2008-04-20 20:35:46 +00:00
|
|
|
/*-
|
2017-11-27 15:23:17 +00:00
|
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
|
|
*
|
2008-04-20 20:35:46 +00:00
|
|
|
* Copyright (c) 2007-2008 Sam Leffler, Errno Consulting
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/cdefs.h>
|
|
|
|
#ifdef __FreeBSD__
|
|
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* IEEE 802.11 Station mode support.
|
|
|
|
*/
|
|
|
|
#include "opt_inet.h"
|
|
|
|
#include "opt_wlan.h"
|
|
|
|
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/systm.h>
|
|
|
|
#include <sys/mbuf.h>
|
|
|
|
#include <sys/malloc.h>
|
|
|
|
#include <sys/kernel.h>
|
|
|
|
|
|
|
|
#include <sys/socket.h>
|
|
|
|
#include <sys/sockio.h>
|
|
|
|
#include <sys/endian.h>
|
|
|
|
#include <sys/errno.h>
|
|
|
|
#include <sys/proc.h>
|
|
|
|
#include <sys/sysctl.h>
|
|
|
|
|
|
|
|
#include <net/if.h>
|
|
|
|
#include <net/if_media.h>
|
|
|
|
#include <net/if_llc.h>
|
2011-11-08 14:34:01 +00:00
|
|
|
#include <net/if_dl.h>
|
|
|
|
#include <net/if_var.h>
|
2008-04-20 20:35:46 +00:00
|
|
|
#include <net/ethernet.h>
|
|
|
|
|
|
|
|
#include <net/bpf.h>
|
|
|
|
|
|
|
|
#include <net80211/ieee80211_var.h>
|
|
|
|
#include <net80211/ieee80211_sta.h>
|
|
|
|
#include <net80211/ieee80211_input.h>
|
2009-03-24 20:39:08 +00:00
|
|
|
#ifdef IEEE80211_SUPPORT_SUPERG
|
|
|
|
#include <net80211/ieee80211_superg.h>
|
|
|
|
#endif
|
2010-08-14 09:29:42 +00:00
|
|
|
#include <net80211/ieee80211_ratectl.h>
|
2012-12-09 22:56:29 +00:00
|
|
|
#include <net80211/ieee80211_sta.h>
|
[net80211] Initial VHT node upgrade/downgrade support and initial IE parsing.
This is the bulk of the magic to start enabling VHT channel negotiation.
It is absolutely, positively not yet even a complete VHT wave-1 implementation.
* parse IEs in scan, assoc req/resp, probe req/resp;
* break apart the channel upgrade from the HT IE parsing - do it after the
VHT IEs are parsed;
* (dirty! sigh) add channel width decision making in ieee80211_ht.c htinfo_update_chw().
This is the main bit where negotiated channel promotion through IEs occur.
* Shoehorn in VHT node init ,teardown, rate control, etc calls like the HT
versions;
* Do VHT channel adjustment where appropriate
Tested:
* monitor mode, ath10k port
* STA mode, ath10k port - VHT20, VHT40, VHT80 modes
TODO:
* IBSS;
* hostap;
* (ignore mesh, wds for now);
* finish 11n state engine - channel width change, opmode notifications, SMPS, etc;
* VHT basic rate negotiation and acceptance criteria when scanning, associating, etc;
* VHT control/management frame handling (group managment and operating mode being
the two big ones);
* Verify TX/RX VHT rate negotiation is actually working correctly.
Whilst here, add some comments about seqno allocation and locking. To achieve
the full VHT rates I need to push seqno allocation into the drivers and
finally remove the IEEE80211_TX_LOCK() I added years ago to fix issues. :/
2017-01-13 07:02:04 +00:00
|
|
|
#include <net80211/ieee80211_vht.h>
|
2008-04-20 20:35:46 +00:00
|
|
|
|
|
|
|
#define IEEE80211_RATE2MBS(r) (((r) & IEEE80211_RATE_VAL) / 2)
|
|
|
|
|
|
|
|
static void sta_vattach(struct ieee80211vap *);
|
|
|
|
static void sta_beacon_miss(struct ieee80211vap *);
|
|
|
|
static int sta_newstate(struct ieee80211vap *, enum ieee80211_state, int);
|
Begin plumbing ieee80211_rx_stats through the receive path.
Smart NICs with firmware (eg wpi, iwn, the new atheros parts, the intel 7260
series, etc) support doing a lot of things in firmware. This includes but
isn't limited to things like scanning, sending probe requests and receiving
probe responses. However, net80211 doesn't know about any of this - it still
drives the whole scan/probe infrastructure itself.
In order to move towards suppoting smart NICs, the receive path needs to
know about the channel/details for each received packet. In at least
the iwn and 7260 firmware (and I believe wpi, but I haven't tried it yet)
it will do the scanning, power-save and off-channel buffering for you -
all you need to do is handle receiving beacons and probe responses on
channels that aren't what you're currently on. However the whole receive
path is peppered with ic->ic_curchan and manual scan/powersave handling.
The beacon parsing code also checks ic->ic_curchan to determine if the
received beacon is on the correct channel or not.[1]
So:
* add freq/ieee values to ieee80211_rx_stats;
* change ieee80211_parse_beacon() to accept the 'current' channel
as an argument;
* modify the iv_input() and iv_recv_mgmt() methods to include the rx_stats;
* add a new method - ieee80211_lookup_channel_rxstats() - that looks up
a channel based on the contents of ieee80211_rx_stats;
* if it exists, use it in the mgmt path to switch the current channel
(which still defaults to ic->ic_curchan) over to something determined
by rx_stats.
This is enough to kick-start scan offload support in the Intel 7260
driver that Rui/I are working on. It also is a good start for scan
offload support for a handful of existing NICs (wpi, iwn, some USB
parts) and it'll very likely dramatically improve stability/performance
there. It's not the whole thing - notably, we don't need to do powersave,
we should not scan all channels, and we should leave probe request sending
to the firmware and not do it ourselves. But, this allows for continued
development on the above features whilst actually having a somewhat
working NIC.
TODO:
* Finish tidying up how the net80211 input path works.
Right now ieee80211_input / ieee80211_input_all act as the top-level
that everything feeds into; it should change so the MIMO input routines
are those and the legacy routines are phased out.
* The band selection should be done by the driver, not by the net80211
layer.
* ieee80211_lookup_channel_rxstats() only determines 11b or 11g channels
for now - this is enough for scanning, but not 100% true in all cases.
If we ever need to handle off-channel scan support for things like
static-40MHz or static-80MHz, or turbo-G, or half/quarter rates,
then we should extend this.
[1] This is a side effect of frequency-hopping and CCK modes - you
can receive beacons when you think you're on a different channel.
In particular, CCK (which is used by the low 11b rates, eg beacons!)
is decodable from adjacent channels - just at a low SNR.
FH is a side effect of having the hardware/firmware do the frequency
hopping - it may pick up beacons transmitted from other FH networks
that are in a different phase of hopping frequencies.
2015-05-25 16:37:41 +00:00
|
|
|
static int sta_input(struct ieee80211_node *, struct mbuf *,
|
|
|
|
const struct ieee80211_rx_stats *, int, int);
|
2008-04-20 20:35:46 +00:00
|
|
|
static void sta_recv_mgmt(struct ieee80211_node *, struct mbuf *,
|
Begin plumbing ieee80211_rx_stats through the receive path.
Smart NICs with firmware (eg wpi, iwn, the new atheros parts, the intel 7260
series, etc) support doing a lot of things in firmware. This includes but
isn't limited to things like scanning, sending probe requests and receiving
probe responses. However, net80211 doesn't know about any of this - it still
drives the whole scan/probe infrastructure itself.
In order to move towards suppoting smart NICs, the receive path needs to
know about the channel/details for each received packet. In at least
the iwn and 7260 firmware (and I believe wpi, but I haven't tried it yet)
it will do the scanning, power-save and off-channel buffering for you -
all you need to do is handle receiving beacons and probe responses on
channels that aren't what you're currently on. However the whole receive
path is peppered with ic->ic_curchan and manual scan/powersave handling.
The beacon parsing code also checks ic->ic_curchan to determine if the
received beacon is on the correct channel or not.[1]
So:
* add freq/ieee values to ieee80211_rx_stats;
* change ieee80211_parse_beacon() to accept the 'current' channel
as an argument;
* modify the iv_input() and iv_recv_mgmt() methods to include the rx_stats;
* add a new method - ieee80211_lookup_channel_rxstats() - that looks up
a channel based on the contents of ieee80211_rx_stats;
* if it exists, use it in the mgmt path to switch the current channel
(which still defaults to ic->ic_curchan) over to something determined
by rx_stats.
This is enough to kick-start scan offload support in the Intel 7260
driver that Rui/I are working on. It also is a good start for scan
offload support for a handful of existing NICs (wpi, iwn, some USB
parts) and it'll very likely dramatically improve stability/performance
there. It's not the whole thing - notably, we don't need to do powersave,
we should not scan all channels, and we should leave probe request sending
to the firmware and not do it ourselves. But, this allows for continued
development on the above features whilst actually having a somewhat
working NIC.
TODO:
* Finish tidying up how the net80211 input path works.
Right now ieee80211_input / ieee80211_input_all act as the top-level
that everything feeds into; it should change so the MIMO input routines
are those and the legacy routines are phased out.
* The band selection should be done by the driver, not by the net80211
layer.
* ieee80211_lookup_channel_rxstats() only determines 11b or 11g channels
for now - this is enough for scanning, but not 100% true in all cases.
If we ever need to handle off-channel scan support for things like
static-40MHz or static-80MHz, or turbo-G, or half/quarter rates,
then we should extend this.
[1] This is a side effect of frequency-hopping and CCK modes - you
can receive beacons when you think you're on a different channel.
In particular, CCK (which is used by the low 11b rates, eg beacons!)
is decodable from adjacent channels - just at a low SNR.
FH is a side effect of having the hardware/firmware do the frequency
hopping - it may pick up beacons transmitted from other FH networks
that are in a different phase of hopping frequencies.
2015-05-25 16:37:41 +00:00
|
|
|
int subtype, const struct ieee80211_rx_stats *, int rssi, int nf);
|
2009-04-26 21:46:04 +00:00
|
|
|
static void sta_recv_ctl(struct ieee80211_node *, struct mbuf *, int subtype);
|
2008-04-20 20:35:46 +00:00
|
|
|
|
|
|
|
void
|
|
|
|
ieee80211_sta_attach(struct ieee80211com *ic)
|
|
|
|
{
|
|
|
|
ic->ic_vattach[IEEE80211_M_STA] = sta_vattach;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
ieee80211_sta_detach(struct ieee80211com *ic)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
sta_vdetach(struct ieee80211vap *vap)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
sta_vattach(struct ieee80211vap *vap)
|
|
|
|
{
|
|
|
|
vap->iv_newstate = sta_newstate;
|
|
|
|
vap->iv_input = sta_input;
|
|
|
|
vap->iv_recv_mgmt = sta_recv_mgmt;
|
2009-04-26 21:46:04 +00:00
|
|
|
vap->iv_recv_ctl = sta_recv_ctl;
|
2008-04-20 20:35:46 +00:00
|
|
|
vap->iv_opdetach = sta_vdetach;
|
|
|
|
vap->iv_bmiss = sta_beacon_miss;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Handle a beacon miss event. The common code filters out
|
|
|
|
* spurious events that can happen when scanning and/or before
|
|
|
|
* reaching RUN state.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
sta_beacon_miss(struct ieee80211vap *vap)
|
|
|
|
{
|
2009-06-04 15:57:38 +00:00
|
|
|
struct ieee80211com *ic = vap->iv_ic;
|
|
|
|
|
2011-10-02 02:42:31 +00:00
|
|
|
IEEE80211_LOCK_ASSERT(ic);
|
|
|
|
|
2009-06-04 15:57:38 +00:00
|
|
|
KASSERT((ic->ic_flags & IEEE80211_F_SCAN) == 0, ("scanning"));
|
|
|
|
KASSERT(vap->iv_state >= IEEE80211_S_RUN,
|
|
|
|
("wrong state %s", ieee80211_state_name[vap->iv_state]));
|
2008-04-20 20:35:46 +00:00
|
|
|
|
2009-06-04 15:57:38 +00:00
|
|
|
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
|
|
|
|
"beacon miss, mode %s state %s\n",
|
|
|
|
ieee80211_opmode_name[vap->iv_opmode],
|
|
|
|
ieee80211_state_name[vap->iv_state]);
|
2008-04-20 20:35:46 +00:00
|
|
|
|
2009-06-04 15:57:38 +00:00
|
|
|
if (vap->iv_state == IEEE80211_S_CSA) {
|
|
|
|
/*
|
|
|
|
* A Channel Switch is pending; assume we missed the
|
|
|
|
* beacon that would've completed the process and just
|
|
|
|
* force the switch. If we made a mistake we'll not
|
|
|
|
* find the AP on the new channel and fall back to a
|
|
|
|
* normal scan.
