freebsd-nq/sbin/ipfw/ipfw2.c

4970 lines
114 KiB
C
Raw Normal View History

The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
/*
* Copyright (c) 2002-2003 Luigi Rizzo
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
* Copyright (c) 1996 Alex Nash, Paul Traina, Poul-Henning Kamp
* Copyright (c) 1994 Ugen J.S.Antsilevich
*
* Idea and grammar partially left from:
* Copyright (c) 1993 Daniel Boulet
*
* Redistribution and use in source forms, with and without modification,
* are permitted provided that this entire comment appears intact.
*
* Redistribution in binary form may occur without any restrictions.
* Obviously, it would be nice if you gave credit where credit is due
* but requiring it would be too onerous.
*
* This software is provided ``AS IS'' without any warranties of any kind.
*
* NEW command line interface for IP firewall facility
*
* $FreeBSD$
*/
#include <sys/types.h>
#include <sys/param.h>
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include "ipfw2.h"
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
#include <ctype.h>
#include <err.h>
#include <errno.h>
#include <grp.h>
#include <netdb.h>
#include <pwd.h>
#include <stdio.h>
#include <stdarg.h>
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
#include <stdlib.h>
#include <string.h>
#include <sysexits.h>
#include <time.h> /* ctime */
#include <timeconv.h> /* _long_to_time */
#include <unistd.h>
#include <fcntl.h>
#include <stddef.h> /* offsetof */
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
#include <net/ethernet.h>
#include <net/if.h> /* only IFNAMSIZ */
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
#include <netinet/in.h>
#include <netinet/in_systm.h> /* only n_short, n_long */
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
#include <netinet/ip.h>
#include <netinet/ip_icmp.h>
#include <netinet/ip_fw.h>
#include <netinet/tcp.h>
#include <arpa/inet.h>
struct cmdline_opts co; /* global options */
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
struct format_opts {
int bcwidth;
int pcwidth;
int show_counters;
uint32_t set_mask; /* enabled sets mask */
uint32_t flags; /* request flags */
uint32_t first; /* first rule to request */
uint32_t last; /* last rule to request */
uint32_t dcnt; /* number of dynamic states */
ipfw_obj_ctlv *tstate; /* table state data */
};
int resvd_set_number = RESVD_SET;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
int ipfw_socket = -1;
#define CHECK_LENGTH(v, len) do { \
if ((v) < (len)) \
errx(EX_DATAERR, "Rule too long"); \
} while (0)
/*
* Check if we have enough space in cmd buffer. Note that since
* first 8? u32 words are reserved by reserved header, full cmd
* buffer can't be used, so we need to protect from buffer overrun
* only. At the beginnig, cblen is less than actual buffer size by
* size of ipfw_insn_u32 instruction + 1 u32 work. This eliminates need
* for checking small instructions fitting in given range.
* We also (ab)use the fact that ipfw_insn is always the first field
* for any custom instruction.
*/
#define CHECK_CMDLEN CHECK_LENGTH(cblen, F_LEN((ipfw_insn *)cmd))
#define GET_UINT_ARG(arg, min, max, tok, s_x) do { \
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
if (!av[0]) \
errx(EX_USAGE, "%s: missing argument", match_value(s_x, tok)); \
if (_substrcmp(*av, "tablearg") == 0) { \
arg = IP_FW_TARG; \
break; \
} \
\
{ \
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
long _xval; \
char *end; \
\
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
_xval = strtol(*av, &end, 10); \
\
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
if (!isdigit(**av) || *end != '\0' || (_xval == 0 && errno == EINVAL)) \
errx(EX_DATAERR, "%s: invalid argument: %s", \
match_value(s_x, tok), *av); \
\
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
if (errno == ERANGE || _xval < min || _xval > max) \
errx(EX_DATAERR, "%s: argument is out of range (%u..%u): %s", \
match_value(s_x, tok), min, max, *av); \
\
if (_xval == IP_FW_TARG) \
errx(EX_DATAERR, "%s: illegal argument value: %s", \
match_value(s_x, tok), *av); \
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
arg = _xval; \
} \
} while (0)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
static struct _s_x f_tcpflags[] = {
{ "syn", TH_SYN },
{ "fin", TH_FIN },
{ "ack", TH_ACK },
{ "psh", TH_PUSH },
{ "rst", TH_RST },
{ "urg", TH_URG },
{ "tcp flag", 0 },
{ NULL, 0 }
};
static struct _s_x f_tcpopts[] = {
{ "mss", IP_FW_TCPOPT_MSS },
{ "maxseg", IP_FW_TCPOPT_MSS },
{ "window", IP_FW_TCPOPT_WINDOW },
{ "sack", IP_FW_TCPOPT_SACK },
{ "ts", IP_FW_TCPOPT_TS },
{ "timestamp", IP_FW_TCPOPT_TS },
{ "cc", IP_FW_TCPOPT_CC },
{ "tcp option", 0 },
{ NULL, 0 }
};
/*
* IP options span the range 0 to 255 so we need to remap them
* (though in fact only the low 5 bits are significant).
*/
static struct _s_x f_ipopts[] = {
{ "ssrr", IP_FW_IPOPT_SSRR},
{ "lsrr", IP_FW_IPOPT_LSRR},
{ "rr", IP_FW_IPOPT_RR},
{ "ts", IP_FW_IPOPT_TS},
{ "ip option", 0 },
{ NULL, 0 }
};
static struct _s_x f_iptos[] = {
{ "lowdelay", IPTOS_LOWDELAY},
{ "throughput", IPTOS_THROUGHPUT},
{ "reliability", IPTOS_RELIABILITY},
{ "mincost", IPTOS_MINCOST},
{ "congestion", IPTOS_ECN_CE},
{ "ecntransport", IPTOS_ECN_ECT0},
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{ "ip tos option", 0},
{ NULL, 0 }
};
struct _s_x f_ipdscp[] = {
{ "af11", IPTOS_DSCP_AF11 >> 2 }, /* 001010 */
{ "af12", IPTOS_DSCP_AF12 >> 2 }, /* 001100 */
{ "af13", IPTOS_DSCP_AF13 >> 2 }, /* 001110 */
{ "af21", IPTOS_DSCP_AF21 >> 2 }, /* 010010 */
{ "af22", IPTOS_DSCP_AF22 >> 2 }, /* 010100 */
{ "af23", IPTOS_DSCP_AF23 >> 2 }, /* 010110 */
{ "af31", IPTOS_DSCP_AF31 >> 2 }, /* 011010 */
{ "af32", IPTOS_DSCP_AF32 >> 2 }, /* 011100 */
{ "af33", IPTOS_DSCP_AF33 >> 2 }, /* 011110 */
{ "af41", IPTOS_DSCP_AF41 >> 2 }, /* 100010 */
{ "af42", IPTOS_DSCP_AF42 >> 2 }, /* 100100 */
{ "af43", IPTOS_DSCP_AF43 >> 2 }, /* 100110 */
{ "be", IPTOS_DSCP_CS0 >> 2 }, /* 000000 */
{ "ef", IPTOS_DSCP_EF >> 2 }, /* 101110 */
{ "cs0", IPTOS_DSCP_CS0 >> 2 }, /* 000000 */
{ "cs1", IPTOS_DSCP_CS1 >> 2 }, /* 001000 */
{ "cs2", IPTOS_DSCP_CS2 >> 2 }, /* 010000 */
{ "cs3", IPTOS_DSCP_CS3 >> 2 }, /* 011000 */
{ "cs4", IPTOS_DSCP_CS4 >> 2 }, /* 100000 */
{ "cs5", IPTOS_DSCP_CS5 >> 2 }, /* 101000 */
{ "cs6", IPTOS_DSCP_CS6 >> 2 }, /* 110000 */
{ "cs7", IPTOS_DSCP_CS7 >> 2 }, /* 100000 */
{ NULL, 0 }
};
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
static struct _s_x limit_masks[] = {
{"all", DYN_SRC_ADDR|DYN_SRC_PORT|DYN_DST_ADDR|DYN_DST_PORT},
{"src-addr", DYN_SRC_ADDR},
{"src-port", DYN_SRC_PORT},
{"dst-addr", DYN_DST_ADDR},
{"dst-port", DYN_DST_PORT},
{NULL, 0}
};
/*
* we use IPPROTO_ETHERTYPE as a fake protocol id to call the print routines
* This is only used in this code.
*/
#define IPPROTO_ETHERTYPE 0x1000
static struct _s_x ether_types[] = {
/*
* Note, we cannot use "-:&/" in the names because they are field
* separators in the type specifications. Also, we use s = NULL as
* end-delimiter, because a type of 0 can be legal.
*/
{ "ip", 0x0800 },
{ "ipv4", 0x0800 },
{ "ipv6", 0x86dd },
{ "arp", 0x0806 },
{ "rarp", 0x8035 },
{ "vlan", 0x8100 },
{ "loop", 0x9000 },
{ "trail", 0x1000 },
{ "at", 0x809b },
{ "atalk", 0x809b },
{ "aarp", 0x80f3 },
{ "pppoe_disc", 0x8863 },
{ "pppoe_sess", 0x8864 },
{ "ipx_8022", 0x00E0 },
{ "ipx_8023", 0x0000 },
{ "ipx_ii", 0x8137 },
{ "ipx_snap", 0x8137 },
{ "ipx", 0x8137 },
{ "ns", 0x0600 },
{ NULL, 0 }
};
static struct _s_x rule_actions[] = {
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{ "accept", TOK_ACCEPT },
{ "pass", TOK_ACCEPT },
{ "allow", TOK_ACCEPT },
{ "permit", TOK_ACCEPT },
{ "count", TOK_COUNT },
{ "pipe", TOK_PIPE },
{ "queue", TOK_QUEUE },
{ "divert", TOK_DIVERT },
{ "tee", TOK_TEE },
{ "netgraph", TOK_NETGRAPH },
{ "ngtee", TOK_NGTEE },
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{ "fwd", TOK_FORWARD },
{ "forward", TOK_FORWARD },
{ "skipto", TOK_SKIPTO },
{ "deny", TOK_DENY },
{ "drop", TOK_DENY },
{ "reject", TOK_REJECT },
{ "reset6", TOK_RESET6 },
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{ "reset", TOK_RESET },
{ "unreach6", TOK_UNREACH6 },
{ "unreach", TOK_UNREACH },
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{ "check-state", TOK_CHECKSTATE },
In random order: * make the code compile with WARNS=5 (at least on i386), mostly by adding 'const' specifier and replacing "void *" with "char *" in places where pointer arithmetic was used. This also spotted a few places where invalid tests (e.g. uint < 0) were used. * support ranges in "list" and "show" commands. Now you can say ipfw show 100-1000 4000-8000 which is very convenient when you have large rulesets. * implement comments in ipfw commands. These are implemented in the kernel as O_NOP commands (which always match) whose body contains the comment string. In userland, a comment is a C++-style comment: ipfw add allow ip from me to any // i can talk to everybody The choice of '//' versus '#' is somewhat arbitrary, but because the preprocessor/readfile part of ipfw used to strip away '#', I did not want to change this behaviour. If a rule only contains a comment ipfw add 1000 // this rule is just a comment then it is stored as a 'count' rule (this is also to remind the user that scanning through a rule is expensive). * improve handling of flags (still to be completed). ipfw_main() was written thinking of 'one rule per ipfw invocation', and so flags are set and never cleared. With readfile/preprocessor support, this changes and certain flags should be reset on each line. For the time being, only fix handling of '-a' which differentiates the "list" and "show" commands. * rework the preprocessor support -- ipfw_main() already had most of the parsing code, so i have moved in there the only missing bit (stripping away '#' and comments) and removed the parsing from ipfw_readfile(). Also, add some more options (such as -c, -N, -S) to the readfile section. MFC after: 3 days
2003-07-12 06:53:16 +00:00
{ "//", TOK_COMMENT },
{ "nat", TOK_NAT },
{ "reass", TOK_REASS },
Add code to allow the system to handle multiple routing tables. This particular implementation is designed to be fully backwards compatible and to be MFC-able to 7.x (and 6.x) Currently the only protocol that can make use of the multiple tables is IPv4 Similar functionality exists in OpenBSD and Linux. From my notes: ----- One thing where FreeBSD has been falling behind, and which by chance I have some time to work on is "policy based routing", which allows different packet streams to be routed by more than just the destination address. Constraints: ------------ I want to make some form of this available in the 6.x tree (and by extension 7.x) , but FreeBSD in general needs it so I might as well do it in -current and back port the portions I need. One of the ways that this can be done is to have the ability to instantiate multiple kernel routing tables (which I will now refer to as "Forwarding Information Bases" or "FIBs" for political correctness reasons). Which FIB a particular packet uses to make the next hop decision can be decided by a number of mechanisms. The policies these mechanisms implement are the "Policies" referred to in "Policy based routing". One of the constraints I have if I try to back port this work to 6.x is that it must be implemented as a EXTENSION to the existing ABIs in 6.x so that third party applications do not need to be recompiled in timespan of the branch. This first version will not have some of the bells and whistles that will come with later versions. It will, for example, be limited to 16 tables in the first commit. Implementation method, Compatible version. (part 1) ------------------------------- For this reason I have implemented a "sufficient subset" of a multiple routing table solution in Perforce, and back-ported it to 6.x. (also in Perforce though not always caught up with what I have done in -current/P4). The subset allows a number of FIBs to be defined at compile time (8 is sufficient for my purposes in 6.x) and implements the changes needed to allow IPV4 to use them. I have not done the changes for ipv6 simply because I do not need it, and I do not have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it. Other protocol families are left untouched and should there be users with proprietary protocol families, they should continue to work and be oblivious to the existence of the extra FIBs. To understand how this is done, one must know that the current FIB code starts everything off with a single dimensional array of pointers to FIB head structures (One per protocol family), each of which in turn points to the trie of routes available to that family. The basic change in the ABI compatible version of the change is to extent that array to be a 2 dimensional array, so that instead of protocol family X looking at rt_tables[X] for the table it needs, it looks at rt_tables[Y][X] when for all protocol families except ipv4 Y is always 0. Code that is unaware of the change always just sees the first row of the table, which of course looks just like the one dimensional array that existed before. The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign() are all maintained, but refer only to the first row of the array, so that existing callers in proprietary protocols can continue to do the "right thing". Some new entry points are added, for the exclusive use of ipv4 code called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(), which have an extra argument which refers the code to the correct row. In addition, there are some new entry points (currently called rtalloc_fib() and friends) that check the Address family being looked up and call either rtalloc() (and friends) if the protocol is not IPv4 forcing the action to row 0 or to the appropriate row if it IS IPv4 (and that info is available). These are for calling from code that is not specific to any particular protocol. The way these are implemented would change in the non ABI preserving code to be added later. One feature of the first version of the code is that for ipv4, the interface routes show up automatically on all the FIBs, so that no matter what FIB you select you always have the basic direct attached hosts available to you. (rtinit() does this automatically). You CAN delete an interface route from one FIB should you want to but by default it's there. ARP information is also available in each FIB. It's assumed that the same machine would have the same MAC address, regardless of which FIB you are using to get to it. This brings us as to how the correct FIB is selected for an outgoing IPV4 packet. Firstly, all packets have a FIB associated with them. if nothing has been done to change it, it will be FIB 0. The FIB is changed in the following ways. Packets fall into one of a number of classes. 1/ locally generated packets, coming from a socket/PCB. Such packets select a FIB from a number associated with the socket/PCB. This in turn is inherited from the process, but can be changed by a socket option. The process in turn inherits it on fork. I have written a utility call setfib that acts a bit like nice.. setfib -3 ping target.example.com # will use fib 3 for ping. It is an obvious extension to make it a property of a jail but I have not done so. It can be achieved by combining the setfib and jail commands. 2/ packets received on an interface for forwarding. By default these packets would use table 0, (or possibly a number settable in a sysctl(not yet)). but prior to routing the firewall can inspect them (see below). (possibly in the future you may be able to associate a FIB with packets received on an interface.. An ifconfig arg, but not yet.) 3/ packets inspected by a packet classifier, which can arbitrarily associate a fib with it on a packet by packet basis. A fib assigned to a packet by a packet classifier (such as ipfw) would over-ride a fib associated by a more default source. (such as cases 1 or 2). 4/ a tcp listen socket associated with a fib will generate accept sockets that are associated with that same fib. 5/ Packets generated in response to some other packet (e.g. reset or icmp packets). These should use the FIB associated with the packet being reponded to. 6/ Packets generated during encapsulation. gif, tun and other tunnel interfaces will encapsulate using the FIB that was in effect withthe proces that set up the tunnel. thus setfib 1 ifconfig gif0 [tunnel instructions] will set the fib for the tunnel to use to be fib 1. Routing messages would be associated with their process, and thus select one FIB or another. messages from the kernel would be associated with the fib they refer to and would only be received by a routing socket associated with that fib. (not yet implemented) In addition Netstat has been edited to be able to cope with the fact that the array is now 2 dimensional. (It looks in system memory using libkvm (!)). Old versions of netstat see only the first FIB. In addition two sysctls are added to give: a) the number of FIBs compiled in (active) b) the default FIB of the calling process. Early testing experience: ------------------------- Basically our (IronPort's) appliance does this functionality already using ipfw fwd but that method has some drawbacks. For example, It can't fully simulate a routing table because it can't influence the socket's choice of local address when a connect() is done. Testing during the generating of these changes has been remarkably smooth so far. Multiple tables have co-existed with no notable side effects, and packets have been routes accordingly. ipfw has grown 2 new keywords: setfib N ip from anay to any count ip from any to any fib N In pf there seems to be a requirement to be able to give symbolic names to the fibs but I do not have that capacity. I am not sure if it is required. SCTP has interestingly enough built in support for this, called VRFs in Cisco parlance. it will be interesting to see how that handles it when it suddenly actually does something. Where to next: -------------------- After committing the ABI compatible version and MFCing it, I'd like to proceed in a forward direction in -current. this will result in some roto-tilling in the routing code. Firstly: the current code's idea of having a separate tree per protocol family, all of the same format, and pointed to by the 1 dimensional array is a bit silly. Especially when one considers that there is code that makes assumptions about every protocol having the same internal structures there. Some protocols don't WANT that sort of structure. (for example the whole idea of a netmask is foreign to appletalk). This needs to be made opaque to the external code. My suggested first change is to add routing method pointers to the 'domain' structure, along with information pointing the data. instead of having an array of pointers to uniform structures, there would be an array pointing to the 'domain' structures for each protocol address domain (protocol family), and the methods this reached would be called. The methods would have an argument that gives FIB number, but the protocol would be free to ignore it. When the ABI can be changed it raises the possibilty of the addition of a fib entry into the "struct route". Currently, the structure contains the sockaddr of the desination, and the resulting fib entry. To make this work fully, one could add a fib number so that given an address and a fib, one can find the third element, the fib entry. Interaction with the ARP layer/ LL layer would need to be revisited as well. Qing Li has been working on this already. This work was sponsored by Ironport Systems/Cisco Reviewed by: several including rwatson, bz and mlair (parts each) Obtained from: Ironport systems/Cisco
2008-05-09 23:03:00 +00:00
{ "setfib", TOK_SETFIB },
{ "setdscp", TOK_SETDSCP },
{ "call", TOK_CALL },
{ "return", TOK_RETURN },
{ NULL, 0 } /* terminator */
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
};
static struct _s_x rule_action_params[] = {
{ "altq", TOK_ALTQ },
{ "log", TOK_LOG },
{ "tag", TOK_TAG },
{ "untag", TOK_UNTAG },
{ NULL, 0 } /* terminator */
};
/*
* The 'lookup' instruction accepts one of the following arguments.
* -1 is a terminator for the list.
* Arguments are passed as v[1] in O_DST_LOOKUP options.
*/
static int lookup_key[] = {
TOK_DSTIP, TOK_SRCIP, TOK_DSTPORT, TOK_SRCPORT,
TOK_UID, TOK_JAIL, TOK_DSCP, -1 };
static struct _s_x rule_options[] = {
{ "tagged", TOK_TAGGED },
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{ "uid", TOK_UID },
{ "gid", TOK_GID },
{ "jail", TOK_JAIL },
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{ "in", TOK_IN },
{ "limit", TOK_LIMIT },
{ "keep-state", TOK_KEEPSTATE },
{ "bridged", TOK_LAYER2 },
{ "layer2", TOK_LAYER2 },
{ "out", TOK_OUT },
{ "diverted", TOK_DIVERTED },
{ "diverted-loopback", TOK_DIVERTEDLOOPBACK },
{ "diverted-output", TOK_DIVERTEDOUTPUT },
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{ "xmit", TOK_XMIT },
{ "recv", TOK_RECV },
{ "via", TOK_VIA },
{ "fragment", TOK_FRAG },
{ "frag", TOK_FRAG },
Add code to allow the system to handle multiple routing tables. This particular implementation is designed to be fully backwards compatible and to be MFC-able to 7.x (and 6.x) Currently the only protocol that can make use of the multiple tables is IPv4 Similar functionality exists in OpenBSD and Linux. From my notes: ----- One thing where FreeBSD has been falling behind, and which by chance I have some time to work on is "policy based routing", which allows different packet streams to be routed by more than just the destination address. Constraints: ------------ I want to make some form of this available in the 6.x tree (and by extension 7.x) , but FreeBSD in general needs it so I might as well do it in -current and back port the portions I need. One of the ways that this can be done is to have the ability to instantiate multiple kernel routing tables (which I will now refer to as "Forwarding Information Bases" or "FIBs" for political correctness reasons). Which FIB a particular packet uses to make the next hop decision can be decided by a number of mechanisms. The policies these mechanisms implement are the "Policies" referred to in "Policy based routing". One of the constraints I have if I try to back port this work to 6.x is that it must be implemented as a EXTENSION to the existing ABIs in 6.x so that third party applications do not need to be recompiled in timespan of the branch. This first version will not have some of the bells and whistles that will come with later versions. It will, for example, be limited to 16 tables in the first commit. Implementation method, Compatible version. (part 1) ------------------------------- For this reason I have implemented a "sufficient subset" of a multiple routing table solution in Perforce, and back-ported it to 6.x. (also in Perforce though not always caught up with what I have done in -current/P4). The subset allows a number of FIBs to be defined at compile time (8 is sufficient for my purposes in 6.x) and implements the changes needed to allow IPV4 to use them. I have not done the changes for ipv6 simply because I do not need it, and I do not have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it. Other protocol families are left untouched and should there be users with proprietary protocol families, they should continue to work and be oblivious to the existence of the extra FIBs. To understand how this is done, one must know that the current FIB code starts everything off with a single dimensional array of pointers to FIB head structures (One per protocol family), each of which in turn points to the trie of routes available to that family. The basic change in the ABI compatible version of the change is to extent that array to be a 2 dimensional array, so that instead of protocol family X looking at rt_tables[X] for the table it needs, it looks at rt_tables[Y][X] when for all protocol families except ipv4 Y is always 0. Code that is unaware of the change always just sees the first row of the table, which of course looks just like the one dimensional array that existed before. The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign() are all maintained, but refer only to the first row of the array, so that existing callers in proprietary protocols can continue to do the "right thing". Some new entry points are added, for the exclusive use of ipv4 code called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(), which have an extra argument which refers the code to the correct row. In addition, there are some new entry points (currently called rtalloc_fib() and friends) that check the Address family being looked up and call either rtalloc() (and friends) if the protocol is not IPv4 forcing the action to row 0 or to the appropriate row if it IS IPv4 (and that info is available). These are for calling from code that is not specific to any particular protocol. The way these are implemented would change in the non ABI preserving code to be added later. One feature of the first version of the code is that for ipv4, the interface routes show up automatically on all the FIBs, so that no matter what FIB you select you always have the basic direct attached hosts available to you. (rtinit() does this automatically). You CAN delete an interface route from one FIB should you want to but by default it's there. ARP information is also available in each FIB. It's assumed that the same machine would have the same MAC address, regardless of which FIB you are using to get to it. This brings us as to how the correct FIB is selected for an outgoing IPV4 packet. Firstly, all packets have a FIB associated with them. if nothing has been done to change it, it will be FIB 0. The FIB is changed in the following ways. Packets fall into one of a number of classes. 1/ locally generated packets, coming from a socket/PCB. Such packets select a FIB from a number associated with the socket/PCB. This in turn is inherited from the process, but can be changed by a socket option. The process in turn inherits it on fork. I have written a utility call setfib that acts a bit like nice.. setfib -3 ping target.example.com # will use fib 3 for ping. It is an obvious extension to make it a property of a jail but I have not done so. It can be achieved by combining the setfib and jail commands. 2/ packets received on an interface for forwarding. By default these packets would use table 0, (or possibly a number settable in a sysctl(not yet)). but prior to routing the firewall can inspect them (see below). (possibly in the future you may be able to associate a FIB with packets received on an interface.. An ifconfig arg, but not yet.) 3/ packets inspected by a packet classifier, which can arbitrarily associate a fib with it on a packet by packet basis. A fib assigned to a packet by a packet classifier (such as ipfw) would over-ride a fib associated by a more default source. (such as cases 1 or 2). 4/ a tcp listen socket associated with a fib will generate accept sockets that are associated with that same fib. 5/ Packets generated in response to some other packet (e.g. reset or icmp packets). These should use the FIB associated with the packet being reponded to. 6/ Packets generated during encapsulation. gif, tun and other tunnel interfaces will encapsulate using the FIB that was in effect withthe proces that set up the tunnel. thus setfib 1 ifconfig gif0 [tunnel instructions] will set the fib for the tunnel to use to be fib 1. Routing messages would be associated with their process, and thus select one FIB or another. messages from the kernel would be associated with the fib they refer to and would only be received by a routing socket associated with that fib. (not yet implemented) In addition Netstat has been edited to be able to cope with the fact that the array is now 2 dimensional. (It looks in system memory using libkvm (!)). Old versions of netstat see only the first FIB. In addition two sysctls are added to give: a) the number of FIBs compiled in (active) b) the default FIB of the calling process. Early testing experience: ------------------------- Basically our (IronPort's) appliance does this functionality already using ipfw fwd but that method has some drawbacks. For example, It can't fully simulate a routing table because it can't influence the socket's choice of local address when a connect() is done. Testing during the generating of these changes has been remarkably smooth so far. Multiple tables have co-existed with no notable side effects, and packets have been routes accordingly. ipfw has grown 2 new keywords: setfib N ip from anay to any count ip from any to any fib N In pf there seems to be a requirement to be able to give symbolic names to the fibs but I do not have that capacity. I am not sure if it is required. SCTP has interestingly enough built in support for this, called VRFs in Cisco parlance. it will be interesting to see how that handles it when it suddenly actually does something. Where to next: -------------------- After committing the ABI compatible version and MFCing it, I'd like to proceed in a forward direction in -current. this will result in some roto-tilling in the routing code. Firstly: the current code's idea of having a separate tree per protocol family, all of the same format, and pointed to by the 1 dimensional array is a bit silly. Especially when one considers that there is code that makes assumptions about every protocol having the same internal structures there. Some protocols don't WANT that sort of structure. (for example the whole idea of a netmask is foreign to appletalk). This needs to be made opaque to the external code. My suggested first change is to add routing method pointers to the 'domain' structure, along with information pointing the data. instead of having an array of pointers to uniform structures, there would be an array pointing to the 'domain' structures for each protocol address domain (protocol family), and the methods this reached would be called. The methods would have an argument that gives FIB number, but the protocol would be free to ignore it. When the ABI can be changed it raises the possibilty of the addition of a fib entry into the "struct route". Currently, the structure contains the sockaddr of the desination, and the resulting fib entry. To make this work fully, one could add a fib number so that given an address and a fib, one can find the third element, the fib entry. Interaction with the ARP layer/ LL layer would need to be revisited as well. Qing Li has been working on this already. This work was sponsored by Ironport Systems/Cisco Reviewed by: several including rwatson, bz and mlair (parts each) Obtained from: Ironport systems/Cisco
2008-05-09 23:03:00 +00:00
{ "fib", TOK_FIB },
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{ "ipoptions", TOK_IPOPTS },
{ "ipopts", TOK_IPOPTS },
{ "iplen", TOK_IPLEN },
{ "ipid", TOK_IPID },
{ "ipprecedence", TOK_IPPRECEDENCE },
{ "dscp", TOK_DSCP },
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{ "iptos", TOK_IPTOS },
{ "ipttl", TOK_IPTTL },
{ "ipversion", TOK_IPVER },
{ "ipver", TOK_IPVER },
{ "estab", TOK_ESTAB },
{ "established", TOK_ESTAB },
{ "setup", TOK_SETUP },
{ "sockarg", TOK_SOCKARG },
{ "tcpdatalen", TOK_TCPDATALEN },
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{ "tcpflags", TOK_TCPFLAGS },
{ "tcpflgs", TOK_TCPFLAGS },
{ "tcpoptions", TOK_TCPOPTS },
{ "tcpopts", TOK_TCPOPTS },
{ "tcpseq", TOK_TCPSEQ },
{ "tcpack", TOK_TCPACK },
{ "tcpwin", TOK_TCPWIN },
{ "icmptype", TOK_ICMPTYPES },
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{ "icmptypes", TOK_ICMPTYPES },
{ "dst-ip", TOK_DSTIP },
{ "src-ip", TOK_SRCIP },
{ "dst-port", TOK_DSTPORT },
{ "src-port", TOK_SRCPORT },
{ "proto", TOK_PROTO },
{ "MAC", TOK_MAC },
{ "mac", TOK_MAC },
{ "mac-type", TOK_MACTYPE },
{ "verrevpath", TOK_VERREVPATH },
{ "versrcreach", TOK_VERSRCREACH },
{ "antispoof", TOK_ANTISPOOF },
{ "ipsec", TOK_IPSEC },
{ "icmp6type", TOK_ICMP6TYPES },
{ "icmp6types", TOK_ICMP6TYPES },
{ "ext6hdr", TOK_EXT6HDR},
{ "flow-id", TOK_FLOWID},
{ "ipv6", TOK_IPV6},
{ "ip6", TOK_IPV6},
{ "ipv4", TOK_IPV4},
{ "ip4", TOK_IPV4},
{ "dst-ipv6", TOK_DSTIP6},
{ "dst-ip6", TOK_DSTIP6},
{ "src-ipv6", TOK_SRCIP6},
{ "src-ip6", TOK_SRCIP6},
{ "lookup", TOK_LOOKUP},
* Add new "flow" table type to support N=1..5-tuple lookups * Add "flow:hash" algorithm Kernel changes: * Add O_IP_FLOW_LOOKUP opcode to support "flow" lookups * Add IPFW_TABLE_FLOW table type * Add "struct tflow_entry" as strage for 6-tuple flows * Add "flow:hash" algorithm. Basically it is auto-growing chained hash table. Additionally, we store mask of fields we need to compare in each instance/ * Increase ipfw_obj_tentry size by adding struct tflow_entry * Add per-algorithm stat (ifpw_ta_tinfo) to ipfw_xtable_info * Increase algoname length: 32 -> 64 (algo options passed there as string) * Assume every table type can be customized by flags, use u8 to store "tflags" field. * Simplify ipfw_find_table_entry() by providing @tentry directly to algo callback. * Fix bug in cidr:chash resize procedure. Userland changes: * add "flow table(NAME)" syntax to support n-tuple checking tables. * make fill_flags() separate function to ease working with _s_x arrays * change "table info" output to reflect longer "type" fields Syntax: ipfw table fl2 create type flow:[src-ip][,proto][,src-port][,dst-ip][dst-port] [algo flow:hash] Examples: 0:02 [2] zfscurr0# ipfw table fl2 create type flow:src-ip,proto,dst-port algo flow:hash 0:02 [2] zfscurr0# ipfw table fl2 info +++ table(fl2), set(0) +++ kindex: 0, type: flow:src-ip,proto,dst-port valtype: number, references: 0 algorithm: flow:hash items: 0, size: 280 0:02 [2] zfscurr0# ipfw table fl2 add 2a02:6b8::333,tcp,443 45000 0:02 [2] zfscurr0# ipfw table fl2 add 10.0.0.92,tcp,80 22000 0:02 [2] zfscurr0# ipfw table fl2 list +++ table(fl2), set(0) +++ 2a02:6b8::333,6,443 45000 10.0.0.92,6,80 22000 0:02 [2] zfscurr0# ipfw add 200 count tcp from me to 78.46.89.105 80 flow 'table(fl2)' 00200 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 0:03 [2] zfscurr0# ipfw show 00200 0 0 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 617 59416 allow ip from any to any 0:03 [2] zfscurr0# telnet -s 10.0.0.92 78.46.89.105 80 Trying 78.46.89.105... .. 0:04 [2] zfscurr0# ipfw show 00200 5 272 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 682 66733 allow ip from any to any
2014-07-31 20:08:19 +00:00
{ "flow", TOK_FLOW},
In random order: * make the code compile with WARNS=5 (at least on i386), mostly by adding 'const' specifier and replacing "void *" with "char *" in places where pointer arithmetic was used. This also spotted a few places where invalid tests (e.g. uint < 0) were used. * support ranges in "list" and "show" commands. Now you can say ipfw show 100-1000 4000-8000 which is very convenient when you have large rulesets. * implement comments in ipfw commands. These are implemented in the kernel as O_NOP commands (which always match) whose body contains the comment string. In userland, a comment is a C++-style comment: ipfw add allow ip from me to any // i can talk to everybody The choice of '//' versus '#' is somewhat arbitrary, but because the preprocessor/readfile part of ipfw used to strip away '#', I did not want to change this behaviour. If a rule only contains a comment ipfw add 1000 // this rule is just a comment then it is stored as a 'count' rule (this is also to remind the user that scanning through a rule is expensive). * improve handling of flags (still to be completed). ipfw_main() was written thinking of 'one rule per ipfw invocation', and so flags are set and never cleared. With readfile/preprocessor support, this changes and certain flags should be reset on each line. For the time being, only fix handling of '-a' which differentiates the "list" and "show" commands. * rework the preprocessor support -- ipfw_main() already had most of the parsing code, so i have moved in there the only missing bit (stripping away '#' and comments) and removed the parsing from ipfw_readfile(). Also, add some more options (such as -c, -N, -S) to the readfile section. MFC after: 3 days
2003-07-12 06:53:16 +00:00
{ "//", TOK_COMMENT },
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{ "not", TOK_NOT }, /* pseudo option */
{ "!", /* escape ? */ TOK_NOT }, /* pseudo option */
{ "or", TOK_OR }, /* pseudo option */
{ "|", /* escape */ TOK_OR }, /* pseudo option */
{ "{", TOK_STARTBRACE }, /* pseudo option */
{ "(", TOK_STARTBRACE }, /* pseudo option */
{ "}", TOK_ENDBRACE }, /* pseudo option */
{ ")", TOK_ENDBRACE }, /* pseudo option */
{ NULL, 0 } /* terminator */
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
};
void bprint_uint_arg(struct buf_pr *bp, const char *str, uint32_t arg);
static int ipfw_get_config(struct cmdline_opts *co, struct format_opts *fo,
ipfw_cfg_lheader **pcfg, size_t *psize);
static int ipfw_show_config(struct cmdline_opts *co, struct format_opts *fo,
ipfw_cfg_lheader *cfg, size_t sz, int ac, char **av);
static void ipfw_list_tifaces(void);
/*
* Simple string buffer API.
* Used to simplify buffer passing between function and for
* transparent overrun handling.
*/
/*
* Allocates new buffer of given size @sz.
*
* Returns 0 on success.
*/
int
bp_alloc(struct buf_pr *b, size_t size)
{
memset(b, 0, sizeof(struct buf_pr));
if ((b->buf = calloc(1, size)) == NULL)
return (ENOMEM);
b->ptr = b->buf;
b->size = size;
b->avail = b->size;
return (0);
}
void
bp_free(struct buf_pr *b)
{
free(b->buf);
}
/*
* Flushes buffer so new writer start from beginning.
*/
void
bp_flush(struct buf_pr *b)
{
b->ptr = b->buf;
b->avail = b->size;
}
/*
* Print message specified by @format and args.
* Automatically manage buffer space and transparently handle
* buffer overruns.
*
* Returns number of bytes that should have been printed.
*/
int
bprintf(struct buf_pr *b, char *format, ...)
{
va_list args;
int i;
va_start(args, format);
i = vsnprintf(b->ptr, b->avail, format, args);
va_end(args);
if (i > b->avail || i < 0) {
/* Overflow or print error */
b->avail = 0;
} else {
b->ptr += i;
b->avail -= i;
}
b->needed += i;
return (i);
}
/*
* Special values printer for tablearg-aware opcodes.
*/
void
bprint_uint_arg(struct buf_pr *bp, const char *str, uint32_t arg)
{
if (str != NULL)
bprintf(bp, "%s", str);
if (arg == IP_FW_TARG)
bprintf(bp, "tablearg");
else
bprintf(bp, "%u", arg);
}
/*
* Helper routine to print a possibly unaligned uint64_t on
* various platform. If width > 0, print the value with
* the desired width, followed by a space;
* otherwise, return the required width.
*/
int
pr_u64(struct buf_pr *b, uint64_t *pd, int width)
{
#ifdef TCC
#define U64_FMT "I64"
#else
#define U64_FMT "llu"
#endif
uint64_t u;
unsigned long long d;
bcopy (pd, &u, sizeof(u));
d = u;
return (width > 0) ?
bprintf(b, "%*" U64_FMT " ", width, d) :
snprintf(NULL, 0, "%" U64_FMT, d) ;
#undef U64_FMT
}
void *
safe_calloc(size_t number, size_t size)
{
void *ret = calloc(number, size);
if (ret == NULL)
err(EX_OSERR, "calloc");
return ret;
}
void *
safe_realloc(void *ptr, size_t size)
{
void *ret = realloc(ptr, size);
if (ret == NULL)
err(EX_OSERR, "realloc");
return ret;
}
/*
* Compare things like interface or table names.
*/
int
stringnum_cmp(const char *a, const char *b)
{
int la, lb;
la = strlen(a);
lb = strlen(b);
if (la > lb)
return (1);
else if (la < lb)
return (-01);
return (strcmp(a, b));
}
/*
* conditionally runs the command.
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
* Selected options or negative -> getsockopt
*/
int
do_cmd(int optname, void *optval, uintptr_t optlen)
{
int i;
if (co.test_only)
return 0;
if (ipfw_socket == -1)
ipfw_socket = socket(AF_INET, SOCK_RAW, IPPROTO_RAW);
if (ipfw_socket < 0)
err(EX_UNAVAILABLE, "socket");
if (optname == IP_FW_GET || optname == IP_DUMMYNET_GET ||
optname == IP_FW_ADD || optname == IP_FW3 ||
optname == IP_FW_NAT_GET_CONFIG ||
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
optname < 0 ||
optname == IP_FW_NAT_GET_LOG) {
if (optname < 0)
optname = -optname;
i = getsockopt(ipfw_socket, IPPROTO_IP, optname, optval,
(socklen_t *)optlen);
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
} else {
i = setsockopt(ipfw_socket, IPPROTO_IP, optname, optval, optlen);
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
}
return i;
}
Add API to ease adding new algorithms/new tabletypes to ipfw. Kernel-side changelog: * Split general tables code and algorithm-specific table data. Current algorithms (IPv4/IPv6 radix and interface tables radix) moved to new ip_fw_table_algo.c file. Tables code now supports any algorithm implementing the following callbacks: +struct table_algo { + char name[64]; + int idx; + ta_init *init; + ta_destroy *destroy; + table_lookup_t *lookup; + ta_prepare_add *prepare_add; + ta_prepare_del *prepare_del; + ta_add *add; + ta_del *del; + ta_flush_entry *flush_entry; + ta_foreach *foreach; + ta_dump_entry *dump_entry; + ta_dump_xentry *dump_xentry; +}; * Change ->state, ->xstate, ->tabletype fields of ip_fw_chain to ->tablestate pointer (array of 32 bytes structures necessary for runtime lookups (can be probably shrinked to 16 bytes later): +struct table_info { + table_lookup_t *lookup; /* Lookup function */ + void *state; /* Lookup radix/other structure */ + void *xstate; /* eXtended state */ + u_long data; /* Hints for given func */ +}; * Add count method for namedobj instance to ease size calculations * Bump ip_fw3 buffer in ipfw_clt 128->256 bytes. * Improve bitmask resizing on tables_max change. * Remove table numbers checking from most places. * Fix wrong nesting in ipfw_rewrite_table_uidx(). * Add IP_FW_OBJ_LIST opcode (list all objects of given type, currently implemented for IPFW_OBJTYPE_TABLE). * Add IP_FW_OBJ_LISTSIZE (get buffer size to hold IP_FW_OBJ_LIST data, currenly implemented for IPFW_OBJTYPE_TABLE). * Add IP_FW_OBJ_INFO (requests info for one object of given type). Some name changes: s/ipfw_xtable_tlv/ipfw_obj_tlv/ (no table specifics) s/ipfw_xtable_ntlv/ipfw_obj_ntlv/ (no table specifics) Userland changes: * Add do_set3() cmd to ipfw2 to ease dealing with op3-embeded opcodes. * Add/improve support for destroy/info cmds.
2014-06-14 10:58:39 +00:00
/*
* do_set3 - pass ipfw control cmd to kernel
* @optname: option name
* @optval: pointer to option data
* @optlen: option length
*
* Assumes op3 header is already embedded.
* Calls setsockopt() with IP_FW3 as kernel-visible opcode.
* Returns 0 on success or errno otherwise.
Add API to ease adding new algorithms/new tabletypes to ipfw. Kernel-side changelog: * Split general tables code and algorithm-specific table data. Current algorithms (IPv4/IPv6 radix and interface tables radix) moved to new ip_fw_table_algo.c file. Tables code now supports any algorithm implementing the following callbacks: +struct table_algo { + char name[64]; + int idx; + ta_init *init; + ta_destroy *destroy; + table_lookup_t *lookup; + ta_prepare_add *prepare_add; + ta_prepare_del *prepare_del; + ta_add *add; + ta_del *del; + ta_flush_entry *flush_entry; + ta_foreach *foreach; + ta_dump_entry *dump_entry; + ta_dump_xentry *dump_xentry; +}; * Change ->state, ->xstate, ->tabletype fields of ip_fw_chain to ->tablestate pointer (array of 32 bytes structures necessary for runtime lookups (can be probably shrinked to 16 bytes later): +struct table_info { + table_lookup_t *lookup; /* Lookup function */ + void *state; /* Lookup radix/other structure */ + void *xstate; /* eXtended state */ + u_long data; /* Hints for given func */ +}; * Add count method for namedobj instance to ease size calculations * Bump ip_fw3 buffer in ipfw_clt 128->256 bytes. * Improve bitmask resizing on tables_max change. * Remove table numbers checking from most places. * Fix wrong nesting in ipfw_rewrite_table_uidx(). * Add IP_FW_OBJ_LIST opcode (list all objects of given type, currently implemented for IPFW_OBJTYPE_TABLE). * Add IP_FW_OBJ_LISTSIZE (get buffer size to hold IP_FW_OBJ_LIST data, currenly implemented for IPFW_OBJTYPE_TABLE). * Add IP_FW_OBJ_INFO (requests info for one object of given type). Some name changes: s/ipfw_xtable_tlv/ipfw_obj_tlv/ (no table specifics) s/ipfw_xtable_ntlv/ipfw_obj_ntlv/ (no table specifics) Userland changes: * Add do_set3() cmd to ipfw2 to ease dealing with op3-embeded opcodes. * Add/improve support for destroy/info cmds.
2014-06-14 10:58:39 +00:00
*/
int
do_set3(int optname, ip_fw3_opheader *op3, uintptr_t optlen)
Add API to ease adding new algorithms/new tabletypes to ipfw. Kernel-side changelog: * Split general tables code and algorithm-specific table data. Current algorithms (IPv4/IPv6 radix and interface tables radix) moved to new ip_fw_table_algo.c file. Tables code now supports any algorithm implementing the following callbacks: +struct table_algo { + char name[64]; + int idx; + ta_init *init; + ta_destroy *destroy; + table_lookup_t *lookup; + ta_prepare_add *prepare_add; + ta_prepare_del *prepare_del; + ta_add *add; + ta_del *del; + ta_flush_entry *flush_entry; + ta_foreach *foreach; + ta_dump_entry *dump_entry; + ta_dump_xentry *dump_xentry; +}; * Change ->state, ->xstate, ->tabletype fields of ip_fw_chain to ->tablestate pointer (array of 32 bytes structures necessary for runtime lookups (can be probably shrinked to 16 bytes later): +struct table_info { + table_lookup_t *lookup; /* Lookup function */ + void *state; /* Lookup radix/other structure */ + void *xstate; /* eXtended state */ + u_long data; /* Hints for given func */ +}; * Add count method for namedobj instance to ease size calculations * Bump ip_fw3 buffer in ipfw_clt 128->256 bytes. * Improve bitmask resizing on tables_max change. * Remove table numbers checking from most places. * Fix wrong nesting in ipfw_rewrite_table_uidx(). * Add IP_FW_OBJ_LIST opcode (list all objects of given type, currently implemented for IPFW_OBJTYPE_TABLE). * Add IP_FW_OBJ_LISTSIZE (get buffer size to hold IP_FW_OBJ_LIST data, currenly implemented for IPFW_OBJTYPE_TABLE). * Add IP_FW_OBJ_INFO (requests info for one object of given type). Some name changes: s/ipfw_xtable_tlv/ipfw_obj_tlv/ (no table specifics) s/ipfw_xtable_ntlv/ipfw_obj_ntlv/ (no table specifics) Userland changes: * Add do_set3() cmd to ipfw2 to ease dealing with op3-embeded opcodes. * Add/improve support for destroy/info cmds.
2014-06-14 10:58:39 +00:00
{
if (co.test_only)
return (0);
if (ipfw_socket == -1)
ipfw_socket = socket(AF_INET, SOCK_RAW, IPPROTO_RAW);
if (ipfw_socket < 0)
err(EX_UNAVAILABLE, "socket");
op3->opcode = optname;
return (setsockopt(ipfw_socket, IPPROTO_IP, IP_FW3, op3, optlen));
Add API to ease adding new algorithms/new tabletypes to ipfw. Kernel-side changelog: * Split general tables code and algorithm-specific table data. Current algorithms (IPv4/IPv6 radix and interface tables radix) moved to new ip_fw_table_algo.c file. Tables code now supports any algorithm implementing the following callbacks: +struct table_algo { + char name[64]; + int idx; + ta_init *init; + ta_destroy *destroy; + table_lookup_t *lookup; + ta_prepare_add *prepare_add; + ta_prepare_del *prepare_del; + ta_add *add; + ta_del *del; + ta_flush_entry *flush_entry; + ta_foreach *foreach; + ta_dump_entry *dump_entry; + ta_dump_xentry *dump_xentry; +}; * Change ->state, ->xstate, ->tabletype fields of ip_fw_chain to ->tablestate pointer (array of 32 bytes structures necessary for runtime lookups (can be probably shrinked to 16 bytes later): +struct table_info { + table_lookup_t *lookup; /* Lookup function */ + void *state; /* Lookup radix/other structure */ + void *xstate; /* eXtended state */ + u_long data; /* Hints for given func */ +}; * Add count method for namedobj instance to ease size calculations * Bump ip_fw3 buffer in ipfw_clt 128->256 bytes. * Improve bitmask resizing on tables_max change. * Remove table numbers checking from most places. * Fix wrong nesting in ipfw_rewrite_table_uidx(). * Add IP_FW_OBJ_LIST opcode (list all objects of given type, currently implemented for IPFW_OBJTYPE_TABLE). * Add IP_FW_OBJ_LISTSIZE (get buffer size to hold IP_FW_OBJ_LIST data, currenly implemented for IPFW_OBJTYPE_TABLE). * Add IP_FW_OBJ_INFO (requests info for one object of given type). Some name changes: s/ipfw_xtable_tlv/ipfw_obj_tlv/ (no table specifics) s/ipfw_xtable_ntlv/ipfw_obj_ntlv/ (no table specifics) Userland changes: * Add do_set3() cmd to ipfw2 to ease dealing with op3-embeded opcodes. * Add/improve support for destroy/info cmds.
2014-06-14 10:58:39 +00:00
}
2014-08-13 06:39:44 +00:00
/*
* do_get3 - pass ipfw control cmd to kernel
* @optname: option name
* @optval: pointer to option data
* @optlen: pointer to option length
*
* Assumes op3 header is already embedded.
* Calls getsockopt() with IP_FW3 as kernel-visible opcode.
* Returns 0 on success or errno otherwise.
