2015-05-25 08:34:55 +00:00
|
|
|
/*-
|
|
|
|
* Copyright (c) 2012-2015 Solarflare Communications Inc.
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions are met:
|
|
|
|
*
|
|
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
|
|
* this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
|
|
* and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
|
|
|
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
|
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
|
|
|
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* The views and conclusions contained in the software and documentation are
|
|
|
|
* those of the authors and should not be interpreted as representing official
|
|
|
|
* policies, either expressed or implied, of the FreeBSD Project.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/cdefs.h>
|
|
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
|
|
|
|
#include "efsys.h"
|
|
|
|
#include "efx.h"
|
|
|
|
#include "efx_impl.h"
|
|
|
|
#include "mcdi_mon.h"
|
|
|
|
|
|
|
|
#if EFSYS_OPT_HUNTINGTON
|
|
|
|
|
|
|
|
#include "ef10_tlv_layout.h"
|
|
|
|
|
|
|
|
static __checkReturn int
|
|
|
|
efx_mcdi_get_port_assignment(
|
|
|
|
__in efx_nic_t *enp,
|
|
|
|
__out uint32_t *portp)
|
|
|
|
{
|
|
|
|
efx_mcdi_req_t req;
|
|
|
|
uint8_t payload[MAX(MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN,
|
|
|
|
MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN)];
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON);
|
|
|
|
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
|
|
req.emr_cmd = MC_CMD_GET_PORT_ASSIGNMENT;
|
|
|
|
req.emr_in_buf = payload;
|
|
|
|
req.emr_in_length = MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN;
|
|
|
|
req.emr_out_buf = payload;
|
|
|
|
req.emr_out_length = MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN;
|
|
|
|
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
|
|
|
|
if (req.emr_rc != 0) {
|
|
|
|
rc = req.emr_rc;
|
|
|
|
goto fail1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (req.emr_out_length_used < MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN) {
|
|
|
|
rc = EMSGSIZE;
|
|
|
|
goto fail2;
|
|
|
|
}
|
|
|
|
|
|
|
|
*portp = MCDI_OUT_DWORD(req, GET_PORT_ASSIGNMENT_OUT_PORT);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
fail2:
|
|
|
|
EFSYS_PROBE(fail2);
|
|
|
|
fail1:
|
|
|
|
EFSYS_PROBE1(fail1, int, rc);
|
|
|
|
|
|
|
|
return (rc);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __checkReturn int
|
|
|
|
efx_mcdi_get_port_modes(
|
|
|
|
__in efx_nic_t *enp,
|
|
|
|
__out uint32_t *modesp)
|
|
|
|
{
|
|
|
|
efx_mcdi_req_t req;
|
|
|
|
uint8_t payload[MAX(MC_CMD_GET_PORT_MODES_IN_LEN,
|
|
|
|
MC_CMD_GET_PORT_MODES_OUT_LEN)];
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON);
|
|
|
|
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
|
|
req.emr_cmd = MC_CMD_GET_PORT_MODES;
|
|
|
|
req.emr_in_buf = payload;
|
|
|
|
req.emr_in_length = MC_CMD_GET_PORT_MODES_IN_LEN;
|
|
|
|
req.emr_out_buf = payload;
|
|
|
|
req.emr_out_length = MC_CMD_GET_PORT_MODES_OUT_LEN;
|
|
|
|
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
|
|
|
|
if (req.emr_rc != 0) {
|
|
|
|
rc = req.emr_rc;
|
|
|
|
goto fail1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Accept pre-Medford size (8 bytes - no CurrentMode field) */
|
|
|
|
if (req.emr_out_length_used <
|
|
|
|
MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST) {
|
|
|
|
rc = EMSGSIZE;
|
|
|
|
goto fail2;
|
|
|
|
}
|
|
|
|
|
|
|
|
*modesp = MCDI_OUT_DWORD(req, GET_PORT_MODES_OUT_MODES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
fail2:
|
|
|
|
EFSYS_PROBE(fail2);
|
|
|
|
fail1:
|
|
|
|
EFSYS_PROBE1(fail1, int, rc);
|
|
|
|
|
|
|
|
return (rc);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static __checkReturn int
|
|
|
|
efx_mcdi_vadaptor_alloc(
|
|
|
|
__in efx_nic_t *enp,
|
|
|
|
__in uint32_t port_id)
|
|
|
|
{
|
|
|
|
efx_mcdi_req_t req;
|
|
|
|
uint8_t payload[MAX(MC_CMD_VADAPTOR_ALLOC_IN_LEN,
|
|
|
|
MC_CMD_VADAPTOR_ALLOC_OUT_LEN)];
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
EFSYS_ASSERT3U(enp->en_vport_id, ==, EVB_PORT_ID_NULL);
|
|
|
|
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
|
|
req.emr_cmd = MC_CMD_VADAPTOR_ALLOC;
|
|
|
|
req.emr_in_buf = payload;
|
|
|
|
req.emr_in_length = MC_CMD_VADAPTOR_ALLOC_IN_LEN;
|
|
|
|
req.emr_out_buf = payload;
|
|
|
|
req.emr_out_length = MC_CMD_VADAPTOR_ALLOC_OUT_LEN;
|
|
|
|
|
|
|
|
MCDI_IN_SET_DWORD(req, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
|
|
|
|
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
|
|
|
|
if (req.emr_rc != 0) {
|
|
|
|
rc = req.emr_rc;
|
|
|
|
goto fail1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
fail1:
|
|
|
|
EFSYS_PROBE1(fail1, int, rc);
|
|
|
|
|
|
|
|
return (rc);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __checkReturn int
|
|
|
|
efx_mcdi_vadaptor_free(
|
|
|
|
__in efx_nic_t *enp,
|
|
|
|
__in uint32_t port_id)
|
|
|
|
{
|
|
|
|
efx_mcdi_req_t req;
|
|
|
|
uint8_t payload[MAX(MC_CMD_VADAPTOR_FREE_IN_LEN,
|
|
|
|
MC_CMD_VADAPTOR_FREE_OUT_LEN)];
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
|
|
req.emr_cmd = MC_CMD_VADAPTOR_FREE;
|
|
|
|
req.emr_in_buf = payload;
|
|
|
|
req.emr_in_length = MC_CMD_VADAPTOR_FREE_IN_LEN;
|
|
|
|
req.emr_out_buf = payload;
|
|
|
|
req.emr_out_length = MC_CMD_VADAPTOR_FREE_OUT_LEN;
|
|
|
|
|
|
|
|
MCDI_IN_SET_DWORD(req, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
|
|
|
|
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
|
|
|
|
if (req.emr_rc != 0) {
|
|
|
|
rc = req.emr_rc;
|
|
|
|
goto fail1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
fail1:
|
|
|
|
EFSYS_PROBE1(fail1, int, rc);
|
|
|
|
|
|
|
|
return (rc);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __checkReturn int
|
|
|
|
efx_mcdi_get_mac_address_pf(
|
|
|
|
__in efx_nic_t *enp,
|
|
|
|
__out_ecount_opt(6) uint8_t mac_addrp[6])
|
|
|
|
{
|
|
|
|
efx_mcdi_req_t req;
|
|
|
|
uint8_t payload[MAX(MC_CMD_GET_MAC_ADDRESSES_IN_LEN,
|
|
|
|
MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)];
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON);
|
|
|
|
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
|
|
req.emr_cmd = MC_CMD_GET_MAC_ADDRESSES;
|
|
|
|
req.emr_in_buf = payload;
|
|
|
|
req.emr_in_length = MC_CMD_GET_MAC_ADDRESSES_IN_LEN;
|
|
|
|
req.emr_out_buf = payload;
|
|
|
|
req.emr_out_length = MC_CMD_GET_MAC_ADDRESSES_OUT_LEN;
|
|
|
|
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
|
|
|
|
if (req.emr_rc != 0) {
|
|
|
|
rc = req.emr_rc;
|
|
|
|
goto fail1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (req.emr_out_length_used < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN) {
|
|
|
|
rc = EMSGSIZE;
|
|
|
|
goto fail2;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (MCDI_OUT_DWORD(req, GET_MAC_ADDRESSES_OUT_MAC_COUNT) < 1) {