|
|
|
|
*/
|
|
|
|
ieee80211_csa_completeswitch(ic);
|
|
|
|
return;
|
|
|
|
}
|
2008-04-20 20:35:46 +00:00
|
|
|
if (++vap->iv_bmiss_count < vap->iv_bmiss_max) {
|
|
|
|
/*
|
|
|
|
* Send a directed probe req before falling back to a
|
|
|
|
* scan; if we receive a response ic_bmiss_count will
|
|
|
|
* be reset. Some cards mistakenly report beacon miss
|
|
|
|
* so this avoids the expensive scan if the ap is
|
|
|
|
* still there.
|
|
|
|
*/
|
|
|
|
ieee80211_send_probereq(vap->iv_bss, vap->iv_myaddr,
|
|
|
|
vap->iv_bss->ni_bssid, vap->iv_bss->ni_bssid,
|
|
|
|
vap->iv_bss->ni_essid, vap->iv_bss->ni_esslen);
|
|
|
|
return;
|
|
|
|
}
|
2010-03-14 01:57:32 +00:00
|
|
|
|
|
|
|
callout_stop(&vap->iv_swbmiss);
|
2008-04-20 20:35:46 +00:00
|
|
|
vap->iv_bmiss_count = 0;
|
|
|
|
vap->iv_stats.is_beacon_miss++;
|
|
|
|
if (vap->iv_roaming == IEEE80211_ROAMING_AUTO) {
|
2009-03-24 20:39:08 +00:00
|
|
|
#ifdef IEEE80211_SUPPORT_SUPERG
|
2009-03-25 03:02:03 +00:00
|
|
|
|
2008-04-20 20:35:46 +00:00
|
|
|
/*
|
|
|
|
* If we receive a beacon miss interrupt when using
|
|
|
|
* dynamic turbo, attempt to switch modes before
|
|
|
|
* reassociating.
|
|
|
|
*/
|
|
|
|
if (IEEE80211_ATH_CAP(vap, vap->iv_bss, IEEE80211_NODE_TURBOP))
|
|
|
|
ieee80211_dturbo_switch(vap,
|
|
|
|
ic->ic_bsschan->ic_flags ^ IEEE80211_CHAN_TURBO);
|
2009-03-24 20:39:08 +00:00
|
|
|
#endif
|
2008-04-20 20:35:46 +00:00
|
|
|
/*
|
|
|
|
* Try to reassociate before scanning for a new ap.
|
|
|
|
*/
|
|
|
|
ieee80211_new_state(vap, IEEE80211_S_ASSOC, 1);
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* Somebody else is controlling state changes (e.g.
|
|
|
|
* a user-mode app) don't do anything that would
|
|
|
|
* confuse them; just drop into scan mode so they'll
|
|
|
|
* notified of the state change and given control.
|
|
|
|
*/
|
|
|
|
ieee80211_new_state(vap, IEEE80211_S_SCAN, 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Handle deauth with reason. We retry only for
|
|
|
|
* the cases where we might succeed. Otherwise
|
|
|
|
* we downgrade the ap and scan.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
sta_authretry(struct ieee80211vap *vap, struct ieee80211_node *ni, int reason)
|
|
|
|
{
|
|
|
|
switch (reason) {
|
|
|
|
case IEEE80211_STATUS_SUCCESS: /* NB: MLME assoc */
|
|
|
|
case IEEE80211_STATUS_TIMEOUT:
|
|
|
|
case IEEE80211_REASON_ASSOC_EXPIRE:
|
|
|
|
case IEEE80211_REASON_NOT_AUTHED:
|
|
|
|
case IEEE80211_REASON_NOT_ASSOCED:
|
|
|
|
case IEEE80211_REASON_ASSOC_LEAVE:
|
|
|
|
case IEEE80211_REASON_ASSOC_NOT_AUTHED:
|
|
|
|
IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH, 1);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
ieee80211_scan_assoc_fail(vap, vap->iv_bss->ni_macaddr, reason);
|
|
|
|
if (vap->iv_roaming == IEEE80211_ROAMING_AUTO)
|
|
|
|
ieee80211_check_scan_current(vap);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-03-21 20:52:09 +00:00
|
|
|
static void
|
|
|
|
sta_swbmiss_start(struct ieee80211vap *vap)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) {
|
|
|
|
/*
|
|
|
|
* Start s/w beacon miss timer for devices w/o
|
|
|
|
* hardware support. We fudge a bit here since
|
|
|
|
* we're doing this in software.
|
|
|
|
*/
|
|
|
|
vap->iv_swbmiss_period = IEEE80211_TU_TO_TICKS(
|
|
|
|
2 * vap->iv_bmissthreshold * vap->iv_bss->ni_intval);
|
|
|
|
vap->iv_swbmiss_count = 0;
|
|
|
|
callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
|
|
|
|
ieee80211_swbmiss, vap);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-04-20 20:35:46 +00:00
|
|
|
/*
|
|
|
|
* IEEE80211_M_STA vap state machine handler.
|
|
|
|
* This routine handles the main states in the 802.11 protocol.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
sta_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
|
|
|
|
{
|
|
|
|
struct ieee80211com *ic = vap->iv_ic;
|
|
|
|
struct ieee80211_node *ni;
|
|
|
|
enum ieee80211_state ostate;
|
|
|
|
|
|
|
|
IEEE80211_LOCK_ASSERT(ic);
|
|
|
|
|
|
|
|
ostate = vap->iv_state;
|
|
|
|
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s -> %s (%d)\n",
|
|
|
|
__func__, ieee80211_state_name[ostate],
|
|
|
|
ieee80211_state_name[nstate], arg);
|
|
|
|
vap->iv_state = nstate; /* state transition */
|
|
|
|
callout_stop(&vap->iv_mgtsend); /* XXX callout_drain */
|
|
|
|
if (ostate != IEEE80211_S_SCAN)
|
|
|
|
ieee80211_cancel_scan(vap); /* background scan */
|
|
|
|
ni = vap->iv_bss; /* NB: no reference held */
|
|
|
|
if (vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS)
|
|
|
|
callout_stop(&vap->iv_swbmiss);
|
|
|
|
switch (nstate) {
|
|
|
|
case IEEE80211_S_INIT:
|
|
|
|
switch (ostate) {
|
|
|
|
case IEEE80211_S_SLEEP:
|
|
|
|
/* XXX wakeup */
|
2014-04-24 01:39:53 +00:00
|
|
|
/* XXX driver hook to wakeup the hardware? */
|
2008-04-20 20:35:46 +00:00
|
|
|
case IEEE80211_S_RUN:
|
|
|
|
IEEE80211_SEND_MGMT(ni,
|
|
|
|
IEEE80211_FC0_SUBTYPE_DISASSOC,
|
|
|
|
IEEE80211_REASON_ASSOC_LEAVE);
|
|
|
|
ieee80211_sta_leave(ni);
|
|
|
|
break;
|
|
|
|
case IEEE80211_S_ASSOC:
|
|
|
|
IEEE80211_SEND_MGMT(ni,
|
|
|
|
IEEE80211_FC0_SUBTYPE_DEAUTH,
|
|
|
|
IEEE80211_REASON_AUTH_LEAVE);
|
|
|
|
break;
|
|
|
|
case IEEE80211_S_SCAN:
|
|
|
|
ieee80211_cancel_scan(vap);
|
|
|
|
break;
|
|
|
|
default:
|
2016-03-03 19:53:46 +00:00
|
|
|
break;
|
2008-04-20 20:35:46 +00:00
|
|
|
}
|
|
|
|
if (ostate != IEEE80211_S_INIT) {
|
|
|
|
/* NB: optimize INIT -> INIT case */
|
|
|
|
ieee80211_reset_bss(vap);
|
|
|
|
}
|
|
|
|
if (vap->iv_auth->ia_detach != NULL)
|
|
|
|
vap->iv_auth->ia_detach(vap);
|
|
|
|
break;
|
|
|
|
case IEEE80211_S_SCAN:
|
|
|
|
switch (ostate) {
|
|
|
|
case IEEE80211_S_INIT:
|
|
|
|
/*
|
|
|
|
* Initiate a scan. We can come here as a result
|
|
|
|
* of an IEEE80211_IOC_SCAN_REQ too in which case
|
|
|
|
* the vap will be marked with IEEE80211_FEXT_SCANREQ
|
|
|
|
* and the scan request parameters will be present
|
|
|
|
* in iv_scanreq. Otherwise we do the default.
|
|
|
|
*/
|
|
|
|
if (vap->iv_flags_ext & IEEE80211_FEXT_SCANREQ) {
|
|
|
|
ieee80211_check_scan(vap,
|
|
|
|
vap->iv_scanreq_flags,
|
|
|
|
vap->iv_scanreq_duration,
|
|
|
|
vap->iv_scanreq_mindwell,
|
|
|
|
vap->iv_scanreq_maxdwell,
|
|
|
|
vap->iv_scanreq_nssid, vap->iv_scanreq_ssid);
|
|
|
|
vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANREQ;
|
|
|
|
} else
|
|
|
|
ieee80211_check_scan_current(vap);
|
|
|
|
break;
|
|
|
|
case IEEE80211_S_SCAN:
|
|
|
|
case IEEE80211_S_AUTH:
|
|
|
|
case IEEE80211_S_ASSOC:
|
|
|
|
/*
|
|
|
|
* These can happen either because of a timeout
|
|
|
|
* on an assoc/auth response or because of a
|
|
|
|
* change in state that requires a reset. For
|
|
|
|
* the former we're called with a non-zero arg
|
|
|
|
* that is the cause for the failure; pass this
|
|
|
|
* to the scan code so it can update state.
|
|
|
|
* Otherwise trigger a new scan unless we're in
|
|
|
|
* manual roaming mode in which case an application
|
|
|
|
* must issue an explicit scan request.
|
|
|
|
*/
|
|
|
|
if (arg != 0)
|
|
|
|
ieee80211_scan_assoc_fail(vap,
|
|
|
|
vap->iv_bss->ni_macaddr, arg);
|
|
|
|
if (vap->iv_roaming == IEEE80211_ROAMING_AUTO)
|
|
|
|
ieee80211_check_scan_current(vap);
|
|
|
|
break;
|
2014-04-25 01:20:10 +00:00
|
|
|
case IEEE80211_S_SLEEP: /* beacon miss */
|
|
|
|
/*
|
|
|
|
* XXX if in sleep we need to wakeup the hardware.
|
|
|
|
*/
|
|
|
|
/* FALLTHROUGH */
|
2008-04-20 20:35:46 +00:00
|
|
|
case IEEE80211_S_RUN: /* beacon miss */
|
|
|
|
/*
|
|
|
|
* Beacon miss. Notify user space and if not
|
|
|
|
* under control of a user application (roaming
|
|
|
|
* manual) kick off a scan to re-connect.