*/
int
do_get3(int optname, ip_fw3_opheader *op3, size_t *optlen)
{
int error;
if (co.test_only)
return (0);
if (ipfw_socket == -1)
ipfw_socket = socket(AF_INET, SOCK_RAW, IPPROTO_RAW);
if (ipfw_socket < 0)
err(EX_UNAVAILABLE, "socket");
op3->opcode = optname;
error = getsockopt(ipfw_socket, IPPROTO_IP, IP_FW3, op3,
(socklen_t *)optlen);
return (error);
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
/**
* match_token takes a table and a string, returns the value associated
* with the string (-1 in case of failure).
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
*/
int
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
match_token(struct _s_x *table, char *string)
{
struct _s_x *pt;
In random order: * make the code compile with WARNS=5 (at least on i386), mostly by adding 'const' specifier and replacing "void *" with "char *" in places where pointer arithmetic was used. This also spotted a few places where invalid tests (e.g. uint < 0) were used. * support ranges in "list" and "show" commands. Now you can say ipfw show 100-1000 4000-8000 which is very convenient when you have large rulesets. * implement comments in ipfw commands. These are implemented in the kernel as O_NOP commands (which always match) whose body contains the comment string. In userland, a comment is a C++-style comment: ipfw add allow ip from me to any // i can talk to everybody The choice of '//' versus '#' is somewhat arbitrary, but because the preprocessor/readfile part of ipfw used to strip away '#', I did not want to change this behaviour. If a rule only contains a comment ipfw add 1000 // this rule is just a comment then it is stored as a 'count' rule (this is also to remind the user that scanning through a rule is expensive). * improve handling of flags (still to be completed). ipfw_main() was written thinking of 'one rule per ipfw invocation', and so flags are set and never cleared. With readfile/preprocessor support, this changes and certain flags should be reset on each line. For the time being, only fix handling of '-a' which differentiates the "list" and "show" commands. * rework the preprocessor support -- ipfw_main() already had most of the parsing code, so i have moved in there the only missing bit (stripping away '#' and comments) and removed the parsing from ipfw_readfile(). Also, add some more options (such as -c, -N, -S) to the readfile section. MFC after: 3 days
2003-07-12 06:53:16 +00:00
uint i = strlen(string);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
for (pt = table ; i && pt->s != NULL ; pt++)
if (strlen(pt->s) == i && !bcmp(string, pt->s, i))
return pt->x;
return (-1);
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
/**
* match_token takes a table and a string, returns the value associated
* with the string for the best match.
*
* Returns:
* value from @table for matched records
* -1 for non-matched records
* -2 if more than one records match @string.
*/
int
match_token_relaxed(struct _s_x *table, char *string)
{
struct _s_x *pt, *m;
int i, c;
i = strlen(string);
c = 0;
for (pt = table ; i != 0 && pt->s != NULL ; pt++) {
if (strncmp(pt->s, string, i) != 0)
continue;
m = pt;
c++;
}
if (c == 1)
return (m->x);
return (c > 0 ? -2: -1);
}
/**
* match_value takes a table and a value, returns the string associated
* with the value (NULL in case of failure).
*/
char const *
In random order: * make the code compile with WARNS=5 (at least on i386), mostly by adding 'const' specifier and replacing "void *" with "char *" in places where pointer arithmetic was used. This also spotted a few places where invalid tests (e.g. uint < 0) were used. * support ranges in "list" and "show" commands. Now you can say ipfw show 100-1000 4000-8000 which is very convenient when you have large rulesets. * implement comments in ipfw commands. These are implemented in the kernel as O_NOP commands (which always match) whose body contains the comment string. In userland, a comment is a C++-style comment: ipfw add allow ip from me to any // i can talk to everybody The choice of '//' versus '#' is somewhat arbitrary, but because the preprocessor/readfile part of ipfw used to strip away '#', I did not want to change this behaviour. If a rule only contains a comment ipfw add 1000 // this rule is just a comment then it is stored as a 'count' rule (this is also to remind the user that scanning through a rule is expensive). * improve handling of flags (still to be completed). ipfw_main() was written thinking of 'one rule per ipfw invocation', and so flags are set and never cleared. With readfile/preprocessor support, this changes and certain flags should be reset on each line. For the time being, only fix handling of '-a' which differentiates the "list" and "show" commands. * rework the preprocessor support -- ipfw_main() already had most of the parsing code, so i have moved in there the only missing bit (stripping away '#' and comments) and removed the parsing from ipfw_readfile(). Also, add some more options (such as -c, -N, -S) to the readfile section. MFC after: 3 days
2003-07-12 06:53:16 +00:00
match_value(struct _s_x *p, int value)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{
for (; p->s != NULL; p++)
if (p->x == value)
return p->s;
return NULL;
}
size_t
concat_tokens(char *buf, size_t bufsize, struct _s_x *table, char *delimiter)
{
struct _s_x *pt;
int l;
size_t sz;
for (sz = 0, pt = table ; pt->s != NULL; pt++) {
l = snprintf(buf + sz, bufsize - sz, "%s%s",
(sz == 0) ? "" : delimiter, pt->s);
sz += l;
bufsize += l;
if (sz > bufsize)
return (bufsize);
}
return (sz);
}
* Add new "flow" table type to support N=1..5-tuple lookups * Add "flow:hash" algorithm Kernel changes: * Add O_IP_FLOW_LOOKUP opcode to support "flow" lookups * Add IPFW_TABLE_FLOW table type * Add "struct tflow_entry" as strage for 6-tuple flows * Add "flow:hash" algorithm. Basically it is auto-growing chained hash table. Additionally, we store mask of fields we need to compare in each instance/ * Increase ipfw_obj_tentry size by adding struct tflow_entry * Add per-algorithm stat (ifpw_ta_tinfo) to ipfw_xtable_info * Increase algoname length: 32 -> 64 (algo options passed there as string) * Assume every table type can be customized by flags, use u8 to store "tflags" field. * Simplify ipfw_find_table_entry() by providing @tentry directly to algo callback. * Fix bug in cidr:chash resize procedure. Userland changes: * add "flow table(NAME)" syntax to support n-tuple checking tables. * make fill_flags() separate function to ease working with _s_x arrays * change "table info" output to reflect longer "type" fields Syntax: ipfw table fl2 create type flow:[src-ip][,proto][,src-port][,dst-ip][dst-port] [algo flow:hash] Examples: 0:02 [2] zfscurr0# ipfw table fl2 create type flow:src-ip,proto,dst-port algo flow:hash 0:02 [2] zfscurr0# ipfw table fl2 info +++ table(fl2), set(0) +++ kindex: 0, type: flow:src-ip,proto,dst-port valtype: number, references: 0 algorithm: flow:hash items: 0, size: 280 0:02 [2] zfscurr0# ipfw table fl2 add 2a02:6b8::333,tcp,443 45000 0:02 [2] zfscurr0# ipfw table fl2 add 10.0.0.92,tcp,80 22000 0:02 [2] zfscurr0# ipfw table fl2 list +++ table(fl2), set(0) +++ 2a02:6b8::333,6,443 45000 10.0.0.92,6,80 22000 0:02 [2] zfscurr0# ipfw add 200 count tcp from me to 78.46.89.105 80 flow 'table(fl2)' 00200 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 0:03 [2] zfscurr0# ipfw show 00200 0 0 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 617 59416 allow ip from any to any 0:03 [2] zfscurr0# telnet -s 10.0.0.92 78.46.89.105 80 Trying 78.46.89.105... .. 0:04 [2] zfscurr0# ipfw show 00200 5 272 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 682 66733 allow ip from any to any
2014-07-31 20:08:19 +00:00
/*
* helper function to process a set of flags and set bits in the
* appropriate masks.
*/
Add support for multi-field values inside ipfw tables. This is the last major change in given branch. Kernel changes: * Use 64-bytes structures to hold multi-value variables. * Use shared array to hold values from all tables (assume each table algo is capable of holding 32-byte variables). * Add some placeholders to support per-table value arrays in future. * Use simple eventhandler-style API to ease the process of adding new table items. Currently table addition may required multiple UH drops/ acquires which is quite tricky due to atomic table modificatio/swap support, shared array resize, etc. Deal with it by calling special notifier capable of rolling back state before actually performing swap/resize operations. Original operation then restarts itself after acquiring UH lock. * Bump all objhash users default values to at least 64 * Fix custom hashing inside objhash. Userland changes: * Add support for dumping shared value array via "vlist" internal cmd. * Some small print/fill_flags dixes to support u32 values. * valtype is now bitmask of <skipto|pipe|fib|nat|dscp|tag|divert|netgraph|limit|ipv4|ipv6>. New values can hold distinct values for each of this types. * Provide special "legacy" type which assumes all values are the same. * More helpers/docs following.. Some examples: 3:41 [1] zfscurr0# ipfw table mimimi create valtype skipto,limit,ipv4,ipv6 3:41 [1] zfscurr0# ipfw table mimimi info +++ table(mimimi), set(0) +++ kindex: 2, type: addr references: 0, valtype: skipto,limit,ipv4,ipv6 algorithm: addr:radix items: 0, size: 296 3:42 [1] zfscurr0# ipfw table mimimi add 10.0.0.5 3000,10,10.0.0.1,2a02:978:2::1 added: 10.0.0.5/32 3000,10,10.0.0.1,2a02:978:2::1 3:42 [1] zfscurr0# ipfw table mimimi list +++ table(mimimi), set(0) +++ 10.0.0.5/32 3000,0,10.0.0.1,2a02:978:2::1
2014-08-31 23:51:09 +00:00
int
fill_flags(struct _s_x *flags, char *p, char **e, uint32_t *set,
uint32_t *clear)
* Add new "flow" table type to support N=1..5-tuple lookups * Add "flow:hash" algorithm Kernel changes: * Add O_IP_FLOW_LOOKUP opcode to support "flow" lookups * Add IPFW_TABLE_FLOW table type * Add "struct tflow_entry" as strage for 6-tuple flows * Add "flow:hash" algorithm. Basically it is auto-growing chained hash table. Additionally, we store mask of fields we need to compare in each instance/ * Increase ipfw_obj_tentry size by adding struct tflow_entry * Add per-algorithm stat (ifpw_ta_tinfo) to ipfw_xtable_info * Increase algoname length: 32 -> 64 (algo options passed there as string) * Assume every table type can be customized by flags, use u8 to store "tflags" field. * Simplify ipfw_find_table_entry() by providing @tentry directly to algo callback. * Fix bug in cidr:chash resize procedure. Userland changes: * add "flow table(NAME)" syntax to support n-tuple checking tables. * make fill_flags() separate function to ease working with _s_x arrays * change "table info" output to reflect longer "type" fields Syntax: ipfw table fl2 create type flow:[src-ip][,proto][,src-port][,dst-ip][dst-port] [algo flow:hash] Examples: 0:02 [2] zfscurr0# ipfw table fl2 create type flow:src-ip,proto,dst-port algo flow:hash 0:02 [2] zfscurr0# ipfw table fl2 info +++ table(fl2), set(0) +++ kindex: 0, type: flow:src-ip,proto,dst-port valtype: number, references: 0 algorithm: flow:hash items: 0, size: 280 0:02 [2] zfscurr0# ipfw table fl2 add 2a02:6b8::333,tcp,443 45000 0:02 [2] zfscurr0# ipfw table fl2 add 10.0.0.92,tcp,80 22000 0:02 [2] zfscurr0# ipfw table fl2 list +++ table(fl2), set(0) +++ 2a02:6b8::333,6,443 45000 10.0.0.92,6,80 22000 0:02 [2] zfscurr0# ipfw add 200 count tcp from me to 78.46.89.105 80 flow 'table(fl2)' 00200 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 0:03 [2] zfscurr0# ipfw show 00200 0 0 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 617 59416 allow ip from any to any 0:03 [2] zfscurr0# telnet -s 10.0.0.92 78.46.89.105 80 Trying 78.46.89.105... .. 0:04 [2] zfscurr0# ipfw show 00200 5 272 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 682 66733 allow ip from any to any
2014-07-31 20:08:19 +00:00
{
char *q; /* points to the separator */
int val;
Add support for multi-field values inside ipfw tables. This is the last major change in given branch. Kernel changes: * Use 64-bytes structures to hold multi-value variables. * Use shared array to hold values from all tables (assume each table algo is capable of holding 32-byte variables). * Add some placeholders to support per-table value arrays in future. * Use simple eventhandler-style API to ease the process of adding new table items. Currently table addition may required multiple UH drops/ acquires which is quite tricky due to atomic table modificatio/swap support, shared array resize, etc. Deal with it by calling special notifier capable of rolling back state before actually performing swap/resize operations. Original operation then restarts itself after acquiring UH lock. * Bump all objhash users default values to at least 64 * Fix custom hashing inside objhash. Userland changes: * Add support for dumping shared value array via "vlist" internal cmd. * Some small print/fill_flags dixes to support u32 values. * valtype is now bitmask of <skipto|pipe|fib|nat|dscp|tag|divert|netgraph|limit|ipv4|ipv6>. New values can hold distinct values for each of this types. * Provide special "legacy" type which assumes all values are the same. * More helpers/docs following.. Some examples: 3:41 [1] zfscurr0# ipfw table mimimi create valtype skipto,limit,ipv4,ipv6 3:41 [1] zfscurr0# ipfw table mimimi info +++ table(mimimi), set(0) +++ kindex: 2, type: addr references: 0, valtype: skipto,limit,ipv4,ipv6 algorithm: addr:radix items: 0, size: 296 3:42 [1] zfscurr0# ipfw table mimimi add 10.0.0.5 3000,10,10.0.0.1,2a02:978:2::1 added: 10.0.0.5/32 3000,10,10.0.0.1,2a02:978:2::1 3:42 [1] zfscurr0# ipfw table mimimi list +++ table(mimimi), set(0) +++ 10.0.0.5/32 3000,0,10.0.0.1,2a02:978:2::1
2014-08-31 23:51:09 +00:00
uint32_t *which; /* mask we are working on */
* Add new "flow" table type to support N=1..5-tuple lookups * Add "flow:hash" algorithm Kernel changes: * Add O_IP_FLOW_LOOKUP opcode to support "flow" lookups * Add IPFW_TABLE_FLOW table type * Add "struct tflow_entry" as strage for 6-tuple flows * Add "flow:hash" algorithm. Basically it is auto-growing chained hash table. Additionally, we store mask of fields we need to compare in each instance/ * Increase ipfw_obj_tentry size by adding struct tflow_entry * Add per-algorithm stat (ifpw_ta_tinfo) to ipfw_xtable_info * Increase algoname length: 32 -> 64 (algo options passed there as string) * Assume every table type can be customized by flags, use u8 to store "tflags" field. * Simplify ipfw_find_table_entry() by providing @tentry directly to algo callback. * Fix bug in cidr:chash resize procedure. Userland changes: * add "flow table(NAME)" syntax to support n-tuple checking tables. * make fill_flags() separate function to ease working with _s_x arrays * change "table info" output to reflect longer "type" fields Syntax: ipfw table fl2 create type flow:[src-ip][,proto][,src-port][,dst-ip][dst-port] [algo flow:hash] Examples: 0:02 [2] zfscurr0# ipfw table fl2 create type flow:src-ip,proto,dst-port algo flow:hash 0:02 [2] zfscurr0# ipfw table fl2 info +++ table(fl2), set(0) +++ kindex: 0, type: flow:src-ip,proto,dst-port valtype: number, references: 0 algorithm: flow:hash items: 0, size: 280 0:02 [2] zfscurr0# ipfw table fl2 add 2a02:6b8::333,tcp,443 45000 0:02 [2] zfscurr0# ipfw table fl2 add 10.0.0.92,tcp,80 22000 0:02 [2] zfscurr0# ipfw table fl2 list +++ table(fl2), set(0) +++ 2a02:6b8::333,6,443 45000 10.0.0.92,6,80 22000 0:02 [2] zfscurr0# ipfw add 200 count tcp from me to 78.46.89.105 80 flow 'table(fl2)' 00200 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 0:03 [2] zfscurr0# ipfw show 00200 0 0 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 617 59416 allow ip from any to any 0:03 [2] zfscurr0# telnet -s 10.0.0.92 78.46.89.105 80 Trying 78.46.89.105... .. 0:04 [2] zfscurr0# ipfw show 00200 5 272 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 682 66733 allow ip from any to any
2014-07-31 20:08:19 +00:00
while (p && *p) {
if (*p == '!') {
p++;
which = clear;
} else
which = set;
q = strchr(p, ',');
if (q)
*q++ = '\0';
val = match_token(flags, p);
Add support for multi-field values inside ipfw tables. This is the last major change in given branch. Kernel changes: * Use 64-bytes structures to hold multi-value variables. * Use shared array to hold values from all tables (assume each table algo is capable of holding 32-byte variables). * Add some placeholders to support per-table value arrays in future. * Use simple eventhandler-style API to ease the process of adding new table items. Currently table addition may required multiple UH drops/ acquires which is quite tricky due to atomic table modificatio/swap support, shared array resize, etc. Deal with it by calling special notifier capable of rolling back state before actually performing swap/resize operations. Original operation then restarts itself after acquiring UH lock. * Bump all objhash users default values to at least 64 * Fix custom hashing inside objhash. Userland changes: * Add support for dumping shared value array via "vlist" internal cmd. * Some small print/fill_flags dixes to support u32 values. * valtype is now bitmask of <skipto|pipe|fib|nat|dscp|tag|divert|netgraph|limit|ipv4|ipv6>. New values can hold distinct values for each of this types. * Provide special "legacy" type which assumes all values are the same. * More helpers/docs following.. Some examples: 3:41 [1] zfscurr0# ipfw table mimimi create valtype skipto,limit,ipv4,ipv6 3:41 [1] zfscurr0# ipfw table mimimi info +++ table(mimimi), set(0) +++ kindex: 2, type: addr references: 0, valtype: skipto,limit,ipv4,ipv6 algorithm: addr:radix items: 0, size: 296 3:42 [1] zfscurr0# ipfw table mimimi add 10.0.0.5 3000,10,10.0.0.1,2a02:978:2::1 added: 10.0.0.5/32 3000,10,10.0.0.1,2a02:978:2::1 3:42 [1] zfscurr0# ipfw table mimimi list +++ table(mimimi), set(0) +++ 10.0.0.5/32 3000,0,10.0.0.1,2a02:978:2::1
2014-08-31 23:51:09 +00:00
if (val <= 0) {
if (e != NULL)
*e = p;
return (-1);
}
*which |= (uint32_t)val;
* Add new "flow" table type to support N=1..5-tuple lookups * Add "flow:hash" algorithm Kernel changes: * Add O_IP_FLOW_LOOKUP opcode to support "flow" lookups * Add IPFW_TABLE_FLOW table type * Add "struct tflow_entry" as strage for 6-tuple flows * Add "flow:hash" algorithm. Basically it is auto-growing chained hash table. Additionally, we store mask of fields we need to compare in each instance/ * Increase ipfw_obj_tentry size by adding struct tflow_entry * Add per-algorithm stat (ifpw_ta_tinfo) to ipfw_xtable_info * Increase algoname length: 32 -> 64 (algo options passed there as string) * Assume every table type can be customized by flags, use u8 to store "tflags" field. * Simplify ipfw_find_table_entry() by providing @tentry directly to algo callback. * Fix bug in cidr:chash resize procedure. Userland changes: * add "flow table(NAME)" syntax to support n-tuple checking tables. * make fill_flags() separate function to ease working with _s_x arrays * change "table info" output to reflect longer "type" fields Syntax: ipfw table fl2 create type flow:[src-ip][,proto][,src-port][,dst-ip][dst-port] [algo flow:hash] Examples: 0:02 [2] zfscurr0# ipfw table fl2 create type flow:src-ip,proto,dst-port algo flow:hash 0:02 [2] zfscurr0# ipfw table fl2 info +++ table(fl2), set(0) +++ kindex: 0, type: flow:src-ip,proto,dst-port valtype: number, references: 0 algorithm: flow:hash items: 0, size: 280 0:02 [2] zfscurr0# ipfw table fl2 add 2a02:6b8::333,tcp,443 45000 0:02 [2] zfscurr0# ipfw table fl2 add 10.0.0.92,tcp,80 22000 0:02 [2] zfscurr0# ipfw table fl2 list +++ table(fl2), set(0) +++ 2a02:6b8::333,6,443 45000 10.0.0.92,6,80 22000 0:02 [2] zfscurr0# ipfw add 200 count tcp from me to 78.46.89.105 80 flow 'table(fl2)' 00200 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 0:03 [2] zfscurr0# ipfw show 00200 0 0 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 617 59416 allow ip from any to any 0:03 [2] zfscurr0# telnet -s 10.0.0.92 78.46.89.105 80 Trying 78.46.89.105... .. 0:04 [2] zfscurr0# ipfw show 00200 5 272 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 682 66733 allow ip from any to any
2014-07-31 20:08:19 +00:00
p = q;
}
Add support for multi-field values inside ipfw tables. This is the last major change in given branch. Kernel changes: * Use 64-bytes structures to hold multi-value variables. * Use shared array to hold values from all tables (assume each table algo is capable of holding 32-byte variables). * Add some placeholders to support per-table value arrays in future. * Use simple eventhandler-style API to ease the process of adding new table items. Currently table addition may required multiple UH drops/ acquires which is quite tricky due to atomic table modificatio/swap support, shared array resize, etc. Deal with it by calling special notifier capable of rolling back state before actually performing swap/resize operations. Original operation then restarts itself after acquiring UH lock. * Bump all objhash users default values to at least 64 * Fix custom hashing inside objhash. Userland changes: * Add support for dumping shared value array via "vlist" internal cmd. * Some small print/fill_flags dixes to support u32 values. * valtype is now bitmask of <skipto|pipe|fib|nat|dscp|tag|divert|netgraph|limit|ipv4|ipv6>. New values can hold distinct values for each of this types. * Provide special "legacy" type which assumes all values are the same. * More helpers/docs following.. Some examples: 3:41 [1] zfscurr0# ipfw table mimimi create valtype skipto,limit,ipv4,ipv6 3:41 [1] zfscurr0# ipfw table mimimi info +++ table(mimimi), set(0) +++ kindex: 2, type: addr references: 0, valtype: skipto,limit,ipv4,ipv6 algorithm: addr:radix items: 0, size: 296 3:42 [1] zfscurr0# ipfw table mimimi add 10.0.0.5 3000,10,10.0.0.1,2a02:978:2::1 added: 10.0.0.5/32 3000,10,10.0.0.1,2a02:978:2::1 3:42 [1] zfscurr0# ipfw table mimimi list +++ table(mimimi), set(0) +++ 10.0.0.5/32 3000,0,10.0.0.1,2a02:978:2::1
2014-08-31 23:51:09 +00:00
return (0);
* Add new "flow" table type to support N=1..5-tuple lookups * Add "flow:hash" algorithm Kernel changes: * Add O_IP_FLOW_LOOKUP opcode to support "flow" lookups * Add IPFW_TABLE_FLOW table type * Add "struct tflow_entry" as strage for 6-tuple flows * Add "flow:hash" algorithm. Basically it is auto-growing chained hash table. Additionally, we store mask of fields we need to compare in each instance/ * Increase ipfw_obj_tentry size by adding struct tflow_entry * Add per-algorithm stat (ifpw_ta_tinfo) to ipfw_xtable_info * Increase algoname length: 32 -> 64 (algo options passed there as string) * Assume every table type can be customized by flags, use u8 to store "tflags" field. * Simplify ipfw_find_table_entry() by providing @tentry directly to algo callback. * Fix bug in cidr:chash resize procedure. Userland changes: * add "flow table(NAME)" syntax to support n-tuple checking tables. * make fill_flags() separate function to ease working with _s_x arrays * change "table info" output to reflect longer "type" fields Syntax: ipfw table fl2 create type flow:[src-ip][,proto][,src-port][,dst-ip][dst-port] [algo flow:hash] Examples: 0:02 [2] zfscurr0# ipfw table fl2 create type flow:src-ip,proto,dst-port algo flow:hash 0:02 [2] zfscurr0# ipfw table fl2 info +++ table(fl2), set(0) +++ kindex: 0, type: flow:src-ip,proto,dst-port valtype: number, references: 0 algorithm: flow:hash items: 0, size: 280 0:02 [2] zfscurr0# ipfw table fl2 add 2a02:6b8::333,tcp,443 45000 0:02 [2] zfscurr0# ipfw table fl2 add 10.0.0.92,tcp,80 22000 0:02 [2] zfscurr0# ipfw table fl2 list +++ table(fl2), set(0) +++ 2a02:6b8::333,6,443 45000 10.0.0.92,6,80 22000 0:02 [2] zfscurr0# ipfw add 200 count tcp from me to 78.46.89.105 80 flow 'table(fl2)' 00200 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 0:03 [2] zfscurr0# ipfw show 00200 0 0 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 617 59416 allow ip from any to any 0:03 [2] zfscurr0# telnet -s 10.0.0.92 78.46.89.105 80 Trying 78.46.89.105... .. 0:04 [2] zfscurr0# ipfw show 00200 5 272 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 682 66733 allow ip from any to any
2014-07-31 20:08:19 +00:00
}
void
Add support for multi-field values inside ipfw tables. This is the last major change in given branch. Kernel changes: * Use 64-bytes structures to hold multi-value variables. * Use shared array to hold values from all tables (assume each table algo is capable of holding 32-byte variables). * Add some placeholders to support per-table value arrays in future. * Use simple eventhandler-style API to ease the process of adding new table items. Currently table addition may required multiple UH drops/ acquires which is quite tricky due to atomic table modificatio/swap support, shared array resize, etc. Deal with it by calling special notifier capable of rolling back state before actually performing swap/resize operations. Original operation then restarts itself after acquiring UH lock. * Bump all objhash users default values to at least 64 * Fix custom hashing inside objhash. Userland changes: * Add support for dumping shared value array via "vlist" internal cmd. * Some small print/fill_flags dixes to support u32 values. * valtype is now bitmask of <skipto|pipe|fib|nat|dscp|tag|divert|netgraph|limit|ipv4|ipv6>. New values can hold distinct values for each of this types. * Provide special "legacy" type which assumes all values are the same. * More helpers/docs following.. Some examples: 3:41 [1] zfscurr0# ipfw table mimimi create valtype skipto,limit,ipv4,ipv6 3:41 [1] zfscurr0# ipfw table mimimi info +++ table(mimimi), set(0) +++ kindex: 2, type: addr references: 0, valtype: skipto,limit,ipv4,ipv6 algorithm: addr:radix items: 0, size: 296 3:42 [1] zfscurr0# ipfw table mimimi add 10.0.0.5 3000,10,10.0.0.1,2a02:978:2::1 added: 10.0.0.5/32 3000,10,10.0.0.1,2a02:978:2::1 3:42 [1] zfscurr0# ipfw table mimimi list +++ table(mimimi), set(0) +++ 10.0.0.5/32 3000,0,10.0.0.1,2a02:978:2::1
2014-08-31 23:51:09 +00:00
print_flags_buffer(char *buf, size_t sz, struct _s_x *list, uint32_t set)
* Add new "flow" table type to support N=1..5-tuple lookups * Add "flow:hash" algorithm Kernel changes: * Add O_IP_FLOW_LOOKUP opcode to support "flow" lookups * Add IPFW_TABLE_FLOW table type * Add "struct tflow_entry" as strage for 6-tuple flows * Add "flow:hash" algorithm. Basically it is auto-growing chained hash table. Additionally, we store mask of fields we need to compare in each instance/ * Increase ipfw_obj_tentry size by adding struct tflow_entry * Add per-algorithm stat (ifpw_ta_tinfo) to ipfw_xtable_info * Increase algoname length: 32 -> 64 (algo options passed there as string) * Assume every table type can be customized by flags, use u8 to store "tflags" field. * Simplify ipfw_find_table_entry() by providing @tentry directly to algo callback. * Fix bug in cidr:chash resize procedure. Userland changes: * add "flow table(NAME)" syntax to support n-tuple checking tables. * make fill_flags() separate function to ease working with _s_x arrays * change "table info" output to reflect longer "type" fields Syntax: ipfw table fl2 create type flow:[src-ip][,proto][,src-port][,dst-ip][dst-port] [algo flow:hash] Examples: 0:02 [2] zfscurr0# ipfw table fl2 create type flow:src-ip,proto,dst-port algo flow:hash 0:02 [2] zfscurr0# ipfw table fl2 info +++ table(fl2), set(0) +++ kindex: 0, type: flow:src-ip,proto,dst-port valtype: number, references: 0 algorithm: flow:hash items: 0, size: 280 0:02 [2] zfscurr0# ipfw table fl2 add 2a02:6b8::333,tcp,443 45000 0:02 [2] zfscurr0# ipfw table fl2 add 10.0.0.92,tcp,80 22000 0:02 [2] zfscurr0# ipfw table fl2 list +++ table(fl2), set(0) +++ 2a02:6b8::333,6,443 45000 10.0.0.92,6,80 22000 0:02 [2] zfscurr0# ipfw add 200 count tcp from me to 78.46.89.105 80 flow 'table(fl2)' 00200 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 0:03 [2] zfscurr0# ipfw show 00200 0 0 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 617 59416 allow ip from any to any 0:03 [2] zfscurr0# telnet -s 10.0.0.92 78.46.89.105 80 Trying 78.46.89.105... .. 0:04 [2] zfscurr0# ipfw show 00200 5 272 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 682 66733 allow ip from any to any
2014-07-31 20:08:19 +00:00
{
char const *comma = "";
int i, l;
for (i = 0; list[i].x != 0; i++) {
if ((set & list[i].x) == 0)
continue;
set &= ~list[i].x;
l = snprintf(buf, sz, "%s%s", comma, list[i].s);
if (l >= sz)
return;
comma = ",";
buf += l;
sz -=l;
}
}
/*
* _substrcmp takes two strings and returns 1 if they do not match,
* and 0 if they match exactly or the first string is a sub-string
* of the second. A warning is printed to stderr in the case that the
* first string is a sub-string of the second.
*
* This function will be removed in the future through the usual
* deprecation process.
*/
int
_substrcmp(const char *str1, const char* str2)
{
if (strncmp(str1, str2, strlen(str1)) != 0)
return 1;
if (strlen(str1) != strlen(str2))
warnx("DEPRECATED: '%s' matched '%s' as a sub-string",
str1, str2);
return 0;
}
/*
* _substrcmp2 takes three strings and returns 1 if the first two do not match,
* and 0 if they match exactly or the second string is a sub-string
* of the first. A warning is printed to stderr in the case that the
* first string does not match the third.
*
2012-01-07 16:09:33 +00:00
* This function exists to warn about the bizarre construction
* strncmp(str, "by", 2) which is used to allow people to use a shortcut
* for "bytes". The problem is that in addition to accepting "by",
* "byt", "byte", and "bytes", it also excepts "by_rabid_dogs" and any
* other string beginning with "by".
*
* This function will be removed in the future through the usual
* deprecation process.
*/
int
_substrcmp2(const char *str1, const char* str2, const char* str3)
{
if (strncmp(str1, str2, strlen(str2)) != 0)
return 1;
if (strcmp(str1, str3) != 0)
warnx("DEPRECATED: '%s' matched '%s'",
str1, str3);
return 0;
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
/*
* prints one port, symbolic or numeric
*/
static void
print_port(struct buf_pr *bp, int proto, uint16_t port)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{
if (proto == IPPROTO_ETHERTYPE) {
In random order: * make the code compile with WARNS=5 (at least on i386), mostly by adding 'const' specifier and replacing "void *" with "char *" in places where pointer arithmetic was used. This also spotted a few places where invalid tests (e.g. uint < 0) were used. * support ranges in "list" and "show" commands. Now you can say ipfw show 100-1000 4000-8000 which is very convenient when you have large rulesets. * implement comments in ipfw commands. These are implemented in the kernel as O_NOP commands (which always match) whose body contains the comment string. In userland, a comment is a C++-style comment: ipfw add allow ip from me to any // i can talk to everybody The choice of '//' versus '#' is somewhat arbitrary, but because the preprocessor/readfile part of ipfw used to strip away '#', I did not want to change this behaviour. If a rule only contains a comment ipfw add 1000 // this rule is just a comment then it is stored as a 'count' rule (this is also to remind the user that scanning through a rule is expensive). * improve handling of flags (still to be completed). ipfw_main() was written thinking of 'one rule per ipfw invocation', and so flags are set and never cleared. With readfile/preprocessor support, this changes and certain flags should be reset on each line. For the time being, only fix handling of '-a' which differentiates the "list" and "show" commands. * rework the preprocessor support -- ipfw_main() already had most of the parsing code, so i have moved in there the only missing bit (stripping away '#' and comments) and removed the parsing from ipfw_readfile(). Also, add some more options (such as -c, -N, -S) to the readfile section. MFC after: 3 days
2003-07-12 06:53:16 +00:00
char const *s;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (co.do_resolv && (s = match_value(ether_types, port)) )
bprintf(bp, "%s", s);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
else
bprintf(bp, "0x%04x", port);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
} else {
struct servent *se = NULL;
if (co.do_resolv) {
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
struct protoent *pe = getprotobynumber(proto);
se = getservbyport(htons(port), pe ? pe->p_name : NULL);
}
if (se)
bprintf(bp, "%s", se->s_name);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
else
bprintf(bp, "%d", port);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
}
static struct _s_x _port_name[] = {
{"dst-port", O_IP_DSTPORT},
{"src-port", O_IP_SRCPORT},
{"ipid", O_IPID},
{"iplen", O_IPLEN},
{"ipttl", O_IPTTL},
{"mac-type", O_MAC_TYPE},
{"tcpdatalen", O_TCPDATALEN},
{"tcpwin", O_TCPWIN},
{"tagged", O_TAGGED},
{NULL, 0}
};
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
/*
* Print the values in a list 16-bit items of the types above.
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
* XXX todo: add support for mask.
*/
static void
print_newports(struct buf_pr *bp, ipfw_insn_u16 *cmd, int proto, int opcode)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{
uint16_t *p = cmd->ports;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
int i;
In random order: * make the code compile with WARNS=5 (at least on i386), mostly by adding 'const' specifier and replacing "void *" with "char *" in places where pointer arithmetic was used. This also spotted a few places where invalid tests (e.g. uint < 0) were used. * support ranges in "list" and "show" commands. Now you can say ipfw show 100-1000 4000-8000 which is very convenient when you have large rulesets. * implement comments in ipfw commands. These are implemented in the kernel as O_NOP commands (which always match) whose body contains the comment string. In userland, a comment is a C++-style comment: ipfw add allow ip from me to any // i can talk to everybody The choice of '//' versus '#' is somewhat arbitrary, but because the preprocessor/readfile part of ipfw used to strip away '#', I did not want to change this behaviour. If a rule only contains a comment ipfw add 1000 // this rule is just a comment then it is stored as a 'count' rule (this is also to remind the user that scanning through a rule is expensive). * improve handling of flags (still to be completed). ipfw_main() was written thinking of 'one rule per ipfw invocation', and so flags are set and never cleared. With readfile/preprocessor support, this changes and certain flags should be reset on each line. For the time being, only fix handling of '-a' which differentiates the "list" and "show" commands. * rework the preprocessor support -- ipfw_main() already had most of the parsing code, so i have moved in there the only missing bit (stripping away '#' and comments) and removed the parsing from ipfw_readfile(). Also, add some more options (such as -c, -N, -S) to the readfile section. MFC after: 3 days
2003-07-12 06:53:16 +00:00
char const *sep;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (opcode != 0) {
sep = match_value(_port_name, opcode);
if (sep == NULL)
sep = "???";
bprintf(bp, " %s", sep);
}
sep = " ";
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
for (i = F_LEN((ipfw_insn *)cmd) - 1; i > 0; i--, p += 2) {
bprintf(bp, "%s", sep);
print_port(bp, proto, p[0]);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (p[0] != p[1]) {
bprintf(bp, "-");
print_port(bp, proto, p[1]);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
sep = ",";
}
}
/*
* Like strtol, but also translates service names into port numbers
* for some protocols.
* In particular:
* proto == -1 disables the protocol check;
* proto == IPPROTO_ETHERTYPE looks up an internal table
* proto == <some value in /etc/protocols> matches the values there.
One bugfix and one new feature. The bugfix (ipfw2.c) makes the handling of port numbers with a dash in the name, e.g. ftp-data, consistent with old ipfw: use \\ before the - to consider it as part of the name and not a range separator. The new feature (all this description will go in the manpage): each rule now belongs to one of 32 different sets, which can be optionally specified in the following form: ipfw add 100 set 23 allow ip from any to any If "set N" is not specified, the rule belongs to set 0. Individual sets can be disabled, enabled, and deleted with the commands: ipfw disable set N ipfw enable set N ipfw delete set N Enabling/disabling of a set is atomic. Rules belonging to a disabled set are skipped during packet matching, and they are not listed unless you use the '-S' flag in the show/list commands. Note that dynamic rules, once created, are always active until they expire or their parent rule is deleted. Set 31 is reserved for the default rule and cannot be disabled. All sets are enabled by default. The enable/disable status of the sets can be shown with the command ipfw show sets Hopefully, this feature will make life easier to those who want to have atomic ruleset addition/deletion/tests. Examples: To add a set of rules atomically: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 To delete a set of rules atomically ipfw disable set 18 ipfw delete set 18 ipfw enable set 18 To test a ruleset and disable it and regain control if something goes wrong: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 ; echo "done "; sleep 30 && ipfw disable set 18 here if everything goes well, you press control-C before the "sleep" terminates, and your ruleset will be left active. Otherwise, e.g. if you cannot access your box, the ruleset will be disabled after the sleep terminates. I think there is only one more thing that one might want, namely a command to assign all rules in set X to set Y, so one can test a ruleset using the above mechanisms, and once it is considered acceptable, make it part of an existing ruleset.
2002-08-10 04:37:32 +00:00
* Returns *end == s in case the parameter is not found.
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
*/
static int
strtoport(char *s, char **end, int base, int proto)
{
One bugfix and one new feature. The bugfix (ipfw2.c) makes the handling of port numbers with a dash in the name, e.g. ftp-data, consistent with old ipfw: use \\ before the - to consider it as part of the name and not a range separator. The new feature (all this description will go in the manpage): each rule now belongs to one of 32 different sets, which can be optionally specified in the following form: ipfw add 100 set 23 allow ip from any to any If "set N" is not specified, the rule belongs to set 0. Individual sets can be disabled, enabled, and deleted with the commands: ipfw disable set N ipfw enable set N ipfw delete set N Enabling/disabling of a set is atomic. Rules belonging to a disabled set are skipped during packet matching, and they are not listed unless you use the '-S' flag in the show/list commands. Note that dynamic rules, once created, are always active until they expire or their parent rule is deleted. Set 31 is reserved for the default rule and cannot be disabled. All sets are enabled by default. The enable/disable status of the sets can be shown with the command ipfw show sets Hopefully, this feature will make life easier to those who want to have atomic ruleset addition/deletion/tests. Examples: To add a set of rules atomically: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 To delete a set of rules atomically ipfw disable set 18 ipfw delete set 18 ipfw enable set 18 To test a ruleset and disable it and regain control if something goes wrong: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 ; echo "done "; sleep 30 && ipfw disable set 18 here if everything goes well, you press control-C before the "sleep" terminates, and your ruleset will be left active. Otherwise, e.g. if you cannot access your box, the ruleset will be disabled after the sleep terminates. I think there is only one more thing that one might want, namely a command to assign all rules in set X to set Y, so one can test a ruleset using the above mechanisms, and once it is considered acceptable, make it part of an existing ruleset.
2002-08-10 04:37:32 +00:00
char *p, *buf;
char *s1;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
int i;
One bugfix and one new feature. The bugfix (ipfw2.c) makes the handling of port numbers with a dash in the name, e.g. ftp-data, consistent with old ipfw: use \\ before the - to consider it as part of the name and not a range separator. The new feature (all this description will go in the manpage): each rule now belongs to one of 32 different sets, which can be optionally specified in the following form: ipfw add 100 set 23 allow ip from any to any If "set N" is not specified, the rule belongs to set 0. Individual sets can be disabled, enabled, and deleted with the commands: ipfw disable set N ipfw enable set N ipfw delete set N Enabling/disabling of a set is atomic. Rules belonging to a disabled set are skipped during packet matching, and they are not listed unless you use the '-S' flag in the show/list commands. Note that dynamic rules, once created, are always active until they expire or their parent rule is deleted. Set 31 is reserved for the default rule and cannot be disabled. All sets are enabled by default. The enable/disable status of the sets can be shown with the command ipfw show sets Hopefully, this feature will make life easier to those who want to have atomic ruleset addition/deletion/tests. Examples: To add a set of rules atomically: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 To delete a set of rules atomically ipfw disable set 18 ipfw delete set 18 ipfw enable set 18 To test a ruleset and disable it and regain control if something goes wrong: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 ; echo "done "; sleep 30 && ipfw disable set 18 here if everything goes well, you press control-C before the "sleep" terminates, and your ruleset will be left active. Otherwise, e.g. if you cannot access your box, the ruleset will be disabled after the sleep terminates. I think there is only one more thing that one might want, namely a command to assign all rules in set X to set Y, so one can test a ruleset using the above mechanisms, and once it is considered acceptable, make it part of an existing ruleset.
2002-08-10 04:37:32 +00:00
*end = s; /* default - not found */
if (*s == '\0')
One bugfix and one new feature. The bugfix (ipfw2.c) makes the handling of port numbers with a dash in the name, e.g. ftp-data, consistent with old ipfw: use \\ before the - to consider it as part of the name and not a range separator. The new feature (all this description will go in the manpage): each rule now belongs to one of 32 different sets, which can be optionally specified in the following form: ipfw add 100 set 23 allow ip from any to any If "set N" is not specified, the rule belongs to set 0. Individual sets can be disabled, enabled, and deleted with the commands: ipfw disable set N ipfw enable set N ipfw delete set N Enabling/disabling of a set is atomic. Rules belonging to a disabled set are skipped during packet matching, and they are not listed unless you use the '-S' flag in the show/list commands. Note that dynamic rules, once created, are always active until they expire or their parent rule is deleted. Set 31 is reserved for the default rule and cannot be disabled. All sets are enabled by default. The enable/disable status of the sets can be shown with the command ipfw show sets Hopefully, this feature will make life easier to those who want to have atomic ruleset addition/deletion/tests. Examples: To add a set of rules atomically: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 To delete a set of rules atomically ipfw disable set 18 ipfw delete set 18 ipfw enable set 18 To test a ruleset and disable it and regain control if something goes wrong: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 ; echo "done "; sleep 30 && ipfw disable set 18 here if everything goes well, you press control-C before the "sleep" terminates, and your ruleset will be left active. Otherwise, e.g. if you cannot access your box, the ruleset will be disabled after the sleep terminates. I think there is only one more thing that one might want, namely a command to assign all rules in set X to set Y, so one can test a ruleset using the above mechanisms, and once it is considered acceptable, make it part of an existing ruleset.
2002-08-10 04:37:32 +00:00
return 0; /* not found */
2002-11-06 15:09:34 +00:00
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (isdigit(*s))
return strtol(s, end, base);
/*
One bugfix and one new feature. The bugfix (ipfw2.c) makes the handling of port numbers with a dash in the name, e.g. ftp-data, consistent with old ipfw: use \\ before the - to consider it as part of the name and not a range separator. The new feature (all this description will go in the manpage): each rule now belongs to one of 32 different sets, which can be optionally specified in the following form: ipfw add 100 set 23 allow ip from any to any If "set N" is not specified, the rule belongs to set 0. Individual sets can be disabled, enabled, and deleted with the commands: ipfw disable set N ipfw enable set N ipfw delete set N Enabling/disabling of a set is atomic. Rules belonging to a disabled set are skipped during packet matching, and they are not listed unless you use the '-S' flag in the show/list commands. Note that dynamic rules, once created, are always active until they expire or their parent rule is deleted. Set 31 is reserved for the default rule and cannot be disabled. All sets are enabled by default. The enable/disable status of the sets can be shown with the command ipfw show sets Hopefully, this feature will make life easier to those who want to have atomic ruleset addition/deletion/tests. Examples: To add a set of rules atomically: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 To delete a set of rules atomically ipfw disable set 18 ipfw delete set 18 ipfw enable set 18 To test a ruleset and disable it and regain control if something goes wrong: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 ; echo "done "; sleep 30 && ipfw disable set 18 here if everything goes well, you press control-C before the "sleep" terminates, and your ruleset will be left active. Otherwise, e.g. if you cannot access your box, the ruleset will be disabled after the sleep terminates. I think there is only one more thing that one might want, namely a command to assign all rules in set X to set Y, so one can test a ruleset using the above mechanisms, and once it is considered acceptable, make it part of an existing ruleset.
2002-08-10 04:37:32 +00:00
* find separator. '\\' escapes the next char.
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
*/
One bugfix and one new feature. The bugfix (ipfw2.c) makes the handling of port numbers with a dash in the name, e.g. ftp-data, consistent with old ipfw: use \\ before the - to consider it as part of the name and not a range separator. The new feature (all this description will go in the manpage): each rule now belongs to one of 32 different sets, which can be optionally specified in the following form: ipfw add 100 set 23 allow ip from any to any If "set N" is not specified, the rule belongs to set 0. Individual sets can be disabled, enabled, and deleted with the commands: ipfw disable set N ipfw enable set N ipfw delete set N Enabling/disabling of a set is atomic. Rules belonging to a disabled set are skipped during packet matching, and they are not listed unless you use the '-S' flag in the show/list commands. Note that dynamic rules, once created, are always active until they expire or their parent rule is deleted. Set 31 is reserved for the default rule and cannot be disabled. All sets are enabled by default. The enable/disable status of the sets can be shown with the command ipfw show sets Hopefully, this feature will make life easier to those who want to have atomic ruleset addition/deletion/tests. Examples: To add a set of rules atomically: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 To delete a set of rules atomically ipfw disable set 18 ipfw delete set 18 ipfw enable set 18 To test a ruleset and disable it and regain control if something goes wrong: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 ; echo "done "; sleep 30 && ipfw disable set 18 here if everything goes well, you press control-C before the "sleep" terminates, and your ruleset will be left active. Otherwise, e.g. if you cannot access your box, the ruleset will be disabled after the sleep terminates. I think there is only one more thing that one might want, namely a command to assign all rules in set X to set Y, so one can test a ruleset using the above mechanisms, and once it is considered acceptable, make it part of an existing ruleset.
2002-08-10 04:37:32 +00:00
for (s1 = s; *s1 && (isalnum(*s1) || *s1 == '\\') ; s1++)
if (*s1 == '\\' && s1[1] != '\0')
s1++;
buf = safe_calloc(s1 - s + 1, 1);
One bugfix and one new feature. The bugfix (ipfw2.c) makes the handling of port numbers with a dash in the name, e.g. ftp-data, consistent with old ipfw: use \\ before the - to consider it as part of the name and not a range separator. The new feature (all this description will go in the manpage): each rule now belongs to one of 32 different sets, which can be optionally specified in the following form: ipfw add 100 set 23 allow ip from any to any If "set N" is not specified, the rule belongs to set 0. Individual sets can be disabled, enabled, and deleted with the commands: ipfw disable set N ipfw enable set N ipfw delete set N Enabling/disabling of a set is atomic. Rules belonging to a disabled set are skipped during packet matching, and they are not listed unless you use the '-S' flag in the show/list commands. Note that dynamic rules, once created, are always active until they expire or their parent rule is deleted. Set 31 is reserved for the default rule and cannot be disabled. All sets are enabled by default. The enable/disable status of the sets can be shown with the command ipfw show sets Hopefully, this feature will make life easier to those who want to have atomic ruleset addition/deletion/tests. Examples: To add a set of rules atomically: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 To delete a set of rules atomically ipfw disable set 18 ipfw delete set 18 ipfw enable set 18 To test a ruleset and disable it and regain control if something goes wrong: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 ; echo "done "; sleep 30 && ipfw disable set 18 here if everything goes well, you press control-C before the "sleep" terminates, and your ruleset will be left active. Otherwise, e.g. if you cannot access your box, the ruleset will be disabled after the sleep terminates. I think there is only one more thing that one might want, namely a command to assign all rules in set X to set Y, so one can test a ruleset using the above mechanisms, and once it is considered acceptable, make it part of an existing ruleset.