|
|
|
|
rc = ENOENT;
|
|
|
|
goto fail3;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (mac_addrp != NULL) {
|
|
|
|
uint8_t *addrp;
|
|
|
|
|
|
|
|
addrp = MCDI_OUT2(req, uint8_t,
|
|
|
|
GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE);
|
|
|
|
|
|
|
|
EFX_MAC_ADDR_COPY(mac_addrp, addrp);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
fail3:
|
|
|
|
EFSYS_PROBE(fail3);
|
|
|
|
fail2:
|
|
|
|
EFSYS_PROBE(fail2);
|
|
|
|
fail1:
|
|
|
|
EFSYS_PROBE1(fail1, int, rc);
|
|
|
|
|
|
|
|
return (rc);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __checkReturn int
|
|
|
|
efx_mcdi_get_mac_address_vf(
|
|
|
|
__in efx_nic_t *enp,
|
|
|
|
__out_ecount_opt(6) uint8_t mac_addrp[6])
|
|
|
|
{
|
|
|
|
efx_mcdi_req_t req;
|
|
|
|
uint8_t payload[MAX(MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN,
|
|
|
|
MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX)];
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON);
|
|
|
|
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
|
|
req.emr_cmd = MC_CMD_VPORT_GET_MAC_ADDRESSES;
|
|
|
|
req.emr_in_buf = payload;
|
|
|
|
req.emr_in_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN;
|
|
|
|
req.emr_out_buf = payload;
|
|
|
|
req.emr_out_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX;
|
|
|
|
|
|
|
|
MCDI_IN_SET_DWORD(req, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
|
|
|
|
EVB_PORT_ID_ASSIGNED);
|
|
|
|
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
|
|
|
|
if (req.emr_rc != 0) {
|
|
|
|
rc = req.emr_rc;
|
|
|
|
goto fail1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (req.emr_out_length_used <
|
|
|
|
MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN) {
|
|
|
|
rc = EMSGSIZE;
|
|
|
|
goto fail2;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (MCDI_OUT_DWORD(req,
|
|
|
|
VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT) < 1) {
|
|
|
|
rc = ENOENT;
|
|
|
|
goto fail3;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (mac_addrp != NULL) {
|
|
|
|
uint8_t *addrp;
|
|
|
|
|
|
|
|
addrp = MCDI_OUT2(req, uint8_t,
|
|
|
|
VPORT_GET_MAC_ADDRESSES_OUT_MACADDR);
|
|
|
|
|
|
|
|
EFX_MAC_ADDR_COPY(mac_addrp, addrp);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
fail3:
|
|
|
|
EFSYS_PROBE(fail3);
|
|
|
|
fail2:
|
|
|
|
EFSYS_PROBE(fail2);
|
|
|
|
fail1:
|
|
|
|
EFSYS_PROBE1(fail1, int, rc);
|
|
|
|
|
|
|
|
return (rc);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __checkReturn int
|
|
|
|
efx_mcdi_get_clock(
|
|
|
|
__in efx_nic_t *enp,
|
|
|
|
__out uint32_t *sys_freqp)
|
|
|
|
{
|
|
|
|
efx_mcdi_req_t req;
|
|
|
|
uint8_t payload[MAX(MC_CMD_GET_CLOCK_IN_LEN,
|
|
|
|
MC_CMD_GET_CLOCK_OUT_LEN)];
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON);
|
|
|
|
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
|
|
req.emr_cmd = MC_CMD_GET_CLOCK;
|
|
|
|
req.emr_in_buf = payload;
|
|
|
|
req.emr_in_length = MC_CMD_GET_CLOCK_IN_LEN;
|
|
|
|
req.emr_out_buf = payload;
|
|
|
|
req.emr_out_length = MC_CMD_GET_CLOCK_OUT_LEN;
|
|
|
|
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
|
|
|
|
if (req.emr_rc != 0) {
|
|
|
|
rc = req.emr_rc;
|
|
|
|
goto fail1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (req.emr_out_length_used < MC_CMD_GET_CLOCK_OUT_LEN) {
|
|
|
|
rc = EMSGSIZE;
|
|
|
|
goto fail2;
|
|
|
|
}
|
|
|
|
|
|
|
|
*sys_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_SYS_FREQ);
|
|
|
|
if (*sys_freqp == 0) {
|
|
|
|
rc = EINVAL;
|
|
|
|
goto fail3;
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
fail3:
|
|
|
|
EFSYS_PROBE(fail3);
|
|
|
|
fail2:
|
|
|
|
EFSYS_PROBE(fail2);
|
|
|
|
fail1:
|
|
|
|
EFSYS_PROBE1(fail1, int, rc);
|
|
|
|
|
|
|
|
return (rc);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __checkReturn int
|
|
|
|
efx_mcdi_get_vector_cfg(
|
|
|
|
__in efx_nic_t *enp,
|
|
|
|
__out_opt uint32_t *vec_basep,
|
|
|
|
__out_opt uint32_t *pf_nvecp,
|
|
|
|
__out_opt uint32_t *vf_nvecp)
|
|
|
|
{
|
|
|
|
efx_mcdi_req_t req;
|
|
|
|
uint8_t payload[MAX(MC_CMD_GET_VECTOR_CFG_IN_LEN,
|
|
|
|
MC_CMD_GET_VECTOR_CFG_OUT_LEN)];
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
|
|
req.emr_cmd = MC_CMD_GET_VECTOR_CFG;
|
|
|
|
req.emr_in_buf = payload;
|
|
|
|
req.emr_in_length = MC_CMD_GET_VECTOR_CFG_IN_LEN;
|
|
|
|
req.emr_out_buf = payload;
|
|
|
|
req.emr_out_length = MC_CMD_GET_VECTOR_CFG_OUT_LEN;
|
|
|
|
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
|
|
|
|
if (req.emr_rc != 0) {
|
|
|
|
rc = req.emr_rc;
|
|
|
|
goto fail1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (req.emr_out_length_used < MC_CMD_GET_VECTOR_CFG_OUT_LEN) {
|
|
|
|
rc = EMSGSIZE;
|
|
|
|
goto fail2;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (vec_basep != NULL)
|
|
|
|
*vec_basep = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VEC_BASE);
|
|
|
|
if (pf_nvecp != NULL)
|
|
|
|
*pf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_PF);
|
|
|
|
if (vf_nvecp != NULL)
|
|
|
|
*vf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_VF);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
fail2:
|
|
|
|
EFSYS_PROBE(fail2);
|
|
|
|
fail1:
|
|
|
|
EFSYS_PROBE1(fail1, int, rc);
|
|
|
|
|
|
|
|
return (rc);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __checkReturn int
|
|
|
|
efx_mcdi_get_capabilities(
|
|
|
|
__in efx_nic_t *enp,
|
|
|
|
__out efx_dword_t *flagsp)
|
|
|
|
{
|
|
|
|
efx_mcdi_req_t req;
|
|
|
|
uint8_t payload[MAX(MC_CMD_GET_CAPABILITIES_IN_LEN,
|
|
|
|
MC_CMD_GET_CAPABILITIES_OUT_LEN)];
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
|
|
req.emr_cmd = MC_CMD_GET_CAPABILITIES;
|
|
|
|
req.emr_in_buf = payload;
|
|
|
|
req.emr_in_length = MC_CMD_GET_CAPABILITIES_IN_LEN;
|
|
|
|
req.emr_out_buf = payload;
|
|
|
|
req.emr_out_length = MC_CMD_GET_CAPABILITIES_OUT_LEN;
|
|
|
|
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
|
|
|
|
if (req.emr_rc != 0) {
|
|
|
|
rc = req.emr_rc;
|
|
|
|
goto fail1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
|
|
|
|
rc = EMSGSIZE;
|
|
|
|
goto fail2;
|
|
|
|
}
|
|
|
|
|
|
|
|
*flagsp = *MCDI_OUT2(req, efx_dword_t, GET_CAPABILITIES_OUT_FLAGS1);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
fail2:
|
|
|
|
EFSYS_PROBE(fail2);
|
|
|
|
fail1:
|
|
|
|
EFSYS_PROBE1(fail1, int, rc);
|
|
|
|
|
|
|
|
return (rc);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static __checkReturn int
|
|
|
|
efx_mcdi_alloc_vis(
|
|
|
|
__in efx_nic_t *enp,
|
|
|
|
__in uint32_t min_vi_count,
|
|
|
|
__in uint32_t max_vi_count,
|
|
|
|
__out_opt uint32_t *vi_basep,
|
|
|
|
__out uint32_t *vi_countp)
|
|
|
|
|
|
|
|
{
|
|
|
|
efx_mcdi_req_t req;
|
|
|
|
uint8_t payload[MAX(MC_CMD_ALLOC_VIS_IN_LEN,
|
|
|
|
MC_CMD_ALLOC_VIS_OUT_LEN)];
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