|
|
|
|
*/
|
2014-04-25 01:20:10 +00:00
|
|
|
|
2008-04-20 20:35:46 +00:00
|
|
|
ieee80211_sta_leave(ni);
|
|
|
|
if (vap->iv_roaming == IEEE80211_ROAMING_AUTO)
|
|
|
|
ieee80211_check_scan_current(vap);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
goto invalid;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case IEEE80211_S_AUTH:
|
|
|
|
switch (ostate) {
|
|
|
|
case IEEE80211_S_INIT:
|
|
|
|
case IEEE80211_S_SCAN:
|
|
|
|
IEEE80211_SEND_MGMT(ni,
|
|
|
|
IEEE80211_FC0_SUBTYPE_AUTH, 1);
|
|
|
|
break;
|
|
|
|
case IEEE80211_S_AUTH:
|
|
|
|
case IEEE80211_S_ASSOC:
|
|
|
|
switch (arg & 0xff) {
|
|
|
|
case IEEE80211_FC0_SUBTYPE_AUTH:
|
|
|
|
/* ??? */
|
|
|
|
IEEE80211_SEND_MGMT(ni,
|
|
|
|
IEEE80211_FC0_SUBTYPE_AUTH, 2);
|
|
|
|
break;
|
|
|
|
case IEEE80211_FC0_SUBTYPE_DEAUTH:
|
|
|
|
sta_authretry(vap, ni, arg>>8);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
break;
|
2016-03-21 20:39:45 +00:00
|
|
|
case IEEE80211_S_SLEEP:
|
2008-04-20 20:35:46 +00:00
|
|
|
case IEEE80211_S_RUN:
|
|
|
|
switch (arg & 0xff) {
|
|
|
|
case IEEE80211_FC0_SUBTYPE_AUTH:
|
|
|
|
IEEE80211_SEND_MGMT(ni,
|
|
|
|
IEEE80211_FC0_SUBTYPE_AUTH, 2);
|
2016-03-21 20:39:45 +00:00
|
|
|
vap->iv_state = IEEE80211_S_RUN; /* stay RUN */
|
2008-04-20 20:35:46 +00:00
|
|
|
break;
|
|
|
|
case IEEE80211_FC0_SUBTYPE_DEAUTH:
|
|
|
|
ieee80211_sta_leave(ni);
|
|
|
|
if (vap->iv_roaming == IEEE80211_ROAMING_AUTO) {
|
|
|
|
/* try to reauth */
|
|
|
|
IEEE80211_SEND_MGMT(ni,
|
|
|
|
IEEE80211_FC0_SUBTYPE_AUTH, 1);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
goto invalid;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case IEEE80211_S_ASSOC:
|
|
|
|
switch (ostate) {
|
|
|
|
case IEEE80211_S_AUTH:
|
|
|
|
case IEEE80211_S_ASSOC:
|
|
|
|
IEEE80211_SEND_MGMT(ni,
|
|
|
|
IEEE80211_FC0_SUBTYPE_ASSOC_REQ, 0);
|
|
|
|
break;
|
|
|
|
case IEEE80211_S_SLEEP: /* cannot happen */
|
|
|
|
case IEEE80211_S_RUN:
|
|
|
|
ieee80211_sta_leave(ni);
|
|
|
|
if (vap->iv_roaming == IEEE80211_ROAMING_AUTO) {
|
|
|
|
IEEE80211_SEND_MGMT(ni, arg ?
|
|
|
|
IEEE80211_FC0_SUBTYPE_REASSOC_REQ :
|
|
|
|
IEEE80211_FC0_SUBTYPE_ASSOC_REQ, 0);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
goto invalid;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case IEEE80211_S_RUN:
|
|
|
|
if (vap->iv_flags & IEEE80211_F_WPA) {
|
|
|
|
/* XXX validate prerequisites */
|
|
|
|
}
|
|
|
|
switch (ostate) {
|
|
|
|
case IEEE80211_S_RUN:
|
2009-06-04 15:57:38 +00:00
|
|
|
case IEEE80211_S_CSA:
|
2008-04-20 20:35:46 +00:00
|
|
|
break;
|
|
|
|
case IEEE80211_S_AUTH: /* when join is done in fw */
|
|
|
|
case IEEE80211_S_ASSOC:
|
|
|
|
#ifdef IEEE80211_DEBUG
|
|
|
|
if (ieee80211_msg_debug(vap)) {
|
|
|
|
ieee80211_note(vap, "%s with %s ssid ",
|
|
|
|
(vap->iv_opmode == IEEE80211_M_STA ?
|
|
|
|
"associated" : "synchronized"),
|
|
|
|
ether_sprintf(ni->ni_bssid));
|
|
|
|
ieee80211_print_essid(vap->iv_bss->ni_essid,
|
|
|
|
ni->ni_esslen);
|
|
|
|
/* XXX MCS/HT */
|
|
|
|
printf(" channel %d start %uMb\n",
|
|
|
|
ieee80211_chan2ieee(ic, ic->ic_curchan),
|
|
|
|
IEEE80211_RATE2MBS(ni->ni_txrate));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
ieee80211_scan_assoc_success(vap, ni->ni_macaddr);
|
|
|
|
ieee80211_notify_node_join(ni,
|
|
|
|
arg == IEEE80211_FC0_SUBTYPE_ASSOC_RESP);
|
|
|
|
break;
|
|
|
|
case IEEE80211_S_SLEEP:
|
2014-04-24 01:39:53 +00:00
|
|
|
/* Wake up from sleep */
|
2012-10-02 17:45:19 +00:00
|
|
|
vap->iv_sta_ps(vap, 0);
|
2008-04-20 20:35:46 +00:00
|
|
|
break;
|
|
|
|
default:
|
|
|
|
goto invalid;
|
|
|
|
}
|
|
|
|
ieee80211_sync_curchan(ic);
|
2016-03-21 20:52:09 +00:00
|
|
|
if (ostate != IEEE80211_S_RUN)
|
|
|
|
sta_swbmiss_start(vap);
|
2008-04-20 20:35:46 +00:00
|
|
|
/*
|
|
|
|
* When 802.1x is not in use mark the port authorized
|
|
|
|
* at this point so traffic can flow.
|
|
|
|
*/
|
|
|
|
if (ni->ni_authmode != IEEE80211_AUTH_8021X)
|
|
|
|
ieee80211_node_authorize(ni);
|
2008-10-27 16:46:50 +00:00
|
|
|
/*
|
|
|
|
* Fake association when joining an existing bss.
|
2014-04-24 01:39:53 +00:00
|
|
|
*
|
|
|
|
* Don't do this if we're doing SLEEP->RUN.
|
2008-10-27 16:46:50 +00:00
|
|
|
*/
|
2014-04-24 01:39:53 +00:00
|
|
|
if (ic->ic_newassoc != NULL && ostate != IEEE80211_S_SLEEP)
|
|
|
|
ic->ic_newassoc(vap->iv_bss, (ostate != IEEE80211_S_RUN));
|
2008-04-20 20:35:46 +00:00
|
|
|
break;
|
2009-06-04 15:57:38 +00:00
|
|
|
case IEEE80211_S_CSA:
|
|
|
|
if (ostate != IEEE80211_S_RUN)
|
|
|
|
goto invalid;
|
|
|
|
break;
|
2008-04-20 20:35:46 +00:00
|
|
|
case IEEE80211_S_SLEEP:
|
2016-03-21 20:52:09 +00:00
|
|
|
sta_swbmiss_start(vap);
|
2012-10-02 17:45:19 +00:00
|
|
|
vap->iv_sta_ps(vap, 1);
|
2008-04-20 20:35:46 +00:00
|
|
|
break;
|
|
|
|
default:
|
|
|
|
invalid:
|
2008-10-25 23:23:41 +00:00
|
|
|
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
|
|
|
|
"%s: unexpected state transition %s -> %s\n", __func__,
|
2008-04-20 20:35:46 +00:00
|
|
|
ieee80211_state_name[ostate], ieee80211_state_name[nstate]);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Return non-zero if the frame is an echo of a multicast
|
|
|
|
* frame sent by ourself. The dir is known to be DSTODS.
|
|
|
|
*/
|
|
|
|
static __inline int
|
|
|
|
isdstods_mcastecho(struct ieee80211vap *vap, const struct ieee80211_frame *wh)
|
|
|
|
{
|
|
|
|
#define QWH4(wh) ((const struct ieee80211_qosframe_addr4 *)wh)
|
|
|
|
#define WH4(wh) ((const struct ieee80211_frame_addr4 *)wh)
|
|
|
|
const uint8_t *sa;
|
|
|
|
|
|
|
|
KASSERT(vap->iv_opmode == IEEE80211_M_STA, ("wrong mode"));
|
|
|
|
|
|
|
|
if (!IEEE80211_IS_MULTICAST(wh->i_addr3))
|
|
|
|
return 0;
|
|
|
|
sa = IEEE80211_QOS_HAS_SEQ(wh) ? QWH4(wh)->i_addr4 : WH4(wh)->i_addr4;
|
|
|
|
return IEEE80211_ADDR_EQ(sa, vap->iv_myaddr);
|
|
|
|
#undef WH4
|
|
|
|
#undef QWH4
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Return non-zero if the frame is an echo of a multicast
|
|
|
|
* frame sent by ourself. The dir is known to be FROMDS.
|
|
|
|
*/
|
|
|
|
static __inline int
|
|
|
|
isfromds_mcastecho(struct ieee80211vap *vap, const struct ieee80211_frame *wh)
|
|
|
|
{
|
|
|
|
KASSERT(vap->iv_opmode == IEEE80211_M_STA, ("wrong mode"));
|
|
|
|
|
|
|
|
if (!IEEE80211_IS_MULTICAST(wh->i_addr1))
|
|
|
|
return 0;
|
|
|
|
return IEEE80211_ADDR_EQ(wh->i_addr3, vap->iv_myaddr);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Decide if a received management frame should be
|
|
|
|
* printed when debugging is enabled. This filters some
|
|
|
|
* of the less interesting frames that come frequently
|
|
|
|
* (e.g. beacons).
|
|
|
|
*/
|
|
|
|
static __inline int
|
|
|
|
doprint(struct ieee80211vap *vap, int subtype)
|
|
|
|
{
|
|
|
|
switch (subtype) {
|
|
|
|
case IEEE80211_FC0_SUBTYPE_BEACON:
|
|
|
|
return (vap->iv_ic->ic_flags & IEEE80211_F_SCAN);
|
|
|
|
case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Process a received frame. The node associated with the sender
|
|
|
|
* should be supplied. If nothing was found in the node table then
|
|
|
|
* the caller is assumed to supply a reference to iv_bss instead.
|
|
|
|
* The RSSI and a timestamp are also supplied. The RSSI data is used
|
|
|
|
* during AP scanning to select a AP to associate with; it can have
|
|
|
|
* any units so long as values have consistent units and higher values
|
|
|
|
* mean ``better signal''. The receive timestamp is currently not used
|
|
|
|
* by the 802.11 layer.
|
|
|
|
*/
|
|
|
|
static int
|
Begin plumbing ieee80211_rx_stats through the receive path.
Smart NICs with firmware (eg wpi, iwn, the new atheros parts, the intel 7260
series, etc) support doing a lot of things in firmware. This includes but
isn't limited to things like scanning, sending probe requests and receiving
probe responses. However, net80211 doesn't know about any of this - it still
drives the whole scan/probe infrastructure itself.
In order to move towards suppoting smart NICs, the receive path needs to
know about the channel/details for each received packet. In at least
the iwn and 7260 firmware (and I believe wpi, but I haven't tried it yet)
it will do the scanning, power-save and off-channel buffering for you -
all you need to do is handle receiving beacons and probe responses on
channels that aren't what you're currently on. However the whole receive
path is peppered with ic->ic_curchan and manual scan/powersave handling.
The beacon parsing code also checks ic->ic_curchan to determine if the
received beacon is on the correct channel or not.[1]
So:
* add freq/ieee values to ieee80211_rx_stats;
* change ieee80211_parse_beacon() to accept the 'current' channel
as an argument;
* modify the iv_input() and iv_recv_mgmt() methods to include the rx_stats;
* add a new method - ieee80211_lookup_channel_rxstats() - that looks up
a channel based on the contents of ieee80211_rx_stats;
* if it exists, use it in the mgmt path to switch the current channel
(which still defaults to ic->ic_curchan) over to something determined
by rx_stats.
This is enough to kick-start scan offload support in the Intel 7260
driver that Rui/I are working on. It also is a good start for scan
offload support for a handful of existing NICs (wpi, iwn, some USB
parts) and it'll very likely dramatically improve stability/performance
there. It's not the whole thing - notably, we don't need to do powersave,
we should not scan all channels, and we should leave probe request sending
to the firmware and not do it ourselves. But, this allows for continued
development on the above features whilst actually having a somewhat
working NIC.
TODO:
* Finish tidying up how the net80211 input path works.
Right now ieee80211_input / ieee80211_input_all act as the top-level
that everything feeds into; it should change so the MIMO input routines
are those and the legacy routines are phased out.
* The band selection should be done by the driver, not by the net80211
layer.
* ieee80211_lookup_channel_rxstats() only determines 11b or 11g channels
for now - this is enough for scanning, but not 100% true in all cases.
If we ever need to handle off-channel scan support for things like
static-40MHz or static-80MHz, or turbo-G, or half/quarter rates,
then we should extend this.
[1] This is a side effect of frequency-hopping and CCK modes - you
can receive beacons when you think you're on a different channel.
In particular, CCK (which is used by the low 11b rates, eg beacons!)
is decodable from adjacent channels - just at a low SNR.
