freebsd-nq/sys/mips/octeon1/octeon_machdep.c

1020 lines
28 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2006 Wojciech A. Koszek <wkoszek@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/imgact.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/cons.h>
#include <sys/exec.h>
#include <sys/ucontext.h>
#include <sys/proc.h>
#include <sys/kdb.h>
#include <sys/ptrace.h>
#include <sys/reboot.h>
#include <sys/signalvar.h>
#include <sys/sysent.h>
#include <sys/sysproto.h>
#include <sys/user.h>
#include <vm/vm.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pager.h>
#include <machine/atomic.h>
#include <machine/cache.h>
#include <machine/clock.h>
#include <machine/cpu.h>
#include <machine/cpuregs.h>
#include <machine/cpufunc.h>
2009-06-14 06:53:55 +00:00
#include <mips/octeon1/octeon_pcmap_regs.h>
#include <mips/octeon1/octeonreg.h>
#include <machine/hwfunc.h>
#include <machine/intr_machdep.h>
#include <machine/locore.h>
#include <machine/md_var.h>
#include <machine/pcpu.h>
#include <machine/pte.h>
#include <machine/trap.h>
#include <machine/vmparam.h>
#if defined(__mips_n64)
#define MAX_APP_DESC_ADDR 0xffffffffafffffff
#else
#define MAX_APP_DESC_ADDR 0xafffffff
#endif
extern int *edata;
extern int *end;
void
platform_cpu_init()
{
/* Nothing special yet */
}
/*
* Perform a board-level soft-reset.
* Note that this is not emulated by gxemul.
*/
void
platform_reset(void)
{
((void(*)(void))0x1fc00000)(); /* Jump to this hex address */
}
static inline uint32_t octeon_disable_interrupts (void)
{
uint32_t status_bits;
status_bits = mips_rd_status();
mips_wr_status(status_bits & ~MIPS_SR_INT_IE);
return (status_bits);
}
static inline void octeon_set_interrupts (uint32_t status_bits)
{
mips_wr_status(status_bits);
}
void octeon_led_write_char (int char_position, char val)
{
uint64_t ptr = (OCTEON_CHAR_LED_BASE_ADDR | 0xf8);
if (!octeon_board_real()) return;
char_position &= 0x7; /* only 8 chars */
ptr += char_position;
oct_write8_x8(ptr, val);
}
void octeon_led_write_char0 (char val)
{
uint64_t ptr = (OCTEON_CHAR_LED_BASE_ADDR | 0xf8);
if (!octeon_board_real()) return;
oct_write8_x8(ptr, val);
}
void octeon_led_write_hexchar (int char_position, char hexval)
{
uint64_t ptr = (OCTEON_CHAR_LED_BASE_ADDR | 0xf8);
char char1, char2;
if (!octeon_board_real()) return;
char1 = (hexval >> 4) & 0x0f; char1 = (char1 < 10)?char1+'0':char1+'7';
char2 = (hexval & 0x0f); char2 = (char2 < 10)?char2+'0':char2+'7';
char_position &= 0x7; /* only 8 chars */
if (char_position > 6) char_position = 6;
ptr += char_position;
oct_write8_x8(ptr, char1);
ptr++;
oct_write8_x8(ptr, char2);
}
void octeon_led_write_string (const char *str)
{
uint64_t ptr = (OCTEON_CHAR_LED_BASE_ADDR | 0xf8);
int i;
if (!octeon_board_real()) return;
for (i=0; i<8; i++, ptr++) {
if (str && *str) {
oct_write8_x8(ptr, *str++);
} else {
oct_write8_x8(ptr, ' ');
}
oct_read64(OCTEON_MIO_BOOT_BIST_STAT);
}
}
static char progress[8] = { '-', '/', '|', '\\', '-', '/', '|', '\\'};
void octeon_led_run_wheel (/*int count, */int *prog_count, int led_position)
{
if (!octeon_board_real()) return;
octeon_led_write_char(led_position, progress[*prog_count]);
*prog_count += 1;
*prog_count &= 0x7;
}
#define LSR_DATAREADY 0x01 /* Data ready */
#define LSR_THRE 0x20 /* Transmit holding register empty */
#define LSR_TEMT 0x40 /* Transmitter Empty. THR, TSR & FIFO */
#define USR_TXFIFO_NOTFULL 0x02 /* Uart TX FIFO Not full */
/*
* octeon_uart_write_byte
*
* Put out a single byte off of uart port.
