2005-01-06 18:10:42 +00:00
|
|
|
/*-
|
1997-02-10 02:22:35 +00:00
|
|
|
* Copyright (c) 1990, 1993, 1995
|
2005-09-13 17:46:48 +00:00
|
|
|
* The Regents of the University of California.
|
|
|
|
* Copyright (c) 2005 Robert N. M. Watson
|
|
|
|
* All rights reserved.
|
1994-05-24 10:09:53 +00:00
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
|
|
* may be used to endorse or promote products derived from this software
|
|
|
|
* without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
1997-02-10 02:22:35 +00:00
|
|
|
* @(#)fifo_vnops.c 8.10 (Berkeley) 5/27/95
|
1999-08-28 01:08:13 +00:00
|
|
|
* $FreeBSD$
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/param.h>
|
2002-04-30 01:54:54 +00:00
|
|
|
#include <sys/event.h>
|
2004-11-15 14:51:44 +00:00
|
|
|
#include <sys/file.h>
|
|
|
|
#include <sys/filedesc.h>
|
2002-04-30 01:54:54 +00:00
|
|
|
#include <sys/filio.h>
|
|
|
|
#include <sys/fcntl.h>
|
1997-02-12 16:26:37 +00:00
|
|
|
#include <sys/kernel.h>
|
1997-12-05 19:55:52 +00:00
|
|
|
#include <sys/lock.h>
|
2002-01-13 21:37:49 +00:00
|
|
|
#include <sys/mutex.h>
|
1997-10-12 20:26:33 +00:00
|
|
|
#include <sys/malloc.h>
|
2002-04-30 01:54:54 +00:00
|
|
|
#include <sys/poll.h>
|
2001-09-12 08:38:13 +00:00
|
|
|
#include <sys/proc.h> /* XXXKSE */
|
2002-04-30 01:54:54 +00:00
|
|
|
#include <sys/signalvar.h>
|
1994-05-24 10:09:53 +00:00
|
|
|
#include <sys/socket.h>
|
|
|
|
#include <sys/socketvar.h>
|
2002-04-30 01:54:54 +00:00
|
|
|
#include <sys/sx.h>
|
|
|
|
#include <sys/systm.h>
|
1995-03-16 18:17:34 +00:00
|
|
|
#include <sys/un.h>
|
2002-04-30 01:54:54 +00:00
|
|
|
#include <sys/unistd.h>
|
|
|
|
#include <sys/vnode.h>
|
2001-05-23 09:42:29 +00:00
|
|
|
#include <fs/fifofs/fifo.h>
|
1994-05-24 10:09:53 +00:00
|
|
|
|
2004-11-15 14:51:44 +00:00
|
|
|
static fo_rdwr_t fifo_read_f;
|
|
|
|
static fo_rdwr_t fifo_write_f;
|
|
|
|
static fo_ioctl_t fifo_ioctl_f;
|
|
|
|
static fo_poll_t fifo_poll_f;
|
|
|
|
static fo_kqfilter_t fifo_kqfilter_f;
|
|
|
|
static fo_stat_t fifo_stat_f;
|
|
|
|
static fo_close_t fifo_close_f;
|
|
|
|
|
|
|
|
struct fileops fifo_ops_f = {
|
|
|
|
.fo_read = fifo_read_f,
|
|
|
|
.fo_write = fifo_write_f,
|
|
|
|
.fo_ioctl = fifo_ioctl_f,
|
|
|
|
.fo_poll = fifo_poll_f,
|
|
|
|
.fo_kqfilter = fifo_kqfilter_f,
|
|
|
|
.fo_stat = fifo_stat_f,
|
|
|
|
.fo_close = fifo_close_f,
|
2005-09-12 12:15:12 +00:00
|
|
|
.fo_flags = DFLAG_PASSABLE
|
2004-11-15 14:51:44 +00:00
|
|
|
};
|
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
/*
|
Add fi_sx, an sx lock to serialize I/O operations on the socket pair
underlying the POSIX fifo implementation. In 6.x/7.x, fifo access is
moved from the VFS layer, where it was serialized using the vnode
lock, to the file descriptor layer, where access is protected by a
reference count but not serialized. This exposed socket buffer
locking to high levels of parallelism in specific fifo workloads, such
as make -j 32, which expose as yet unresolved socket buffer bugs.
fi_sx re-adds serialization about the read and write routines,
although not paths that simply test socket buffer mbuf queue state,
such as the poll and kqueue methods. This restores the extra locking
cost previously present in some cases, but is an effective workaround
for the instability that has been experienced. This workaround should
be removed once the bug in socket buffer handling has been fixed.
Reported by: kris, jhb, Julien Gabel <jpeg at thilelli dot net>,
Peter Holm <peter at holm dot cc>, others
MFC after: 3 days
2005-09-22 10:51:12 +00:00
|
|
|
* This structure is associated with the FIFO vnode and stores the state
|
|
|
|
* associated with the FIFO.
|
|
|
|
*
|
|
|
|
* XXXRW: The presence of an sx lock here is undesirable, and exists to avoid
|
|
|
|
* exposing threading race conditions in the socket code that have not yet
|
|
|
|
* been resolved. Once those problems are resolved, the sx lock here should
|
|
|
|
* be removed.
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
|
|
|
struct fifoinfo {
|
|
|
|
struct socket *fi_readsock;
|
|
|
|
struct socket *fi_writesock;
|
|
|
|
long fi_readers;
|
|
|
|
long fi_writers;
|
Add fi_sx, an sx lock to serialize I/O operations on the socket pair
underlying the POSIX fifo implementation. In 6.x/7.x, fifo access is
moved from the VFS layer, where it was serialized using the vnode
lock, to the file descriptor layer, where access is protected by a
reference count but not serialized. This exposed socket buffer
locking to high levels of parallelism in specific fifo workloads, such
as make -j 32, which expose as yet unresolved socket buffer bugs.
fi_sx re-adds serialization about the read and write routines,
although not paths that simply test socket buffer mbuf queue state,
such as the poll and kqueue methods. This restores the extra locking
cost previously present in some cases, but is an effective workaround
for the instability that has been experienced. This workaround should
be removed once the bug in socket buffer handling has been fixed.