FH is a side effect of having the hardware/firmware do the frequency
hopping - it may pick up beacons transmitted from other FH networks
that are in a different phase of hopping frequencies.
2015-05-25 16:37:41 +00:00
|
|
|
sta_input(struct ieee80211_node *ni, struct mbuf *m,
|
|
|
|
const struct ieee80211_rx_stats *rxs, int rssi, int nf)
|
2008-04-20 20:35:46 +00:00
|
|
|
{
|
|
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
|
|
struct ieee80211com *ic = ni->ni_ic;
|
|
|
|
struct ifnet *ifp = vap->iv_ifp;
|
|
|
|
struct ieee80211_frame *wh;
|
|
|
|
struct ieee80211_key *key;
|
|
|
|
struct ether_header *eh;
|
2010-02-03 10:07:43 +00:00
|
|
|
int hdrspace, need_tap = 1; /* mbuf need to be tapped. */
|
2008-04-20 20:35:46 +00:00
|
|
|
uint8_t dir, type, subtype, qos;
|
|
|
|
uint8_t *bssid;
|
2016-11-19 02:00:24 +00:00
|
|
|
int is_hw_decrypted = 0;
|
|
|
|
int has_decrypted = 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Some devices do hardware decryption all the way through
|
|
|
|
* to pretending the frame wasn't encrypted in the first place.
|
|
|
|
* So, tag it appropriately so it isn't discarded inappropriately.
|
|
|
|
*/
|
|
|
|
if ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_DECRYPTED))
|
|
|
|
is_hw_decrypted = 1;
|
2008-04-20 20:35:46 +00:00
|
|
|
|
2008-09-21 23:00:19 +00:00
|
|
|
if (m->m_flags & M_AMPDU_MPDU) {
|
2008-04-20 20:35:46 +00:00
|
|
|
/*
|
|
|
|
* Fastpath for A-MPDU reorder q resubmission. Frames
|
2008-09-21 23:00:19 +00:00
|
|
|
* w/ M_AMPDU_MPDU marked have already passed through
|
|
|
|
* here but were received out of order and been held on
|
|
|
|
* the reorder queue. When resubmitted they are marked
|
|
|
|
* with the M_AMPDU_MPDU flag and we can bypass most of
|
|
|
|
* the normal processing.
|
2008-04-20 20:35:46 +00:00
|
|
|
*/
|
|
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
|
|
type = IEEE80211_FC0_TYPE_DATA;
|
|
|
|
dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
|
|
|
|
subtype = IEEE80211_FC0_SUBTYPE_QOS;
|
|
|
|
hdrspace = ieee80211_hdrspace(ic, wh); /* XXX optimize? */
|
|
|
|
goto resubmit_ampdu;
|
|
|
|
}
|
|
|
|
|
|
|
|
KASSERT(ni != NULL, ("null node"));
|
|
|
|
ni->ni_inact = ni->ni_inact_reload;
|
|
|
|
|
|
|
|
type = -1; /* undefined */
|
|
|
|
|
|
|
|
if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_min)) {
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
|
|
|
|
ni->ni_macaddr, NULL,
|
|
|
|
"too short (1): len %u", m->m_pkthdr.len);
|
|
|
|
vap->iv_stats.is_rx_tooshort++;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Bit of a cheat here, we use a pointer for a 3-address
|
|
|
|
* frame format but don't reference fields past outside
|
|
|
|
* ieee80211_frame_min w/o first validating the data is
|
|
|
|
* present.
|
|
|
|
*/
|
|
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
|
|
|
|
|
|
if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
|
|
|
|
IEEE80211_FC0_VERSION_0) {
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
|
2009-04-26 21:50:21 +00:00
|
|
|
ni->ni_macaddr, NULL, "wrong version, fc %02x:%02x",
|
|
|
|
wh->i_fc[0], wh->i_fc[1]);
|
2008-04-20 20:35:46 +00:00
|
|
|
vap->iv_stats.is_rx_badversion++;
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
|
|
|
|
dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
|
|
|
|
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
|
|
|
|
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
|
|
|
|
if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
|
|
|
|
bssid = wh->i_addr2;
|
|
|
|
if (!IEEE80211_ADDR_EQ(bssid, ni->ni_bssid)) {
|
|
|
|
/* not interested in */
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT,
|
|
|
|
bssid, NULL, "%s", "not to bss");
|
|
|
|
vap->iv_stats.is_rx_wrongbss++;
|
|
|
|
goto out;
|
|
|
|
}
|
2011-11-08 14:28:33 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Some devices may be in a promiscuous mode
|
|
|
|
* where they receive frames for multiple station
|
|
|
|
* addresses.
|
|
|
|
*
|
|
|
|
* If we receive a data frame that isn't
|
|
|
|
* destined to our VAP MAC, drop it.
|
|
|
|
*
|
|
|
|
* XXX TODO: This is only enforced when not scanning;
|
|
|
|
* XXX it assumes a software-driven scan will put the NIC
|
|
|
|
* XXX into a "no data frames" mode before setting this
|
|
|
|
* XXX flag. Otherwise it may be possible that we'll still
|
|
|
|
* XXX process data frames whilst scanning.
|
|
|
|
*/
|
|
|
|
if ((! IEEE80211_IS_MULTICAST(wh->i_addr1))
|
|
|
|
&& (! IEEE80211_ADDR_EQ(wh->i_addr1, IF_LLADDR(ifp)))) {
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT,
|
|
|
|
bssid, NULL, "not to cur sta: lladdr=%6D, addr1=%6D",
|
|
|
|
IF_LLADDR(ifp), ":", wh->i_addr1, ":");
|
|
|
|
vap->iv_stats.is_rx_wrongbss++;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2008-04-20 20:35:46 +00:00
|
|
|
IEEE80211_RSSI_LPF(ni->ni_avgrssi, rssi);
|
2009-05-20 20:00:40 +00:00
|
|
|
ni->ni_noise = nf;
|
2015-05-12 16:55:50 +00:00
|
|
|
if ( IEEE80211_HAS_SEQ(type, subtype) &&
|
|
|
|
!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
|
2008-04-20 20:35:46 +00:00
|
|
|
uint8_t tid = ieee80211_gettid(wh);
|
|
|
|
if (IEEE80211_QOS_HAS_SEQ(wh) &&
|
|
|
|
TID_TO_WME_AC(tid) >= WME_AC_VI)
|
|
|
|
ic->ic_wme.wme_hipri_traffic++;
|
2017-05-20 00:43:52 +00:00
|
|
|
if (! ieee80211_check_rxseq(ni, wh, bssid, rxs))
|
2008-04-20 20:35:46 +00:00
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (type) {
|
|
|
|
case IEEE80211_FC0_TYPE_DATA:
|
|
|
|
hdrspace = ieee80211_hdrspace(ic, wh);
|
|
|
|
if (m->m_len < hdrspace &&
|
|
|
|
(m = m_pullup(m, hdrspace)) == NULL) {
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
|
|
|
|
ni->ni_macaddr, NULL,
|
|
|
|
"data too short: expecting %u", hdrspace);
|
|
|
|
vap->iv_stats.is_rx_tooshort++;
|
|
|
|
goto out; /* XXX */
|
|
|
|
}
|
|
|
|
/*
|
2008-09-21 23:00:19 +00:00
|
|
|
* Handle A-MPDU re-ordering. If the frame is to be
|
|
|
|
* processed directly then ieee80211_ampdu_reorder
|
2008-04-20 20:35:46 +00:00
|
|
|
* will return 0; otherwise it has consumed the mbuf
|
|
|
|
* and we should do nothing more with it.
|
|
|
|
*/
|
2008-09-21 23:00:19 +00:00
|
|
|
if ((m->m_flags & M_AMPDU) &&
|
2008-04-20 20:35:46 +00:00
|
|
|
(dir == IEEE80211_FC1_DIR_FROMDS ||
|
|
|
|
dir == IEEE80211_FC1_DIR_DSTODS) &&
|
2017-05-20 00:43:52 +00:00
|
|
|
ieee80211_ampdu_reorder(ni, m, rxs) != 0) {
|
2008-04-20 20:35:46 +00:00
|
|
|
m = NULL;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
resubmit_ampdu:
|
|
|
|
if (dir == IEEE80211_FC1_DIR_FROMDS) {
|
|
|
|
if ((ifp->if_flags & IFF_SIMPLEX) &&
|
|
|
|
isfromds_mcastecho(vap, wh)) {
|
|
|
|
/*
|
|
|
|
* In IEEE802.11 network, multicast
|
|
|
|
* packets sent from "me" are broadcast
|
|
|
|
* from the AP; silently discard for
|
|
|
|
* SIMPLEX interface.
|
|
|
|
*/
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
|
|
|
|
wh, "data", "%s", "multicast echo");
|
|
|
|
vap->iv_stats.is_rx_mcastecho++;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
if ((vap->iv_flags & IEEE80211_F_DWDS) &&
|
|
|
|
IEEE80211_IS_MULTICAST(wh->i_addr1)) {
|
|
|
|
/*
|
|
|
|
* DWDS sta's must drop 3-address mcast frames
|
|
|
|
* as they will be sent separately as a 4-addr
|
|
|
|
* frame. Accepting the 3-addr frame will
|
|
|
|
* confuse the bridge into thinking the sending
|
|
|
|
* sta is located at the end of WDS link.
|
|
|
|
*/
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh,
|
|
|
|
"3-address data", "%s", "DWDS enabled");
|
|
|
|
vap->iv_stats.is_rx_mcastecho++;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
} else if (dir == IEEE80211_FC1_DIR_DSTODS) {
|
|
|
|
if ((vap->iv_flags & IEEE80211_F_DWDS) == 0) {
|
|
|
|
IEEE80211_DISCARD(vap,
|
|
|
|
IEEE80211_MSG_INPUT, wh, "4-address data",
|
|
|
|
"%s", "DWDS not enabled");
|
|
|
|
vap->iv_stats.is_rx_wrongdir++;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
if ((ifp->if_flags & IFF_SIMPLEX) &&
|
|
|
|
isdstods_mcastecho(vap, wh)) {
|
|
|
|
/*
|
|
|
|
* In IEEE802.11 network, multicast
|
|
|
|
* packets sent from "me" are broadcast
|
|
|
|
* from the AP; silently discard for
|
|
|
|
* SIMPLEX interface.
|
|
|
|
*/
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh,
|
|
|
|
"4-address data", "%s", "multicast echo");
|
|
|
|
vap->iv_stats.is_rx_mcastecho++;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh,
|
|
|
|
"data", "incorrect dir 0x%x", dir);
|
|
|
|
vap->iv_stats.is_rx_wrongdir++;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2016-11-19 02:00:24 +00:00
|
|
|
/*
|
|
|
|
* Handle privacy requirements for hardware decryption
|
|
|
|
* devices.
|
|
|
|
*
|
|
|
|
* For those devices, a handful of things happen.
|
|
|
|
*
|
|
|
|
* + If IV has been stripped, then we can't run
|
|
|
|
* ieee80211_crypto_decap() - none of the key
|
|
|
|
* + If MIC has been stripped, we can't validate
|
|
|
|
* MIC here.
|
|
|
|
* + If MIC fails, then we need to communicate a
|
|
|
|
* MIC failure up to the stack - but we don't know
|
|
|
|
* which key was used.
|
|
|
|
*/
|
|
|
|
|
2008-04-20 20:35:46 +00:00
|
|
|
/*
|
|
|
|
* Handle privacy requirements. Note that we
|
|
|
|
* must not be preempted from here until after
|
|
|
|
* we (potentially) call ieee80211_crypto_demic;
|
|
|
|
* otherwise we may violate assumptions in the
|
|
|
|
* crypto cipher modules used to do delayed update
|
|
|
|
* of replay sequence numbers.
|
|
|
|
*/
|
2016-11-19 02:00:24 +00:00
|
|
|
if (is_hw_decrypted || wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
|
2008-04-20 20:35:46 +00:00
|
|
|
if ((vap->iv_flags & IEEE80211_F_PRIVACY) == 0) {
|
|
|
|
/*
|
|
|
|
* Discard encrypted frames when privacy is off.