*/
void octeon_uart_write_byte (int uart_index, uint8_t ch)
{
uint64_t val, val2;
if ((uart_index < 0) || (uart_index > 1)) {
return;
}
while (1) {
val = oct_read64(OCTEON_MIO_UART0_LSR + (uart_index * 0x400));
val2 = oct_read64(OCTEON_MIO_UART0_USR + (uart_index * 0x400));
if ((((uint8_t) val) & LSR_THRE) ||
(((uint8_t) val2) & USR_TXFIFO_NOTFULL)) {
break;
}
}
/* Write the byte */
oct_write8(OCTEON_MIO_UART0_THR + (uart_index * 0x400), (uint64_t) ch);
/* Force Flush the IOBus */
oct_read64(OCTEON_MIO_BOOT_BIST_STAT);
}
void octeon_uart_write_byte0 (uint8_t ch)
{
uint64_t val, val2;
while (1) {
val = oct_read64(OCTEON_MIO_UART0_LSR);
val2 = oct_read64(OCTEON_MIO_UART0_USR);
if ((((uint8_t) val) & LSR_THRE) ||
(((uint8_t) val2) & USR_TXFIFO_NOTFULL)) {
break;
}
}
/* Write the byte */
oct_write8(OCTEON_MIO_UART0_THR, (uint64_t) ch);
/* Force Flush the IOBus */
oct_read64(OCTEON_MIO_BOOT_BIST_STAT);
}
/*
* octeon_uart_write_string
*
*/
void octeon_uart_write_string (int uart_index, const char *str)
{
/* Just loop writing one byte at a time */
while (*str)
{
octeon_uart_write_byte(uart_index, *str);
if (*str == '\n') {
octeon_uart_write_byte(uart_index, '\r');
}
str++;
}
}
static char wstr[30];
void octeon_led_write_hex (uint32_t wl)
{
char nbuf[80];
sprintf(nbuf, "%X", wl);
octeon_led_write_string(nbuf);
}
void octeon_uart_write_hex2 (uint32_t wl, uint32_t wh)
{
sprintf(wstr, "0x%X-0x%X ", wh, wl);
octeon_uart_write_string(0, wstr);
}
void octeon_uart_write_hex (uint32_t wl)
{
sprintf(wstr, " 0x%X ", wl);
octeon_uart_write_string(0, wstr);
}
2009-06-14 06:53:55 +00:00
#ifdef __not_used__
#define OCT_CONS_BUFLEN 200
static char console_str_buff0[OCT_CONS_BUFLEN + 1];
#include <machine/stdarg.h>
//#define USE_KERN_SUBR_PRINTF
#ifndef USE_KERN_SUBR_PRINTF
static int oct_printf (const char *fmt, va_list ap);
#endif
2009-06-14 06:53:55 +00:00
int kern_cons_printf(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
#ifndef USE_KERN_SUBR_PRINTF
oct_printf(fmt, ap);
#else
ker_printf(fmt, ap);
#endif
va_end(ap);
return (0);
}
#ifndef USE_KERN_SUBR_PRINTF
2009-06-14 06:53:55 +00:00
static int oct_printf(const char *fmt, va_list ap)
{
snprintf(console_str_buff0, OCT_CONS_BUFLEN, fmt, ap);
octeon_uart_write_string(0, console_str_buff0);
return (0);
}
#endif
2009-06-14 06:53:55 +00:00
int console_printf(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
sprintf(console_str_buff0, fmt, ap);
va_end(ap);
octeon_uart_write_string(0, console_str_buff0);
return (0);
}
2009-06-14 06:53:55 +00:00
#endif
/*
* octeon_wait_uart_flush
*/
void octeon_wait_uart_flush (int uart_index, uint8_t ch)
{
uint64_t val;
int64_t val3;
uint32_t cpu_status_bits;
if ((uart_index < 0) || (uart_index > 1)) {
return;
}
cpu_status_bits = octeon_disable_interrupts();
/* Force Flush the IOBus */
oct_read64(OCTEON_MIO_BOOT_BIST_STAT);
for (val3 = 0xfffffffff; val3 > 0; val3--) {
val = oct_read64(OCTEON_MIO_UART0_LSR + (uart_index * 0x400));
if (((uint8_t) val) & LSR_TEMT) {
break;
}
}
octeon_set_interrupts(cpu_status_bits);
}
/*
* octeon_debug_symbol
*
* Does nothing.