Reported by: kris, jhb, Julien Gabel <jpeg at thilelli dot net>,
Peter Holm <peter at holm dot cc>, others
MFC after: 3 days
2005-09-22 10:51:12 +00:00
|
|
|
struct sx fi_sx;
|
1994-05-24 10:09:53 +00:00
|
|
|
};
|
|
|
|
|
2004-12-01 12:24:41 +00:00
|
|
|
static vop_print_t fifo_print;
|
|
|
|
static vop_open_t fifo_open;
|
|
|
|
static vop_close_t fifo_close;
|
|
|
|
static vop_ioctl_t fifo_ioctl;
|
|
|
|
static vop_kqfilter_t fifo_kqfilter;
|
|
|
|
static vop_pathconf_t fifo_pathconf;
|
|
|
|
static vop_advlock_t fifo_advlock;
|
1997-10-15 13:24:07 +00:00
|
|
|
|
2000-04-16 18:53:38 +00:00
|
|
|
static void filt_fifordetach(struct knote *kn);
|
|
|
|
static int filt_fiforead(struct knote *kn, long hint);
|
|
|
|
static void filt_fifowdetach(struct knote *kn);
|
|
|
|
static int filt_fifowrite(struct knote *kn, long hint);
|
2005-09-12 19:59:12 +00:00
|
|
|
static void filt_fifodetach_notsup(struct knote *kn);
|
|
|
|
static int filt_fifo_notsup(struct knote *kn, long hint);
|
2000-04-16 18:53:38 +00:00
|
|
|
|
2001-02-15 16:34:11 +00:00
|
|
|
static struct filterops fiforead_filtops =
|
|
|
|
{ 1, NULL, filt_fifordetach, filt_fiforead };
|
|
|
|
static struct filterops fifowrite_filtops =
|
|
|
|
{ 1, NULL, filt_fifowdetach, filt_fifowrite };
|
2005-09-12 19:59:12 +00:00
|
|
|
static struct filterops fifo_notsup_filtops =
|
|
|
|
{ 1, NULL, filt_fifodetach_notsup, filt_fifo_notsup };
|
1995-12-14 09:55:16 +00:00
|
|
|
|
2004-12-01 23:16:38 +00:00
|
|
|
struct vop_vector fifo_specops = {
|
|
|
|
.vop_default = &default_vnodeops,
|
2005-01-13 18:59:48 +00:00
|
|
|
|
2004-12-01 23:16:38 +00:00
|
|
|
.vop_access = VOP_EBADF,
|
|
|
|
.vop_advlock = fifo_advlock,
|
|
|
|
.vop_close = fifo_close,
|
|
|
|
.vop_create = VOP_PANIC,
|
|
|
|
.vop_getattr = VOP_EBADF,
|
|
|
|
.vop_ioctl = fifo_ioctl,
|
|
|
|
.vop_kqfilter = fifo_kqfilter,
|
|
|
|
.vop_lease = VOP_NULL,
|
|
|
|
.vop_link = VOP_PANIC,
|
|
|
|
.vop_mkdir = VOP_PANIC,
|
|
|
|
.vop_mknod = VOP_PANIC,
|
|
|
|
.vop_open = fifo_open,
|
|
|
|
.vop_pathconf = fifo_pathconf,
|
|
|
|
.vop_print = fifo_print,
|
2004-12-13 07:07:50 +00:00
|
|
|
.vop_read = VOP_PANIC,
|
2004-12-01 23:16:38 +00:00
|
|
|
.vop_readdir = VOP_PANIC,
|
|
|
|
.vop_readlink = VOP_PANIC,
|
|
|
|
.vop_reallocblks = VOP_PANIC,
|
|
|
|
.vop_reclaim = VOP_NULL,
|
|
|
|
.vop_remove = VOP_PANIC,
|
|
|
|
.vop_rename = VOP_PANIC,
|
|
|
|
.vop_rmdir = VOP_PANIC,
|
|
|
|
.vop_setattr = VOP_EBADF,
|
|
|
|
.vop_symlink = VOP_PANIC,
|
2004-12-13 07:07:50 +00:00
|
|
|
.vop_write = VOP_PANIC,
|
1994-05-24 10:09:53 +00:00
|
|
|
};
|
1994-09-21 03:47:43 +00:00
|
|
|
|
2004-05-17 20:16:40 +00:00
|
|
|
struct mtx fifo_mtx;
|
|
|
|
MTX_SYSINIT(fifo, &fifo_mtx, "fifo mutex", MTX_DEF);
|
|
|
|
|
2003-11-10 22:21:00 +00:00
|
|
|
/*
|
|
|
|
* Dispose of fifo resources.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
fifo_cleanup(struct vnode *vp)
|
|
|
|
{
|
|
|
|
struct fifoinfo *fip = vp->v_fifoinfo;
|
|
|
|
|
2003-11-16 01:11:11 +00:00
|
|
|
ASSERT_VOP_LOCKED(vp, "fifo_cleanup");
|
|
|
|
if (fip->fi_readers == 0 && fip->fi_writers == 0) {
|
2003-11-10 22:21:00 +00:00
|
|
|
vp->v_fifoinfo = NULL;
|
|
|
|
(void)soclose(fip->fi_readsock);
|
|
|
|
(void)soclose(fip->fi_writesock);
|
Add fi_sx, an sx lock to serialize I/O operations on the socket pair
underlying the POSIX fifo implementation. In 6.x/7.x, fifo access is
moved from the VFS layer, where it was serialized using the vnode
lock, to the file descriptor layer, where access is protected by a
reference count but not serialized. This exposed socket buffer
locking to high levels of parallelism in specific fifo workloads, such
as make -j 32, which expose as yet unresolved socket buffer bugs.
fi_sx re-adds serialization about the read and write routines,
although not paths that simply test socket buffer mbuf queue state,
such as the poll and kqueue methods. This restores the extra locking
cost previously present in some cases, but is an effective workaround
for the instability that has been experienced. This workaround should
be removed once the bug in socket buffer handling has been fixed.
Reported by: kris, jhb, Julien Gabel <jpeg at thilelli dot net>,
Peter Holm <peter at holm dot cc>, others
MFC after: 3 days
2005-09-22 10:51:12 +00:00
|
|
|
sx_destroy(&fip->fi_sx);
|
2003-11-10 22:21:00 +00:00
|
|
|
FREE(fip, M_VNODE);
|
2003-11-16 01:11:11 +00:00
|
|
|
}
|
2003-11-10 22:21:00 +00:00
|
|
|
}
|
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
/*
|
|
|
|
* Open called to set up a new instance of a fifo or
|
|
|
|
* to find an active instance of a fifo.