|
|
|
|
*/
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
|
|
|
|
wh, "WEP", "%s", "PRIVACY off");
|
|
|
|
vap->iv_stats.is_rx_noprivacy++;
|
|
|
|
IEEE80211_NODE_STAT(ni, rx_noprivacy);
|
|
|
|
goto out;
|
|
|
|
}
|
2016-11-19 02:00:24 +00:00
|
|
|
if (ieee80211_crypto_decap(ni, m, hdrspace, &key) == 0) {
|
2008-04-20 20:35:46 +00:00
|
|
|
/* NB: stats+msgs handled in crypto_decap */
|
|
|
|
IEEE80211_NODE_STAT(ni, rx_wepfail);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
wh = mtod(m, struct ieee80211_frame *);
|
2014-01-08 08:06:56 +00:00
|
|
|
wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
|
2016-11-19 02:00:24 +00:00
|
|
|
has_decrypted = 1;
|
2008-04-20 20:35:46 +00:00
|
|
|
} else {
|
|
|
|
/* XXX M_WEP and IEEE80211_F_PRIVACY */
|
|
|
|
key = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Save QoS bits for use below--before we strip the header.
|
|
|
|
*/
|
2019-02-10 23:58:56 +00:00
|
|
|
if (subtype == IEEE80211_FC0_SUBTYPE_QOS)
|
|
|
|
qos = ieee80211_getqos(wh)[0];
|
|
|
|
else
|
2008-04-20 20:35:46 +00:00
|
|
|
qos = 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Next up, any fragmentation.
|
|
|
|
*/
|
|
|
|
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
|
|
|
|
m = ieee80211_defrag(ni, m, hdrspace);
|
|
|
|
if (m == NULL) {
|
|
|
|
/* Fragment dropped or frame not complete yet */
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
wh = NULL; /* no longer valid, catch any uses */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Next strip any MSDU crypto bits.
|
2016-11-19 02:00:24 +00:00
|
|
|
*
|
|
|
|
* Note: we can't do MIC stripping/verification if the
|
|
|
|
* upper layer has stripped it. We have to check MIC
|
|
|
|
* ourselves. So, key may be NULL, but we have to check
|
|
|
|
* the RX status.
|
2008-04-20 20:35:46 +00:00
|
|
|
*/
|
2016-11-19 02:00:24 +00:00
|
|
|
if (!ieee80211_crypto_demic(vap, key, m, 0)) {
|
2008-04-20 20:35:46 +00:00
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT,
|
|
|
|
ni->ni_macaddr, "data", "%s", "demic error");
|
|
|
|
vap->iv_stats.is_rx_demicfail++;
|
|
|
|
IEEE80211_NODE_STAT(ni, rx_demicfail);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* copy to listener after decrypt */
|
2009-05-20 20:00:40 +00:00
|
|
|
if (ieee80211_radiotap_active_vap(vap))
|
2010-01-25 12:23:51 +00:00
|
|
|
ieee80211_radiotap_rx(vap, m);
|
2008-04-20 20:35:46 +00:00
|
|
|
need_tap = 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Finally, strip the 802.11 header.
|
|
|
|
*/
|
|
|
|
m = ieee80211_decap(vap, m, hdrspace);
|
|
|
|
if (m == NULL) {
|
|
|
|
/* XXX mask bit to check for both */
|
|
|
|
/* don't count Null data frames as errors */
|
|
|
|
if (subtype == IEEE80211_FC0_SUBTYPE_NODATA ||
|
|
|
|
subtype == IEEE80211_FC0_SUBTYPE_QOS_NULL)
|
|
|
|
goto out;
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT,
|
|
|
|
ni->ni_macaddr, "data", "%s", "decap error");
|
|
|
|
vap->iv_stats.is_rx_decap++;
|
|
|
|
IEEE80211_NODE_STAT(ni, rx_decap);
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
eh = mtod(m, struct ether_header *);
|
|
|
|
if (!ieee80211_node_is_authorized(ni)) {
|
|
|
|
/*
|
|
|
|
* Deny any non-PAE frames received prior to
|
|
|
|
* authorization. For open/shared-key
|
|
|
|
* authentication the port is mark authorized
|
|
|
|
* after authentication completes. For 802.1x
|
|
|
|
* the port is not marked authorized by the
|
|
|
|
* authenticator until the handshake has completed.
|
|
|
|
*/
|
|
|
|
if (eh->ether_type != htons(ETHERTYPE_PAE)) {
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT,
|
|
|
|
eh->ether_shost, "data",
|
|
|
|
"unauthorized port: ether type 0x%x len %u",
|
|
|
|
eh->ether_type, m->m_pkthdr.len);
|
|
|
|
vap->iv_stats.is_rx_unauth++;
|
|
|
|
IEEE80211_NODE_STAT(ni, rx_unauth);
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* When denying unencrypted frames, discard
|
|
|
|
* any non-PAE frames received without encryption.
|
|
|
|
*/
|
|
|
|
if ((vap->iv_flags & IEEE80211_F_DROPUNENC) &&
|
2016-11-19 02:00:24 +00:00
|
|
|
((has_decrypted == 0) && (m->m_flags & M_WEP) == 0) &&
|
|
|
|
(is_hw_decrypted == 0) &&
|
2008-04-20 20:35:46 +00:00
|
|
|
eh->ether_type != htons(ETHERTYPE_PAE)) {
|
|
|
|
/*
|
|
|
|
* Drop unencrypted frames.
|
|
|
|
*/
|
|
|
|
vap->iv_stats.is_rx_unencrypted++;
|
|
|
|
IEEE80211_NODE_STAT(ni, rx_unencrypted);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* XXX require HT? */
|
|
|
|
if (qos & IEEE80211_QOS_AMSDU) {
|
|
|
|
m = ieee80211_decap_amsdu(ni, m);
|
|
|
|
if (m == NULL)
|
|
|
|
return IEEE80211_FC0_TYPE_DATA;
|
2009-03-24 20:39:08 +00:00
|
|
|
} else {
|
|
|
|
#ifdef IEEE80211_SUPPORT_SUPERG
|
|
|
|
m = ieee80211_decap_fastframe(vap, ni, m);
|
|
|
|
if (m == NULL)
|
2008-04-20 20:35:46 +00:00
|
|
|
return IEEE80211_FC0_TYPE_DATA;
|
2009-03-24 20:39:08 +00:00
|
|
|
#endif
|
2008-04-20 20:35:46 +00:00
|
|
|
}
|
|
|
|
ieee80211_deliver_data(vap, ni, m);
|
|
|
|
return IEEE80211_FC0_TYPE_DATA;
|
|
|
|
|
|
|
|
case IEEE80211_FC0_TYPE_MGT:
|
|
|
|
vap->iv_stats.is_rx_mgmt++;
|
|
|
|
IEEE80211_NODE_STAT(ni, rx_mgmt);
|
|
|
|
if (dir != IEEE80211_FC1_DIR_NODS) {
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
|
|
|
|
wh, "data", "incorrect dir 0x%x", dir);
|
|
|
|
vap->iv_stats.is_rx_wrongdir++;
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
if (m->m_pkthdr.len < sizeof(struct ieee80211_frame)) {
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
|
|
|
|
ni->ni_macaddr, "mgt", "too short: len %u",
|
|
|
|
m->m_pkthdr.len);
|
|
|
|
vap->iv_stats.is_rx_tooshort++;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
#ifdef IEEE80211_DEBUG
|
|
|
|
if ((ieee80211_msg_debug(vap) && doprint(vap, subtype)) ||
|
|
|
|
ieee80211_msg_dumppkts(vap)) {
|
|
|
|
if_printf(ifp, "received %s from %s rssi %d\n",
|
2016-04-20 21:15:55 +00:00
|
|
|
ieee80211_mgt_subtype_name(subtype),
|
2008-04-20 20:35:46 +00:00
|
|
|
ether_sprintf(wh->i_addr2), rssi);
|
|
|
|
}
|
|
|
|
#endif
|
2016-11-19 02:00:24 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Note: See above for hardware offload privacy requirements.
|
|
|
|
* It also applies here.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Again, having encrypted flag set check would be good, but
|
|
|
|
* then we have to also handle crypto_decap() like above.
|
|
|
|
*/
|
2014-01-08 08:06:56 +00:00
|
|
|
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
|
2008-04-20 20:35:46 +00:00
|
|
|
if (subtype != IEEE80211_FC0_SUBTYPE_AUTH) {
|
|
|
|
/*
|
|
|
|
* Only shared key auth frames with a challenge
|
|
|
|
* should be encrypted, discard all others.
|
|
|
|
*/
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
|
2016-04-20 21:15:55 +00:00
|
|
|
wh, ieee80211_mgt_subtype_name(subtype),
|
2008-04-20 20:35:46 +00:00
|
|
|
"%s", "WEP set but not permitted");
|
|
|
|
vap->iv_stats.is_rx_mgtdiscard++; /* XXX */
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
if ((vap->iv_flags & IEEE80211_F_PRIVACY) == 0) {
|
|
|
|
/*
|
|
|
|
* Discard encrypted frames when privacy is off.
|
|
|
|
*/
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
|
|
|
|
wh, "mgt", "%s", "WEP set but PRIVACY off");
|
|
|
|
vap->iv_stats.is_rx_noprivacy++;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
hdrspace = ieee80211_hdrspace(ic, wh);
|
2016-11-19 02:00:24 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Again, if IV/MIC was stripped, then this whole
|
|
|
|
* setup will fail. That's going to need some poking.
|
|
|
|
*/
|
|
|
|
if (ieee80211_crypto_decap(ni, m, hdrspace, &key) == 0) {
|
2008-04-20 20:35:46 +00:00
|
|
|
/* NB: stats+msgs handled in crypto_decap */
|
|
|
|
goto out;
|
|
|
|
}
|
2016-11-19 02:00:24 +00:00
|
|
|
has_decrypted = 1;
|
2008-04-20 20:35:46 +00:00
|
|
|
wh = mtod(m, struct ieee80211_frame *);
|
2014-01-08 08:06:56 +00:00
|
|
|
wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
|
2008-04-20 20:35:46 +00:00
|
|
|
}
|
Begin plumbing ieee80211_rx_stats through the receive path.
Smart NICs with firmware (eg wpi, iwn, the new atheros parts, the intel 7260
series, etc) support doing a lot of things in firmware. This includes but
isn't limited to things like scanning, sending probe requests and receiving
probe responses. However, net80211 doesn't know about any of this - it still
drives the whole scan/probe infrastructure itself.
In order to move towards suppoting smart NICs, the receive path needs to
know about the channel/details for each received packet. In at least
the iwn and 7260 firmware (and I believe wpi, but I haven't tried it yet)
it will do the scanning, power-save and off-channel buffering for you -
all you need to do is handle receiving beacons and probe responses on
channels that aren't what you're currently on. However the whole receive
path is peppered with ic->ic_curchan and manual scan/powersave handling.
The beacon parsing code also checks ic->ic_curchan to determine if the
received beacon is on the correct channel or not.[1]
So:
* add freq/ieee values to ieee80211_rx_stats;
* change ieee80211_parse_beacon() to accept the 'current' channel
as an argument;
* modify the iv_input() and iv_recv_mgmt() methods to include the rx_stats;
* add a new method - ieee80211_lookup_channel_rxstats() - that looks up
a channel based on the contents of ieee80211_rx_stats;
* if it exists, use it in the mgmt path to switch the current channel
(which still defaults to ic->ic_curchan) over to something determined
by rx_stats.
This is enough to kick-start scan offload support in the Intel 7260
driver that Rui/I are working on. It also is a good start for scan
offload support for a handful of existing NICs (wpi, iwn, some USB
parts) and it'll very likely dramatically improve stability/performance
there. It's not the whole thing - notably, we don't need to do powersave,
we should not scan all channels, and we should leave probe request sending
to the firmware and not do it ourselves. But, this allows for continued
development on the above features whilst actually having a somewhat
working NIC.
TODO:
* Finish tidying up how the net80211 input path works.
Right now ieee80211_input / ieee80211_input_all act as the top-level
that everything feeds into; it should change so the MIMO input routines
are those and the legacy routines are phased out.
* The band selection should be done by the driver, not by the net80211
layer.
* ieee80211_lookup_channel_rxstats() only determines 11b or 11g channels
for now - this is enough for scanning, but not 100% true in all cases.
If we ever need to handle off-channel scan support for things like
static-40MHz or static-80MHz, or turbo-G, or half/quarter rates,
then we should extend this.
[1] This is a side effect of frequency-hopping and CCK modes - you
can receive beacons when you think you're on a different channel.
In particular, CCK (which is used by the low 11b rates, eg beacons!)
is decodable from adjacent channels - just at a low SNR.
FH is a side effect of having the hardware/firmware do the frequency
hopping - it may pick up beacons transmitted from other FH networks
that are in a different phase of hopping frequencies.
