1995-10-26 21:28:30 +00:00
|
|
|
/*
|
|
|
|
* Copyright (c) 1985, 1993
|
|
|
|
* The Regents of the University of California. All rights reserved.
|
|
|
|
*
|
|
|
|
* Copyright (c) 1995 John Hay. All rights reserved.
|
|
|
|
*
|
|
|
|
* This file includes significant work done at Cornell University by
|
|
|
|
* Bill Nesheim. That work included by permission.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
|
|
* must display the following acknowledgement:
|
|
|
|
* This product includes software developed by the University of
|
|
|
|
* California, Berkeley and its contributors.
|
|
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
|
|
* may be used to endorse or promote products derived from this software
|
|
|
|
* without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
1999-08-28 01:35:59 +00:00
|
|
|
* $FreeBSD$
|
1995-10-26 21:28:30 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef lint
|
|
|
|
static char sccsid[] = "@(#)output.c 8.1 (Berkeley) 6/5/93";
|
|
|
|
#endif /* not lint */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Routing Table Management Daemon
|
|
|
|
*/
|
1996-11-24 08:35:23 +00:00
|
|
|
#include <unistd.h>
|
1995-10-26 21:28:30 +00:00
|
|
|
#include "defs.h"
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Apply the function "f" to all non-passive
|
|
|
|
* interfaces. If the interface supports the
|
|
|
|
* use of broadcasting use it, otherwise address
|
|
|
|
* the output to the known router.
|
|
|
|
*/
|
|
|
|
void
|
1997-07-06 07:38:36 +00:00
|
|
|
toall(f, except, changesonly)
|
|
|
|
void (*f)(struct sockaddr *, int, struct interface *, int);
|
1995-10-26 21:28:30 +00:00
|
|
|
struct rt_entry *except;
|
1997-07-06 07:38:36 +00:00
|
|
|
int changesonly;
|
1995-10-26 21:28:30 +00:00
|
|
|
{
|
|
|
|
register struct interface *ifp;
|
|
|
|
register struct sockaddr *dst;
|
|
|
|
register int flags;
|
|
|
|
register struct rt_entry *trt;
|
|
|
|
int onlist;
|
|
|
|
extern struct interface *ifnet;
|
|
|
|
|
|
|
|
for (ifp = ifnet; ifp; ifp = ifp->int_next) {
|
|
|
|
if (ifp->int_flags & IFF_PASSIVE)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Don't send it on interfaces in the except list.
|
|
|
|
*/
|
|
|
|
onlist = 0;
|
|
|
|
trt = except;
|
|
|
|
while(trt) {
|
|
|
|
if (ifp == trt->rt_ifp) {
|
|
|
|
onlist = 1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
trt = trt->rt_clone;
|
|
|
|
}
|
|
|
|
if (onlist)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
dst = ifp->int_flags & IFF_BROADCAST ? &ifp->int_broadaddr :
|
|
|
|
ifp->int_flags & IFF_POINTOPOINT ? &ifp->int_dstaddr :
|
|
|
|
&ifp->int_addr;
|
|
|
|
flags = ifp->int_flags & IFF_INTERFACE ? MSG_DONTROUTE : 0;
|
1997-07-06 07:38:36 +00:00
|
|
|
(*f)(dst, flags, ifp, changesonly);
|
1995-10-26 21:28:30 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Output a preformed packet.
|
|
|
|
*/
|
|
|
|
void
|
1997-07-06 07:38:36 +00:00
|
|
|
sndmsg(dst, flags, ifp, changesonly)
|
1995-10-26 21:28:30 +00:00
|
|
|
struct sockaddr *dst;
|
|
|
|
int flags;
|
|
|
|
struct interface *ifp;
|
1997-07-06 07:38:36 +00:00
|
|
|
int changesonly;
|
1995-10-26 21:28:30 +00:00
|
|
|
{
|
|
|
|
|
|
|
|
(*afswitch[dst->sa_family].af_output)
|
|
|
|
(ripsock, flags, dst, sizeof (struct rip));
|
|
|
|
TRACE_OUTPUT(ifp, dst, sizeof (struct rip));
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Supply dst with the contents of the routing tables.
|
|
|
|
* If this won't fit in one packet, chop it up into several.
|
|
|
|
*
|
|
|
|
* This must be done using the split horizon algorithm.
|
|
|
|
* 1. Don't send routing info to the interface from where it was received.
|
|
|
|
* 2. Don't publish an interface to itself.
|
|
|
|
* 3. If a route is received from more than one interface and the cost is
|
|
|
|
* the same, don't publish it on either interface. I am calling this
|
|
|
|
* clones.