|
|
|
|
*/
|
|
|
|
/* ARGSUSED */
|
1997-10-15 13:24:07 +00:00
|
|
|
static int
|
1994-05-24 10:09:53 +00:00
|
|
|
fifo_open(ap)
|
|
|
|
struct vop_open_args /* {
|
|
|
|
struct vnode *a_vp;
|
|
|
|
int a_mode;
|
|
|
|
struct ucred *a_cred;
|
2001-09-12 08:38:13 +00:00
|
|
|
struct thread *a_td;
|
1994-05-24 10:09:53 +00:00
|
|
|
} */ *ap;
|
|
|
|
{
|
1997-02-10 02:22:35 +00:00
|
|
|
struct vnode *vp = ap->a_vp;
|
|
|
|
struct fifoinfo *fip;
|
2001-09-12 08:38:13 +00:00
|
|
|
struct thread *td = ap->a_td;
|
2003-06-13 06:58:11 +00:00
|
|
|
struct ucred *cred = ap->a_cred;
|
1994-05-24 10:09:53 +00:00
|
|
|
struct socket *rso, *wso;
|
2004-11-15 14:51:44 +00:00
|
|
|
struct file *fp;
|
1994-05-24 10:09:53 +00:00
|
|
|
int error;
|
|
|
|
|
2005-09-23 12:39:51 +00:00
|
|
|
ASSERT_VOP_LOCKED(vp, "fifo_open");
|
1994-05-24 10:09:53 +00:00
|
|
|
if ((fip = vp->v_fifoinfo) == NULL) {
|
Add fi_sx, an sx lock to serialize I/O operations on the socket pair
underlying the POSIX fifo implementation. In 6.x/7.x, fifo access is
moved from the VFS layer, where it was serialized using the vnode
lock, to the file descriptor layer, where access is protected by a
reference count but not serialized. This exposed socket buffer
locking to high levels of parallelism in specific fifo workloads, such
as make -j 32, which expose as yet unresolved socket buffer bugs.
fi_sx re-adds serialization about the read and write routines,
although not paths that simply test socket buffer mbuf queue state,
such as the poll and kqueue methods. This restores the extra locking
cost previously present in some cases, but is an effective workaround
for the instability that has been experienced. This workaround should
be removed once the bug in socket buffer handling has been fixed.
Reported by: kris, jhb, Julien Gabel <jpeg at thilelli dot net>,
Peter Holm <peter at holm dot cc>, others
MFC after: 3 days
2005-09-22 10:51:12 +00:00
|
|
|
MALLOC(fip, struct fifoinfo *, sizeof(*fip), M_VNODE,
|
|
|
|
M_WAITOK | M_ZERO);
|
2003-06-13 06:58:11 +00:00
|
|
|
error = socreate(AF_LOCAL, &rso, SOCK_STREAM, 0, cred, td);
|
|
|
|
if (error)
|
|
|
|
goto fail1;
|
1994-05-24 10:09:53 +00:00
|
|
|
fip->fi_readsock = rso;
|
2003-06-13 06:58:11 +00:00
|
|
|
error = socreate(AF_LOCAL, &wso, SOCK_STREAM, 0, cred, td);
|
|
|
|
if (error)
|
|
|
|
goto fail2;
|
1994-05-24 10:09:53 +00:00
|
|
|
fip->fi_writesock = wso;
|
2005-09-12 10:05:08 +00:00
|
|
|
error = soconnect2(wso, rso);
|
1994-10-02 17:48:58 +00:00
|
|
|
if (error) {
|
1994-05-24 10:09:53 +00:00
|
|
|
(void)soclose(wso);
|
2003-06-13 06:58:11 +00:00
|
|
|
fail2:
|
1994-05-24 10:09:53 +00:00
|
|
|
(void)soclose(rso);
|
2003-06-13 06:58:11 +00:00
|
|
|
fail1:
|
1994-05-24 10:09:53 +00:00
|
|
|
free(fip, M_VNODE);
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
fip->fi_readers = fip->fi_writers = 0;
|
Add fi_sx, an sx lock to serialize I/O operations on the socket pair
underlying the POSIX fifo implementation. In 6.x/7.x, fifo access is
moved from the VFS layer, where it was serialized using the vnode
lock, to the file descriptor layer, where access is protected by a
reference count but not serialized. This exposed socket buffer
locking to high levels of parallelism in specific fifo workloads, such
as make -j 32, which expose as yet unresolved socket buffer bugs.
fi_sx re-adds serialization about the read and write routines,
although not paths that simply test socket buffer mbuf queue state,
such as the poll and kqueue methods. This restores the extra locking
cost previously present in some cases, but is an effective workaround
for the instability that has been experienced. This workaround should
be removed once the bug in socket buffer handling has been fixed.
Reported by: kris, jhb, Julien Gabel <jpeg at thilelli dot net>,
Peter Holm <peter at holm dot cc>, others
MFC after: 3 days
2005-09-22 10:51:12 +00:00
|
|
|
sx_init(&fip->fi_sx, "fifo_sx");
|
1997-12-19 18:58:14 +00:00
|
|
|
wso->so_snd.sb_lowat = PIPE_BUF;
|
2004-06-15 03:51:44 +00:00
|
|
|
SOCKBUF_LOCK(&rso->so_rcv);
|
2004-06-14 18:16:22 +00:00
|
|
|
rso->so_rcv.sb_state |= SBS_CANTRCVMORE;
|
2004-06-15 03:51:44 +00:00
|
|
|
SOCKBUF_UNLOCK(&rso->so_rcv);
|
2005-09-12 10:06:38 +00:00
|
|
|
KASSERT(vp->v_fifoinfo == NULL,
|
|
|
|
("fifo_open: v_fifoinfo race"));
|
2003-06-13 06:58:11 +00:00
|
|
|
vp->v_fifoinfo = fip;
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
2003-06-01 06:24:32 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* General access to fi_readers and fi_writers is protected using
|
|
|
|
* the vnode lock.
|
|
|
|
*
|
|
|
|
* Protect the increment of fi_readers and fi_writers and the
|
2004-05-17 20:16:40 +00:00
|
|
|
* associated calls to wakeup() with the fifo mutex in addition
|
|
|
|
* to the vnode lock. This allows the vnode lock to be dropped
|
|
|
|
* for the msleep() calls below, and using the fifo mutex with
|
|
|
|
* msleep() prevents the wakeup from being missed.