2002-08-10 04:37:32 +00:00
/*
* copy into a buffer skipping backslashes
*/
for (p = s, i = 0; p != s1 ; p++)
if (*p != '\\')
One bugfix and one new feature. The bugfix (ipfw2.c) makes the handling of port numbers with a dash in the name, e.g. ftp-data, consistent with old ipfw: use \\ before the - to consider it as part of the name and not a range separator. The new feature (all this description will go in the manpage): each rule now belongs to one of 32 different sets, which can be optionally specified in the following form: ipfw add 100 set 23 allow ip from any to any If "set N" is not specified, the rule belongs to set 0. Individual sets can be disabled, enabled, and deleted with the commands: ipfw disable set N ipfw enable set N ipfw delete set N Enabling/disabling of a set is atomic. Rules belonging to a disabled set are skipped during packet matching, and they are not listed unless you use the '-S' flag in the show/list commands. Note that dynamic rules, once created, are always active until they expire or their parent rule is deleted. Set 31 is reserved for the default rule and cannot be disabled. All sets are enabled by default. The enable/disable status of the sets can be shown with the command ipfw show sets Hopefully, this feature will make life easier to those who want to have atomic ruleset addition/deletion/tests. Examples: To add a set of rules atomically: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 To delete a set of rules atomically ipfw disable set 18 ipfw delete set 18 ipfw enable set 18 To test a ruleset and disable it and regain control if something goes wrong: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 ; echo "done "; sleep 30 && ipfw disable set 18 here if everything goes well, you press control-C before the "sleep" terminates, and your ruleset will be left active. Otherwise, e.g. if you cannot access your box, the ruleset will be disabled after the sleep terminates. I think there is only one more thing that one might want, namely a command to assign all rules in set X to set Y, so one can test a ruleset using the above mechanisms, and once it is considered acceptable, make it part of an existing ruleset.
2002-08-10 04:37:32 +00:00
buf[i++] = *p;
buf[i++] = '\0';
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (proto == IPPROTO_ETHERTYPE) {
One bugfix and one new feature. The bugfix (ipfw2.c) makes the handling of port numbers with a dash in the name, e.g. ftp-data, consistent with old ipfw: use \\ before the - to consider it as part of the name and not a range separator. The new feature (all this description will go in the manpage): each rule now belongs to one of 32 different sets, which can be optionally specified in the following form: ipfw add 100 set 23 allow ip from any to any If "set N" is not specified, the rule belongs to set 0. Individual sets can be disabled, enabled, and deleted with the commands: ipfw disable set N ipfw enable set N ipfw delete set N Enabling/disabling of a set is atomic. Rules belonging to a disabled set are skipped during packet matching, and they are not listed unless you use the '-S' flag in the show/list commands. Note that dynamic rules, once created, are always active until they expire or their parent rule is deleted. Set 31 is reserved for the default rule and cannot be disabled. All sets are enabled by default. The enable/disable status of the sets can be shown with the command ipfw show sets Hopefully, this feature will make life easier to those who want to have atomic ruleset addition/deletion/tests. Examples: To add a set of rules atomically: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 To delete a set of rules atomically ipfw disable set 18 ipfw delete set 18 ipfw enable set 18 To test a ruleset and disable it and regain control if something goes wrong: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 ; echo "done "; sleep 30 && ipfw disable set 18 here if everything goes well, you press control-C before the "sleep" terminates, and your ruleset will be left active. Otherwise, e.g. if you cannot access your box, the ruleset will be disabled after the sleep terminates. I think there is only one more thing that one might want, namely a command to assign all rules in set X to set Y, so one can test a ruleset using the above mechanisms, and once it is considered acceptable, make it part of an existing ruleset.
2002-08-10 04:37:32 +00:00
i = match_token(ether_types, buf);
free(buf);
if (i != -1) { /* found */
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
*end = s1;
return i;
}
} else {
struct protoent *pe = NULL;
struct servent *se;
if (proto != 0)
pe = getprotobynumber(proto);
setservent(1);
One bugfix and one new feature. The bugfix (ipfw2.c) makes the handling of port numbers with a dash in the name, e.g. ftp-data, consistent with old ipfw: use \\ before the - to consider it as part of the name and not a range separator. The new feature (all this description will go in the manpage): each rule now belongs to one of 32 different sets, which can be optionally specified in the following form: ipfw add 100 set 23 allow ip from any to any If "set N" is not specified, the rule belongs to set 0. Individual sets can be disabled, enabled, and deleted with the commands: ipfw disable set N ipfw enable set N ipfw delete set N Enabling/disabling of a set is atomic. Rules belonging to a disabled set are skipped during packet matching, and they are not listed unless you use the '-S' flag in the show/list commands. Note that dynamic rules, once created, are always active until they expire or their parent rule is deleted. Set 31 is reserved for the default rule and cannot be disabled. All sets are enabled by default. The enable/disable status of the sets can be shown with the command ipfw show sets Hopefully, this feature will make life easier to those who want to have atomic ruleset addition/deletion/tests. Examples: To add a set of rules atomically: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 To delete a set of rules atomically ipfw disable set 18 ipfw delete set 18 ipfw enable set 18 To test a ruleset and disable it and regain control if something goes wrong: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 ; echo "done "; sleep 30 && ipfw disable set 18 here if everything goes well, you press control-C before the "sleep" terminates, and your ruleset will be left active. Otherwise, e.g. if you cannot access your box, the ruleset will be disabled after the sleep terminates. I think there is only one more thing that one might want, namely a command to assign all rules in set X to set Y, so one can test a ruleset using the above mechanisms, and once it is considered acceptable, make it part of an existing ruleset.
2002-08-10 04:37:32 +00:00
se = getservbyname(buf, pe ? pe->p_name : NULL);
free(buf);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (se != NULL) {
*end = s1;
return ntohs(se->s_port);
}
}
One bugfix and one new feature. The bugfix (ipfw2.c) makes the handling of port numbers with a dash in the name, e.g. ftp-data, consistent with old ipfw: use \\ before the - to consider it as part of the name and not a range separator. The new feature (all this description will go in the manpage): each rule now belongs to one of 32 different sets, which can be optionally specified in the following form: ipfw add 100 set 23 allow ip from any to any If "set N" is not specified, the rule belongs to set 0. Individual sets can be disabled, enabled, and deleted with the commands: ipfw disable set N ipfw enable set N ipfw delete set N Enabling/disabling of a set is atomic. Rules belonging to a disabled set are skipped during packet matching, and they are not listed unless you use the '-S' flag in the show/list commands. Note that dynamic rules, once created, are always active until they expire or their parent rule is deleted. Set 31 is reserved for the default rule and cannot be disabled. All sets are enabled by default. The enable/disable status of the sets can be shown with the command ipfw show sets Hopefully, this feature will make life easier to those who want to have atomic ruleset addition/deletion/tests. Examples: To add a set of rules atomically: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 To delete a set of rules atomically ipfw disable set 18 ipfw delete set 18 ipfw enable set 18 To test a ruleset and disable it and regain control if something goes wrong: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 ; echo "done "; sleep 30 && ipfw disable set 18 here if everything goes well, you press control-C before the "sleep" terminates, and your ruleset will be left active. Otherwise, e.g. if you cannot access your box, the ruleset will be disabled after the sleep terminates. I think there is only one more thing that one might want, namely a command to assign all rules in set X to set Y, so one can test a ruleset using the above mechanisms, and once it is considered acceptable, make it part of an existing ruleset.
2002-08-10 04:37:32 +00:00
return 0; /* not found */
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
/*
* Fill the body of the command with the list of port ranges.
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
*/
static int
fill_newports(ipfw_insn_u16 *cmd, char *av, int proto, int cblen)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{
uint16_t a, b, *p = cmd->ports;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
int i = 0;
char *s = av;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
while (*s) {
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
a = strtoport(av, &s, 0, proto);
if (s == av) /* empty or invalid argument */
return (0);
CHECK_LENGTH(cblen, i + 2);
switch (*s) {
case '-': /* a range */
av = s + 1;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
b = strtoport(av, &s, 0, proto);
/* Reject expressions like '1-abc' or '1-2-3'. */
if (s == av || (*s != ',' && *s != '\0'))
return (0);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
p[0] = a;
p[1] = b;
break;
case ',': /* comma separated list */
case '\0':
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
p[0] = p[1] = a;
break;
default:
warnx("port list: invalid separator <%c> in <%s>",
*s, av);
return (0);
}
i++;
p += 2;
av = s + 1;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
if (i > 0) {
if (i + 1 > F_LEN_MASK)
errx(EX_DATAERR, "too many ports/ranges\n");
cmd->o.len |= i + 1; /* leave F_NOT and F_OR untouched */
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
return (i);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
/*
* Fill the body of the command with the list of DiffServ codepoints.
*/
static void
fill_dscp(ipfw_insn *cmd, char *av, int cblen)
{
uint32_t *low, *high;
char *s = av, *a;
int code;
cmd->opcode = O_DSCP;
cmd->len |= F_INSN_SIZE(ipfw_insn_u32) + 1;
CHECK_CMDLEN;
low = (uint32_t *)(cmd + 1);
high = low + 1;
*low = 0;
*high = 0;
while (s != NULL) {
a = strchr(s, ',');
if (a != NULL)
*a++ = '\0';
if (isalpha(*s)) {
if ((code = match_token(f_ipdscp, s)) == -1)
errx(EX_DATAERR, "Unknown DSCP code");
} else {
code = strtoul(s, NULL, 10);
if (code < 0 || code > 63)
errx(EX_DATAERR, "Invalid DSCP value");
}
if (code > 32)
*high |= 1 << (code - 32);
else
*low |= 1 << code;
s = a;
}
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
static struct _s_x icmpcodes[] = {
{ "net", ICMP_UNREACH_NET },
{ "host", ICMP_UNREACH_HOST },
{ "protocol", ICMP_UNREACH_PROTOCOL },
{ "port", ICMP_UNREACH_PORT },
{ "needfrag", ICMP_UNREACH_NEEDFRAG },
{ "srcfail", ICMP_UNREACH_SRCFAIL },
{ "net-unknown", ICMP_UNREACH_NET_UNKNOWN },
{ "host-unknown", ICMP_UNREACH_HOST_UNKNOWN },
{ "isolated", ICMP_UNREACH_ISOLATED },
{ "net-prohib", ICMP_UNREACH_NET_PROHIB },
{ "host-prohib", ICMP_UNREACH_HOST_PROHIB },
{ "tosnet", ICMP_UNREACH_TOSNET },
{ "toshost", ICMP_UNREACH_TOSHOST },
{ "filter-prohib", ICMP_UNREACH_FILTER_PROHIB },
{ "host-precedence", ICMP_UNREACH_HOST_PRECEDENCE },
{ "precedence-cutoff", ICMP_UNREACH_PRECEDENCE_CUTOFF },
{ NULL, 0 }
};
static void
fill_reject_code(u_short *codep, char *str)
{
int val;
char *s;
val = strtoul(str, &s, 0);
if (s == str || *s != '\0' || val >= 0x100)
val = match_token(icmpcodes, str);
if (val < 0)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
errx(EX_DATAERR, "unknown ICMP unreachable code ``%s''", str);
*codep = val;
return;
}
static void
print_reject_code(struct buf_pr *bp, uint16_t code)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{
char const *s;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if ((s = match_value(icmpcodes, code)) != NULL)
bprintf(bp, "unreach %s", s);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
else
bprintf(bp, "unreach %u", code);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
/*
* Returns the number of bits set (from left) in a contiguous bitmask,
* or -1 if the mask is not contiguous.
* XXX this needs a proper fix.
* This effectively works on masks in big-endian (network) format.
* when compiled on little endian architectures.
*
* First bit is bit 7 of the first byte -- note, for MAC addresses,
* the first bit on the wire is bit 0 of the first byte.
* len is the max length in bits.
*/
int
contigmask(uint8_t *p, int len)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{
int i, n;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
for (i=0; i<len ; i++)
if ( (p[i/8] & (1 << (7 - (i%8)))) == 0) /* first bit unset */
break;
for (n=i+1; n < len; n++)
if ( (p[n/8] & (1 << (7 - (n%8)))) != 0)
return -1; /* mask not contiguous */
return i;
}
/*
* print flags set/clear in the two bitmasks passed as parameters.
* There is a specialized check for f_tcpflags.
*/
static void
print_flags(struct buf_pr *bp, char const *name, ipfw_insn *cmd,
struct _s_x *list)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{
In random order: * make the code compile with WARNS=5 (at least on i386), mostly by adding 'const' specifier and replacing "void *" with "char *" in places where pointer arithmetic was used. This also spotted a few places where invalid tests (e.g. uint < 0) were used. * support ranges in "list" and "show" commands. Now you can say ipfw show 100-1000 4000-8000 which is very convenient when you have large rulesets. * implement comments in ipfw commands. These are implemented in the kernel as O_NOP commands (which always match) whose body contains the comment string. In userland, a comment is a C++-style comment: ipfw add allow ip from me to any // i can talk to everybody The choice of '//' versus '#' is somewhat arbitrary, but because the preprocessor/readfile part of ipfw used to strip away '#', I did not want to change this behaviour. If a rule only contains a comment ipfw add 1000 // this rule is just a comment then it is stored as a 'count' rule (this is also to remind the user that scanning through a rule is expensive). * improve handling of flags (still to be completed). ipfw_main() was written thinking of 'one rule per ipfw invocation', and so flags are set and never cleared. With readfile/preprocessor support, this changes and certain flags should be reset on each line. For the time being, only fix handling of '-a' which differentiates the "list" and "show" commands. * rework the preprocessor support -- ipfw_main() already had most of the parsing code, so i have moved in there the only missing bit (stripping away '#' and comments) and removed the parsing from ipfw_readfile(). Also, add some more options (such as -c, -N, -S) to the readfile section. MFC after: 3 days
2003-07-12 06:53:16 +00:00
char const *comma = "";
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
int i;
uint8_t set = cmd->arg1 & 0xff;
uint8_t clear = (cmd->arg1 >> 8) & 0xff;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (list == f_tcpflags && set == TH_SYN && clear == TH_ACK) {
bprintf(bp, " setup");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
return;
}
bprintf(bp, " %s ", name);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
for (i=0; list[i].x != 0; i++) {
if (set & list[i].x) {
set &= ~list[i].x;
bprintf(bp, "%s%s", comma, list[i].s);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
comma = ",";
}
if (clear & list[i].x) {
clear &= ~list[i].x;
bprintf(bp, "%s!%s", comma, list[i].s);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
comma = ",";
}
}
}
* Add new "flow" table type to support N=1..5-tuple lookups * Add "flow:hash" algorithm Kernel changes: * Add O_IP_FLOW_LOOKUP opcode to support "flow" lookups * Add IPFW_TABLE_FLOW table type * Add "struct tflow_entry" as strage for 6-tuple flows * Add "flow:hash" algorithm. Basically it is auto-growing chained hash table. Additionally, we store mask of fields we need to compare in each instance/ * Increase ipfw_obj_tentry size by adding struct tflow_entry * Add per-algorithm stat (ifpw_ta_tinfo) to ipfw_xtable_info * Increase algoname length: 32 -> 64 (algo options passed there as string) * Assume every table type can be customized by flags, use u8 to store "tflags" field. * Simplify ipfw_find_table_entry() by providing @tentry directly to algo callback. * Fix bug in cidr:chash resize procedure. Userland changes: * add "flow table(NAME)" syntax to support n-tuple checking tables. * make fill_flags() separate function to ease working with _s_x arrays * change "table info" output to reflect longer "type" fields Syntax: ipfw table fl2 create type flow:[src-ip][,proto][,src-port][,dst-ip][dst-port] [algo flow:hash] Examples: 0:02 [2] zfscurr0# ipfw table fl2 create type flow:src-ip,proto,dst-port algo flow:hash 0:02 [2] zfscurr0# ipfw table fl2 info +++ table(fl2), set(0) +++ kindex: 0, type: flow:src-ip,proto,dst-port valtype: number, references: 0 algorithm: flow:hash items: 0, size: 280 0:02 [2] zfscurr0# ipfw table fl2 add 2a02:6b8::333,tcp,443 45000 0:02 [2] zfscurr0# ipfw table fl2 add 10.0.0.92,tcp,80 22000 0:02 [2] zfscurr0# ipfw table fl2 list +++ table(fl2), set(0) +++ 2a02:6b8::333,6,443 45000 10.0.0.92,6,80 22000 0:02 [2] zfscurr0# ipfw add 200 count tcp from me to 78.46.89.105 80 flow 'table(fl2)' 00200 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 0:03 [2] zfscurr0# ipfw show 00200 0 0 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 617 59416 allow ip from any to any 0:03 [2] zfscurr0# telnet -s 10.0.0.92 78.46.89.105 80 Trying 78.46.89.105... .. 0:04 [2] zfscurr0# ipfw show 00200 5 272 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 682 66733 allow ip from any to any
2014-07-31 20:08:19 +00:00
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
/*
* Print the ip address contained in a command.
*/
static void
print_ip(struct buf_pr *bp, struct format_opts *fo, ipfw_insn_ip *cmd,
char const *s)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{
struct hostent *he = NULL;
struct in_addr *ia;
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
uint32_t len = F_LEN((ipfw_insn *)cmd);
uint32_t *a = ((ipfw_insn_u32 *)cmd)->d;
char *t;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (cmd->o.opcode == O_IP_DST_LOOKUP && len > F_INSN_SIZE(ipfw_insn_u32)) {
uint32_t d = a[1];
const char *arg = "<invalid>";
if (d < sizeof(lookup_key)/sizeof(lookup_key[0]))
arg = match_value(rule_options, lookup_key[d]);
t = table_search_ctlv(fo->tstate, ((ipfw_insn *)cmd)->arg1);
bprintf(bp, "%s lookup %s %s", cmd->o.len & F_NOT ? " not": "",
arg, t);
return;
}
bprintf(bp, "%s%s ", cmd->o.len & F_NOT ? " not": "", s);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (cmd->o.opcode == O_IP_SRC_ME || cmd->o.opcode == O_IP_DST_ME) {
bprintf(bp, "me");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
return;
}
if (cmd->o.opcode == O_IP_SRC_LOOKUP ||
cmd->o.opcode == O_IP_DST_LOOKUP) {
t = table_search_ctlv(fo->tstate, ((ipfw_insn *)cmd)->arg1);
bprintf(bp, "table(%s", t);
if (len == F_INSN_SIZE(ipfw_insn_u32))
bprintf(bp, ",%u", *a);
bprintf(bp, ")");
return;
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (cmd->o.opcode == O_IP_SRC_SET || cmd->o.opcode == O_IP_DST_SET) {
uint32_t x, *map = (uint32_t *)&(cmd->mask);
int i, j;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
char comma = '{';
x = cmd->o.arg1 - 1;
x = htonl( ~x );
cmd->addr.s_addr = htonl(cmd->addr.s_addr);
bprintf(bp, "%s/%d", inet_ntoa(cmd->addr),
contigmask((uint8_t *)&x, 32));
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
x = cmd->addr.s_addr = htonl(cmd->addr.s_addr);
x &= 0xff; /* base */
/*
* Print bits and ranges.
* Locate first bit set (i), then locate first bit unset (j).
* If we have 3+ consecutive bits set, then print them as a
* range, otherwise only print the initial bit and rescan.
*/
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
for (i=0; i < cmd->o.arg1; i++)
if (map[i/32] & (1<<(i & 31))) {
for (j=i+1; j < cmd->o.arg1; j++)
if (!(map[ j/32] & (1<<(j & 31))))
break;
bprintf(bp, "%c%d", comma, i+x);
if (j>i+2) { /* range has at least 3 elements */
bprintf(bp, "-%d", j-1+x);
i = j-1;
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
comma = ',';
}
bprintf(bp, "}");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
return;
}
/*
* len == 2 indicates a single IP, whereas lists of 1 or more
* addr/mask pairs have len = (2n+1). We convert len to n so we
* use that to count the number of entries.
*/
for (len = len / 2; len > 0; len--, a += 2) {
int mb = /* mask length */
(cmd->o.opcode == O_IP_SRC || cmd->o.opcode == O_IP_DST) ?
32 : contigmask((uint8_t *)&(a[1]), 32);
if (mb == 32 && co.do_resolv)
he = gethostbyaddr((char *)&(a[0]), sizeof(u_long), AF_INET);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (he != NULL) /* resolved to name */
bprintf(bp, "%s", he->h_name);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
else if (mb == 0) /* any */
bprintf(bp, "any");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
else { /* numeric IP followed by some kind of mask */
ia = (struct in_addr *)&a[0];
bprintf(bp, "%s", inet_ntoa(*ia));
if (mb < 0) {
ia = (struct in_addr *)&a[1];
bprintf(bp, ":%s", inet_ntoa(*ia));
} else if (mb < 32)
bprintf(bp, "/%d", mb);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
if (len > 1)
bprintf(bp, ",");
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
/*
* prints a MAC address/mask pair
*/
static void
print_mac(struct buf_pr *bp, uint8_t *addr, uint8_t *mask)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{
int l = contigmask(mask, 48);
if (l == 0)
bprintf(bp, " any");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
else {
bprintf(bp, " %02x:%02x:%02x:%02x:%02x:%02x",
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
if (l == -1)
bprintf(bp, "&%02x:%02x:%02x:%02x:%02x:%02x",
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
mask[0], mask[1], mask[2],
mask[3], mask[4], mask[5]);
else if (l < 48)
bprintf(bp, "/%d", l);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
}
static void
fill_icmptypes(ipfw_insn_u32 *cmd, char *av)
{
uint8_t type;
cmd->d[0] = 0;
while (*av) {
if (*av == ',')
av++;
type = strtoul(av, &av, 0);
if (*av != ',' && *av != '\0')
errx(EX_DATAERR, "invalid ICMP type");
if (type > 31)
errx(EX_DATAERR, "ICMP type out of range");
cmd->d[0] |= 1 << type;
}
cmd->o.opcode = O_ICMPTYPE;
cmd->o.len |= F_INSN_SIZE(ipfw_insn_u32);
}
static void
print_icmptypes(struct buf_pr *bp, ipfw_insn_u32 *cmd)
{
int i;
char sep= ' ';
bprintf(bp, " icmptypes");
for (i = 0; i < 32; i++) {
if ( (cmd->d[0] & (1 << (i))) == 0)
continue;
bprintf(bp, "%c%d", sep, i);
sep = ',';
}
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
static void
print_dscp(struct buf_pr *bp, ipfw_insn_u32 *cmd)
{
int i, c;
uint32_t *v;
char sep= ' ';
const char *code;
bprintf(bp, " dscp");
i = 0;
c = 0;
v = cmd->d;
while (i < 64) {
if (*v & (1 << i)) {
if ((code = match_value(f_ipdscp, i)) != NULL)
bprintf(bp, "%c%s", sep, code);
else
bprintf(bp, "%c%d", sep, i);
sep = ',';
}
if ((++i % 32) == 0)
v++;
}
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
/*
* show_ipfw() prints the body of an ipfw rule.
* Because the standard rule has at least proto src_ip dst_ip, we use
* a helper function to produce these entries if not provided explicitly.
* The first argument is the list of fields we have, the second is
* the list of fields we want to be printed.
*
* Special cases if we have provided a MAC header:
* + if the rule does not contain IP addresses/ports, do not print them;
* + if the rule does not contain an IP proto, print "all" instead of "ip";
*
* Once we have 'have_options', IP header fields are printed as options.
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
*/
#define HAVE_PROTO 0x0001
#define HAVE_SRCIP 0x0002
#define HAVE_DSTIP 0x0004
#define HAVE_PROTO4 0x0008
#define HAVE_PROTO6 0x0010
#define HAVE_IP 0x0100
#define HAVE_OPTIONS 0x8000
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
static void
show_prerequisites(struct buf_pr *bp, int *flags, int want, int cmd)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{
(void)cmd; /* UNUSED */
if (co.comment_only)
return;
if ( (*flags & HAVE_IP) == HAVE_IP)
*flags |= HAVE_OPTIONS;
if ( !(*flags & HAVE_OPTIONS)) {
if ( !(*flags & HAVE_PROTO) && (want & HAVE_PROTO)) {
if ( (*flags & HAVE_PROTO4))
bprintf(bp, " ip4");
else if ( (*flags & HAVE_PROTO6))
bprintf(bp, " ip6");
else
bprintf(bp, " ip");
}
if ( !(*flags & HAVE_SRCIP) && (want & HAVE_SRCIP))
bprintf(bp, " from any");
if ( !(*flags & HAVE_DSTIP) && (want & HAVE_DSTIP))
bprintf(bp, " to any");
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
*flags |= want;
}
static void
show_static_rule(struct cmdline_opts *co, struct format_opts *fo,
struct buf_pr *bp, struct ip_fw_rule *rule, struct ip_fw_bcounter *cntr)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{
static int twidth = 0;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
int l;
ipfw_insn *cmd, *tagptr = NULL;
const char *comment = NULL; /* ptr to comment if we have one */
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
int proto = 0; /* default */
int flags = 0; /* prerequisites */
ipfw_insn_log *logptr = NULL; /* set if we find an O_LOG */
ipfw_insn_altq *altqptr = NULL; /* set if we find an O_ALTQ */
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
int or_block = 0; /* we are in an or block */
uint32_t uval;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if ((fo->set_mask & (1 << rule->set)) == 0) {
/* disabled mask */
if (!co->show_sets)
One bugfix and one new feature. The bugfix (ipfw2.c) makes the handling of port numbers with a dash in the name, e.g. ftp-data, consistent with old ipfw: use \\ before the - to consider it as part of the name and not a range separator. The new feature (all this description will go in the manpage): each rule now belongs to one of 32 different sets, which can be optionally specified in the following form: ipfw add 100 set 23 allow ip from any to any If "set N" is not specified, the rule belongs to set 0. Individual sets can be disabled, enabled, and deleted with the commands: ipfw disable set N ipfw enable set N ipfw delete set N Enabling/disabling of a set is atomic. Rules belonging to a disabled set are skipped during packet matching, and they are not listed unless you use the '-S' flag in the show/list commands. Note that dynamic rules, once created, are always active until they expire or their parent rule is deleted. Set 31 is reserved for the default rule and cannot be disabled. All sets are enabled by default. The enable/disable status of the sets can be shown with the command ipfw show sets Hopefully, this feature will make life easier to those who want to have atomic ruleset addition/deletion/tests. Examples: To add a set of rules atomically: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 To delete a set of rules atomically ipfw disable set 18 ipfw delete set 18 ipfw enable set 18 To test a ruleset and disable it and regain control if something goes wrong: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 ; echo "done "; sleep 30 && ipfw disable set 18 here if everything goes well, you press control-C before the "sleep" terminates, and your ruleset will be left active. Otherwise, e.g. if you cannot access your box, the ruleset will be disabled after the sleep terminates. I think there is only one more thing that one might want, namely a command to assign all rules in set X to set Y, so one can test a ruleset using the above mechanisms, and once it is considered acceptable, make it part of an existing ruleset.
2002-08-10 04:37:32 +00:00
return;
else
bprintf(bp, "# DISABLED ");
One bugfix and one new feature. The bugfix (ipfw2.c) makes the handling of port numbers with a dash in the name, e.g. ftp-data, consistent with old ipfw: use \\ before the - to consider it as part of the name and not a range separator. The new feature (all this description will go in the manpage): each rule now belongs to one of 32 different sets, which can be optionally specified in the following form: ipfw add 100 set 23 allow ip from any to any If "set N" is not specified, the rule belongs to set 0. Individual sets can be disabled, enabled, and deleted with the commands: ipfw disable set N ipfw enable set N ipfw delete set N Enabling/disabling of a set is atomic. Rules belonging to a disabled set are skipped during packet matching, and they are not listed unless you use the '-S' flag in the show/list commands. Note that dynamic rules, once created, are always active until they expire or their parent rule is deleted. Set 31 is reserved for the default rule and cannot be disabled. All sets are enabled by default. The enable/disable status of the sets can be shown with the command ipfw show sets Hopefully, this feature will make life easier to those who want to have atomic ruleset addition/deletion/tests. Examples: To add a set of rules atomically: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 To delete a set of rules atomically ipfw disable set 18 ipfw delete set 18 ipfw enable set 18 To test a ruleset and disable it and regain control if something goes wrong: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 ; echo "done "; sleep 30 && ipfw disable set 18 here if everything goes well, you press control-C before the "sleep" terminates, and your ruleset will be left active. Otherwise, e.g. if you cannot access your box, the ruleset will be disabled after the sleep terminates. I think there is only one more thing that one might want, namely a command to assign all rules in set X to set Y, so one can test a ruleset using the above mechanisms, and once it is considered acceptable, make it part of an existing ruleset.
2002-08-10 04:37:32 +00:00
}
bprintf(bp, "%05u ", rule->rulenum);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
/* Print counters if enabled */
if (fo->pcwidth > 0 || fo->bcwidth > 0) {
pr_u64(bp, &cntr->pcnt, fo->pcwidth);
pr_u64(bp, &cntr->bcnt, fo->bcwidth);
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (co->do_time == 2)
bprintf(bp, "%10u ", cntr->timestamp);
else if (co->do_time == 1) {
char timestr[30];
time_t t = (time_t)0;
if (twidth == 0) {
strcpy(timestr, ctime(&t));
*strchr(timestr, '\n') = '\0';
twidth = strlen(timestr);
}
if (cntr->timestamp > 0) {
t = _long_to_time(cntr->timestamp);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
strcpy(timestr, ctime(&t));
*strchr(timestr, '\n') = '\0';
bprintf(bp, "%s ", timestr);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
} else {
bprintf(bp, "%*s", twidth, " ");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
}
if (co->show_sets)
bprintf(bp, "set %d ", rule->set);
One bugfix and one new feature. The bugfix (ipfw2.c) makes the handling of port numbers with a dash in the name, e.g. ftp-data, consistent with old ipfw: use \\ before the - to consider it as part of the name and not a range separator. The new feature (all this description will go in the manpage): each rule now belongs to one of 32 different sets, which can be optionally specified in the following form: ipfw add 100 set 23 allow ip from any to any If "set N" is not specified, the rule belongs to set 0. Individual sets can be disabled, enabled, and deleted with the commands: ipfw disable set N ipfw enable set N ipfw delete set N Enabling/disabling of a set is atomic. Rules belonging to a disabled set are skipped during packet matching, and they are not listed unless you use the '-S' flag in the show/list commands. Note that dynamic rules, once created, are always active until they expire or their parent rule is deleted. Set 31 is reserved for the default rule and cannot be disabled. All sets are enabled by default. The enable/disable status of the sets can be shown with the command ipfw show sets Hopefully, this feature will make life easier to those who want to have atomic ruleset addition/deletion/tests. Examples: To add a set of rules atomically: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 To delete a set of rules atomically ipfw disable set 18 ipfw delete set 18 ipfw enable set 18 To test a ruleset and disable it and regain control if something goes wrong: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 ; echo "done "; sleep 30 && ipfw disable set 18 here if everything goes well, you press control-C before the "sleep" terminates, and your ruleset will be left active. Otherwise, e.g. if you cannot access your box, the ruleset will be disabled after the sleep terminates. I think there is only one more thing that one might want, namely a command to assign all rules in set X to set Y, so one can test a ruleset using the above mechanisms, and once it is considered acceptable, make it part of an existing ruleset.
2002-08-10 04:37:32 +00:00
/*
* print the optional "match probability"
*/
if (rule->cmd_len > 0) {
cmd = rule->cmd ;
if (cmd->opcode == O_PROB) {
ipfw_insn_u32 *p = (ipfw_insn_u32 *)cmd;
double d = 1.0 * p->d[0];
d = (d / 0x7fffffff);
bprintf(bp, "prob %f ", d);
}
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
/*
* first print actions
*/
for (l = rule->cmd_len - rule->act_ofs, cmd = ACTION_PTR(rule);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
l > 0 ; l -= F_LEN(cmd), cmd += F_LEN(cmd)) {
switch(cmd->opcode) {
case O_CHECK_STATE:
bprintf(bp, "check-state");
/* avoid printing anything else */
flags = HAVE_PROTO | HAVE_SRCIP |
HAVE_DSTIP | HAVE_IP;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case O_ACCEPT:
bprintf(bp, "allow");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case O_COUNT:
bprintf(bp, "count");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case O_DENY:
bprintf(bp, "deny");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case O_REJECT:
if (cmd->arg1 == ICMP_REJECT_RST)
bprintf(bp, "reset");
else if (cmd->arg1 == ICMP_UNREACH_HOST)
bprintf(bp, "reject");
else
print_reject_code(bp, cmd->arg1);
break;
case O_UNREACH6:
if (cmd->arg1 == ICMP6_UNREACH_RST)
bprintf(bp, "reset6");
else
print_unreach6_code(cmd->arg1);
break;
case O_SKIPTO:
bprint_uint_arg(bp, "skipto ", cmd->arg1);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case O_PIPE:
bprint_uint_arg(bp, "pipe ", cmd->arg1);
break;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case O_QUEUE:
bprint_uint_arg(bp, "queue ", cmd->arg1);
break;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case O_DIVERT:
bprint_uint_arg(bp, "divert ", cmd->arg1);
break;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case O_TEE:
bprint_uint_arg(bp, "tee ", cmd->arg1);
break;
case O_NETGRAPH:
bprint_uint_arg(bp, "netgraph ", cmd->arg1);
break;
case O_NGTEE:
bprint_uint_arg(bp, "ngtee ", cmd->arg1);
break;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case O_FORWARD_IP:
{
ipfw_insn_sa *s = (ipfw_insn_sa *)cmd;
if (s->sa.sin_addr.s_addr == INADDR_ANY) {
bprintf(bp, "fwd tablearg");
} else {
bprintf(bp, "fwd %s",inet_ntoa(s->sa.sin_addr));
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (s->sa.sin_port)
bprintf(bp, ",%d", s->sa.sin_port);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
break;
case O_FORWARD_IP6:
{
char buf[4 + INET6_ADDRSTRLEN + 1];
ipfw_insn_sa6 *s = (ipfw_insn_sa6 *)cmd;
bprintf(bp, "fwd %s", inet_ntop(AF_INET6,
&s->sa.sin6_addr, buf, sizeof(buf)));
if (s->sa.sin6_port)
bprintf(bp, ",%d", s->sa.sin6_port);
}
break;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case O_LOG: /* O_LOG is printed last */
logptr = (ipfw_insn_log *)cmd;
break;
case O_ALTQ: /* O_ALTQ is printed after O_LOG */
altqptr = (ipfw_insn_altq *)cmd;
break;
case O_TAG:
tagptr = cmd;
break;
case O_NAT:
if (cmd->arg1 != 0)
bprint_uint_arg(bp, "nat ", cmd->arg1);
else
bprintf(bp, "nat global");
break;
Add code to allow the system to handle multiple routing tables. This particular implementation is designed to be fully backwards compatible and to be MFC-able to 7.x (and 6.x) Currently the only protocol that can make use of the multiple tables is IPv4 Similar functionality exists in OpenBSD and Linux. From my notes: ----- One thing where FreeBSD has been falling behind, and which by chance I have some time to work on is "policy based routing", which allows different packet streams to be routed by more than just the destination address. Constraints: ------------ I want to make some form of this available in the 6.x tree (and by extension 7.x) , but FreeBSD in general needs it so I might as well do it in -current and back port the portions I need. One of the ways that this can be done is to have the ability to instantiate multiple kernel routing tables (which I will now refer to as "Forwarding Information Bases" or "FIBs" for political correctness reasons). Which FIB a particular packet uses to make the next hop decision can be decided by a number of mechanisms. The policies these mechanisms implement are the "Policies" referred to in "Policy based routing". One of the constraints I have if I try to back port this work to 6.x is that it must be implemented as a EXTENSION to the existing ABIs in 6.x so that third party applications do not need to be recompiled in timespan of the branch. This first version will not have some of the bells and whistles that will come with later versions. It will, for example, be limited to 16 tables in the first commit. Implementation method, Compatible version. (part 1) ------------------------------- For this reason I have implemented a "sufficient subset" of a multiple routing table solution in Perforce, and back-ported it to 6.x. (also in Perforce though not always caught up with what I have done in -current/P4). The subset allows a number of FIBs to be defined at compile time (8 is sufficient for my purposes in 6.x) and implements the changes needed to allow IPV4 to use them. I have not done the changes for ipv6 simply because I do not need it, and I do not have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it. Other protocol families are left untouched and should there be users with proprietary protocol families, they should continue to work and be oblivious to the existence of the extra FIBs. To understand how this is done, one must know that the current FIB code starts everything off with a single dimensional array of pointers to FIB head structures (One per protocol family), each of which in turn points to the trie of routes available to that family. The basic change in the ABI compatible version of the change is to extent that array to be a 2 dimensional array, so that instead of protocol family X looking at rt_tables[X] for the table it needs, it looks at rt_tables[Y][X] when for all protocol families except ipv4 Y is always 0. Code that is unaware of the change always just sees the first row of the table, which of course looks just like the one dimensional array that existed before. The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign() are all maintained, but refer only to the first row of the array, so that existing callers in proprietary protocols can continue to do the "right thing". Some new entry points are added, for the exclusive use of ipv4 code called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(), which have an extra argument which refers the code to the correct row. In addition, there are some new entry points (currently called rtalloc_fib() and friends) that check the Address family being looked up and call either rtalloc() (and friends) if the protocol is not IPv4 forcing the action to row 0 or to the appropriate row if it IS IPv4 (and that info is available). These are for calling from code that is not specific to any particular protocol. The way these are implemented would change in the non ABI preserving code to be added later. One feature of the first version of the code is that for ipv4, the interface routes show up automatically on all the FIBs, so that no matter what FIB you select you always have the basic direct attached hosts available to you. (rtinit() does this automatically). You CAN delete an interface route from one FIB should you want to but by default it's there. ARP information is also available in each FIB. It's assumed that the same machine would have the same MAC address, regardless of which FIB you are using to get to it. This brings us as to how the correct FIB is selected for an outgoing IPV4 packet. Firstly, all packets have a FIB associated with them. if nothing has been done to change it, it will be FIB 0. The FIB is changed in the following ways. Packets fall into one of a number of classes. 1/ locally generated packets, coming from a socket/PCB. Such packets select a FIB from a number associated with the socket/PCB. This in turn is inherited from the process, but can be changed by a socket option. The process in turn inherits it on fork. I have written a utility call setfib that acts a bit like nice.. setfib -3 ping target.example.com # will use fib 3 for ping. It is an obvious extension to make it a property of a jail but I have not done so. It can be achieved by combining the setfib and jail commands. 2/ packets received on an interface for forwarding. By default these packets would use table 0, (or possibly a number settable in a sysctl(not yet)). but prior to routing the firewall can inspect them (see below). (possibly in the future you may be able to associate a FIB with packets received on an interface.. An ifconfig arg, but not yet.) 3/ packets inspected by a packet classifier, which can arbitrarily associate a fib with it on a packet by packet basis. A fib assigned to a packet by a packet classifier (such as ipfw) would over-ride a fib associated by a more default source. (such as cases 1 or 2). 4/ a tcp listen socket associated with a fib will generate accept sockets that are associated with that same fib. 5/ Packets generated in response to some other packet (e.g. reset or icmp packets). These should use the FIB associated with the packet being reponded to. 6/ Packets generated during encapsulation. gif, tun and other tunnel interfaces will encapsulate using the FIB that was in effect withthe proces that set up the tunnel. thus setfib 1 ifconfig gif0 [tunnel instructions] will set the fib for the tunnel to use to be fib 1. Routing messages would be associated with their process, and thus select one FIB or another. messages from the kernel would be associated with the fib they refer to and would only be received by a routing socket associated with that fib. (not yet implemented) In addition Netstat has been edited to be able to cope with the fact that the array is now 2 dimensional. (It looks in system memory using libkvm (!)). Old versions of netstat see only the first FIB. In addition two sysctls are added to give: a) the number of FIBs compiled in (active) b) the default FIB of the calling process. Early testing experience: ------------------------- Basically our (IronPort's) appliance does this functionality already using ipfw fwd but that method has some drawbacks. For example, It can't fully simulate a routing table because it can't influence the socket's choice of local address when a connect() is done. Testing during the generating of these changes has been remarkably smooth so far. Multiple tables have co-existed with no notable side effects, and packets have been routes accordingly. ipfw has grown 2 new keywords: setfib N ip from anay to any count ip from any to any fib N In pf there seems to be a requirement to be able to give symbolic names to the fibs but I do not have that capacity. I am not sure if it is required. SCTP has interestingly enough built in support for this, called VRFs in Cisco parlance. it will be interesting to see how that handles it when it suddenly actually does something. Where to next: -------------------- After committing the ABI compatible version and MFCing it, I'd like to proceed in a forward direction in -current. this will result in some roto-tilling in the routing code. Firstly: the current code's idea of having a separate tree per protocol family, all of the same format, and pointed to by the 1 dimensional array is a bit silly. Especially when one considers that there is code that makes assumptions about every protocol having the same internal structures there. Some protocols don't WANT that sort of structure. (for example the whole idea of a netmask is foreign to appletalk). This needs to be made opaque to the external code. My suggested first change is to add routing method pointers to the 'domain' structure, along with information pointing the data. instead of having an array of pointers to uniform structures, there would be an array pointing to the 'domain' structures for each protocol address domain (protocol family), and the methods this reached would be called. The methods would have an argument that gives FIB number, but the protocol would be free to ignore it. When the ABI can be changed it raises the possibilty of the addition of a fib entry into the "struct route". Currently, the structure contains the sockaddr of the desination, and the resulting fib entry. To make this work fully, one could add a fib number so that given an address and a fib, one can find the third element, the fib entry. Interaction with the ARP layer/ LL layer would need to be revisited as well. Qing Li has been working on this already. This work was sponsored by Ironport Systems/Cisco Reviewed by: several including rwatson, bz and mlair (parts each) Obtained from: Ironport systems/Cisco
2008-05-09 23:03:00 +00:00
case O_SETFIB:
bprint_uint_arg(bp, "setfib ", cmd->arg1 & 0x7FFF);
Add code to allow the system to handle multiple routing tables. This particular implementation is designed to be fully backwards compatible and to be MFC-able to 7.x (and 6.x) Currently the only protocol that can make use of the multiple tables is IPv4 Similar functionality exists in OpenBSD and Linux. From my notes: ----- One thing where FreeBSD has been falling behind, and which by chance I have some time to work on is "policy based routing", which allows different packet streams to be routed by more than just the destination address. Constraints: ------------ I want to make some form of this available in the 6.x tree (and by extension 7.x) , but FreeBSD in general needs it so I might as well do it in -current and back port the portions I need. One of the ways that this can be done is to have the ability to instantiate multiple kernel routing tables (which I will now refer to as "Forwarding Information Bases" or "FIBs" for political correctness reasons). Which FIB a particular packet uses to make the next hop decision can be decided by a number of mechanisms. The policies these mechanisms implement are the "Policies" referred to in "Policy based routing". One of the constraints I have if I try to back port this work to 6.x is that it must be implemented as a EXTENSION to the existing ABIs in 6.x so that third party applications do not need to be recompiled in timespan of the branch. This first version will not have some of the bells and whistles that will come with later versions. It will, for example, be limited to 16 tables in the first commit. Implementation method, Compatible version. (part 1) ------------------------------- For this reason I have implemented a "sufficient subset" of a multiple routing table solution in Perforce, and back-ported it to 6.x. (also in Perforce though not always caught up with what I have done in -current/P4). The subset allows a number of FIBs to be defined at compile time (8 is sufficient for my purposes in 6.x) and implements the changes needed to allow IPV4 to use them. I have not done the changes for ipv6 simply because I do not need it, and I do not have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it. Other protocol families are left untouched and should there be users with proprietary protocol families, they should continue to work and be oblivious to the existence of the extra FIBs. To understand how this is done, one must know that the current FIB code starts everything off with a single dimensional array of pointers to FIB head structures (One per protocol family), each of which in turn points to the trie of routes available to that family. The basic change in the ABI compatible version of the change is to extent that array to be a 2 dimensional array, so that instead of protocol family X looking at rt_tables[X] for the table it needs, it looks at rt_tables[Y][X] when for all protocol families except ipv4 Y is always 0. Code that is unaware of the change always just sees the first row of the table, which of course looks just like the one dimensional array that existed before. The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign() are all maintained, but refer only to the first row of the array, so that existing callers in proprietary protocols can continue to do the "right thing". Some new entry points are added, for the exclusive use of ipv4 code called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(), which have an extra argument which refers the code to the correct row. In addition, there are some new entry points (currently called rtalloc_fib() and friends) that check the Address family being looked up and call either rtalloc() (and friends) if the protocol is not IPv4 forcing the action to row 0 or to the appropriate row if it IS IPv4 (and that info is available). These are for calling from code that is not specific to any particular protocol. The way these are implemented would change in the non ABI preserving code to be added later. One feature of the first version of the code is that for ipv4, the interface routes show up automatically on all the FIBs, so that no matter what FIB you select you always have the basic direct attached hosts available to you. (rtinit() does this automatically). You CAN delete an interface route from one FIB should you want to but by default it's there. ARP information is also available in each FIB. It's assumed that the same machine would have the same MAC address, regardless of which FIB you are using to get to it. This brings us as to how the correct FIB is selected for an outgoing IPV4 packet. Firstly, all packets have a FIB associated with them. if nothing has been done to change it, it will be FIB 0. The FIB is changed in the following ways. Packets fall into one of a number of classes. 1/ locally generated packets, coming from a socket/PCB. Such packets select a FIB from a number associated with the socket/PCB. This in turn is inherited from the process, but can be changed by a socket option. The process in turn inherits it on fork. I have written a utility call setfib that acts a bit like nice.. setfib -3 ping target.example.com # will use fib 3 for ping. It is an obvious extension to make it a property of a jail but I have not done so. It can be achieved by combining the setfib and jail commands. 2/ packets received on an interface for forwarding. By default these packets would use table 0, (or possibly a number settable in a sysctl(not yet)). but prior to routing the firewall can inspect them (see below). (possibly in the future you may be able to associate a FIB with packets received on an interface.. An ifconfig arg, but not yet.) 3/ packets inspected by a packet classifier, which can arbitrarily associate a fib with it on a packet by packet basis. A fib assigned to a packet by a packet classifier (such as ipfw) would over-ride a fib associated by a more default source. (such as cases 1 or 2). 4/ a tcp listen socket associated with a fib will generate accept sockets that are associated with that same fib. 5/ Packets generated in response to some other packet (e.g. reset or icmp packets). These should use the FIB associated with the packet being reponded to. 6/ Packets generated during encapsulation. gif, tun and other tunnel interfaces will encapsulate using the FIB that was in effect withthe proces that set up the tunnel. thus setfib 1 ifconfig gif0 [tunnel instructions] will set the fib for the tunnel to use to be fib 1. Routing messages would be associated with their process, and thus select one FIB or another. messages from the kernel would be associated with the fib they refer to and would only be received by a routing socket associated with that fib. (not yet implemented) In addition Netstat has been edited to be able to cope with the fact that the array is now 2 dimensional. (It looks in system memory using libkvm (!)). Old versions of netstat see only the first FIB. In addition two sysctls are added to give: a) the number of FIBs compiled in (active) b) the default FIB of the calling process. Early testing experience: ------------------------- Basically our (IronPort's) appliance does this functionality already using ipfw fwd but that method has some drawbacks. For example, It can't fully simulate a routing table because it can't influence the socket's choice of local address when a connect() is done. Testing during the generating of these changes has been remarkably smooth so far. Multiple tables have co-existed with no notable side effects, and packets have been routes accordingly. ipfw has grown 2 new keywords: setfib N ip from anay to any count ip from any to any fib N In pf there seems to be a requirement to be able to give symbolic names to the fibs but I do not have that capacity. I am not sure if it is required. SCTP has interestingly enough built in support for this, called VRFs in Cisco parlance. it will be interesting to see how that handles it when it suddenly actually does something. Where to next: -------------------- After committing the ABI compatible version and MFCing it, I'd like to proceed in a forward direction in -current. this will result in some roto-tilling in the routing code. Firstly: the current code's idea of having a separate tree per protocol family, all of the same format, and pointed to by the 1 dimensional array is a bit silly. Especially when one considers that there is code that makes assumptions about every protocol having the same internal structures there. Some protocols don't WANT that sort of structure. (for example the whole idea of a netmask is foreign to appletalk). This needs to be made opaque to the external code. My suggested first change is to add routing method pointers to the 'domain' structure, along with information pointing the data. instead of having an array of pointers to uniform structures, there would be an array pointing to the 'domain' structures for each protocol address domain (protocol family), and the methods this reached would be called. The methods would have an argument that gives FIB number, but the protocol would be free to ignore it. When the ABI can be changed it raises the possibilty of the addition of a fib entry into the "struct route". Currently, the structure contains the sockaddr of the desination, and the resulting fib entry. To make this work fully, one could add a fib number so that given an address and a fib, one can find the third element, the fib entry. Interaction with the ARP layer/ LL layer would need to be revisited as well. Qing Li has been working on this already. This work was sponsored by Ironport Systems/Cisco Reviewed by: several including rwatson, bz and mlair (parts each) Obtained from: Ironport systems/Cisco
2008-05-09 23:03:00 +00:00
break;
case O_SETDSCP:
{
const char *code;
if (cmd->arg1 == IP_FW_TARG) {
bprint_uint_arg(bp, "setdscp ", cmd->arg1);
break;
}
uval = cmd->arg1 & 0x3F;
if ((code = match_value(f_ipdscp, uval)) != NULL)
bprintf(bp, "setdscp %s", code);
else
bprint_uint_arg(bp, "setdscp ", uval);
}
break;
case O_REASS:
bprintf(bp, "reass");
break;
case O_CALLRETURN:
if (cmd->len & F_NOT)
bprintf(bp, "return");
else
bprint_uint_arg(bp, "call ", cmd->arg1);
break;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
default:
bprintf(bp, "** unrecognized action %d len %d ",
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
cmd->opcode, cmd->len);
}
}
if (logptr) {
if (logptr->max_log > 0)
bprintf(bp, " log logamount %d", logptr->max_log);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
else
bprintf(bp, " log");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
#ifndef NO_ALTQ
if (altqptr) {
print_altq_cmd(bp, altqptr);
}
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
#endif
if (tagptr) {
if (tagptr->len & F_NOT)
bprint_uint_arg(bp, " untag ", tagptr->arg1);
else
bprint_uint_arg(bp, " tag ", tagptr->arg1);
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
/*
* then print the body.
