freebsd-nq/module/zfs/zfs_debug.c

240 lines
5.6 KiB
C
Raw Normal View History

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2014 by Delphix. All rights reserved.
*/
#include <sys/zfs_context.h>
#include <sys/kstat.h>
list_t zfs_dbgmsgs;
int zfs_dbgmsg_size = 0;
kmutex_t zfs_dbgmsgs_lock;
int zfs_dbgmsg_maxsize = 4<<20; /* 4MB */
kstat_t *zfs_dbgmsg_kstat;
/*
* By default only enable the internal ZFS debug messages when running
* in userspace (ztest). The kernel log must be manually enabled.
*
* # Enable the kernel debug message log.
* echo 1 > /sys/module/zfs/parameters/zfs_dbgmsg_enable
*
* # Clear the kernel debug message log.
* echo 0 >/proc/spl/kstat/zfs/dbgmsg
*/
#if defined(_KERNEL)
int zfs_dbgmsg_enable = 0;
#else
int zfs_dbgmsg_enable = 1;
#endif
static int
zfs_dbgmsg_headers(char *buf, size_t size)
{
(void) snprintf(buf, size, "%-12s %-8s\n", "timestamp", "message");
return (0);
}
static int
zfs_dbgmsg_data(char *buf, size_t size, void *data)
{
zfs_dbgmsg_t *zdm = (zfs_dbgmsg_t *)data;
(void) snprintf(buf, size, "%-12llu %-s\n",
(u_longlong_t) zdm->zdm_timestamp, zdm->zdm_msg);
return (0);
}
static void *
zfs_dbgmsg_addr(kstat_t *ksp, loff_t n)
{
zfs_dbgmsg_t *zdm = (zfs_dbgmsg_t *)ksp->ks_private;
ASSERT(MUTEX_HELD(&zfs_dbgmsgs_lock));
if (n == 0)
ksp->ks_private = list_head(&zfs_dbgmsgs);
else if (zdm)
ksp->ks_private = list_next(&zfs_dbgmsgs, zdm);
return (ksp->ks_private);
}
static void
zfs_dbgmsg_purge(int max_size)
{
zfs_dbgmsg_t *zdm;
int size;
ASSERT(MUTEX_HELD(&zfs_dbgmsgs_lock));
while (zfs_dbgmsg_size > max_size) {
zdm = list_remove_head(&zfs_dbgmsgs);
if (zdm == NULL)
return;
size = zdm->zdm_size;
kmem_free(zdm, size);
zfs_dbgmsg_size -= size;
}
}
static int
zfs_dbgmsg_update(kstat_t *ksp, int rw)
{
if (rw == KSTAT_WRITE)
zfs_dbgmsg_purge(0);
return (0);
}
void
zfs_dbgmsg_init(void)
{
list_create(&zfs_dbgmsgs, sizeof (zfs_dbgmsg_t),
offsetof(zfs_dbgmsg_t, zdm_node));
mutex_init(&zfs_dbgmsgs_lock, NULL, MUTEX_DEFAULT, NULL);
zfs_dbgmsg_kstat = kstat_create("zfs", 0, "dbgmsg", "misc",
KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL);
if (zfs_dbgmsg_kstat) {
zfs_dbgmsg_kstat->ks_lock = &zfs_dbgmsgs_lock;
zfs_dbgmsg_kstat->ks_ndata = UINT32_MAX;
zfs_dbgmsg_kstat->ks_private = NULL;
zfs_dbgmsg_kstat->ks_update = zfs_dbgmsg_update;
kstat_set_raw_ops(zfs_dbgmsg_kstat, zfs_dbgmsg_headers,
zfs_dbgmsg_data, zfs_dbgmsg_addr);
kstat_install(zfs_dbgmsg_kstat);
}
}
void
zfs_dbgmsg_fini(void)
{
if (zfs_dbgmsg_kstat)
kstat_delete(zfs_dbgmsg_kstat);
mutex_enter(&zfs_dbgmsgs_lock);
zfs_dbgmsg_purge(0);
mutex_exit(&zfs_dbgmsgs_lock);
mutex_destroy(&zfs_dbgmsgs_lock);
}
void
__zfs_dbgmsg(char *buf)
{
zfs_dbgmsg_t *zdm;
int size;
size = sizeof (zfs_dbgmsg_t) + strlen(buf);
zdm = kmem_zalloc(size, KM_SLEEP);
zdm->zdm_size = size;
zdm->zdm_timestamp = gethrestime_sec();
strcpy(zdm->zdm_msg, buf);
mutex_enter(&zfs_dbgmsgs_lock);
list_insert_tail(&zfs_dbgmsgs, zdm);
zfs_dbgmsg_size += size;
zfs_dbgmsg_purge(MAX(zfs_dbgmsg_maxsize, 0));
mutex_exit(&zfs_dbgmsgs_lock);