if (vi_countp == NULL) {
|
|
|
|
rc = EINVAL;
|
|
|
|
goto fail1;
|
|
|
|
}
|
|
|
|
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
|
|
req.emr_cmd = MC_CMD_ALLOC_VIS;
|
|
|
|
req.emr_in_buf = payload;
|
|
|
|
req.emr_in_length = MC_CMD_ALLOC_VIS_IN_LEN;
|
|
|
|
req.emr_out_buf = payload;
|
|
|
|
req.emr_out_length = MC_CMD_ALLOC_VIS_OUT_LEN;
|
|
|
|
|
|
|
|
MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MIN_VI_COUNT, min_vi_count);
|
|
|
|
MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MAX_VI_COUNT, max_vi_count);
|
|
|
|
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
|
|
|
|
if (req.emr_rc != 0) {
|
|
|
|
rc = req.emr_rc;
|
|
|
|
goto fail2;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_OUT_LEN) {
|
|
|
|
rc = EMSGSIZE;
|
|
|
|
goto fail3;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (vi_basep != NULL)
|
|
|
|
*vi_basep = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_BASE);
|
|
|
|
|
|
|
|
if (vi_countp != NULL)
|
|
|
|
*vi_countp = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_COUNT);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
fail3:
|
|
|
|
EFSYS_PROBE(fail3);
|
|
|
|
fail2:
|
|
|
|
EFSYS_PROBE(fail2);
|
|
|
|
fail1:
|
|
|
|
EFSYS_PROBE1(fail1, int, rc);
|
|
|
|
|
|
|
|
return (rc);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static __checkReturn int
|
|
|
|
efx_mcdi_free_vis(
|
|
|
|
__in efx_nic_t *enp)
|
|
|
|
{
|
|
|
|
efx_mcdi_req_t req;
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_IN_LEN == 0);
|
|
|
|
EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_OUT_LEN == 0);
|
|
|
|
|
|
|
|
req.emr_cmd = MC_CMD_FREE_VIS;
|
|
|
|
req.emr_in_buf = NULL;
|
|
|
|
req.emr_in_length = 0;
|
|
|
|
req.emr_out_buf = NULL;
|
|
|
|
req.emr_out_length = 0;
|
|
|
|
|
|
|
|
efx_mcdi_execute_quiet(enp, &req);
|
|
|
|
|
|
|
|
/* Ignore ELREADY (no allocated VIs, so nothing to free) */
|
|
|
|
if ((req.emr_rc != 0) && (req.emr_rc != EALREADY)) {
|
|
|
|
rc = req.emr_rc;
|
|
|
|
goto fail1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
fail1:
|
|
|
|
EFSYS_PROBE1(fail1, int, rc);
|
|
|
|
|
|
|
|
return (rc);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static __checkReturn int
|
|
|
|
efx_mcdi_alloc_piobuf(
|
|
|
|
__in efx_nic_t *enp,
|
|
|
|
__out efx_piobuf_handle_t *handlep)
|
|
|
|
{
|
|
|
|
efx_mcdi_req_t req;
|
|
|
|
uint8_t payload[MAX(MC_CMD_ALLOC_PIOBUF_IN_LEN,
|
|
|
|
MC_CMD_ALLOC_PIOBUF_OUT_LEN)];
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
if (handlep == NULL) {
|
|
|
|
rc = EINVAL;
|
|
|
|
goto fail1;
|
|
|
|
}
|
|
|
|
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
|
|
req.emr_cmd = MC_CMD_ALLOC_PIOBUF;
|
|
|
|
req.emr_in_buf = payload;
|
|
|
|
req.emr_in_length = MC_CMD_ALLOC_PIOBUF_IN_LEN;
|
|
|
|
req.emr_out_buf = payload;
|
|
|
|
req.emr_out_length = MC_CMD_ALLOC_PIOBUF_OUT_LEN;
|
|
|
|
|
|
|
|
efx_mcdi_execute_quiet(enp, &req);
|
|
|
|
|
|
|
|
if (req.emr_rc != 0) {
|
|
|
|
rc = req.emr_rc;
|
|
|
|
goto fail2;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (req.emr_out_length_used < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
|
|
|
|
rc = EMSGSIZE;
|
|
|
|
goto fail3;
|
|
|
|
}
|
|
|
|
|
|
|
|
*handlep = MCDI_OUT_DWORD(req, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
fail3:
|
|
|
|
EFSYS_PROBE(fail3);
|
|
|
|
fail2:
|
|
|
|
EFSYS_PROBE(fail2);
|
|
|
|
fail1:
|
|
|
|
EFSYS_PROBE1(fail1, int, rc);
|
|
|
|
|
|
|
|
return (rc);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __checkReturn int
|
|
|
|
efx_mcdi_free_piobuf(
|
|
|
|
__in efx_nic_t *enp,
|
|
|
|
__out efx_piobuf_handle_t handle)
|
|
|
|
{
|
|
|
|
efx_mcdi_req_t req;
|
|
|
|
uint8_t payload[MAX(MC_CMD_FREE_PIOBUF_IN_LEN,
|
|
|
|
MC_CMD_FREE_PIOBUF_OUT_LEN)];
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
|
|
req.emr_cmd = MC_CMD_FREE_PIOBUF;
|
|
|
|
req.emr_in_buf = payload;
|
|
|
|
req.emr_in_length = MC_CMD_FREE_PIOBUF_IN_LEN;
|
|
|
|
req.emr_out_buf = payload;
|
|
|
|
req.emr_out_length = MC_CMD_FREE_PIOBUF_OUT_LEN;
|
|
|
|
|
|
|
|
MCDI_IN_SET_DWORD(req, FREE_PIOBUF_IN_PIOBUF_HANDLE, handle);
|
|
|
|
|
|
|
|
efx_mcdi_execute_quiet(enp, &req);
|
|
|
|
|
|
|
|
if (req.emr_rc != 0) {
|
|
|
|
rc = req.emr_rc;
|
|
|
|
goto fail1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
fail1:
|
|
|
|
EFSYS_PROBE1(fail1, int, rc);
|
|
|
|
|
|
|
|
return (rc);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __checkReturn int
|
|
|
|
efx_mcdi_link_piobuf(
|
|
|
|
__in efx_nic_t *enp,
|
|
|
|
__in uint32_t vi_index,
|
|
|
|
__in efx_piobuf_handle_t handle)
|
|
|
|
{
|
|
|
|
efx_mcdi_req_t req;
|
|
|
|
uint8_t payload[MAX(MC_CMD_LINK_PIOBUF_IN_LEN,
|
|
|
|
MC_CMD_LINK_PIOBUF_OUT_LEN)];
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
|
|
req.emr_cmd = MC_CMD_LINK_PIOBUF;
|
|
|
|
req.emr_in_buf = payload;
|
|
|
|
req.emr_in_length = MC_CMD_LINK_PIOBUF_IN_LEN;
|
|
|
|
req.emr_out_buf = payload;
|
|
|
|
req.emr_out_length = MC_CMD_LINK_PIOBUF_OUT_LEN;
|
|
|
|
|
|
|
|
MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_PIOBUF_HANDLE, handle);
|
|
|
|
MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_TXQ_INSTANCE, vi_index);
|
|
|
|
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
|
|
|
|
if (req.emr_rc != 0) {
|
|
|
|
rc = req.emr_rc;
|
|
|
|
goto fail1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
fail1:
|
|
|
|
EFSYS_PROBE1(fail1, int, rc);
|
|
|
|
|
|
|
|
return (rc);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __checkReturn int
|
|
|
|
efx_mcdi_unlink_piobuf(
|
|
|
|
__in efx_nic_t *enp,
|
|
|
|
__in uint32_t vi_index)
|
|
|
|
{
|
|
|
|
efx_mcdi_req_t req;
|
|
|
|
uint8_t payload[MAX(MC_CMD_UNLINK_PIOBUF_IN_LEN,
|
|
|
|
MC_CMD_UNLINK_PIOBUF_OUT_LEN)];
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
|
|
req.emr_cmd = MC_CMD_UNLINK_PIOBUF;
|
|
|
|
req.emr_in_buf = payload;
|
|
|
|
req.emr_in_length = MC_CMD_UNLINK_PIOBUF_IN_LEN;
|
|
|
|
req.emr_out_buf = payload;
|
|
|
|
req.emr_out_length = MC_CMD_UNLINK_PIOBUF_OUT_LEN;
|
|
|
|
|
|
|
|
MCDI_IN_SET_DWORD(req, UNLINK_PIOBUF_IN_TXQ_INSTANCE, vi_index);
|
|
|
|
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
|
|
|
|
if (req.emr_rc != 0) {
|
|
|
|
rc = req.emr_rc;
|
|
|
|
goto fail1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
fail1:
|
|
|
|
EFSYS_PROBE1(fail1, int, rc);
|
|
|
|
|
|
|
|
return (rc);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
hunt_nic_alloc_piobufs(
|
|
|
|
__in efx_nic_t *enp,
|
|
|
|
__in uint32_t max_piobuf_count)
|
|
|
|
{
|
|
|
|
efx_piobuf_handle_t *handlep;
|
|
|
|
unsigned int i;
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
EFSYS_ASSERT3U(max_piobuf_count, <=,
|
|
|
|
EFX_ARRAY_SIZE(enp->en_u.hunt.enu_piobuf_handle));
|
|
|
|
|
|
|
|
enp->en_u.hunt.enu_piobuf_count = 0;
|
|
|
|
|
|
|
|
for (i = 0; i < max_piobuf_count; i++) {