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
*/
for (l = rule->act_ofs, cmd = rule->cmd;
l > 0 ; l -= F_LEN(cmd) , cmd += F_LEN(cmd)) {
if ((cmd->len & F_OR) || (cmd->len & F_NOT))
continue;
if (cmd->opcode == O_IP4) {
flags |= HAVE_PROTO4;
break;
} else if (cmd->opcode == O_IP6) {
flags |= HAVE_PROTO6;
break;
}
}
if (rule->flags & IPFW_RULE_NOOPT) { /* empty rules before options */
if (!co->do_compact) {
show_prerequisites(bp, &flags, HAVE_PROTO, 0);
bprintf(bp, " from any to any");
}
flags |= HAVE_IP | HAVE_OPTIONS | HAVE_PROTO |
HAVE_SRCIP | HAVE_DSTIP;
}
if (co->comment_only)
comment = "...";
for (l = rule->act_ofs, cmd = rule->cmd;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
l > 0 ; l -= F_LEN(cmd) , cmd += F_LEN(cmd)) {
/* useful alias */
ipfw_insn_u32 *cmd32 = (ipfw_insn_u32 *)cmd;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (co->comment_only) {
if (cmd->opcode != O_NOP)
continue;
bprintf(bp, " // %s\n", (char *)(cmd + 1));
return;
}
show_prerequisites(bp, &flags, 0, cmd->opcode);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
switch(cmd->opcode) {
case O_PROB:
break; /* done already */
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case O_PROBE_STATE:
break; /* no need to print anything here */
case O_IP_SRC:
case O_IP_SRC_LOOKUP:
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case O_IP_SRC_MASK:
case O_IP_SRC_ME:
case O_IP_SRC_SET:
show_prerequisites(bp, &flags, HAVE_PROTO, 0);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (!(flags & HAVE_SRCIP))
bprintf(bp, " from");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if ((cmd->len & F_OR) && !or_block)
bprintf(bp, " {");
print_ip(bp, fo, (ipfw_insn_ip *)cmd,
(flags & HAVE_OPTIONS) ? " src-ip" : "");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
flags |= HAVE_SRCIP;
break;
case O_IP_DST:
case O_IP_DST_LOOKUP:
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case O_IP_DST_MASK:
case O_IP_DST_ME:
case O_IP_DST_SET:
show_prerequisites(bp, &flags, HAVE_PROTO|HAVE_SRCIP, 0);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (!(flags & HAVE_DSTIP))
bprintf(bp, " to");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if ((cmd->len & F_OR) && !or_block)
bprintf(bp, " {");
print_ip(bp, fo, (ipfw_insn_ip *)cmd,
(flags & HAVE_OPTIONS) ? " dst-ip" : "");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
flags |= HAVE_DSTIP;
break;
case O_IP6_SRC:
case O_IP6_SRC_MASK:
case O_IP6_SRC_ME:
show_prerequisites(bp, &flags, HAVE_PROTO, 0);
if (!(flags & HAVE_SRCIP))
bprintf(bp, " from");
if ((cmd->len & F_OR) && !or_block)
bprintf(bp, " {");
print_ip6(bp, (ipfw_insn_ip6 *)cmd,
(flags & HAVE_OPTIONS) ? " src-ip6" : "");
flags |= HAVE_SRCIP | HAVE_PROTO;
break;
case O_IP6_DST:
case O_IP6_DST_MASK:
case O_IP6_DST_ME:
show_prerequisites(bp, &flags, HAVE_PROTO|HAVE_SRCIP, 0);
if (!(flags & HAVE_DSTIP))
bprintf(bp, " to");
if ((cmd->len & F_OR) && !or_block)
bprintf(bp, " {");
print_ip6(bp, (ipfw_insn_ip6 *)cmd,
(flags & HAVE_OPTIONS) ? " dst-ip6" : "");
flags |= HAVE_DSTIP;
break;
case O_FLOW6ID:
print_flow6id(bp, (ipfw_insn_u32 *) cmd );
flags |= HAVE_OPTIONS;
break;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case O_IP_DSTPORT:
show_prerequisites(bp, &flags,
HAVE_PROTO | HAVE_SRCIP |
HAVE_DSTIP | HAVE_IP, 0);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case O_IP_SRCPORT:
if (flags & HAVE_DSTIP)
flags |= HAVE_IP;
show_prerequisites(bp, &flags,
HAVE_PROTO | HAVE_SRCIP, 0);
if ((cmd->len & F_OR) && !or_block)
bprintf(bp, " {");
if (cmd->len & F_NOT)
bprintf(bp, " not");
print_newports(bp, (ipfw_insn_u16 *)cmd, proto,
(flags & HAVE_OPTIONS) ? cmd->opcode : 0);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case O_PROTO: {
struct protoent *pe = NULL;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if ((cmd->len & F_OR) && !or_block)
bprintf(bp, " {");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (cmd->len & F_NOT)
bprintf(bp, " not");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
proto = cmd->arg1;
pe = getprotobynumber(cmd->arg1);
if ((flags & (HAVE_PROTO4 | HAVE_PROTO6)) &&
!(flags & HAVE_PROTO))
show_prerequisites(bp, &flags,
HAVE_PROTO | HAVE_IP | HAVE_SRCIP |
HAVE_DSTIP | HAVE_OPTIONS, 0);
if (flags & HAVE_OPTIONS)
bprintf(bp, " proto");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (pe)
bprintf(bp, " %s", pe->p_name);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
else
bprintf(bp, " %u", cmd->arg1);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
flags |= HAVE_PROTO;
break;
2002-11-06 15:09:34 +00:00
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
default: /*options ... */
if (!(cmd->len & (F_OR|F_NOT)))
if (((cmd->opcode == O_IP6) &&
(flags & HAVE_PROTO6)) ||
((cmd->opcode == O_IP4) &&
(flags & HAVE_PROTO4)))
break;
show_prerequisites(bp, &flags, HAVE_PROTO | HAVE_SRCIP |
HAVE_DSTIP | HAVE_IP | HAVE_OPTIONS, 0);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if ((cmd->len & F_OR) && !or_block)
bprintf(bp, " {");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (cmd->len & F_NOT && cmd->opcode != O_IN)
bprintf(bp, " not");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
switch(cmd->opcode) {
case O_MACADDR2: {
ipfw_insn_mac *m = (ipfw_insn_mac *)cmd;
bprintf(bp, " MAC");
print_mac(bp, m->addr, m->mask);
print_mac(bp, m->addr + 6, m->mask + 6);
}
break;
case O_MAC_TYPE:
print_newports(bp, (ipfw_insn_u16 *)cmd,
IPPROTO_ETHERTYPE, cmd->opcode);
break;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case O_FRAG:
bprintf(bp, " frag");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
Add code to allow the system to handle multiple routing tables. This particular implementation is designed to be fully backwards compatible and to be MFC-able to 7.x (and 6.x) Currently the only protocol that can make use of the multiple tables is IPv4 Similar functionality exists in OpenBSD and Linux. From my notes: ----- One thing where FreeBSD has been falling behind, and which by chance I have some time to work on is "policy based routing", which allows different packet streams to be routed by more than just the destination address. Constraints: ------------ I want to make some form of this available in the 6.x tree (and by extension 7.x) , but FreeBSD in general needs it so I might as well do it in -current and back port the portions I need. One of the ways that this can be done is to have the ability to instantiate multiple kernel routing tables (which I will now refer to as "Forwarding Information Bases" or "FIBs" for political correctness reasons). Which FIB a particular packet uses to make the next hop decision can be decided by a number of mechanisms. The policies these mechanisms implement are the "Policies" referred to in "Policy based routing". One of the constraints I have if I try to back port this work to 6.x is that it must be implemented as a EXTENSION to the existing ABIs in 6.x so that third party applications do not need to be recompiled in timespan of the branch. This first version will not have some of the bells and whistles that will come with later versions. It will, for example, be limited to 16 tables in the first commit. Implementation method, Compatible version. (part 1) ------------------------------- For this reason I have implemented a "sufficient subset" of a multiple routing table solution in Perforce, and back-ported it to 6.x. (also in Perforce though not always caught up with what I have done in -current/P4). The subset allows a number of FIBs to be defined at compile time (8 is sufficient for my purposes in 6.x) and implements the changes needed to allow IPV4 to use them. I have not done the changes for ipv6 simply because I do not need it, and I do not have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it. Other protocol families are left untouched and should there be users with proprietary protocol families, they should continue to work and be oblivious to the existence of the extra FIBs. To understand how this is done, one must know that the current FIB code starts everything off with a single dimensional array of pointers to FIB head structures (One per protocol family), each of which in turn points to the trie of routes available to that family. The basic change in the ABI compatible version of the change is to extent that array to be a 2 dimensional array, so that instead of protocol family X looking at rt_tables[X] for the table it needs, it looks at rt_tables[Y][X] when for all protocol families except ipv4 Y is always 0. Code that is unaware of the change always just sees the first row of the table, which of course looks just like the one dimensional array that existed before. The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign() are all maintained, but refer only to the first row of the array, so that existing callers in proprietary protocols can continue to do the "right thing". Some new entry points are added, for the exclusive use of ipv4 code called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(), which have an extra argument which refers the code to the correct row. In addition, there are some new entry points (currently called rtalloc_fib() and friends) that check the Address family being looked up and call either rtalloc() (and friends) if the protocol is not IPv4 forcing the action to row 0 or to the appropriate row if it IS IPv4 (and that info is available). These are for calling from code that is not specific to any particular protocol. The way these are implemented would change in the non ABI preserving code to be added later. One feature of the first version of the code is that for ipv4, the interface routes show up automatically on all the FIBs, so that no matter what FIB you select you always have the basic direct attached hosts available to you. (rtinit() does this automatically). You CAN delete an interface route from one FIB should you want to but by default it's there. ARP information is also available in each FIB. It's assumed that the same machine would have the same MAC address, regardless of which FIB you are using to get to it. This brings us as to how the correct FIB is selected for an outgoing IPV4 packet. Firstly, all packets have a FIB associated with them. if nothing has been done to change it, it will be FIB 0. The FIB is changed in the following ways. Packets fall into one of a number of classes. 1/ locally generated packets, coming from a socket/PCB. Such packets select a FIB from a number associated with the socket/PCB. This in turn is inherited from the process, but can be changed by a socket option. The process in turn inherits it on fork. I have written a utility call setfib that acts a bit like nice.. setfib -3 ping target.example.com # will use fib 3 for ping. It is an obvious extension to make it a property of a jail but I have not done so. It can be achieved by combining the setfib and jail commands. 2/ packets received on an interface for forwarding. By default these packets would use table 0, (or possibly a number settable in a sysctl(not yet)). but prior to routing the firewall can inspect them (see below). (possibly in the future you may be able to associate a FIB with packets received on an interface.. An ifconfig arg, but not yet.) 3/ packets inspected by a packet classifier, which can arbitrarily associate a fib with it on a packet by packet basis. A fib assigned to a packet by a packet classifier (such as ipfw) would over-ride a fib associated by a more default source. (such as cases 1 or 2). 4/ a tcp listen socket associated with a fib will generate accept sockets that are associated with that same fib. 5/ Packets generated in response to some other packet (e.g. reset or icmp packets). These should use the FIB associated with the packet being reponded to. 6/ Packets generated during encapsulation. gif, tun and other tunnel interfaces will encapsulate using the FIB that was in effect withthe proces that set up the tunnel. thus setfib 1 ifconfig gif0 [tunnel instructions] will set the fib for the tunnel to use to be fib 1. Routing messages would be associated with their process, and thus select one FIB or another. messages from the kernel would be associated with the fib they refer to and would only be received by a routing socket associated with that fib. (not yet implemented) In addition Netstat has been edited to be able to cope with the fact that the array is now 2 dimensional. (It looks in system memory using libkvm (!)). Old versions of netstat see only the first FIB. In addition two sysctls are added to give: a) the number of FIBs compiled in (active) b) the default FIB of the calling process. Early testing experience: ------------------------- Basically our (IronPort's) appliance does this functionality already using ipfw fwd but that method has some drawbacks. For example, It can't fully simulate a routing table because it can't influence the socket's choice of local address when a connect() is done. Testing during the generating of these changes has been remarkably smooth so far. Multiple tables have co-existed with no notable side effects, and packets have been routes accordingly. ipfw has grown 2 new keywords: setfib N ip from anay to any count ip from any to any fib N In pf there seems to be a requirement to be able to give symbolic names to the fibs but I do not have that capacity. I am not sure if it is required. SCTP has interestingly enough built in support for this, called VRFs in Cisco parlance. it will be interesting to see how that handles it when it suddenly actually does something. Where to next: -------------------- After committing the ABI compatible version and MFCing it, I'd like to proceed in a forward direction in -current. this will result in some roto-tilling in the routing code. Firstly: the current code's idea of having a separate tree per protocol family, all of the same format, and pointed to by the 1 dimensional array is a bit silly. Especially when one considers that there is code that makes assumptions about every protocol having the same internal structures there. Some protocols don't WANT that sort of structure. (for example the whole idea of a netmask is foreign to appletalk). This needs to be made opaque to the external code. My suggested first change is to add routing method pointers to the 'domain' structure, along with information pointing the data. instead of having an array of pointers to uniform structures, there would be an array pointing to the 'domain' structures for each protocol address domain (protocol family), and the methods this reached would be called. The methods would have an argument that gives FIB number, but the protocol would be free to ignore it. When the ABI can be changed it raises the possibilty of the addition of a fib entry into the "struct route". Currently, the structure contains the sockaddr of the desination, and the resulting fib entry. To make this work fully, one could add a fib number so that given an address and a fib, one can find the third element, the fib entry. Interaction with the ARP layer/ LL layer would need to be revisited as well. Qing Li has been working on this already. This work was sponsored by Ironport Systems/Cisco Reviewed by: several including rwatson, bz and mlair (parts each) Obtained from: Ironport systems/Cisco
2008-05-09 23:03:00 +00:00
case O_FIB:
bprintf(bp, " fib %u", cmd->arg1 );
Add code to allow the system to handle multiple routing tables. This particular implementation is designed to be fully backwards compatible and to be MFC-able to 7.x (and 6.x) Currently the only protocol that can make use of the multiple tables is IPv4 Similar functionality exists in OpenBSD and Linux. From my notes: ----- One thing where FreeBSD has been falling behind, and which by chance I have some time to work on is "policy based routing", which allows different packet streams to be routed by more than just the destination address. Constraints: ------------ I want to make some form of this available in the 6.x tree (and by extension 7.x) , but FreeBSD in general needs it so I might as well do it in -current and back port the portions I need. One of the ways that this can be done is to have the ability to instantiate multiple kernel routing tables (which I will now refer to as "Forwarding Information Bases" or "FIBs" for political correctness reasons). Which FIB a particular packet uses to make the next hop decision can be decided by a number of mechanisms. The policies these mechanisms implement are the "Policies" referred to in "Policy based routing". One of the constraints I have if I try to back port this work to 6.x is that it must be implemented as a EXTENSION to the existing ABIs in 6.x so that third party applications do not need to be recompiled in timespan of the branch. This first version will not have some of the bells and whistles that will come with later versions. It will, for example, be limited to 16 tables in the first commit. Implementation method, Compatible version. (part 1) ------------------------------- For this reason I have implemented a "sufficient subset" of a multiple routing table solution in Perforce, and back-ported it to 6.x. (also in Perforce though not always caught up with what I have done in -current/P4). The subset allows a number of FIBs to be defined at compile time (8 is sufficient for my purposes in 6.x) and implements the changes needed to allow IPV4 to use them. I have not done the changes for ipv6 simply because I do not need it, and I do not have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it. Other protocol families are left untouched and should there be users with proprietary protocol families, they should continue to work and be oblivious to the existence of the extra FIBs. To understand how this is done, one must know that the current FIB code starts everything off with a single dimensional array of pointers to FIB head structures (One per protocol family), each of which in turn points to the trie of routes available to that family. The basic change in the ABI compatible version of the change is to extent that array to be a 2 dimensional array, so that instead of protocol family X looking at rt_tables[X] for the table it needs, it looks at rt_tables[Y][X] when for all protocol families except ipv4 Y is always 0. Code that is unaware of the change always just sees the first row of the table, which of course looks just like the one dimensional array that existed before. The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign() are all maintained, but refer only to the first row of the array, so that existing callers in proprietary protocols can continue to do the "right thing". Some new entry points are added, for the exclusive use of ipv4 code called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(), which have an extra argument which refers the code to the correct row. In addition, there are some new entry points (currently called rtalloc_fib() and friends) that check the Address family being looked up and call either rtalloc() (and friends) if the protocol is not IPv4 forcing the action to row 0 or to the appropriate row if it IS IPv4 (and that info is available). These are for calling from code that is not specific to any particular protocol. The way these are implemented would change in the non ABI preserving code to be added later. One feature of the first version of the code is that for ipv4, the interface routes show up automatically on all the FIBs, so that no matter what FIB you select you always have the basic direct attached hosts available to you. (rtinit() does this automatically). You CAN delete an interface route from one FIB should you want to but by default it's there. ARP information is also available in each FIB. It's assumed that the same machine would have the same MAC address, regardless of which FIB you are using to get to it. This brings us as to how the correct FIB is selected for an outgoing IPV4 packet. Firstly, all packets have a FIB associated with them. if nothing has been done to change it, it will be FIB 0. The FIB is changed in the following ways. Packets fall into one of a number of classes. 1/ locally generated packets, coming from a socket/PCB. Such packets select a FIB from a number associated with the socket/PCB. This in turn is inherited from the process, but can be changed by a socket option. The process in turn inherits it on fork. I have written a utility call setfib that acts a bit like nice.. setfib -3 ping target.example.com # will use fib 3 for ping. It is an obvious extension to make it a property of a jail but I have not done so. It can be achieved by combining the setfib and jail commands. 2/ packets received on an interface for forwarding. By default these packets would use table 0, (or possibly a number settable in a sysctl(not yet)). but prior to routing the firewall can inspect them (see below). (possibly in the future you may be able to associate a FIB with packets received on an interface.. An ifconfig arg, but not yet.) 3/ packets inspected by a packet classifier, which can arbitrarily associate a fib with it on a packet by packet basis. A fib assigned to a packet by a packet classifier (such as ipfw) would over-ride a fib associated by a more default source. (such as cases 1 or 2). 4/ a tcp listen socket associated with a fib will generate accept sockets that are associated with that same fib. 5/ Packets generated in response to some other packet (e.g. reset or icmp packets). These should use the FIB associated with the packet being reponded to. 6/ Packets generated during encapsulation. gif, tun and other tunnel interfaces will encapsulate using the FIB that was in effect withthe proces that set up the tunnel. thus setfib 1 ifconfig gif0 [tunnel instructions] will set the fib for the tunnel to use to be fib 1. Routing messages would be associated with their process, and thus select one FIB or another. messages from the kernel would be associated with the fib they refer to and would only be received by a routing socket associated with that fib. (not yet implemented) In addition Netstat has been edited to be able to cope with the fact that the array is now 2 dimensional. (It looks in system memory using libkvm (!)). Old versions of netstat see only the first FIB. In addition two sysctls are added to give: a) the number of FIBs compiled in (active) b) the default FIB of the calling process. Early testing experience: ------------------------- Basically our (IronPort's) appliance does this functionality already using ipfw fwd but that method has some drawbacks. For example, It can't fully simulate a routing table because it can't influence the socket's choice of local address when a connect() is done. Testing during the generating of these changes has been remarkably smooth so far. Multiple tables have co-existed with no notable side effects, and packets have been routes accordingly. ipfw has grown 2 new keywords: setfib N ip from anay to any count ip from any to any fib N In pf there seems to be a requirement to be able to give symbolic names to the fibs but I do not have that capacity. I am not sure if it is required. SCTP has interestingly enough built in support for this, called VRFs in Cisco parlance. it will be interesting to see how that handles it when it suddenly actually does something. Where to next: -------------------- After committing the ABI compatible version and MFCing it, I'd like to proceed in a forward direction in -current. this will result in some roto-tilling in the routing code. Firstly: the current code's idea of having a separate tree per protocol family, all of the same format, and pointed to by the 1 dimensional array is a bit silly. Especially when one considers that there is code that makes assumptions about every protocol having the same internal structures there. Some protocols don't WANT that sort of structure. (for example the whole idea of a netmask is foreign to appletalk). This needs to be made opaque to the external code. My suggested first change is to add routing method pointers to the 'domain' structure, along with information pointing the data. instead of having an array of pointers to uniform structures, there would be an array pointing to the 'domain' structures for each protocol address domain (protocol family), and the methods this reached would be called. The methods would have an argument that gives FIB number, but the protocol would be free to ignore it. When the ABI can be changed it raises the possibilty of the addition of a fib entry into the "struct route". Currently, the structure contains the sockaddr of the desination, and the resulting fib entry. To make this work fully, one could add a fib number so that given an address and a fib, one can find the third element, the fib entry. Interaction with the ARP layer/ LL layer would need to be revisited as well. Qing Li has been working on this already. This work was sponsored by Ironport Systems/Cisco Reviewed by: several including rwatson, bz and mlair (parts each) Obtained from: Ironport systems/Cisco
2008-05-09 23:03:00 +00:00
break;
case O_SOCKARG:
bprintf(bp, " sockarg");
break;
Add code to allow the system to handle multiple routing tables. This particular implementation is designed to be fully backwards compatible and to be MFC-able to 7.x (and 6.x) Currently the only protocol that can make use of the multiple tables is IPv4 Similar functionality exists in OpenBSD and Linux. From my notes: ----- One thing where FreeBSD has been falling behind, and which by chance I have some time to work on is "policy based routing", which allows different packet streams to be routed by more than just the destination address. Constraints: ------------ I want to make some form of this available in the 6.x tree (and by extension 7.x) , but FreeBSD in general needs it so I might as well do it in -current and back port the portions I need. One of the ways that this can be done is to have the ability to instantiate multiple kernel routing tables (which I will now refer to as "Forwarding Information Bases" or "FIBs" for political correctness reasons). Which FIB a particular packet uses to make the next hop decision can be decided by a number of mechanisms. The policies these mechanisms implement are the "Policies" referred to in "Policy based routing". One of the constraints I have if I try to back port this work to 6.x is that it must be implemented as a EXTENSION to the existing ABIs in 6.x so that third party applications do not need to be recompiled in timespan of the branch. This first version will not have some of the bells and whistles that will come with later versions. It will, for example, be limited to 16 tables in the first commit. Implementation method, Compatible version. (part 1) ------------------------------- For this reason I have implemented a "sufficient subset" of a multiple routing table solution in Perforce, and back-ported it to 6.x. (also in Perforce though not always caught up with what I have done in -current/P4). The subset allows a number of FIBs to be defined at compile time (8 is sufficient for my purposes in 6.x) and implements the changes needed to allow IPV4 to use them. I have not done the changes for ipv6 simply because I do not need it, and I do not have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it. Other protocol families are left untouched and should there be users with proprietary protocol families, they should continue to work and be oblivious to the existence of the extra FIBs. To understand how this is done, one must know that the current FIB code starts everything off with a single dimensional array of pointers to FIB head structures (One per protocol family), each of which in turn points to the trie of routes available to that family. The basic change in the ABI compatible version of the change is to extent that array to be a 2 dimensional array, so that instead of protocol family X looking at rt_tables[X] for the table it needs, it looks at rt_tables[Y][X] when for all protocol families except ipv4 Y is always 0. Code that is unaware of the change always just sees the first row of the table, which of course looks just like the one dimensional array that existed before. The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign() are all maintained, but refer only to the first row of the array, so that existing callers in proprietary protocols can continue to do the "right thing". Some new entry points are added, for the exclusive use of ipv4 code called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(), which have an extra argument which refers the code to the correct row. In addition, there are some new entry points (currently called rtalloc_fib() and friends) that check the Address family being looked up and call either rtalloc() (and friends) if the protocol is not IPv4 forcing the action to row 0 or to the appropriate row if it IS IPv4 (and that info is available). These are for calling from code that is not specific to any particular protocol. The way these are implemented would change in the non ABI preserving code to be added later. One feature of the first version of the code is that for ipv4, the interface routes show up automatically on all the FIBs, so that no matter what FIB you select you always have the basic direct attached hosts available to you. (rtinit() does this automatically). You CAN delete an interface route from one FIB should you want to but by default it's there. ARP information is also available in each FIB. It's assumed that the same machine would have the same MAC address, regardless of which FIB you are using to get to it. This brings us as to how the correct FIB is selected for an outgoing IPV4 packet. Firstly, all packets have a FIB associated with them. if nothing has been done to change it, it will be FIB 0. The FIB is changed in the following ways. Packets fall into one of a number of classes. 1/ locally generated packets, coming from a socket/PCB. Such packets select a FIB from a number associated with the socket/PCB. This in turn is inherited from the process, but can be changed by a socket option. The process in turn inherits it on fork. I have written a utility call setfib that acts a bit like nice.. setfib -3 ping target.example.com # will use fib 3 for ping. It is an obvious extension to make it a property of a jail but I have not done so. It can be achieved by combining the setfib and jail commands. 2/ packets received on an interface for forwarding. By default these packets would use table 0, (or possibly a number settable in a sysctl(not yet)). but prior to routing the firewall can inspect them (see below). (possibly in the future you may be able to associate a FIB with packets received on an interface.. An ifconfig arg, but not yet.) 3/ packets inspected by a packet classifier, which can arbitrarily associate a fib with it on a packet by packet basis. A fib assigned to a packet by a packet classifier (such as ipfw) would over-ride a fib associated by a more default source. (such as cases 1 or 2). 4/ a tcp listen socket associated with a fib will generate accept sockets that are associated with that same fib. 5/ Packets generated in response to some other packet (e.g. reset or icmp packets). These should use the FIB associated with the packet being reponded to. 6/ Packets generated during encapsulation. gif, tun and other tunnel interfaces will encapsulate using the FIB that was in effect withthe proces that set up the tunnel. thus setfib 1 ifconfig gif0 [tunnel instructions] will set the fib for the tunnel to use to be fib 1. Routing messages would be associated with their process, and thus select one FIB or another. messages from the kernel would be associated with the fib they refer to and would only be received by a routing socket associated with that fib. (not yet implemented) In addition Netstat has been edited to be able to cope with the fact that the array is now 2 dimensional. (It looks in system memory using libkvm (!)). Old versions of netstat see only the first FIB. In addition two sysctls are added to give: a) the number of FIBs compiled in (active) b) the default FIB of the calling process. Early testing experience: ------------------------- Basically our (IronPort's) appliance does this functionality already using ipfw fwd but that method has some drawbacks. For example, It can't fully simulate a routing table because it can't influence the socket's choice of local address when a connect() is done. Testing during the generating of these changes has been remarkably smooth so far. Multiple tables have co-existed with no notable side effects, and packets have been routes accordingly. ipfw has grown 2 new keywords: setfib N ip from anay to any count ip from any to any fib N In pf there seems to be a requirement to be able to give symbolic names to the fibs but I do not have that capacity. I am not sure if it is required. SCTP has interestingly enough built in support for this, called VRFs in Cisco parlance. it will be interesting to see how that handles it when it suddenly actually does something. Where to next: -------------------- After committing the ABI compatible version and MFCing it, I'd like to proceed in a forward direction in -current. this will result in some roto-tilling in the routing code. Firstly: the current code's idea of having a separate tree per protocol family, all of the same format, and pointed to by the 1 dimensional array is a bit silly. Especially when one considers that there is code that makes assumptions about every protocol having the same internal structures there. Some protocols don't WANT that sort of structure. (for example the whole idea of a netmask is foreign to appletalk). This needs to be made opaque to the external code. My suggested first change is to add routing method pointers to the 'domain' structure, along with information pointing the data. instead of having an array of pointers to uniform structures, there would be an array pointing to the 'domain' structures for each protocol address domain (protocol family), and the methods this reached would be called. The methods would have an argument that gives FIB number, but the protocol would be free to ignore it. When the ABI can be changed it raises the possibilty of the addition of a fib entry into the "struct route". Currently, the structure contains the sockaddr of the desination, and the resulting fib entry. To make this work fully, one could add a fib number so that given an address and a fib, one can find the third element, the fib entry. Interaction with the ARP layer/ LL layer would need to be revisited as well. Qing Li has been working on this already. This work was sponsored by Ironport Systems/Cisco Reviewed by: several including rwatson, bz and mlair (parts each) Obtained from: Ironport systems/Cisco
2008-05-09 23:03:00 +00:00
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case O_IN:
bprintf(bp, cmd->len & F_NOT ? " out" : " in");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case O_DIVERTED:
switch (cmd->arg1) {
case 3:
bprintf(bp, " diverted");
break;
case 1:
bprintf(bp, " diverted-loopback");
break;
case 2:
bprintf(bp, " diverted-output");
break;
default:
bprintf(bp, " diverted-?<%u>", cmd->arg1);
break;
}
break;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case O_LAYER2:
bprintf(bp, " layer2");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case O_XMIT:
case O_RECV:
case O_VIA:
{
char const *s, *t;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
ipfw_insn_if *cmdif = (ipfw_insn_if *)cmd;
if (cmd->opcode == O_XMIT)
s = "xmit";
else if (cmd->opcode == O_RECV)
s = "recv";
In random order: * make the code compile with WARNS=5 (at least on i386), mostly by adding 'const' specifier and replacing "void *" with "char *" in places where pointer arithmetic was used. This also spotted a few places where invalid tests (e.g. uint < 0) were used. * support ranges in "list" and "show" commands. Now you can say ipfw show 100-1000 4000-8000 which is very convenient when you have large rulesets. * implement comments in ipfw commands. These are implemented in the kernel as O_NOP commands (which always match) whose body contains the comment string. In userland, a comment is a C++-style comment: ipfw add allow ip from me to any // i can talk to everybody The choice of '//' versus '#' is somewhat arbitrary, but because the preprocessor/readfile part of ipfw used to strip away '#', I did not want to change this behaviour. If a rule only contains a comment ipfw add 1000 // this rule is just a comment then it is stored as a 'count' rule (this is also to remind the user that scanning through a rule is expensive). * improve handling of flags (still to be completed). ipfw_main() was written thinking of 'one rule per ipfw invocation', and so flags are set and never cleared. With readfile/preprocessor support, this changes and certain flags should be reset on each line. For the time being, only fix handling of '-a' which differentiates the "list" and "show" commands. * rework the preprocessor support -- ipfw_main() already had most of the parsing code, so i have moved in there the only missing bit (stripping away '#' and comments) and removed the parsing from ipfw_readfile(). Also, add some more options (such as -c, -N, -S) to the readfile section. MFC after: 3 days
2003-07-12 06:53:16 +00:00
else /* if (cmd->opcode == O_VIA) */
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
s = "via";
if (cmdif->name[0] == '\0')
bprintf(bp, " %s %s", s,
inet_ntoa(cmdif->p.ip));
else if (cmdif->name[0] == '\1') {
/* interface table */
t = table_search_ctlv(fo->tstate,
cmdif->p.kidx);
bprintf(bp, " %s table(%s)", s, t);
} else
bprintf(bp, " %s %s", s, cmdif->name);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
}
* Add new "flow" table type to support N=1..5-tuple lookups * Add "flow:hash" algorithm Kernel changes: * Add O_IP_FLOW_LOOKUP opcode to support "flow" lookups * Add IPFW_TABLE_FLOW table type * Add "struct tflow_entry" as strage for 6-tuple flows * Add "flow:hash" algorithm. Basically it is auto-growing chained hash table. Additionally, we store mask of fields we need to compare in each instance/ * Increase ipfw_obj_tentry size by adding struct tflow_entry * Add per-algorithm stat (ifpw_ta_tinfo) to ipfw_xtable_info * Increase algoname length: 32 -> 64 (algo options passed there as string) * Assume every table type can be customized by flags, use u8 to store "tflags" field. * Simplify ipfw_find_table_entry() by providing @tentry directly to algo callback. * Fix bug in cidr:chash resize procedure. Userland changes: * add "flow table(NAME)" syntax to support n-tuple checking tables. * make fill_flags() separate function to ease working with _s_x arrays * change "table info" output to reflect longer "type" fields Syntax: ipfw table fl2 create type flow:[src-ip][,proto][,src-port][,dst-ip][dst-port] [algo flow:hash] Examples: 0:02 [2] zfscurr0# ipfw table fl2 create type flow:src-ip,proto,dst-port algo flow:hash 0:02 [2] zfscurr0# ipfw table fl2 info +++ table(fl2), set(0) +++ kindex: 0, type: flow:src-ip,proto,dst-port valtype: number, references: 0 algorithm: flow:hash items: 0, size: 280 0:02 [2] zfscurr0# ipfw table fl2 add 2a02:6b8::333,tcp,443 45000 0:02 [2] zfscurr0# ipfw table fl2 add 10.0.0.92,tcp,80 22000 0:02 [2] zfscurr0# ipfw table fl2 list +++ table(fl2), set(0) +++ 2a02:6b8::333,6,443 45000 10.0.0.92,6,80 22000 0:02 [2] zfscurr0# ipfw add 200 count tcp from me to 78.46.89.105 80 flow 'table(fl2)' 00200 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 0:03 [2] zfscurr0# ipfw show 00200 0 0 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 617 59416 allow ip from any to any 0:03 [2] zfscurr0# telnet -s 10.0.0.92 78.46.89.105 80 Trying 78.46.89.105... .. 0:04 [2] zfscurr0# ipfw show 00200 5 272 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 682 66733 allow ip from any to any
2014-07-31 20:08:19 +00:00
case O_IP_FLOW_LOOKUP:
{
char *t;
t = table_search_ctlv(fo->tstate, cmd->arg1);
bprintf(bp, " flow table(%s", t);
* Add new "flow" table type to support N=1..5-tuple lookups * Add "flow:hash" algorithm Kernel changes: * Add O_IP_FLOW_LOOKUP opcode to support "flow" lookups * Add IPFW_TABLE_FLOW table type * Add "struct tflow_entry" as strage for 6-tuple flows * Add "flow:hash" algorithm. Basically it is auto-growing chained hash table. Additionally, we store mask of fields we need to compare in each instance/ * Increase ipfw_obj_tentry size by adding struct tflow_entry * Add per-algorithm stat (ifpw_ta_tinfo) to ipfw_xtable_info * Increase algoname length: 32 -> 64 (algo options passed there as string) * Assume every table type can be customized by flags, use u8 to store "tflags" field. * Simplify ipfw_find_table_entry() by providing @tentry directly to algo callback. * Fix bug in cidr:chash resize procedure. Userland changes: * add "flow table(NAME)" syntax to support n-tuple checking tables. * make fill_flags() separate function to ease working with _s_x arrays * change "table info" output to reflect longer "type" fields Syntax: ipfw table fl2 create type flow:[src-ip][,proto][,src-port][,dst-ip][dst-port] [algo flow:hash] Examples: 0:02 [2] zfscurr0# ipfw table fl2 create type flow:src-ip,proto,dst-port algo flow:hash 0:02 [2] zfscurr0# ipfw table fl2 info +++ table(fl2), set(0) +++ kindex: 0, type: flow:src-ip,proto,dst-port valtype: number, references: 0 algorithm: flow:hash items: 0, size: 280 0:02 [2] zfscurr0# ipfw table fl2 add 2a02:6b8::333,tcp,443 45000 0:02 [2] zfscurr0# ipfw table fl2 add 10.0.0.92,tcp,80 22000 0:02 [2] zfscurr0# ipfw table fl2 list +++ table(fl2), set(0) +++ 2a02:6b8::333,6,443 45000 10.0.0.92,6,80 22000 0:02 [2] zfscurr0# ipfw add 200 count tcp from me to 78.46.89.105 80 flow 'table(fl2)' 00200 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 0:03 [2] zfscurr0# ipfw show 00200 0 0 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 617 59416 allow ip from any to any 0:03 [2] zfscurr0# telnet -s 10.0.0.92 78.46.89.105 80 Trying 78.46.89.105... .. 0:04 [2] zfscurr0# ipfw show 00200 5 272 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 682 66733 allow ip from any to any
2014-07-31 20:08:19 +00:00
if (F_LEN(cmd) == F_INSN_SIZE(ipfw_insn_u32))
bprintf(bp, ",%u",
* Add new "flow" table type to support N=1..5-tuple lookups * Add "flow:hash" algorithm Kernel changes: * Add O_IP_FLOW_LOOKUP opcode to support "flow" lookups * Add IPFW_TABLE_FLOW table type * Add "struct tflow_entry" as strage for 6-tuple flows * Add "flow:hash" algorithm. Basically it is auto-growing chained hash table. Additionally, we store mask of fields we need to compare in each instance/ * Increase ipfw_obj_tentry size by adding struct tflow_entry * Add per-algorithm stat (ifpw_ta_tinfo) to ipfw_xtable_info * Increase algoname length: 32 -> 64 (algo options passed there as string) * Assume every table type can be customized by flags, use u8 to store "tflags" field. * Simplify ipfw_find_table_entry() by providing @tentry directly to algo callback. * Fix bug in cidr:chash resize procedure. Userland changes: * add "flow table(NAME)" syntax to support n-tuple checking tables. * make fill_flags() separate function to ease working with _s_x arrays * change "table info" output to reflect longer "type" fields Syntax: ipfw table fl2 create type flow:[src-ip][,proto][,src-port][,dst-ip][dst-port] [algo flow:hash] Examples: 0:02 [2] zfscurr0# ipfw table fl2 create type flow:src-ip,proto,dst-port algo flow:hash 0:02 [2] zfscurr0# ipfw table fl2 info +++ table(fl2), set(0) +++ kindex: 0, type: flow:src-ip,proto,dst-port valtype: number, references: 0 algorithm: flow:hash items: 0, size: 280 0:02 [2] zfscurr0# ipfw table fl2 add 2a02:6b8::333,tcp,443 45000 0:02 [2] zfscurr0# ipfw table fl2 add 10.0.0.92,tcp,80 22000 0:02 [2] zfscurr0# ipfw table fl2 list +++ table(fl2), set(0) +++ 2a02:6b8::333,6,443 45000 10.0.0.92,6,80 22000 0:02 [2] zfscurr0# ipfw add 200 count tcp from me to 78.46.89.105 80 flow 'table(fl2)' 00200 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 0:03 [2] zfscurr0# ipfw show 00200 0 0 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 617 59416 allow ip from any to any 0:03 [2] zfscurr0# telnet -s 10.0.0.92 78.46.89.105 80 Trying 78.46.89.105... .. 0:04 [2] zfscurr0# ipfw show 00200 5 272 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 682 66733 allow ip from any to any
2014-07-31 20:08:19 +00:00
((ipfw_insn_u32 *)cmd)->d[0]);
bprintf(bp, ")");
* Add new "flow" table type to support N=1..5-tuple lookups * Add "flow:hash" algorithm Kernel changes: * Add O_IP_FLOW_LOOKUP opcode to support "flow" lookups * Add IPFW_TABLE_FLOW table type * Add "struct tflow_entry" as strage for 6-tuple flows * Add "flow:hash" algorithm. Basically it is auto-growing chained hash table. Additionally, we store mask of fields we need to compare in each instance/ * Increase ipfw_obj_tentry size by adding struct tflow_entry * Add per-algorithm stat (ifpw_ta_tinfo) to ipfw_xtable_info * Increase algoname length: 32 -> 64 (algo options passed there as string) * Assume every table type can be customized by flags, use u8 to store "tflags" field. * Simplify ipfw_find_table_entry() by providing @tentry directly to algo callback. * Fix bug in cidr:chash resize procedure. Userland changes: * add "flow table(NAME)" syntax to support n-tuple checking tables. * make fill_flags() separate function to ease working with _s_x arrays * change "table info" output to reflect longer "type" fields Syntax: ipfw table fl2 create type flow:[src-ip][,proto][,src-port][,dst-ip][dst-port] [algo flow:hash] Examples: 0:02 [2] zfscurr0# ipfw table fl2 create type flow:src-ip,proto,dst-port algo flow:hash 0:02 [2] zfscurr0# ipfw table fl2 info +++ table(fl2), set(0) +++ kindex: 0, type: flow:src-ip,proto,dst-port valtype: number, references: 0 algorithm: flow:hash items: 0, size: 280 0:02 [2] zfscurr0# ipfw table fl2 add 2a02:6b8::333,tcp,443 45000 0:02 [2] zfscurr0# ipfw table fl2 add 10.0.0.92,tcp,80 22000 0:02 [2] zfscurr0# ipfw table fl2 list +++ table(fl2), set(0) +++ 2a02:6b8::333,6,443 45000 10.0.0.92,6,80 22000 0:02 [2] zfscurr0# ipfw add 200 count tcp from me to 78.46.89.105 80 flow 'table(fl2)' 00200 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 0:03 [2] zfscurr0# ipfw show 00200 0 0 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 617 59416 allow ip from any to any 0:03 [2] zfscurr0# telnet -s 10.0.0.92 78.46.89.105 80 Trying 78.46.89.105... .. 0:04 [2] zfscurr0# ipfw show 00200 5 272 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 682 66733 allow ip from any to any
2014-07-31 20:08:19 +00:00
break;
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case O_IPID:
if (F_LEN(cmd) == 1)
bprintf(bp, " ipid %u", cmd->arg1 );
else
print_newports(bp, (ipfw_insn_u16 *)cmd, 0,
O_IPID);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case O_IPTTL:
if (F_LEN(cmd) == 1)
bprintf(bp, " ipttl %u", cmd->arg1 );
else
print_newports(bp, (ipfw_insn_u16 *)cmd, 0,
O_IPTTL);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case O_IPVER:
bprintf(bp, " ipver %u", cmd->arg1 );
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case O_IPPRECEDENCE:
bprintf(bp, " ipprecedence %u", cmd->arg1 >> 5);
break;
case O_DSCP:
print_dscp(bp, (ipfw_insn_u32 *)cmd);
break;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case O_IPLEN:
if (F_LEN(cmd) == 1)
bprintf(bp, " iplen %u", cmd->arg1 );
else
print_newports(bp, (ipfw_insn_u16 *)cmd, 0,
O_IPLEN);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case O_IPOPT:
print_flags(bp, "ipoptions", cmd, f_ipopts);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case O_IPTOS:
print_flags(bp, "iptos", cmd, f_iptos);
break;
case O_ICMPTYPE:
print_icmptypes(bp, (ipfw_insn_u32 *)cmd);
break;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case O_ESTAB:
bprintf(bp, " established");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case O_TCPDATALEN:
if (F_LEN(cmd) == 1)
bprintf(bp, " tcpdatalen %u", cmd->arg1 );
else
print_newports(bp, (ipfw_insn_u16 *)cmd, 0,
O_TCPDATALEN);
break;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case O_TCPFLAGS:
print_flags(bp, "tcpflags", cmd, f_tcpflags);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case O_TCPOPTS:
print_flags(bp, "tcpoptions", cmd, f_tcpopts);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case O_TCPWIN:
if (F_LEN(cmd) == 1)
bprintf(bp, " tcpwin %u", cmd->arg1);
else
print_newports(bp, (ipfw_insn_u16 *)cmd, 0,
O_TCPWIN);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case O_TCPACK:
bprintf(bp, " tcpack %d", ntohl(cmd32->d[0]));
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case O_TCPSEQ:
bprintf(bp, " tcpseq %d", ntohl(cmd32->d[0]));
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case O_UID:
{
struct passwd *pwd = getpwuid(cmd32->d[0]);
if (pwd)
bprintf(bp, " uid %s", pwd->pw_name);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
else
bprintf(bp, " uid %u", cmd32->d[0]);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
break;
case O_GID:
{
struct group *grp = getgrgid(cmd32->d[0]);
if (grp)
bprintf(bp, " gid %s", grp->gr_name);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
else
bprintf(bp, " gid %u", cmd32->d[0]);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
break;
case O_JAIL:
bprintf(bp, " jail %d", cmd32->d[0]);
break;
case O_VERREVPATH:
bprintf(bp, " verrevpath");
break;
case O_VERSRCREACH:
bprintf(bp, " versrcreach");
break;
case O_ANTISPOOF:
bprintf(bp, " antispoof");
break;
case O_IPSEC:
bprintf(bp, " ipsec");
break;
In random order: * make the code compile with WARNS=5 (at least on i386), mostly by adding 'const' specifier and replacing "void *" with "char *" in places where pointer arithmetic was used. This also spotted a few places where invalid tests (e.g. uint < 0) were used. * support ranges in "list" and "show" commands. Now you can say ipfw show 100-1000 4000-8000 which is very convenient when you have large rulesets. * implement comments in ipfw commands. These are implemented in the kernel as O_NOP commands (which always match) whose body contains the comment string. In userland, a comment is a C++-style comment: ipfw add allow ip from me to any // i can talk to everybody The choice of '//' versus '#' is somewhat arbitrary, but because the preprocessor/readfile part of ipfw used to strip away '#', I did not want to change this behaviour. If a rule only contains a comment ipfw add 1000 // this rule is just a comment then it is stored as a 'count' rule (this is also to remind the user that scanning through a rule is expensive). * improve handling of flags (still to be completed). ipfw_main() was written thinking of 'one rule per ipfw invocation', and so flags are set and never cleared. With readfile/preprocessor support, this changes and certain flags should be reset on each line. For the time being, only fix handling of '-a' which differentiates the "list" and "show" commands. * rework the preprocessor support -- ipfw_main() already had most of the parsing code, so i have moved in there the only missing bit (stripping away '#' and comments) and removed the parsing from ipfw_readfile(). Also, add some more options (such as -c, -N, -S) to the readfile section. MFC after: 3 days
2003-07-12 06:53:16 +00:00
case O_NOP:
comment = (char *)(cmd + 1);
In random order: * make the code compile with WARNS=5 (at least on i386), mostly by adding 'const' specifier and replacing "void *" with "char *" in places where pointer arithmetic was used. This also spotted a few places where invalid tests (e.g. uint < 0) were used. * support ranges in "list" and "show" commands. Now you can say ipfw show 100-1000 4000-8000 which is very convenient when you have large rulesets. * implement comments in ipfw commands. These are implemented in the kernel as O_NOP commands (which always match) whose body contains the comment string. In userland, a comment is a C++-style comment: ipfw add allow ip from me to any // i can talk to everybody The choice of '//' versus '#' is somewhat arbitrary, but because the preprocessor/readfile part of ipfw used to strip away '#', I did not want to change this behaviour. If a rule only contains a comment ipfw add 1000 // this rule is just a comment then it is stored as a 'count' rule (this is also to remind the user that scanning through a rule is expensive). * improve handling of flags (still to be completed). ipfw_main() was written thinking of 'one rule per ipfw invocation', and so flags are set and never cleared. With readfile/preprocessor support, this changes and certain flags should be reset on each line. For the time being, only fix handling of '-a' which differentiates the "list" and "show" commands. * rework the preprocessor support -- ipfw_main() already had most of the parsing code, so i have moved in there the only missing bit (stripping away '#' and comments) and removed the parsing from ipfw_readfile(). Also, add some more options (such as -c, -N, -S) to the readfile section. MFC after: 3 days
2003-07-12 06:53:16 +00:00
break;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case O_KEEP_STATE:
bprintf(bp, " keep-state");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case O_LIMIT: {
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
struct _s_x *p = limit_masks;
ipfw_insn_limit *c = (ipfw_insn_limit *)cmd;
uint8_t x = c->limit_mask;
In random order: * make the code compile with WARNS=5 (at least on i386), mostly by adding 'const' specifier and replacing "void *" with "char *" in places where pointer arithmetic was used. This also spotted a few places where invalid tests (e.g. uint < 0) were used. * support ranges in "list" and "show" commands. Now you can say ipfw show 100-1000 4000-8000 which is very convenient when you have large rulesets. * implement comments in ipfw commands. These are implemented in the kernel as O_NOP commands (which always match) whose body contains the comment string. In userland, a comment is a C++-style comment: ipfw add allow ip from me to any // i can talk to everybody The choice of '//' versus '#' is somewhat arbitrary, but because the preprocessor/readfile part of ipfw used to strip away '#', I did not want to change this behaviour. If a rule only contains a comment ipfw add 1000 // this rule is just a comment then it is stored as a 'count' rule (this is also to remind the user that scanning through a rule is expensive). * improve handling of flags (still to be completed). ipfw_main() was written thinking of 'one rule per ipfw invocation', and so flags are set and never cleared. With readfile/preprocessor support, this changes and certain flags should be reset on each line. For the time being, only fix handling of '-a' which differentiates the "list" and "show" commands. * rework the preprocessor support -- ipfw_main() already had most of the parsing code, so i have moved in there the only missing bit (stripping away '#' and comments) and removed the parsing from ipfw_readfile(). Also, add some more options (such as -c, -N, -S) to the readfile section. MFC after: 3 days
2003-07-12 06:53:16 +00:00
char const *comma = " ";
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
bprintf(bp, " limit");
for (; p->x != 0 ; p++)
if ((x & p->x) == p->x) {
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
x &= ~p->x;
bprintf(bp, "%s%s", comma,p->s);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
comma = ",";
}
bprint_uint_arg(bp, " ", c->conn_limit);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case O_IP6:
bprintf(bp, " ip6");
break;
case O_IP4:
bprintf(bp, " ip4");
break;
case O_ICMP6TYPE:
print_icmp6types(bp, (ipfw_insn_u32 *)cmd);
break;
case O_EXT_HDR:
print_ext6hdr(bp, (ipfw_insn *)cmd);
break;
case O_TAGGED:
if (F_LEN(cmd) == 1)
bprint_uint_arg(bp, " tagged ",
cmd->arg1);
else
print_newports(bp, (ipfw_insn_u16 *)cmd,
0, O_TAGGED);
break;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
default:
bprintf(bp, " [opcode %d len %d]",
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
cmd->opcode, cmd->len);
}
}
if (cmd->len & F_OR) {
bprintf(bp, " or");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
or_block = 1;
} else if (or_block) {
bprintf(bp, " }");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
or_block = 0;
}
}
show_prerequisites(bp, &flags, HAVE_PROTO | HAVE_SRCIP | HAVE_DSTIP
| HAVE_IP, 0);
if (comment)
bprintf(bp, " // %s", comment);
bprintf(bp, "\n");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
static void
show_dyn_state(struct cmdline_opts *co, struct format_opts *fo,
struct buf_pr *bp, ipfw_dyn_rule *d)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{
struct protoent *pe;
struct in_addr a;
uint16_t rulenum;
char buf[INET6_ADDRSTRLEN];
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (!co->do_expired) {
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (!d->expire && !(d->dyn_type == O_LIMIT_PARENT))
return;
}
bcopy(&d->rule, &rulenum, sizeof(rulenum));
bprintf(bp, "%05d", rulenum);
if (fo->pcwidth > 0 || fo->bcwidth > 0) {
bprintf(bp, " ");
pr_u64(bp, &d->pcnt, fo->pcwidth);
pr_u64(bp, &d->bcnt, fo->bcwidth);
bprintf(bp, "(%ds)", d->expire);
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
switch (d->dyn_type) {
case O_LIMIT_PARENT:
bprintf(bp, " PARENT %d", d->count);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case O_LIMIT:
bprintf(bp, " LIMIT");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case O_KEEP_STATE: /* bidir, no mask */
bprintf(bp, " STATE");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
}
if ((pe = getprotobynumber(d->id.proto)) != NULL)
bprintf(bp, " %s", pe->p_name);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
else
bprintf(bp, " proto %u", d->id.proto);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (d->id.addr_type == 4) {
a.s_addr = htonl(d->id.src_ip);
bprintf(bp, " %s %d", inet_ntoa(a), d->id.src_port);
a.s_addr = htonl(d->id.dst_ip);
bprintf(bp, " <-> %s %d", inet_ntoa(a), d->id.dst_port);
} else if (d->id.addr_type == 6) {
bprintf(bp, " %s %d", inet_ntop(AF_INET6, &d->id.src_ip6, buf,
sizeof(buf)), d->id.src_port);
bprintf(bp, " <-> %s %d", inet_ntop(AF_INET6, &d->id.dst_ip6,
buf, sizeof(buf)), d->id.dst_port);
} else
bprintf(bp, " UNKNOWN <-> UNKNOWN\n");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
static int
do_range_cmd(int cmd, ipfw_range_tlv *rt)
{
ipfw_range_header rh;
size_t sz;
memset(&rh, 0, sizeof(rh));
memcpy(&rh.range, rt, sizeof(*rt));
rh.range.head.length = sizeof(*rt);
rh.range.head.type = IPFW_TLV_RANGE;
sz = sizeof(rh);
if (do_get3(cmd, &rh.opheader, &sz) != 0)
return (-1);
/* Save number of matched objects */
rt->new_set = rh.range.new_set;
return (0);
}
/*
* This one handles all set-related commands
* ipfw set { show | enable | disable }
* ipfw set swap X Y
* ipfw set move X to Y
* ipfw set move rule X to Y
*/
void
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
ipfw_sets_handler(char *av[])
{
uint32_t masks[2];
int i;
uint8_t cmd, rulenum;
ipfw_range_tlv rt;
char *msg;
size_t size;
av++;
memset(&rt, 0, sizeof(rt));
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
if (av[0] == NULL)
errx(EX_USAGE, "set needs command");
if (_substrcmp(*av, "show") == 0) {
struct format_opts fo;
ipfw_cfg_lheader *cfg;
2010-03-04 16:55:32 +00:00
memset(&fo, 0, sizeof(fo));
if (ipfw_get_config(&co, &fo, &cfg, &size) != 0)
err(EX_OSERR, "requesting config failed");
for (i = 0, msg = "disable"; i < RESVD_SET; i++)
if ((cfg->set_mask & (1<<i)) == 0) {
printf("%s %d", msg, i);
msg = "";
}
msg = (cfg->set_mask != (uint32_t)-1) ? " enable" : "enable";
for (i = 0; i < RESVD_SET; i++)
if ((cfg->set_mask & (1<<i)) != 0) {
printf("%s %d", msg, i);
msg = "";
}
printf("\n");
free(cfg);
} else if (_substrcmp(*av, "swap") == 0) {
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
if ( av[0] == NULL || av[1] == NULL )
errx(EX_USAGE, "set swap needs 2 set numbers\n");
rt.set = atoi(av[0]);
rt.new_set = atoi(av[1]);
if (!isdigit(*(av[0])) || rt.set > RESVD_SET)
errx(EX_DATAERR, "invalid set number %s\n", av[0]);
if (!isdigit(*(av[1])) || rt.new_set > RESVD_SET)
errx(EX_DATAERR, "invalid set number %s\n", av[1]);
i = do_range_cmd(IP_FW_SET_SWAP, &rt);
} else if (_substrcmp(*av, "move") == 0) {
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
2010-03-04 16:55:32 +00:00
if (av[0] && _substrcmp(*av, "rule") == 0) {
rt.flags = IPFW_RCFLAG_RANGE; /* move rules to new set */
cmd = IP_FW_XMOVE;
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
} else
cmd = IP_FW_SET_MOVE; /* Move set to new one */
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
if (av[0] == NULL || av[1] == NULL || av[2] == NULL ||
av[3] != NULL || _substrcmp(av[1], "to") != 0)
errx(EX_USAGE, "syntax: set move [rule] X to Y\n");
rulenum = atoi(av[0]);
rt.new_set = atoi(av[2]);
if (cmd == IP_FW_XMOVE) {
rt.start_rule = rulenum;
rt.end_rule = rulenum;
} else
rt.set = rulenum;
rt.new_set = atoi(av[2]);
if (!isdigit(*(av[0])) || (cmd == 3 && rt.set > RESVD_SET) ||
(cmd == 2 && rt.start_rule == IPFW_DEFAULT_RULE) )
errx(EX_DATAERR, "invalid source number %s\n", av[0]);
if (!isdigit(*(av[2])) || rt.new_set > RESVD_SET)
errx(EX_DATAERR, "invalid dest. set %s\n", av[1]);
i = do_range_cmd(cmd, &rt);
} else if (_substrcmp(*av, "disable") == 0 ||
_substrcmp(*av, "enable") == 0 ) {
int which = _substrcmp(*av, "enable") == 0 ? 1 : 0;
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
masks[0] = masks[1] = 0;
2010-03-04 16:55:32 +00:00
while (av[0]) {
if (isdigit(**av)) {
i = atoi(*av);
if (i < 0 || i > RESVD_SET)
errx(EX_DATAERR,
"invalid set number %d\n", i);
masks[which] |= (1<<i);
} else if (_substrcmp(*av, "disable") == 0)
which = 0;
else if (_substrcmp(*av, "enable") == 0)
which = 1;
else
errx(EX_DATAERR,
"invalid set command %s\n", *av);
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
}
if ( (masks[0] & masks[1]) != 0 )
errx(EX_DATAERR,
"cannot enable and disable the same set\n");
rt.set = masks[0];
rt.new_set = masks[1];
i = do_range_cmd(IP_FW_SET_ENABLE, &rt);
if (i)
warn("set enable/disable: setsockopt(IP_FW_SET_ENABLE)");
} else
errx(EX_USAGE, "invalid set command %s\n", *av);
}
void
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
ipfw_sysctl_handler(char *av[], int which)
{
av++;
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
if (av[0] == NULL) {
warnx("missing keyword to enable/disable\n");
} else if (_substrcmp(*av, "firewall") == 0) {
sysctlbyname("net.inet.ip.fw.enable", NULL, 0,
&which, sizeof(which));
2010-04-06 12:28:08 +00:00
sysctlbyname("net.inet6.ip6.fw.enable", NULL, 0,
&which, sizeof(which));
} else if (_substrcmp(*av, "one_pass") == 0) {
sysctlbyname("net.inet.ip.fw.one_pass", NULL, 0,
&which, sizeof(which));
} else if (_substrcmp(*av, "debug") == 0) {
sysctlbyname("net.inet.ip.fw.debug", NULL, 0,
&which, sizeof(which));
} else if (_substrcmp(*av, "verbose") == 0) {
sysctlbyname("net.inet.ip.fw.verbose", NULL, 0,
&which, sizeof(which));
} else if (_substrcmp(*av, "dyn_keepalive") == 0) {
sysctlbyname("net.inet.ip.fw.dyn_keepalive", NULL, 0,
&which, sizeof(which));
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
#ifndef NO_ALTQ
} else if (_substrcmp(*av, "altq") == 0) {
altq_set_enabled(which);
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
#endif
} else {
warnx("unrecognize enable/disable keyword: %s\n", *av);
}
}
typedef void state_cb(struct cmdline_opts *co, struct format_opts *fo,
void *arg, void *state);
static void
prepare_format_dyn(struct cmdline_opts *co, struct format_opts *fo,
void *arg, void *_state)
{
ipfw_dyn_rule *d;
int width;
uint8_t set;
d = (ipfw_dyn_rule *)_state;
/* Count _ALL_ states */
fo->dcnt++;
if (fo->show_counters == 0)
return;
if (co->use_set) {
/* skip states from another set */
bcopy((char *)&d->rule + sizeof(uint16_t), &set,
sizeof(uint8_t));
if (set != co->use_set - 1)
return;
}
width = pr_u64(NULL, &d->pcnt, 0);
if (width > fo->pcwidth)
fo->pcwidth = width;
width = pr_u64(NULL, &d->bcnt, 0);
if (width > fo->bcwidth)
fo->bcwidth = width;
}
static int
foreach_state(struct cmdline_opts *co, struct format_opts *fo,
caddr_t base, size_t sz, state_cb dyn_bc, void *dyn_arg)
{
int ttype;
state_cb *fptr;
void *farg;
ipfw_obj_tlv *tlv;
ipfw_obj_ctlv *ctlv;
fptr = NULL;
ttype = 0;
while (sz > 0) {
ctlv = (ipfw_obj_ctlv *)base;
switch (ctlv->head.type) {
case IPFW_TLV_DYNSTATE_LIST:
base += sizeof(*ctlv);
sz -= sizeof(*ctlv);
ttype = IPFW_TLV_DYN_ENT;
fptr = dyn_bc;
farg = dyn_arg;
break;
default:
return (sz);
}
while (sz > 0) {
tlv = (ipfw_obj_tlv *)base;
if (tlv->type != ttype)
break;
fptr(co, fo, farg, tlv + 1);
sz -= tlv->length;
base += tlv->length;
}
}
return (sz);
}
static void
prepare_format_opts(struct cmdline_opts *co, struct format_opts *fo,
ipfw_obj_tlv *rtlv, int rcnt, caddr_t dynbase, size_t dynsz)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{
int bcwidth, pcwidth, width;
int n;
struct ip_fw_bcounter *cntr;
struct ip_fw_rule *r;
bcwidth = 0;
pcwidth = 0;
if (fo->show_counters != 0) {
for (n = 0; n < rcnt; n++,
rtlv = (ipfw_obj_tlv *)((caddr_t)rtlv + rtlv->length)) {
cntr = (struct ip_fw_bcounter *)(rtlv + 1);
r = (struct ip_fw_rule *)((caddr_t)cntr + cntr->size);
/* skip rules from another set */
if (co->use_set && r->set != co->use_set - 1)
continue;
/* packet counter */
width = pr_u64(NULL, &cntr->pcnt, 0);
if (width > pcwidth)
pcwidth = width;
/* byte counter */
width = pr_u64(NULL, &cntr->bcnt, 0);
if (width > bcwidth)
bcwidth = width;
}
}
fo->bcwidth = bcwidth;
fo->pcwidth = pcwidth;
fo->dcnt = 0;
if (co->do_dynamic && dynsz > 0)
foreach_state(co, fo, dynbase, dynsz, prepare_format_dyn, NULL);
}
static int
list_static_range(struct cmdline_opts *co, struct format_opts *fo,
struct buf_pr *bp, ipfw_obj_tlv *rtlv, int rcnt)
{
int n, seen;
struct ip_fw_rule *r;
struct ip_fw_bcounter *cntr;
int c = 0;
for (n = seen = 0; n < rcnt; n++,
rtlv = (ipfw_obj_tlv *)((caddr_t)rtlv + rtlv->length)) {
if (fo->show_counters != 0) {
cntr = (struct ip_fw_bcounter *)(rtlv + 1);
r = (struct ip_fw_rule *)((caddr_t)cntr + cntr->size);
} else {
cntr = NULL;
r = (struct ip_fw_rule *)(rtlv + 1);
}
if (r->rulenum > fo->last)
break;
if (co->use_set && r->set != co->use_set - 1)
continue;
if (r->rulenum >= fo->first && r->rulenum <= fo->last) {
show_static_rule(co, fo, bp, r, cntr);
printf("%s", bp->buf);
c += rtlv->length;
bp_flush(bp);
seen++;
}
}
return (seen);
}
static void
list_dyn_state(struct cmdline_opts *co, struct format_opts *fo,
void *_arg, void *_state)
{
uint16_t rulenum;
uint8_t set;
ipfw_dyn_rule *d;
struct buf_pr *bp;
d = (ipfw_dyn_rule *)_state;
bp = (struct buf_pr *)_arg;
bcopy(&d->rule, &rulenum, sizeof(rulenum));
if (rulenum > fo->last)
return;
if (co->use_set) {
bcopy((char *)&d->rule + sizeof(uint16_t),
&set, sizeof(uint8_t));
if (set != co->use_set - 1)
return;
}
if (rulenum >= fo->first) {
show_dyn_state(co, fo, bp, d);
printf("%s\n", bp->buf);
bp_flush(bp);
}
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
static int
list_dyn_range(struct cmdline_opts *co, struct format_opts *fo,
struct buf_pr *bp, caddr_t base, size_t sz)
{
sz = foreach_state(co, fo, base, sz, list_dyn_state, bp);
return (sz);
}
void
ipfw_list(int ac, char *av[], int show_counters)
{
ipfw_cfg_lheader *cfg;
struct format_opts sfo;
size_t sz;
int error;
int lac;
char **lav;
uint32_t rnum;
char *endptr;
if (co.test_only) {
fprintf(stderr, "Testing only, list disabled\n");
return;
}
if (co.do_pipe) {
dummynet_list(ac, av, show_counters);
return;
}
ac--;
av++;
memset(&sfo, 0, sizeof(sfo));
/* Determine rule range to request */
if (ac > 0) {
for (lac = ac, lav = av; lac != 0; lac--) {
rnum = strtoul(*lav++, &endptr, 10);
if (sfo.first == 0 || rnum < sfo.first)
sfo.first = rnum;
if (*endptr == '-')
rnum = strtoul(endptr + 1, &endptr, 10);
if (sfo.last == 0 || rnum > sfo.last)
sfo.last = rnum;
}
}
/* get configuraion from kernel */
cfg = NULL;
sfo.show_counters = show_counters;
sfo.flags = IPFW_CFG_GET_STATIC;
if (co.do_dynamic != 0)
sfo.flags |= IPFW_CFG_GET_STATES;
if (sfo.show_counters != 0)
sfo.flags |= IPFW_CFG_GET_COUNTERS;
if (ipfw_get_config(&co, &sfo, &cfg, &sz) != 0)
err(EX_OSERR, "retrieving config failed");
error = ipfw_show_config(&co, &sfo, cfg, sz, ac, av);
free(cfg);
if (error != EX_OK)
exit(error);
}
static int
ipfw_show_config(struct cmdline_opts *co, struct format_opts *fo,
ipfw_cfg_lheader *cfg, size_t sz, int ac, char *av[])
{
caddr_t dynbase;
size_t dynsz;
int rcnt;
int exitval = EX_OK;
int lac;
char **lav;
char *endptr;
size_t readsz;
struct buf_pr bp;
ipfw_obj_ctlv *ctlv, *tstate;
ipfw_obj_tlv *rbase;
/*
* Handle tablenames TLV first, if any
*/
tstate = NULL;
rbase = NULL;
dynbase = NULL;
dynsz = 0;
readsz = sizeof(*cfg);
rcnt = 0;
fo->set_mask = cfg->set_mask;
ctlv = (ipfw_obj_ctlv *)(cfg + 1);
if (cfg->flags & IPFW_CFG_GET_STATIC) {
/* We've requested static rules */
if (ctlv->head.type == IPFW_TLV_TBLNAME_LIST) {
fo->tstate = ctlv;
readsz += ctlv->head.length;
ctlv = (ipfw_obj_ctlv *)((caddr_t)ctlv +
ctlv->head.length);
}
if (ctlv->head.type == IPFW_TLV_RULE_LIST) {
rbase = (ipfw_obj_tlv *)(ctlv + 1);
rcnt = ctlv->count;
readsz += ctlv->head.length;
ctlv = (ipfw_obj_ctlv *)((caddr_t)ctlv +
ctlv->head.length);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
}
if ((cfg->flags & IPFW_CFG_GET_STATES) && (readsz != sz)) {
/* We may have some dynamic states */
dynsz = sz - readsz;
/* Skip empty header */
if (dynsz != sizeof(ipfw_obj_ctlv))
dynbase = (caddr_t)ctlv;
else
dynsz = 0;
}
prepare_format_opts(co, fo, rbase, rcnt, dynbase, dynsz);
bp_alloc(&bp, 4096);
/* if no rule numbers were specified, list all rules */
if (ac == 0) {
fo->first = 0;
fo->last = IPFW_DEFAULT_RULE;
list_static_range(co, fo, &bp, rbase, rcnt);
if (co->do_dynamic && dynsz > 0) {
printf("## Dynamic rules (%d %zu):\n", fo->dcnt, dynsz);
list_dyn_range(co, fo, &bp, dynbase, dynsz);
}
bp_free(&bp);
return (EX_OK);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
/* display specific rules requested on command line */
for (lac = ac, lav = av; lac != 0; lac--) {
/* convert command line rule # */
fo->last = fo->first = strtoul(*lav++, &endptr, 10);
In random order: * make the code compile with WARNS=5 (at least on i386), mostly by adding 'const' specifier and replacing "void *" with "char *" in places where pointer arithmetic was used. This also spotted a few places where invalid tests (e.g. uint < 0) were used. * support ranges in "list" and "show" commands. Now you can say ipfw show 100-1000 4000-8000 which is very convenient when you have large rulesets. * implement comments in ipfw commands. These are implemented in the kernel as O_NOP commands (which always match) whose body contains the comment string. In userland, a comment is a C++-style comment: ipfw add allow ip from me to any // i can talk to everybody The choice of '//' versus '#' is somewhat arbitrary, but because the preprocessor/readfile part of ipfw used to strip away '#', I did not want to change this behaviour. If a rule only contains a comment ipfw add 1000 // this rule is just a comment then it is stored as a 'count' rule (this is also to remind the user that scanning through a rule is expensive). * improve handling of flags (still to be completed). ipfw_main() was written thinking of 'one rule per ipfw invocation', and so flags are set and never cleared. With readfile/preprocessor support, this changes and certain flags should be reset on each line. For the time being, only fix handling of '-a' which differentiates the "list" and "show" commands. * rework the preprocessor support -- ipfw_main() already had most of the parsing code, so i have moved in there the only missing bit (stripping away '#' and comments) and removed the parsing from ipfw_readfile(). Also, add some more options (such as -c, -N, -S) to the readfile section. MFC after: 3 days
2003-07-12 06:53:16 +00:00
if (*endptr == '-')
fo->last = strtoul(endptr + 1, &endptr, 10);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (*endptr) {
exitval = EX_USAGE;
warnx("invalid rule number: %s", *(lav - 1));
continue;
}
if (list_static_range(co, fo, &bp, rbase, rcnt) == 0) {
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
/* give precedence to other error(s) */
if (exitval == EX_OK)
exitval = EX_UNAVAILABLE;
if (fo->first == fo->last)
warnx("rule %u does not exist", fo->first);
else
warnx("no rules in range %u-%u",
fo->first, fo->last);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
}
if (co->do_dynamic && dynsz > 0) {
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
printf("## Dynamic rules:\n");
for (lac = ac, lav = av; lac != 0; lac--) {
fo->last = fo->first = strtoul(*lav++, &endptr, 10);
In random order: * make the code compile with WARNS=5 (at least on i386), mostly by adding 'const' specifier and replacing "void *" with "char *" in places where pointer arithmetic was used. This also spotted a few places where invalid tests (e.g. uint < 0) were used. * support ranges in "list" and "show" commands. Now you can say ipfw show 100-1000 4000-8000 which is very convenient when you have large rulesets. * implement comments in ipfw commands. These are implemented in the kernel as O_NOP commands (which always match) whose body contains the comment string. In userland, a comment is a C++-style comment: ipfw add allow ip from me to any // i can talk to everybody The choice of '//' versus '#' is somewhat arbitrary, but because the preprocessor/readfile part of ipfw used to strip away '#', I did not want to change this behaviour. If a rule only contains a comment ipfw add 1000 // this rule is just a comment then it is stored as a 'count' rule (this is also to remind the user that scanning through a rule is expensive). * improve handling of flags (still to be completed). ipfw_main() was written thinking of 'one rule per ipfw invocation', and so flags are set and never cleared. With readfile/preprocessor support, this changes and certain flags should be reset on each line. For the time being, only fix handling of '-a' which differentiates the "list" and "show" commands. * rework the preprocessor support -- ipfw_main() already had most of the parsing code, so i have moved in there the only missing bit (stripping away '#' and comments) and removed the parsing from ipfw_readfile(). Also, add some more options (such as -c, -N, -S) to the readfile section. MFC after: 3 days
2003-07-12 06:53:16 +00:00
if (*endptr == '-')
fo->last = strtoul(endptr+1, &endptr, 10);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (*endptr)
/* already warned */
continue;
list_dyn_range(co, fo, &bp, dynbase, dynsz);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
}
bp_free(&bp);
return (exitval);
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
/*
* Retrieves current ipfw configuration of given type
* and stores its pointer to @pcfg.
*
* Caller is responsible for freeing @pcfg.
*
* Returns 0 on success.
*/
static int
ipfw_get_config(struct cmdline_opts *co, struct format_opts *fo,
ipfw_cfg_lheader **pcfg, size_t *psize)
{
ipfw_cfg_lheader *cfg;
size_t sz;
int i;
if (co->test_only != 0) {
fprintf(stderr, "Testing only, list disabled\n");
return (0);
}
/* Start with some data size */
sz = 4096;
cfg = NULL;
for (i = 0; i < 16; i++) {
if (cfg != NULL)
free(cfg);
if ((cfg = calloc(1, sz)) == NULL)
return (ENOMEM);
cfg->flags = fo->flags;
cfg->start_rule = fo->first;
cfg->end_rule = fo->last;
if (do_get3(IP_FW_XGET, &cfg->opheader, &sz) != 0) {
if (errno != ENOMEM) {
free(cfg);
return (errno);
}
/* Buffer size is not enough. Try to increase */
sz = sz * 2;
if (sz < cfg->size)
sz = cfg->size;
continue;
}
*pcfg = cfg;
*psize = sz;
return (0);
}
free(cfg);
return (ENOMEM);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
static int
lookup_host (char *host, struct in_addr *ipaddr)
{
struct hostent *he;
if (!inet_aton(host, ipaddr)) {
if ((he = gethostbyname(host)) == NULL)
return(-1);
*ipaddr = *(struct in_addr *)he->h_addr_list[0];
}
return(0);
}
struct tidx {
ipfw_obj_ntlv *idx;
uint32_t count;
uint32_t size;
uint16_t counter;
uint8_t set;
};
static uint16_t
pack_table(struct tidx *tstate, char *name)
{
int i;
ipfw_obj_ntlv *ntlv;
if (table_check_name(name) != 0)
return (0);
for (i = 0; i < tstate->count; i++) {
if (strcmp(tstate->idx[i].name, name) != 0)
continue;
if (tstate->idx[i].set != tstate->set)
continue;
return (tstate->idx[i].idx);
}
if (tstate->count + 1 > tstate->size) {
tstate->size += 4;
tstate->idx = realloc(tstate->idx, tstate->size *
sizeof(ipfw_obj_ntlv));
if (tstate->idx == NULL)
return (0);
}
ntlv = &tstate->idx[i];
memset(ntlv, 0, sizeof(ipfw_obj_ntlv));
strlcpy(ntlv->name, name, sizeof(ntlv->name));
ntlv->head.type = IPFW_TLV_TBL_NAME;
ntlv->head.length = sizeof(ipfw_obj_ntlv);
ntlv->set = tstate->set;
ntlv->idx = ++tstate->counter;
tstate->count++;
return (ntlv->idx);
}
* Add new "flow" table type to support N=1..5-tuple lookups * Add "flow:hash" algorithm Kernel changes: * Add O_IP_FLOW_LOOKUP opcode to support "flow" lookups * Add IPFW_TABLE_FLOW table type * Add "struct tflow_entry" as strage for 6-tuple flows * Add "flow:hash" algorithm. Basically it is auto-growing chained hash table. Additionally, we store mask of fields we need to compare in each instance/ * Increase ipfw_obj_tentry size by adding struct tflow_entry * Add per-algorithm stat (ifpw_ta_tinfo) to ipfw_xtable_info * Increase algoname length: 32 -> 64 (algo options passed there as string) * Assume every table type can be customized by flags, use u8 to store "tflags" field. * Simplify ipfw_find_table_entry() by providing @tentry directly to algo callback. * Fix bug in cidr:chash resize procedure. Userland changes: * add "flow table(NAME)" syntax to support n-tuple checking tables. * make fill_flags() separate function to ease working with _s_x arrays * change "table info" output to reflect longer "type" fields Syntax: ipfw table fl2 create type flow:[src-ip][,proto][,src-port][,dst-ip][dst-port] [algo flow:hash] Examples: 0:02 [2] zfscurr0# ipfw table fl2 create type flow:src-ip,proto,dst-port algo flow:hash 0:02 [2] zfscurr0# ipfw table fl2 info +++ table(fl2), set(0) +++ kindex: 0, type: flow:src-ip,proto,dst-port valtype: number, references: 0 algorithm: flow:hash items: 0, size: 280 0:02 [2] zfscurr0# ipfw table fl2 add 2a02:6b8::333,tcp,443 45000 0:02 [2] zfscurr0# ipfw table fl2 add 10.0.0.92,tcp,80 22000 0:02 [2] zfscurr0# ipfw table fl2 list +++ table(fl2), set(0) +++ 2a02:6b8::333,6,443 45000 10.0.0.92,6,80 22000 0:02 [2] zfscurr0# ipfw add 200 count tcp from me to 78.46.89.105 80 flow 'table(fl2)' 00200 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 0:03 [2] zfscurr0# ipfw show 00200 0 0 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 617 59416 allow ip from any to any 0:03 [2] zfscurr0# telnet -s 10.0.0.92 78.46.89.105 80 Trying 78.46.89.105... .. 0:04 [2] zfscurr0# ipfw show 00200 5 272 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 682 66733 allow ip from any to any
2014-07-31 20:08:19 +00:00
static void
fill_table(ipfw_insn *cmd, char *av, uint8_t opcode, struct tidx *tstate)
{
uint32_t *d = ((ipfw_insn_u32 *)cmd)->d;
uint16_t uidx;
char *p;
if ((p = strchr(av + 6, ')')) == NULL)
errx(EX_DATAERR, "forgotten parenthesis: '%s'", av);
*p = '\0';
p = strchr(av + 6, ',');
if (p)
*p++ = '\0';
if ((uidx = pack_table(tstate, av + 6)) == 0)
* Add new "flow" table type to support N=1..5-tuple lookups * Add "flow:hash" algorithm Kernel changes: * Add O_IP_FLOW_LOOKUP opcode to support "flow" lookups * Add IPFW_TABLE_FLOW table type * Add "struct tflow_entry" as strage for 6-tuple flows * Add "flow:hash" algorithm. Basically it is auto-growing chained hash table. Additionally, we store mask of fields we need to compare in each instance/ * Increase ipfw_obj_tentry size by adding struct tflow_entry * Add per-algorithm stat (ifpw_ta_tinfo) to ipfw_xtable_info * Increase algoname length: 32 -> 64 (algo options passed there as string) * Assume every table type can be customized by flags, use u8 to store "tflags" field. * Simplify ipfw_find_table_entry() by providing @tentry directly to algo callback. * Fix bug in cidr:chash resize procedure. Userland changes: * add "flow table(NAME)" syntax to support n-tuple checking tables. * make fill_flags() separate function to ease working with _s_x arrays * change "table info" output to reflect longer "type" fields Syntax: ipfw table fl2 create type flow:[src-ip][,proto][,src-port][,dst-ip][dst-port] [algo flow:hash] Examples: 0:02 [2] zfscurr0# ipfw table fl2 create type flow:src-ip,proto,dst-port algo flow:hash 0:02 [2] zfscurr0# ipfw table fl2 info +++ table(fl2), set(0) +++ kindex: 0, type: flow:src-ip,proto,dst-port valtype: number, references: 0 algorithm: flow:hash items: 0, size: 280 0:02 [2] zfscurr0# ipfw table fl2 add 2a02:6b8::333,tcp,443 45000 0:02 [2] zfscurr0# ipfw table fl2 add 10.0.0.92,tcp,80 22000 0:02 [2] zfscurr0# ipfw table fl2 list +++ table(fl2), set(0) +++ 2a02:6b8::333,6,443 45000 10.0.0.92,6,80 22000 0:02 [2] zfscurr0# ipfw add 200 count tcp from me to 78.46.89.105 80 flow 'table(fl2)' 00200 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 0:03 [2] zfscurr0# ipfw show 00200 0 0 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 617 59416 allow ip from any to any 0:03 [2] zfscurr0# telnet -s 10.0.0.92 78.46.89.105 80 Trying 78.46.89.105... .. 0:04 [2] zfscurr0# ipfw show 00200 5 272 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 682 66733 allow ip from any to any
2014-07-31 20:08:19 +00:00
errx(EX_DATAERR, "Invalid table name: %s", av + 6);
cmd->opcode = opcode;
cmd->arg1 = uidx;
if (p) {
cmd->len |= F_INSN_SIZE(ipfw_insn_u32);
d[0] = strtoul(p, NULL, 0);
} else
cmd->len |= F_INSN_SIZE(ipfw_insn);
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
/*
* fills the addr and mask fields in the instruction as appropriate from av.
* Update length as appropriate.
* The following formats are allowed:
* me returns O_IP_*_ME
* 1.2.3.4 single IP address
* 1.2.3.4:5.6.7.8 address:mask
* 1.2.3.4/24 address/mask
* 1.2.3.4/26{1,6,5,4,23} set of addresses in a subnet
* We can have multiple comma-separated address/mask entries.
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
*/
static void
fill_ip(ipfw_insn_ip *cmd, char *av, int cblen, struct tidx *tstate)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{
int len = 0;
uint32_t *d = ((ipfw_insn_u32 *)cmd)->d;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
cmd->o.len &= ~F_LEN_MASK; /* zero len */
if (_substrcmp(av, "any") == 0)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
return;
if (_substrcmp(av, "me") == 0) {
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
cmd->o.len |= F_INSN_SIZE(ipfw_insn);
return;
}
if (strncmp(av, "table(", 6) == 0) {
* Add new "flow" table type to support N=1..5-tuple lookups * Add "flow:hash" algorithm Kernel changes: * Add O_IP_FLOW_LOOKUP opcode to support "flow" lookups * Add IPFW_TABLE_FLOW table type * Add "struct tflow_entry" as strage for 6-tuple flows * Add "flow:hash" algorithm. Basically it is auto-growing chained hash table. Additionally, we store mask of fields we need to compare in each instance/ * Increase ipfw_obj_tentry size by adding struct tflow_entry * Add per-algorithm stat (ifpw_ta_tinfo) to ipfw_xtable_info * Increase algoname length: 32 -> 64 (algo options passed there as string) * Assume every table type can be customized by flags, use u8 to store "tflags" field. * Simplify ipfw_find_table_entry() by providing @tentry directly to algo callback. * Fix bug in cidr:chash resize procedure. Userland changes: * add "flow table(NAME)" syntax to support n-tuple checking tables. * make fill_flags() separate function to ease working with _s_x arrays * change "table info" output to reflect longer "type" fields Syntax: ipfw table fl2 create type flow:[src-ip][,proto][,src-port][,dst-ip][dst-port] [algo flow:hash] Examples: 0:02 [2] zfscurr0# ipfw table fl2 create type flow:src-ip,proto,dst-port algo flow:hash 0:02 [2] zfscurr0# ipfw table fl2 info +++ table(fl2), set(0) +++ kindex: 0, type: flow:src-ip,proto,dst-port valtype: number, references: 0 algorithm: flow:hash items: 0, size: 280 0:02 [2] zfscurr0# ipfw table fl2 add 2a02:6b8::333,tcp,443 45000 0:02 [2] zfscurr0# ipfw table fl2 add 10.0.0.92,tcp,80 22000 0:02 [2] zfscurr0# ipfw table fl2 list +++ table(fl2), set(0) +++ 2a02:6b8::333,6,443 45000 10.0.0.92,6,80 22000 0:02 [2] zfscurr0# ipfw add 200 count tcp from me to 78.46.89.105 80 flow 'table(fl2)' 00200 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 0:03 [2] zfscurr0# ipfw show 00200 0 0 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 617 59416 allow ip from any to any 0:03 [2] zfscurr0# telnet -s 10.0.0.92 78.46.89.105 80 Trying 78.46.89.105... .. 0:04 [2] zfscurr0# ipfw show 00200 5 272 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 682 66733 allow ip from any to any
2014-07-31 20:08:19 +00:00
fill_table(&cmd->o, av, O_IP_DST_LOOKUP, tstate);
return;
}
while (av) {
/*
* After the address we can have '/' or ':' indicating a mask,
* ',' indicating another address follows, '{' indicating a
* set of addresses of unspecified size.
*/
char *t = NULL, *p = strpbrk(av, "/:,{");
int masklen;
char md, nd = '\0';
CHECK_LENGTH(cblen, F_INSN_SIZE(ipfw_insn) + 2 + len);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (p) {
md = *p;
*p++ = '\0';
if ((t = strpbrk(p, ",{")) != NULL) {
nd = *t;
*t = '\0';
}
} else
md = '\0';
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (lookup_host(av, (struct in_addr *)&d[0]) != 0)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
errx(EX_NOHOST, "hostname ``%s'' unknown", av);
switch (md) {
case ':':
if (!inet_aton(p, (struct in_addr *)&d[1]))
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
errx(EX_DATAERR, "bad netmask ``%s''", p);
break;
case '/':
masklen = atoi(p);
if (masklen == 0)
d[1] = htonl(0); /* mask */
else if (masklen > 32)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
errx(EX_DATAERR, "bad width ``%s''", p);
else
d[1] = htonl(~0 << (32 - masklen));
break;
case '{': /* no mask, assume /24 and put back the '{' */
d[1] = htonl(~0 << (32 - 24));
*(--p) = md;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case ',': /* single address plus continuation */
*(--p) = md;
/* FALLTHROUGH */
case 0: /* initialization value */
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
default:
d[1] = htonl(~0); /* force /32 */
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
}
d[0] &= d[1]; /* mask base address with mask */
if (t)
*t = nd;
/* find next separator */
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (p)
p = strpbrk(p, ",{");
if (p && *p == '{') {
/*
* We have a set of addresses. They are stored as follows:
* arg1 is the set size (powers of 2, 2..256)
* addr is the base address IN HOST FORMAT
* mask.. is an array of arg1 bits (rounded up to
* the next multiple of 32) with bits set
* for each host in the map.
*/
uint32_t *map = (uint32_t *)&cmd->mask;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
int low, high;
int i = contigmask((uint8_t *)&(d[1]), 32);
if (len > 0)
errx(EX_DATAERR, "address set cannot be in a list");
if (i < 24 || i > 31)
errx(EX_DATAERR, "invalid set with mask %d\n", i);
cmd->o.arg1 = 1<<(32-i); /* map length */
d[0] = ntohl(d[0]); /* base addr in host format */
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
cmd->o.opcode = O_IP_DST_SET; /* default */
cmd->o.len |= F_INSN_SIZE(ipfw_insn_u32) + (cmd->o.arg1+31)/32;
for (i = 0; i < (cmd->o.arg1+31)/32 ; i++)
map[i] = 0; /* clear map */
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
av = p + 1;
low = d[0] & 0xff;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
high = low + cmd->o.arg1 - 1;
/*
* Here, i stores the previous value when we specify a range
* of addresses within a mask, e.g. 45-63. i = -1 means we
* have no previous value.
*/
i = -1; /* previous value in a range */
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
while (isdigit(*av)) {
char *s;
int a = strtol(av, &s, 0);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (s == av) { /* no parameter */
if (*av != '}')
errx(EX_DATAERR, "set not closed\n");
if (i != -1)
errx(EX_DATAERR, "incomplete range %d-", i);
break;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
if (a < low || a > high)
errx(EX_DATAERR, "addr %d out of range [%d-%d]\n",
a, low, high);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
a -= low;
if (i == -1) /* no previous in range */
i = a;
else { /* check that range is valid */
if (i > a)
errx(EX_DATAERR, "invalid range %d-%d",
i+low, a+low);
if (*s == '-')
errx(EX_DATAERR, "double '-' in range");
}
for (; i <= a; i++)
map[i/32] |= 1<<(i & 31);
i = -1;
if (*s == '-')
i = a;
else if (*s == '}')
break;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
av = s+1;
}
return;
}
av = p;
if (av) /* then *av must be a ',' */
av++;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
/* Check this entry */
if (d[1] == 0) { /* "any", specified as x.x.x.x/0 */
/*
* 'any' turns the entire list into a NOP.
* 'not any' never matches, so it is removed from the
* list unless it is the only item, in which case we
* report an error.
*/
if (cmd->o.len & F_NOT) { /* "not any" never matches */
if (av == NULL && len == 0) /* only this entry */
errx(EX_DATAERR, "not any never matches");
}
/* else do nothing and skip this entry */
return;
}
/* A single IP can be stored in an optimized format */
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
if (d[1] == (uint32_t)~0 && av == NULL && len == 0) {
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
cmd->o.len |= F_INSN_SIZE(ipfw_insn_u32);
return;
}
len += 2; /* two words... */
d += 2;
} /* end while */
if (len + 1 > F_LEN_MASK)
errx(EX_DATAERR, "address list too long");
cmd->o.len |= len+1;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
/* n2mask sets n bits of the mask */
void
n2mask(struct in6_addr *mask, int n)
{
static int minimask[9] =
{ 0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff };
u_char *p;
memset(mask, 0, sizeof(struct in6_addr));
p = (u_char *) mask;
for (; n > 0; p++, n -= 8) {
if (n >= 8)
*p = 0xff;
else
*p = minimask[n];
}
return;
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
static void
* Add new "flow" table type to support N=1..5-tuple lookups * Add "flow:hash" algorithm Kernel changes: * Add O_IP_FLOW_LOOKUP opcode to support "flow" lookups * Add IPFW_TABLE_FLOW table type * Add "struct tflow_entry" as strage for 6-tuple flows * Add "flow:hash" algorithm. Basically it is auto-growing chained hash table. Additionally, we store mask of fields we need to compare in each instance/ * Increase ipfw_obj_tentry size by adding struct tflow_entry * Add per-algorithm stat (ifpw_ta_tinfo) to ipfw_xtable_info * Increase algoname length: 32 -> 64 (algo options passed there as string) * Assume every table type can be customized by flags, use u8 to store "tflags" field. * Simplify ipfw_find_table_entry() by providing @tentry directly to algo callback. * Fix bug in cidr:chash resize procedure. Userland changes: * add "flow table(NAME)" syntax to support n-tuple checking tables. * make fill_flags() separate function to ease working with _s_x arrays * change "table info" output to reflect longer "type" fields Syntax: ipfw table fl2 create type flow:[src-ip][,proto][,src-port][,dst-ip][dst-port] [algo flow:hash] Examples: 0:02 [2] zfscurr0# ipfw table fl2 create type flow:src-ip,proto,dst-port algo flow:hash 0:02 [2] zfscurr0# ipfw table fl2 info +++ table(fl2), set(0) +++ kindex: 0, type: flow:src-ip,proto,dst-port valtype: number, references: 0 algorithm: flow:hash items: 0, size: 280 0:02 [2] zfscurr0# ipfw table fl2 add 2a02:6b8::333,tcp,443 45000 0:02 [2] zfscurr0# ipfw table fl2 add 10.0.0.92,tcp,80 22000 0:02 [2] zfscurr0# ipfw table fl2 list +++ table(fl2), set(0) +++ 2a02:6b8::333,6,443 45000 10.0.0.92,6,80 22000 0:02 [2] zfscurr0# ipfw add 200 count tcp from me to 78.46.89.105 80 flow 'table(fl2)' 00200 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 0:03 [2] zfscurr0# ipfw show 00200 0 0 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 617 59416 allow ip from any to any 0:03 [2] zfscurr0# telnet -s 10.0.0.92 78.46.89.105 80 Trying 78.46.89.105... .. 0:04 [2] zfscurr0# ipfw show 00200 5 272 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 682 66733 allow ip from any to any
2014-07-31 20:08:19 +00:00
fill_flags_cmd(ipfw_insn *cmd, enum ipfw_opcodes opcode,
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
struct _s_x *flags, char *p)
{
Add support for multi-field values inside ipfw tables. This is the last major change in given branch. Kernel changes: * Use 64-bytes structures to hold multi-value variables. * Use shared array to hold values from all tables (assume each table algo is capable of holding 32-byte variables). * Add some placeholders to support per-table value arrays in future. * Use simple eventhandler-style API to ease the process of adding new table items. Currently table addition may required multiple UH drops/ acquires which is quite tricky due to atomic table modificatio/swap support, shared array resize, etc. Deal with it by calling special notifier capable of rolling back state before actually performing swap/resize operations. Original operation then restarts itself after acquiring UH lock. * Bump all objhash users default values to at least 64 * Fix custom hashing inside objhash. Userland changes: * Add support for dumping shared value array via "vlist" internal cmd. * Some small print/fill_flags dixes to support u32 values. * valtype is now bitmask of <skipto|pipe|fib|nat|dscp|tag|divert|netgraph|limit|ipv4|ipv6>. New values can hold distinct values for each of this types. * Provide special "legacy" type which assumes all values are the same. * More helpers/docs following.. Some examples: 3:41 [1] zfscurr0# ipfw table mimimi create valtype skipto,limit,ipv4,ipv6 3:41 [1] zfscurr0# ipfw table mimimi info +++ table(mimimi), set(0) +++ kindex: 2, type: addr references: 0, valtype: skipto,limit,ipv4,ipv6 algorithm: addr:radix items: 0, size: 296 3:42 [1] zfscurr0# ipfw table mimimi add 10.0.0.5 3000,10,10.0.0.1,2a02:978:2::1 added: 10.0.0.5/32 3000,10,10.0.0.1,2a02:978:2::1 3:42 [1] zfscurr0# ipfw table mimimi list +++ table(mimimi), set(0) +++ 10.0.0.5/32 3000,0,10.0.0.1,2a02:978:2::1
2014-08-31 23:51:09 +00:00
char *e;
uint32_t set = 0, clear = 0;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
Add support for multi-field values inside ipfw tables. This is the last major change in given branch. Kernel changes: * Use 64-bytes structures to hold multi-value variables. * Use shared array to hold values from all tables (assume each table algo is capable of holding 32-byte variables). * Add some placeholders to support per-table value arrays in future. * Use simple eventhandler-style API to ease the process of adding new table items. Currently table addition may required multiple UH drops/ acquires which is quite tricky due to atomic table modificatio/swap support, shared array resize, etc. Deal with it by calling special notifier capable of rolling back state before actually performing swap/resize operations. Original operation then restarts itself after acquiring UH lock. * Bump all objhash users default values to at least 64 * Fix custom hashing inside objhash. Userland changes: * Add support for dumping shared value array via "vlist" internal cmd. * Some small print/fill_flags dixes to support u32 values. * valtype is now bitmask of <skipto|pipe|fib|nat|dscp|tag|divert|netgraph|limit|ipv4|ipv6>. New values can hold distinct values for each of this types. * Provide special "legacy" type which assumes all values are the same. * More helpers/docs following.. Some examples: 3:41 [1] zfscurr0# ipfw table mimimi create valtype skipto,limit,ipv4,ipv6 3:41 [1] zfscurr0# ipfw table mimimi info +++ table(mimimi), set(0) +++ kindex: 2, type: addr references: 0, valtype: skipto,limit,ipv4,ipv6 algorithm: addr:radix items: 0, size: 296 3:42 [1] zfscurr0# ipfw table mimimi add 10.0.0.5 3000,10,10.0.0.1,2a02:978:2::1 added: 10.0.0.5/32 3000,10,10.0.0.1,2a02:978:2::1 3:42 [1] zfscurr0# ipfw table mimimi list +++ table(mimimi), set(0) +++ 10.0.0.5/32 3000,0,10.0.0.1,2a02:978:2::1
2014-08-31 23:51:09 +00:00
if (fill_flags(flags, p, &e, &set, &clear) != 0)
errx(EX_DATAERR, "invalid flag %s", e);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
cmd->opcode = opcode;
cmd->len = (cmd->len & (F_NOT | F_OR)) | 1;
cmd->arg1 = (set & 0xff) | ( (clear & 0xff) << 8);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
void
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
ipfw_delete(char *av[])
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{
int i;
int exitval = EX_OK;
One bugfix and one new feature. The bugfix (ipfw2.c) makes the handling of port numbers with a dash in the name, e.g. ftp-data, consistent with old ipfw: use \\ before the - to consider it as part of the name and not a range separator. The new feature (all this description will go in the manpage): each rule now belongs to one of 32 different sets, which can be optionally specified in the following form: ipfw add 100 set 23 allow ip from any to any If "set N" is not specified, the rule belongs to set 0. Individual sets can be disabled, enabled, and deleted with the commands: ipfw disable set N ipfw enable set N ipfw delete set N Enabling/disabling of a set is atomic. Rules belonging to a disabled set are skipped during packet matching, and they are not listed unless you use the '-S' flag in the show/list commands. Note that dynamic rules, once created, are always active until they expire or their parent rule is deleted. Set 31 is reserved for the default rule and cannot be disabled. All sets are enabled by default. The enable/disable status of the sets can be shown with the command ipfw show sets Hopefully, this feature will make life easier to those who want to have atomic ruleset addition/deletion/tests. Examples: To add a set of rules atomically: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 To delete a set of rules atomically ipfw disable set 18 ipfw delete set 18 ipfw enable set 18 To test a ruleset and disable it and regain control if something goes wrong: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 ; echo "done "; sleep 30 && ipfw disable set 18 here if everything goes well, you press control-C before the "sleep" terminates, and your ruleset will be left active. Otherwise, e.g. if you cannot access your box, the ruleset will be disabled after the sleep terminates. I think there is only one more thing that one might want, namely a command to assign all rules in set X to set Y, so one can test a ruleset using the above mechanisms, and once it is considered acceptable, make it part of an existing ruleset.