* Used to mark the point for simulator to begin tracing
*/
void octeon_debug_symbol (void)
{
}
void octeon_ciu_stop_gtimer (int timer)
{
oct_write64(OCTEON_CIU_GENTIMER_ADDR(timer), 0ll);
}
void octeon_ciu_start_gtimer (int timer, u_int one_shot, uint64_t time_cycles)
{
octeon_ciu_gentimer gentimer;
gentimer.word64 = 0;
gentimer.bits.one_shot = one_shot;
gentimer.bits.len = time_cycles - 1;
oct_write64(OCTEON_CIU_GENTIMER_ADDR(timer), gentimer.word64);
}
/*
* octeon_ciu_reset
*
* Shutdown all CIU to IP2, IP3 mappings
*/
void octeon_ciu_reset (void)
{
octeon_ciu_stop_gtimer(CIU_GENTIMER_NUM_0);
octeon_ciu_stop_gtimer(CIU_GENTIMER_NUM_1);
octeon_ciu_stop_gtimer(CIU_GENTIMER_NUM_2);
octeon_ciu_stop_gtimer(CIU_GENTIMER_NUM_3);
ciu_disable_intr(CIU_THIS_CORE, CIU_INT_0, CIU_EN_0);
ciu_disable_intr(CIU_THIS_CORE, CIU_INT_0, CIU_EN_1);
ciu_disable_intr(CIU_THIS_CORE, CIU_INT_1, CIU_EN_0);
ciu_disable_intr(CIU_THIS_CORE, CIU_INT_1, CIU_EN_1);
ciu_clear_int_summary(CIU_THIS_CORE, CIU_INT_0, CIU_EN_0, 0ll);
ciu_clear_int_summary(CIU_THIS_CORE, CIU_INT_1, CIU_EN_0, 0ll);
ciu_clear_int_summary(CIU_THIS_CORE, CIU_INT_1, CIU_EN_1, 0ll);
}
/*
* mips_disable_interrupt_controllers
*
* Disable interrupts in the CPU controller
*/
void mips_disable_interrupt_controls (void)
{
/*
* Disable interrupts in CIU.
*/
octeon_ciu_reset();
}
static uint64_t ciu_get_intr_sum_reg_addr(int core_num, int intx, int enx);
/*
* ciu_get_intr_sum_reg_addr
*/
static uint64_t ciu_get_intr_sum_reg_addr (int core_num, int intx, int enx)
{
uint64_t ciu_intr_sum_reg_addr;
if (enx == CIU_EN_0) {
ciu_intr_sum_reg_addr = OCTEON_CIU_SUMMARY_BASE_ADDR + (core_num * 0x10) +
(intx * 0x8);
} else {
ciu_intr_sum_reg_addr = OCTEON_CIU_SUMMARY_INT1_ADDR;
}
return (ciu_intr_sum_reg_addr);
}
static uint64_t ciu_get_intr_en_reg_addr(int core_num, int intx, int enx);
/*
* ciu_get_intr_en_reg_addr
*/
static uint64_t ciu_get_intr_en_reg_addr (int core_num, int intx, int enx)
{
uint64_t ciu_intr_reg_addr;
ciu_intr_reg_addr = OCTEON_CIU_ENABLE_BASE_ADDR + ((enx == 0) ? 0x0 : 0x8) +
(intx * 0x10) + (core_num * 0x20);
return (ciu_intr_reg_addr);
}
uint64_t ciu_get_en_reg_addr_new (int corenum, int intx, int enx, int ciu_ip);
/*
* ciu_get_intr_reg_addr
*
* 200 ---int0,en0 ip2
* 208 ---int0,en1 ip2 ----> this is wrong... this is watchdog
*
* 210 ---int0,en0 ip3 --
* 218 ---int0,en1 ip3 ----> same here.. .this is watchdog... right?