|
2003-06-01 06:24:32 +00:00
|
|
|
*/
|
2004-05-17 20:16:40 +00:00
|
|
|
mtx_lock(&fifo_mtx);
|
1997-02-10 02:22:35 +00:00
|
|
|
if (ap->a_mode & FREAD) {
|
|
|
|
fip->fi_readers++;
|
|
|
|
if (fip->fi_readers == 1) {
|
2004-06-15 03:51:44 +00:00
|
|
|
SOCKBUF_LOCK(&fip->fi_writesock->so_snd);
|
2004-06-14 18:16:22 +00:00
|
|
|
fip->fi_writesock->so_snd.sb_state &= ~SBS_CANTSENDMORE;
|
2004-06-15 03:51:44 +00:00
|
|
|
SOCKBUF_UNLOCK(&fip->fi_writesock->so_snd);
|
2001-06-06 17:38:36 +00:00
|
|
|
if (fip->fi_writers > 0) {
|
2003-03-02 16:54:40 +00:00
|
|
|
wakeup(&fip->fi_writers);
|
2001-06-06 17:38:36 +00:00
|
|
|
sowwakeup(fip->fi_writesock);
|
|
|
|
}
|
1995-08-06 16:14:21 +00:00
|
|
|
}
|
1997-02-10 02:22:35 +00:00
|
|
|
}
|
|
|
|
if (ap->a_mode & FWRITE) {
|
2003-06-13 06:58:11 +00:00
|
|
|
if ((ap->a_mode & O_NONBLOCK) && fip->fi_readers == 0) {
|
2004-05-17 20:16:40 +00:00
|
|
|
mtx_unlock(&fifo_mtx);
|
2003-06-13 06:58:11 +00:00
|
|
|
return (ENXIO);
|
|
|
|
}
|
1997-02-10 02:22:35 +00:00
|
|
|
fip->fi_writers++;
|
|
|
|
if (fip->fi_writers == 1) {
|
2005-09-25 19:52:09 +00:00
|
|
|
SOCKBUF_LOCK(&fip->fi_readsock->so_rcv);
|
2004-06-14 18:16:22 +00:00
|
|
|
fip->fi_readsock->so_rcv.sb_state &= ~SBS_CANTRCVMORE;
|
2005-09-25 19:52:09 +00:00
|
|
|
SOCKBUF_UNLOCK(&fip->fi_readsock->so_rcv);
|
2001-06-06 17:38:36 +00:00
|
|
|
if (fip->fi_readers > 0) {
|
2003-03-02 16:54:40 +00:00
|
|
|
wakeup(&fip->fi_readers);
|
2005-09-12 10:07:21 +00:00
|
|
|
sorwakeup(fip->fi_readsock);
|
2001-06-06 17:38:36 +00:00
|
|
|
}
|
1995-08-06 16:14:21 +00:00
|
|
|
}
|
|
|
|
}
|
2003-06-13 06:58:11 +00:00
|
|
|
if ((ap->a_mode & O_NONBLOCK) == 0) {
|
|
|
|
if ((ap->a_mode & FREAD) && fip->fi_writers == 0) {
|
2001-09-12 08:38:13 +00:00
|
|
|
VOP_UNLOCK(vp, 0, td);
|
2004-05-17 20:16:40 +00:00
|
|
|
error = msleep(&fip->fi_readers, &fifo_mtx,
|
|
|
|
PDROP | PCATCH | PSOCK, "fifoor", 0);
|
|
|
|
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
|
2003-06-01 06:24:32 +00:00
|
|
|
if (error) {
|
|
|
|
fip->fi_readers--;
|
2004-05-17 20:16:40 +00:00
|
|
|
if (fip->fi_readers == 0) {
|
2003-06-01 06:24:32 +00:00
|
|
|
socantsendmore(fip->fi_writesock);
|
2004-05-17 20:16:40 +00:00
|
|
|
fifo_cleanup(vp);
|
|
|
|
}
|
2003-06-01 06:24:32 +00:00
|
|
|
return (error);
|
|
|
|
}
|
2004-05-17 20:16:40 +00:00
|
|
|
mtx_lock(&fifo_mtx);
|
2003-03-24 11:03:42 +00:00
|
|
|
/*
|
|
|
|
* We must have got woken up because we had a writer.
|
|
|
|
* That (and not still having one) is the condition
|
|
|
|
* that we must wait for.
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
2003-06-13 06:58:11 +00:00
|
|
|
if ((ap->a_mode & FWRITE) && fip->fi_readers == 0) {
|
|
|
|
VOP_UNLOCK(vp, 0, td);
|
2004-05-17 20:16:40 +00:00
|
|
|
error = msleep(&fip->fi_writers, &fifo_mtx,
|
|
|
|
PDROP | PCATCH | PSOCK, "fifoow", 0);
|
|
|
|
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
|
2003-06-13 06:58:11 +00:00
|
|
|
if (error) {
|
2003-06-01 06:24:32 +00:00
|
|
|
fip->fi_writers--;
|
2004-05-17 20:16:40 +00:00
|
|
|
if (fip->fi_writers == 0) {
|
2003-06-01 06:24:32 +00:00
|
|
|
socantrcvmore(fip->fi_readsock);
|
2004-05-17 20:16:40 +00:00
|
|
|
fifo_cleanup(vp);
|
|
|
|
}
|
2003-06-13 06:58:11 +00:00
|
|
|
return (error);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
2003-06-13 06:58:11 +00:00
|
|
|
/*
|
|
|
|
* We must have got woken up because we had
|
|
|
|
* a reader. That (and not still having one)
|
|
|
|
* is the condition that we must wait for.
|
|
|
|
*/
|
2004-12-13 10:07:57 +00:00
|
|
|
mtx_lock(&fifo_mtx);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
}
|
2004-05-17 20:16:40 +00:00
|
|
|
mtx_unlock(&fifo_mtx);
|
2004-12-13 10:07:57 +00:00
|
|
|
KASSERT(ap->a_fdidx >= 0, ("can't fifo/vnode bypass %d", ap->a_fdidx));
|
|
|
|
fp = ap->a_td->td_proc->p_fd->fd_ofiles[ap->a_fdidx];
|
|
|
|
KASSERT(fp->f_ops == &badfileops, ("not badfileops in fifo_open"));
|
|
|
|
fp->f_ops = &fifo_ops_f;
|
|
|
|
fp->f_data = fip;
|
1997-02-10 02:22:35 +00:00
|
|
|
return (0);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2005-09-13 17:46:48 +00:00
|
|
|
* Now unused vnode ioctl routine.