2015-05-25 16:37:41 +00:00
|
|
|
vap->iv_recv_mgmt(ni, m, subtype, rxs, rssi, nf);
|
2009-04-26 21:03:29 +00:00
|
|
|
goto out;
|
2008-04-20 20:35:46 +00:00
|
|
|
|
|
|
|
case IEEE80211_FC0_TYPE_CTL:
|
|
|
|
vap->iv_stats.is_rx_ctl++;
|
|
|
|
IEEE80211_NODE_STAT(ni, rx_ctrl);
|
2009-04-26 21:46:04 +00:00
|
|
|
vap->iv_recv_ctl(ni, m, subtype);
|
2008-04-20 20:35:46 +00:00
|
|
|
goto out;
|
2009-04-26 22:44:23 +00:00
|
|
|
|
2008-04-20 20:35:46 +00:00
|
|
|
default:
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
|
|
|
|
wh, NULL, "bad frame type 0x%x", type);
|
|
|
|
/* should not come here */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
err:
|
2014-09-19 09:20:55 +00:00
|
|
|
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
|
2008-04-20 20:35:46 +00:00
|
|
|
out:
|
|
|
|
if (m != NULL) {
|
2009-05-25 16:38:47 +00:00
|
|
|
if (need_tap && ieee80211_radiotap_active_vap(vap))
|
2009-05-20 20:00:40 +00:00
|
|
|
ieee80211_radiotap_rx(vap, m);
|
2008-04-20 20:35:46 +00:00
|
|
|
m_freem(m);
|
|
|
|
}
|
|
|
|
return type;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
sta_auth_open(struct ieee80211_node *ni, struct ieee80211_frame *wh,
|
2009-05-20 20:00:40 +00:00
|
|
|
int rssi, int nf, uint16_t seq, uint16_t status)
|
2008-04-20 20:35:46 +00:00
|
|
|
{
|
|
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
|
|
|
|
|
|
if (ni->ni_authmode == IEEE80211_AUTH_SHARED) {
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH,
|
|
|
|
ni->ni_macaddr, "open auth",
|
|
|
|
"bad sta auth mode %u", ni->ni_authmode);
|
|
|
|
vap->iv_stats.is_rx_bad_auth++; /* XXX */
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (vap->iv_state != IEEE80211_S_AUTH ||
|
|
|
|
seq != IEEE80211_AUTH_OPEN_RESPONSE) {
|
|
|
|
vap->iv_stats.is_rx_bad_auth++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (status != 0) {
|
|
|
|
IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_AUTH,
|
|
|
|
ni, "open auth failed (reason %d)", status);
|
|
|
|
vap->iv_stats.is_rx_auth_fail++;
|
|
|
|
vap->iv_stats.is_rx_authfail_code = status;
|
|
|
|
ieee80211_new_state(vap, IEEE80211_S_SCAN,
|
|
|
|
IEEE80211_SCAN_FAIL_STATUS);
|
|
|
|
} else
|
|
|
|
ieee80211_new_state(vap, IEEE80211_S_ASSOC, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
sta_auth_shared(struct ieee80211_node *ni, struct ieee80211_frame *wh,
|
2009-05-20 20:00:40 +00:00
|
|
|
uint8_t *frm, uint8_t *efrm, int rssi, int nf,
|
2008-04-20 20:35:46 +00:00
|
|
|
uint16_t seq, uint16_t status)
|
|
|
|
{
|
|
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
|
|
uint8_t *challenge;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* NB: this can happen as we allow pre-shared key
|
|
|
|
* authentication to be enabled w/o wep being turned
|
|
|
|
* on so that configuration of these can be done
|
|
|
|
* in any order. It may be better to enforce the
|
|
|
|
* ordering in which case this check would just be
|
|
|
|
* for sanity/consistency.
|
|
|
|
*/
|
|
|
|
if ((vap->iv_flags & IEEE80211_F_PRIVACY) == 0) {
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH,
|
|
|
|
ni->ni_macaddr, "shared key auth",
|
|
|
|
"%s", " PRIVACY is disabled");
|
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Pre-shared key authentication is evil; accept
|
|
|
|
* it only if explicitly configured (it is supported
|
|
|
|
* mainly for compatibility with clients like OS X).
|
|
|
|
*/
|
|
|
|
if (ni->ni_authmode != IEEE80211_AUTH_AUTO &&
|
|
|
|
ni->ni_authmode != IEEE80211_AUTH_SHARED) {
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH,
|
|
|
|
ni->ni_macaddr, "shared key auth",
|
|
|
|
"bad sta auth mode %u", ni->ni_authmode);
|
|
|
|
vap->iv_stats.is_rx_bad_auth++; /* XXX maybe a unique error? */
|
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
|
|
|
|
challenge = NULL;
|
|
|
|
if (frm + 1 < efrm) {
|
|
|
|
if ((frm[1] + 2) > (efrm - frm)) {
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH,
|
|
|
|
ni->ni_macaddr, "shared key auth",
|
|
|
|
"ie %d/%d too long",
|
|
|
|
frm[0], (frm[1] + 2) - (efrm - frm));
|
|
|
|
vap->iv_stats.is_rx_bad_auth++;
|
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
if (*frm == IEEE80211_ELEMID_CHALLENGE)
|
|
|
|
challenge = frm;
|
|
|
|
frm += frm[1] + 2;
|
|
|
|
}
|
|
|
|
switch (seq) {
|
|
|
|
case IEEE80211_AUTH_SHARED_CHALLENGE:
|
|
|
|
case IEEE80211_AUTH_SHARED_RESPONSE:
|
|
|
|
if (challenge == NULL) {
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH,
|
|
|
|
ni->ni_macaddr, "shared key auth",
|
|
|
|
"%s", "no challenge");
|
|
|
|
vap->iv_stats.is_rx_bad_auth++;
|
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
if (challenge[1] != IEEE80211_CHALLENGE_LEN) {
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH,
|
|
|
|
ni->ni_macaddr, "shared key auth",
|
|
|
|
"bad challenge len %d", challenge[1]);
|
|
|
|
vap->iv_stats.is_rx_bad_auth++;
|
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (vap->iv_state != IEEE80211_S_AUTH)
|
|
|
|
return;
|
|
|
|
switch (seq) {
|
|
|
|
case IEEE80211_AUTH_SHARED_PASS:
|
|
|
|
if (ni->ni_challenge != NULL) {
|
2015-05-25 19:18:16 +00:00
|
|
|
IEEE80211_FREE(ni->ni_challenge, M_80211_NODE);
|
2008-04-20 20:35:46 +00:00
|
|
|
ni->ni_challenge = NULL;
|
|
|
|
}
|
|
|
|
if (status != 0) {
|
|
|
|
IEEE80211_NOTE_FRAME(vap,
|
|
|
|
IEEE80211_MSG_DEBUG | IEEE80211_MSG_AUTH, wh,
|
|
|
|
"shared key auth failed (reason %d)", status);
|
|
|
|
vap->iv_stats.is_rx_auth_fail++;
|
|
|
|
vap->iv_stats.is_rx_authfail_code = status;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
ieee80211_new_state(vap, IEEE80211_S_ASSOC, 0);
|
|
|
|
break;
|
|
|
|
case IEEE80211_AUTH_SHARED_CHALLENGE:
|
|
|
|
if (!ieee80211_alloc_challenge(ni))
|
|
|
|
return;
|
|
|
|
/* XXX could optimize by passing recvd challenge */
|
|
|
|
memcpy(ni->ni_challenge, &challenge[2], challenge[1]);
|
|
|
|
IEEE80211_SEND_MGMT(ni,
|
|
|
|
IEEE80211_FC0_SUBTYPE_AUTH, seq + 1);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_AUTH,
|
|
|
|
wh, "shared key auth", "bad seq %d", seq);
|
|
|
|
vap->iv_stats.is_rx_bad_auth++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
bad:
|
|
|
|
/*
|
|
|
|
* Kick the state machine. This short-circuits
|
|
|
|
* using the mgt frame timeout to trigger the
|
|
|
|
* state transition.
|
|
|
|
*/
|
|
|
|
if (vap->iv_state == IEEE80211_S_AUTH)
|
|
|
|
ieee80211_new_state(vap, IEEE80211_S_SCAN,
|
|
|
|
IEEE80211_SCAN_FAIL_STATUS);
|
|
|
|
}
|
|
|
|
|
2012-12-09 22:56:29 +00:00
|
|
|
int
|
2008-04-20 20:35:46 +00:00
|
|
|
ieee80211_parse_wmeparams(struct ieee80211vap *vap, uint8_t *frm,
|
|
|
|
const struct ieee80211_frame *wh)
|
|
|
|
{
|
|
|
|
#define MS(_v, _f) (((_v) & _f) >> _f##_S)
|
|
|
|
struct ieee80211_wme_state *wme = &vap->iv_ic->ic_wme;
|
|
|
|
u_int len = frm[1], qosinfo;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if (len < sizeof(struct ieee80211_wme_param)-2) {
|
|
|
|
IEEE80211_DISCARD_IE(vap,
|
|
|
|
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WME,
|
|
|
|
wh, "WME", "too short, len %u", len);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
qosinfo = frm[__offsetof(struct ieee80211_wme_param, param_qosInfo)];
|
|
|
|
qosinfo &= WME_QOSINFO_COUNT;
|
|
|
|
/* XXX do proper check for wraparound */
|
|
|
|
if (qosinfo == wme->wme_wmeChanParams.cap_info)
|
|
|
|
return 0;
|
|
|
|
frm += __offsetof(struct ieee80211_wme_param, params_acParams);
|
|
|
|
for (i = 0; i < WME_NUM_AC; i++) {
|
|
|
|
struct wmeParams *wmep =
|
|
|
|
&wme->wme_wmeChanParams.cap_wmeParams[i];
|
|
|
|
/* NB: ACI not used */
|
|
|
|
wmep->wmep_acm = MS(frm[0], WME_PARAM_ACM);
|
|
|
|
wmep->wmep_aifsn = MS(frm[0], WME_PARAM_AIFSN);
|
|
|
|
wmep->wmep_logcwmin = MS(frm[1], WME_PARAM_LOGCWMIN);
|
|
|
|
wmep->wmep_logcwmax = MS(frm[1], WME_PARAM_LOGCWMAX);
|
2016-04-20 18:29:30 +00:00
|
|
|
wmep->wmep_txopLimit = le16dec(frm+2);
|
2008-04-20 20:35:46 +00:00
|
|
|
frm += 4;
|
|
|
|
}
|
|
|
|
wme->wme_wmeChanParams.cap_info = qosinfo;
|
|
|
|
return 1;
|
|
|
|
#undef MS
|
|
|
|
}
|
|
|
|
|
2009-06-04 15:57:38 +00:00
|
|
|
/*
|
|
|
|
* Process 11h Channel Switch Announcement (CSA) ie. If this
|
|
|
|
* is the first CSA then initiate the switch. Otherwise we
|
|
|
|
* track state and trigger completion and/or cancel of the switch.
|
|
|
|
* XXX should be public for IBSS use
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
ieee80211_parse_csaparams(struct ieee80211vap *vap, uint8_t *frm,
|
|
|
|
const struct ieee80211_frame *wh)
|
|
|
|
{
|
|
|
|
struct ieee80211com *ic = vap->iv_ic;
|
|
|
|
const struct ieee80211_csa_ie *csa =
|
|
|
|
(const struct ieee80211_csa_ie *) frm;
|
|
|
|
|
|
|
|
KASSERT(vap->iv_state >= IEEE80211_S_RUN,
|
|
|
|
("state %s", ieee80211_state_name[vap->iv_state]));
|
|
|
|
|
|
|
|
if (csa->csa_mode > 1) {
|
|
|
|
IEEE80211_DISCARD_IE(vap,
|
|
|
|
IEEE80211_MSG_ELEMID | IEEE80211_MSG_DOTH,
|
|
|
|
wh, "CSA", "invalid mode %u", csa->csa_mode);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
IEEE80211_LOCK(ic);
|
|
|
|
if ((ic->ic_flags & IEEE80211_F_CSAPENDING) == 0) {
|
|
|
|
/*
|
|
|
|
* Convert the channel number to a channel reference. We
|
|
|
|
* try first to preserve turbo attribute of the current
|
|
|
|
* channel then fallback. Note this will not work if the
|
|
|
|
* CSA specifies a channel that requires a band switch (e.g.