*
* 220 ---int1,en0 ip2
* 228 ---int1,en1 ip2
* 230 ---int1,en0 ip3 --
* 238 ---int1,en1 ip3
*
*/
uint64_t ciu_get_en_reg_addr_new (int corenum, int intx, int enx, int ciu_ip)
{
uint64_t ciu_intr_reg_addr = OCTEON_CIU_ENABLE_BASE_ADDR;
if (enx < CIU_EN_0 || enx > CIU_EN_1) {
printf("%s: invalid enx value %d, should be %d or %d\n",
__FUNCTION__, enx, CIU_EN_0, CIU_EN_1);
return 0;
}
if (intx < CIU_INT_0 || intx > CIU_INT_1) {
printf("%s: invalid intx value %d, should be %d or %d\n",
__FUNCTION__, enx, CIU_INT_0, CIU_INT_1);
return 0;
}
if (ciu_ip < CIU_MIPS_IP2 || ciu_ip > CIU_MIPS_IP3) {
printf("%s: invalid ciu_ip value %d, should be %d or %d\n",
__FUNCTION__, ciu_ip, CIU_MIPS_IP2, CIU_MIPS_IP3);
return 0;
}
ciu_intr_reg_addr += (enx * 0x8);
ciu_intr_reg_addr += (ciu_ip * 0x10);
ciu_intr_reg_addr += (intx * 0x20);
return (ciu_intr_reg_addr);
}
/*
* ciu_get_int_summary
*/
uint64_t ciu_get_int_summary (int core_num, int intx, int enx)
{
uint64_t ciu_intr_sum_reg_addr;
if (core_num == CIU_THIS_CORE) {
core_num = octeon_get_core_num();
}
ciu_intr_sum_reg_addr = ciu_get_intr_sum_reg_addr(core_num, intx, enx);
return (oct_read64(ciu_intr_sum_reg_addr));
}
//#define DEBUG_CIU 1
#ifdef DEBUG_CIU
#define DEBUG_CIU_SUM 1
#define DEBUG_CIU_EN 1
#endif
/*
* ciu_clear_int_summary
*/
void ciu_clear_int_summary (int core_num, int intx, int enx, uint64_t write_bits)
{
uint32_t cpu_status_bits;
uint64_t ciu_intr_sum_reg_addr;
//#define DEBUG_CIU_SUM 1
#ifdef DEBUG_CIU_SUM
uint64_t ciu_intr_sum_bits;
#endif
if (core_num == CIU_THIS_CORE) {
core_num = octeon_get_core_num();
}
#ifdef DEBUG_CIU_SUM
printf(" CIU: core %u clear sum IntX %u Enx %u Bits: 0x%llX\n",
core_num, intx, enx, write_bits);
#endif
cpu_status_bits = octeon_disable_interrupts();
ciu_intr_sum_reg_addr = ciu_get_intr_sum_reg_addr(core_num, intx, enx);
#ifdef DEBUG_CIU_SUM
ciu_intr_sum_bits = oct_read64(ciu_intr_sum_reg_addr); /* unneeded dummy read */
printf(" CIU: status: 0x%X reg_addr: 0x%llX Val: 0x%llX -> 0x%llX",
cpu_status_bits, ciu_intr_sum_reg_addr, ciu_intr_sum_bits,
ciu_intr_sum_bits | write_bits);
#endif
oct_write64(ciu_intr_sum_reg_addr, write_bits);
oct_read64(OCTEON_MIO_BOOT_BIST_STAT); /* Bus Barrier */
#ifdef DEBUG_CIU_SUM
printf(" Readback: 0x%llX\n\n ", (uint64_t) oct_read64(ciu_intr_sum_reg_addr));
#endif
octeon_set_interrupts(cpu_status_bits);
}
/*
* ciu_disable_intr
*/
void ciu_disable_intr (int core_num, int intx, int enx)
{
uint32_t cpu_status_bits;
uint64_t ciu_intr_reg_addr;
if (core_num == CIU_THIS_CORE) {
core_num = octeon_get_core_num();
}
cpu_status_bits = octeon_disable_interrupts();
ciu_intr_reg_addr = ciu_get_intr_en_reg_addr(core_num, intx, enx);
oct_read64(ciu_intr_reg_addr); /* Dummy read */
oct_write64(ciu_intr_reg_addr, 0LL);
oct_read64(OCTEON_MIO_BOOT_BIST_STAT); /* Bus Barrier */
octeon_set_interrupts(cpu_status_bits);
}
void ciu_dump_interrutps_enabled (int core_num, int intx, int enx, int ciu_ip);
void ciu_dump_interrutps_enabled (int core_num, int intx, int enx, int ciu_ip)
{
uint64_t ciu_intr_reg_addr;
