freebsd-nq/sys/dev/gx/if_gx.c

1612 lines
38 KiB
C
Raw Normal View History

/*-
* Copyright (c) 1999,2000,2001 Jonathan Lemon
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/queue.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/clock.h> /* for DELAY */
#include <machine/bus_memio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/gx/if_gxreg.h>
#include <dev/gx/if_gxvar.h>
MODULE_DEPEND(gx, pci, 1, 1, 1);
MODULE_DEPEND(gx, ether, 1, 1, 1);
MODULE_DEPEND(gx, miibus, 1, 1, 1);
#include "miibus_if.h"
#define TUNABLE_TX_INTR_DELAY 100
#define TUNABLE_RX_INTR_DELAY 100
#define GX_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
/*
* Various supported device vendors/types and their names.
*/
struct gx_device {
u_int16_t vendor;
u_int16_t device;
int version_flags;
u_int32_t version_ipg;
char *name;
};
static struct gx_device gx_devs[] = {
{ INTEL_VENDORID, DEVICEID_WISEMAN,
GXF_FORCE_TBI | GXF_OLD_REGS,
10 | 2 << 10 | 10 << 20,
"Intel Gigabit Ethernet (82542)" },
{ INTEL_VENDORID, DEVICEID_LIVINGOOD_FIBER,
GXF_DMA | GXF_ENABLE_MWI | GXF_CSUM,
6 | 8 << 10 | 6 << 20,
"Intel Gigabit Ethernet (82543GC-F)" },
{ INTEL_VENDORID, DEVICEID_LIVINGOOD_COPPER,
GXF_DMA | GXF_ENABLE_MWI | GXF_CSUM,
8 | 8 << 10 | 6 << 20,
"Intel Gigabit Ethernet (82543GC-T)" },
#if 0
/* notyet.. */
{ INTEL_VENDORID, DEVICEID_CORDOVA_FIBER,
GXF_DMA | GXF_ENABLE_MWI | GXF_CSUM,
6 | 8 << 10 | 6 << 20,
"Intel Gigabit Ethernet (82544EI-F)" },
{ INTEL_VENDORID, DEVICEID_CORDOVA_COPPER,
GXF_DMA | GXF_ENABLE_MWI | GXF_CSUM,
8 | 8 << 10 | 6 << 20,
"Intel Gigabit Ethernet (82544EI-T)" },
{ INTEL_VENDORID, DEVICEID_CORDOVA2_COPPER,
GXF_DMA | GXF_ENABLE_MWI | GXF_CSUM,
8 | 8 << 10 | 6 << 20,
"Intel Gigabit Ethernet (82544GC-T)" },
#endif
{ 0, 0, 0, 0, NULL }
};
static struct gx_regs new_regs = {
GX_RX_RING_BASE, GX_RX_RING_LEN,
GX_RX_RING_HEAD, GX_RX_RING_TAIL,
GX_RX_INTR_DELAY, GX_RX_DMA_CTRL,
GX_TX_RING_BASE, GX_TX_RING_LEN,
GX_TX_RING_HEAD, GX_TX_RING_TAIL,
GX_TX_INTR_DELAY, GX_TX_DMA_CTRL,
};
static struct gx_regs old_regs = {
GX_RX_OLD_RING_BASE, GX_RX_OLD_RING_LEN,
GX_RX_OLD_RING_HEAD, GX_RX_OLD_RING_TAIL,
GX_RX_OLD_INTR_DELAY, GX_RX_OLD_DMA_CTRL,
GX_TX_OLD_RING_BASE, GX_TX_OLD_RING_LEN,
GX_TX_OLD_RING_HEAD, GX_TX_OLD_RING_TAIL,
GX_TX_OLD_INTR_DELAY, GX_TX_OLD_DMA_CTRL,
};
static int gx_probe(device_t dev);
static int gx_attach(device_t dev);
static int gx_detach(device_t dev);
static void gx_shutdown(device_t dev);
static void gx_intr(void *xsc);
static void gx_init(void *xsc);
static struct gx_device *gx_match(device_t dev);
static void gx_eeprom_getword(struct gx_softc *gx, int addr,
u_int16_t *dest);
static int gx_read_eeprom(struct gx_softc *gx, caddr_t dest, int off,
int cnt);
static int gx_ifmedia_upd(struct ifnet *ifp);
static void gx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
static int gx_miibus_readreg(device_t dev, int phy, int reg);
static void gx_miibus_writereg(device_t dev, int phy, int reg, int value);
static void gx_miibus_statchg(device_t dev);
static int gx_ioctl(struct ifnet *ifp, u_long command, caddr_t data);
static void gx_setmulti(struct gx_softc *gx);
static void gx_reset(struct gx_softc *gx);
static void gx_phy_reset(struct gx_softc *gx);
static void gx_release(struct gx_softc *gx);
static void gx_stop(struct gx_softc *gx);
static void gx_watchdog(struct ifnet *ifp);
static void gx_start(struct ifnet *ifp);
static int gx_init_rx_ring(struct gx_softc *gx);
static void gx_free_rx_ring(struct gx_softc *gx);
static int gx_init_tx_ring(struct gx_softc *gx);
static void gx_free_tx_ring(struct gx_softc *gx);
static device_method_t gx_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, gx_probe),
DEVMETHOD(device_attach, gx_attach),
DEVMETHOD(device_detach, gx_detach),
DEVMETHOD(device_shutdown, gx_shutdown),
/* MII interface */
DEVMETHOD(miibus_readreg, gx_miibus_readreg),
DEVMETHOD(miibus_writereg, gx_miibus_writereg),
DEVMETHOD(miibus_statchg, gx_miibus_statchg),
{ 0, 0 }
};
static driver_t gx_driver = {
"gx",
gx_methods,
sizeof(struct gx_softc)
};
static devclass_t gx_devclass;
DRIVER_MODULE(gx, pci, gx_driver, gx_devclass, 0, 0);
DRIVER_MODULE(miibus, gx, miibus_driver, miibus_devclass, 0, 0);
static struct gx_device *
gx_match(device_t dev)
{
int i;
for (i = 0; gx_devs[i].name != NULL; i++) {
if ((pci_get_vendor(dev) == gx_devs[i].vendor) &&
(pci_get_device(dev) == gx_devs[i].device))
return (&gx_devs[i]);
}
return (NULL);
}
static int
gx_probe(device_t dev)
{
struct gx_device *gx_dev;
gx_dev = gx_match(dev);
if (gx_dev == NULL)
return (ENXIO);
device_set_desc(dev, gx_dev->name);
return (0);
}
static int
gx_attach(device_t dev)
{
struct gx_softc *gx;
struct gx_device *gx_dev;
struct ifnet *ifp;
u_int32_t command;
int rid, s;
int error = 0;
s = splimp();
gx = device_get_softc(dev);
bzero(gx, sizeof(struct gx_softc));
gx->gx_dev = dev;
gx_dev = gx_match(dev);
gx->gx_vflags = gx_dev->version_flags;
gx->gx_ipg = gx_dev->version_ipg;
mtx_init(&gx->gx_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF | MTX_RECURSE);
GX_LOCK(gx);
/*
* Map control/status registers.