2002-08-10 04:37:32 +00:00
int do_set = 0;
ipfw_range_tlv rt;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
NEED1("missing rule specification");
memset(&rt, 0, sizeof(rt));
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
if ( *av && _substrcmp(*av, "set") == 0) {
/* Do not allow using the following syntax:
* ipfw set N delete set M
*/
if (co.use_set)
errx(EX_DATAERR, "invalid syntax");
do_set = 1; /* delete set */
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
/* Rule number */
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
while (*av && isdigit(**av)) {
i = atoi(*av); av++;
if (co.do_nat) {
exitval = do_cmd(IP_FW_NAT_DEL, &i, sizeof i);
if (exitval) {
exitval = EX_UNAVAILABLE;
warn("rule %u not available", i);
}
} else if (co.do_pipe) {
exitval = ipfw_delete_pipe(co.do_pipe, i);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
} else {
if (do_set != 0) {
rt.set = i & 31;
rt.flags = IPFW_RCFLAG_SET;
} else {
rt.start_rule = i & 0xffff;
rt.end_rule = i & 0xffff;
if (rt.start_rule == 0 && rt.end_rule == 0)
rt.flags |= IPFW_RCFLAG_ALL;
else
rt.flags |= IPFW_RCFLAG_RANGE;
if (co.use_set != 0) {
rt.set = co.use_set - 1;
rt.flags |= IPFW_RCFLAG_SET;
}
}
i = do_range_cmd(IP_FW_XDEL, &rt);
if (i != 0) {
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
exitval = EX_UNAVAILABLE;
warn("rule %u: setsockopt(IP_FW_XDEL)",
rt.start_rule);
} else if (rt.new_set == 0) {
exitval = EX_UNAVAILABLE;
if (rt.start_rule != rt.end_rule)
warnx("no rules rules in %u-%u range",
rt.start_rule, rt.end_rule);
else
warnx("rule %u not found",
rt.start_rule);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
}
}
if (exitval != EX_OK)
exit(exitval);
}
/*
* fill the interface structure. We do not check the name as we can
* create interfaces dynamically, so checking them at insert time
* makes relatively little sense.
* Interface names containing '*', '?', or '[' are assumed to be shell
* patterns which match interfaces.
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
*/
static void
fill_iface(ipfw_insn_if *cmd, char *arg, int cblen, struct tidx *tstate)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{
char *p;
uint16_t uidx;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
cmd->name[0] = '\0';
cmd->o.len |= F_INSN_SIZE(ipfw_insn_if);
CHECK_CMDLEN;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
/* Parse the interface or address */
if (strcmp(arg, "any") == 0)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
cmd->o.len = 0; /* effectively ignore this command */
else if (strncmp(arg, "table(", 6) == 0) {
if ((p = strchr(arg + 6, ')')) == NULL)
errx(EX_DATAERR, "forgotten parenthesis: '%s'", arg);
*p = '\0';
p = strchr(arg + 6, ',');
if (p)
*p++ = '\0';
if ((uidx = pack_table(tstate, arg + 6)) == 0)
errx(EX_DATAERR, "Invalid table name: %s", arg + 6);
cmd->name[0] = '\1'; /* Special value indicating table */
cmd->p.kidx = uidx;
} else if (!isdigit(*arg)) {
strlcpy(cmd->name, arg, sizeof(cmd->name));
cmd->p.glob = strpbrk(arg, "*?[") != NULL ? 1 : 0;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
} else if (!inet_aton(arg, &cmd->p.ip))
errx(EX_DATAERR, "bad ip address ``%s''", arg);
}
static void
get_mac_addr_mask(const char *p, uint8_t *addr, uint8_t *mask)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
int i;
size_t l;
char *ap, *ptr, *optr;
struct ether_addr *mac;
const char *macset = "0123456789abcdefABCDEF:";
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (strcmp(p, "any") == 0) {
for (i = 0; i < ETHER_ADDR_LEN; i++)
addr[i] = mask[i] = 0;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
return;
}
optr = ptr = strdup(p);
if ((ap = strsep(&ptr, "&/")) != NULL && *ap != 0) {
l = strlen(ap);
if (strspn(ap, macset) != l || (mac = ether_aton(ap)) == NULL)
errx(EX_DATAERR, "Incorrect MAC address");
bcopy(mac, addr, ETHER_ADDR_LEN);
} else
errx(EX_DATAERR, "Incorrect MAC address");
if (ptr != NULL) { /* we have mask? */
if (p[ptr - optr - 1] == '/') { /* mask len */
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
long ml = strtol(ptr, &ap, 10);
if (*ap != 0 || ml > ETHER_ADDR_LEN * 8 || ml < 0)
errx(EX_DATAERR, "Incorrect mask length");
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
for (i = 0; ml > 0 && i < ETHER_ADDR_LEN; ml -= 8, i++)
mask[i] = (ml >= 8) ? 0xff: (~0) << (8 - ml);
} else { /* mask */
l = strlen(ptr);
if (strspn(ptr, macset) != l ||
(mac = ether_aton(ptr)) == NULL)
errx(EX_DATAERR, "Incorrect mask");
bcopy(mac, mask, ETHER_ADDR_LEN);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
} else { /* default mask: ff:ff:ff:ff:ff:ff */
for (i = 0; i < ETHER_ADDR_LEN; i++)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
mask[i] = 0xff;
}
for (i = 0; i < ETHER_ADDR_LEN; i++)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
addr[i] &= mask[i];
free(optr);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
/*
* helper function, updates the pointer to cmd with the length
* of the current command, and also cleans up the first word of
* the new command in case it has been clobbered before.
*/
static ipfw_insn *
next_cmd(ipfw_insn *cmd, int *len)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{
*len -= F_LEN(cmd);
CHECK_LENGTH(*len, 0);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
cmd += F_LEN(cmd);
bzero(cmd, sizeof(*cmd));
return cmd;
}
In random order: * make the code compile with WARNS=5 (at least on i386), mostly by adding 'const' specifier and replacing "void *" with "char *" in places where pointer arithmetic was used. This also spotted a few places where invalid tests (e.g. uint < 0) were used. * support ranges in "list" and "show" commands. Now you can say ipfw show 100-1000 4000-8000 which is very convenient when you have large rulesets. * implement comments in ipfw commands. These are implemented in the kernel as O_NOP commands (which always match) whose body contains the comment string. In userland, a comment is a C++-style comment: ipfw add allow ip from me to any // i can talk to everybody The choice of '//' versus '#' is somewhat arbitrary, but because the preprocessor/readfile part of ipfw used to strip away '#', I did not want to change this behaviour. If a rule only contains a comment ipfw add 1000 // this rule is just a comment then it is stored as a 'count' rule (this is also to remind the user that scanning through a rule is expensive). * improve handling of flags (still to be completed). ipfw_main() was written thinking of 'one rule per ipfw invocation', and so flags are set and never cleared. With readfile/preprocessor support, this changes and certain flags should be reset on each line. For the time being, only fix handling of '-a' which differentiates the "list" and "show" commands. * rework the preprocessor support -- ipfw_main() already had most of the parsing code, so i have moved in there the only missing bit (stripping away '#' and comments) and removed the parsing from ipfw_readfile(). Also, add some more options (such as -c, -N, -S) to the readfile section. MFC after: 3 days
2003-07-12 06:53:16 +00:00
/*
* Takes arguments and copies them into a comment
*/
static void
fill_comment(ipfw_insn *cmd, char **av, int cblen)
In random order: * make the code compile with WARNS=5 (at least on i386), mostly by adding 'const' specifier and replacing "void *" with "char *" in places where pointer arithmetic was used. This also spotted a few places where invalid tests (e.g. uint < 0) were used. * support ranges in "list" and "show" commands. Now you can say ipfw show 100-1000 4000-8000 which is very convenient when you have large rulesets. * implement comments in ipfw commands. These are implemented in the kernel as O_NOP commands (which always match) whose body contains the comment string. In userland, a comment is a C++-style comment: ipfw add allow ip from me to any // i can talk to everybody The choice of '//' versus '#' is somewhat arbitrary, but because the preprocessor/readfile part of ipfw used to strip away '#', I did not want to change this behaviour. If a rule only contains a comment ipfw add 1000 // this rule is just a comment then it is stored as a 'count' rule (this is also to remind the user that scanning through a rule is expensive). * improve handling of flags (still to be completed). ipfw_main() was written thinking of 'one rule per ipfw invocation', and so flags are set and never cleared. With readfile/preprocessor support, this changes and certain flags should be reset on each line. For the time being, only fix handling of '-a' which differentiates the "list" and "show" commands. * rework the preprocessor support -- ipfw_main() already had most of the parsing code, so i have moved in there the only missing bit (stripping away '#' and comments) and removed the parsing from ipfw_readfile(). Also, add some more options (such as -c, -N, -S) to the readfile section. MFC after: 3 days
2003-07-12 06:53:16 +00:00
{
int i, l;
char *p = (char *)(cmd + 1);
In random order: * make the code compile with WARNS=5 (at least on i386), mostly by adding 'const' specifier and replacing "void *" with "char *" in places where pointer arithmetic was used. This also spotted a few places where invalid tests (e.g. uint < 0) were used. * support ranges in "list" and "show" commands. Now you can say ipfw show 100-1000 4000-8000 which is very convenient when you have large rulesets. * implement comments in ipfw commands. These are implemented in the kernel as O_NOP commands (which always match) whose body contains the comment string. In userland, a comment is a C++-style comment: ipfw add allow ip from me to any // i can talk to everybody The choice of '//' versus '#' is somewhat arbitrary, but because the preprocessor/readfile part of ipfw used to strip away '#', I did not want to change this behaviour. If a rule only contains a comment ipfw add 1000 // this rule is just a comment then it is stored as a 'count' rule (this is also to remind the user that scanning through a rule is expensive). * improve handling of flags (still to be completed). ipfw_main() was written thinking of 'one rule per ipfw invocation', and so flags are set and never cleared. With readfile/preprocessor support, this changes and certain flags should be reset on each line. For the time being, only fix handling of '-a' which differentiates the "list" and "show" commands. * rework the preprocessor support -- ipfw_main() already had most of the parsing code, so i have moved in there the only missing bit (stripping away '#' and comments) and removed the parsing from ipfw_readfile(). Also, add some more options (such as -c, -N, -S) to the readfile section. MFC after: 3 days
2003-07-12 06:53:16 +00:00
cmd->opcode = O_NOP;
cmd->len = (cmd->len & (F_NOT | F_OR));
/* Compute length of comment string. */
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
for (i = 0, l = 0; av[i] != NULL; i++)
In random order: * make the code compile with WARNS=5 (at least on i386), mostly by adding 'const' specifier and replacing "void *" with "char *" in places where pointer arithmetic was used. This also spotted a few places where invalid tests (e.g. uint < 0) were used. * support ranges in "list" and "show" commands. Now you can say ipfw show 100-1000 4000-8000 which is very convenient when you have large rulesets. * implement comments in ipfw commands. These are implemented in the kernel as O_NOP commands (which always match) whose body contains the comment string. In userland, a comment is a C++-style comment: ipfw add allow ip from me to any // i can talk to everybody The choice of '//' versus '#' is somewhat arbitrary, but because the preprocessor/readfile part of ipfw used to strip away '#', I did not want to change this behaviour. If a rule only contains a comment ipfw add 1000 // this rule is just a comment then it is stored as a 'count' rule (this is also to remind the user that scanning through a rule is expensive). * improve handling of flags (still to be completed). ipfw_main() was written thinking of 'one rule per ipfw invocation', and so flags are set and never cleared. With readfile/preprocessor support, this changes and certain flags should be reset on each line. For the time being, only fix handling of '-a' which differentiates the "list" and "show" commands. * rework the preprocessor support -- ipfw_main() already had most of the parsing code, so i have moved in there the only missing bit (stripping away '#' and comments) and removed the parsing from ipfw_readfile(). Also, add some more options (such as -c, -N, -S) to the readfile section. MFC after: 3 days
2003-07-12 06:53:16 +00:00
l += strlen(av[i]) + 1;
if (l == 0)
return;
if (l > 84)
errx(EX_DATAERR,
"comment too long (max 80 chars)");
l = 1 + (l+3)/4;
cmd->len = (cmd->len & (F_NOT | F_OR)) | l;
CHECK_CMDLEN;
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
for (i = 0; av[i] != NULL; i++) {
In random order: * make the code compile with WARNS=5 (at least on i386), mostly by adding 'const' specifier and replacing "void *" with "char *" in places where pointer arithmetic was used. This also spotted a few places where invalid tests (e.g. uint < 0) were used. * support ranges in "list" and "show" commands. Now you can say ipfw show 100-1000 4000-8000 which is very convenient when you have large rulesets. * implement comments in ipfw commands. These are implemented in the kernel as O_NOP commands (which always match) whose body contains the comment string. In userland, a comment is a C++-style comment: ipfw add allow ip from me to any // i can talk to everybody The choice of '//' versus '#' is somewhat arbitrary, but because the preprocessor/readfile part of ipfw used to strip away '#', I did not want to change this behaviour. If a rule only contains a comment ipfw add 1000 // this rule is just a comment then it is stored as a 'count' rule (this is also to remind the user that scanning through a rule is expensive). * improve handling of flags (still to be completed). ipfw_main() was written thinking of 'one rule per ipfw invocation', and so flags are set and never cleared. With readfile/preprocessor support, this changes and certain flags should be reset on each line. For the time being, only fix handling of '-a' which differentiates the "list" and "show" commands. * rework the preprocessor support -- ipfw_main() already had most of the parsing code, so i have moved in there the only missing bit (stripping away '#' and comments) and removed the parsing from ipfw_readfile(). Also, add some more options (such as -c, -N, -S) to the readfile section. MFC after: 3 days
2003-07-12 06:53:16 +00:00
strcpy(p, av[i]);
p += strlen(av[i]);
*p++ = ' ';
}
*(--p) = '\0';
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
/*
* A function to fill simple commands of size 1.
* Existing flags are preserved.
*/
static void
fill_cmd(ipfw_insn *cmd, enum ipfw_opcodes opcode, int flags, uint16_t arg)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{
cmd->opcode = opcode;
cmd->len = ((cmd->len | flags) & (F_NOT | F_OR)) | 1;
cmd->arg1 = arg;
}
/*
* Fetch and add the MAC address and type, with masks. This generates one or
* two microinstructions, and returns the pointer to the last one.
*/
static ipfw_insn *
add_mac(ipfw_insn *cmd, char *av[], int cblen)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{
ipfw_insn_mac *mac;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
if ( ( av[0] == NULL ) || ( av[1] == NULL ) )
errx(EX_DATAERR, "MAC dst src");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
cmd->opcode = O_MACADDR2;
cmd->len = (cmd->len & (F_NOT | F_OR)) | F_INSN_SIZE(ipfw_insn_mac);
CHECK_CMDLEN;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
mac = (ipfw_insn_mac *)cmd;
get_mac_addr_mask(av[0], mac->addr, mac->mask); /* dst */
get_mac_addr_mask(av[1], &(mac->addr[ETHER_ADDR_LEN]),
&(mac->mask[ETHER_ADDR_LEN])); /* src */
return cmd;
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
static ipfw_insn *
add_mactype(ipfw_insn *cmd, char *av, int cblen)
{
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
if (!av)
errx(EX_DATAERR, "missing MAC type");
if (strcmp(av, "any") != 0) { /* we have a non-null type */
fill_newports((ipfw_insn_u16 *)cmd, av, IPPROTO_ETHERTYPE,
cblen);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
cmd->opcode = O_MAC_TYPE;
return cmd;
} else
return NULL;
}
static ipfw_insn *
add_proto0(ipfw_insn *cmd, char *av, u_char *protop)
{
struct protoent *pe;
char *ep;
int proto;
proto = strtol(av, &ep, 10);
if (*ep != '\0' || proto <= 0) {
if ((pe = getprotobyname(av)) == NULL)
return NULL;
proto = pe->p_proto;
}
fill_cmd(cmd, O_PROTO, 0, proto);
*protop = proto;
return cmd;
}
static ipfw_insn *
add_proto(ipfw_insn *cmd, char *av, u_char *protop)
{
u_char proto = IPPROTO_IP;
if (_substrcmp(av, "all") == 0 || strcmp(av, "ip") == 0)
; /* do not set O_IP4 nor O_IP6 */
else if (strcmp(av, "ip4") == 0)
/* explicit "just IPv4" rule */
fill_cmd(cmd, O_IP4, 0, 0);
else if (strcmp(av, "ip6") == 0) {
/* explicit "just IPv6" rule */
proto = IPPROTO_IPV6;
fill_cmd(cmd, O_IP6, 0, 0);
} else
return add_proto0(cmd, av, protop);
*protop = proto;
return cmd;
}
static ipfw_insn *
add_proto_compat(ipfw_insn *cmd, char *av, u_char *protop)
{
u_char proto = IPPROTO_IP;
if (_substrcmp(av, "all") == 0 || strcmp(av, "ip") == 0)
; /* do not set O_IP4 nor O_IP6 */
else if (strcmp(av, "ipv4") == 0 || strcmp(av, "ip4") == 0)
/* explicit "just IPv4" rule */
fill_cmd(cmd, O_IP4, 0, 0);
else if (strcmp(av, "ipv6") == 0 || strcmp(av, "ip6") == 0) {
/* explicit "just IPv6" rule */
proto = IPPROTO_IPV6;
fill_cmd(cmd, O_IP6, 0, 0);
} else
return add_proto0(cmd, av, protop);
*protop = proto;
return cmd;
}
static ipfw_insn *
add_srcip(ipfw_insn *cmd, char *av, int cblen, struct tidx *tstate)
{
fill_ip((ipfw_insn_ip *)cmd, av, cblen, tstate);
if (cmd->opcode == O_IP_DST_SET) /* set */
cmd->opcode = O_IP_SRC_SET;
else if (cmd->opcode == O_IP_DST_LOOKUP) /* table */
cmd->opcode = O_IP_SRC_LOOKUP;
else if (F_LEN(cmd) == F_INSN_SIZE(ipfw_insn)) /* me */
cmd->opcode = O_IP_SRC_ME;
else if (F_LEN(cmd) == F_INSN_SIZE(ipfw_insn_u32)) /* one IP */
cmd->opcode = O_IP_SRC;
else /* addr/mask */
cmd->opcode = O_IP_SRC_MASK;
return cmd;
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
static ipfw_insn *
add_dstip(ipfw_insn *cmd, char *av, int cblen, struct tidx *tstate)
{
fill_ip((ipfw_insn_ip *)cmd, av, cblen, tstate);
if (cmd->opcode == O_IP_DST_SET) /* set */
;
else if (cmd->opcode == O_IP_DST_LOOKUP) /* table */
;
else if (F_LEN(cmd) == F_INSN_SIZE(ipfw_insn)) /* me */
cmd->opcode = O_IP_DST_ME;
else if (F_LEN(cmd) == F_INSN_SIZE(ipfw_insn_u32)) /* one IP */
cmd->opcode = O_IP_DST;
else /* addr/mask */
cmd->opcode = O_IP_DST_MASK;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
return cmd;
}
static struct _s_x f_reserved_keywords[] = {
{ "altq", TOK_OR },
{ "//", TOK_OR },
{ "diverted", TOK_OR },
{ "dst-port", TOK_OR },
{ "src-port", TOK_OR },
{ "established", TOK_OR },
{ "keep-state", TOK_OR },
{ "frag", TOK_OR },
{ "icmptypes", TOK_OR },
{ "in", TOK_OR },
{ "out", TOK_OR },
{ "ip6", TOK_OR },
{ "any", TOK_OR },
{ "to", TOK_OR },
{ "via", TOK_OR },
{ "{", TOK_OR },
{ NULL, 0 } /* terminator */
};
static ipfw_insn *
add_ports(ipfw_insn *cmd, char *av, u_char proto, int opcode, int cblen)
{
if (match_token(f_reserved_keywords, av) != -1)
return (NULL);
if (fill_newports((ipfw_insn_u16 *)cmd, av, proto, cblen)) {
/* XXX todo: check that we have a protocol with ports */
cmd->opcode = opcode;
return cmd;
}
return NULL;
}
static ipfw_insn *
add_src(ipfw_insn *cmd, char *av, u_char proto, int cblen, struct tidx *tstate)
{
struct in6_addr a;
char *host, *ch, buf[INET6_ADDRSTRLEN];
ipfw_insn *ret = NULL;
int len;
/* Copy first address in set if needed */
if ((ch = strpbrk(av, "/,")) != NULL) {
len = ch - av;
strlcpy(buf, av, sizeof(buf));
if (len < sizeof(buf))
buf[len] = '\0';
host = buf;
} else
host = av;
if (proto == IPPROTO_IPV6 || strcmp(av, "me6") == 0 ||
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
inet_pton(AF_INET6, host, &a) == 1)
ret = add_srcip6(cmd, av, cblen);
/* XXX: should check for IPv4, not !IPv6 */
if (ret == NULL && (proto == IPPROTO_IP || strcmp(av, "me") == 0 ||
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
inet_pton(AF_INET6, host, &a) != 1))
ret = add_srcip(cmd, av, cblen, tstate);
if (ret == NULL && strcmp(av, "any") != 0)
ret = cmd;
return ret;
}
static ipfw_insn *
add_dst(ipfw_insn *cmd, char *av, u_char proto, int cblen, struct tidx *tstate)
{
struct in6_addr a;
char *host, *ch, buf[INET6_ADDRSTRLEN];
ipfw_insn *ret = NULL;
int len;
/* Copy first address in set if needed */
if ((ch = strpbrk(av, "/,")) != NULL) {
len = ch - av;
strlcpy(buf, av, sizeof(buf));
if (len < sizeof(buf))
buf[len] = '\0';
host = buf;
} else
host = av;
if (proto == IPPROTO_IPV6 || strcmp(av, "me6") == 0 ||
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
inet_pton(AF_INET6, host, &a) == 1)
ret = add_dstip6(cmd, av, cblen);
/* XXX: should check for IPv4, not !IPv6 */
if (ret == NULL && (proto == IPPROTO_IP || strcmp(av, "me") == 0 ||
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
inet_pton(AF_INET6, host, &a) != 1))
ret = add_dstip(cmd, av, cblen, tstate);
if (ret == NULL && strcmp(av, "any") != 0)
ret = cmd;
return ret;
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
/*
* Parse arguments and assemble the microinstructions which make up a rule.
* Rules are added into the 'rulebuf' and then copied in the correct order
* into the actual rule.
*
* The syntax for a rule starts with the action, followed by
* optional action parameters, and the various match patterns.
* In the assembled microcode, the first opcode must be an O_PROBE_STATE
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
* (generated if the rule includes a keep-state option), then the
* various match patterns, log/altq actions, and the actual action.
2002-11-06 15:09:34 +00:00
*
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
*/
void
compile_rule(char *av[], uint32_t *rbuf, int *rbufsize, struct tidx *tstate)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{
/*
* rules are added into the 'rulebuf' and then copied in
* the correct order into the actual rule.
* Some things that need to go out of order (prob, action etc.)
* go into actbuf[].
*/
static uint32_t actbuf[255], cmdbuf[255];
int rblen, ablen, cblen;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
In random order: * make the code compile with WARNS=5 (at least on i386), mostly by adding 'const' specifier and replacing "void *" with "char *" in places where pointer arithmetic was used. This also spotted a few places where invalid tests (e.g. uint < 0) were used. * support ranges in "list" and "show" commands. Now you can say ipfw show 100-1000 4000-8000 which is very convenient when you have large rulesets. * implement comments in ipfw commands. These are implemented in the kernel as O_NOP commands (which always match) whose body contains the comment string. In userland, a comment is a C++-style comment: ipfw add allow ip from me to any // i can talk to everybody The choice of '//' versus '#' is somewhat arbitrary, but because the preprocessor/readfile part of ipfw used to strip away '#', I did not want to change this behaviour. If a rule only contains a comment ipfw add 1000 // this rule is just a comment then it is stored as a 'count' rule (this is also to remind the user that scanning through a rule is expensive). * improve handling of flags (still to be completed). ipfw_main() was written thinking of 'one rule per ipfw invocation', and so flags are set and never cleared. With readfile/preprocessor support, this changes and certain flags should be reset on each line. For the time being, only fix handling of '-a' which differentiates the "list" and "show" commands. * rework the preprocessor support -- ipfw_main() already had most of the parsing code, so i have moved in there the only missing bit (stripping away '#' and comments) and removed the parsing from ipfw_readfile(). Also, add some more options (such as -c, -N, -S) to the readfile section. MFC after: 3 days
2003-07-12 06:53:16 +00:00
ipfw_insn *src, *dst, *cmd, *action, *prev=NULL;
ipfw_insn *first_cmd; /* first match pattern */
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
struct ip_fw_rule *rule;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
/*
* various flags used to record that we entered some fields.
*/
ipfw_insn *have_state = NULL; /* check-state or keep-state */
ipfw_insn *have_log = NULL, *have_altq = NULL, *have_tag = NULL;
size_t len;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
int i;
int open_par = 0; /* open parenthesis ( */
/* proto is here because it is used to fetch ports */
u_char proto = IPPROTO_IP; /* default protocol */
double match_prob = 1; /* match probability, default is always match */
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
bzero(actbuf, sizeof(actbuf)); /* actions go here */
bzero(cmdbuf, sizeof(cmdbuf));
bzero(rbuf, *rbufsize);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
rule = (struct ip_fw_rule *)rbuf;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
cmd = (ipfw_insn *)cmdbuf;
action = (ipfw_insn *)actbuf;
rblen = *rbufsize / sizeof(uint32_t);
rblen -= sizeof(struct ip_fw_rule) / sizeof(uint32_t);
ablen = sizeof(actbuf) / sizeof(actbuf[0]);
cblen = sizeof(cmdbuf) / sizeof(cmdbuf[0]);
cblen -= F_INSN_SIZE(ipfw_insn_u32) + 1;
#define CHECK_RBUFLEN(len) { CHECK_LENGTH(rblen, len); rblen -= len; }
#define CHECK_ACTLEN CHECK_LENGTH(ablen, action->len)
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
/* [rule N] -- Rule number optional */
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
if (av[0] && isdigit(**av)) {
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
rule->rulenum = atoi(*av);
av++;
}
/* [set N] -- set number (0..RESVD_SET), optional */
if (av[0] && av[1] && _substrcmp(*av, "set") == 0) {
One bugfix and one new feature. The bugfix (ipfw2.c) makes the handling of port numbers with a dash in the name, e.g. ftp-data, consistent with old ipfw: use \\ before the - to consider it as part of the name and not a range separator. The new feature (all this description will go in the manpage): each rule now belongs to one of 32 different sets, which can be optionally specified in the following form: ipfw add 100 set 23 allow ip from any to any If "set N" is not specified, the rule belongs to set 0. Individual sets can be disabled, enabled, and deleted with the commands: ipfw disable set N ipfw enable set N ipfw delete set N Enabling/disabling of a set is atomic. Rules belonging to a disabled set are skipped during packet matching, and they are not listed unless you use the '-S' flag in the show/list commands. Note that dynamic rules, once created, are always active until they expire or their parent rule is deleted. Set 31 is reserved for the default rule and cannot be disabled. All sets are enabled by default. The enable/disable status of the sets can be shown with the command ipfw show sets Hopefully, this feature will make life easier to those who want to have atomic ruleset addition/deletion/tests. Examples: To add a set of rules atomically: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 To delete a set of rules atomically ipfw disable set 18 ipfw delete set 18 ipfw enable set 18 To test a ruleset and disable it and regain control if something goes wrong: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 ; echo "done "; sleep 30 && ipfw disable set 18 here if everything goes well, you press control-C before the "sleep" terminates, and your ruleset will be left active. Otherwise, e.g. if you cannot access your box, the ruleset will be disabled after the sleep terminates. I think there is only one more thing that one might want, namely a command to assign all rules in set X to set Y, so one can test a ruleset using the above mechanisms, and once it is considered acceptable, make it part of an existing ruleset.
2002-08-10 04:37:32 +00:00
int set = strtoul(av[1], NULL, 10);
if (set < 0 || set > RESVD_SET)
One bugfix and one new feature. The bugfix (ipfw2.c) makes the handling of port numbers with a dash in the name, e.g. ftp-data, consistent with old ipfw: use \\ before the - to consider it as part of the name and not a range separator. The new feature (all this description will go in the manpage): each rule now belongs to one of 32 different sets, which can be optionally specified in the following form: ipfw add 100 set 23 allow ip from any to any If "set N" is not specified, the rule belongs to set 0. Individual sets can be disabled, enabled, and deleted with the commands: ipfw disable set N ipfw enable set N ipfw delete set N Enabling/disabling of a set is atomic. Rules belonging to a disabled set are skipped during packet matching, and they are not listed unless you use the '-S' flag in the show/list commands. Note that dynamic rules, once created, are always active until they expire or their parent rule is deleted. Set 31 is reserved for the default rule and cannot be disabled. All sets are enabled by default. The enable/disable status of the sets can be shown with the command ipfw show sets Hopefully, this feature will make life easier to those who want to have atomic ruleset addition/deletion/tests. Examples: To add a set of rules atomically: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 To delete a set of rules atomically ipfw disable set 18 ipfw delete set 18 ipfw enable set 18 To test a ruleset and disable it and regain control if something goes wrong: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 ; echo "done "; sleep 30 && ipfw disable set 18 here if everything goes well, you press control-C before the "sleep" terminates, and your ruleset will be left active. Otherwise, e.g. if you cannot access your box, the ruleset will be disabled after the sleep terminates. I think there is only one more thing that one might want, namely a command to assign all rules in set X to set Y, so one can test a ruleset using the above mechanisms, and once it is considered acceptable, make it part of an existing ruleset.
2002-08-10 04:37:32 +00:00
errx(EX_DATAERR, "illegal set %s", av[1]);
rule->set = set;
tstate->set = set;
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av += 2;
One bugfix and one new feature. The bugfix (ipfw2.c) makes the handling of port numbers with a dash in the name, e.g. ftp-data, consistent with old ipfw: use \\ before the - to consider it as part of the name and not a range separator. The new feature (all this description will go in the manpage): each rule now belongs to one of 32 different sets, which can be optionally specified in the following form: ipfw add 100 set 23 allow ip from any to any If "set N" is not specified, the rule belongs to set 0. Individual sets can be disabled, enabled, and deleted with the commands: ipfw disable set N ipfw enable set N ipfw delete set N Enabling/disabling of a set is atomic. Rules belonging to a disabled set are skipped during packet matching, and they are not listed unless you use the '-S' flag in the show/list commands. Note that dynamic rules, once created, are always active until they expire or their parent rule is deleted. Set 31 is reserved for the default rule and cannot be disabled. All sets are enabled by default. The enable/disable status of the sets can be shown with the command ipfw show sets Hopefully, this feature will make life easier to those who want to have atomic ruleset addition/deletion/tests. Examples: To add a set of rules atomically: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 To delete a set of rules atomically ipfw disable set 18 ipfw delete set 18 ipfw enable set 18 To test a ruleset and disable it and regain control if something goes wrong: ipfw disable set 18 ipfw add ... set 18 ... # repeat as needed ipfw enable set 18 ; echo "done "; sleep 30 && ipfw disable set 18 here if everything goes well, you press control-C before the "sleep" terminates, and your ruleset will be left active. Otherwise, e.g. if you cannot access your box, the ruleset will be disabled after the sleep terminates. I think there is only one more thing that one might want, namely a command to assign all rules in set X to set Y, so one can test a ruleset using the above mechanisms, and once it is considered acceptable, make it part of an existing ruleset.
2002-08-10 04:37:32 +00:00
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
/* [prob D] -- match probability, optional */
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
if (av[0] && av[1] && _substrcmp(*av, "prob") == 0) {
match_prob = strtod(av[1], NULL);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (match_prob <= 0 || match_prob > 1)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
errx(EX_DATAERR, "illegal match prob. %s", av[1]);
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av += 2;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
/* action -- mandatory */
NEED1("missing action");
i = match_token(rule_actions, *av);
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
action->len = 1; /* default */
CHECK_ACTLEN;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
switch(i) {
case TOK_CHECKSTATE:
have_state = action;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
action->opcode = O_CHECK_STATE;
break;
case TOK_ACCEPT:
action->opcode = O_ACCEPT;
break;
case TOK_DENY:
action->opcode = O_DENY;
action->arg1 = 0;
break;
case TOK_REJECT:
action->opcode = O_REJECT;
action->arg1 = ICMP_UNREACH_HOST;
break;
case TOK_RESET:
action->opcode = O_REJECT;
action->arg1 = ICMP_REJECT_RST;
break;
case TOK_RESET6:
action->opcode = O_UNREACH6;
action->arg1 = ICMP6_UNREACH_RST;
break;
case TOK_UNREACH:
action->opcode = O_REJECT;
NEED1("missing reject code");
fill_reject_code(&action->arg1, *av);
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case TOK_UNREACH6:
action->opcode = O_UNREACH6;
NEED1("missing unreach code");
fill_unreach6_code(&action->arg1, *av);
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
break;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case TOK_COUNT:
action->opcode = O_COUNT;
break;
case TOK_NAT:
action->opcode = O_NAT;
action->len = F_INSN_SIZE(ipfw_insn_nat);
CHECK_ACTLEN;
if (_substrcmp(*av, "global") == 0) {
action->arg1 = 0;
av++;
break;
} else
goto chkarg;
Add code to allow the system to handle multiple routing tables. This particular implementation is designed to be fully backwards compatible and to be MFC-able to 7.x (and 6.x) Currently the only protocol that can make use of the multiple tables is IPv4 Similar functionality exists in OpenBSD and Linux. From my notes: ----- One thing where FreeBSD has been falling behind, and which by chance I have some time to work on is "policy based routing", which allows different packet streams to be routed by more than just the destination address. Constraints: ------------ I want to make some form of this available in the 6.x tree (and by extension 7.x) , but FreeBSD in general needs it so I might as well do it in -current and back port the portions I need. One of the ways that this can be done is to have the ability to instantiate multiple kernel routing tables (which I will now refer to as "Forwarding Information Bases" or "FIBs" for political correctness reasons). Which FIB a particular packet uses to make the next hop decision can be decided by a number of mechanisms. The policies these mechanisms implement are the "Policies" referred to in "Policy based routing". One of the constraints I have if I try to back port this work to 6.x is that it must be implemented as a EXTENSION to the existing ABIs in 6.x so that third party applications do not need to be recompiled in timespan of the branch. This first version will not have some of the bells and whistles that will come with later versions. It will, for example, be limited to 16 tables in the first commit. Implementation method, Compatible version. (part 1) ------------------------------- For this reason I have implemented a "sufficient subset" of a multiple routing table solution in Perforce, and back-ported it to 6.x. (also in Perforce though not always caught up with what I have done in -current/P4). The subset allows a number of FIBs to be defined at compile time (8 is sufficient for my purposes in 6.x) and implements the changes needed to allow IPV4 to use them. I have not done the changes for ipv6 simply because I do not need it, and I do not have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it. Other protocol families are left untouched and should there be users with proprietary protocol families, they should continue to work and be oblivious to the existence of the extra FIBs. To understand how this is done, one must know that the current FIB code starts everything off with a single dimensional array of pointers to FIB head structures (One per protocol family), each of which in turn points to the trie of routes available to that family. The basic change in the ABI compatible version of the change is to extent that array to be a 2 dimensional array, so that instead of protocol family X looking at rt_tables[X] for the table it needs, it looks at rt_tables[Y][X] when for all protocol families except ipv4 Y is always 0. Code that is unaware of the change always just sees the first row of the table, which of course looks just like the one dimensional array that existed before. The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign() are all maintained, but refer only to the first row of the array, so that existing callers in proprietary protocols can continue to do the "right thing". Some new entry points are added, for the exclusive use of ipv4 code called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(), which have an extra argument which refers the code to the correct row. In addition, there are some new entry points (currently called rtalloc_fib() and friends) that check the Address family being looked up and call either rtalloc() (and friends) if the protocol is not IPv4 forcing the action to row 0 or to the appropriate row if it IS IPv4 (and that info is available). These are for calling from code that is not specific to any particular protocol. The way these are implemented would change in the non ABI preserving code to be added later. One feature of the first version of the code is that for ipv4, the interface routes show up automatically on all the FIBs, so that no matter what FIB you select you always have the basic direct attached hosts available to you. (rtinit() does this automatically). You CAN delete an interface route from one FIB should you want to but by default it's there. ARP information is also available in each FIB. It's assumed that the same machine would have the same MAC address, regardless of which FIB you are using to get to it. This brings us as to how the correct FIB is selected for an outgoing IPV4 packet. Firstly, all packets have a FIB associated with them. if nothing has been done to change it, it will be FIB 0. The FIB is changed in the following ways. Packets fall into one of a number of classes. 1/ locally generated packets, coming from a socket/PCB. Such packets select a FIB from a number associated with the socket/PCB. This in turn is inherited from the process, but can be changed by a socket option. The process in turn inherits it on fork. I have written a utility call setfib that acts a bit like nice.. setfib -3 ping target.example.com # will use fib 3 for ping. It is an obvious extension to make it a property of a jail but I have not done so. It can be achieved by combining the setfib and jail commands. 2/ packets received on an interface for forwarding. By default these packets would use table 0, (or possibly a number settable in a sysctl(not yet)). but prior to routing the firewall can inspect them (see below). (possibly in the future you may be able to associate a FIB with packets received on an interface.. An ifconfig arg, but not yet.) 3/ packets inspected by a packet classifier, which can arbitrarily associate a fib with it on a packet by packet basis. A fib assigned to a packet by a packet classifier (such as ipfw) would over-ride a fib associated by a more default source. (such as cases 1 or 2). 4/ a tcp listen socket associated with a fib will generate accept sockets that are associated with that same fib. 5/ Packets generated in response to some other packet (e.g. reset or icmp packets). These should use the FIB associated with the packet being reponded to. 6/ Packets generated during encapsulation. gif, tun and other tunnel interfaces will encapsulate using the FIB that was in effect withthe proces that set up the tunnel. thus setfib 1 ifconfig gif0 [tunnel instructions] will set the fib for the tunnel to use to be fib 1. Routing messages would be associated with their process, and thus select one FIB or another. messages from the kernel would be associated with the fib they refer to and would only be received by a routing socket associated with that fib. (not yet implemented) In addition Netstat has been edited to be able to cope with the fact that the array is now 2 dimensional. (It looks in system memory using libkvm (!)). Old versions of netstat see only the first FIB. In addition two sysctls are added to give: a) the number of FIBs compiled in (active) b) the default FIB of the calling process. Early testing experience: ------------------------- Basically our (IronPort's) appliance does this functionality already using ipfw fwd but that method has some drawbacks. For example, It can't fully simulate a routing table because it can't influence the socket's choice of local address when a connect() is done. Testing during the generating of these changes has been remarkably smooth so far. Multiple tables have co-existed with no notable side effects, and packets have been routes accordingly. ipfw has grown 2 new keywords: setfib N ip from anay to any count ip from any to any fib N In pf there seems to be a requirement to be able to give symbolic names to the fibs but I do not have that capacity. I am not sure if it is required. SCTP has interestingly enough built in support for this, called VRFs in Cisco parlance. it will be interesting to see how that handles it when it suddenly actually does something. Where to next: -------------------- After committing the ABI compatible version and MFCing it, I'd like to proceed in a forward direction in -current. this will result in some roto-tilling in the routing code. Firstly: the current code's idea of having a separate tree per protocol family, all of the same format, and pointed to by the 1 dimensional array is a bit silly. Especially when one considers that there is code that makes assumptions about every protocol having the same internal structures there. Some protocols don't WANT that sort of structure. (for example the whole idea of a netmask is foreign to appletalk). This needs to be made opaque to the external code. My suggested first change is to add routing method pointers to the 'domain' structure, along with information pointing the data. instead of having an array of pointers to uniform structures, there would be an array pointing to the 'domain' structures for each protocol address domain (protocol family), and the methods this reached would be called. The methods would have an argument that gives FIB number, but the protocol would be free to ignore it. When the ABI can be changed it raises the possibilty of the addition of a fib entry into the "struct route". Currently, the structure contains the sockaddr of the desination, and the resulting fib entry. To make this work fully, one could add a fib number so that given an address and a fib, one can find the third element, the fib entry. Interaction with the ARP layer/ LL layer would need to be revisited as well. Qing Li has been working on this already. This work was sponsored by Ironport Systems/Cisco Reviewed by: several including rwatson, bz and mlair (parts each) Obtained from: Ironport systems/Cisco
2008-05-09 23:03:00 +00:00
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case TOK_QUEUE:
action->opcode = O_QUEUE;
goto chkarg;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case TOK_PIPE:
action->opcode = O_PIPE;
goto chkarg;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case TOK_SKIPTO:
action->opcode = O_SKIPTO;
goto chkarg;
case TOK_NETGRAPH:
action->opcode = O_NETGRAPH;
goto chkarg;
case TOK_NGTEE:
action->opcode = O_NGTEE;
goto chkarg;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case TOK_DIVERT:
action->opcode = O_DIVERT;
goto chkarg;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case TOK_TEE:
action->opcode = O_TEE;
goto chkarg;
case TOK_CALL:
action->opcode = O_CALLRETURN;
chkarg:
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
if (!av[0])
errx(EX_USAGE, "missing argument for %s", *(av - 1));
if (isdigit(**av)) {
action->arg1 = strtoul(*av, NULL, 10);
2014-10-04 17:21:30 +00:00
if (action->arg1 <= 0 || action->arg1 >= IP_FW_TABLEARG)
errx(EX_DATAERR, "illegal argument for %s",
*(av - 1));
} else if (_substrcmp(*av, "tablearg") == 0) {
action->arg1 = IP_FW_TARG;
} else if (i == TOK_DIVERT || i == TOK_TEE) {
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
struct servent *s;
setservent(1);
s = getservbyname(av[0], "divert");
if (s != NULL)
action->arg1 = ntohs(s->s_port);
else
errx(EX_DATAERR, "illegal divert/tee port");
} else
errx(EX_DATAERR, "illegal argument for %s", *(av - 1));
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
break;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case TOK_FORWARD: {
/*
* Locate the address-port separator (':' or ',').
* Could be one of the following:
* hostname:port
* IPv4 a.b.c.d,port
* IPv4 a.b.c.d:port
* IPv6 w:x:y::z,port
* The ':' can only be used with hostname and IPv4 address.
* XXX-BZ Should we also support [w:x:y::z]:port?
*/
struct sockaddr_storage result;
struct addrinfo *res;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
char *s, *end;
int family;
u_short port_number;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
NEED1("missing forward address[:port]");
/*
* locate the address-port separator (':' or ',')
*/
s = strchr(*av, ',');
if (s == NULL) {
/* Distinguish between IPv4:port and IPv6 cases. */
s = strchr(*av, ':');
if (s && strchr(s+1, ':'))
s = NULL; /* no port */
}
port_number = 0;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (s != NULL) {
/* Terminate host portion and set s to start of port. */
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
*(s++) = '\0';
i = strtoport(s, &end, 0 /* base */, 0 /* proto */);
if (s == end)
errx(EX_DATAERR,
"illegal forwarding port ``%s''", s);
port_number = (u_short)i;
}
if (_substrcmp(*av, "tablearg") == 0) {
family = PF_INET;
((struct sockaddr_in*)&result)->sin_addr.s_addr =
INADDR_ANY;
} else {
2012-01-07 16:09:33 +00:00
/*
* Resolve the host name or address to a family and a
2012-01-07 16:09:33 +00:00
* network representation of the address.
*/
if (getaddrinfo(*av, NULL, NULL, &res))
errx(EX_DATAERR, NULL);
/* Just use the first host in the answer. */
family = res->ai_family;
memcpy(&result, res->ai_addr, res->ai_addrlen);
freeaddrinfo(res);
}
if (family == PF_INET) {
ipfw_insn_sa *p = (ipfw_insn_sa *)action;
action->opcode = O_FORWARD_IP;
action->len = F_INSN_SIZE(ipfw_insn_sa);
CHECK_ACTLEN;
/*
* In the kernel we assume AF_INET and use only
* sin_port and sin_addr. Remember to set sin_len as
* the routing code seems to use it too.