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
|
|
|
/* ARGSUSED */
|
1997-10-15 13:24:07 +00:00
|
|
|
static int
|
1994-05-24 10:09:53 +00:00
|
|
|
fifo_ioctl(ap)
|
|
|
|
struct vop_ioctl_args /* {
|
|
|
|
struct vnode *a_vp;
|
2002-10-16 08:04:11 +00:00
|
|
|
u_long a_command;
|
1994-05-24 10:09:53 +00:00
|
|
|
caddr_t a_data;
|
|
|
|
int a_fflag;
|
|
|
|
struct ucred *a_cred;
|
2001-09-12 08:38:13 +00:00
|
|
|
struct thread *a_td;
|
1994-05-24 10:09:53 +00:00
|
|
|
} */ *ap;
|
|
|
|
{
|
|
|
|
|
2005-09-13 17:46:48 +00:00
|
|
|
printf("WARNING: fifo_ioctl called unexpectedly\n");
|
|
|
|
return (ENOTTY);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
2005-09-13 09:23:22 +00:00
|
|
|
/*
|
2005-09-13 17:46:48 +00:00
|
|
|
* Now unused vnode kqfilter routine.
|
2005-09-13 09:23:22 +00:00
|
|
|
*/
|
2001-02-15 16:34:11 +00:00
|
|
|
/* ARGSUSED */
|
2000-04-16 18:53:38 +00:00
|
|
|
static int
|
2001-02-15 16:34:11 +00:00
|
|
|
fifo_kqfilter(ap)
|
|
|
|
struct vop_kqfilter_args /* {
|
|
|
|
struct vnode *a_vp;
|
|
|
|
struct knote *a_kn;
|
|
|
|
} */ *ap;
|
2000-04-16 18:53:38 +00:00
|
|
|
{
|
2001-02-15 16:34:11 +00:00
|
|
|
|
2005-09-13 17:46:48 +00:00
|
|
|
printf("WARNING: fifo_kqfilter called unexpectedly\n");
|
|
|
|
return (EINVAL);
|
2000-04-16 18:53:38 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
filt_fifordetach(struct knote *kn)
|
|
|
|
{
|
2001-02-15 16:34:11 +00:00
|
|
|
struct socket *so = (struct socket *)kn->kn_hook;
|
2000-04-16 18:53:38 +00:00
|
|
|
|
2004-06-18 02:57:55 +00:00
|
|
|
SOCKBUF_LOCK(&so->so_rcv);
|
2004-08-15 06:24:42 +00:00
|
|
|
knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1);
|
|
|
|
if (knlist_empty(&so->so_rcv.sb_sel.si_note))
|
2000-04-16 18:53:38 +00:00
|
|
|
so->so_rcv.sb_flags &= ~SB_KNOTE;
|
2004-06-18 02:57:55 +00:00
|
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
2000-04-16 18:53:38 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
filt_fiforead(struct knote *kn, long hint)
|
|
|
|
{
|
2001-02-15 16:34:11 +00:00
|
|
|
struct socket *so = (struct socket *)kn->kn_hook;
|
2000-04-16 18:53:38 +00:00
|
|
|
|
2005-09-13 10:39:24 +00:00
|
|
|
SOCKBUF_LOCK_ASSERT(&so->so_rcv);
|
2000-04-16 18:53:38 +00:00
|
|
|
kn->kn_data = so->so_rcv.sb_cc;
|
2004-06-14 18:16:22 +00:00
|
|
|
if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
|
2000-04-16 18:53:38 +00:00
|
|
|
kn->kn_flags |= EV_EOF;
|
2005-09-13 10:39:24 +00:00
|
|
|
return (1);
|
2004-06-18 02:57:55 +00:00
|
|
|
} else {
|
|
|
|
kn->kn_flags &= ~EV_EOF;
|
2005-09-13 10:39:24 +00:00
|
|
|
return (kn->kn_data > 0);
|
2000-04-16 18:53:38 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
filt_fifowdetach(struct knote *kn)
|
|
|
|
{
|
2001-02-15 16:34:11 +00:00
|
|
|
struct socket *so = (struct socket *)kn->kn_hook;
|
2000-04-16 18:53:38 +00:00
|
|
|
|
2004-06-18 02:57:55 +00:00
|
|
|
SOCKBUF_LOCK(&so->so_snd);
|
2004-08-15 06:24:42 +00:00
|
|
|
knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1);
|
|
|
|
if (knlist_empty(&so->so_snd.sb_sel.si_note))
|
2000-04-16 18:53:38 +00:00
|
|
|
so->so_snd.sb_flags &= ~SB_KNOTE;
|
2004-06-18 02:57:55 +00:00
|
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
2000-04-16 18:53:38 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
filt_fifowrite(struct knote *kn, long hint)
|
|
|
|
{
|
2001-02-15 16:34:11 +00:00
|
|
|
struct socket *so = (struct socket *)kn->kn_hook;
|
2000-04-16 18:53:38 +00:00
|
|
|
|
2005-09-13 10:39:24 +00:00
|
|
|
SOCKBUF_LOCK_ASSERT(&so->so_snd);
|
2000-04-16 18:53:38 +00:00
|
|
|
kn->kn_data = sbspace(&so->so_snd);
|
2004-06-14 18:16:22 +00:00
|
|
|
if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
|
2000-04-16 18:53:38 +00:00
|
|
|
kn->kn_flags |= EV_EOF;
|
2005-09-13 10:39:24 +00:00
|
|
|
return (1);
|
2004-06-18 02:57:55 +00:00
|
|
|
} else {
|
|
|
|
kn->kn_flags &= ~EV_EOF;
|
2005-09-13 10:39:24 +00:00
|
|
|
return (kn->kn_data >= so->so_snd.sb_lowat);
|
2000-04-16 18:53:38 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2005-09-12 19:59:12 +00:00
|
|
|
static void
|
|
|
|
filt_fifodetach_notsup(struct knote *kn)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
filt_fifo_notsup(struct knote *kn, long hint)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
/*
|
|
|
|
* Device close routine
|
|
|
|
*/
|
|
|
|
/* ARGSUSED */
|
1997-10-15 13:24:07 +00:00
|
|
|
static int
|
1994-05-24 10:09:53 +00:00
|
|
|
fifo_close(ap)
|
|
|
|
struct vop_close_args /* {
|
|
|
|
struct vnode *a_vp;
|
|
|
|
int a_fflag;
|
|
|
|
struct ucred *a_cred;
|
2001-09-12 08:38:13 +00:00
|
|
|
struct thread *a_td;
|
1994-05-24 10:09:53 +00:00
|
|
|
} */ *ap;
|
|
|
|
{
|
2003-06-01 06:24:32 +00:00
|
|
|
struct vnode *vp = ap->a_vp;
|
|
|
|
struct fifoinfo *fip = vp->v_fifoinfo;
|
|
|
|
|
2005-09-18 10:44:50 +00:00
|
|
|
ASSERT_VOP_LOCKED(vp, "fifo_close");
|
2005-09-26 08:17:03 +00:00
|
|
|
KASSERT(fip != NULL, ("fifo_close: no v_fifoinfo"));
|
1995-08-06 16:14:21 +00:00
|
|
|
if (ap->a_fflag & FREAD) {
|
1994-05-24 10:09:53 +00:00
|
|
|
fip->fi_readers--;
|
|
|
|
if (fip->fi_readers == 0)
|
|
|
|
socantsendmore(fip->fi_writesock);
|
|
|
|
}
|
1997-02-10 02:22:35 +00:00
|
|
|
if (ap->a_fflag & FWRITE) {
|
|
|
|
fip->fi_writers--;
|
|
|
|
if (fip->fi_writers == 0)
|
|
|
|
socantrcvmore(fip->fi_readsock);
|
|
|
|
}
|
2003-11-10 22:21:00 +00:00
|
|
|
fifo_cleanup(vp);
|
2003-06-01 06:24:32 +00:00
|
|
|
return (0);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
1994-10-02 17:48:58 +00:00
|
|
|
* Print out internal contents of a fifo vnode.