*/
command = pci_read_config(dev, PCIR_COMMAND, 4);
command |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
if (gx->gx_vflags & GXF_ENABLE_MWI)
command |= PCIM_CMD_MWIEN;
pci_write_config(dev, PCIR_COMMAND, command, 4);
command = pci_read_config(dev, PCIR_COMMAND, 4);
/* XXX check cache line size? */
if ((command & PCIM_CMD_MEMEN) == 0) {
device_printf(dev, "failed to enable memory mapping!\n");
error = ENXIO;
goto fail;
}
rid = GX_PCI_LOMEM;
gx->gx_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
#if 0
/* support PIO mode */
rid = PCI_LOIO;
gx->gx_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
RF_ACTIVE);
#endif
if (gx->gx_res == NULL) {
device_printf(dev, "couldn't map memory\n");
error = ENXIO;
goto fail;
}
gx->gx_btag = rman_get_bustag(gx->gx_res);
gx->gx_bhandle = rman_get_bushandle(gx->gx_res);
/* Allocate interrupt */
rid = 0;
gx->gx_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (gx->gx_irq == NULL) {
device_printf(dev, "couldn't map interrupt\n");
error = ENXIO;
goto fail;
}
error = bus_setup_intr(dev, gx->gx_irq, INTR_TYPE_NET,
gx_intr, gx, &gx->gx_intrhand);
if (error) {
device_printf(dev, "couldn't setup irq\n");
goto fail;
}
/* compensate for different register mappings */
if (gx->gx_vflags & GXF_OLD_REGS)
gx->gx_reg = old_regs;
else
gx->gx_reg = new_regs;
if (gx_read_eeprom(gx, (caddr_t)&gx->arpcom.ac_enaddr,
GX_EEMAP_MAC, 3)) {
device_printf(dev, "failed to read station address\n");
error = ENXIO;
goto fail;
}
/* Allocate the ring buffers. */
gx->gx_rdata = contigmalloc(sizeof(struct gx_ring_data), M_DEVBUF,
M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
if (gx->gx_rdata == NULL) {
device_printf(dev, "no memory for list buffers!\n");
error = ENXIO;
goto fail;
}
bzero(gx->gx_rdata, sizeof(struct gx_ring_data));
/* Set default tuneable values. */
gx->gx_tx_intr_delay = TUNABLE_TX_INTR_DELAY;
gx->gx_rx_intr_delay = TUNABLE_RX_INTR_DELAY;
/* Set up ifnet structure */
ifp = &gx->arpcom.ac_if;
ifp->if_softc = gx;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = gx_ioctl;
ifp->if_output = ether_output;
ifp->if_start = gx_start;
ifp->if_watchdog = gx_watchdog;
ifp->if_init = gx_init;
ifp->if_mtu = ETHERMTU;
ifp->if_snd.ifq_maxlen = GX_TX_RING_CNT - 1;
ifp->if_capabilities = IFCAP_VLAN_HWTAGGING;
/* see if we can enable hardware checksumming */
if (gx->gx_vflags & GXF_CSUM)
ifp->if_capabilities |= IFCAP_HWCSUM;
ifp->if_capenable = ifp->if_capabilities;
/* figure out transciever type */
if (gx->gx_vflags & GXF_FORCE_TBI ||
CSR_READ_4(gx, GX_STATUS) & GX_STAT_TBIMODE)
gx->gx_tbimode = 1;
if (gx->gx_tbimode) {
/* SERDES transceiver */
ifmedia_init(&gx->gx_media, IFM_IMASK, gx_ifmedia_upd,
gx_ifmedia_sts);
ifmedia_add(&gx->gx_media,
IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
ifmedia_add(&gx->gx_media, IFM_ETHER|IFM_AUTO, 0, NULL);
ifmedia_set(&gx->gx_media, IFM_ETHER|IFM_AUTO);
} else {
/* GMII/MII transceiver */
gx_phy_reset(gx);
if (mii_phy_probe(dev, &gx->gx_miibus, gx_ifmedia_upd,
gx_ifmedia_sts)) {
device_printf(dev, "GMII/MII, PHY not detected\n");
error = ENXIO;
goto fail;
}
}
/*
* Call MI attach routines.