|
|
|
|
handlep = &enp->en_u.hunt.enu_piobuf_handle[i];
|
|
|
|
|
|
|
|
if ((rc = efx_mcdi_alloc_piobuf(enp, handlep)) != 0)
|
|
|
|
goto fail1;
|
|
|
|
|
|
|
|
enp->en_u.hunt.enu_pio_alloc_map[i] = 0;
|
|
|
|
enp->en_u.hunt.enu_piobuf_count++;
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
fail1:
|
|
|
|
for (i = 0; i < enp->en_u.hunt.enu_piobuf_count; i++) {
|
|
|
|
handlep = &enp->en_u.hunt.enu_piobuf_handle[i];
|
|
|
|
|
|
|
|
efx_mcdi_free_piobuf(enp, *handlep);
|
|
|
|
*handlep = EFX_PIOBUF_HANDLE_INVALID;
|
|
|
|
}
|
|
|
|
enp->en_u.hunt.enu_piobuf_count = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
hunt_nic_free_piobufs(
|
|
|
|
__in efx_nic_t *enp)
|
|
|
|
{
|
|
|
|
efx_piobuf_handle_t *handlep;
|
|
|
|
unsigned int i;
|
|
|
|
|
|
|
|
for (i = 0; i < enp->en_u.hunt.enu_piobuf_count; i++) {
|
|
|
|
handlep = &enp->en_u.hunt.enu_piobuf_handle[i];
|
|
|
|
|
|
|
|
efx_mcdi_free_piobuf(enp, *handlep);
|
|
|
|
*handlep = EFX_PIOBUF_HANDLE_INVALID;
|
|
|
|
}
|
|
|
|
enp->en_u.hunt.enu_piobuf_count = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Sub-allocate a block from a piobuf */
|
|
|
|
__checkReturn int
|
|
|
|
hunt_nic_pio_alloc(
|
|
|
|
__inout efx_nic_t *enp,
|
|
|
|
__out uint32_t *bufnump,
|
|
|
|
__out efx_piobuf_handle_t *handlep,
|
|
|
|
__out uint32_t *blknump,
|
|
|
|
__out uint32_t *offsetp,
|
|
|
|
__out size_t *sizep)
|
|
|
|
{
|
|
|
|
efx_drv_cfg_t *edcp = &enp->en_drv_cfg;
|
|
|
|
uint32_t blk_per_buf;
|
|
|
|
uint32_t buf, blk;
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
EFSYS_ASSERT3U(enp->en_family, ==, EFX_FAMILY_HUNTINGTON);
|
|
|
|
EFSYS_ASSERT(bufnump);
|
|
|
|
EFSYS_ASSERT(handlep);
|
|
|
|
EFSYS_ASSERT(blknump);
|
|
|
|
EFSYS_ASSERT(offsetp);
|
|
|
|
EFSYS_ASSERT(sizep);
|
|
|
|
|
|
|
|
if ((edcp->edc_pio_alloc_size == 0) ||
|
|
|
|
(enp->en_u.hunt.enu_piobuf_count == 0)) {
|
|
|
|
rc = ENOMEM;
|
|
|
|
goto fail1;
|
|
|
|
}
|
|
|
|
blk_per_buf = HUNT_PIOBUF_SIZE / edcp->edc_pio_alloc_size;
|
|
|
|
|
|
|
|
for (buf = 0; buf < enp->en_u.hunt.enu_piobuf_count; buf++) {
|
|
|
|
uint32_t *map = &enp->en_u.hunt.enu_pio_alloc_map[buf];
|
|
|
|
|
|
|
|
if (~(*map) == 0)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
EFSYS_ASSERT3U(blk_per_buf, <=, (8 * sizeof (*map)));
|
|
|
|
for (blk = 0; blk < blk_per_buf; blk++) {
|
|
|
|
if ((*map & (1u << blk)) == 0) {
|
|
|
|
*map |= (1u << blk);
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
rc = ENOMEM;
|
|
|
|
goto fail2;
|
|
|
|
|
|
|
|
done:
|
|
|
|
*handlep = enp->en_u.hunt.enu_piobuf_handle[buf];
|
|
|
|
*bufnump = buf;
|
|
|
|
*blknump = blk;
|
|
|
|
*sizep = edcp->edc_pio_alloc_size;
|
|
|
|
*offsetp = blk * (*sizep);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
fail2:
|
|
|
|
EFSYS_PROBE(fail2);
|
|
|
|
fail1:
|
|
|
|
EFSYS_PROBE1(fail1, int, rc);
|
|
|
|
|
|
|
|
return (rc);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Free a piobuf sub-allocated block */
|
|
|
|
__checkReturn int
|
|
|
|
hunt_nic_pio_free(
|
|
|
|
__inout efx_nic_t *enp,
|
|
|
|
__in uint32_t bufnum,
|
|
|
|
__in uint32_t blknum)
|
|
|
|
{
|
|
|
|
uint32_t *map;
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
if ((bufnum >= enp->en_u.hunt.enu_piobuf_count) ||
|
|
|
|
(blknum >= (8 * sizeof (*map)))) {
|
|
|
|
rc = EINVAL;
|
|
|
|
goto fail1;
|
|
|
|
}
|
|
|
|
|
|
|
|
map = &enp->en_u.hunt.enu_pio_alloc_map[bufnum];
|
|
|
|
if ((*map & (1u << blknum)) == 0) {
|
|
|
|
rc = ENOENT;
|
|
|
|
goto fail2;
|
|
|
|
}
|
|
|
|
*map &= ~(1u << blknum);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
fail2:
|
|
|
|
EFSYS_PROBE(fail2);
|
|
|
|
fail1:
|
|
|
|
EFSYS_PROBE1(fail1, int, rc);
|
|
|
|
|
|
|
|
return (rc);
|
|
|
|
}
|
|
|
|
|
|
|
|
__checkReturn int
|
|
|
|
hunt_nic_pio_link(
|
|
|
|
__inout efx_nic_t *enp,
|
|
|
|
__in uint32_t vi_index,
|
|
|
|
__in efx_piobuf_handle_t handle)
|
|
|
|
{
|
|
|
|
return (efx_mcdi_link_piobuf(enp, vi_index, handle));
|
|
|
|
}
|
|
|
|
|
|
|
|
__checkReturn int
|
|
|
|
hunt_nic_pio_unlink(
|
|
|
|
__inout efx_nic_t *enp,
|
|
|
|
__in uint32_t vi_index)
|
|
|
|
{
|
|
|
|
return (efx_mcdi_unlink_piobuf(enp, vi_index));
|
|
|
|
}
|
|
|
|
|
|
|
|
static __checkReturn int
|
|
|
|
hunt_get_datapath_caps(
|
|
|
|
__in efx_nic_t *enp)
|
|
|
|
{
|
|
|
|
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
|
|
|
|
efx_dword_t datapath_capabilities;
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
if ((rc = efx_mcdi_get_capabilities(enp, &datapath_capabilities)) != 0)
|
|
|
|
goto fail1;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Huntington RXDP firmware inserts a 0 or 14 byte prefix.
|
|
|
|
* We only support the 14 byte prefix here.
|
|
|
|
*/
|
|
|
|
if (MCDI_CMD_DWORD_FIELD(&datapath_capabilities,
|
|
|
|
GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14) != 1) {
|
|
|
|
rc = ENOTSUP;
|
|
|
|
goto fail2;
|
|
|
|
}
|
|
|
|
encp->enc_rx_prefix_size = 14;
|
|
|
|
|
|
|
|
/* Check if the firmware supports TSO */
|
|
|
|
if (MCDI_CMD_DWORD_FIELD(&datapath_capabilities,
|
|
|
|
GET_CAPABILITIES_OUT_TX_TSO) == 1)
|
|
|
|
encp->enc_fw_assisted_tso_enabled = B_TRUE;
|
|
|
|
else
|
|
|
|
encp->enc_fw_assisted_tso_enabled = B_FALSE;
|
|
|
|
|
|
|
|
/* Check if the firmware has vadapter/vport/vswitch support */
|
|
|
|
if (MCDI_CMD_DWORD_FIELD(&datapath_capabilities,
|
|
|
|
GET_CAPABILITIES_OUT_EVB) == 1)
|
|
|
|
encp->enc_datapath_cap_evb = B_TRUE;
|
|
|
|
else
|
|
|
|
encp->enc_datapath_cap_evb = B_FALSE;
|
|
|
|
|
|
|
|
/* Check if the firmware supports VLAN insertion */
|
|
|
|
if (MCDI_CMD_DWORD_FIELD(&datapath_capabilities,
|
|
|
|
GET_CAPABILITIES_OUT_TX_VLAN_INSERTION) == 1)
|
|
|
|
encp->enc_hw_tx_insert_vlan_enabled = B_TRUE;
|
|
|
|
else
|
|
|
|
encp->enc_hw_tx_insert_vlan_enabled = B_FALSE;
|
|
|
|
|
|
|
|
/* Check if the firmware supports RX event batching */
|
|
|
|
if (MCDI_CMD_DWORD_FIELD(&datapath_capabilities,
|
|
|
|
GET_CAPABILITIES_OUT_RX_BATCHING) == 1) {
|
|
|
|
encp->enc_rx_batching_enabled = B_TRUE;
|
|
|
|
encp->enc_rx_batch_max = 16;
|
|
|
|
} else {
|
|
|
|
encp->enc_rx_batching_enabled = B_FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
fail2:
|
|
|
|
EFSYS_PROBE(fail2);
|
|
|
|
fail1:
|
|
|
|
EFSYS_PROBE1(fail1, int, rc);
|
|
|
|
|
|
|
|
return (rc);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The external port mapping is a one-based numbering of the external
|
|
|
|
* connectors on the board. It does not distinguish off-board separated
|
|
|
|
* outputs such as multi-headed cables.
|
|
|
|
* The number of ports that map to each external port connector
|
|
|
|
* on the board is determined by the chip family and the port modes to
|
|
|
|
* which the NIC can be configured. The mapping table lists modes with
|
|
|
|
* port numbering requirements in increasing order.