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
1994-05-25 09:21:21 +00:00
|
|
|
int
|
1994-10-02 17:48:58 +00:00
|
|
|
fifo_printinfo(vp)
|
|
|
|
struct vnode *vp;
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
1994-10-02 17:48:58 +00:00
|
|
|
register struct fifoinfo *fip = vp->v_fifoinfo;
|
1994-05-24 10:09:53 +00:00
|
|
|
|
1994-10-02 17:48:58 +00:00
|
|
|
printf(", fifo with %ld readers and %ld writers",
|
|
|
|
fip->fi_readers, fip->fi_writers);
|
1994-05-25 09:21:21 +00:00
|
|
|
return (0);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
1994-10-02 17:48:58 +00:00
|
|
|
* Print out the contents of a fifo vnode.
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
1995-12-14 09:55:16 +00:00
|
|
|
static int
|
1994-10-02 17:48:58 +00:00
|
|
|
fifo_print(ap)
|
|
|
|
struct vop_print_args /* {
|
|
|
|
struct vnode *a_vp;
|
|
|
|
} */ *ap;
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
1994-10-02 17:48:58 +00:00
|
|
|
fifo_printinfo(ap->a_vp);
|
|
|
|
printf("\n");
|
1994-05-25 09:21:21 +00:00
|
|
|
return (0);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
1997-12-13 12:58:09 +00:00
|
|
|
/*
|
|
|
|
* Return POSIX pathconf information applicable to fifo's.
|
|
|
|
*/
|
2002-09-28 17:15:38 +00:00
|
|
|
static int
|
1997-12-13 12:58:09 +00:00
|
|
|
fifo_pathconf(ap)
|
|
|
|
struct vop_pathconf_args /* {
|
|
|
|
struct vnode *a_vp;
|
|
|
|
int a_name;
|
|
|
|
int *a_retval;
|
|
|
|
} */ *ap;
|
|
|
|
{
|
|
|
|
|
|
|
|
switch (ap->a_name) {
|
|
|
|
case _PC_LINK_MAX:
|
|
|
|
*ap->a_retval = LINK_MAX;
|
|
|
|
return (0);
|
|
|
|
case _PC_PIPE_BUF:
|
|
|
|
*ap->a_retval = PIPE_BUF;
|
|
|
|
return (0);
|
|
|
|
case _PC_CHOWN_RESTRICTED:
|
|
|
|
*ap->a_retval = 1;
|
|
|
|
return (0);
|
|
|
|
default:
|
|
|
|
return (EINVAL);
|
|
|
|
}
|
|
|
|
/* NOTREACHED */
|
|
|
|
}
|
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
/*
|
|
|
|
* Fifo advisory byte-level locks.
|
|
|
|
*/
|
|
|
|
/* ARGSUSED */
|
1997-10-15 13:24:07 +00:00
|
|
|
static int
|
1994-05-24 10:09:53 +00:00
|
|
|
fifo_advlock(ap)
|
|
|
|
struct vop_advlock_args /* {
|
|
|
|
struct vnode *a_vp;
|
|
|
|
caddr_t a_id;
|
|
|
|
int a_op;
|
|
|
|
struct flock *a_fl;
|
|
|
|
int a_flags;
|
|
|
|
} */ *ap;
|
|
|
|
{
|
|
|
|
|
1996-12-19 18:16:33 +00:00
|
|
|
return (ap->a_flags & F_FLOCK ? EOPNOTSUPP : EINVAL);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
2004-11-15 14:51:44 +00:00
|
|
|
|
|
|
|
static int
|
|
|
|
fifo_close_f(struct file *fp, struct thread *td)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (vnops.fo_close(fp, td));
|
|
|
|
}
|
|
|
|
|
2005-09-13 17:46:48 +00:00
|
|
|
/*
|
|
|
|
* The implementation of ioctl() for named fifos is complicated by the fact
|
|
|
|
* that we permit O_RDWR fifo file descriptors, meaning that the actions of
|
|
|
|
* ioctls may have to be applied to both the underlying sockets rather than
|
|
|
|
* just one. The original implementation simply forward the ioctl to one
|
|
|
|
* or both sockets based on fp->f_flag. We now consider each ioctl
|
|
|
|
* separately, as the composition effect requires careful ordering.
|
|
|
|
*
|
|
|
|
* We do not blindly pass all ioctls through to the socket in order to avoid
|
|
|
|
* providing unnecessary ioctls that might be improperly depended on by
|
|
|
|
* applications (such as socket-specific, routing, and interface ioctls).
|
|
|
|
*
|
|
|
|
* Unlike sys_pipe.c, fifos do not implement the deprecated TIOCSPGRP and
|
|
|
|
* TIOCGPGRP ioctls. Earlier implementations of fifos did forward SIOCSPGRP
|
|
|
|
* and SIOCGPGRP ioctls, so we might need to re-add those here.
|
|
|
|
*/
|
2004-11-15 14:51:44 +00:00
|
|
|
static int
|
2005-09-13 17:46:48 +00:00
|
|
|
fifo_ioctl_f(struct file *fp, u_long com, void *data, struct ucred *cred,
|
|
|
|
struct thread *td)
|
2004-11-15 14:51:44 +00:00
|
|
|
{
|
2004-11-18 17:18:11 +00:00
|
|
|
struct fifoinfo *fi;
|
|
|
|
struct file filetmp; /* Local, so need not be locked. */
|
|
|
|
int error;
|
2004-11-15 14:51:44 +00:00
|
|
|
|
2004-11-18 17:18:11 +00:00
|
|
|
error = ENOTTY;
|
|
|
|
fi = fp->f_data;
|
2005-09-13 17:46:48 +00:00
|
|
|
|
|
|
|
switch (com) {
|
|
|
|
case FIONBIO:
|
|
|
|
/*
|
|
|
|
* Non-blocking I/O is implemented at the fifo layer using
|
|
|
|
* MSG_NBIO, so does not need to be forwarded down the stack.