*/
p->sa.sin_len = sizeof(struct sockaddr_in);
p->sa.sin_family = AF_INET;
p->sa.sin_port = port_number;
p->sa.sin_addr.s_addr =
((struct sockaddr_in *)&result)->sin_addr.s_addr;
} else if (family == PF_INET6) {
ipfw_insn_sa6 *p = (ipfw_insn_sa6 *)action;
action->opcode = O_FORWARD_IP6;
action->len = F_INSN_SIZE(ipfw_insn_sa6);
CHECK_ACTLEN;
p->sa.sin6_len = sizeof(struct sockaddr_in6);
p->sa.sin6_family = AF_INET6;
p->sa.sin6_port = port_number;
p->sa.sin6_flowinfo = 0;
p->sa.sin6_scope_id = 0;
/* No table support for v6 yet. */
bcopy(&((struct sockaddr_in6*)&result)->sin6_addr,
&p->sa.sin6_addr, sizeof(p->sa.sin6_addr));
} else {
errx(EX_DATAERR, "Invalid address family in forward action");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
}
In random order: * make the code compile with WARNS=5 (at least on i386), mostly by adding 'const' specifier and replacing "void *" with "char *" in places where pointer arithmetic was used. This also spotted a few places where invalid tests (e.g. uint < 0) were used. * support ranges in "list" and "show" commands. Now you can say ipfw show 100-1000 4000-8000 which is very convenient when you have large rulesets. * implement comments in ipfw commands. These are implemented in the kernel as O_NOP commands (which always match) whose body contains the comment string. In userland, a comment is a C++-style comment: ipfw add allow ip from me to any // i can talk to everybody The choice of '//' versus '#' is somewhat arbitrary, but because the preprocessor/readfile part of ipfw used to strip away '#', I did not want to change this behaviour. If a rule only contains a comment ipfw add 1000 // this rule is just a comment then it is stored as a 'count' rule (this is also to remind the user that scanning through a rule is expensive). * improve handling of flags (still to be completed). ipfw_main() was written thinking of 'one rule per ipfw invocation', and so flags are set and never cleared. With readfile/preprocessor support, this changes and certain flags should be reset on each line. For the time being, only fix handling of '-a' which differentiates the "list" and "show" commands. * rework the preprocessor support -- ipfw_main() already had most of the parsing code, so i have moved in there the only missing bit (stripping away '#' and comments) and removed the parsing from ipfw_readfile(). Also, add some more options (such as -c, -N, -S) to the readfile section. MFC after: 3 days
2003-07-12 06:53:16 +00:00
case TOK_COMMENT:
/* pretend it is a 'count' rule followed by the comment */
action->opcode = O_COUNT;
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av--; /* go back... */
In random order: * make the code compile with WARNS=5 (at least on i386), mostly by adding 'const' specifier and replacing "void *" with "char *" in places where pointer arithmetic was used. This also spotted a few places where invalid tests (e.g. uint < 0) were used. * support ranges in "list" and "show" commands. Now you can say ipfw show 100-1000 4000-8000 which is very convenient when you have large rulesets. * implement comments in ipfw commands. These are implemented in the kernel as O_NOP commands (which always match) whose body contains the comment string. In userland, a comment is a C++-style comment: ipfw add allow ip from me to any // i can talk to everybody The choice of '//' versus '#' is somewhat arbitrary, but because the preprocessor/readfile part of ipfw used to strip away '#', I did not want to change this behaviour. If a rule only contains a comment ipfw add 1000 // this rule is just a comment then it is stored as a 'count' rule (this is also to remind the user that scanning through a rule is expensive). * improve handling of flags (still to be completed). ipfw_main() was written thinking of 'one rule per ipfw invocation', and so flags are set and never cleared. With readfile/preprocessor support, this changes and certain flags should be reset on each line. For the time being, only fix handling of '-a' which differentiates the "list" and "show" commands. * rework the preprocessor support -- ipfw_main() already had most of the parsing code, so i have moved in there the only missing bit (stripping away '#' and comments) and removed the parsing from ipfw_readfile(). Also, add some more options (such as -c, -N, -S) to the readfile section. MFC after: 3 days
2003-07-12 06:53:16 +00:00
break;
Add code to allow the system to handle multiple routing tables. This particular implementation is designed to be fully backwards compatible and to be MFC-able to 7.x (and 6.x) Currently the only protocol that can make use of the multiple tables is IPv4 Similar functionality exists in OpenBSD and Linux. From my notes: ----- One thing where FreeBSD has been falling behind, and which by chance I have some time to work on is "policy based routing", which allows different packet streams to be routed by more than just the destination address. Constraints: ------------ I want to make some form of this available in the 6.x tree (and by extension 7.x) , but FreeBSD in general needs it so I might as well do it in -current and back port the portions I need. One of the ways that this can be done is to have the ability to instantiate multiple kernel routing tables (which I will now refer to as "Forwarding Information Bases" or "FIBs" for political correctness reasons). Which FIB a particular packet uses to make the next hop decision can be decided by a number of mechanisms. The policies these mechanisms implement are the "Policies" referred to in "Policy based routing". One of the constraints I have if I try to back port this work to 6.x is that it must be implemented as a EXTENSION to the existing ABIs in 6.x so that third party applications do not need to be recompiled in timespan of the branch. This first version will not have some of the bells and whistles that will come with later versions. It will, for example, be limited to 16 tables in the first commit. Implementation method, Compatible version. (part 1) ------------------------------- For this reason I have implemented a "sufficient subset" of a multiple routing table solution in Perforce, and back-ported it to 6.x. (also in Perforce though not always caught up with what I have done in -current/P4). The subset allows a number of FIBs to be defined at compile time (8 is sufficient for my purposes in 6.x) and implements the changes needed to allow IPV4 to use them. I have not done the changes for ipv6 simply because I do not need it, and I do not have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it. Other protocol families are left untouched and should there be users with proprietary protocol families, they should continue to work and be oblivious to the existence of the extra FIBs. To understand how this is done, one must know that the current FIB code starts everything off with a single dimensional array of pointers to FIB head structures (One per protocol family), each of which in turn points to the trie of routes available to that family. The basic change in the ABI compatible version of the change is to extent that array to be a 2 dimensional array, so that instead of protocol family X looking at rt_tables[X] for the table it needs, it looks at rt_tables[Y][X] when for all protocol families except ipv4 Y is always 0. Code that is unaware of the change always just sees the first row of the table, which of course looks just like the one dimensional array that existed before. The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign() are all maintained, but refer only to the first row of the array, so that existing callers in proprietary protocols can continue to do the "right thing". Some new entry points are added, for the exclusive use of ipv4 code called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(), which have an extra argument which refers the code to the correct row. In addition, there are some new entry points (currently called rtalloc_fib() and friends) that check the Address family being looked up and call either rtalloc() (and friends) if the protocol is not IPv4 forcing the action to row 0 or to the appropriate row if it IS IPv4 (and that info is available). These are for calling from code that is not specific to any particular protocol. The way these are implemented would change in the non ABI preserving code to be added later. One feature of the first version of the code is that for ipv4, the interface routes show up automatically on all the FIBs, so that no matter what FIB you select you always have the basic direct attached hosts available to you. (rtinit() does this automatically). You CAN delete an interface route from one FIB should you want to but by default it's there. ARP information is also available in each FIB. It's assumed that the same machine would have the same MAC address, regardless of which FIB you are using to get to it. This brings us as to how the correct FIB is selected for an outgoing IPV4 packet. Firstly, all packets have a FIB associated with them. if nothing has been done to change it, it will be FIB 0. The FIB is changed in the following ways. Packets fall into one of a number of classes. 1/ locally generated packets, coming from a socket/PCB. Such packets select a FIB from a number associated with the socket/PCB. This in turn is inherited from the process, but can be changed by a socket option. The process in turn inherits it on fork. I have written a utility call setfib that acts a bit like nice.. setfib -3 ping target.example.com # will use fib 3 for ping. It is an obvious extension to make it a property of a jail but I have not done so. It can be achieved by combining the setfib and jail commands. 2/ packets received on an interface for forwarding. By default these packets would use table 0, (or possibly a number settable in a sysctl(not yet)). but prior to routing the firewall can inspect them (see below). (possibly in the future you may be able to associate a FIB with packets received on an interface.. An ifconfig arg, but not yet.) 3/ packets inspected by a packet classifier, which can arbitrarily associate a fib with it on a packet by packet basis. A fib assigned to a packet by a packet classifier (such as ipfw) would over-ride a fib associated by a more default source. (such as cases 1 or 2). 4/ a tcp listen socket associated with a fib will generate accept sockets that are associated with that same fib. 5/ Packets generated in response to some other packet (e.g. reset or icmp packets). These should use the FIB associated with the packet being reponded to. 6/ Packets generated during encapsulation. gif, tun and other tunnel interfaces will encapsulate using the FIB that was in effect withthe proces that set up the tunnel. thus setfib 1 ifconfig gif0 [tunnel instructions] will set the fib for the tunnel to use to be fib 1. Routing messages would be associated with their process, and thus select one FIB or another. messages from the kernel would be associated with the fib they refer to and would only be received by a routing socket associated with that fib. (not yet implemented) In addition Netstat has been edited to be able to cope with the fact that the array is now 2 dimensional. (It looks in system memory using libkvm (!)). Old versions of netstat see only the first FIB. In addition two sysctls are added to give: a) the number of FIBs compiled in (active) b) the default FIB of the calling process. Early testing experience: ------------------------- Basically our (IronPort's) appliance does this functionality already using ipfw fwd but that method has some drawbacks. For example, It can't fully simulate a routing table because it can't influence the socket's choice of local address when a connect() is done. Testing during the generating of these changes has been remarkably smooth so far. Multiple tables have co-existed with no notable side effects, and packets have been routes accordingly. ipfw has grown 2 new keywords: setfib N ip from anay to any count ip from any to any fib N In pf there seems to be a requirement to be able to give symbolic names to the fibs but I do not have that capacity. I am not sure if it is required. SCTP has interestingly enough built in support for this, called VRFs in Cisco parlance. it will be interesting to see how that handles it when it suddenly actually does something. Where to next: -------------------- After committing the ABI compatible version and MFCing it, I'd like to proceed in a forward direction in -current. this will result in some roto-tilling in the routing code. Firstly: the current code's idea of having a separate tree per protocol family, all of the same format, and pointed to by the 1 dimensional array is a bit silly. Especially when one considers that there is code that makes assumptions about every protocol having the same internal structures there. Some protocols don't WANT that sort of structure. (for example the whole idea of a netmask is foreign to appletalk). This needs to be made opaque to the external code. My suggested first change is to add routing method pointers to the 'domain' structure, along with information pointing the data. instead of having an array of pointers to uniform structures, there would be an array pointing to the 'domain' structures for each protocol address domain (protocol family), and the methods this reached would be called. The methods would have an argument that gives FIB number, but the protocol would be free to ignore it. When the ABI can be changed it raises the possibilty of the addition of a fib entry into the "struct route". Currently, the structure contains the sockaddr of the desination, and the resulting fib entry. To make this work fully, one could add a fib number so that given an address and a fib, one can find the third element, the fib entry. Interaction with the ARP layer/ LL layer would need to be revisited as well. Qing Li has been working on this already. This work was sponsored by Ironport Systems/Cisco Reviewed by: several including rwatson, bz and mlair (parts each) Obtained from: Ironport systems/Cisco
2008-05-09 23:03:00 +00:00
case TOK_SETFIB:
{
int numfibs;
size_t intsize = sizeof(int);
Add code to allow the system to handle multiple routing tables. This particular implementation is designed to be fully backwards compatible and to be MFC-able to 7.x (and 6.x) Currently the only protocol that can make use of the multiple tables is IPv4 Similar functionality exists in OpenBSD and Linux. From my notes: ----- One thing where FreeBSD has been falling behind, and which by chance I have some time to work on is "policy based routing", which allows different packet streams to be routed by more than just the destination address. Constraints: ------------ I want to make some form of this available in the 6.x tree (and by extension 7.x) , but FreeBSD in general needs it so I might as well do it in -current and back port the portions I need. One of the ways that this can be done is to have the ability to instantiate multiple kernel routing tables (which I will now refer to as "Forwarding Information Bases" or "FIBs" for political correctness reasons). Which FIB a particular packet uses to make the next hop decision can be decided by a number of mechanisms. The policies these mechanisms implement are the "Policies" referred to in "Policy based routing". One of the constraints I have if I try to back port this work to 6.x is that it must be implemented as a EXTENSION to the existing ABIs in 6.x so that third party applications do not need to be recompiled in timespan of the branch. This first version will not have some of the bells and whistles that will come with later versions. It will, for example, be limited to 16 tables in the first commit. Implementation method, Compatible version. (part 1) ------------------------------- For this reason I have implemented a "sufficient subset" of a multiple routing table solution in Perforce, and back-ported it to 6.x. (also in Perforce though not always caught up with what I have done in -current/P4). The subset allows a number of FIBs to be defined at compile time (8 is sufficient for my purposes in 6.x) and implements the changes needed to allow IPV4 to use them. I have not done the changes for ipv6 simply because I do not need it, and I do not have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it. Other protocol families are left untouched and should there be users with proprietary protocol families, they should continue to work and be oblivious to the existence of the extra FIBs. To understand how this is done, one must know that the current FIB code starts everything off with a single dimensional array of pointers to FIB head structures (One per protocol family), each of which in turn points to the trie of routes available to that family. The basic change in the ABI compatible version of the change is to extent that array to be a 2 dimensional array, so that instead of protocol family X looking at rt_tables[X] for the table it needs, it looks at rt_tables[Y][X] when for all protocol families except ipv4 Y is always 0. Code that is unaware of the change always just sees the first row of the table, which of course looks just like the one dimensional array that existed before. The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign() are all maintained, but refer only to the first row of the array, so that existing callers in proprietary protocols can continue to do the "right thing". Some new entry points are added, for the exclusive use of ipv4 code called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(), which have an extra argument which refers the code to the correct row. In addition, there are some new entry points (currently called rtalloc_fib() and friends) that check the Address family being looked up and call either rtalloc() (and friends) if the protocol is not IPv4 forcing the action to row 0 or to the appropriate row if it IS IPv4 (and that info is available). These are for calling from code that is not specific to any particular protocol. The way these are implemented would change in the non ABI preserving code to be added later. One feature of the first version of the code is that for ipv4, the interface routes show up automatically on all the FIBs, so that no matter what FIB you select you always have the basic direct attached hosts available to you. (rtinit() does this automatically). You CAN delete an interface route from one FIB should you want to but by default it's there. ARP information is also available in each FIB. It's assumed that the same machine would have the same MAC address, regardless of which FIB you are using to get to it. This brings us as to how the correct FIB is selected for an outgoing IPV4 packet. Firstly, all packets have a FIB associated with them. if nothing has been done to change it, it will be FIB 0. The FIB is changed in the following ways. Packets fall into one of a number of classes. 1/ locally generated packets, coming from a socket/PCB. Such packets select a FIB from a number associated with the socket/PCB. This in turn is inherited from the process, but can be changed by a socket option. The process in turn inherits it on fork. I have written a utility call setfib that acts a bit like nice.. setfib -3 ping target.example.com # will use fib 3 for ping. It is an obvious extension to make it a property of a jail but I have not done so. It can be achieved by combining the setfib and jail commands. 2/ packets received on an interface for forwarding. By default these packets would use table 0, (or possibly a number settable in a sysctl(not yet)). but prior to routing the firewall can inspect them (see below). (possibly in the future you may be able to associate a FIB with packets received on an interface.. An ifconfig arg, but not yet.) 3/ packets inspected by a packet classifier, which can arbitrarily associate a fib with it on a packet by packet basis. A fib assigned to a packet by a packet classifier (such as ipfw) would over-ride a fib associated by a more default source. (such as cases 1 or 2). 4/ a tcp listen socket associated with a fib will generate accept sockets that are associated with that same fib. 5/ Packets generated in response to some other packet (e.g. reset or icmp packets). These should use the FIB associated with the packet being reponded to. 6/ Packets generated during encapsulation. gif, tun and other tunnel interfaces will encapsulate using the FIB that was in effect withthe proces that set up the tunnel. thus setfib 1 ifconfig gif0 [tunnel instructions] will set the fib for the tunnel to use to be fib 1. Routing messages would be associated with their process, and thus select one FIB or another. messages from the kernel would be associated with the fib they refer to and would only be received by a routing socket associated with that fib. (not yet implemented) In addition Netstat has been edited to be able to cope with the fact that the array is now 2 dimensional. (It looks in system memory using libkvm (!)). Old versions of netstat see only the first FIB. In addition two sysctls are added to give: a) the number of FIBs compiled in (active) b) the default FIB of the calling process. Early testing experience: ------------------------- Basically our (IronPort's) appliance does this functionality already using ipfw fwd but that method has some drawbacks. For example, It can't fully simulate a routing table because it can't influence the socket's choice of local address when a connect() is done. Testing during the generating of these changes has been remarkably smooth so far. Multiple tables have co-existed with no notable side effects, and packets have been routes accordingly. ipfw has grown 2 new keywords: setfib N ip from anay to any count ip from any to any fib N In pf there seems to be a requirement to be able to give symbolic names to the fibs but I do not have that capacity. I am not sure if it is required. SCTP has interestingly enough built in support for this, called VRFs in Cisco parlance. it will be interesting to see how that handles it when it suddenly actually does something. Where to next: -------------------- After committing the ABI compatible version and MFCing it, I'd like to proceed in a forward direction in -current. this will result in some roto-tilling in the routing code. Firstly: the current code's idea of having a separate tree per protocol family, all of the same format, and pointed to by the 1 dimensional array is a bit silly. Especially when one considers that there is code that makes assumptions about every protocol having the same internal structures there. Some protocols don't WANT that sort of structure. (for example the whole idea of a netmask is foreign to appletalk). This needs to be made opaque to the external code. My suggested first change is to add routing method pointers to the 'domain' structure, along with information pointing the data. instead of having an array of pointers to uniform structures, there would be an array pointing to the 'domain' structures for each protocol address domain (protocol family), and the methods this reached would be called. The methods would have an argument that gives FIB number, but the protocol would be free to ignore it. When the ABI can be changed it raises the possibilty of the addition of a fib entry into the "struct route". Currently, the structure contains the sockaddr of the desination, and the resulting fib entry. To make this work fully, one could add a fib number so that given an address and a fib, one can find the third element, the fib entry. Interaction with the ARP layer/ LL layer would need to be revisited as well. Qing Li has been working on this already. This work was sponsored by Ironport Systems/Cisco Reviewed by: several including rwatson, bz and mlair (parts each) Obtained from: Ironport systems/Cisco
2008-05-09 23:03:00 +00:00
action->opcode = O_SETFIB;
NEED1("missing fib number");
if (_substrcmp(*av, "tablearg") == 0) {
action->arg1 = IP_FW_TARG;
} else {
action->arg1 = strtoul(*av, NULL, 10);
if (sysctlbyname("net.fibs", &numfibs, &intsize,
NULL, 0) == -1)
errx(EX_DATAERR, "fibs not suported.\n");
if (action->arg1 >= numfibs) /* Temporary */
errx(EX_DATAERR, "fib too large.\n");
/* Add high-order bit to fib to make room for tablearg*/
action->arg1 |= 0x8000;
}
av++;
break;
Add code to allow the system to handle multiple routing tables. This particular implementation is designed to be fully backwards compatible and to be MFC-able to 7.x (and 6.x) Currently the only protocol that can make use of the multiple tables is IPv4 Similar functionality exists in OpenBSD and Linux. From my notes: ----- One thing where FreeBSD has been falling behind, and which by chance I have some time to work on is "policy based routing", which allows different packet streams to be routed by more than just the destination address. Constraints: ------------ I want to make some form of this available in the 6.x tree (and by extension 7.x) , but FreeBSD in general needs it so I might as well do it in -current and back port the portions I need. One of the ways that this can be done is to have the ability to instantiate multiple kernel routing tables (which I will now refer to as "Forwarding Information Bases" or "FIBs" for political correctness reasons). Which FIB a particular packet uses to make the next hop decision can be decided by a number of mechanisms. The policies these mechanisms implement are the "Policies" referred to in "Policy based routing". One of the constraints I have if I try to back port this work to 6.x is that it must be implemented as a EXTENSION to the existing ABIs in 6.x so that third party applications do not need to be recompiled in timespan of the branch. This first version will not have some of the bells and whistles that will come with later versions. It will, for example, be limited to 16 tables in the first commit. Implementation method, Compatible version. (part 1) ------------------------------- For this reason I have implemented a "sufficient subset" of a multiple routing table solution in Perforce, and back-ported it to 6.x. (also in Perforce though not always caught up with what I have done in -current/P4). The subset allows a number of FIBs to be defined at compile time (8 is sufficient for my purposes in 6.x) and implements the changes needed to allow IPV4 to use them. I have not done the changes for ipv6 simply because I do not need it, and I do not have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it. Other protocol families are left untouched and should there be users with proprietary protocol families, they should continue to work and be oblivious to the existence of the extra FIBs. To understand how this is done, one must know that the current FIB code starts everything off with a single dimensional array of pointers to FIB head structures (One per protocol family), each of which in turn points to the trie of routes available to that family. The basic change in the ABI compatible version of the change is to extent that array to be a 2 dimensional array, so that instead of protocol family X looking at rt_tables[X] for the table it needs, it looks at rt_tables[Y][X] when for all protocol families except ipv4 Y is always 0. Code that is unaware of the change always just sees the first row of the table, which of course looks just like the one dimensional array that existed before. The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign() are all maintained, but refer only to the first row of the array, so that existing callers in proprietary protocols can continue to do the "right thing". Some new entry points are added, for the exclusive use of ipv4 code called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(), which have an extra argument which refers the code to the correct row. In addition, there are some new entry points (currently called rtalloc_fib() and friends) that check the Address family being looked up and call either rtalloc() (and friends) if the protocol is not IPv4 forcing the action to row 0 or to the appropriate row if it IS IPv4 (and that info is available). These are for calling from code that is not specific to any particular protocol. The way these are implemented would change in the non ABI preserving code to be added later. One feature of the first version of the code is that for ipv4, the interface routes show up automatically on all the FIBs, so that no matter what FIB you select you always have the basic direct attached hosts available to you. (rtinit() does this automatically). You CAN delete an interface route from one FIB should you want to but by default it's there. ARP information is also available in each FIB. It's assumed that the same machine would have the same MAC address, regardless of which FIB you are using to get to it. This brings us as to how the correct FIB is selected for an outgoing IPV4 packet. Firstly, all packets have a FIB associated with them. if nothing has been done to change it, it will be FIB 0. The FIB is changed in the following ways. Packets fall into one of a number of classes. 1/ locally generated packets, coming from a socket/PCB. Such packets select a FIB from a number associated with the socket/PCB. This in turn is inherited from the process, but can be changed by a socket option. The process in turn inherits it on fork. I have written a utility call setfib that acts a bit like nice.. setfib -3 ping target.example.com # will use fib 3 for ping. It is an obvious extension to make it a property of a jail but I have not done so. It can be achieved by combining the setfib and jail commands. 2/ packets received on an interface for forwarding. By default these packets would use table 0, (or possibly a number settable in a sysctl(not yet)). but prior to routing the firewall can inspect them (see below). (possibly in the future you may be able to associate a FIB with packets received on an interface.. An ifconfig arg, but not yet.) 3/ packets inspected by a packet classifier, which can arbitrarily associate a fib with it on a packet by packet basis. A fib assigned to a packet by a packet classifier (such as ipfw) would over-ride a fib associated by a more default source. (such as cases 1 or 2). 4/ a tcp listen socket associated with a fib will generate accept sockets that are associated with that same fib. 5/ Packets generated in response to some other packet (e.g. reset or icmp packets). These should use the FIB associated with the packet being reponded to. 6/ Packets generated during encapsulation. gif, tun and other tunnel interfaces will encapsulate using the FIB that was in effect withthe proces that set up the tunnel. thus setfib 1 ifconfig gif0 [tunnel instructions] will set the fib for the tunnel to use to be fib 1. Routing messages would be associated with their process, and thus select one FIB or another. messages from the kernel would be associated with the fib they refer to and would only be received by a routing socket associated with that fib. (not yet implemented) In addition Netstat has been edited to be able to cope with the fact that the array is now 2 dimensional. (It looks in system memory using libkvm (!)). Old versions of netstat see only the first FIB. In addition two sysctls are added to give: a) the number of FIBs compiled in (active) b) the default FIB of the calling process. Early testing experience: ------------------------- Basically our (IronPort's) appliance does this functionality already using ipfw fwd but that method has some drawbacks. For example, It can't fully simulate a routing table because it can't influence the socket's choice of local address when a connect() is done. Testing during the generating of these changes has been remarkably smooth so far. Multiple tables have co-existed with no notable side effects, and packets have been routes accordingly. ipfw has grown 2 new keywords: setfib N ip from anay to any count ip from any to any fib N In pf there seems to be a requirement to be able to give symbolic names to the fibs but I do not have that capacity. I am not sure if it is required. SCTP has interestingly enough built in support for this, called VRFs in Cisco parlance. it will be interesting to see how that handles it when it suddenly actually does something. Where to next: -------------------- After committing the ABI compatible version and MFCing it, I'd like to proceed in a forward direction in -current. this will result in some roto-tilling in the routing code. Firstly: the current code's idea of having a separate tree per protocol family, all of the same format, and pointed to by the 1 dimensional array is a bit silly. Especially when one considers that there is code that makes assumptions about every protocol having the same internal structures there. Some protocols don't WANT that sort of structure. (for example the whole idea of a netmask is foreign to appletalk). This needs to be made opaque to the external code. My suggested first change is to add routing method pointers to the 'domain' structure, along with information pointing the data. instead of having an array of pointers to uniform structures, there would be an array pointing to the 'domain' structures for each protocol address domain (protocol family), and the methods this reached would be called. The methods would have an argument that gives FIB number, but the protocol would be free to ignore it. When the ABI can be changed it raises the possibilty of the addition of a fib entry into the "struct route". Currently, the structure contains the sockaddr of the desination, and the resulting fib entry. To make this work fully, one could add a fib number so that given an address and a fib, one can find the third element, the fib entry. Interaction with the ARP layer/ LL layer would need to be revisited as well. Qing Li has been working on this already. This work was sponsored by Ironport Systems/Cisco Reviewed by: several including rwatson, bz and mlair (parts each) Obtained from: Ironport systems/Cisco
2008-05-09 23:03:00 +00:00
}
case TOK_SETDSCP:
{
int code;
action->opcode = O_SETDSCP;
NEED1("missing DSCP code");
if (_substrcmp(*av, "tablearg") == 0) {
action->arg1 = IP_FW_TARG;
} else if (isalpha(*av[0])) {
if ((code = match_token(f_ipdscp, *av)) == -1)
errx(EX_DATAERR, "Unknown DSCP code");
action->arg1 = code;
} else
action->arg1 = strtoul(*av, NULL, 10);
/* Add high-order bit to DSCP to make room for tablearg */
if (action->arg1 != IP_FW_TARG)
action->arg1 |= 0x8000;
av++;
break;
}
case TOK_REASS:
action->opcode = O_REASS;
break;
case TOK_RETURN:
fill_cmd(action, O_CALLRETURN, F_NOT, 0);
break;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
default:
errx(EX_DATAERR, "invalid action %s\n", av[-1]);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
action = next_cmd(action, &ablen);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
/*
* [altq queuename] -- altq tag, optional
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
* [log [logamount N]] -- log, optional
*
* If they exist, it go first in the cmdbuf, but then it is
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
* skipped in the copy section to the end of the buffer.
*/
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
while (av[0] != NULL && (i = match_token(rule_action_params, *av)) != -1) {
av++;
switch (i) {
case TOK_LOG:
{
ipfw_insn_log *c = (ipfw_insn_log *)cmd;
int l;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (have_log)
errx(EX_DATAERR,
"log cannot be specified more than once");
have_log = (ipfw_insn *)c;
cmd->len = F_INSN_SIZE(ipfw_insn_log);
CHECK_CMDLEN;
cmd->opcode = O_LOG;
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
if (av[0] && _substrcmp(*av, "logamount") == 0) {
av++;
NEED1("logamount requires argument");
l = atoi(*av);
if (l < 0)
errx(EX_DATAERR,
"logamount must be positive");
c->max_log = l;
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
} else {
len = sizeof(c->max_log);
if (sysctlbyname("net.inet.ip.fw.verbose_limit",
&c->max_log, &len, NULL, 0) == -1) {
if (co.test_only) {
c->max_log = 0;
break;
}
errx(1, "sysctlbyname(\"%s\")",
"net.inet.ip.fw.verbose_limit");
}
}
}
break;
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
#ifndef NO_ALTQ
case TOK_ALTQ:
{
ipfw_insn_altq *a = (ipfw_insn_altq *)cmd;
NEED1("missing altq queue name");
if (have_altq)
errx(EX_DATAERR,
"altq cannot be specified more than once");
have_altq = (ipfw_insn *)a;
cmd->len = F_INSN_SIZE(ipfw_insn_altq);
CHECK_CMDLEN;
cmd->opcode = O_ALTQ;
a->qid = altq_name_to_qid(*av);
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
}
break;
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
#endif
case TOK_TAG:
case TOK_UNTAG: {
uint16_t tag;
if (have_tag)
errx(EX_USAGE, "tag and untag cannot be "
"specified more than once");
GET_UINT_ARG(tag, IPFW_ARG_MIN, IPFW_ARG_MAX, i,
rule_action_params);
have_tag = cmd;
fill_cmd(cmd, O_TAG, (i == TOK_TAG) ? 0: F_NOT, tag);
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
break;
}
default:
abort();
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
cmd = next_cmd(cmd, &cblen);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
if (have_state) /* must be a check-state, we are done */
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
goto done;
#define OR_START(target) \
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
if (av[0] && (*av[0] == '(' || *av[0] == '{')) { \
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (open_par) \
errx(EX_USAGE, "nested \"(\" not allowed\n"); \
prev = NULL; \
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
open_par = 1; \
if ( (av[0])[1] == '\0') { \
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++; \
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
} else \
(*av)++; \
} \
target: \
#define CLOSE_PAR \
if (open_par) { \
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
if (av[0] && ( \
strcmp(*av, ")") == 0 || \
strcmp(*av, "}") == 0)) { \
prev = NULL; \
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
open_par = 0; \
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++; \
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
} else \
errx(EX_USAGE, "missing \")\"\n"); \
}
2002-11-06 15:09:34 +00:00
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
#define NOT_BLOCK \
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
if (av[0] && _substrcmp(*av, "not") == 0) { \
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (cmd->len & F_NOT) \
errx(EX_USAGE, "double \"not\" not allowed\n"); \
cmd->len |= F_NOT; \
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++; \
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
#define OR_BLOCK(target) \
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
if (av[0] && _substrcmp(*av, "or") == 0) { \
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (prev == NULL || open_par == 0) \
errx(EX_DATAERR, "invalid OR block"); \
prev->len |= F_OR; \
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++; \
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
goto target; \
} \
CLOSE_PAR;
first_cmd = cmd;
#if 0
/*
* MAC addresses, optional.
* If we have this, we skip the part "proto from src to dst"
* and jump straight to the option parsing.
*/
NOT_BLOCK;
NEED1("missing protocol");
if (_substrcmp(*av, "MAC") == 0 ||
_substrcmp(*av, "mac") == 0) {
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++; /* the "MAC" keyword */
add_mac(cmd, av); /* exits in case of errors */
cmd = next_cmd(cmd);
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av += 2; /* dst-mac and src-mac */
NOT_BLOCK;
NEED1("missing mac type");
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
if (add_mactype(cmd, av[0]))
cmd = next_cmd(cmd);
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++; /* any or mac-type */
goto read_options;
}
#endif
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
/*
* protocol, mandatory
*/
OR_START(get_proto);
NOT_BLOCK;
NEED1("missing protocol");
if (add_proto_compat(cmd, *av, &proto)) {
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
if (F_LEN(cmd) != 0) {
prev = cmd;
cmd = next_cmd(cmd, &cblen);
}
} else if (first_cmd != cmd) {
errx(EX_DATAERR, "invalid protocol ``%s''", *av);
} else
goto read_options;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
OR_BLOCK(get_proto);
/*
* "from", mandatory
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
*/
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
if ((av[0] == NULL) || _substrcmp(*av, "from") != 0)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
errx(EX_USAGE, "missing ``from''");
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
/*
* source IP, mandatory
*/
OR_START(source_ip);
NOT_BLOCK; /* optional "not" */
NEED1("missing source address");
if (add_src(cmd, *av, proto, cblen, tstate)) {
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
if (F_LEN(cmd) != 0) { /* ! any */
prev = cmd;
cmd = next_cmd(cmd, &cblen);
}
} else
errx(EX_USAGE, "bad source address %s", *av);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
OR_BLOCK(source_ip);
/*
* source ports, optional
*/
NOT_BLOCK; /* optional "not" */
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
if ( av[0] != NULL ) {
if (_substrcmp(*av, "any") == 0 ||
add_ports(cmd, *av, proto, O_IP_SRCPORT, cblen)) {
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
if (F_LEN(cmd) != 0)
cmd = next_cmd(cmd, &cblen);
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
/*
* "to", mandatory
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
*/
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
if ( (av[0] == NULL) || _substrcmp(*av, "to") != 0 )
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
errx(EX_USAGE, "missing ``to''");
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
/*
* destination, mandatory
*/
OR_START(dest_ip);
NOT_BLOCK; /* optional "not" */
NEED1("missing dst address");
if (add_dst(cmd, *av, proto, cblen, tstate)) {
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
if (F_LEN(cmd) != 0) { /* ! any */
prev = cmd;
cmd = next_cmd(cmd, &cblen);
}
} else
errx( EX_USAGE, "bad destination address %s", *av);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
OR_BLOCK(dest_ip);
/*
* dest. ports, optional
*/
NOT_BLOCK; /* optional "not" */
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
if (av[0]) {
if (_substrcmp(*av, "any") == 0 ||
add_ports(cmd, *av, proto, O_IP_DSTPORT, cblen)) {
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
if (F_LEN(cmd) != 0)
cmd = next_cmd(cmd, &cblen);
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
read_options:
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
if (av[0] && first_cmd == cmd) {
/*
* nothing specified so far, store in the rule to ease
* printout later.
*/
rule->flags |= IPFW_RULE_NOOPT;
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
prev = NULL;
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
while ( av[0] != NULL ) {
char *s;
ipfw_insn_u32 *cmd32; /* alias for cmd */
s = *av;
cmd32 = (ipfw_insn_u32 *)cmd;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (*s == '!') { /* alternate syntax for NOT */
if (cmd->len & F_NOT)
errx(EX_USAGE, "double \"not\" not allowed\n");
cmd->len = F_NOT;
s++;
}
i = match_token(rule_options, s);
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
switch(i) {
case TOK_NOT:
if (cmd->len & F_NOT)
errx(EX_USAGE, "double \"not\" not allowed\n");
cmd->len = F_NOT;
break;
case TOK_OR:
if (open_par == 0 || prev == NULL)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
errx(EX_USAGE, "invalid \"or\" block\n");
prev->len |= F_OR;
break;
case TOK_STARTBRACE:
if (open_par)
errx(EX_USAGE, "+nested \"(\" not allowed\n");
open_par = 1;
break;
case TOK_ENDBRACE:
if (!open_par)
errx(EX_USAGE, "+missing \")\"\n");
open_par = 0;
prev = NULL;
break;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case TOK_IN:
fill_cmd(cmd, O_IN, 0, 0);
break;
case TOK_OUT:
cmd->len ^= F_NOT; /* toggle F_NOT */
fill_cmd(cmd, O_IN, 0, 0);
break;
case TOK_DIVERTED:
fill_cmd(cmd, O_DIVERTED, 0, 3);
break;
case TOK_DIVERTEDLOOPBACK:
fill_cmd(cmd, O_DIVERTED, 0, 1);
break;
case TOK_DIVERTEDOUTPUT:
fill_cmd(cmd, O_DIVERTED, 0, 2);
break;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case TOK_FRAG:
fill_cmd(cmd, O_FRAG, 0, 0);
break;
case TOK_LAYER2:
fill_cmd(cmd, O_LAYER2, 0, 0);
break;
case TOK_XMIT:
case TOK_RECV:
case TOK_VIA:
NEED1("recv, xmit, via require interface name"
" or address");
fill_iface((ipfw_insn_if *)cmd, av[0], cblen, tstate);
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (F_LEN(cmd) == 0) /* not a valid address */
break;
if (i == TOK_XMIT)
cmd->opcode = O_XMIT;
else if (i == TOK_RECV)
cmd->opcode = O_RECV;
else if (i == TOK_VIA)
cmd->opcode = O_VIA;
break;
case TOK_ICMPTYPES:
NEED1("icmptypes requires list of types");
fill_icmptypes((ipfw_insn_u32 *)cmd, *av);
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
break;
case TOK_ICMP6TYPES:
NEED1("icmptypes requires list of types");
fill_icmp6types((ipfw_insn_icmp6 *)cmd, *av, cblen);
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
break;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case TOK_IPTTL:
NEED1("ipttl requires TTL");
if (strpbrk(*av, "-,")) {
if (!add_ports(cmd, *av, 0, O_IPTTL, cblen))
errx(EX_DATAERR, "invalid ipttl %s", *av);
} else
fill_cmd(cmd, O_IPTTL, 0, strtoul(*av, NULL, 0));
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case TOK_IPID:
NEED1("ipid requires id");
if (strpbrk(*av, "-,")) {
if (!add_ports(cmd, *av, 0, O_IPID, cblen))
errx(EX_DATAERR, "invalid ipid %s", *av);
} else
fill_cmd(cmd, O_IPID, 0, strtoul(*av, NULL, 0));
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case TOK_IPLEN:
NEED1("iplen requires length");
if (strpbrk(*av, "-,")) {
if (!add_ports(cmd, *av, 0, O_IPLEN, cblen))
errx(EX_DATAERR, "invalid ip len %s", *av);
} else
fill_cmd(cmd, O_IPLEN, 0, strtoul(*av, NULL, 0));
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case TOK_IPVER:
NEED1("ipver requires version");
fill_cmd(cmd, O_IPVER, 0, strtoul(*av, NULL, 0));
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case TOK_IPPRECEDENCE:
NEED1("ipprecedence requires value");
fill_cmd(cmd, O_IPPRECEDENCE, 0,
(strtoul(*av, NULL, 0) & 7) << 5);
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
break;
case TOK_DSCP:
NEED1("missing DSCP code");
fill_dscp(cmd, *av, cblen);
av++;
break;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case TOK_IPOPTS:
NEED1("missing argument for ipoptions");
* Add new "flow" table type to support N=1..5-tuple lookups * Add "flow:hash" algorithm Kernel changes: * Add O_IP_FLOW_LOOKUP opcode to support "flow" lookups * Add IPFW_TABLE_FLOW table type * Add "struct tflow_entry" as strage for 6-tuple flows * Add "flow:hash" algorithm. Basically it is auto-growing chained hash table. Additionally, we store mask of fields we need to compare in each instance/ * Increase ipfw_obj_tentry size by adding struct tflow_entry * Add per-algorithm stat (ifpw_ta_tinfo) to ipfw_xtable_info * Increase algoname length: 32 -> 64 (algo options passed there as string) * Assume every table type can be customized by flags, use u8 to store "tflags" field. * Simplify ipfw_find_table_entry() by providing @tentry directly to algo callback. * Fix bug in cidr:chash resize procedure. Userland changes: * add "flow table(NAME)" syntax to support n-tuple checking tables. * make fill_flags() separate function to ease working with _s_x arrays * change "table info" output to reflect longer "type" fields Syntax: ipfw table fl2 create type flow:[src-ip][,proto][,src-port][,dst-ip][dst-port] [algo flow:hash] Examples: 0:02 [2] zfscurr0# ipfw table fl2 create type flow:src-ip,proto,dst-port algo flow:hash 0:02 [2] zfscurr0# ipfw table fl2 info +++ table(fl2), set(0) +++ kindex: 0, type: flow:src-ip,proto,dst-port valtype: number, references: 0 algorithm: flow:hash items: 0, size: 280 0:02 [2] zfscurr0# ipfw table fl2 add 2a02:6b8::333,tcp,443 45000 0:02 [2] zfscurr0# ipfw table fl2 add 10.0.0.92,tcp,80 22000 0:02 [2] zfscurr0# ipfw table fl2 list +++ table(fl2), set(0) +++ 2a02:6b8::333,6,443 45000 10.0.0.92,6,80 22000 0:02 [2] zfscurr0# ipfw add 200 count tcp from me to 78.46.89.105 80 flow 'table(fl2)' 00200 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 0:03 [2] zfscurr0# ipfw show 00200 0 0 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 617 59416 allow ip from any to any 0:03 [2] zfscurr0# telnet -s 10.0.0.92 78.46.89.105 80 Trying 78.46.89.105... .. 0:04 [2] zfscurr0# ipfw show 00200 5 272 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 682 66733 allow ip from any to any
2014-07-31 20:08:19 +00:00
fill_flags_cmd(cmd, O_IPOPT, f_ipopts, *av);
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case TOK_IPTOS:
NEED1("missing argument for iptos");
* Add new "flow" table type to support N=1..5-tuple lookups * Add "flow:hash" algorithm Kernel changes: * Add O_IP_FLOW_LOOKUP opcode to support "flow" lookups * Add IPFW_TABLE_FLOW table type * Add "struct tflow_entry" as strage for 6-tuple flows * Add "flow:hash" algorithm. Basically it is auto-growing chained hash table. Additionally, we store mask of fields we need to compare in each instance/ * Increase ipfw_obj_tentry size by adding struct tflow_entry * Add per-algorithm stat (ifpw_ta_tinfo) to ipfw_xtable_info * Increase algoname length: 32 -> 64 (algo options passed there as string) * Assume every table type can be customized by flags, use u8 to store "tflags" field. * Simplify ipfw_find_table_entry() by providing @tentry directly to algo callback. * Fix bug in cidr:chash resize procedure. Userland changes: * add "flow table(NAME)" syntax to support n-tuple checking tables. * make fill_flags() separate function to ease working with _s_x arrays * change "table info" output to reflect longer "type" fields Syntax: ipfw table fl2 create type flow:[src-ip][,proto][,src-port][,dst-ip][dst-port] [algo flow:hash] Examples: 0:02 [2] zfscurr0# ipfw table fl2 create type flow:src-ip,proto,dst-port algo flow:hash 0:02 [2] zfscurr0# ipfw table fl2 info +++ table(fl2), set(0) +++ kindex: 0, type: flow:src-ip,proto,dst-port valtype: number, references: 0 algorithm: flow:hash items: 0, size: 280 0:02 [2] zfscurr0# ipfw table fl2 add 2a02:6b8::333,tcp,443 45000 0:02 [2] zfscurr0# ipfw table fl2 add 10.0.0.92,tcp,80 22000 0:02 [2] zfscurr0# ipfw table fl2 list +++ table(fl2), set(0) +++ 2a02:6b8::333,6,443 45000 10.0.0.92,6,80 22000 0:02 [2] zfscurr0# ipfw add 200 count tcp from me to 78.46.89.105 80 flow 'table(fl2)' 00200 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 0:03 [2] zfscurr0# ipfw show 00200 0 0 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 617 59416 allow ip from any to any 0:03 [2] zfscurr0# telnet -s 10.0.0.92 78.46.89.105 80 Trying 78.46.89.105... .. 0:04 [2] zfscurr0# ipfw show 00200 5 272 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 682 66733 allow ip from any to any
2014-07-31 20:08:19 +00:00
fill_flags_cmd(cmd, O_IPTOS, f_iptos, *av);
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
break;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case TOK_UID:
NEED1("uid requires argument");
{
char *end;
uid_t uid;
struct passwd *pwd;
cmd->opcode = O_UID;
uid = strtoul(*av, &end, 0);
pwd = (*end == '\0') ? getpwuid(uid) : getpwnam(*av);
if (pwd == NULL)
errx(EX_DATAERR, "uid \"%s\" nonexistent", *av);
cmd32->d[0] = pwd->pw_uid;
cmd->len |= F_INSN_SIZE(ipfw_insn_u32);
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
break;
case TOK_GID:
NEED1("gid requires argument");
{
char *end;
gid_t gid;
struct group *grp;
cmd->opcode = O_GID;
gid = strtoul(*av, &end, 0);
grp = (*end == '\0') ? getgrgid(gid) : getgrnam(*av);
if (grp == NULL)
errx(EX_DATAERR, "gid \"%s\" nonexistent", *av);
cmd32->d[0] = grp->gr_gid;
cmd->len |= F_INSN_SIZE(ipfw_insn_u32);
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
break;
case TOK_JAIL:
NEED1("jail requires argument");
{
char *end;
int jid;
cmd->opcode = O_JAIL;
jid = (int)strtol(*av, &end, 0);
if (jid < 0 || *end != '\0')
errx(EX_DATAERR, "jail requires prison ID");
cmd32->d[0] = (uint32_t)jid;
cmd->len |= F_INSN_SIZE(ipfw_insn_u32);
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
}
break;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case TOK_ESTAB:
fill_cmd(cmd, O_ESTAB, 0, 0);
break;
case TOK_SETUP:
fill_cmd(cmd, O_TCPFLAGS, 0,
(TH_SYN) | ( (TH_ACK) & 0xff) <<8 );
break;
case TOK_TCPDATALEN:
NEED1("tcpdatalen requires length");
if (strpbrk(*av, "-,")) {
if (!add_ports(cmd, *av, 0, O_TCPDATALEN, cblen))
errx(EX_DATAERR, "invalid tcpdata len %s", *av);
} else
fill_cmd(cmd, O_TCPDATALEN, 0,
strtoul(*av, NULL, 0));
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
break;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case TOK_TCPOPTS:
NEED1("missing argument for tcpoptions");
* Add new "flow" table type to support N=1..5-tuple lookups * Add "flow:hash" algorithm Kernel changes: * Add O_IP_FLOW_LOOKUP opcode to support "flow" lookups * Add IPFW_TABLE_FLOW table type * Add "struct tflow_entry" as strage for 6-tuple flows * Add "flow:hash" algorithm. Basically it is auto-growing chained hash table. Additionally, we store mask of fields we need to compare in each instance/ * Increase ipfw_obj_tentry size by adding struct tflow_entry * Add per-algorithm stat (ifpw_ta_tinfo) to ipfw_xtable_info * Increase algoname length: 32 -> 64 (algo options passed there as string) * Assume every table type can be customized by flags, use u8 to store "tflags" field. * Simplify ipfw_find_table_entry() by providing @tentry directly to algo callback. * Fix bug in cidr:chash resize procedure. Userland changes: * add "flow table(NAME)" syntax to support n-tuple checking tables. * make fill_flags() separate function to ease working with _s_x arrays * change "table info" output to reflect longer "type" fields Syntax: ipfw table fl2 create type flow:[src-ip][,proto][,src-port][,dst-ip][dst-port] [algo flow:hash] Examples: 0:02 [2] zfscurr0# ipfw table fl2 create type flow:src-ip,proto,dst-port algo flow:hash 0:02 [2] zfscurr0# ipfw table fl2 info +++ table(fl2), set(0) +++ kindex: 0, type: flow:src-ip,proto,dst-port valtype: number, references: 0 algorithm: flow:hash items: 0, size: 280 0:02 [2] zfscurr0# ipfw table fl2 add 2a02:6b8::333,tcp,443 45000 0:02 [2] zfscurr0# ipfw table fl2 add 10.0.0.92,tcp,80 22000 0:02 [2] zfscurr0# ipfw table fl2 list +++ table(fl2), set(0) +++ 2a02:6b8::333,6,443 45000 10.0.0.92,6,80 22000 0:02 [2] zfscurr0# ipfw add 200 count tcp from me to 78.46.89.105 80 flow 'table(fl2)' 00200 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 0:03 [2] zfscurr0# ipfw show 00200 0 0 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 617 59416 allow ip from any to any 0:03 [2] zfscurr0# telnet -s 10.0.0.92 78.46.89.105 80 Trying 78.46.89.105... .. 0:04 [2] zfscurr0# ipfw show 00200 5 272 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 682 66733 allow ip from any to any
2014-07-31 20:08:19 +00:00
fill_flags_cmd(cmd, O_TCPOPTS, f_tcpopts, *av);
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case TOK_TCPSEQ:
case TOK_TCPACK:
NEED1("tcpseq/tcpack requires argument");
cmd->len = F_INSN_SIZE(ipfw_insn_u32);
cmd->opcode = (i == TOK_TCPSEQ) ? O_TCPSEQ : O_TCPACK;
cmd32->d[0] = htonl(strtoul(*av, NULL, 0));
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case TOK_TCPWIN:
NEED1("tcpwin requires length");
if (strpbrk(*av, "-,")) {
if (!add_ports(cmd, *av, 0, O_TCPWIN, cblen))
errx(EX_DATAERR, "invalid tcpwin len %s", *av);
} else
fill_cmd(cmd, O_TCPWIN, 0,
strtoul(*av, NULL, 0));
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case TOK_TCPFLAGS:
NEED1("missing argument for tcpflags");
cmd->opcode = O_TCPFLAGS;