*/
ether_ifattach(ifp, gx->arpcom.ac_enaddr);
GX_UNLOCK(gx);
splx(s);
return (0);
fail:
GX_UNLOCK(gx);
gx_release(gx);
splx(s);
return (error);
}
static void
gx_release(struct gx_softc *gx)
{
bus_generic_detach(gx->gx_dev);
if (gx->gx_miibus)
device_delete_child(gx->gx_dev, gx->gx_miibus);
if (gx->gx_intrhand)
bus_teardown_intr(gx->gx_dev, gx->gx_irq, gx->gx_intrhand);
if (gx->gx_irq)
bus_release_resource(gx->gx_dev, SYS_RES_IRQ, 0, gx->gx_irq);
if (gx->gx_res)
bus_release_resource(gx->gx_dev, SYS_RES_MEMORY,
GX_PCI_LOMEM, gx->gx_res);
}
static void
gx_init(void *xsc)
{
struct gx_softc *gx = (struct gx_softc *)xsc;
struct ifmedia *ifm;
struct ifnet *ifp;
device_t dev;
u_int16_t *m;
u_int32_t ctrl;
int s, i, tmp;
dev = gx->gx_dev;
ifp = &gx->arpcom.ac_if;
s = splimp();
GX_LOCK(gx);
/* Disable host interrupts, halt chip. */
gx_reset(gx);
/* disable I/O, flush RX/TX FIFOs, and free RX/TX buffers */
gx_stop(gx);
/* Load our MAC address, invalidate other 15 RX addresses. */
m = (u_int16_t *)&gx->arpcom.ac_enaddr[0];
CSR_WRITE_4(gx, GX_RX_ADDR_BASE, (m[1] << 16) | m[0]);
CSR_WRITE_4(gx, GX_RX_ADDR_BASE + 4, m[2] | GX_RA_VALID);
for (i = 1; i < 16; i++)
CSR_WRITE_8(gx, GX_RX_ADDR_BASE + i * 8, (u_quad_t)0);
/* Program multicast filter. */
gx_setmulti(gx);
/* Init RX ring. */
gx_init_rx_ring(gx);
/* Init TX ring. */
gx_init_tx_ring(gx);
if (gx->gx_vflags & GXF_DMA) {
/* set up DMA control */
CSR_WRITE_4(gx, gx->gx_reg.r_rx_dma_ctrl, 0x00010000);
CSR_WRITE_4(gx, gx->gx_reg.r_tx_dma_ctrl, 0x00000000);
}
/* enable receiver */
ctrl = GX_RXC_ENABLE | GX_RXC_RX_THOLD_EIGHTH | GX_RXC_RX_BSIZE_2K;
ctrl |= GX_RXC_BCAST_ACCEPT;
/* Enable or disable promiscuous mode as needed. */
if (ifp->if_flags & IFF_PROMISC)
ctrl |= GX_RXC_UNI_PROMISC;
/* This is required if we want to accept jumbo frames */
if (ifp->if_mtu > ETHERMTU)
ctrl |= GX_RXC_LONG_PKT_ENABLE;
/* setup receive checksum control */
if (ifp->if_capenable & IFCAP_RXCSUM)
CSR_WRITE_4(gx, GX_RX_CSUM_CONTROL,
GX_CSUM_TCP/* | GX_CSUM_IP*/);
/* setup transmit checksum control */
if (ifp->if_capenable & IFCAP_TXCSUM)
ifp->if_hwassist = GX_CSUM_FEATURES;
ctrl |= GX_RXC_STRIP_ETHERCRC; /* not on 82542? */
CSR_WRITE_4(gx, GX_RX_CONTROL, ctrl);
/* enable transmitter */
ctrl = GX_TXC_ENABLE | GX_TXC_PAD_SHORT_PKTS | GX_TXC_COLL_RETRY_16;
/* XXX we should support half-duplex here too... */
ctrl |= GX_TXC_COLL_TIME_FDX;
CSR_WRITE_4(gx, GX_TX_CONTROL, ctrl);
/*
* set up recommended IPG times, which vary depending on chip type:
* IPG transmit time: 80ns
* IPG receive time 1: 20ns
* IPG receive time 2: 80ns
*/
CSR_WRITE_4(gx, GX_TX_IPG, gx->gx_ipg);
/* set up 802.3x MAC flow control address -- 01:80:c2:00:00:01 */
CSR_WRITE_4(gx, GX_FLOW_CTRL_BASE, 0x00C28001);
CSR_WRITE_4(gx, GX_FLOW_CTRL_BASE+4, 0x00000100);
/* set up 802.3x MAC flow control type -- 88:08 */
CSR_WRITE_4(gx, GX_FLOW_CTRL_TYPE, 0x8808);
/* Set up tuneables */
CSR_WRITE_4(gx, gx->gx_reg.r_rx_delay, gx->gx_rx_intr_delay);
CSR_WRITE_4(gx, gx->gx_reg.r_tx_delay, gx->gx_tx_intr_delay);
/*
* Configure chip for correct operation.
*/
ctrl = GX_CTRL_DUPLEX;
#if BYTE_ORDER == BIG_ENDIAN
ctrl |= GX_CTRL_BIGENDIAN;
#endif
ctrl |= GX_CTRL_VLAN_ENABLE;
if (gx->gx_tbimode) {
/*
* It seems that TXCW must be initialized from the EEPROM
* manually.
*
* XXX
* should probably read the eeprom and re-insert the
* values here.
*/
#define TXCONFIG_WORD 0x000001A0
CSR_WRITE_4(gx, GX_TX_CONFIG, TXCONFIG_WORD);
/* turn on hardware autonegotiate */
GX_SETBIT(gx, GX_TX_CONFIG, GX_TXCFG_AUTONEG);
} else {
/*
* Auto-detect speed from PHY, instead of using direct
* indication. The SLU bit doesn't force the link, but
* must be present for ASDE to work.
*/
gx_phy_reset(gx);
ctrl |= GX_CTRL_SET_LINK_UP | GX_CTRL_AUTOSPEED;
}
/*
* Take chip out of reset and start it running.
*/
CSR_WRITE_4(gx, GX_CTRL, ctrl);
/* Turn interrupts on. */
CSR_WRITE_4(gx, GX_INT_MASK_SET, GX_INT_WANTED);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
/*
* Set the current media.
*/
if (gx->gx_miibus != NULL) {
mii_mediachg(device_get_softc(gx->gx_miibus));
} else {
ifm = &gx->gx_media;
tmp = ifm->ifm_media;
ifm->ifm_media = ifm->ifm_cur->ifm_media;
gx_ifmedia_upd(ifp);
ifm->ifm_media = tmp;
}
/*
* XXX
* Have the LINK0 flag force the link in TBI mode.