|
|
|
|
*/
|
2004-11-18 17:18:11 +00:00
|
|
|
return (0);
|
2005-09-13 17:46:48 +00:00
|
|
|
|
|
|
|
case FIOASYNC:
|
|
|
|
case FIOSETOWN:
|
|
|
|
case FIOGETOWN:
|
|
|
|
/*
|
|
|
|
* These socket ioctls don't have any ordering requirements,
|
|
|
|
* so are called in an arbitrary order, and only on the
|
|
|
|
* sockets indicated by the file descriptor rights.
|
|
|
|
*
|
|
|
|
* XXXRW: If O_RDWR and the read socket accepts an ioctl but
|
|
|
|
* the write socket doesn't, the socketpair is left in an
|
|
|
|
* inconsistent state.
|
|
|
|
*/
|
|
|
|
if (fp->f_flag & FREAD) {
|
|
|
|
filetmp.f_data = fi->fi_readsock;
|
|
|
|
filetmp.f_cred = cred;
|
|
|
|
error = soo_ioctl(&filetmp, com, data, cred, td);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
if (fp->f_flag & FWRITE) {
|
|
|
|
filetmp.f_data = fi->fi_writesock;
|
|
|
|
filetmp.f_cred = cred;
|
|
|
|
error = soo_ioctl(&filetmp, com, data, cred, td);
|
|
|
|
}
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
case FIONREAD:
|
|
|
|
/*
|
|
|
|
* FIONREAD will return 0 for non-readable descriptors, and
|
|
|
|
* the results of FIONREAD on the read socket for readable
|
|
|
|
* descriptors.
|
|
|
|
*/
|
|
|
|
if (!(fp->f_flag & FREAD)) {
|
|
|
|
*(int *)data = 0;
|
|
|
|
return (0);
|
|
|
|
}
|
2004-11-18 17:18:11 +00:00
|
|
|
filetmp.f_data = fi->fi_readsock;
|
|
|
|
filetmp.f_cred = cred;
|
2005-09-13 17:46:48 +00:00
|
|
|
return (soo_ioctl(&filetmp, com, data, cred, td));
|
|
|
|
|
|
|
|
default:
|
|
|
|
return (ENOTTY);
|
2004-11-18 17:18:11 +00:00
|
|
|
}
|
2004-11-15 14:51:44 +00:00
|
|
|
}
|
|
|
|
|
2005-09-13 09:23:22 +00:00
|
|
|
/*
|
|
|
|
* Because fifos are now a file descriptor layer object, EVFILT_VNODE is not
|
|
|
|
* implemented. Likely, fifo_kqfilter() should be removed, and
|
|
|
|
* fifo_kqfilter_f() should know how to forward the request to the underling
|
|
|
|
* vnode using f_vnode in the file descriptor here.
|
|
|
|
*/
|
2004-11-15 14:51:44 +00:00
|
|
|
static int
|
|
|
|
fifo_kqfilter_f(struct file *fp, struct knote *kn)
|
|
|
|
{
|
|
|
|
struct fifoinfo *fi;
|
|
|
|
struct socket *so;
|
|
|
|
struct sockbuf *sb;
|
|
|
|
|
|
|
|
fi = fp->f_data;
|
2005-09-12 19:59:12 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If a filter is requested that is not supported by this file
|
|
|
|
* descriptor, don't return an error, but also don't ever generate an
|
|
|
|
* event.
|
|
|
|
*/
|
|
|
|
if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
|
|
|
|
kn->kn_fop = &fifo_notsup_filtops;
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
|
|
|
|
kn->kn_fop = &fifo_notsup_filtops;
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2004-11-15 14:51:44 +00:00
|
|
|
switch (kn->kn_filter) {
|
|
|
|
case EVFILT_READ:
|
|
|
|
kn->kn_fop = &fiforead_filtops;
|
|
|
|
so = fi->fi_readsock;
|
|
|
|
sb = &so->so_rcv;
|
|
|
|
break;
|
|
|
|
case EVFILT_WRITE:
|
|
|
|
kn->kn_fop = &fifowrite_filtops;
|
|
|
|
so = fi->fi_writesock;
|
|
|
|
sb = &so->so_snd;
|
|
|
|
break;
|
|
|
|
default:
|
2005-09-12 18:07:49 +00:00
|
|
|
return (EINVAL);
|
2004-11-15 14:51:44 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
kn->kn_hook = (caddr_t)so;
|
|
|
|
|
|
|
|
SOCKBUF_LOCK(sb);
|
|
|
|
knlist_add(&sb->sb_sel.si_note, kn, 1);
|
|
|
|
sb->sb_flags |= SB_KNOTE;
|
|
|
|
SOCKBUF_UNLOCK(sb);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
fifo_poll_f(struct file *fp, int events, struct ucred *cred, struct thread *td)
|
|
|
|
{
|
|
|
|
struct fifoinfo *fip;
|
|
|
|
struct file filetmp;
|
|
|
|
int levents, revents = 0;
|
|
|
|
|
|
|
|
fip = fp->f_data;
|
|
|
|
levents = events &
|
|
|
|
(POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
|
2005-09-12 10:16:18 +00:00
|
|
|
if ((fp->f_flag & FREAD) && levents) {
|
2004-11-15 14:51:44 +00:00
|
|
|
/*
|
|
|
|
* If POLLIN or POLLRDNORM is requested and POLLINIGNEOF is
|
|
|
|
* not, then convert the first two to the last one. This
|
|
|
|
* tells the socket poll function to ignore EOF so that we
|
|
|
|
* block if there is no writer (and no data). Callers can
|
|
|
|
* set POLLINIGNEOF to get non-blocking behavior.