uint64_t ciu_intr_bits;
if (core_num == CIU_THIS_CORE) {
core_num = octeon_get_core_num();
}
#ifndef OCTEON_SMP_1
ciu_intr_reg_addr = ciu_get_intr_en_reg_addr(core_num, intx, enx);
#else
ciu_intr_reg_addr = ciu_get_en_reg_addr_new(core_num, intx, enx, ciu_ip);
#endif
if (!ciu_intr_reg_addr) {
printf("Bad call to %s\n", __FUNCTION__);
while(1);
return;
}
ciu_intr_bits = oct_read64(ciu_intr_reg_addr);
printf(" CIU core %d int: %d en: %d ip: %d Add: %#llx enabled: %#llx SR: %x\n",
core_num, intx, enx, ciu_ip, (unsigned long long)ciu_intr_reg_addr,
(unsigned long long)ciu_intr_bits, mips_rd_status());
}
/*
* ciu_enable_interrupts
*/
void ciu_enable_interrupts (int core_num, int intx, int enx, uint64_t set_these_interrupt_bits,
int ciu_ip)
{
uint32_t cpu_status_bits;
uint64_t ciu_intr_reg_addr;
uint64_t ciu_intr_bits;
if (core_num == CIU_THIS_CORE) {
core_num = octeon_get_core_num();
}
//#define DEBUG_CIU_EN 1
#ifdef DEBUG_CIU_EN
printf(" CIU: core %u enabling Intx %u Enx %u IP %d Bits: 0x%llX\n",
core_num, intx, enx, ciu_ip, set_these_interrupt_bits);
#endif
cpu_status_bits = octeon_disable_interrupts();
#ifndef OCTEON_SMP_1
ciu_intr_reg_addr = ciu_get_intr_en_reg_addr(core_num, intx, enx);
#else
ciu_intr_reg_addr = ciu_get_en_reg_addr_new(core_num, intx, enx, ciu_ip);
#endif
if (!ciu_intr_reg_addr) {
printf("Bad call to %s\n", __FUNCTION__);
while(1);
return;
}
ciu_intr_bits = oct_read64(ciu_intr_reg_addr);
#ifdef DEBUG_CIU_EN
printf(" CIU: status: 0x%X reg_addr: 0x%llX Val: 0x%llX -> 0x%llX",
cpu_status_bits, ciu_intr_reg_addr, ciu_intr_bits, ciu_intr_bits | set_these_interrupt_bits);
#endif
ciu_intr_bits |= set_these_interrupt_bits;
oct_write64(ciu_intr_reg_addr, ciu_intr_bits);
#ifdef OCTEON_SMP
mips_wbflush();
#endif
oct_read64(OCTEON_MIO_BOOT_BIST_STAT); /* Bus Barrier */
#ifdef DEBUG_CIU_EN
printf(" Readback: 0x%llX\n\n ", (uint64_t) oct_read64(ciu_intr_reg_addr));
#endif
octeon_set_interrupts(cpu_status_bits);
}
void
platform_start(__register_t a0, __register_t a1,
__register_t a2 __unused, __register_t a3 __unused)
{
uint64_t platform_counter_freq;
vm_offset_t kernend;
int argc = a0;
char **argv = (char **)a1;
int i, mem;
/* clear the BSS and SBSS segments */
kernend = round_page((vm_offset_t)&end);
memset(&edata, 0, kernend - (vm_offset_t)(&edata));
octeon_ciu_reset();
octeon_uart_write_string(0, "Platform Starting\n");
/* From here on down likely is bogus */
/*
* Looking for mem=XXM argument
*/
mem = 0; /* Just something to start with */
for (i=0; i < argc; i++) {
if (strncmp(argv[i], "mem=", 4) == 0) {
mem = strtol(argv[i] + 4, NULL, 0);
break;
}
}
bootverbose = 1;
if (mem > 0)
realmem = btoc(mem << 20);
else
realmem = btoc(32 << 20);
for (i = 0; i < 10; i++) {
phys_avail[i] = 0;
}
/* phys_avail regions are in bytes */
phys_avail[0] = MIPS_KSEG0_TO_PHYS((vm_offset_t)&end);
phys_avail[1] = ctob(realmem);
physmem = realmem;
/*
* ns8250 uart code uses DELAY so ticker should be inititalized
* before cninit. And tick_init_params refers to hz, so * init_param1
* should be called first.