*/
if (gx->gx_tbimode && ifp->if_flags & IFF_LINK0) {
GX_CLRBIT(gx, GX_TX_CONFIG, GX_TXCFG_AUTONEG);
GX_SETBIT(gx, GX_CTRL, GX_CTRL_SET_LINK_UP);
}
#if 0
printf("66mhz: %s 64bit: %s\n",
CSR_READ_4(gx, GX_STATUS) & GX_STAT_PCI66 ? "yes" : "no",
CSR_READ_4(gx, GX_STATUS) & GX_STAT_BUS64 ? "yes" : "no");
#endif
GX_UNLOCK(gx);
splx(s);
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void
gx_shutdown(device_t dev)
{
struct gx_softc *gx;
gx = device_get_softc(dev);
gx_reset(gx);
gx_stop(gx);
}
static int
gx_detach(device_t dev)
{
struct gx_softc *gx;
struct ifnet *ifp;
int s;
s = splimp();
gx = device_get_softc(dev);
ifp = &gx->arpcom.ac_if;
GX_LOCK(gx);
ether_ifdetach(ifp);
gx_reset(gx);
gx_stop(gx);
ifmedia_removeall(&gx->gx_media);
gx_release(gx);
contigfree(gx->gx_rdata, sizeof(struct gx_ring_data), M_DEVBUF);
GX_UNLOCK(gx);
mtx_destroy(&gx->gx_mtx);
splx(s);
return (0);
}
static void
gx_eeprom_getword(struct gx_softc *gx, int addr, u_int16_t *dest)
{
u_int16_t word = 0;
u_int32_t base, reg;
int x;
addr = (GX_EE_OPC_READ << GX_EE_ADDR_SIZE) |
(addr & ((1 << GX_EE_ADDR_SIZE) - 1));
base = CSR_READ_4(gx, GX_EEPROM_CTRL);
base &= ~(GX_EE_DATA_OUT | GX_EE_DATA_IN | GX_EE_CLOCK);
base |= GX_EE_SELECT;
CSR_WRITE_4(gx, GX_EEPROM_CTRL, base);
for (x = 1 << ((GX_EE_OPC_SIZE + GX_EE_ADDR_SIZE) - 1); x; x >>= 1) {
reg = base | (addr & x ? GX_EE_DATA_IN : 0);
CSR_WRITE_4(gx, GX_EEPROM_CTRL, reg);
DELAY(10);
CSR_WRITE_4(gx, GX_EEPROM_CTRL, reg | GX_EE_CLOCK);
DELAY(10);
CSR_WRITE_4(gx, GX_EEPROM_CTRL, reg);
DELAY(10);
}
for (x = 1 << 15; x; x >>= 1) {
CSR_WRITE_4(gx, GX_EEPROM_CTRL, base | GX_EE_CLOCK);
DELAY(10);
reg = CSR_READ_4(gx, GX_EEPROM_CTRL);
if (reg & GX_EE_DATA_OUT)
word |= x;
CSR_WRITE_4(gx, GX_EEPROM_CTRL, base);
DELAY(10);
}
CSR_WRITE_4(gx, GX_EEPROM_CTRL, base & ~GX_EE_SELECT);
DELAY(10);
*dest = word;
}
static int
gx_read_eeprom(struct gx_softc *gx, caddr_t dest, int off, int cnt)
{
u_int16_t *word;
int i;
word = (u_int16_t *)dest;
for (i = 0; i < cnt; i ++) {
gx_eeprom_getword(gx, off + i, word);
word++;
}
return (0);
}
/*
* Set media options.
*/
static int
gx_ifmedia_upd(struct ifnet *ifp)
{
struct gx_softc *gx;
struct ifmedia *ifm;
struct mii_data *mii;
gx = ifp->if_softc;
if (gx->gx_tbimode) {
ifm = &gx->gx_media;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return (EINVAL);
switch (IFM_SUBTYPE(ifm->ifm_media)) {
case IFM_AUTO:
GX_SETBIT(gx, GX_CTRL, GX_CTRL_LINK_RESET);
GX_SETBIT(gx, GX_TX_CONFIG, GX_TXCFG_AUTONEG);
GX_CLRBIT(gx, GX_CTRL, GX_CTRL_LINK_RESET);
break;
case IFM_1000_SX:
device_printf(gx->gx_dev,
"manual config not supported yet.\n");
#if 0
GX_CLRBIT(gx, GX_TX_CONFIG, GX_TXCFG_AUTONEG);
config = /* bit symbols for 802.3z */0;
ctrl |= GX_CTRL_SET_LINK_UP;
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
ctrl |= GX_CTRL_DUPLEX;
#endif
break;
default:
return (EINVAL);
}
} else {
ifm = &gx->gx_media;
/*
* 1000TX half duplex does not work.
*/
if (IFM_TYPE(ifm->ifm_media) == IFM_ETHER &&
IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T &&
(IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) == 0)
return (EINVAL);
mii = device_get_softc(gx->gx_miibus);
mii_mediachg(mii);
}
return (0);
}
/*
* Report current media status.
*/
static void
gx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct gx_softc *gx;
struct mii_data *mii;
u_int32_t status;
gx = ifp->if_softc;
if (gx->gx_tbimode) {
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
status = CSR_READ_4(gx, GX_STATUS);
if ((status & GX_STAT_LINKUP) == 0)
return;
ifmr->ifm_status |= IFM_ACTIVE;
ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
} else {
mii = device_get_softc(gx->gx_miibus);
mii_pollstat(mii);
if ((mii->mii_media_active & (IFM_1000_T | IFM_HDX)) ==
(IFM_1000_T | IFM_HDX))
mii->mii_media_active = IFM_ETHER | IFM_NONE;
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
}
}
static void
gx_mii_shiftin(struct gx_softc *gx, int data, int length)
{
u_int32_t reg, x;
/*
* Set up default GPIO direction + PHY data out.
*/
reg = CSR_READ_4(gx, GX_CTRL);
reg &= ~(GX_CTRL_GPIO_DIR_MASK | GX_CTRL_PHY_IO | GX_CTRL_PHY_CLK);
reg |= GX_CTRL_GPIO_DIR | GX_CTRL_PHY_IO_DIR;
/*
* Shift in data to PHY.
*/
for (x = 1 << (length - 1); x; x >>= 1) {
if (data & x)
reg |= GX_CTRL_PHY_IO;
else
reg &= ~GX_CTRL_PHY_IO;
CSR_WRITE_4(gx, GX_CTRL, reg);
DELAY(10);
CSR_WRITE_4(gx, GX_CTRL, reg | GX_CTRL_PHY_CLK);
DELAY(10);
CSR_WRITE_4(gx, GX_CTRL, reg);
DELAY(10);
}
}
static u_int16_t
gx_mii_shiftout(struct gx_softc *gx)
{
u_int32_t reg;
u_int16_t data;
int x;
/*
* Set up default GPIO direction + PHY data in.
