USERMODE(tf));
/*
* Only the first processor executing the NMI handler
* in a HTT pair will restart a PMC, and that too
* only if there were no errors.
*/
v = P4_RELOAD_COUNT_TO_PERFCTR_VALUE(
pm->pm_sc.pm_reloadcount);
wrmsr(P4_PERFCTR_MSR_FIRST + ri, v);
if (error == 0)
wrmsr(P4_CCCR_MSR_FIRST + ri,
cccrval | P4_CCCR_ENABLE);
}
/* allow the other CPU to proceed */
if (p4_system_has_htt)
P4_PCPU_REL_INTR_SPINLOCK(pc);
/*
* On Intel P4 CPUs, the PMC 'pcint' entry in the LAPIC gets
* masked when a PMC interrupts the CPU. We need to unmask
* the interrupt source explicitly.
*/
if (did_interrupt)
pmc_x86_lapic_enable_pmc_interrupt();
atomic_add_int(did_interrupt ? &pmc_stats.pm_intr_processed :
&pmc_stats.pm_intr_ignored, 1);
return (did_interrupt);
}
/*
* Describe a CPU's PMC state.
*/
static int
p4_describe(int cpu, int ri, struct pmc_info *pi,
struct pmc **ppmc)
{
int error;
size_t copied;
const struct p4pmc_descr *pd;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[p4,%d] illegal CPU %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < P4_NPMCS,
("[p4,%d] row-index %d out of range", __LINE__, ri));
PMCDBG(MDP,OPS,1,"p4-describe cpu=%d ri=%d", cpu, ri);
if (P4_CPU_IS_HTT_SECONDARY(cpu))
return (EINVAL);
pd = &p4_pmcdesc[ri];
if ((error = copystr(pd->pm_descr.pd_name, pi->pm_name,
PMC_NAME_MAX, &copied)) != 0)
return (error);
pi->pm_class = pd->pm_descr.pd_class;
if (p4_pcpu[cpu]->pc_p4pmcs[ri].phw_state & PMC_PHW_FLAG_IS_ENABLED) {
pi->pm_enabled = TRUE;
*ppmc = p4_pcpu[cpu]->pc_p4pmcs[ri].phw_pmc;
} else {
pi->pm_enabled = FALSE;
*ppmc = NULL;
}
return (0);
}
/*
* Get MSR# for use with RDPMC.
*/
static int
p4_get_msr(int ri, uint32_t *msr)
{
KASSERT(ri >= 0 && ri < P4_NPMCS,
("[p4,%d] ri %d out of range", __LINE__, ri));
*msr = p4_pmcdesc[ri].pm_pmc_msr - P4_PERFCTR_MSR_FIRST;
PMCDBG(MDP,OPS, 1, "ri=%d getmsr=0x%x", ri, *msr);
return 0;
}
int
pmc_p4_initialize(struct pmc_mdep *md, int ncpus)
{
struct pmc_classdep *pcd;
struct p4_event_descr *pe;
KASSERT(md != NULL, ("[p4,%d] md is NULL", __LINE__));
KASSERT(cpu_vendor_id == CPU_VENDOR_INTEL,
("[p4,%d] Initializing non-intel processor", __LINE__));
PMCDBG(MDP,INI,1, "%s", "p4-initialize");
/* Allocate space for pointers to per-cpu descriptors. */
p4_pcpu = malloc(sizeof(struct p4_cpu **) * ncpus, M_PMC,
M_ZERO|M_WAITOK);
/* Fill in the class dependent descriptor. */
pcd = &md->pmd_classdep[PMC_MDEP_CLASS_INDEX_P4];
switch (md->pmd_cputype) {
case PMC_CPU_INTEL_PIV:
pcd->pcd_caps = P4_PMC_CAPS;
pcd->pcd_class = PMC_CLASS_P4;
pcd->pcd_num = P4_NPMCS;
pcd->pcd_ri = md->pmd_npmc;
pcd->pcd_width = 40;
pcd->pcd_allocate_pmc = p4_allocate_pmc;
pcd->pcd_config_pmc = p4_config_pmc;
pcd->pcd_describe = p4_describe;
pcd->pcd_get_config = p4_get_config;
pcd->pcd_get_msr = p4_get_msr;
pcd->pcd_pcpu_fini = p4_pcpu_fini;
pcd->pcd_pcpu_init = p4_pcpu_init;
pcd->pcd_read_pmc = p4_read_pmc;
pcd->pcd_release_pmc = p4_release_pmc;
pcd->pcd_start_pmc = p4_start_pmc;
pcd->pcd_stop_pmc = p4_stop_pmc;
pcd->pcd_write_pmc = p4_write_pmc;
md->pmd_pcpu_fini = NULL;
md->pmd_pcpu_init = NULL;
md->pmd_intr = p4_intr;
md->pmd_npmc += P4_NPMCS;
/* model specific configuration */
if ((cpu_id & 0xFFF) < 0xF27) {
/*
* On P4 and Xeon with CPUID < (Family 15,
* Model 2, Stepping 7), only one ESCR is
* available for the IOQ_ALLOCATION event.
*/
pe = p4_find_event(PMC_EV_P4_IOQ_ALLOCATION);
pe->pm_escrs[1] = P4_ESCR_NONE;
}
break;
default:
KASSERT(0,("[p4,%d] Unknown CPU type", __LINE__));
return ENOSYS;
}
return (0);
}
void
pmc_p4_finalize(struct pmc_mdep *md)
{
#if defined(INVARIANTS)
int i, ncpus;
#endif
KASSERT(p4_pcpu != NULL,
("[p4,%d] NULL p4_pcpu", __LINE__));
#if defined(INVARIANTS)
ncpus = pmc_cpu_max();
for (i = 0; i < ncpus; i++)
KASSERT(p4_pcpu[i] == NULL, ("[p4,%d] non-null pcpu %d",
__LINE__, i));
#endif
free(p4_pcpu, M_PMC);
p4_pcpu = NULL;
}