}
#ifdef _KERNEL
void
__dprintf(const char *file, const char *func, int line, const char *fmt, ...)
{
const char *newfile;
va_list adx;
size_t size;
char *buf;
Swap DTRACE_PROBE* with Linux tracepoints This patch leverages Linux tracepoints from within the ZFS on Linux code base. It also refactors the debug code to bring it back in sync with Illumos. The information exported via tracepoints can be used for a variety of reasons (e.g. debugging, tuning, general exploration/understanding, etc). It is advantageous to use Linux tracepoints as the mechanism to export this kind of information (as opposed to something else) for a number of reasons: * A number of external tools can make use of our tracepoints "automatically" (e.g. perf, systemtap) * Tracepoints are designed to be extremely cheap when disabled * It's one of the "accepted" ways to export this kind of information; many other kernel subsystems use tracepoints too. Unfortunately, though, there are a few caveats as well: * Linux tracepoints appear to only be available to GPL licensed modules due to the way certain kernel functions are exported. Thus, to actually make use of the tracepoints introduced by this patch, one might have to patch and re-compile the kernel; exporting the necessary functions to non-GPL modules. * Prior to upstream kernel version v3.14-rc6-30-g66cc69e, Linux tracepoints are not available for unsigned kernel modules (tracepoints will get disabled due to the module's 'F' taint). Thus, one either has to sign the zfs kernel module prior to loading it, or use a kernel versioned v3.14-rc6-30-g66cc69e or newer. Assuming the above two requirements are satisfied, lets look at an example of how this patch can be used and what information it exposes (all commands run as 'root'): # list all zfs tracepoints available $ ls /sys/kernel/debug/tracing/events/zfs enable filter zfs_arc__delete zfs_arc__evict zfs_arc__hit zfs_arc__miss zfs_l2arc__evict zfs_l2arc__hit zfs_l2arc__iodone zfs_l2arc__miss zfs_l2arc__read zfs_l2arc__write zfs_new_state__mfu zfs_new_state__mru # enable all zfs tracepoints, clear the tracepoint ring buffer $ echo 1 > /sys/kernel/debug/tracing/events/zfs/enable $ echo 0 > /sys/kernel/debug/tracing/trace # import zpool called 'tank', inspect tracepoint data (each line was # truncated, they're too long for a commit message otherwise) $ zpool import tank $ cat /sys/kernel/debug/tracing/trace | head -n35 # tracer: nop # # entries-in-buffer/entries-written: 1219/1219 #P:8 # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / delay # TASK-PID CPU# |||| TIMESTAMP FUNCTION # | | | |||| | | lt-zpool-30132 [003] .... 91344.200050: zfs_arc__miss: hdr... z_rd_int/0-30156 [003] .... 91344.200611: zfs_new_state__mru... lt-zpool-30132 [003] .... 91344.201173: zfs_arc__miss: hdr... z_rd_int/1-30157 [003] .... 91344.201756: zfs_new_state__mru... lt-zpool-30132 [003] .... 91344.201795: zfs_arc__miss: hdr... z_rd_int/2-30158 [003] .... 91344.202099: zfs_new_state__mru... lt-zpool-30132 [003] .... 91344.202126: zfs_arc__hit: hdr ... lt-zpool-30132 [003] .... 91344.202130: zfs_arc__hit: hdr ... lt-zpool-30132 [003] .... 91344.202134: zfs_arc__hit: hdr ... lt-zpool-30132 [003] .... 91344.202146: zfs_arc__miss: hdr... z_rd_int/3-30159 [003] .... 91344.202457: zfs_new_state__mru... lt-zpool-30132 [003] .... 91344.202484: zfs_arc__miss: hdr... z_rd_int/4-30160 [003] .... 91344.202866: zfs_new_state__mru... lt-zpool-30132 [003] .... 91344.202891: zfs_arc__hit: hdr ... lt-zpool-30132 [001] .... 