|
|
|
|
*/
|
|
|
|
if (levents & (POLLIN | POLLRDNORM) &&
|
|
|
|
!(levents & POLLINIGNEOF)) {
|
|
|
|
levents &= ~(POLLIN | POLLRDNORM);
|
|
|
|
levents |= POLLINIGNEOF;
|
|
|
|
}
|
|
|
|
|
|
|
|
filetmp.f_data = fip->fi_readsock;
|
|
|
|
filetmp.f_cred = cred;
|
2005-09-15 15:45:34 +00:00
|
|
|
revents |= soo_poll(&filetmp, levents, cred, td);
|
2004-11-15 14:51:44 +00:00
|
|
|
|
|
|
|
/* Reverse the above conversion. */
|
|
|
|
if ((revents & POLLINIGNEOF) && !(events & POLLINIGNEOF)) {
|
|
|
|
revents |= (events & (POLLIN | POLLRDNORM));
|
|
|
|
revents &= ~POLLINIGNEOF;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
levents = events & (POLLOUT | POLLWRNORM | POLLWRBAND);
|
2005-09-12 10:16:18 +00:00
|
|
|
if ((fp->f_flag & FWRITE) && levents) {
|
2004-11-15 14:51:44 +00:00
|
|
|
filetmp.f_data = fip->fi_writesock;
|
|
|
|
filetmp.f_cred = cred;
|
2005-09-15 15:45:34 +00:00
|
|
|
revents |= soo_poll(&filetmp, levents, cred, td);
|
2004-11-15 14:51:44 +00:00
|
|
|
}
|
|
|
|
return (revents);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
fifo_read_f(struct file *fp, struct uio *uio, struct ucred *cred, int flags, struct thread *td)
|
|
|
|
{
|
|
|
|
struct fifoinfo *fip;
|
|
|
|
int error, sflags;
|
|
|
|
|
|
|
|
fip = fp->f_data;
|
|
|
|
KASSERT(uio->uio_rw == UIO_READ,("fifo_read mode"));
|
|
|
|
if (uio->uio_resid == 0)
|
|
|
|
return (0);
|
|
|
|
sflags = (fp->f_flag & FNONBLOCK) ? MSG_NBIO : 0;
|
Add fi_sx, an sx lock to serialize I/O operations on the socket pair
underlying the POSIX fifo implementation. In 6.x/7.x, fifo access is
moved from the VFS layer, where it was serialized using the vnode
lock, to the file descriptor layer, where access is protected by a
reference count but not serialized. This exposed socket buffer
locking to high levels of parallelism in specific fifo workloads, such
as make -j 32, which expose as yet unresolved socket buffer bugs.
fi_sx re-adds serialization about the read and write routines,
although not paths that simply test socket buffer mbuf queue state,
such as the poll and kqueue methods. This restores the extra locking
cost previously present in some cases, but is an effective workaround
for the instability that has been experienced. This workaround should
be removed once the bug in socket buffer handling has been fixed.
Reported by: kris, jhb, Julien Gabel <jpeg at thilelli dot net>,
Peter Holm <peter at holm dot cc>, others
MFC after: 3 days
2005-09-22 10:51:12 +00:00
|
|
|
sx_xlock(&fip->fi_sx);
|
2004-11-15 14:51:44 +00:00
|
|
|
error = soreceive(fip->fi_readsock, NULL, uio, NULL, NULL, &sflags);
|
Add fi_sx, an sx lock to serialize I/O operations on the socket pair
underlying the POSIX fifo implementation. In 6.x/7.x, fifo access is
moved from the VFS layer, where it was serialized using the vnode
lock, to the file descriptor layer, where access is protected by a
reference count but not serialized. This exposed socket buffer
locking to high levels of parallelism in specific fifo workloads, such
as make -j 32, which expose as yet unresolved socket buffer bugs.
fi_sx re-adds serialization about the read and write routines,
although not paths that simply test socket buffer mbuf queue state,
such as the poll and kqueue methods. This restores the extra locking
cost previously present in some cases, but is an effective workaround
for the instability that has been experienced. This workaround should
be removed once the bug in socket buffer handling has been fixed.
Reported by: kris, jhb, Julien Gabel <jpeg at thilelli dot net>,
Peter Holm <peter at holm dot cc>, others
MFC after: 3 days
2005-09-22 10:51:12 +00:00
|
|
|
sx_xunlock(&fip->fi_sx);
|
2004-11-15 14:51:44 +00:00
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
fifo_stat_f(struct file *fp, struct stat *sb, struct ucred *cred, struct thread *td)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (vnops.fo_stat(fp, sb, cred, td));
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
fifo_write_f(struct file *fp, struct uio *uio, struct ucred *cred, int flags, struct thread *td)
|
|
|
|
{
|
|
|
|
struct fifoinfo *fip;
|
|
|
|
int error, sflags;
|
|
|
|
|
|
|
|
fip = fp->f_data;
|
|
|
|
KASSERT(uio->uio_rw == UIO_WRITE,("fifo_write mode"));
|
|
|
|
sflags = (fp->f_flag & FNONBLOCK) ? MSG_NBIO : 0;
|
Add fi_sx, an sx lock to serialize I/O operations on the socket pair
underlying the POSIX fifo implementation. In 6.x/7.x, fifo access is
moved from the VFS layer, where it was serialized using the vnode
lock, to the file descriptor layer, where access is protected by a
reference count but not serialized. This exposed socket buffer
locking to high levels of parallelism in specific fifo workloads, such
as make -j 32, which expose as yet unresolved socket buffer bugs.
fi_sx re-adds serialization about the read and write routines,
although not paths that simply test socket buffer mbuf queue state,
such as the poll and kqueue methods. This restores the extra locking
cost previously present in some cases, but is an effective workaround
for the instability that has been experienced. This workaround should
be removed once the bug in socket buffer handling has been fixed.
Reported by: kris, jhb, Julien Gabel <jpeg at thilelli dot net>,
Peter Holm <peter at holm dot cc>, others
MFC after: 3 days
2005-09-22 10:51:12 +00:00
|
|
|
sx_xlock(&fip->fi_sx);
|
2004-11-15 14:51:44 +00:00
|
|
|
error = sosend(fip->fi_writesock, NULL, uio, 0, NULL, sflags, td);
|
Add fi_sx, an sx lock to serialize I/O operations on the socket pair
underlying the POSIX fifo implementation. In 6.x/7.x, fifo access is
moved from the VFS layer, where it was serialized using the vnode
lock, to the file descriptor layer, where access is protected by a
reference count but not serialized. This exposed socket buffer
locking to high levels of parallelism in specific fifo workloads, such
as make -j 32, which expose as yet unresolved socket buffer bugs.
fi_sx re-adds serialization about the read and write routines,
although not paths that simply test socket buffer mbuf queue state,
such as the poll and kqueue methods. This restores the extra locking
cost previously present in some cases, but is an effective workaround
for the instability that has been experienced. This workaround should
be removed once the bug in socket buffer handling has been fixed.
Reported by: kris, jhb, Julien Gabel <jpeg at thilelli dot net>,
Peter Holm <peter at holm dot cc>, others
MFC after: 3 days
2005-09-22 10:51:12 +00:00
|
|
|
sx_xunlock(&fip->fi_sx);
|
2004-11-15 14:51:44 +00:00
|
|
|
return (error);
|
|
|
|
}
|