*/
init_param1();
/* TODO: parse argc,argv */
platform_counter_freq = 330000000UL; /* XXX: from idt */
mips_timer_init_params(platform_counter_freq, 1);
cninit();
/* Panic here, after cninit */
#if 0
if (mem == 0)
panic("No mem=XX parameter in arguments");
#endif
printf("cmd line: ");
for (i=0; i < argc; i++)
printf("%s ", argv[i]);
printf("\n");
init_param2(physmem);
mips_cpu_init();
pmap_bootstrap();
mips_proc0_init();
mutex_init();
#ifdef DDB
kdb_init();
#endif
}
/*
****************************************************************************************
*
* APP/BOOT DESCRIPTOR STUFF
*
****************************************************************************************
*/
/* Define the struct that is initialized by the bootloader used by the
* startup code.
*
* Copyright (c) 2004, 2005, 2006 Cavium Networks.
*
* The authors hereby grant permission to use, copy, modify, distribute,
* and license this software and its documentation for any purpose, provided
* that existing copyright notices are retained in all copies and that this
* notice is included verbatim in any distributions. No written agreement,
* license, or royalty fee is required for any of the authorized uses.
* Modifications to this software may be copyrighted by their authors
* and need not follow the licensing terms described here, provided that
* the new terms are clearly indicated on the first page of each file where
* they apply.
*/
#define OCTEON_CURRENT_DESC_VERSION 6
#define OCTEON_ARGV_MAX_ARGS (64)
#define OCTOEN_SERIAL_LEN 20
typedef struct {
/* Start of block referenced by assembly code - do not change! */
uint32_t desc_version;
uint32_t desc_size;
uint64_t stack_top;
uint64_t heap_base;
uint64_t heap_end;
uint64_t entry_point; /* Only used by bootloader */
uint64_t desc_vaddr;
/* End of This block referenced by assembly code - do not change! */
uint32_t exception_base_addr;
uint32_t stack_size;
uint32_t heap_size;
uint32_t argc; /* Argc count for application */
uint32_t argv[OCTEON_ARGV_MAX_ARGS];
uint32_t flags;
uint32_t core_mask;
uint32_t dram_size; /**< DRAM size in megabyes */
uint32_t phy_mem_desc_addr; /**< physical address of free memory descriptor block*/
uint32_t debugger_flags_base_addr; /**< used to pass flags from app to debugger */
uint32_t eclock_hz; /**< CPU clock speed, in hz */
uint32_t dclock_hz; /**< DRAM clock speed, in hz */
uint32_t spi_clock_hz; /**< SPI4 clock in hz */
uint16_t board_type;
uint8_t board_rev_major;
uint8_t board_rev_minor;
uint16_t chip_type;
uint8_t chip_rev_major;
uint8_t chip_rev_minor;
char board_serial_number[OCTOEN_SERIAL_LEN];
uint8_t mac_addr_base[6];
uint8_t mac_addr_count;
uint64_t cvmx_desc_vaddr;
} octeon_boot_descriptor_t;
typedef struct {
uint32_t major_version;
uint32_t minor_version;
uint64_t stack_top;
uint64_t heap_base;
uint64_t heap_end;
uint64_t desc_vaddr;
uint32_t exception_base_addr;
uint32_t stack_size;
uint32_t flags;
uint32_t core_mask;
uint32_t dram_size; /**< DRAM size in megabyes */
uint32_t phy_mem_desc_addr; /**< physical address of free memory descriptor block*/