91344.203034: zfs_arc__miss: hdr... z_rd_iss/1-30149 [001] .... 91344.203749: zfs_new_state__mru... lt-zpool-30132 [001] .... 91344.203789: zfs_arc__hit: hdr ... lt-zpool-30132 [001] .... 91344.203878: zfs_arc__miss: hdr... z_rd_iss/3-30151 [001] .... 91344.204315: zfs_new_state__mru... lt-zpool-30132 [001] .... 91344.204332: zfs_arc__hit: hdr ... lt-zpool-30132 [001] .... 91344.204337: zfs_arc__hit: hdr ... lt-zpool-30132 [001] .... 91344.204352: zfs_arc__hit: hdr ... lt-zpool-30132 [001] .... 91344.204356: zfs_arc__hit: hdr ... lt-zpool-30132 [001] .... 91344.204360: zfs_arc__hit: hdr ... To highlight the kind of detailed information that is being exported using this infrastructure, I've taken the first tracepoint line from the output above and reformatted it such that it fits in 80 columns: lt-zpool-30132 [003] .... 91344.200050: zfs_arc__miss: hdr { dva 0x1:0x40082 birth 15491 cksum0 0x163edbff3a flags 0x640 datacnt 1 type 1 size 2048 spa 3133524293419867460 state_type 0 access 0 mru_hits 0 mru_ghost_hits 0 mfu_hits 0 mfu_ghost_hits 0 l2_hits 0 refcount 1 } bp { dva0 0x1:0x40082 dva1 0x1:0x3000e5 dva2 0x1:0x5a006e cksum 0x163edbff3a:0x75af30b3dd6:0x1499263ff5f2b:0x288bd118815e00 lsize 2048 } zb { objset 0 object 0 level -1 blkid 0 } For the specific tracepoint shown here, 'zfs_arc__miss', data is exported detailing the arc_buf_hdr_t (hdr), blkptr_t (bp), and zbookmark_t (zb) that caused the ARC miss (down to the exact DVA!). This kind of precise and detailed information can be extremely valuable when trying to answer certain kinds of questions. For anybody unfamiliar but looking to build on this, I found the XFS source code along with the following three web links to be extremely helpful: * http://lwn.net/Articles/379903/ * http://lwn.net/Articles/381064/ * http://lwn.net/Articles/383362/ I should also node the more "boring" aspects of this patch: * The ZFS_LINUX_COMPILE_IFELSE autoconf macro was modified to support a sixth paramter. This parameter is used to populate the contents of the new conftest.h file. If no sixth parameter is provided, conftest.h will be empty. * The ZFS_LINUX_TRY_COMPILE_HEADER autoconf macro was introduced. This macro is nearly identical to the ZFS_LINUX_TRY_COMPILE macro, except it has support for a fifth option that is then passed as the sixth parameter to ZFS_LINUX_COMPILE_IFELSE. These autoconf changes were needed to test the availability of the Linux tracepoint macros. Due to the odd nature of the Linux tracepoint macro API, a separate ".h" must be created (the path and filename is used internally by the kernel's define_trace.h file). * The HAVE_DECLARE_EVENT_CLASS autoconf macro was introduced. This is to determine if we can safely enable the Linux tracepoint functionality. We need to selectively disable the tracepoint code due to the kernel exporting certain functions as GPL only. Without this check, the build process will fail at link time. In addition, the SET_ERROR macro was modified into a tracepoint as well. To do this, the 'sdt.h' file was moved into the 'include/sys' directory and now contains a userspace portion and a kernel space portion. The dprintf and zfs_dbgmsg* interfaces are now implemented as tracepoint as well. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2014-06-13 17:54:48 +00:00
char *nl;
if (!zfs_dbgmsg_enable && !(zfs_flags & ZFS_DEBUG_DPRINTF))
return;
size = 1024;
buf = kmem_alloc(size, KM_SLEEP);
/*
* Get rid of annoying prefix to filename.