*/
reg = CSR_READ_4(gx, GX_CTRL);
reg &= ~(GX_CTRL_GPIO_DIR_MASK | GX_CTRL_PHY_IO | GX_CTRL_PHY_CLK);
reg |= GX_CTRL_GPIO_DIR;
CSR_WRITE_4(gx, GX_CTRL, reg);
DELAY(10);
CSR_WRITE_4(gx, GX_CTRL, reg | GX_CTRL_PHY_CLK);
DELAY(10);
CSR_WRITE_4(gx, GX_CTRL, reg);
DELAY(10);
/*
* Shift out data from PHY.
*/
data = 0;
for (x = 1 << 15; x; x >>= 1) {
CSR_WRITE_4(gx, GX_CTRL, reg | GX_CTRL_PHY_CLK);
DELAY(10);
if (CSR_READ_4(gx, GX_CTRL) & GX_CTRL_PHY_IO)
data |= x;
CSR_WRITE_4(gx, GX_CTRL, reg);
DELAY(10);
}
CSR_WRITE_4(gx, GX_CTRL, reg | GX_CTRL_PHY_CLK);
DELAY(10);
CSR_WRITE_4(gx, GX_CTRL, reg);
DELAY(10);
return (data);
}
static int
gx_miibus_readreg(device_t dev, int phy, int reg)
{
struct gx_softc *gx;
gx = device_get_softc(dev);
if (gx->gx_tbimode)
return (0);
/*
* XXX
* Note: Cordova has a MDIC register. livingood and < have mii bits
*/
gx_mii_shiftin(gx, GX_PHY_PREAMBLE, GX_PHY_PREAMBLE_LEN);
gx_mii_shiftin(gx, (GX_PHY_SOF << 12) | (GX_PHY_OP_READ << 10) |
(phy << 5) | reg, GX_PHY_READ_LEN);
return (gx_mii_shiftout(gx));
}
static void
gx_miibus_writereg(device_t dev, int phy, int reg, int value)
{
struct gx_softc *gx;
gx = device_get_softc(dev);
if (gx->gx_tbimode)
return;
gx_mii_shiftin(gx, GX_PHY_PREAMBLE, GX_PHY_PREAMBLE_LEN);
gx_mii_shiftin(gx, (GX_PHY_SOF << 30) | (GX_PHY_OP_WRITE << 28) |
(phy << 23) | (reg << 18) | (GX_PHY_TURNAROUND << 16) |
(value & 0xffff), GX_PHY_WRITE_LEN);
}
static void
gx_miibus_statchg(device_t dev)
{
struct gx_softc *gx;
struct mii_data *mii;
int reg, s;
gx = device_get_softc(dev);
if (gx->gx_tbimode)
return;
/*
* Set flow control behavior to mirror what PHY negotiated.
*/
mii = device_get_softc(gx->gx_miibus);
s = splimp();
GX_LOCK(gx);
reg = CSR_READ_4(gx, GX_CTRL);
if (mii->mii_media_active & IFM_FLAG0)
reg |= GX_CTRL_RX_FLOWCTRL;
else
reg &= ~GX_CTRL_RX_FLOWCTRL;
if (mii->mii_media_active & IFM_FLAG1)
reg |= GX_CTRL_TX_FLOWCTRL;
else
reg &= ~GX_CTRL_TX_FLOWCTRL;
CSR_WRITE_4(gx, GX_CTRL, reg);
GX_UNLOCK(gx);
splx(s);
}
static int
gx_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct gx_softc *gx = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
struct mii_data *mii;
int s, mask, error = 0;
s = splimp();
GX_LOCK(gx);
switch (command) {
case SIOCSIFMTU:
if (ifr->ifr_mtu > GX_MAX_MTU) {
error = EINVAL;
} else {
ifp->if_mtu = ifr->ifr_mtu;
gx_init(gx);
}
break;
case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_UP) == 0) {
gx_stop(gx);
} else if (ifp->if_flags & IFF_RUNNING &&
((ifp->if_flags & IFF_PROMISC) !=
(gx->gx_if_flags & IFF_PROMISC))) {
if (ifp->if_flags & IFF_PROMISC)
GX_SETBIT(gx, GX_RX_CONTROL, GX_RXC_UNI_PROMISC);
else
GX_CLRBIT(gx, GX_RX_CONTROL, GX_RXC_UNI_PROMISC);
} else {
gx_init(gx);
}
gx->gx_if_flags = ifp->if_flags;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if (ifp->if_flags & IFF_RUNNING)
gx_setmulti(gx);
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
if (gx->gx_miibus != NULL) {
mii = device_get_softc(gx->gx_miibus);
error = ifmedia_ioctl(ifp, ifr,
&mii->mii_media, command);
} else {
error = ifmedia_ioctl(ifp, ifr, &gx->gx_media, command);
}
break;
case SIOCSIFCAP:
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
if (mask & IFCAP_HWCSUM) {
if (IFCAP_HWCSUM & ifp->if_capenable)
ifp->if_capenable &= ~IFCAP_HWCSUM;
else
ifp->if_capenable |= IFCAP_HWCSUM;
if (ifp->if_flags & IFF_RUNNING)
gx_init(gx);
}
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
GX_UNLOCK(gx);
splx(s);
return (error);
}
static void
gx_phy_reset(struct gx_softc *gx)
{
int reg;
GX_SETBIT(gx, GX_CTRL, GX_CTRL_SET_LINK_UP);
/*
* PHY reset is active low.