|
|
|
|
*/
|
|
|
|
static struct {
|
|
|
|
efx_family_t family;
|
|
|
|
uint32_t modes_mask;
|
|
|
|
uint32_t stride;
|
|
|
|
} __hunt_external_port_mappings[] = {
|
|
|
|
/* Supported modes requiring 1 output per port */
|
|
|
|
{
|
|
|
|
EFX_FAMILY_HUNTINGTON,
|
|
|
|
(1 << TLV_PORT_MODE_10G) |
|
|
|
|
(1 << TLV_PORT_MODE_40G) |
|
|
|
|
(1 << TLV_PORT_MODE_10G_10G) |
|
|
|
|
(1 << TLV_PORT_MODE_40G_40G),
|
|
|
|
1
|
|
|
|
},
|
|
|
|
/* Supported modes requiring 2 outputs per port */
|
|
|
|
{
|
|
|
|
EFX_FAMILY_HUNTINGTON,
|
|
|
|
(1 << TLV_PORT_MODE_10G_10G_10G_10G) |
|
|
|
|
(1 << TLV_PORT_MODE_40G_10G_10G) |
|
|
|
|
(1 << TLV_PORT_MODE_10G_10G_40G),
|
|
|
|
2
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
static __checkReturn int
|
|
|
|
hunt_external_port_mapping(
|
|
|
|
__in efx_nic_t *enp,
|
|
|
|
__in uint32_t port,
|
|
|
|
__out uint8_t *external_portp)
|
|
|
|
{
|
|
|
|
int rc;
|
|
|
|
int i;
|
|
|
|
uint32_t port_modes;
|
|
|
|
uint32_t matches;
|
|
|
|
uint32_t stride = 1; /* default 1-1 mapping */
|
|
|
|
|
|
|
|
if ((rc = efx_mcdi_get_port_modes(enp, &port_modes)) != 0) {
|
|
|
|
/* No port mode information available - use default mapping */
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Infer the internal port -> external port mapping from
|
|
|
|
* the possible port modes for this NIC.
|
|
|
|
*/
|
|
|
|
for (i = 0; i < EFX_ARRAY_SIZE(__hunt_external_port_mappings); ++i) {
|
|
|
|
if (__hunt_external_port_mappings[i].family !=
|
|
|
|
enp->en_family)
|
|
|
|
continue;
|
|
|
|
matches = (__hunt_external_port_mappings[i].modes_mask &
|
|
|
|
port_modes);
|
|
|
|
if (matches != 0) {
|
|
|
|
stride = __hunt_external_port_mappings[i].stride;
|
|
|
|
port_modes &= ~matches;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (port_modes != 0) {
|
|
|
|
/* Some advertised modes are not supported */
|
|
|
|
rc = ENOTSUP;
|
|
|
|
goto fail1;
|
|
|
|
}
|
|
|
|
|
|
|
|
out:
|
|
|
|
/*
|
|
|
|
* Scale as required by last matched mode and then convert to
|
|
|
|
* one-based numbering
|
|
|
|
*/
|
|
|
|
*external_portp = (uint8_t)(port / stride) + 1;
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
fail1:
|
|
|
|
EFSYS_PROBE1(fail1, int, rc);
|
|
|
|
|
|
|
|
return (rc);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __checkReturn int
|
|
|
|
hunt_board_cfg(
|
|
|
|
__in efx_nic_t *enp)
|
|
|
|
{
|
|
|
|
efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
|
|
|
|
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
|
|
|
|
uint8_t mac_addr[6];
|
|
|
|
uint32_t board_type = 0;
|
|
|
|
hunt_link_state_t hls;
|
|
|
|
efx_port_t *epp = &(enp->en_port);
|
|
|
|
uint32_t port;
|
|
|
|
uint32_t pf;
|
|
|
|
uint32_t vf;
|
|
|
|
uint32_t mask;
|
|
|
|
uint32_t flags;
|
|
|
|
uint32_t sysclk;
|
|
|
|
uint32_t base, nvec;
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
if ((rc = efx_mcdi_get_port_assignment(enp, &port)) != 0)
|
|
|
|
goto fail1;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* NOTE: The MCDI protocol numbers ports from zero.
|
|
|
|
* The common code MCDI interface numbers ports from one.
|
|
|
|
*/
|
|
|
|
emip->emi_port = port + 1;
|
|
|
|
|
|
|
|
if ((rc = hunt_external_port_mapping(enp, port,
|
|
|
|
&encp->enc_external_port)) != 0)
|
|
|
|
goto fail2;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Get PCIe function number from firmware (used for
|
|
|
|
* per-function privilege and dynamic config info).
|
|
|
|
* - PCIe PF: pf = PF number, vf = 0xffff.
|
|
|
|
* - PCIe VF: pf = parent PF, vf = VF number.
|
|
|
|
*/
|
|
|
|
if ((rc = efx_mcdi_get_function_info(enp, &pf, &vf)) != 0)
|
|
|
|
goto fail3;
|
|
|
|
|
|
|
|
encp->enc_pf = pf;
|
|
|
|
encp->enc_vf = vf;
|
|
|
|
|
|
|
|
/* MAC address for this function */
|
|
|
|
if (EFX_PCI_FUNCTION_IS_PF(encp)) {
|
|
|
|
rc = efx_mcdi_get_mac_address_pf(enp, mac_addr);
|
|
|
|
} else {
|
|
|
|
rc = efx_mcdi_get_mac_address_vf(enp, mac_addr);
|
|
|
|
}
|
|
|
|
if ((rc == 0) && (mac_addr[0] & 0x02)) {
|
|
|
|
/*
|
|
|
|
* If the static config does not include a global MAC address
|
|
|
|
* pool then the board may return a locally administered MAC
|
|
|
|
* address (this should only happen on incorrectly programmed
|
|
|
|
* boards).
|
|
|
|
*/
|
|
|
|
rc = EINVAL;
|
|
|
|
}
|
|
|
|
if (rc != 0)
|
|
|
|
goto fail4;
|
|
|
|
|
|
|
|
EFX_MAC_ADDR_COPY(encp->enc_mac_addr, mac_addr);
|
|
|
|
|
|
|
|
/* Board configuration */
|
|
|
|
rc = efx_mcdi_get_board_cfg(enp, &board_type, NULL, NULL);
|
|
|
|
if (rc != 0) {
|
|
|
|
/* Unprivileged functions may not be able to read board cfg */
|
|
|
|
if (rc == EACCES)
|
|
|
|
board_type = 0;
|
|
|
|
else
|
|
|
|
goto fail5;
|
|
|
|
}
|
|
|
|
|
|
|
|
encp->enc_board_type = board_type;
|
|
|
|
encp->enc_clk_mult = 1; /* not used for Huntington */
|
|
|
|
|
|
|
|
/* Fill out fields in enp->en_port and enp->en_nic_cfg from MCDI */
|
|
|
|
if ((rc = efx_mcdi_get_phy_cfg(enp)) != 0)
|
|
|
|
goto fail6;
|
|
|
|
|
|
|
|
/* Obtain the default PHY advertised capabilities */
|
|
|
|
if ((rc = hunt_phy_get_link(enp, &hls)) != 0)
|
|
|
|
goto fail7;
|
|
|
|
epp->ep_default_adv_cap_mask = hls.hls_adv_cap_mask;
|
|
|
|
epp->ep_adv_cap_mask = hls.hls_adv_cap_mask;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Enable firmware workarounds for hardware errata.
|
|
|
|
* Expected responses are:
|
|
|
|
* - 0 (zero):
|
|
|
|
* Success: workaround enabled or disabled as requested.
|
|
|
|
* - MC_CMD_ERR_ENOSYS (reported as ENOTSUP):
|
|
|
|
* Firmware does not support the MC_CMD_WORKAROUND request.
|
|
|
|
* (assume that the workaround is not supported).
|
|
|
|
* - MC_CMD_ERR_ENOENT (reported as ENOENT):
|
|
|
|
* Firmware does not support the requested workaround.
|
|
|
|
* - MC_CMD_ERR_EPERM (reported as EACCES):
|
|
|
|
* Unprivileged function cannot enable/disable workarounds.
|
|
|
|
*
|
|
|
|
* See efx_mcdi_request_errcode() for MCDI error translations.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the bug35388 workaround is enabled, then use an indirect access
|
|
|
|
* method to avoid unsafe EVQ writes.
|
|
|
|
*/
|
|
|
|
rc = efx_mcdi_set_workaround(enp, MC_CMD_WORKAROUND_BUG35388, B_TRUE,
|
|
|
|
NULL);
|
|
|
|
if ((rc == 0) || (rc == EACCES))
|
|
|
|
encp->enc_bug35388_workaround = B_TRUE;
|
|
|
|
else if ((rc == ENOTSUP) || (rc == ENOENT))
|
|
|
|
encp->enc_bug35388_workaround = B_FALSE;
|
|
|
|
else
|
|
|
|
goto fail8;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the bug41750 workaround is enabled, then do not test interrupts,
|
|
|
|
* as the test will fail (seen with Greenport controllers).