*/
newfile = strrchr(file, '/');
if (newfile != NULL) {
newfile = newfile + 1; /* Get rid of leading / */
} else {
newfile = file;
}
va_start(adx, fmt);
(void) vsnprintf(buf, size, fmt, adx);
va_end(adx);
Swap DTRACE_PROBE* with Linux tracepoints This patch leverages Linux tracepoints from within the ZFS on Linux code base. It also refactors the debug code to bring it back in sync with Illumos. The information exported via tracepoints can be used for a variety of reasons (e.g. debugging, tuning, general exploration/understanding, etc). It is advantageous to use Linux tracepoints as the mechanism to export this kind of information (as opposed to something else) for a number of reasons: * A number of external tools can make use of our tracepoints "automatically" (e.g. perf, systemtap) * Tracepoints are designed to be extremely cheap when disabled * It's one of the "accepted" ways to export this kind of information; many other kernel subsystems use tracepoints too. Unfortunately, though, there are a few caveats as well: * Linux tracepoints appear to only be available to GPL licensed modules due to the way certain kernel functions are exported. Thus, to actually make use of the tracepoints introduced by this patch, one might have to patch and re-compile the kernel; exporting the necessary functions to non-GPL modules. * Prior to upstream kernel version v3.14-rc6-30-g66cc69e, Linux tracepoints are not available for unsigned kernel modules (tracepoints will get disabled due to the module's 'F' taint). Thus, one either has to sign the zfs kernel module prior to loading it, or use a kernel versioned v3.14-rc6-30-g66cc69e or newer. Assuming the above two requirements are satisfied, lets look at an example of how this patch can be used and what information it exposes (all commands run as 'root'): # list all zfs tracepoints available $ ls /sys/kernel/debug/tracing/events/zfs enable filter zfs_arc__delete zfs_arc__evict zfs_arc__hit zfs_arc__miss zfs_l2arc__evict zfs_l2arc__hit zfs_l2arc__iodone zfs_l2arc__miss zfs_l2arc__read zfs_l2arc__write zfs_new_state__mfu zfs_new_state__mru # enable all zfs tracepoints, clear the tracepoint ring buffer $ echo 1 > /sys/kernel/debug/tracing/events/zfs/enable $ echo 0 > /sys/kernel/debug/tracing/trace # import zpool called 'tank', inspect tracepoint data (each line was # truncated, they're too long for a commit message otherwise) $ zpool import tank $ cat /sys/kernel/debug/tracing/trace | head -n35 # tracer: nop # # entries-in-buffer/entries-written: 1219/1219 #P:8 # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / delay # TASK-PID CPU# |||| TIMESTAMP FUNCTION # | | | |||| | | lt-zpool-30132 [003] .... 91344.200050: zfs_arc__miss: hdr... z_rd_int/0-30156 [003] .... 91344.200611: zfs_new_state__mru... lt-zpool-30132 [003] .... 91344.201173: zfs_arc__miss: hdr... z_rd_int/1-30157 [003] .... 91344.201756: zfs_new_state__mru... lt-zpool-30132 [003] .... 91344.201795: zfs_arc__miss: hdr... z_rd_int/2-30158 [003] .... 91344.202099: zfs_new_state__mru... lt-zpool-30132 [003] .... 91344.202126: zfs_arc__hit: hdr ... lt-zpool-30132 [003] .... 91344.202130: zfs_arc__hit: hdr ... lt-zpool-30132 [003] .... 91344.202134: zfs_arc__hit: hdr ... lt-zpool-30132 [003] .... 91344.202146: zfs_arc__miss: hdr... z_rd_int/3-30159 [003] .... 91344.202457: zfs_new_state__mru... lt-zpool-30132 [003] .... 91344.202484: zfs_arc__miss: hdr... z_rd_int/4-30160 [003] .... 