uint32_t debugger_flags_base_addr; /**< used to pass flags from app to debugger */
uint32_t eclock_hz; /**< CPU clock speed, in hz */
uint32_t dclock_hz; /**< DRAM clock speed, in hz */
uint32_t spi_clock_hz; /**< SPI4 clock in hz */
uint16_t board_type;
uint8_t board_rev_major;
uint8_t board_rev_minor;
uint16_t chip_type;
uint8_t chip_rev_major;
uint8_t chip_rev_minor;
char board_serial_number[OCTOEN_SERIAL_LEN];
uint8_t mac_addr_base[6];
uint8_t mac_addr_count;
} cvmx_bootinfo_t;
uint32_t octeon_cpu_clock;
uint64_t octeon_dram;
uint32_t octeon_bd_ver = 0, octeon_cvmx_bd_ver = 0, octeon_board_rev_major, octeon_board_rev_minor, octeon_board_type;
uint8_t octeon_mac_addr[6] = { 0 };
int octeon_core_mask, octeon_mac_addr_count;
int octeon_chip_rev_major = 0, octeon_chip_rev_minor = 0, octeon_chip_type = 0;
#if defined(__mips_n64)
extern uint64_t app_descriptor_addr;
#else
extern uint32_t app_descriptor_addr;
#endif
static octeon_boot_descriptor_t *app_desc_ptr;
static cvmx_bootinfo_t *cvmx_desc_ptr;
#define OCTEON_BOARD_TYPE_NONE 0
#define OCTEON_BOARD_TYPE_SIM 1
#define OCTEON_CLOCK_MIN (100 * 1000 * 1000)
#define OCTEON_CLOCK_MAX (800 * 1000 * 1000)
#define OCTEON_DRAM_DEFAULT (256 * 1024 * 1024)
#define OCTEON_DRAM_MIN 30
#define OCTEON_DRAM_MAX 3000
int octeon_board_real (void)
{
if ((octeon_board_type == OCTEON_BOARD_TYPE_NONE) ||
(octeon_board_type == OCTEON_BOARD_TYPE_SIM) ||
!octeon_board_rev_major) {
return 0;
}
return 1;
}
static void octeon_process_app_desc_ver_unknown (void)
{
printf(" Unknown Boot-Descriptor: Using Defaults\n");
octeon_cpu_clock = OCTEON_CLOCK_DEFAULT;
octeon_dram = OCTEON_DRAM_DEFAULT;
octeon_board_rev_major = octeon_board_rev_minor = octeon_board_type = 0;
octeon_core_mask = 1;
octeon_cpu_clock = OCTEON_CLOCK_DEFAULT;
octeon_chip_type = octeon_chip_rev_major = octeon_chip_rev_minor = 0;
octeon_mac_addr[0] = 0x00; octeon_mac_addr[1] = 0x0f;
octeon_mac_addr[2] = 0xb7; octeon_mac_addr[3] = 0x10;
octeon_mac_addr[4] = 0x09; octeon_mac_addr[5] = 0x06;
octeon_mac_addr_count = 1;
}
static int octeon_process_app_desc_ver_6 (void)
{
cvmx_desc_ptr = (cvmx_bootinfo_t *) ((long) app_desc_ptr->cvmx_desc_vaddr);
if ((cvmx_desc_ptr == NULL) || (cvmx_desc_ptr == (cvmx_bootinfo_t *)0xffffffff)) {
2009-06-14 06:53:55 +00:00
printf ("Bad cvmx_desc_ptr %p\n", cvmx_desc_ptr);
return 1;
}
cvmx_desc_ptr = (cvmx_bootinfo_t *) (((long) cvmx_desc_ptr) | MIPS_KSEG0_START);
octeon_cvmx_bd_ver = (cvmx_desc_ptr->major_version * 100) +
cvmx_desc_ptr->minor_version;
if (cvmx_desc_ptr->major_version != 1) {
2009-06-14 06:53:55 +00:00
printf("Incompatible CVMX descriptor from bootloader: %d.%d %p\n",
(int) cvmx_desc_ptr->major_version,
(int) cvmx_desc_ptr->minor_version, cvmx_desc_ptr);
while (1); /* Never return */
return 1; /* Satisfy the compiler */
}
octeon_core_mask = cvmx_desc_ptr->core_mask;
octeon_cpu_clock = cvmx_desc_ptr->eclock_hz;
octeon_board_type = cvmx_desc_ptr->board_type;
octeon_board_rev_major = cvmx_desc_ptr->board_rev_major;
octeon_board_rev_minor = cvmx_desc_ptr->board_rev_minor;