* Add new "flow" table type to support N=1..5-tuple lookups * Add "flow:hash" algorithm Kernel changes: * Add O_IP_FLOW_LOOKUP opcode to support "flow" lookups * Add IPFW_TABLE_FLOW table type * Add "struct tflow_entry" as strage for 6-tuple flows * Add "flow:hash" algorithm. Basically it is auto-growing chained hash table. Additionally, we store mask of fields we need to compare in each instance/ * Increase ipfw_obj_tentry size by adding struct tflow_entry * Add per-algorithm stat (ifpw_ta_tinfo) to ipfw_xtable_info * Increase algoname length: 32 -> 64 (algo options passed there as string) * Assume every table type can be customized by flags, use u8 to store "tflags" field. * Simplify ipfw_find_table_entry() by providing @tentry directly to algo callback. * Fix bug in cidr:chash resize procedure. Userland changes: * add "flow table(NAME)" syntax to support n-tuple checking tables. * make fill_flags() separate function to ease working with _s_x arrays * change "table info" output to reflect longer "type" fields Syntax: ipfw table fl2 create type flow:[src-ip][,proto][,src-port][,dst-ip][dst-port] [algo flow:hash] Examples: 0:02 [2] zfscurr0# ipfw table fl2 create type flow:src-ip,proto,dst-port algo flow:hash 0:02 [2] zfscurr0# ipfw table fl2 info +++ table(fl2), set(0) +++ kindex: 0, type: flow:src-ip,proto,dst-port valtype: number, references: 0 algorithm: flow:hash items: 0, size: 280 0:02 [2] zfscurr0# ipfw table fl2 add 2a02:6b8::333,tcp,443 45000 0:02 [2] zfscurr0# ipfw table fl2 add 10.0.0.92,tcp,80 22000 0:02 [2] zfscurr0# ipfw table fl2 list +++ table(fl2), set(0) +++ 2a02:6b8::333,6,443 45000 10.0.0.92,6,80 22000 0:02 [2] zfscurr0# ipfw add 200 count tcp from me to 78.46.89.105 80 flow 'table(fl2)' 00200 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 0:03 [2] zfscurr0# ipfw show 00200 0 0 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 617 59416 allow ip from any to any 0:03 [2] zfscurr0# telnet -s 10.0.0.92 78.46.89.105 80 Trying 78.46.89.105... .. 0:04 [2] zfscurr0# ipfw show 00200 5 272 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 682 66733 allow ip from any to any
2014-07-31 20:08:19 +00:00
fill_flags_cmd(cmd, O_TCPFLAGS, f_tcpflags, *av);
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
case TOK_KEEPSTATE:
if (open_par)
errx(EX_USAGE, "keep-state cannot be part "
"of an or block");
if (have_state)
errx(EX_USAGE, "only one of keep-state "
"and limit is allowed");
have_state = cmd;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
fill_cmd(cmd, O_KEEP_STATE, 0, 0);
break;
case TOK_LIMIT: {
ipfw_insn_limit *c = (ipfw_insn_limit *)cmd;
int val;
if (open_par)
errx(EX_USAGE,
"limit cannot be part of an or block");
if (have_state)
errx(EX_USAGE, "only one of keep-state and "
"limit is allowed");
have_state = cmd;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
cmd->len = F_INSN_SIZE(ipfw_insn_limit);
CHECK_CMDLEN;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
cmd->opcode = O_LIMIT;
c->limit_mask = c->conn_limit = 0;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
while ( av[0] != NULL ) {
if ((val = match_token(limit_masks, *av)) <= 0)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
c->limit_mask |= val;
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (c->limit_mask == 0)
errx(EX_USAGE, "limit: missing limit mask");
GET_UINT_ARG(c->conn_limit, IPFW_ARG_MIN, IPFW_ARG_MAX,
TOK_LIMIT, rule_options);
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
break;
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
case TOK_PROTO:
NEED1("missing protocol");
if (add_proto(cmd, *av, &proto)) {
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
} else
errx(EX_DATAERR, "invalid protocol ``%s''",
*av);
break;
2002-11-06 15:09:34 +00:00
case TOK_SRCIP:
NEED1("missing source IP");
if (add_srcip(cmd, *av, cblen, tstate)) {
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
}
break;
case TOK_DSTIP:
NEED1("missing destination IP");
if (add_dstip(cmd, *av, cblen, tstate)) {
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
}
break;
case TOK_SRCIP6:
NEED1("missing source IP6");
if (add_srcip6(cmd, *av, cblen)) {
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
}
break;
case TOK_DSTIP6:
NEED1("missing destination IP6");
if (add_dstip6(cmd, *av, cblen)) {
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
}
break;
case TOK_SRCPORT:
NEED1("missing source port");
if (_substrcmp(*av, "any") == 0 ||
add_ports(cmd, *av, proto, O_IP_SRCPORT, cblen)) {
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
} else
errx(EX_DATAERR, "invalid source port %s", *av);
break;
case TOK_DSTPORT:
NEED1("missing destination port");
if (_substrcmp(*av, "any") == 0 ||
add_ports(cmd, *av, proto, O_IP_DSTPORT, cblen)) {
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
} else
errx(EX_DATAERR, "invalid destination port %s",
*av);
break;
case TOK_MAC:
if (add_mac(cmd, av, cblen))
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av += 2;
break;
case TOK_MACTYPE:
NEED1("missing mac type");
if (!add_mactype(cmd, *av, cblen))
errx(EX_DATAERR, "invalid mac type %s", *av);
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
break;
case TOK_VERREVPATH:
fill_cmd(cmd, O_VERREVPATH, 0, 0);
break;
case TOK_VERSRCREACH:
fill_cmd(cmd, O_VERSRCREACH, 0, 0);
break;
case TOK_ANTISPOOF:
fill_cmd(cmd, O_ANTISPOOF, 0, 0);
break;
case TOK_IPSEC:
fill_cmd(cmd, O_IPSEC, 0, 0);
break;
case TOK_IPV6:
fill_cmd(cmd, O_IP6, 0, 0);
break;
case TOK_IPV4:
fill_cmd(cmd, O_IP4, 0, 0);
break;
case TOK_EXT6HDR:
fill_ext6hdr( cmd, *av );
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
break;
case TOK_FLOWID:
if (proto != IPPROTO_IPV6 )
errx( EX_USAGE, "flow-id filter is active "
"only for ipv6 protocol\n");
fill_flow6( (ipfw_insn_u32 *) cmd, *av, cblen);
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
break;
In random order: * make the code compile with WARNS=5 (at least on i386), mostly by adding 'const' specifier and replacing "void *" with "char *" in places where pointer arithmetic was used. This also spotted a few places where invalid tests (e.g. uint < 0) were used. * support ranges in "list" and "show" commands. Now you can say ipfw show 100-1000 4000-8000 which is very convenient when you have large rulesets. * implement comments in ipfw commands. These are implemented in the kernel as O_NOP commands (which always match) whose body contains the comment string. In userland, a comment is a C++-style comment: ipfw add allow ip from me to any // i can talk to everybody The choice of '//' versus '#' is somewhat arbitrary, but because the preprocessor/readfile part of ipfw used to strip away '#', I did not want to change this behaviour. If a rule only contains a comment ipfw add 1000 // this rule is just a comment then it is stored as a 'count' rule (this is also to remind the user that scanning through a rule is expensive). * improve handling of flags (still to be completed). ipfw_main() was written thinking of 'one rule per ipfw invocation', and so flags are set and never cleared. With readfile/preprocessor support, this changes and certain flags should be reset on each line. For the time being, only fix handling of '-a' which differentiates the "list" and "show" commands. * rework the preprocessor support -- ipfw_main() already had most of the parsing code, so i have moved in there the only missing bit (stripping away '#' and comments) and removed the parsing from ipfw_readfile(). Also, add some more options (such as -c, -N, -S) to the readfile section. MFC after: 3 days
2003-07-12 06:53:16 +00:00
case TOK_COMMENT:
fill_comment(cmd, av, cblen);
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av[0]=NULL;
In random order: * make the code compile with WARNS=5 (at least on i386), mostly by adding 'const' specifier and replacing "void *" with "char *" in places where pointer arithmetic was used. This also spotted a few places where invalid tests (e.g. uint < 0) were used. * support ranges in "list" and "show" commands. Now you can say ipfw show 100-1000 4000-8000 which is very convenient when you have large rulesets. * implement comments in ipfw commands. These are implemented in the kernel as O_NOP commands (which always match) whose body contains the comment string. In userland, a comment is a C++-style comment: ipfw add allow ip from me to any // i can talk to everybody The choice of '//' versus '#' is somewhat arbitrary, but because the preprocessor/readfile part of ipfw used to strip away '#', I did not want to change this behaviour. If a rule only contains a comment ipfw add 1000 // this rule is just a comment then it is stored as a 'count' rule (this is also to remind the user that scanning through a rule is expensive). * improve handling of flags (still to be completed). ipfw_main() was written thinking of 'one rule per ipfw invocation', and so flags are set and never cleared. With readfile/preprocessor support, this changes and certain flags should be reset on each line. For the time being, only fix handling of '-a' which differentiates the "list" and "show" commands. * rework the preprocessor support -- ipfw_main() already had most of the parsing code, so i have moved in there the only missing bit (stripping away '#' and comments) and removed the parsing from ipfw_readfile(). Also, add some more options (such as -c, -N, -S) to the readfile section. MFC after: 3 days
2003-07-12 06:53:16 +00:00
break;
case TOK_TAGGED:
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
if (av[0] && strpbrk(*av, "-,")) {
if (!add_ports(cmd, *av, 0, O_TAGGED, cblen))
errx(EX_DATAERR, "tagged: invalid tag"
" list: %s", *av);
}
else {
uint16_t tag;
GET_UINT_ARG(tag, IPFW_ARG_MIN, IPFW_ARG_MAX,
TOK_TAGGED, rule_options);
fill_cmd(cmd, O_TAGGED, 0, tag);
}
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
break;
Add code to allow the system to handle multiple routing tables. This particular implementation is designed to be fully backwards compatible and to be MFC-able to 7.x (and 6.x) Currently the only protocol that can make use of the multiple tables is IPv4 Similar functionality exists in OpenBSD and Linux. From my notes: ----- One thing where FreeBSD has been falling behind, and which by chance I have some time to work on is "policy based routing", which allows different packet streams to be routed by more than just the destination address. Constraints: ------------ I want to make some form of this available in the 6.x tree (and by extension 7.x) , but FreeBSD in general needs it so I might as well do it in -current and back port the portions I need. One of the ways that this can be done is to have the ability to instantiate multiple kernel routing tables (which I will now refer to as "Forwarding Information Bases" or "FIBs" for political correctness reasons). Which FIB a particular packet uses to make the next hop decision can be decided by a number of mechanisms. The policies these mechanisms implement are the "Policies" referred to in "Policy based routing". One of the constraints I have if I try to back port this work to 6.x is that it must be implemented as a EXTENSION to the existing ABIs in 6.x so that third party applications do not need to be recompiled in timespan of the branch. This first version will not have some of the bells and whistles that will come with later versions. It will, for example, be limited to 16 tables in the first commit. Implementation method, Compatible version. (part 1) ------------------------------- For this reason I have implemented a "sufficient subset" of a multiple routing table solution in Perforce, and back-ported it to 6.x. (also in Perforce though not always caught up with what I have done in -current/P4). The subset allows a number of FIBs to be defined at compile time (8 is sufficient for my purposes in 6.x) and implements the changes needed to allow IPV4 to use them. I have not done the changes for ipv6 simply because I do not need it, and I do not have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it. Other protocol families are left untouched and should there be users with proprietary protocol families, they should continue to work and be oblivious to the existence of the extra FIBs. To understand how this is done, one must know that the current FIB code starts everything off with a single dimensional array of pointers to FIB head structures (One per protocol family), each of which in turn points to the trie of routes available to that family. The basic change in the ABI compatible version of the change is to extent that array to be a 2 dimensional array, so that instead of protocol family X looking at rt_tables[X] for the table it needs, it looks at rt_tables[Y][X] when for all protocol families except ipv4 Y is always 0. Code that is unaware of the change always just sees the first row of the table, which of course looks just like the one dimensional array that existed before. The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign() are all maintained, but refer only to the first row of the array, so that existing callers in proprietary protocols can continue to do the "right thing". Some new entry points are added, for the exclusive use of ipv4 code called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(), which have an extra argument which refers the code to the correct row. In addition, there are some new entry points (currently called rtalloc_fib() and friends) that check the Address family being looked up and call either rtalloc() (and friends) if the protocol is not IPv4 forcing the action to row 0 or to the appropriate row if it IS IPv4 (and that info is available). These are for calling from code that is not specific to any particular protocol. The way these are implemented would change in the non ABI preserving code to be added later. One feature of the first version of the code is that for ipv4, the interface routes show up automatically on all the FIBs, so that no matter what FIB you select you always have the basic direct attached hosts available to you. (rtinit() does this automatically). You CAN delete an interface route from one FIB should you want to but by default it's there. ARP information is also available in each FIB. It's assumed that the same machine would have the same MAC address, regardless of which FIB you are using to get to it. This brings us as to how the correct FIB is selected for an outgoing IPV4 packet. Firstly, all packets have a FIB associated with them. if nothing has been done to change it, it will be FIB 0. The FIB is changed in the following ways. Packets fall into one of a number of classes. 1/ locally generated packets, coming from a socket/PCB. Such packets select a FIB from a number associated with the socket/PCB. This in turn is inherited from the process, but can be changed by a socket option. The process in turn inherits it on fork. I have written a utility call setfib that acts a bit like nice.. setfib -3 ping target.example.com # will use fib 3 for ping. It is an obvious extension to make it a property of a jail but I have not done so. It can be achieved by combining the setfib and jail commands. 2/ packets received on an interface for forwarding. By default these packets would use table 0, (or possibly a number settable in a sysctl(not yet)). but prior to routing the firewall can inspect them (see below). (possibly in the future you may be able to associate a FIB with packets received on an interface.. An ifconfig arg, but not yet.) 3/ packets inspected by a packet classifier, which can arbitrarily associate a fib with it on a packet by packet basis. A fib assigned to a packet by a packet classifier (such as ipfw) would over-ride a fib associated by a more default source. (such as cases 1 or 2). 4/ a tcp listen socket associated with a fib will generate accept sockets that are associated with that same fib. 5/ Packets generated in response to some other packet (e.g. reset or icmp packets). These should use the FIB associated with the packet being reponded to. 6/ Packets generated during encapsulation. gif, tun and other tunnel interfaces will encapsulate using the FIB that was in effect withthe proces that set up the tunnel. thus setfib 1 ifconfig gif0 [tunnel instructions] will set the fib for the tunnel to use to be fib 1. Routing messages would be associated with their process, and thus select one FIB or another. messages from the kernel would be associated with the fib they refer to and would only be received by a routing socket associated with that fib. (not yet implemented) In addition Netstat has been edited to be able to cope with the fact that the array is now 2 dimensional. (It looks in system memory using libkvm (!)). Old versions of netstat see only the first FIB. In addition two sysctls are added to give: a) the number of FIBs compiled in (active) b) the default FIB of the calling process. Early testing experience: ------------------------- Basically our (IronPort's) appliance does this functionality already using ipfw fwd but that method has some drawbacks. For example, It can't fully simulate a routing table because it can't influence the socket's choice of local address when a connect() is done. Testing during the generating of these changes has been remarkably smooth so far. Multiple tables have co-existed with no notable side effects, and packets have been routes accordingly. ipfw has grown 2 new keywords: setfib N ip from anay to any count ip from any to any fib N In pf there seems to be a requirement to be able to give symbolic names to the fibs but I do not have that capacity. I am not sure if it is required. SCTP has interestingly enough built in support for this, called VRFs in Cisco parlance. it will be interesting to see how that handles it when it suddenly actually does something. Where to next: -------------------- After committing the ABI compatible version and MFCing it, I'd like to proceed in a forward direction in -current. this will result in some roto-tilling in the routing code. Firstly: the current code's idea of having a separate tree per protocol family, all of the same format, and pointed to by the 1 dimensional array is a bit silly. Especially when one considers that there is code that makes assumptions about every protocol having the same internal structures there. Some protocols don't WANT that sort of structure. (for example the whole idea of a netmask is foreign to appletalk). This needs to be made opaque to the external code. My suggested first change is to add routing method pointers to the 'domain' structure, along with information pointing the data. instead of having an array of pointers to uniform structures, there would be an array pointing to the 'domain' structures for each protocol address domain (protocol family), and the methods this reached would be called. The methods would have an argument that gives FIB number, but the protocol would be free to ignore it. When the ABI can be changed it raises the possibilty of the addition of a fib entry into the "struct route". Currently, the structure contains the sockaddr of the desination, and the resulting fib entry. To make this work fully, one could add a fib number so that given an address and a fib, one can find the third element, the fib entry. Interaction with the ARP layer/ LL layer would need to be revisited as well. Qing Li has been working on this already. This work was sponsored by Ironport Systems/Cisco Reviewed by: several including rwatson, bz and mlair (parts each) Obtained from: Ironport systems/Cisco
2008-05-09 23:03:00 +00:00
case TOK_FIB:
NEED1("fib requires fib number");
fill_cmd(cmd, O_FIB, 0, strtoul(*av, NULL, 0));
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
Add code to allow the system to handle multiple routing tables. This particular implementation is designed to be fully backwards compatible and to be MFC-able to 7.x (and 6.x) Currently the only protocol that can make use of the multiple tables is IPv4 Similar functionality exists in OpenBSD and Linux. From my notes: ----- One thing where FreeBSD has been falling behind, and which by chance I have some time to work on is "policy based routing", which allows different packet streams to be routed by more than just the destination address. Constraints: ------------ I want to make some form of this available in the 6.x tree (and by extension 7.x) , but FreeBSD in general needs it so I might as well do it in -current and back port the portions I need. One of the ways that this can be done is to have the ability to instantiate multiple kernel routing tables (which I will now refer to as "Forwarding Information Bases" or "FIBs" for political correctness reasons). Which FIB a particular packet uses to make the next hop decision can be decided by a number of mechanisms. The policies these mechanisms implement are the "Policies" referred to in "Policy based routing". One of the constraints I have if I try to back port this work to 6.x is that it must be implemented as a EXTENSION to the existing ABIs in 6.x so that third party applications do not need to be recompiled in timespan of the branch. This first version will not have some of the bells and whistles that will come with later versions. It will, for example, be limited to 16 tables in the first commit. Implementation method, Compatible version. (part 1) ------------------------------- For this reason I have implemented a "sufficient subset" of a multiple routing table solution in Perforce, and back-ported it to 6.x. (also in Perforce though not always caught up with what I have done in -current/P4). The subset allows a number of FIBs to be defined at compile time (8 is sufficient for my purposes in 6.x) and implements the changes needed to allow IPV4 to use them. I have not done the changes for ipv6 simply because I do not need it, and I do not have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it. Other protocol families are left untouched and should there be users with proprietary protocol families, they should continue to work and be oblivious to the existence of the extra FIBs. To understand how this is done, one must know that the current FIB code starts everything off with a single dimensional array of pointers to FIB head structures (One per protocol family), each of which in turn points to the trie of routes available to that family. The basic change in the ABI compatible version of the change is to extent that array to be a 2 dimensional array, so that instead of protocol family X looking at rt_tables[X] for the table it needs, it looks at rt_tables[Y][X] when for all protocol families except ipv4 Y is always 0. Code that is unaware of the change always just sees the first row of the table, which of course looks just like the one dimensional array that existed before. The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign() are all maintained, but refer only to the first row of the array, so that existing callers in proprietary protocols can continue to do the "right thing". Some new entry points are added, for the exclusive use of ipv4 code called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(), which have an extra argument which refers the code to the correct row. In addition, there are some new entry points (currently called rtalloc_fib() and friends) that check the Address family being looked up and call either rtalloc() (and friends) if the protocol is not IPv4 forcing the action to row 0 or to the appropriate row if it IS IPv4 (and that info is available). These are for calling from code that is not specific to any particular protocol. The way these are implemented would change in the non ABI preserving code to be added later. One feature of the first version of the code is that for ipv4, the interface routes show up automatically on all the FIBs, so that no matter what FIB you select you always have the basic direct attached hosts available to you. (rtinit() does this automatically). You CAN delete an interface route from one FIB should you want to but by default it's there. ARP information is also available in each FIB. It's assumed that the same machine would have the same MAC address, regardless of which FIB you are using to get to it. This brings us as to how the correct FIB is selected for an outgoing IPV4 packet. Firstly, all packets have a FIB associated with them. if nothing has been done to change it, it will be FIB 0. The FIB is changed in the following ways. Packets fall into one of a number of classes. 1/ locally generated packets, coming from a socket/PCB. Such packets select a FIB from a number associated with the socket/PCB. This in turn is inherited from the process, but can be changed by a socket option. The process in turn inherits it on fork. I have written a utility call setfib that acts a bit like nice.. setfib -3 ping target.example.com # will use fib 3 for ping. It is an obvious extension to make it a property of a jail but I have not done so. It can be achieved by combining the setfib and jail commands. 2/ packets received on an interface for forwarding. By default these packets would use table 0, (or possibly a number settable in a sysctl(not yet)). but prior to routing the firewall can inspect them (see below). (possibly in the future you may be able to associate a FIB with packets received on an interface.. An ifconfig arg, but not yet.) 3/ packets inspected by a packet classifier, which can arbitrarily associate a fib with it on a packet by packet basis. A fib assigned to a packet by a packet classifier (such as ipfw) would over-ride a fib associated by a more default source. (such as cases 1 or 2). 4/ a tcp listen socket associated with a fib will generate accept sockets that are associated with that same fib. 5/ Packets generated in response to some other packet (e.g. reset or icmp packets). These should use the FIB associated with the packet being reponded to. 6/ Packets generated during encapsulation. gif, tun and other tunnel interfaces will encapsulate using the FIB that was in effect withthe proces that set up the tunnel. thus setfib 1 ifconfig gif0 [tunnel instructions] will set the fib for the tunnel to use to be fib 1. Routing messages would be associated with their process, and thus select one FIB or another. messages from the kernel would be associated with the fib they refer to and would only be received by a routing socket associated with that fib. (not yet implemented) In addition Netstat has been edited to be able to cope with the fact that the array is now 2 dimensional. (It looks in system memory using libkvm (!)). Old versions of netstat see only the first FIB. In addition two sysctls are added to give: a) the number of FIBs compiled in (active) b) the default FIB of the calling process. Early testing experience: ------------------------- Basically our (IronPort's) appliance does this functionality already using ipfw fwd but that method has some drawbacks. For example, It can't fully simulate a routing table because it can't influence the socket's choice of local address when a connect() is done. Testing during the generating of these changes has been remarkably smooth so far. Multiple tables have co-existed with no notable side effects, and packets have been routes accordingly. ipfw has grown 2 new keywords: setfib N ip from anay to any count ip from any to any fib N In pf there seems to be a requirement to be able to give symbolic names to the fibs but I do not have that capacity. I am not sure if it is required. SCTP has interestingly enough built in support for this, called VRFs in Cisco parlance. it will be interesting to see how that handles it when it suddenly actually does something. Where to next: -------------------- After committing the ABI compatible version and MFCing it, I'd like to proceed in a forward direction in -current. this will result in some roto-tilling in the routing code. Firstly: the current code's idea of having a separate tree per protocol family, all of the same format, and pointed to by the 1 dimensional array is a bit silly. Especially when one considers that there is code that makes assumptions about every protocol having the same internal structures there. Some protocols don't WANT that sort of structure. (for example the whole idea of a netmask is foreign to appletalk). This needs to be made opaque to the external code. My suggested first change is to add routing method pointers to the 'domain' structure, along with information pointing the data. instead of having an array of pointers to uniform structures, there would be an array pointing to the 'domain' structures for each protocol address domain (protocol family), and the methods this reached would be called. The methods would have an argument that gives FIB number, but the protocol would be free to ignore it. When the ABI can be changed it raises the possibilty of the addition of a fib entry into the "struct route". Currently, the structure contains the sockaddr of the desination, and the resulting fib entry. To make this work fully, one could add a fib number so that given an address and a fib, one can find the third element, the fib entry. Interaction with the ARP layer/ LL layer would need to be revisited as well. Qing Li has been working on this already. This work was sponsored by Ironport Systems/Cisco Reviewed by: several including rwatson, bz and mlair (parts each) Obtained from: Ironport systems/Cisco
2008-05-09 23:03:00 +00:00
break;
case TOK_SOCKARG:
fill_cmd(cmd, O_SOCKARG, 0, 0);
break;
Add code to allow the system to handle multiple routing tables. This particular implementation is designed to be fully backwards compatible and to be MFC-able to 7.x (and 6.x) Currently the only protocol that can make use of the multiple tables is IPv4 Similar functionality exists in OpenBSD and Linux. From my notes: ----- One thing where FreeBSD has been falling behind, and which by chance I have some time to work on is "policy based routing", which allows different packet streams to be routed by more than just the destination address. Constraints: ------------ I want to make some form of this available in the 6.x tree (and by extension 7.x) , but FreeBSD in general needs it so I might as well do it in -current and back port the portions I need. One of the ways that this can be done is to have the ability to instantiate multiple kernel routing tables (which I will now refer to as "Forwarding Information Bases" or "FIBs" for political correctness reasons). Which FIB a particular packet uses to make the next hop decision can be decided by a number of mechanisms. The policies these mechanisms implement are the "Policies" referred to in "Policy based routing". One of the constraints I have if I try to back port this work to 6.x is that it must be implemented as a EXTENSION to the existing ABIs in 6.x so that third party applications do not need to be recompiled in timespan of the branch. This first version will not have some of the bells and whistles that will come with later versions. It will, for example, be limited to 16 tables in the first commit. Implementation method, Compatible version. (part 1) ------------------------------- For this reason I have implemented a "sufficient subset" of a multiple routing table solution in Perforce, and back-ported it to 6.x. (also in Perforce though not always caught up with what I have done in -current/P4). The subset allows a number of FIBs to be defined at compile time (8 is sufficient for my purposes in 6.x) and implements the changes needed to allow IPV4 to use them. I have not done the changes for ipv6 simply because I do not need it, and I do not have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it. Other protocol families are left untouched and should there be users with proprietary protocol families, they should continue to work and be oblivious to the existence of the extra FIBs. To understand how this is done, one must know that the current FIB code starts everything off with a single dimensional array of pointers to FIB head structures (One per protocol family), each of which in turn points to the trie of routes available to that family. The basic change in the ABI compatible version of the change is to extent that array to be a 2 dimensional array, so that instead of protocol family X looking at rt_tables[X] for the table it needs, it looks at rt_tables[Y][X] when for all protocol families except ipv4 Y is always 0. Code that is unaware of the change always just sees the first row of the table, which of course looks just like the one dimensional array that existed before. The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign() are all maintained, but refer only to the first row of the array, so that existing callers in proprietary protocols can continue to do the "right thing". Some new entry points are added, for the exclusive use of ipv4 code called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(), which have an extra argument which refers the code to the correct row. In addition, there are some new entry points (currently called rtalloc_fib() and friends) that check the Address family being looked up and call either rtalloc() (and friends) if the protocol is not IPv4 forcing the action to row 0 or to the appropriate row if it IS IPv4 (and that info is available). These are for calling from code that is not specific to any particular protocol. The way these are implemented would change in the non ABI preserving code to be added later. One feature of the first version of the code is that for ipv4, the interface routes show up automatically on all the FIBs, so that no matter what FIB you select you always have the basic direct attached hosts available to you. (rtinit() does this automatically). You CAN delete an interface route from one FIB should you want to but by default it's there. ARP information is also available in each FIB. It's assumed that the same machine would have the same MAC address, regardless of which FIB you are using to get to it. This brings us as to how the correct FIB is selected for an outgoing IPV4 packet. Firstly, all packets have a FIB associated with them. if nothing has been done to change it, it will be FIB 0. The FIB is changed in the following ways. Packets fall into one of a number of classes. 1/ locally generated packets, coming from a socket/PCB. Such packets select a FIB from a number associated with the socket/PCB. This in turn is inherited from the process, but can be changed by a socket option. The process in turn inherits it on fork. I have written a utility call setfib that acts a bit like nice.. setfib -3 ping target.example.com # will use fib 3 for ping. It is an obvious extension to make it a property of a jail but I have not done so. It can be achieved by combining the setfib and jail commands. 2/ packets received on an interface for forwarding. By default these packets would use table 0, (or possibly a number settable in a sysctl(not yet)). but prior to routing the firewall can inspect them (see below). (possibly in the future you may be able to associate a FIB with packets received on an interface.. An ifconfig arg, but not yet.) 3/ packets inspected by a packet classifier, which can arbitrarily associate a fib with it on a packet by packet basis. A fib assigned to a packet by a packet classifier (such as ipfw) would over-ride a fib associated by a more default source. (such as cases 1 or 2). 4/ a tcp listen socket associated with a fib will generate accept sockets that are associated with that same fib. 5/ Packets generated in response to some other packet (e.g. reset or icmp packets). These should use the FIB associated with the packet being reponded to. 6/ Packets generated during encapsulation. gif, tun and other tunnel interfaces will encapsulate using the FIB that was in effect withthe proces that set up the tunnel. thus setfib 1 ifconfig gif0 [tunnel instructions] will set the fib for the tunnel to use to be fib 1. Routing messages would be associated with their process, and thus select one FIB or another. messages from the kernel would be associated with the fib they refer to and would only be received by a routing socket associated with that fib. (not yet implemented) In addition Netstat has been edited to be able to cope with the fact that the array is now 2 dimensional. (It looks in system memory using libkvm (!)). Old versions of netstat see only the first FIB. In addition two sysctls are added to give: a) the number of FIBs compiled in (active) b) the default FIB of the calling process. Early testing experience: ------------------------- Basically our (IronPort's) appliance does this functionality already using ipfw fwd but that method has some drawbacks. For example, It can't fully simulate a routing table because it can't influence the socket's choice of local address when a connect() is done. Testing during the generating of these changes has been remarkably smooth so far. Multiple tables have co-existed with no notable side effects, and packets have been routes accordingly. ipfw has grown 2 new keywords: setfib N ip from anay to any count ip from any to any fib N In pf there seems to be a requirement to be able to give symbolic names to the fibs but I do not have that capacity. I am not sure if it is required. SCTP has interestingly enough built in support for this, called VRFs in Cisco parlance. it will be interesting to see how that handles it when it suddenly actually does something. Where to next: -------------------- After committing the ABI compatible version and MFCing it, I'd like to proceed in a forward direction in -current. this will result in some roto-tilling in the routing code. Firstly: the current code's idea of having a separate tree per protocol family, all of the same format, and pointed to by the 1 dimensional array is a bit silly. Especially when one considers that there is code that makes assumptions about every protocol having the same internal structures there. Some protocols don't WANT that sort of structure. (for example the whole idea of a netmask is foreign to appletalk). This needs to be made opaque to the external code. My suggested first change is to add routing method pointers to the 'domain' structure, along with information pointing the data. instead of having an array of pointers to uniform structures, there would be an array pointing to the 'domain' structures for each protocol address domain (protocol family), and the methods this reached would be called. The methods would have an argument that gives FIB number, but the protocol would be free to ignore it. When the ABI can be changed it raises the possibilty of the addition of a fib entry into the "struct route". Currently, the structure contains the sockaddr of the desination, and the resulting fib entry. To make this work fully, one could add a fib number so that given an address and a fib, one can find the third element, the fib entry. Interaction with the ARP layer/ LL layer would need to be revisited as well. Qing Li has been working on this already. This work was sponsored by Ironport Systems/Cisco Reviewed by: several including rwatson, bz and mlair (parts each) Obtained from: Ironport systems/Cisco
2008-05-09 23:03:00 +00:00
case TOK_LOOKUP: {
ipfw_insn_u32 *c = (ipfw_insn_u32 *)cmd;
int j;
if (!av[0] || !av[1])
errx(EX_USAGE, "format: lookup argument tablenum");
cmd->opcode = O_IP_DST_LOOKUP;
cmd->len |= F_INSN_SIZE(ipfw_insn) + 2;
i = match_token(rule_options, *av);
for (j = 0; lookup_key[j] >= 0 ; j++) {
if (i == lookup_key[j])
break;
}
if (lookup_key[j] <= 0)
errx(EX_USAGE, "format: cannot lookup on %s", *av);
__PAST_END(c->d, 1) = j; // i converted to option
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
if ((j = pack_table(tstate, *av)) == 0)
errx(EX_DATAERR, "Invalid table name: %s", *av);
cmd->arg1 = j;
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
av++;
}
break;
* Add new "flow" table type to support N=1..5-tuple lookups * Add "flow:hash" algorithm Kernel changes: * Add O_IP_FLOW_LOOKUP opcode to support "flow" lookups * Add IPFW_TABLE_FLOW table type * Add "struct tflow_entry" as strage for 6-tuple flows * Add "flow:hash" algorithm. Basically it is auto-growing chained hash table. Additionally, we store mask of fields we need to compare in each instance/ * Increase ipfw_obj_tentry size by adding struct tflow_entry * Add per-algorithm stat (ifpw_ta_tinfo) to ipfw_xtable_info * Increase algoname length: 32 -> 64 (algo options passed there as string) * Assume every table type can be customized by flags, use u8 to store "tflags" field. * Simplify ipfw_find_table_entry() by providing @tentry directly to algo callback. * Fix bug in cidr:chash resize procedure. Userland changes: * add "flow table(NAME)" syntax to support n-tuple checking tables. * make fill_flags() separate function to ease working with _s_x arrays * change "table info" output to reflect longer "type" fields Syntax: ipfw table fl2 create type flow:[src-ip][,proto][,src-port][,dst-ip][dst-port] [algo flow:hash] Examples: 0:02 [2] zfscurr0# ipfw table fl2 create type flow:src-ip,proto,dst-port algo flow:hash 0:02 [2] zfscurr0# ipfw table fl2 info +++ table(fl2), set(0) +++ kindex: 0, type: flow:src-ip,proto,dst-port valtype: number, references: 0 algorithm: flow:hash items: 0, size: 280 0:02 [2] zfscurr0# ipfw table fl2 add 2a02:6b8::333,tcp,443 45000 0:02 [2] zfscurr0# ipfw table fl2 add 10.0.0.92,tcp,80 22000 0:02 [2] zfscurr0# ipfw table fl2 list +++ table(fl2), set(0) +++ 2a02:6b8::333,6,443 45000 10.0.0.92,6,80 22000 0:02 [2] zfscurr0# ipfw add 200 count tcp from me to 78.46.89.105 80 flow 'table(fl2)' 00200 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 0:03 [2] zfscurr0# ipfw show 00200 0 0 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 617 59416 allow ip from any to any 0:03 [2] zfscurr0# telnet -s 10.0.0.92 78.46.89.105 80 Trying 78.46.89.105... .. 0:04 [2] zfscurr0# ipfw show 00200 5 272 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2) 65535 682 66733 allow ip from any to any
2014-07-31 20:08:19 +00:00
case TOK_FLOW:
NEED1("missing table name");
if (strncmp(*av, "table(", 6) != 0)
errx(EX_DATAERR,
"enclose table name into \"table()\"");
fill_table(cmd, *av, O_IP_FLOW_LOOKUP, tstate);
av++;
break;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
default:
errx(EX_USAGE, "unrecognised option [%d] %s\n", i, s);
}
if (F_LEN(cmd) > 0) { /* prepare to advance */
prev = cmd;
cmd = next_cmd(cmd, &cblen);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
}
done:
/*
* Now copy stuff into the rule.
* If we have a keep-state option, the first instruction
* must be a PROBE_STATE (which is generated here).
* If we have a LOG option, it was stored as the first command,
* and now must be moved to the top of the action part.
*/
dst = (ipfw_insn *)rule->cmd;
/*
* First thing to write into the command stream is the match probability.
*/
if (match_prob != 1) { /* 1 means always match */
dst->opcode = O_PROB;
dst->len = 2;
*((int32_t *)(dst+1)) = (int32_t)(match_prob * 0x7fffffff);
dst += dst->len;
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
/*
* generate O_PROBE_STATE if necessary
*/
if (have_state && have_state->opcode != O_CHECK_STATE) {
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
fill_cmd(dst, O_PROBE_STATE, 0, 0);
dst = next_cmd(dst, &rblen);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
/* copy all commands but O_LOG, O_KEEP_STATE, O_LIMIT, O_ALTQ, O_TAG */
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
for (src = (ipfw_insn *)cmdbuf; src != cmd; src += i) {
i = F_LEN(src);
CHECK_RBUFLEN(i);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
switch (src->opcode) {
case O_LOG:
case O_KEEP_STATE:
case O_LIMIT:
case O_ALTQ:
case O_TAG:
break;
default:
bcopy(src, dst, i * sizeof(uint32_t));
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
dst += i;
}
}
/*
* put back the have_state command as last opcode
*/
if (have_state && have_state->opcode != O_CHECK_STATE) {
i = F_LEN(have_state);
CHECK_RBUFLEN(i);
bcopy(have_state, dst, i * sizeof(uint32_t));
dst += i;
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
/*
* start action section
*/
rule->act_ofs = dst - rule->cmd;
/* put back O_LOG, O_ALTQ, O_TAG if necessary */
if (have_log) {
i = F_LEN(have_log);
CHECK_RBUFLEN(i);
bcopy(have_log, dst, i * sizeof(uint32_t));
dst += i;
}
if (have_altq) {
i = F_LEN(have_altq);
CHECK_RBUFLEN(i);
bcopy(have_altq, dst, i * sizeof(uint32_t));
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
dst += i;
}
if (have_tag) {
i = F_LEN(have_tag);
CHECK_RBUFLEN(i);
bcopy(have_tag, dst, i * sizeof(uint32_t));
dst += i;
}
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
/*
* copy all other actions
*/
for (src = (ipfw_insn *)actbuf; src != action; src += i) {
i = F_LEN(src);
CHECK_RBUFLEN(i);
bcopy(src, dst, i * sizeof(uint32_t));
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
dst += i;
}
rule->cmd_len = (uint32_t *)dst - (uint32_t *)(rule->cmd);
*rbufsize = (char *)dst - (char *)rule;
}
/*
* Adds one or more rules to ipfw chain.
* Data layout:
* Request:
* [
* ip_fw3_opheader
* [ ipfw_obj_ctlv(IPFW_TLV_TBL_LIST) ipfw_obj_ntlv x N ] (optional *1)
* [ ipfw_obj_ctlv(IPFW_TLV_RULE_LIST) [ ip_fw_rule ip_fw_insn ] x N ] (*2) (*3)
* ]
* Reply:
* [
* ip_fw3_opheader
* [ ipfw_obj_ctlv(IPFW_TLV_TBL_LIST) ipfw_obj_ntlv x N ] (optional)
* [ ipfw_obj_ctlv(IPFW_TLV_RULE_LIST) [ ip_fw_rule ip_fw_insn ] x N ]
* ]
*
* Rules in reply are modified to store their actual ruleset number.
*
* (*1) TLVs inside IPFW_TLV_TBL_LIST needs to be sorted ascending
* accoring to their idx field and there has to be no duplicates.
* (*2) Numbered rules inside IPFW_TLV_RULE_LIST needs to be sorted ascending.
* (*3) Each ip_fw structure needs to be aligned to u64 boundary.
*/
void
ipfw_add(char *av[])
{
uint32_t rulebuf[1024];
int rbufsize, default_off, tlen, rlen;
size_t sz;
struct tidx ts;
struct ip_fw_rule *rule;
caddr_t tbuf;
ip_fw3_opheader *op3;
ipfw_obj_ctlv *ctlv, *tstate;
rbufsize = sizeof(rulebuf);
memset(rulebuf, 0, rbufsize);
memset(&ts, 0, sizeof(ts));
/* Optimize case with no tables */
default_off = sizeof(ipfw_obj_ctlv) + sizeof(ip_fw3_opheader);
op3 = (ip_fw3_opheader *)rulebuf;
ctlv = (ipfw_obj_ctlv *)(op3 + 1);
rule = (struct ip_fw_rule *)(ctlv + 1);
rbufsize -= default_off;
compile_rule(av, (uint32_t *)rule, &rbufsize, &ts);
/* Align rule size to u64 boundary */
rlen = roundup2(rbufsize, sizeof(uint64_t));
tbuf = NULL;
sz = 0;
tstate = NULL;
if (ts.count != 0) {
/* Some tables. We have to alloc more data */
tlen = ts.count * sizeof(ipfw_obj_ntlv);
sz = default_off + sizeof(ipfw_obj_ctlv) + tlen + rlen;
if ((tbuf = calloc(1, sz)) == NULL)
err(EX_UNAVAILABLE, "malloc() failed for IP_FW_ADD");
op3 = (ip_fw3_opheader *)tbuf;
/* Tables first */
ctlv = (ipfw_obj_ctlv *)(op3 + 1);
ctlv->head.type = IPFW_TLV_TBLNAME_LIST;
ctlv->head.length = sizeof(ipfw_obj_ctlv) + tlen;
ctlv->count = ts.count;
ctlv->objsize = sizeof(ipfw_obj_ntlv);
memcpy(ctlv + 1, ts.idx, tlen);
table_sort_ctlv(ctlv);
tstate = ctlv;
/* Rule next */
ctlv = (ipfw_obj_ctlv *)((caddr_t)ctlv + ctlv->head.length);
ctlv->head.type = IPFW_TLV_RULE_LIST;
ctlv->head.length = sizeof(ipfw_obj_ctlv) + rlen;
ctlv->count = 1;
memcpy(ctlv + 1, rule, rbufsize);
} else {
/* Simply add header */
sz = rlen + default_off;
memset(ctlv, 0, sizeof(*ctlv));
ctlv->head.type = IPFW_TLV_RULE_LIST;
ctlv->head.length = sizeof(ipfw_obj_ctlv) + rlen;
ctlv->count = 1;
}
if (do_get3(IP_FW_XADD, op3, &sz) != 0)
err(EX_UNAVAILABLE, "getsockopt(%s)", "IP_FW_XADD");
if (!co.do_quiet) {
struct format_opts sfo;
struct buf_pr bp;
memset(&sfo, 0, sizeof(sfo));
sfo.tstate = tstate;
sfo.set_mask = (uint32_t)(-1);
bp_alloc(&bp, 4096);
show_static_rule(&co, &sfo, &bp, rule, NULL);
printf("%s", bp.buf);
bp_free(&bp);
}
if (tbuf != NULL)
free(tbuf);
if (ts.idx != NULL)
free(ts.idx);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
/*
* clear the counters or the log counters.
* optname has the following values:
* 0 (zero both counters and logging)
* 1 (zero logging only)
*/
void
ipfw_zero(int ac, char *av[], int optname)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{
ipfw_range_tlv rt;
uint32_t arg;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
int failed = EX_OK;
char const *errstr;
char const *name = optname ? "RESETLOG" : "ZERO";
optname = optname ? IP_FW_XRESETLOG : IP_FW_XZERO;
memset(&rt, 0, sizeof(rt));
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
av++; ac--;
if (ac == 0) {
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
/* clear all entries */
rt.flags = IPFW_RCFLAG_ALL;
if (do_range_cmd(optname, &rt) < 0)
err(EX_UNAVAILABLE, "setsockopt(IP_FW_X%s)", name);
if (!co.do_quiet)
printf("%s.\n", optname == IP_FW_XZERO ?
"Accounting cleared":"Logging counts reset");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
return;
}
while (ac) {
/* Rule number */
if (isdigit(**av)) {
arg = strtonum(*av, 0, 0xffff, &errstr);
if (errstr)
errx(EX_DATAERR,
"invalid rule number %s\n", *av);
rt.start_rule = arg;
rt.end_rule = arg;
rt.flags |= IPFW_RCFLAG_RANGE;
if (co.use_set != 0) {
rt.set = co.use_set - 1;
rt.flags |= IPFW_RCFLAG_SET;
}
if (do_range_cmd(optname, &rt) != 0) {
warn("rule %u: setsockopt(IP_FW_X%s)",
arg, name);
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
failed = EX_UNAVAILABLE;
} else if (rt.new_set == 0) {
printf("Entry %d not found\n", arg);
failed = EX_UNAVAILABLE;
} else if (!co.do_quiet)
printf("Entry %d %s.\n", arg,
optname == IP_FW_XZERO ?
"cleared" : "logging count reset");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
} else {
errx(EX_USAGE, "invalid rule number ``%s''", *av);
}
av++; ac--;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
if (failed != EX_OK)
exit(failed);
}
void
ipfw_flush(int force)
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
{
ipfw_range_tlv rt;
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
if (!force && !co.do_quiet) { /* need to ask user */
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
int c;
printf("Are you sure? [yn] ");
fflush(stdout);
do {
c = toupper(getc(stdin));
while (c != '\n' && getc(stdin) != '\n')
if (feof(stdin))
return; /* and do not flush */
} while (c != 'Y' && c != 'N');
printf("\n");
if (c == 'N') /* user said no */
return;
}
Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
if (co.do_pipe) {
dummynet_flush();
return;
}
/* `ipfw set N flush` - is the same that `ipfw delete set N` */
memset(&rt, 0, sizeof(rt));
if (co.use_set != 0) {
rt.set = co.use_set - 1;
rt.flags = IPFW_RCFLAG_SET;
} else
rt.flags = IPFW_RCFLAG_ALL;
if (do_range_cmd(IP_FW_XDEL, &rt) != 0)
err(EX_UNAVAILABLE, "setsockopt(IP_FW_XDEL)");
if (!co.do_quiet)
printf("Flushed all %s.\n", co.do_pipe ? "pipes" : "rules");
The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
}
static struct _s_x intcmds[] = {
{ "talist", TOK_TALIST },
{ "iflist", TOK_IFLIST },
Add support for multi-field values inside ipfw tables. This is the last major change in given branch. Kernel changes: * Use 64-bytes structures to hold multi-value variables. * Use shared array to hold values from all tables (assume each table algo is capable of holding 32-byte variables). * Add some placeholders to support per-table value arrays in future. * Use simple eventhandler-style API to ease the process of adding new table items. Currently table addition may required multiple UH drops/ acquires which is quite tricky due to atomic table modificatio/swap support, shared array resize, etc. Deal with it by calling special notifier capable of rolling back state before actually performing swap/resize operations. Original operation then restarts itself after acquiring UH lock. * Bump all objhash users default values to at least 64 * Fix custom hashing inside objhash. Userland changes: * Add support for dumping shared value array via "vlist" internal cmd. * Some small print/fill_flags dixes to support u32 values. * valtype is now bitmask of <skipto|pipe|fib|nat|dscp|tag|divert|netgraph|limit|ipv4|ipv6>. New values can hold distinct values for each of this types. * Provide special "legacy" type which assumes all values are the same. * More helpers/docs following.. Some examples: 3:41 [1] zfscurr0# ipfw table mimimi create valtype skipto,limit,ipv4,ipv6 3:41 [1] zfscurr0# ipfw table mimimi info +++ table(mimimi), set(0) +++ kindex: 2, type: addr references: 0, valtype: skipto,limit,ipv4,ipv6 algorithm: addr:radix items: 0, size: 296 3:42 [1] zfscurr0# ipfw table mimimi add 10.0.0.5 3000,10,10.0.0.1,2a02:978:2::1 added: 10.0.0.5/32 3000,10,10.0.0.1,2a02:978:2::1 3:42 [1] zfscurr0# ipfw table mimimi list +++ table(mimimi), set(0) +++ 10.0.0.5/32 3000,0,10.0.0.1,2a02:978:2::1
2014-08-31 23:51:09 +00:00
{ "vlist", TOK_VLIST },
{ NULL, 0 }
};
void
ipfw_internal_handler(int ac, char *av[])
{
int tcmd;
ac--; av++;
NEED1("internal cmd required");
if ((tcmd = match_token(intcmds, *av)) == -1)
errx(EX_USAGE, "invalid internal sub-cmd: %s", *av);
switch (tcmd) {
case TOK_IFLIST:
ipfw_list_tifaces();
break;
case TOK_TALIST:
ipfw_list_ta(ac, av);
break;
Add support for multi-field values inside ipfw tables. This is the last major change in given branch. Kernel changes: * Use 64-bytes structures to hold multi-value variables. * Use shared array to hold values from all tables (assume each table algo is capable of holding 32-byte variables). * Add some placeholders to support per-table value arrays in future. * Use simple eventhandler-style API to ease the process of adding new table items. Currently table addition may required multiple UH drops/ acquires which is quite tricky due to atomic table modificatio/swap support, shared array resize, etc. Deal with it by calling special notifier capable of rolling back state before actually performing swap/resize operations. Original operation then restarts itself after acquiring UH lock. * Bump all objhash users default values to at least 64 * Fix custom hashing inside objhash. Userland changes: * Add support for dumping shared value array via "vlist" internal cmd. * Some small print/fill_flags dixes to support u32 values. * valtype is now bitmask of <skipto|pipe|fib|nat|dscp|tag|divert|netgraph|limit|ipv4|ipv6>. New values can hold distinct values for each of this types. * Provide special "legacy" type which assumes all values are the same. * More helpers/docs following.. Some examples: 3:41 [1] zfscurr0# ipfw table mimimi create valtype skipto,limit,ipv4,ipv6 3:41 [1] zfscurr0# ipfw table mimimi info +++ table(mimimi), set(0) +++ kindex: 2, type: addr references: 0, valtype: skipto,limit,ipv4,ipv6 algorithm: addr:radix items: 0, size: 296 3:42 [1] zfscurr0# ipfw table mimimi add 10.0.0.5 3000,10,10.0.0.1,2a02:978:2::1 added: 10.0.0.5/32 3000,10,10.0.0.1,2a02:978:2::1 3:42 [1] zfscurr0# ipfw table mimimi list +++ table(mimimi), set(0) +++ 10.0.0.5/32 3000,0,10.0.0.1,2a02:978:2::1
2014-08-31 23:51:09 +00:00
case TOK_VLIST:
ipfw_list_values(ac, av);
break;
}
}
static int
ipfw_get_tracked_ifaces(ipfw_obj_lheader **polh)
{
ipfw_obj_lheader req, *olh;
size_t sz;
memset(&req, 0, sizeof(req));
sz = sizeof(req);
2014-10-05 10:20:47 +00:00
if (do_get3(IP_FW_XIFLIST, &req.opheader, &sz) != 0) {
if (errno != ENOMEM)
return (errno);
}
sz = req.size;
if ((olh = calloc(1, sz)) == NULL)
return (ENOMEM);
olh->size = sz;
if (do_get3(IP_FW_XIFLIST, &olh->opheader, &sz) != 0) {
free(olh);
return (errno);
}
*polh = olh;
return (0);
}
static int
ifinfo_cmp(const void *a, const void *b)
{
ipfw_iface_info *ia, *ib;
ia = (ipfw_iface_info *)a;
ib = (ipfw_iface_info *)b;
return (stringnum_cmp(ia->ifname, ib->ifname));
}
/*
* Retrieves table list from kernel,
* optionally sorts it and calls requested function for each table.
* Returns 0 on success.
*/
static void
ipfw_list_tifaces()
{
ipfw_obj_lheader *olh;
ipfw_iface_info *info;
int i, error;
if ((error = ipfw_get_tracked_ifaces(&olh)) != 0)
err(EX_OSERR, "Unable to request ipfw tracked interface list");
qsort(olh + 1, olh->count, olh->objsize, ifinfo_cmp);
info = (ipfw_iface_info *)(olh + 1);
for (i = 0; i < olh->count; i++) {
if (info->flags & IPFW_IFFLAG_RESOLVED)
printf("%s ifindex: %d refcount: %u changes: %u\n",
info->ifname, info->ifindex, info->refcnt,
info->gencnt);
else
printf("%s ifindex: unresolved refcount: %u changes: %u\n",
info->ifname, info->refcnt, info->gencnt);
info = (ipfw_iface_info *)((caddr_t)info + olh->objsize);
}
free(olh);
}