91344.202866: zfs_new_state__mru... lt-zpool-30132 [003] .... 91344.202891: zfs_arc__hit: hdr ... lt-zpool-30132 [001] .... 91344.203034: zfs_arc__miss: hdr... z_rd_iss/1-30149 [001] .... 91344.203749: zfs_new_state__mru... lt-zpool-30132 [001] .... 91344.203789: zfs_arc__hit: hdr ... lt-zpool-30132 [001] .... 91344.203878: zfs_arc__miss: hdr... z_rd_iss/3-30151 [001] .... 91344.204315: zfs_new_state__mru... lt-zpool-30132 [001] .... 91344.204332: zfs_arc__hit: hdr ... lt-zpool-30132 [001] .... 91344.204337: zfs_arc__hit: hdr ... lt-zpool-30132 [001] .... 91344.204352: zfs_arc__hit: hdr ... lt-zpool-30132 [001] .... 91344.204356: zfs_arc__hit: hdr ... lt-zpool-30132 [001] .... 91344.204360: zfs_arc__hit: hdr ... To highlight the kind of detailed information that is being exported using this infrastructure, I've taken the first tracepoint line from the output above and reformatted it such that it fits in 80 columns: lt-zpool-30132 [003] .... 91344.200050: zfs_arc__miss: hdr { dva 0x1:0x40082 birth 15491 cksum0 0x163edbff3a flags 0x640 datacnt 1 type 1 size 2048 spa 3133524293419867460 state_type 0 access 0 mru_hits 0 mru_ghost_hits 0 mfu_hits 0 mfu_ghost_hits 0 l2_hits 0 refcount 1 } bp { dva0 0x1:0x40082 dva1 0x1:0x3000e5 dva2 0x1:0x5a006e cksum 0x163edbff3a:0x75af30b3dd6:0x1499263ff5f2b:0x288bd118815e00 lsize 2048 } zb { objset 0 object 0 level -1 blkid 0 } For the specific tracepoint shown here, 'zfs_arc__miss', data is exported detailing the arc_buf_hdr_t (hdr), blkptr_t (bp), and zbookmark_t (zb) that caused the ARC miss (down to the exact DVA!). This kind of precise and detailed information can be extremely valuable when trying to answer certain kinds of questions. For anybody unfamiliar but looking to build on this, I found the XFS source code along with the following three web links to be extremely helpful: * http://lwn.net/Articles/379903/ * http://lwn.net/Articles/381064/ * http://lwn.net/Articles/383362/ I should also node the more "boring" aspects of this patch: * The ZFS_LINUX_COMPILE_IFELSE autoconf macro was modified to support a sixth paramter. This parameter is used to populate the contents of the new conftest.h file. If no sixth parameter is provided, conftest.h will be empty. * The ZFS_LINUX_TRY_COMPILE_HEADER autoconf macro was introduced. This macro is nearly identical to the ZFS_LINUX_TRY_COMPILE macro, except it has support for a fifth option that is then passed as the sixth parameter to ZFS_LINUX_COMPILE_IFELSE. These autoconf changes were needed to test the availability of the Linux tracepoint macros. Due to the odd nature of the Linux tracepoint macro API, a separate ".h" must be created (the path and filename is used internally by the kernel's define_trace.h file). * The HAVE_DECLARE_EVENT_CLASS autoconf macro was introduced. This is to determine if we can safely enable the Linux tracepoint functionality. We need to selectively disable the tracepoint code due to the kernel exporting certain functions as GPL only. Without this check, the build process will fail at link time. In addition, the SET_ERROR macro was modified into a tracepoint as well. To do this, the 'sdt.h' file was moved into the 'include/sys' directory and now contains a userspace portion and a kernel space portion. The dprintf and zfs_dbgmsg* interfaces are now implemented as tracepoint as well. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2014-06-13 17:54:48 +00:00
/*
* Get rid of trailing newline.