|
|
|
|
*/
|
|
|
|
rc = efx_mcdi_set_workaround(enp, MC_CMD_WORKAROUND_BUG41750, B_TRUE,
|
|
|
|
NULL);
|
|
|
|
if (rc == 0) {
|
|
|
|
encp->enc_bug41750_workaround = B_TRUE;
|
|
|
|
} else if (rc == EACCES) {
|
|
|
|
/* Assume a controller with 40G ports needs the workaround. */
|
|
|
|
if (epp->ep_default_adv_cap_mask & EFX_PHY_CAP_40000FDX)
|
|
|
|
encp->enc_bug41750_workaround = B_TRUE;
|
|
|
|
else
|
|
|
|
encp->enc_bug41750_workaround = B_FALSE;
|
|
|
|
} else if ((rc == ENOTSUP) || (rc == ENOENT)) {
|
|
|
|
encp->enc_bug41750_workaround = B_FALSE;
|
|
|
|
} else {
|
|
|
|
goto fail9;
|
|
|
|
}
|
|
|
|
if (EFX_PCI_FUNCTION_IS_VF(encp)) {
|
|
|
|
/* Interrupt testing does not work for VFs. See bug50084. */
|
|
|
|
encp->enc_bug41750_workaround = B_TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the bug26807 workaround is enabled, then firmware has enabled
|
|
|
|
* support for chained multicast filters. Firmware will reset (FLR)
|
|
|
|
* functions which have filters in the hardware filter table when the
|
|
|
|
* workaround is enabled/disabled.
|
|
|
|
*
|
|
|
|
* We must recheck if the workaround is enabled after inserting the
|
|
|
|
* first hardware filter, in case it has been changed since this check.
|
|
|
|
*/
|
|
|
|
rc = efx_mcdi_set_workaround(enp, MC_CMD_WORKAROUND_BUG26807,
|
|
|
|
B_TRUE, &flags);
|
|
|
|
if (rc == 0) {
|
|
|
|
encp->enc_bug26807_workaround = B_TRUE;
|
|
|
|
if (flags & (1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN)) {
|
|
|
|
/*
|
|
|
|
* Other functions had installed filters before the
|
|
|
|
* workaround was enabled, and they have been reset
|
|
|
|
* by firmware.
|
|
|
|
*/
|
|
|
|
EFSYS_PROBE(bug26807_workaround_flr_done);
|
|
|
|
/* FIXME: bump MC warm boot count ? */
|
|
|
|
}
|
|
|
|
} else if (rc == EACCES) {
|
|
|
|
/*
|
|
|
|
* Unprivileged functions cannot enable the workaround in older
|
|
|
|
* firmware.
|
|
|
|
*/
|
|
|
|
encp->enc_bug26807_workaround = B_FALSE;
|
|
|
|
} else if ((rc == ENOTSUP) || (rc == ENOENT)) {
|
|
|
|
encp->enc_bug26807_workaround = B_FALSE;
|
|
|
|
} else {
|
|
|
|
goto fail10;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Get sysclk frequency (in MHz). */
|
|
|
|
if ((rc = efx_mcdi_get_clock(enp, &sysclk)) != 0)
|
|
|
|
goto fail11;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The timer quantum is 1536 sysclk cycles, documented for the
|
|
|
|
* EV_TMR_VAL field of EV_TIMER_TBL. Scale for MHz and ns units.
|
|
|
|
*/
|
|
|
|
encp->enc_evq_timer_quantum_ns = 1536000UL / sysclk; /* 1536 cycles */
|
|
|
|
if (encp->enc_bug35388_workaround) {
|
|
|
|
encp->enc_evq_timer_max_us = (encp->enc_evq_timer_quantum_ns <<
|
|
|
|
ERF_DD_EVQ_IND_TIMER_VAL_WIDTH) / 1000;
|
|
|
|
} else {
|
|
|
|
encp->enc_evq_timer_max_us = (encp->enc_evq_timer_quantum_ns <<
|
|
|
|
FRF_CZ_TC_TIMER_VAL_WIDTH) / 1000;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check capabilities of running datapath firmware */
|
|
|
|
if ((rc = hunt_get_datapath_caps(enp)) != 0)
|
|
|
|
goto fail12;
|
|
|
|
|
|
|
|
/* Alignment for receive packet DMA buffers */
|
|
|
|
encp->enc_rx_buf_align_start = 1;
|
|
|
|
encp->enc_rx_buf_align_end = 64; /* RX DMA end padding */
|
|
|
|
|
|
|
|
/* Alignment for WPTR updates */
|
|
|
|
encp->enc_rx_push_align = HUNTINGTON_RX_WPTR_ALIGN;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set resource limits for MC_CMD_ALLOC_VIS. Note that we cannot use
|
|
|
|
* MC_CMD_GET_RESOURCE_LIMITS here as that reports the available
|
|
|
|
* resources (allocated to this PCIe function), which is zero until
|
|
|
|
* after we have allocated VIs.
|
|
|
|
*/
|
|
|
|
encp->enc_evq_limit = 1024;
|
|
|
|
encp->enc_rxq_limit = EFX_RXQ_LIMIT_TARGET;
|
|
|
|
encp->enc_txq_limit = EFX_TXQ_LIMIT_TARGET;
|
|
|
|
|
|
|
|
encp->enc_buftbl_limit = 0xFFFFFFFF;
|
|
|
|
|
|
|
|
encp->enc_piobuf_limit = HUNT_PIOBUF_NBUFS;
|
|
|
|
encp->enc_piobuf_size = HUNT_PIOBUF_SIZE;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Get the current privilege mask. Note that this may be modified
|
|
|
|
* dynamically, so this value is informational only. DO NOT use
|
|
|
|
* the privilege mask to check for sufficient privileges, as that
|
|
|
|
* can result in time-of-check/time-of-use bugs.
|
|
|
|
*/
|
2015-07-22 16:25:18 +00:00
|
|
|
if ((rc = efx_mcdi_privilege_mask(enp, pf, vf, &mask)) != 0) {
|
|
|
|
if (rc != ENOTSUP)
|
|
|
|
goto fail13;
|
|
|
|
|
|
|
|
/* Fallback for old firmware without privilege mask support */
|
|
|
|
if (EFX_PCI_FUNCTION_IS_PF(encp)) {
|
|
|
|
/* Assume PF has admin privilege */
|
|
|
|
mask = HUNT_LEGACY_PF_PRIVILEGE_MASK;
|
|
|
|
} else {
|
|
|
|
/* VF is always unprivileged by default */
|
|
|
|
mask = HUNT_LEGACY_VF_PRIVILEGE_MASK;
|
|
|
|
}
|
|
|
|
}
|
2015-05-25 08:34:55 +00:00
|
|
|
|
|
|
|
encp->enc_privilege_mask = mask;
|
|
|
|
|
|
|
|
/* Get interrupt vector limits */
|
|
|
|
if ((rc = efx_mcdi_get_vector_cfg(enp, &base, &nvec, NULL)) != 0) {
|
|
|
|
if (EFX_PCI_FUNCTION_IS_PF(encp))
|
|
|
|
goto fail14;
|
|
|
|
|
|
|
|
/* Ignore error (cannot query vector limits from a VF). */
|
|
|
|
base = 0;
|
|
|
|
nvec = 1024;
|
|
|
|
}
|
|
|
|
encp->enc_intr_vec_base = base;
|
|
|
|
encp->enc_intr_limit = nvec;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Maximum number of bytes into the frame the TCP header can start for
|
|
|
|
* firmware assisted TSO to work.
|
|
|
|
*/
|
|
|
|
encp->enc_tx_tso_tcp_header_offset_limit = 208;
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
fail14:
|
|
|
|
EFSYS_PROBE(fail14);
|
|
|
|
fail13:
|
|
|
|
EFSYS_PROBE(fail13);
|
|
|
|
fail12:
|
|
|
|
EFSYS_PROBE(fail12);
|
|
|
|
fail11:
|
|
|
|
EFSYS_PROBE(fail11);
|
|
|
|
fail10:
|
|
|
|
EFSYS_PROBE(fail10);
|
|
|
|
fail9:
|
|
|
|
EFSYS_PROBE(fail9);
|
|
|
|
fail8:
|
|
|
|
EFSYS_PROBE(fail8);
|
|
|
|
fail7:
|
|
|
|
EFSYS_PROBE(fail7);
|
|
|
|
fail6:
|
|
|
|
EFSYS_PROBE(fail6);
|
|
|
|
fail5:
|
|
|
|
EFSYS_PROBE(fail5);
|
|
|
|
fail4:
|
|
|
|
EFSYS_PROBE(fail4);
|
|
|
|
fail3:
|
|
|
|
EFSYS_PROBE(fail3);
|
|
|
|
fail2:
|
|
|
|
EFSYS_PROBE(fail2);
|
|
|
|
fail1:
|
|
|
|
EFSYS_PROBE1(fail1, int, rc);
|
|
|
|
|
|
|
|
return (rc);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
__checkReturn int
|
|
|
|
hunt_nic_probe(
|
|
|
|
__in efx_nic_t *enp)
|
|
|
|
{
|
|
|
|
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
|
|
|
|
efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
EFSYS_ASSERT3U(enp->en_family, ==, EFX_FAMILY_HUNTINGTON);
|
|
|
|
|
|
|
|
/* Read and clear any assertion state */
|
|
|
|
if ((rc = efx_mcdi_read_assertion(enp)) != 0)
|
|
|
|
goto fail1;
|
|
|
|
|
|
|
|
/* Exit the assertion handler */
|
|
|
|
if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
|
|
|
|
if (rc != EACCES)
|
|
|
|
goto fail2;
|
|
|
|
|
|
|
|
if ((rc = efx_mcdi_drv_attach(enp, B_TRUE)) != 0)
|
|
|
|
goto fail3;
|
|
|
|
|
|
|
|
if ((rc = hunt_board_cfg(enp)) != 0)
|
|
|
|
if (rc != EACCES)
|
|
|
|
goto fail4;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set default driver config limits (based on board config).