*/
reg = CSR_READ_4(gx, GX_CTRL_EXT);
reg &= ~(GX_CTRLX_GPIO_DIR_MASK | GX_CTRLX_PHY_RESET);
reg |= GX_CTRLX_GPIO_DIR;
CSR_WRITE_4(gx, GX_CTRL_EXT, reg | GX_CTRLX_PHY_RESET);
DELAY(10);
CSR_WRITE_4(gx, GX_CTRL_EXT, reg);
DELAY(10);
CSR_WRITE_4(gx, GX_CTRL_EXT, reg | GX_CTRLX_PHY_RESET);
DELAY(10);
#if 0
/* post-livingood (cordova) only */
GX_SETBIT(gx, GX_CTRL, 0x80000000);
DELAY(1000);
GX_CLRBIT(gx, GX_CTRL, 0x80000000);
#endif
}
static void
gx_reset(struct gx_softc *gx)
{
/* Disable host interrupts. */
CSR_WRITE_4(gx, GX_INT_MASK_CLR, GX_INT_ALL);
/* reset chip (THWAP!) */
GX_SETBIT(gx, GX_CTRL, GX_CTRL_DEVICE_RESET);
DELAY(10);
}
static void
gx_stop(struct gx_softc *gx)
{
struct ifnet *ifp;
ifp = &gx->arpcom.ac_if;
/* reset and flush transmitter */
CSR_WRITE_4(gx, GX_TX_CONTROL, GX_TXC_RESET);
/* reset and flush receiver */
CSR_WRITE_4(gx, GX_RX_CONTROL, GX_RXC_RESET);
/* reset link */
if (gx->gx_tbimode)
GX_SETBIT(gx, GX_CTRL, GX_CTRL_LINK_RESET);
/* Free the RX lists. */
gx_free_rx_ring(gx);
/* Free TX buffers. */
gx_free_tx_ring(gx);
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
}
static void
gx_watchdog(struct ifnet *ifp)
{
struct gx_softc *gx;
gx = ifp->if_softc;
device_printf(gx->gx_dev, "watchdog timeout -- resetting\n");
gx_reset(gx);
gx_init(gx);
ifp->if_oerrors++;
}
/*
* Intialize a receive ring descriptor.
*/
static int
gx_newbuf(struct gx_softc *gx, int idx, struct mbuf *m)
{
struct mbuf *m_new = NULL;
struct gx_rx_desc *r;
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
device_printf(gx->gx_dev,
"mbuf allocation failed -- packet dropped\n");
return (ENOBUFS);
}
MCLGET(m_new, M_DONTWAIT);
if ((m_new->m_flags & M_EXT) == 0) {
device_printf(gx->gx_dev,
"cluster allocation failed -- packet dropped\n");
m_freem(m_new);
return (ENOBUFS);
}
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
} else {
m->m_len = m->m_pkthdr.len = MCLBYTES;
m->m_data = m->m_ext.ext_buf;
m->m_next = NULL;
m_new = m;
}
/*
* XXX
* this will _NOT_ work for large MTU's; it will overwrite
* the end of the buffer. E.g.: take this out for jumbograms,
* but then that breaks alignment.
*/
if (gx->arpcom.ac_if.if_mtu <= ETHERMTU)
m_adj(m_new, ETHER_ALIGN);
gx->gx_cdata.gx_rx_chain[idx] = m_new;
r = &gx->gx_rdata->gx_rx_ring[idx];
r->rx_addr = vtophys(mtod(m_new, caddr_t));
r->rx_staterr = 0;
return (0);
}
/*
* The receive ring can have up to 64K descriptors, which at 2K per mbuf
* cluster, could add up to 128M of memory. Due to alignment constraints,
* the number of descriptors must be a multiple of 8. For now, we
* allocate 256 entries and hope that our CPU is fast enough to keep up
* with the NIC.
*/
static int
gx_init_rx_ring(struct gx_softc *gx)
{
int i, error;
for (i = 0; i < GX_RX_RING_CNT; i++) {
error = gx_newbuf(gx, i, NULL);
if (error)
return (error);
}
/* bring receiver out of reset state, leave disabled */
CSR_WRITE_4(gx, GX_RX_CONTROL, 0);
/* set up ring registers */
CSR_WRITE_8(gx, gx->gx_reg.r_rx_base,
(u_quad_t)vtophys(gx->gx_rdata->gx_rx_ring));
CSR_WRITE_4(gx, gx->gx_reg.r_rx_length,
GX_RX_RING_CNT * sizeof(struct gx_rx_desc));
CSR_WRITE_4(gx, gx->gx_reg.r_rx_head, 0);
CSR_WRITE_4(gx, gx->gx_reg.r_rx_tail, GX_RX_RING_CNT - 1);
gx->gx_rx_tail_idx = 0;
return (0);
}
static void
gx_free_rx_ring(struct gx_softc *gx)
{
struct mbuf **mp;
int i;
mp = gx->gx_cdata.gx_rx_chain;
for (i = 0; i < GX_RX_RING_CNT; i++, mp++) {
if (*mp != NULL) {
m_freem(*mp);
*mp = NULL;
}
}
bzero((void *)gx->gx_rdata->gx_rx_ring,
GX_RX_RING_CNT * sizeof(struct gx_rx_desc));
/* release any partially-received packet chain */
if (gx->gx_pkthdr != NULL) {
m_freem(gx->gx_pkthdr);
gx->gx_pkthdr = NULL;
}
}
static int
gx_init_tx_ring(struct gx_softc *gx)
{
/* bring transmitter out of reset state, leave disabled */
CSR_WRITE_4(gx, GX_TX_CONTROL, 0);
/* set up ring registers */
CSR_WRITE_8(gx, gx->gx_reg.r_tx_base,
(u_quad_t)vtophys(gx->gx_rdata->gx_tx_ring));
CSR_WRITE_4(gx, gx->gx_reg.r_tx_length,
GX_TX_RING_CNT * sizeof(struct gx_tx_desc));
CSR_WRITE_4(gx, gx->gx_reg.r_tx_head, 0);
CSR_WRITE_4(gx, gx->gx_reg.r_tx_tail, 0);
gx->gx_tx_head_idx = 0;
gx->gx_tx_tail_idx = 0;
gx->gx_txcnt = 0;
/* set up initial TX context */
gx->gx_txcontext = GX_TXCONTEXT_NONE;
return (0);
}
static void
gx_free_tx_ring(struct gx_softc *gx)
{
struct mbuf **mp;
int i;
mp = gx->gx_cdata.gx_tx_chain;
for (i = 0; i < GX_TX_RING_CNT; i++, mp++) {
if (*mp != NULL) {
m_freem(*mp);
*mp = NULL;
}
}
bzero((void *)&gx->gx_rdata->gx_tx_ring,
GX_TX_RING_CNT * sizeof(struct gx_tx_desc));
}
static void
gx_setmulti(struct gx_softc *gx)
{
int i;
/* wipe out the multicast table */
for (i = 1; i < 128; i++)
CSR_WRITE_4(gx, GX_MULTICAST_BASE + i * 4, 0);
}
static void
gx_rxeof(struct gx_softc *gx)
{
struct gx_rx_desc *rx;
struct ifnet *ifp;
int idx, staterr, len;
struct mbuf *m;
gx->gx_rx_interrupts++;
ifp = &gx->arpcom.ac_if;
idx = gx->gx_rx_tail_idx;
while (gx->gx_rdata->gx_rx_ring[idx].rx_staterr & GX_RXSTAT_COMPLETED) {
rx = &gx->gx_rdata->gx_rx_ring[idx];
m = gx->gx_cdata.gx_rx_chain[idx];
/*
* gx_newbuf overwrites status and length bits, so we
* make a copy of them here.