*/
nl = strrchr(buf, '\n');
Swap DTRACE_PROBE* with Linux tracepoints This patch leverages Linux tracepoints from within the ZFS on Linux code base. It also refactors the debug code to bring it back in sync with Illumos. The information exported via tracepoints can be used for a variety of reasons (e.g. debugging, tuning, general exploration/understanding, etc). It is advantageous to use Linux tracepoints as the mechanism to export this kind of information (as opposed to something else) for a number of reasons: * A number of external tools can make use of our tracepoints "automatically" (e.g. perf, systemtap) * Tracepoints are designed to be extremely cheap when disabled * It's one of the "accepted" ways to export this kind of information; many other kernel subsystems use tracepoints too. Unfortunately, though, there are a few caveats as well: * Linux tracepoints appear to only be available to GPL licensed modules due to the way certain kernel functions are exported. Thus, to actually make use of the tracepoints introduced by this patch, one might have to patch and re-compile the kernel; exporting the necessary functions to non-GPL modules. * Prior to upstream kernel version v3.14-rc6-30-g66cc69e, Linux tracepoints are not available for unsigned kernel modules (tracepoints will get disabled due to the module's 'F' taint). Thus, one either has to sign the zfs kernel module prior to loading it, or use a kernel versioned v3.14-rc6-30-g66cc69e or newer. Assuming the above two requirements are satisfied, lets look at an example of how this patch can be used and what information it exposes (all commands run as 'root'): # list all zfs tracepoints available $ ls /sys/kernel/debug/tracing/events/zfs enable filter zfs_arc__delete zfs_arc__evict zfs_arc__hit zfs_arc__miss zfs_l2arc__evict zfs_l2arc__hit zfs_l2arc__iodone zfs_l2arc__miss zfs_l2arc__read zfs_l2arc__write zfs_new_state__mfu zfs_new_state__mru # enable all zfs tracepoints, clear the tracepoint ring buffer $ echo 1 > /sys/kernel/debug/tracing/events/zfs/enable $ echo 0 > /sys/kernel/debug/tracing/trace # import zpool called 'tank', inspect tracepoint data (each line was # truncated, they're too long for a commit message otherwise) $ zpool import tank $ cat /sys/kernel/debug/tracing/trace | head -n35 # tracer: nop # # entries-in-buffer/entries-written: 1219/1219 #P:8 # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / delay # TASK-PID CPU# |||| TIMESTAMP FUNCTION # | | | |||| | | lt-zpool-30132 [003] .... 91344.200050: zfs_arc__miss: hdr... z_rd_int/0-30156 [003] .... 91344.200611: zfs_new_state__mru... lt-zpool-30132 [003] .... 91344.201173: zfs_arc__miss: hdr... z_rd_int/1-30157 [003] .... 91344.201756: zfs_new_state__mru... lt-zpool-30132 [003] .... 91344.201795: zfs_arc__miss: hdr... z_rd_int/2-30158 [003] .... 91344.202099: zfs_new_state__mru... lt-zpool-30132 [003] .... 91344.202126: zfs_arc__hit: hdr ... lt-zpool-30132 [003] .... 91344.202130: zfs_arc__hit: hdr ... lt-zpool-30132 [003] .... 91344.202134: zfs_arc__hit: hdr ... lt-zpool-30132 [003] .... 91344.202146: zfs_arc__miss: hdr... z_rd_int/3-30159 [003] .... 91344.202457: zfs_new_state__mru... lt-zpool-30132 [003] .... 91344.202484: zfs_arc__miss: hdr... z_rd_int/4-30160 [003] .... 91344.202866: zfs_new_state__mru... lt-zpool-30132 [003] .... 91344.202891: zfs_arc__hit: hdr ... lt-zpool-30132 [001] .... 91344.203034: zfs_arc__miss: hdr... z_rd_iss/1-30149 [001] .... 91344.203749: zfs_new_state__mru... lt-zpool-30132 [001] .... 