|
|
|
|
*
|
|
|
|
* FIXME: For now allocate a fixed number of VIs which is likely to be
|
|
|
|
* sufficient and small enough to allow multiple functions on the same
|
|
|
|
* port.
|
|
|
|
*/
|
|
|
|
edcp->edc_min_vi_count = edcp->edc_max_vi_count =
|
|
|
|
MIN(128, MAX(encp->enc_rxq_limit, encp->enc_txq_limit));
|
|
|
|
|
|
|
|
/* The client driver must configure and enable PIO buffer support */
|
|
|
|
edcp->edc_max_piobuf_count = 0;
|
|
|
|
edcp->edc_pio_alloc_size = 0;
|
|
|
|
|
|
|
|
#if EFSYS_OPT_MAC_STATS
|
|
|
|
/* Wipe the MAC statistics */
|
|
|
|
if ((rc = efx_mcdi_mac_stats_clear(enp)) != 0)
|
|
|
|
goto fail5;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if EFSYS_OPT_LOOPBACK
|
|
|
|
if ((rc = efx_mcdi_get_loopback_modes(enp)) != 0)
|
|
|
|
goto fail6;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if EFSYS_OPT_MON_STATS
|
|
|
|
if ((rc = mcdi_mon_cfg_build(enp)) != 0) {
|
|
|
|
/* Unprivileged functions do not have access to sensors */
|
|
|
|
if (rc != EACCES)
|
|
|
|
goto fail7;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
encp->enc_features = enp->en_features;
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
#if EFSYS_OPT_MON_STATS
|
|
|
|
fail7:
|
|
|
|
EFSYS_PROBE(fail7);
|
|
|
|
#endif
|
|
|
|
#if EFSYS_OPT_LOOPBACK
|
|
|
|
fail6:
|
|
|
|
EFSYS_PROBE(fail6);
|
|
|
|
#endif
|
|
|
|
#if EFSYS_OPT_MAC_STATS
|
|
|
|
fail5:
|
|
|
|
EFSYS_PROBE(fail5);
|
|
|
|
#endif
|
|
|
|
fail4:
|
|
|
|
EFSYS_PROBE(fail4);
|
|
|
|
fail3:
|
|
|
|
EFSYS_PROBE(fail3);
|
|
|
|
fail2:
|
|
|
|
EFSYS_PROBE(fail2);
|
|
|
|
fail1:
|
|
|
|
EFSYS_PROBE1(fail1, int, rc);
|
|
|
|
|
|
|
|
return (rc);
|
|
|
|
}
|
|
|
|
|
|
|
|
__checkReturn int
|
|
|
|
hunt_nic_set_drv_limits(
|
|
|
|
__inout efx_nic_t *enp,
|
|
|
|
__in efx_drv_limits_t *edlp)
|
|
|
|
{
|
|
|
|
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
|
|
|
|
efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
|
|
|
|
uint32_t min_evq_count, max_evq_count;
|
|
|
|
uint32_t min_rxq_count, max_rxq_count;
|
|
|
|
uint32_t min_txq_count, max_txq_count;
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
if (edlp == NULL) {
|
|
|
|
rc = EINVAL;
|
|
|
|
goto fail1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Get minimum required and maximum usable VI limits */
|
|
|
|
min_evq_count = MIN(edlp->edl_min_evq_count, encp->enc_evq_limit);
|
|
|
|
min_rxq_count = MIN(edlp->edl_min_rxq_count, encp->enc_rxq_limit);
|
|
|
|
min_txq_count = MIN(edlp->edl_min_txq_count, encp->enc_txq_limit);
|
|
|
|
|
|
|
|
edcp->edc_min_vi_count =
|
|
|
|
MAX(min_evq_count, MAX(min_rxq_count, min_txq_count));
|
|
|
|
|
|
|
|
max_evq_count = MIN(edlp->edl_max_evq_count, encp->enc_evq_limit);
|
|
|
|
max_rxq_count = MIN(edlp->edl_max_rxq_count, encp->enc_rxq_limit);
|
|
|
|
max_txq_count = MIN(edlp->edl_max_txq_count, encp->enc_txq_limit);
|
|
|
|
|
|
|
|
edcp->edc_max_vi_count =
|
|
|
|
MAX(max_evq_count, MAX(max_rxq_count, max_txq_count));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check limits for sub-allocated piobuf blocks.
|
|
|
|
* PIO is optional, so don't fail if the limits are incorrect.
|
|
|
|
*/
|
|
|
|
if ((encp->enc_piobuf_size == 0) ||
|
|
|
|
(encp->enc_piobuf_limit == 0) ||
|
|
|
|
(edlp->edl_min_pio_alloc_size == 0) ||
|
|
|
|
(edlp->edl_min_pio_alloc_size > encp->enc_piobuf_size)) {
|
|
|
|
/* Disable PIO */
|
|
|
|
edcp->edc_max_piobuf_count = 0;
|
|
|
|
edcp->edc_pio_alloc_size = 0;
|
|
|
|
} else {
|
|
|
|
uint32_t blk_size, blk_count, blks_per_piobuf;
|
|
|
|
|
|
|
|
blk_size =
|
|
|
|
MAX(edlp->edl_min_pio_alloc_size, HUNT_MIN_PIO_ALLOC_SIZE);
|
|
|
|
|
|
|
|
blks_per_piobuf = encp->enc_piobuf_size / blk_size;
|
|
|
|
EFSYS_ASSERT3U(blks_per_piobuf, <=, 32);
|
|
|
|
|
|
|
|
blk_count = (encp->enc_piobuf_limit * blks_per_piobuf);
|
|
|
|
|
|
|
|
/* A zero max pio alloc count means unlimited */
|
|
|
|
if ((edlp->edl_max_pio_alloc_count > 0) &&
|
|
|
|
(edlp->edl_max_pio_alloc_count < blk_count)) {
|
|
|
|
blk_count = edlp->edl_max_pio_alloc_count;
|
|
|
|
}
|
|
|
|
|
|
|
|
edcp->edc_pio_alloc_size = blk_size;
|
|
|
|
edcp->edc_max_piobuf_count =
|
|
|
|
(blk_count + (blks_per_piobuf - 1)) / blks_per_piobuf;
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
fail1:
|
|
|
|
EFSYS_PROBE1(fail1, int, rc);
|
|
|
|
|
|
|
|
return (rc);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
__checkReturn int
|
|
|
|
hunt_nic_reset(
|
|
|
|
__in efx_nic_t *enp)
|
|
|
|
{
|
|
|
|
efx_mcdi_req_t req;
|
|
|
|
uint8_t payload[MAX(MC_CMD_ENTITY_RESET_IN_LEN,
|
|
|
|
MC_CMD_ENTITY_RESET_OUT_LEN)];
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
/* hunt_nic_reset() is called to recover from BADASSERT failures. */
|
|
|
|
if ((rc = efx_mcdi_read_assertion(enp)) != 0)
|
|
|
|
goto fail1;
|
|
|
|
if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
|
|
|
|
goto fail2;
|
|
|
|
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
|
|
req.emr_cmd = MC_CMD_ENTITY_RESET;
|
|
|
|
req.emr_in_buf = payload;
|
|
|
|
req.emr_in_length = MC_CMD_ENTITY_RESET_IN_LEN;
|
|
|
|
req.emr_out_buf = payload;
|
|
|
|
req.emr_out_length = MC_CMD_ENTITY_RESET_OUT_LEN;
|
|
|
|
|
|
|
|
MCDI_IN_POPULATE_DWORD_1(req, ENTITY_RESET_IN_FLAG,
|
|
|
|
ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
|
|
|
|
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
|
|
|
|
if (req.emr_rc != 0) {
|
|
|
|
rc = req.emr_rc;
|
|
|
|
goto fail3;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Clear RX/TX DMA queue errors */
|
|
|
|
enp->en_reset_flags &= ~(EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
fail3:
|
|
|
|
EFSYS_PROBE(fail3);
|
|
|
|
fail2:
|
|
|
|
EFSYS_PROBE(fail2);
|
|
|
|
fail1:
|
|
|
|
EFSYS_PROBE1(fail1, int, rc);
|
|
|
|
|
|
|
|
return (rc);
|
|
|
|
}
|
|
|
|
|
|
|
|
__checkReturn int
|
|
|
|
hunt_nic_init(
|
|
|
|
__in efx_nic_t *enp)
|
|
|
|
{
|
|
|
|
efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
|
|
|
|
uint32_t min_vi_count, max_vi_count;
|
|
|
|
uint32_t vi_count, vi_base;
|
|
|
|
uint32_t i;
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
EFSYS_ASSERT3U(enp->en_family, ==, EFX_FAMILY_HUNTINGTON);
|
|
|
|
|
|
|
|
/* Enable reporting of some events (e.g. link change) */
|
|
|
|
if ((rc = efx_mcdi_log_ctrl(enp)) != 0)
|
|
|
|
goto fail1;
|
|
|
|
|
|
|
|
/* Allocate (optional) on-chip PIO buffers */
|
|
|
|
hunt_nic_alloc_piobufs(enp, edcp->edc_max_piobuf_count);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* For best performance, PIO writes should use a write-combined
|
|
|
|
* (WC) memory mapping. Using a separate WC mapping for the PIO
|
|
|
|
* aperture of each VI would be a burden to drivers (and not
|
|
|
|
* possible if the host page size is >4Kbyte).