*/
len = rx->rx_len;
staterr = rx->rx_staterr;
if (staterr & GX_INPUT_ERROR)
goto ierror;
if (gx_newbuf(gx, idx, NULL) == ENOBUFS)
goto ierror;
GX_INC(idx, GX_RX_RING_CNT);
if (staterr & GX_RXSTAT_INEXACT_MATCH) {
/*
* multicast packet, must verify against
* multicast address.
*/
}
if ((staterr & GX_RXSTAT_END_OF_PACKET) == 0) {
if (gx->gx_pkthdr == NULL) {
m->m_len = len;
m->m_pkthdr.len = len;
gx->gx_pkthdr = m;
gx->gx_pktnextp = &m->m_next;
} else {
m->m_len = len;
m->m_flags &= ~M_PKTHDR;
gx->gx_pkthdr->m_pkthdr.len += len;
*(gx->gx_pktnextp) = m;
gx->gx_pktnextp = &m->m_next;
}
continue;
}
if (gx->gx_pkthdr == NULL) {
m->m_len = len;
m->m_pkthdr.len = len;
} else {
m->m_len = len;
m->m_flags &= ~M_PKTHDR;
gx->gx_pkthdr->m_pkthdr.len += len;
*(gx->gx_pktnextp) = m;
m = gx->gx_pkthdr;
gx->gx_pkthdr = NULL;
}
ifp->if_ipackets++;
m->m_pkthdr.rcvif = ifp;
#define IP_CSMASK (GX_RXSTAT_IGNORE_CSUM | GX_RXSTAT_HAS_IP_CSUM)
#define TCP_CSMASK \
(GX_RXSTAT_IGNORE_CSUM | GX_RXSTAT_HAS_TCP_CSUM | GX_RXERR_TCP_CSUM)
if (ifp->if_capenable & IFCAP_RXCSUM) {
#if 0
/*
* Intel Erratum #23 indicates that the Receive IP
* Checksum offload feature has been completely
* disabled.
*/
if ((staterr & IP_CSUM_MASK) == GX_RXSTAT_HAS_IP_CSUM) {
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
if ((staterr & GX_RXERR_IP_CSUM) == 0)
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
}
#endif
if ((staterr & TCP_CSMASK) == GX_RXSTAT_HAS_TCP_CSUM) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
}
/*
* If we received a packet with a vlan tag,
* mark the packet before it's passed up.
*/
if (staterr & GX_RXSTAT_VLAN_PKT) {
VLAN_INPUT_TAG(ifp, m, rx->rx_special, continue);
}
(*ifp->if_input)(ifp, m);
continue;
ierror:
ifp->if_ierrors++;
gx_newbuf(gx, idx, m);
/*
* XXX
* this isn't quite right. Suppose we have a packet that
* spans 5 descriptors (9K split into 2K buffers). If
* the 3rd descriptor sets an error, we need to ignore
* the last two. The way things stand now, the last two
* will be accepted as a single packet.
*
* we don't worry about this -- the chip may not set an
* error in this case, and the checksum of the upper layers
* will catch the error.
*/
if (gx->gx_pkthdr != NULL) {
m_freem(gx->gx_pkthdr);
gx->gx_pkthdr = NULL;
}
GX_INC(idx, GX_RX_RING_CNT);
}
gx->gx_rx_tail_idx = idx;
if (--idx < 0)
idx = GX_RX_RING_CNT - 1;
CSR_WRITE_4(gx, gx->gx_reg.r_rx_tail, idx);
}
static void
gx_txeof(struct gx_softc *gx)
{
struct ifnet *ifp;
int idx, cnt;
gx->gx_tx_interrupts++;
ifp = &gx->arpcom.ac_if;
idx = gx->gx_tx_head_idx;
cnt = gx->gx_txcnt;
/*
* If the system chipset performs I/O write buffering, it is
* possible for the PIO read of the head descriptor to bypass the
* memory write of the descriptor, resulting in reading a descriptor
* which has not been updated yet.
*/
while (cnt) {
struct gx_tx_desc_old *tx;
tx = (struct gx_tx_desc_old *)&gx->gx_rdata->gx_tx_ring[idx];
cnt--;
if ((tx->tx_command & GX_TXOLD_END_OF_PKT) == 0) {
GX_INC(idx, GX_TX_RING_CNT);
continue;
}
if ((tx->tx_status & GX_TXSTAT_DONE) == 0)
break;
ifp->if_opackets++;
m_freem(gx->gx_cdata.gx_tx_chain[idx]);
gx->gx_cdata.gx_tx_chain[idx] = NULL;
gx->gx_txcnt = cnt;
ifp->if_timer = 0;
GX_INC(idx, GX_TX_RING_CNT);
gx->gx_tx_head_idx = idx;
}
if (gx->gx_txcnt == 0)
ifp->if_flags &= ~IFF_OACTIVE;
}
static void
gx_intr(void *xsc)
{
struct gx_softc *gx;
struct ifnet *ifp;
u_int32_t intr;
int s;
gx = xsc;
ifp = &gx->arpcom.ac_if;
s = splimp();
gx->gx_interrupts++;
/* Disable host interrupts. */
CSR_WRITE_4(gx, GX_INT_MASK_CLR, GX_INT_ALL);
/*
* find out why we're being bothered.
* reading this register automatically clears all bits.