|
|
|
|
*/
|
|
|
|
void
|
1997-07-06 07:38:36 +00:00
|
|
|
supply(dst, flags, ifp, changesonly)
|
1995-10-26 21:28:30 +00:00
|
|
|
struct sockaddr *dst;
|
|
|
|
int flags;
|
|
|
|
struct interface *ifp;
|
1997-07-06 07:38:36 +00:00
|
|
|
int changesonly;
|
1995-10-26 21:28:30 +00:00
|
|
|
{
|
|
|
|
register struct rt_entry *rt;
|
|
|
|
register struct rt_entry *crt; /* Clone route */
|
|
|
|
register struct rthash *rh;
|
|
|
|
register struct netinfo *nn;
|
|
|
|
register struct netinfo *n = msg->rip_nets;
|
|
|
|
struct sockaddr_ipx *sipx = (struct sockaddr_ipx *) dst;
|
|
|
|
af_output_t *output = afswitch[dst->sa_family].af_output;
|
1997-07-06 07:38:36 +00:00
|
|
|
int size, metric, ticks;
|
1995-10-26 21:28:30 +00:00
|
|
|
union ipx_net net;
|
1996-11-24 08:35:23 +00:00
|
|
|
int delay = 0;
|
1995-10-26 21:28:30 +00:00
|
|
|
|
|
|
|
if (sipx->sipx_port == 0)
|
|
|
|
sipx->sipx_port = htons(IPXPORT_RIP);
|
|
|
|
|
|
|
|
msg->rip_cmd = ntohs(RIPCMD_RESPONSE);
|
1997-07-06 07:38:36 +00:00
|
|
|
for (rh = nethash; rh < &nethash[ROUTEHASHSIZ]; rh++)
|
1995-10-26 21:28:30 +00:00
|
|
|
for (rt = rh->rt_forw; rt != (struct rt_entry *)rh; rt = rt->rt_forw) {
|
|
|
|
size = (char *)n - (char *)msg;
|
1996-04-13 15:13:30 +00:00
|
|
|
if (size >= ((MAXRIPNETS * sizeof (struct netinfo)) +
|
|
|
|
sizeof (msg->rip_cmd))) {
|
1995-10-26 21:28:30 +00:00
|
|
|
(*output)(ripsock, flags, dst, size);
|
|
|
|
TRACE_OUTPUT(ifp, dst, size);
|
|
|
|
n = msg->rip_nets;
|
1996-11-24 08:35:23 +00:00
|
|
|
delay++;
|
|
|
|
if(delay == 2) {
|
1997-07-06 07:38:36 +00:00
|
|
|
usleep(50000);
|
1996-11-24 08:35:23 +00:00
|
|
|
delay = 0;
|
|
|
|
}
|
1995-10-26 21:28:30 +00:00
|
|
|
}
|
|
|
|
|
1997-07-06 07:38:36 +00:00
|
|
|
if (changesonly && !(rt->rt_state & RTS_CHANGED))
|
|
|
|
continue;
|
|
|
|
|
1995-10-26 21:28:30 +00:00
|
|
|
/*
|
|
|
|
* This should do rule one and two of the split horizon
|
|
|
|
* algorithm.
|
|
|
|
*/
|
|
|
|
if (rt->rt_ifp == ifp)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Rule 3.
|
|
|
|
* Look if we have clones (different routes to the same
|
|
|
|
* place with exactly the same cost).
|
|
|
|
*
|
|
|
|
* We should not publish on any of the clone interfaces.
|
|
|
|
*/
|
|
|
|
crt = rt->rt_clone;
|
|
|
|
while (crt) {
|
|
|
|
if (crt->rt_ifp == ifp)
|
1995-12-05 04:59:56 +00:00
|
|
|
goto next;
|
1995-10-26 21:28:30 +00:00
|
|
|
crt = crt->rt_clone;
|
|
|
|
}
|
|
|
|
|
|
|
|
sipx = (struct sockaddr_ipx *)&rt->rt_dst;
|
|
|
|
if ((rt->rt_flags & (RTF_HOST|RTF_GATEWAY)) == RTF_HOST)
|
|
|
|
sipx = (struct sockaddr_ipx *)&rt->rt_router;
|
|
|
|
if (rt->rt_metric == HOPCNT_INFINITY)
|
|
|
|
metric = HOPCNT_INFINITY;
|
|
|
|
else {
|
|
|
|
metric = rt->rt_metric + 1;
|
|
|
|
/*
|
|
|
|
* We don't advertize routes with more than 15 hops.
|
|
|
|
*/
|
|
|
|
if (metric >= HOPCNT_INFINITY)
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
/* XXX One day we should cater for slow interfaces also. */
|
|
|
|
ticks = rt->rt_ticks + 1;
|
|
|
|
net = sipx->sipx_addr.x_net;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Make sure that we don't put out a two net entries
|
|
|
|
* for a pt to pt link (one for the G route, one for the if)
|
|
|
|
* This is a kludge, and won't work if there are lots of nets.
|
|
|
|
*/
|
|
|
|
for (nn = msg->rip_nets; nn < n; nn++) {
|
|
|
|
if (ipx_neteqnn(net, nn->rip_dst)) {
|
|
|
|
if (ticks < ntohs(nn->rip_ticks)) {
|
|
|
|
nn->rip_metric = htons(metric);
|
|
|
|
nn->rip_ticks = htons(ticks);
|
|
|
|
} else if ((ticks == ntohs(nn->rip_ticks)) &&
|
|
|
|
(metric < ntohs(nn->rip_metric))) {
|
|
|
|
nn->rip_metric = htons(metric);
|
|
|
|
nn->rip_ticks = htons(ticks);
|
|
|
|
}
|
|
|
|
goto next;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
n->rip_dst = net;
|
|
|
|
n->rip_metric = htons(metric);
|
|
|
|
n->rip_ticks = htons(ticks);
|
|
|
|
n++;
|
|
|
|
next:;
|
|
|
|
}
|
|
|
|
if (n != msg->rip_nets) {
|
|
|
|
size = (char *)n - (char *)msg;
|
|
|
|
(*output)(ripsock, flags, dst, size);
|
|
|
|
TRACE_OUTPUT(ifp, dst, size);
|
|
|
|
}
|
|
|
|
}
|