|
|
|
|
* 11a => 11g). This is intentional as 11h is defined only
|
|
|
|
* for 5GHz/11a and because the switch does not involve a
|
|
|
|
* reassociation, protocol state (capabilities, negotated
|
|
|
|
* rates, etc) may/will be wrong.
|
|
|
|
*/
|
|
|
|
struct ieee80211_channel *c =
|
|
|
|
ieee80211_find_channel_byieee(ic, csa->csa_newchan,
|
|
|
|
(ic->ic_bsschan->ic_flags & IEEE80211_CHAN_ALLTURBO));
|
|
|
|
if (c == NULL) {
|
|
|
|
c = ieee80211_find_channel_byieee(ic,
|
|
|
|
csa->csa_newchan,
|
|
|
|
(ic->ic_bsschan->ic_flags & IEEE80211_CHAN_ALL));
|
|
|
|
if (c == NULL) {
|
|
|
|
IEEE80211_DISCARD_IE(vap,
|
|
|
|
IEEE80211_MSG_ELEMID | IEEE80211_MSG_DOTH,
|
|
|
|
wh, "CSA", "invalid channel %u",
|
|
|
|
csa->csa_newchan);
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#if IEEE80211_CSA_COUNT_MIN > 0
|
|
|
|
if (csa->csa_count < IEEE80211_CSA_COUNT_MIN) {
|
|
|
|
/*
|
|
|
|
* Require at least IEEE80211_CSA_COUNT_MIN count to
|
|
|
|
* reduce the risk of being redirected by a fabricated
|
|
|
|
* CSA. If a valid CSA is dropped we'll still get a
|
|
|
|
* beacon miss when the AP leaves the channel so we'll
|
|
|
|
* eventually follow to the new channel.
|
|
|
|
*
|
|
|
|
* NOTE: this violates the 11h spec that states that
|
|
|
|
* count may be any value and if 0 then a switch
|
|
|
|
* should happen asap.
|
|
|
|
*/
|
|
|
|
IEEE80211_DISCARD_IE(vap,
|
|
|
|
IEEE80211_MSG_ELEMID | IEEE80211_MSG_DOTH,
|
|
|
|
wh, "CSA", "count %u too small, must be >= %u",
|
|
|
|
csa->csa_count, IEEE80211_CSA_COUNT_MIN);
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
ieee80211_csa_startswitch(ic, c, csa->csa_mode, csa->csa_count);
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* Validate this ie against the initial CSA. We require
|
|
|
|
* mode and channel not change and the count must be
|
|
|
|
* monotonically decreasing. This may be pointless and
|
|
|
|
* canceling the switch as a result may be too paranoid but
|
|
|
|
* in the worst case if we drop out of CSA because of this
|
|
|
|
* and the AP does move then we'll just end up taking a
|
|
|
|
* beacon miss and scan to find the AP.
|
|
|
|
*
|
|
|
|
* XXX may want <= on count as we also process ProbeResp
|
|
|
|
* frames and those may come in w/ the same count as the
|
|
|
|
* previous beacon; but doing so leaves us open to a stuck
|
|
|
|
* count until we add a dead-man timer
|
|
|
|
*/
|
|
|
|
if (!(csa->csa_count < ic->ic_csa_count &&
|
|
|
|
csa->csa_mode == ic->ic_csa_mode &&
|
|
|
|
csa->csa_newchan == ieee80211_chan2ieee(ic, ic->ic_csa_newchan))) {
|
|
|
|
IEEE80211_NOTE_FRAME(vap, IEEE80211_MSG_DOTH, wh,
|
|
|
|
"CSA ie mismatch, initial ie <%d,%d,%d>, "
|
|
|
|
"this ie <%d,%d,%d>", ic->ic_csa_mode,
|
|
|
|
ic->ic_csa_newchan, ic->ic_csa_count,
|
|
|
|
csa->csa_mode, csa->csa_newchan, csa->csa_count);
|
|
|
|
ieee80211_csa_cancelswitch(ic);
|
|
|
|
} else {
|
|
|
|
if (csa->csa_count <= 1)
|
|
|
|
ieee80211_csa_completeswitch(ic);
|
|
|
|
else
|
|
|
|
ic->ic_csa_count = csa->csa_count;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
done:
|
|
|
|
IEEE80211_UNLOCK(ic);
|
|
|
|
}
|
|
|
|
|
2008-04-20 20:35:46 +00:00
|
|
|
/*
|
|
|
|
* Return non-zero if a background scan may be continued:
|
|
|
|
* o bg scan is active
|
|
|
|
* o no channel switch is pending
|
|
|
|
* o there has not been any traffic recently
|
2016-11-17 21:52:00 +00:00
|
|
|
* o no full-offload scan support (no need for explicitly continuing scan then)
|
2008-04-20 20:35:46 +00:00
|
|
|
*
|
|
|
|
* Note we do not check if there is an administrative enable;
|
|
|
|
* this is only done to start the scan. We assume that any
|
|
|
|
* change in state will be accompanied by a request to cancel
|
|
|
|
* active scans which will otherwise cause this test to fail.
|
|
|
|
*/
|
|
|
|
static __inline int
|
|
|
|
contbgscan(struct ieee80211vap *vap)
|
|
|
|
{
|
|
|
|
struct ieee80211com *ic = vap->iv_ic;
|
|
|
|
|
|
|
|
return ((ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) &&
|
|
|
|
(ic->ic_flags & IEEE80211_F_CSAPENDING) == 0 &&
|
2016-11-17 21:52:00 +00:00
|
|
|
!(vap->iv_flags_ext & IEEE80211_FEXT_SCAN_OFFLOAD) &&
|
2008-04-20 20:35:46 +00:00
|
|
|
vap->iv_state == IEEE80211_S_RUN && /* XXX? */
|
2016-03-30 00:44:10 +00:00
|
|
|
ieee80211_time_after(ticks, ic->ic_lastdata + vap->iv_bgscanidle));
|
2008-04-20 20:35:46 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Return non-zero if a backgrond scan may be started:
|
|
|
|
* o bg scanning is administratively enabled
|
|
|
|
* o no channel switch is pending
|
|
|
|
* o we are not boosted on a dynamic turbo channel
|
|
|
|
* o there has not been a scan recently
|
2016-11-17 21:52:00 +00:00
|
|
|
* o there has not been any traffic recently (don't check if full-offload scan)
|
2008-04-20 20:35:46 +00:00
|
|
|
*/
|
|
|
|
static __inline int
|
|
|
|
startbgscan(struct ieee80211vap *vap)
|
|
|
|
{
|
|
|
|
struct ieee80211com *ic = vap->iv_ic;
|
|
|
|
|
|
|
|
return ((vap->iv_flags & IEEE80211_F_BGSCAN) &&
|
|
|
|
(ic->ic_flags & IEEE80211_F_CSAPENDING) == 0 &&
|
2009-03-24 20:39:08 +00:00
|
|
|
#ifdef IEEE80211_SUPPORT_SUPERG
|
2008-04-20 20:35:46 +00:00
|
|
|
!IEEE80211_IS_CHAN_DTURBO(ic->ic_curchan) &&
|
2009-03-24 20:39:08 +00:00
|
|
|
#endif
|
2016-03-30 00:44:10 +00:00
|
|
|
ieee80211_time_after(ticks, ic->ic_lastscan + vap->iv_bgscanintvl) &&
|
2016-11-17 21:52:00 +00:00
|
|
|
((vap->iv_flags_ext & IEEE80211_FEXT_SCAN_OFFLOAD) ||
|
|
|
|
ieee80211_time_after(ticks, ic->ic_lastdata + vap->iv_bgscanidle)));
|
2008-04-20 20:35:46 +00:00
|
|
|
}
|
|
|
|
|
2017-02-09 04:07:30 +00:00
|
|
|
#ifdef notyet
|
|
|
|
/*
|
|
|
|
* Compare two quiet IEs and return if they are equivalent.
|
|
|
|
*
|
|
|
|
* The tbttcount isnt checked - that's not part of the configuration.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
compare_quiet_ie(const struct ieee80211_quiet_ie *q1,
|
|
|
|
const struct ieee80211_quiet_ie *q2)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (q1->period != q2->period)
|
|
|
|
return (0);
|
|
|
|
if (le16dec(&q1->duration) != le16dec(&q2->duration))
|
|
|
|
return (0);
|
|
|
|
if (le16dec(&q1->offset) != le16dec(&q2->offset))
|
|
|
|
return (0);
|
|
|
|
return (1);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2008-04-20 20:35:46 +00:00
|
|
|
static void
|
Begin plumbing ieee80211_rx_stats through the receive path.
Smart NICs with firmware (eg wpi, iwn, the new atheros parts, the intel 7260
series, etc) support doing a lot of things in firmware. This includes but
isn't limited to things like scanning, sending probe requests and receiving
probe responses. However, net80211 doesn't know about any of this - it still
drives the whole scan/probe infrastructure itself.
In order to move towards suppoting smart NICs, the receive path needs to
know about the channel/details for each received packet. In at least
the iwn and 7260 firmware (and I believe wpi, but I haven't tried it yet)
it will do the scanning, power-save and off-channel buffering for you -
all you need to do is handle receiving beacons and probe responses on
channels that aren't what you're currently on. However the whole receive
path is peppered with ic->ic_curchan and manual scan/powersave handling.
The beacon parsing code also checks ic->ic_curchan to determine if the
received beacon is on the correct channel or not.[1]
So:
* add freq/ieee values to ieee80211_rx_stats;
* change ieee80211_parse_beacon() to accept the 'current' channel
as an argument;
* modify the iv_input() and iv_recv_mgmt() methods to include the rx_stats;
* add a new method - ieee80211_lookup_channel_rxstats() - that looks up
a channel based on the contents of ieee80211_rx_stats;
* if it exists, use it in the mgmt path to switch the current channel
(which still defaults to ic->ic_curchan) over to something determined
by rx_stats.
This is enough to kick-start scan offload support in the Intel 7260
driver that Rui/I are working on. It also is a good start for scan
offload support for a handful of existing NICs (wpi, iwn, some USB
parts) and it'll very likely dramatically improve stability/performance
there. It's not the whole thing - notably, we don't need to do powersave,
we should not scan all channels, and we should leave probe request sending
to the firmware and not do it ourselves. But, this allows for continued
development on the above features whilst actually having a somewhat
working NIC.
TODO:
* Finish tidying up how the net80211 input path works.
Right now ieee80211_input / ieee80211_input_all act as the top-level
that everything feeds into; it should change so the MIMO input routines
are those and the legacy routines are phased out.
* The band selection should be done by the driver, not by the net80211
layer.
* ieee80211_lookup_channel_rxstats() only determines 11b or 11g channels
for now - this is enough for scanning, but not 100% true in all cases.
If we ever need to handle off-channel scan support for things like
static-40MHz or static-80MHz, or turbo-G, or half/quarter rates,
then we should extend this.
[1] This is a side effect of frequency-hopping and CCK modes - you
can receive beacons when you think you're on a different channel.
In particular, CCK (which is used by the low 11b rates, eg beacons!)
is decodable from adjacent channels - just at a low SNR.
FH is a side effect of having the hardware/firmware do the frequency
hopping - it may pick up beacons transmitted from other FH networks
that are in a different phase of hopping frequencies.
2015-05-25 16:37:41 +00:00
|
|
|
sta_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m0, int subtype,
|
|
|
|
const struct ieee80211_rx_stats *rxs,
|
|
|
|
int rssi, int nf)
|
2008-04-20 20:35:46 +00:00
|
|
|
{
|
|
|
|
#define ISREASSOC(_st) ((_st) == IEEE80211_FC0_SUBTYPE_REASSOC_RESP)
|
|
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
|
|
struct ieee80211com *ic = ni->ni_ic;
|
Begin plumbing ieee80211_rx_stats through the receive path.
Smart NICs with firmware (eg wpi, iwn, the new atheros parts, the intel 7260
series, etc) support doing a lot of things in firmware. This includes but
isn't limited to things like scanning, sending probe requests and receiving
probe responses. However, net80211 doesn't know about any of this - it still
drives the whole scan/probe infrastructure itself.
In order to move towards suppoting smart NICs, the receive path needs to
know about the channel/details for each received packet. In at least
the iwn and 7260 firmware (and I believe wpi, but I haven't tried it yet)
it will do the scanning, power-save and off-channel buffering for you -
all you need to do is handle receiving beacons and probe responses on
channels that aren't what you're currently on. However the whole receive
path is peppered with ic->ic_curchan and manual scan/powersave handling.