*/
intr = CSR_READ_4(gx, GX_INT_READ);
/* Check RX return ring producer/consumer */
if (intr & (GX_INT_RCV_TIMER | GX_INT_RCV_THOLD | GX_INT_RCV_OVERRUN))
gx_rxeof(gx);
/* Check TX ring producer/consumer */
if (intr & (GX_INT_XMIT_DONE | GX_INT_XMIT_EMPTY))
gx_txeof(gx);
/*
* handle other interrupts here.
*/
/*
* Link change interrupts are not reliable; the interrupt may
* not be generated if the link is lost. However, the register
* read is reliable, so check that. Use SEQ errors to possibly
* indicate that the link has changed.
*/
if (intr & GX_INT_LINK_CHANGE) {
if ((CSR_READ_4(gx, GX_STATUS) & GX_STAT_LINKUP) == 0) {
device_printf(gx->gx_dev, "link down\n");
} else {
device_printf(gx->gx_dev, "link up\n");
}
}
/* Turn interrupts on. */
CSR_WRITE_4(gx, GX_INT_MASK_SET, GX_INT_WANTED);
if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
gx_start(ifp);
splx(s);
}
/*
* Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
* pointers to descriptors.
*/
static int
gx_encap(struct gx_softc *gx, struct mbuf *m_head)
{
struct gx_tx_desc_data *tx = NULL;
struct gx_tx_desc_ctx *tctx;
struct mbuf *m;
int idx, cnt, csumopts, txcontext;
struct m_tag *mtag;
cnt = gx->gx_txcnt;
idx = gx->gx_tx_tail_idx;
txcontext = gx->gx_txcontext;
/*
* Insure we have at least 4 descriptors pre-allocated.
*/
if (cnt >= GX_TX_RING_CNT - 4)
return (ENOBUFS);
/*
* Set up the appropriate offload context if necessary.
*/
csumopts = 0;
if (m_head->m_pkthdr.csum_flags) {
if (m_head->m_pkthdr.csum_flags & CSUM_IP)
csumopts |= GX_TXTCP_OPT_IP_CSUM;
if (m_head->m_pkthdr.csum_flags & CSUM_TCP) {
csumopts |= GX_TXTCP_OPT_TCP_CSUM;
txcontext = GX_TXCONTEXT_TCPIP;
} else if (m_head->m_pkthdr.csum_flags & CSUM_UDP) {
csumopts |= GX_TXTCP_OPT_TCP_CSUM;
txcontext = GX_TXCONTEXT_UDPIP;
} else if (txcontext == GX_TXCONTEXT_NONE)
txcontext = GX_TXCONTEXT_TCPIP;
if (txcontext == gx->gx_txcontext)
goto context_done;
tctx = (struct gx_tx_desc_ctx *)&gx->gx_rdata->gx_tx_ring[idx];
tctx->tx_ip_csum_start = ETHER_HDR_LEN;
tctx->tx_ip_csum_end = ETHER_HDR_LEN + sizeof(struct ip) - 1;
tctx->tx_ip_csum_offset =
ETHER_HDR_LEN + offsetof(struct ip, ip_sum);
tctx->tx_tcp_csum_start = ETHER_HDR_LEN + sizeof(struct ip);
tctx->tx_tcp_csum_end = 0;
if (txcontext == GX_TXCONTEXT_TCPIP)
tctx->tx_tcp_csum_offset = ETHER_HDR_LEN +
sizeof(struct ip) + offsetof(struct tcphdr, th_sum);
else
tctx->tx_tcp_csum_offset = ETHER_HDR_LEN +
sizeof(struct ip) + offsetof(struct udphdr, uh_sum);
tctx->tx_command = GX_TXCTX_EXTENSION | GX_TXCTX_INT_DELAY;
tctx->tx_type = 0;
tctx->tx_status = 0;
GX_INC(idx, GX_TX_RING_CNT);
cnt++;
}
context_done:
/*
* Start packing the mbufs in this chain into the transmit
* descriptors. Stop when we run out of descriptors or hit
* the end of the mbuf chain.
*/
for (m = m_head; m != NULL; m = m->m_next) {
if (m->m_len == 0)
continue;
if (cnt == GX_TX_RING_CNT) {
printf("overflow(2): %d, %d\n", cnt, GX_TX_RING_CNT);
return (ENOBUFS);
}
tx = (struct gx_tx_desc_data *)&gx->gx_rdata->gx_tx_ring[idx];
tx->tx_addr = vtophys(mtod(m, vm_offset_t));
tx->tx_status = 0;
tx->tx_len = m->m_len;
if (gx->arpcom.ac_if.if_hwassist) {
tx->tx_type = 1;
tx->tx_command = GX_TXTCP_EXTENSION;
tx->tx_options = csumopts;
} else {
/*
* This is really a struct gx_tx_desc_old.
*/
tx->tx_command = 0;
}
GX_INC(idx, GX_TX_RING_CNT);
cnt++;
}
if (tx != NULL) {
tx->tx_command |= GX_TXTCP_REPORT_STATUS | GX_TXTCP_INT_DELAY |
GX_TXTCP_ETHER_CRC | GX_TXTCP_END_OF_PKT;
mtag = VLAN_OUTPUT_TAG(&gx->arpcom.ac_if, m);
if (mtag != NULL) {
tx->tx_command |= GX_TXTCP_VLAN_ENABLE;
tx->tx_vlan = VLAN_TAG_VALUE(mtag);
}
gx->gx_txcnt = cnt;
gx->gx_tx_tail_idx = idx;
gx->gx_txcontext = txcontext;
idx = GX_PREV(idx, GX_TX_RING_CNT);
gx->gx_cdata.gx_tx_chain[idx] = m_head;
CSR_WRITE_4(gx, gx->gx_reg.r_tx_tail, gx->gx_tx_tail_idx);
}
return (0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit descriptors.
*/
static void
gx_start(struct ifnet *ifp)
{
struct gx_softc *gx;
struct mbuf *m_head;
int s;
s = splimp();
gx = ifp->if_softc;
for (;;) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (gx_encap(gx, m_head) != 0) {
IF_PREPEND(&ifp->if_snd, m_head);
ifp->if_flags |= IFF_OACTIVE;
break;
}
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, m_head);
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
}
splx(s);
}