octeon_chip_type = cvmx_desc_ptr->chip_type;
octeon_chip_rev_major = cvmx_desc_ptr->chip_rev_major;
octeon_chip_rev_minor = cvmx_desc_ptr->chip_rev_minor;
octeon_mac_addr[0] = cvmx_desc_ptr->mac_addr_base[0];
octeon_mac_addr[1] = cvmx_desc_ptr->mac_addr_base[1];
octeon_mac_addr[2] = cvmx_desc_ptr->mac_addr_base[2];
octeon_mac_addr[3] = cvmx_desc_ptr->mac_addr_base[3];
octeon_mac_addr[4] = cvmx_desc_ptr->mac_addr_base[4];
octeon_mac_addr[5] = cvmx_desc_ptr->mac_addr_base[5];
octeon_mac_addr_count = cvmx_desc_ptr->mac_addr_count;
if (app_desc_ptr->dram_size > 16*1024*1024) {
octeon_dram = (uint64_t)app_desc_ptr->dram_size;
} else {
octeon_dram = (uint64_t)app_desc_ptr->dram_size * 1024 * 1024;
}
return 0;
}
static int octeon_process_app_desc_ver_3_4_5 (void)
{
octeon_cvmx_bd_ver = octeon_bd_ver;
octeon_core_mask = app_desc_ptr->core_mask;
if (app_desc_ptr->desc_version > 3) {
octeon_cpu_clock = app_desc_ptr->eclock_hz;
} else {
octeon_cpu_clock = OCTEON_CLOCK_DEFAULT;
}
if (app_desc_ptr->dram_size > 16*1024*1024) {
octeon_dram = (uint64_t)app_desc_ptr->dram_size;
} else {
octeon_dram = (uint64_t)app_desc_ptr->dram_size * 1024 * 1024;
}
if (app_desc_ptr->desc_version > 4) {
octeon_board_type = app_desc_ptr->board_type;
octeon_board_rev_major = app_desc_ptr->board_rev_major;
octeon_board_rev_minor = app_desc_ptr->board_rev_minor;
octeon_chip_type = app_desc_ptr->chip_type;
octeon_chip_rev_major = app_desc_ptr->chip_rev_major;
octeon_chip_rev_minor = app_desc_ptr->chip_rev_minor;
octeon_mac_addr[0] = app_desc_ptr->mac_addr_base[0];
octeon_mac_addr[1] = app_desc_ptr->mac_addr_base[1];
octeon_mac_addr[2] = app_desc_ptr->mac_addr_base[2];
octeon_mac_addr[3] = app_desc_ptr->mac_addr_base[3];
octeon_mac_addr[4] = app_desc_ptr->mac_addr_base[4];
octeon_mac_addr[5] = app_desc_ptr->mac_addr_base[5];
octeon_mac_addr_count = app_desc_ptr->mac_addr_count;
}
return 0;
}
void mips_boot_params_init(void);
void mips_boot_params_init (void)
{
int descriptor_not_parsed = 1;
if ((app_descriptor_addr == 0) || (app_descriptor_addr >= MAX_APP_DESC_ADDR)) {
} else {
app_desc_ptr = (octeon_boot_descriptor_t *) app_descriptor_addr;
octeon_bd_ver = app_desc_ptr->desc_version;
if ((octeon_bd_ver >= 3) && (octeon_bd_ver <= 5)) {
descriptor_not_parsed = octeon_process_app_desc_ver_3_4_5();
} else if (app_desc_ptr->desc_version == 6) {
descriptor_not_parsed = octeon_process_app_desc_ver_6();
}
}
if (descriptor_not_parsed) {
octeon_process_app_desc_ver_unknown();
}
printf("Boot Descriptor Ver: %u -> %u/%u",
octeon_bd_ver, octeon_cvmx_bd_ver/100, octeon_cvmx_bd_ver%100);
printf(" CPU clock: %uMHz\n", octeon_cpu_clock/1000000);
printf(" Dram: %u MB", (uint32_t)(octeon_dram >> 20));
printf(" Board Type: %u Revision: %u/%u\n",
octeon_board_type, octeon_board_rev_major, octeon_board_rev_minor);
printf(" Octeon Chip: %u Rev %u/%u",
octeon_chip_type, octeon_chip_rev_major, octeon_chip_rev_minor);
printf(" Mac Address %02X.%02X.%02X.%02X.%02X.%02X\n",
octeon_mac_addr[0], octeon_mac_addr[1], octeon_mac_addr[2],
octeon_mac_addr[3], octeon_mac_addr[4], octeon_mac_addr[5]);
}