91344.203789: zfs_arc__hit: hdr ... lt-zpool-30132 [001] .... 91344.203878: zfs_arc__miss: hdr... z_rd_iss/3-30151 [001] .... 91344.204315: zfs_new_state__mru... lt-zpool-30132 [001] .... 91344.204332: zfs_arc__hit: hdr ... lt-zpool-30132 [001] .... 91344.204337: zfs_arc__hit: hdr ... lt-zpool-30132 [001] .... 91344.204352: zfs_arc__hit: hdr ... lt-zpool-30132 [001] .... 91344.204356: zfs_arc__hit: hdr ... lt-zpool-30132 [001] .... 91344.204360: zfs_arc__hit: hdr ... To highlight the kind of detailed information that is being exported using this infrastructure, I've taken the first tracepoint line from the output above and reformatted it such that it fits in 80 columns: lt-zpool-30132 [003] .... 91344.200050: zfs_arc__miss: hdr { dva 0x1:0x40082 birth 15491 cksum0 0x163edbff3a flags 0x640 datacnt 1 type 1 size 2048 spa 3133524293419867460 state_type 0 access 0 mru_hits 0 mru_ghost_hits 0 mfu_hits 0 mfu_ghost_hits 0 l2_hits 0 refcount 1 } bp { dva0 0x1:0x40082 dva1 0x1:0x3000e5 dva2 0x1:0x5a006e cksum 0x163edbff3a:0x75af30b3dd6:0x1499263ff5f2b:0x288bd118815e00 lsize 2048 } zb { objset 0 object 0 level -1 blkid 0 } For the specific tracepoint shown here, 'zfs_arc__miss', data is exported detailing the arc_buf_hdr_t (hdr), blkptr_t (bp), and zbookmark_t (zb) that caused the ARC miss (down to the exact DVA!). This kind of precise and detailed information can be extremely valuable when trying to answer certain kinds of questions. For anybody unfamiliar but looking to build on this, I found the XFS source code along with the following three web links to be extremely helpful: * http://lwn.net/Articles/379903/ * http://lwn.net/Articles/381064/ * http://lwn.net/Articles/383362/ I should also node the more "boring" aspects of this patch: * The ZFS_LINUX_COMPILE_IFELSE autoconf macro was modified to support a sixth paramter. This parameter is used to populate the contents of the new conftest.h file. If no sixth parameter is provided, conftest.h will be empty. * The ZFS_LINUX_TRY_COMPILE_HEADER autoconf macro was introduced. This macro is nearly identical to the ZFS_LINUX_TRY_COMPILE macro, except it has support for a fifth option that is then passed as the sixth parameter to ZFS_LINUX_COMPILE_IFELSE. These autoconf changes were needed to test the availability of the Linux tracepoint macros. Due to the odd nature of the Linux tracepoint macro API, a separate ".h" must be created (the path and filename is used internally by the kernel's define_trace.h file). * The HAVE_DECLARE_EVENT_CLASS autoconf macro was introduced. This is to determine if we can safely enable the Linux tracepoint functionality. We need to selectively disable the tracepoint code due to the kernel exporting certain functions as GPL only. Without this check, the build process will fail at link time. In addition, the SET_ERROR macro was modified into a tracepoint as well. To do this, the 'sdt.h' file was moved into the 'include/sys' directory and now contains a userspace portion and a kernel space portion. The dprintf and zfs_dbgmsg* interfaces are now implemented as tracepoint as well. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2014-06-13 17:54:48 +00:00
if (nl != NULL)
*nl = '\0';
/*
* To get this data enable the zfs__dprintf trace point as shown:
*
* # Enable zfs__dprintf tracepoint, clear the tracepoint ring buffer
* $ echo 1 > /sys/module/zfs/parameters/zfs_flags
* $ echo 1 > /sys/kernel/debug/tracing/events/zfs/enable
* $ echo 0 > /sys/kernel/debug/tracing/trace
*
* # Dump the ring buffer.