|
|
|
|
*
|
|
|
|
* To avoid this we use a single uncached (UC) mapping for VI
|
|
|
|
* register access, and a single WC mapping for extra VIs used
|
|
|
|
* for PIO writes.
|
|
|
|
*
|
|
|
|
* Each piobuf must be linked to a VI in the WC mapping, and to
|
|
|
|
* each VI that is using a sub-allocated block from the piobuf.
|
|
|
|
*/
|
|
|
|
min_vi_count = edcp->edc_min_vi_count;
|
|
|
|
max_vi_count = edcp->edc_max_vi_count + enp->en_u.hunt.enu_piobuf_count;
|
|
|
|
|
|
|
|
/* Ensure that the previously attached driver's VIs are freed */
|
|
|
|
if ((rc = efx_mcdi_free_vis(enp)) != 0)
|
|
|
|
goto fail2;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Reserve VI resources (EVQ+RXQ+TXQ) for this PCIe function. If this
|
|
|
|
* fails then retrying the request for fewer VI resources may succeed.
|
|
|
|
*/
|
|
|
|
vi_count = 0;
|
|
|
|
if ((rc = efx_mcdi_alloc_vis(enp, min_vi_count, max_vi_count,
|
|
|
|
&vi_base, &vi_count)) != 0)
|
|
|
|
goto fail3;
|
|
|
|
|
|
|
|
EFSYS_PROBE2(vi_alloc, uint32_t, vi_base, uint32_t, vi_count);
|
|
|
|
|
|
|
|
if (vi_count < min_vi_count) {
|
|
|
|
rc = ENOMEM;
|
|
|
|
goto fail4;
|
|
|
|
}
|
|
|
|
|
|
|
|
enp->en_u.hunt.enu_vi_base = vi_base;
|
|
|
|
enp->en_u.hunt.enu_vi_count = vi_count;
|
|
|
|
|
|
|
|
if (vi_count < min_vi_count + enp->en_u.hunt.enu_piobuf_count) {
|
|
|
|
/* Not enough extra VIs to map piobufs */
|
|
|
|
hunt_nic_free_piobufs(enp);
|
|
|
|
}
|
|
|
|
|
|
|
|
enp->en_u.hunt.enu_pio_write_vi_base =
|
|
|
|
vi_count - enp->en_u.hunt.enu_piobuf_count;
|
|
|
|
|
|
|
|
/* Save UC memory mapping details */
|
|
|
|
enp->en_u.hunt.enu_uc_mem_map_offset = 0;
|
|
|
|
if (enp->en_u.hunt.enu_piobuf_count > 0) {
|
|
|
|
enp->en_u.hunt.enu_uc_mem_map_size =
|
|
|
|
(ER_DZ_TX_PIOBUF_STEP *
|
|
|
|
enp->en_u.hunt.enu_pio_write_vi_base);
|
|
|
|
} else {
|
|
|
|
enp->en_u.hunt.enu_uc_mem_map_size =
|
|
|
|
(ER_DZ_TX_PIOBUF_STEP *
|
|
|
|
enp->en_u.hunt.enu_vi_count);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Save WC memory mapping details */
|
|
|
|
enp->en_u.hunt.enu_wc_mem_map_offset =
|
|
|
|
enp->en_u.hunt.enu_uc_mem_map_offset +
|
|
|
|
enp->en_u.hunt.enu_uc_mem_map_size;
|
|
|
|
|
|
|
|
enp->en_u.hunt.enu_wc_mem_map_size =
|
|
|
|
(ER_DZ_TX_PIOBUF_STEP *
|
|
|
|
enp->en_u.hunt.enu_piobuf_count);
|
|
|
|
|
|
|
|
/* Link piobufs to extra VIs in WC mapping */
|
|
|
|
if (enp->en_u.hunt.enu_piobuf_count > 0) {
|
|
|
|
for (i = 0; i < enp->en_u.hunt.enu_piobuf_count; i++) {
|
|
|
|
rc = efx_mcdi_link_piobuf(enp,
|
|
|
|
enp->en_u.hunt.enu_pio_write_vi_base + i,
|
|
|
|
enp->en_u.hunt.enu_piobuf_handle[i]);
|
|
|
|
if (rc != 0)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Allocate a vAdapter attached to our upstream vPort/pPort */
|
|
|
|
if ((rc = efx_mcdi_vadaptor_alloc(enp, EVB_PORT_ID_ASSIGNED)) != 0)
|
|
|
|
goto fail5;
|
|
|
|
|
|
|
|
enp->en_vport_id = EVB_PORT_ID_ASSIGNED;
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
fail5:
|
|
|
|
EFSYS_PROBE(fail5);
|
|
|
|
fail4:
|
|
|
|
EFSYS_PROBE(fail4);
|
|
|
|
fail3:
|
|
|
|
EFSYS_PROBE(fail3);
|
|
|
|
fail2:
|
|
|
|
EFSYS_PROBE(fail2);
|
|
|
|
|
|
|
|
hunt_nic_free_piobufs(enp);
|
|
|
|
|
|
|
|
fail1:
|
|
|
|
EFSYS_PROBE1(fail1, int, rc);
|
|
|
|
|
|
|
|
return (rc);
|
|
|
|
}
|
|
|
|
|
|
|
|
__checkReturn int
|
|
|
|
hunt_nic_get_vi_pool(
|
|
|
|
__in efx_nic_t *enp,
|
|
|
|
__out uint32_t *vi_countp)
|
|
|
|
{
|
|
|
|
EFSYS_ASSERT3U(enp->en_family, ==, EFX_FAMILY_HUNTINGTON);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Report VIs that the client driver can use.
|
|
|
|
* Do not include VIs used for PIO buffer writes.
|
|
|
|
*/
|
|
|
|
*vi_countp = enp->en_u.hunt.enu_pio_write_vi_base;
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
__checkReturn int
|
|
|
|
hunt_nic_get_bar_region(
|
|
|
|
__in efx_nic_t *enp,
|
|
|
|
__in efx_nic_region_t region,
|
|
|
|
__out uint32_t *offsetp,
|
|
|
|
__out size_t *sizep)
|
|
|
|
{
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
EFSYS_ASSERT3U(enp->en_family, ==, EFX_FAMILY_HUNTINGTON);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* TODO: Specify host memory mapping alignment and granularity
|
|
|
|
* in efx_drv_limits_t so that they can be taken into account
|
|
|
|
* when allocating extra VIs for PIO writes.
|
|
|
|
*/
|
|
|
|
switch (region) {
|
|
|
|
case EFX_REGION_VI:
|
|
|
|
/* UC mapped memory BAR region for VI registers */
|
|
|
|
*offsetp = enp->en_u.hunt.enu_uc_mem_map_offset;
|
|
|
|
*sizep = enp->en_u.hunt.enu_uc_mem_map_size;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case EFX_REGION_PIO_WRITE_VI:
|
|
|
|
/* WC mapped memory BAR region for piobuf writes */
|
|
|
|
*offsetp = enp->en_u.hunt.enu_wc_mem_map_offset;
|
|
|
|
*sizep = enp->en_u.hunt.enu_wc_mem_map_size;
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
rc = EINVAL;
|
|
|
|
goto fail1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
fail1:
|
|
|
|
EFSYS_PROBE1(fail1, int, rc);
|
|
|
|
|
|
|
|
return (rc);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
hunt_nic_fini(
|
|
|
|
__in efx_nic_t *enp)
|
|
|
|
{
|
|
|
|
(void) efx_mcdi_vadaptor_free(enp, enp->en_vport_id);
|
|
|
|
enp->en_vport_id = 0;
|
|
|
|
|
|
|
|
/* FIXME: do we need to unlink piobufs ? */
|
|
|
|
hunt_nic_free_piobufs(enp);
|
|
|
|
|
|
|
|
(void) efx_mcdi_free_vis(enp);
|
|
|
|
enp->en_u.hunt.enu_vi_count = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
hunt_nic_unprobe(
|
|
|
|
__in efx_nic_t *enp)
|
|
|
|
{
|
|
|
|
#if EFSYS_OPT_MON_STATS
|
|
|
|
mcdi_mon_cfg_free(enp);
|
|
|
|
#endif /* EFSYS_OPT_MON_STATS */
|
|
|
|
(void) efx_mcdi_drv_attach(enp, B_FALSE);
|
|
|
|
}
|
|
|
|
|
|
|
|
#if EFSYS_OPT_DIAG
|
|
|
|
|
|
|
|
__checkReturn int
|
|
|
|
hunt_nic_register_test(
|
|
|
|
__in efx_nic_t *enp)
|
|
|
|
{
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
/* FIXME */
|
|
|
|
_NOTE(ARGUNUSED(enp))
|
|
|
|
if (B_FALSE) {
|
|
|
|
rc = ENOTSUP;
|
|
|
|
goto fail1;
|
|
|
|
}
|
|
|
|
/* FIXME */
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
fail1:
|
|
|
|
EFSYS_PROBE1(fail1, int, rc);
|
|
|
|
|
|
|
|
return (rc);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* EFSYS_OPT_DIAG */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#endif /* EFSYS_OPT_HUNTINGTON */
|