* $ cat /sys/kernel/debug/tracing/trace
*/
if (zfs_flags & ZFS_DEBUG_DPRINTF)
DTRACE_PROBE4(zfs__dprintf,
char *, newfile, char *, func, int, line, char *, buf);
/*
* To get this data enable the zfs debug log as shown:
*
* # Set zfs_dbgmsg enable, clear the log buffer
* $ echo 1 > /sys/module/zfs/parameters/zfs_dbgmsg_enable
* $ echo 0 > /proc/spl/kstat/zfs/dbgmsg
*
* # Dump the log buffer.
* $ cat /proc/spl/kstat/zfs/dbgmsg
*/
if (zfs_dbgmsg_enable)
__zfs_dbgmsg(buf);
kmem_free(buf, size);
}
#endif /* _KERNEL */
Illumos #3956, #3957, #3958, #3959, #3960, #3961, #3962 3956 ::vdev -r should work with pipelines 3957 ztest should update the cachefile before killing itself 3958 multiple scans can lead to partial resilvering 3959 ddt entries are not always resilvered 3960 dsl_scan can skip over dedup-ed blocks if physical birth != logical birth 3961 freed gang blocks are not resilvered and can cause pool to suspend 3962 ztest should print out zfs debug buffer before exiting Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Approved by: Richard Lowe <richlowe@richlowe.net> References: https://www.illumos.org/issues/3956 https://www.illumos.org/issues/3957 https://www.illumos.org/issues/3958 https://www.illumos.org/issues/3959 https://www.illumos.org/issues/3960 https://www.illumos.org/issues/3961 https://www.illumos.org/issues/3962 illumos/illumos-gate@b4952e17e8858d3225793b28788278de9fe6038d Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Porting notes: 1. zfs_dbgmsg_print() is only used in userland. Since we do not have mdb on Linux, it does not make sense to make it available in the kernel. This means that a build failure will occur if any future kernel patch depends on it. However, that is unlikely given that this functionality was added to support zdb. 2. zfs_dbgmsg_print() is only invoked for -VVV or greater log levels. This preserves the existing behavior of minimal noise when running with -V, and -VV. 3. In vdev_config_generate() the call to nvlist_alloc() was not changed to fnvlist_alloc() because we must pass KM_PUSHPAGE in the txg_sync context.
2013-08-07 20:16:22 +00:00
#ifdef _KERNEL
module_param(zfs_dbgmsg_enable, int, 0644);
MODULE_PARM_DESC(zfs_dbgmsg_enable, "Enable ZFS debug message log");
Illumos #3956, #3957, #3958, #3959, #3960, #3961, #3962 3956 ::vdev -r should work with pipelines 3957 ztest should update the cachefile before killing itself 3958 multiple scans can lead to partial resilvering 3959 ddt entries are not always resilvered 3960 dsl_scan can skip over dedup-ed blocks if physical birth != logical birth 3961 freed gang blocks are not resilvered and can cause pool to suspend 3962 ztest should print out zfs debug buffer before exiting Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Approved by: Richard Lowe <richlowe@richlowe.net> References: https://www.illumos.org/issues/3956 https://www.illumos.org/issues/3957 https://www.illumos.org/issues/3958 https://www.illumos.org/issues/3959 https://www.illumos.org/issues/3960 https://www.illumos.org/issues/3961 https://www.illumos.org/issues/3962 illumos/illumos-gate@b4952e17e8858d3225793b28788278de9fe6038d Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Porting notes: 1. zfs_dbgmsg_print() is only used in userland. Since we do not have mdb on Linux, it does not make sense to make it available in the kernel. This means that a build failure will occur if any future kernel patch depends on it. However, that is unlikely given that this functionality was added to support zdb. 2. zfs_dbgmsg_print() is only invoked for -VVV or greater log levels. This preserves the existing behavior of minimal noise when running with -V, and -VV. 3. In vdev_config_generate() the call to nvlist_alloc() was not changed to fnvlist_alloc() because we must pass KM_PUSHPAGE in the txg_sync context.
2013-08-07 20:16:22 +00:00
module_param(zfs_dbgmsg_maxsize, int, 0644);
MODULE_PARM_DESC(zfs_dbgmsg_maxsize, "Maximum ZFS debug log size");
#endif