The beacon parsing code also checks ic->ic_curchan to determine if the
received beacon is on the correct channel or not.[1]
So:
* add freq/ieee values to ieee80211_rx_stats;
* change ieee80211_parse_beacon() to accept the 'current' channel
as an argument;
* modify the iv_input() and iv_recv_mgmt() methods to include the rx_stats;
* add a new method - ieee80211_lookup_channel_rxstats() - that looks up
a channel based on the contents of ieee80211_rx_stats;
* if it exists, use it in the mgmt path to switch the current channel
(which still defaults to ic->ic_curchan) over to something determined
by rx_stats.
This is enough to kick-start scan offload support in the Intel 7260
driver that Rui/I are working on. It also is a good start for scan
offload support for a handful of existing NICs (wpi, iwn, some USB
parts) and it'll very likely dramatically improve stability/performance
there. It's not the whole thing - notably, we don't need to do powersave,
we should not scan all channels, and we should leave probe request sending
to the firmware and not do it ourselves. But, this allows for continued
development on the above features whilst actually having a somewhat
working NIC.
TODO:
* Finish tidying up how the net80211 input path works.
Right now ieee80211_input / ieee80211_input_all act as the top-level
that everything feeds into; it should change so the MIMO input routines
are those and the legacy routines are phased out.
* The band selection should be done by the driver, not by the net80211
layer.
* ieee80211_lookup_channel_rxstats() only determines 11b or 11g channels
for now - this is enough for scanning, but not 100% true in all cases.
If we ever need to handle off-channel scan support for things like
static-40MHz or static-80MHz, or turbo-G, or half/quarter rates,
then we should extend this.
[1] This is a side effect of frequency-hopping and CCK modes - you
can receive beacons when you think you're on a different channel.
In particular, CCK (which is used by the low 11b rates, eg beacons!)
is decodable from adjacent channels - just at a low SNR.
FH is a side effect of having the hardware/firmware do the frequency
hopping - it may pick up beacons transmitted from other FH networks
that are in a different phase of hopping frequencies.
2015-05-25 16:37:41 +00:00
|
|
|
struct ieee80211_channel *rxchan = ic->ic_curchan;
|
2008-04-20 20:35:46 +00:00
|
|
|
struct ieee80211_frame *wh;
|
|
|
|
uint8_t *frm, *efrm;
|
|
|
|
uint8_t *rates, *xrates, *wme, *htcap, *htinfo;
|
[net80211] Initial VHT node upgrade/downgrade support and initial IE parsing.
This is the bulk of the magic to start enabling VHT channel negotiation.
It is absolutely, positively not yet even a complete VHT wave-1 implementation.
* parse IEs in scan, assoc req/resp, probe req/resp;
* break apart the channel upgrade from the HT IE parsing - do it after the
VHT IEs are parsed;
* (dirty! sigh) add channel width decision making in ieee80211_ht.c htinfo_update_chw().
This is the main bit where negotiated channel promotion through IEs occur.
* Shoehorn in VHT node init ,teardown, rate control, etc calls like the HT
versions;
* Do VHT channel adjustment where appropriate
Tested:
* monitor mode, ath10k port
* STA mode, ath10k port - VHT20, VHT40, VHT80 modes
TODO:
* IBSS;
* hostap;
* (ignore mesh, wds for now);
* finish 11n state engine - channel width change, opmode notifications, SMPS, etc;
* VHT basic rate negotiation and acceptance criteria when scanning, associating, etc;
* VHT control/management frame handling (group managment and operating mode being
the two big ones);
* Verify TX/RX VHT rate negotiation is actually working correctly.
Whilst here, add some comments about seqno allocation and locking. To achieve
the full VHT rates I need to push seqno allocation into the drivers and
finally remove the IEEE80211_TX_LOCK() I added years ago to fix issues. :/
2017-01-13 07:02:04 +00:00
|
|
|
uint8_t *vhtcap, *vhtopmode;
|
2008-04-20 20:35:46 +00:00
|
|
|
uint8_t rate;
|
[net80211] Initial VHT node upgrade/downgrade support and initial IE parsing.
This is the bulk of the magic to start enabling VHT channel negotiation.
It is absolutely, positively not yet even a complete VHT wave-1 implementation.
* parse IEs in scan, assoc req/resp, probe req/resp;
* break apart the channel upgrade from the HT IE parsing - do it after the
VHT IEs are parsed;
* (dirty! sigh) add channel width decision making in ieee80211_ht.c htinfo_update_chw().
This is the main bit where negotiated channel promotion through IEs occur.
* Shoehorn in VHT node init ,teardown, rate control, etc calls like the HT
versions;
* Do VHT channel adjustment where appropriate
Tested:
* monitor mode, ath10k port
* STA mode, ath10k port - VHT20, VHT40, VHT80 modes
TODO:
* IBSS;
* hostap;
* (ignore mesh, wds for now);
* finish 11n state engine - channel width change, opmode notifications, SMPS, etc;
* VHT basic rate negotiation and acceptance criteria when scanning, associating, etc;
* VHT control/management frame handling (group managment and operating mode being
the two big ones);
* Verify TX/RX VHT rate negotiation is actually working correctly.
Whilst here, add some comments about seqno allocation and locking. To achieve
the full VHT rates I need to push seqno allocation into the drivers and
finally remove the IEEE80211_TX_LOCK() I added years ago to fix issues. :/
2017-01-13 07:02:04 +00:00
|
|
|
int ht_state_change = 0, do_ht = 0;
|
2008-04-20 20:35:46 +00:00
|
|
|
|
|
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
|
|
frm = (uint8_t *)&wh[1];
|
|
|
|
efrm = mtod(m0, uint8_t *) + m0->m_len;
|
|
|
|
switch (subtype) {
|
|
|
|
case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
|
|
|
|
case IEEE80211_FC0_SUBTYPE_BEACON: {
|
|
|
|
struct ieee80211_scanparams scan;
|
Begin plumbing ieee80211_rx_stats through the receive path.
Smart NICs with firmware (eg wpi, iwn, the new atheros parts, the intel 7260
series, etc) support doing a lot of things in firmware. This includes but
isn't limited to things like scanning, sending probe requests and receiving
probe responses. However, net80211 doesn't know about any of this - it still
drives the whole scan/probe infrastructure itself.
In order to move towards suppoting smart NICs, the receive path needs to
know about the channel/details for each received packet. In at least
the iwn and 7260 firmware (and I believe wpi, but I haven't tried it yet)
it will do the scanning, power-save and off-channel buffering for you -
all you need to do is handle receiving beacons and probe responses on
channels that aren't what you're currently on. However the whole receive
path is peppered with ic->ic_curchan and manual scan/powersave handling.
The beacon parsing code also checks ic->ic_curchan to determine if the
received beacon is on the correct channel or not.[1]
So:
* add freq/ieee values to ieee80211_rx_stats;
* change ieee80211_parse_beacon() to accept the 'current' channel
as an argument;
* modify the iv_input() and iv_recv_mgmt() methods to include the rx_stats;
* add a new method - ieee80211_lookup_channel_rxstats() - that looks up
a channel based on the contents of ieee80211_rx_stats;
* if it exists, use it in the mgmt path to switch the current channel
(which still defaults to ic->ic_curchan) over to something determined
by rx_stats.
This is enough to kick-start scan offload support in the Intel 7260
driver that Rui/I are working on. It also is a good start for scan
offload support for a handful of existing NICs (wpi, iwn, some USB
parts) and it'll very likely dramatically improve stability/performance
there. It's not the whole thing - notably, we don't need to do powersave,
we should not scan all channels, and we should leave probe request sending
to the firmware and not do it ourselves. But, this allows for continued
development on the above features whilst actually having a somewhat
working NIC.
TODO:
* Finish tidying up how the net80211 input path works.
Right now ieee80211_input / ieee80211_input_all act as the top-level
that everything feeds into; it should change so the MIMO input routines
are those and the legacy routines are phased out.
* The band selection should be done by the driver, not by the net80211
layer.
* ieee80211_lookup_channel_rxstats() only determines 11b or 11g channels
for now - this is enough for scanning, but not 100% true in all cases.
If we ever need to handle off-channel scan support for things like
static-40MHz or static-80MHz, or turbo-G, or half/quarter rates,
then we should extend this.
[1] This is a side effect of frequency-hopping and CCK modes - you
can receive beacons when you think you're on a different channel.
In particular, CCK (which is used by the low 11b rates, eg beacons!)
is decodable from adjacent channels - just at a low SNR.
FH is a side effect of having the hardware/firmware do the frequency
hopping - it may pick up beacons transmitted from other FH networks
that are in a different phase of hopping frequencies.
2015-05-25 16:37:41 +00:00
|
|
|
struct ieee80211_channel *c;
|
2008-04-20 20:35:46 +00:00
|
|
|
/*
|
|
|
|
* We process beacon/probe response frames:
|
|
|
|
* o when scanning, or
|
|
|
|
* o station mode when associated (to collect state
|
2009-04-23 22:08:44 +00:00
|
|
|
* updates such as 802.11g slot time)
|
2008-04-20 20:35:46 +00:00
|
|
|
* Frames otherwise received are discarded.
|
|
|
|
*/
|
|
|
|
if (!((ic->ic_flags & IEEE80211_F_SCAN) || ni->ni_associd)) {
|
|
|
|
vap->iv_stats.is_rx_mgtdiscard++;
|
|
|
|
return;
|
|
|
|
}
|
Begin plumbing ieee80211_rx_stats through the receive path.
Smart NICs with firmware (eg wpi, iwn, the new atheros parts, the intel 7260
series, etc) support doing a lot of things in firmware. This includes but
isn't limited to things like scanning, sending probe requests and receiving
probe responses. However, net80211 doesn't know about any of this - it still
drives the whole scan/probe infrastructure itself.
In order to move towards suppoting smart NICs, the receive path needs to
know about the channel/details for each received packet. In at least
the iwn and 7260 firmware (and I believe wpi, but I haven't tried it yet)
it will do the scanning, power-save and off-channel buffering for you -
all you need to do is handle receiving beacons and probe responses on
channels that aren't what you're currently on. However the whole receive
path is peppered with ic->ic_curchan and manual scan/powersave handling.
The beacon parsing code also checks ic->ic_curchan to determine if the
received beacon is on the correct channel or not.[1]
So:
* add freq/ieee values to ieee80211_rx_stats;
* change ieee80211_parse_beacon() to accept the 'current' channel
as an argument;
* modify the iv_input() and iv_recv_mgmt() methods to include the rx_stats;
* add a new method - ieee80211_lookup_channel_rxstats() - that looks up
a channel based on the contents of ieee80211_rx_stats;
* if it exists, use it in the mgmt path to switch the current channel
(which still defaults to ic->ic_curchan) over to something determined
by rx_stats.
This is enough to kick-start scan offload support in the Intel 7260
driver that Rui/I are working on. It also is a good start for scan
offload support for a handful of existing NICs (wpi, iwn, some USB
parts) and it'll very likely dramatically improve stability/performance
there. It's not the whole thing - notably, we don't need to do powersave,
we should not scan all channels, and we should leave probe request sending
to the firmware and not do it ourselves. But, this allows for continued
development on the above features whilst actually having a somewhat
working NIC.
TODO:
* Finish tidying up how the net80211 input path works.
Right now ieee80211_input / ieee80211_input_all act as the top-level
that everything feeds into; it should change so the MIMO input routines
are those and the legacy routines are phased out.
* The band selection should be done by the driver, not by the net80211
layer.
* ieee80211_lookup_channel_rxstats() only determines 11b or 11g channels
for now - this is enough for scanning, but not 100% true in all cases.
If we ever need to handle off-channel scan support for things like
static-40MHz or static-80MHz, or turbo-G, or half/quarter rates,
then we should extend this.
[1] This is a side effect of frequency-hopping and CCK modes - you
can receive beacons when you think you're on a different channel.
In particular, CCK (which is used by the low 11b rates, eg beacons!)
is decodable from adjacent channels - just at a low SNR.
FH is a side effect of having the hardware/firmware do the frequency
hopping - it may pick up beacons transmitted from other FH networks
that are in a different phase of hopping frequencies.
2015-05-25 16:37:41 +00:00
|
|
|
|
|
|
|
/* Override RX channel as appropriate */
|
|
|
|
if (rxs != NULL) {
|
|
|
|
c = ieee80211_lookup_channel_rxstatus(vap, rxs);
|
|
|
|
if (c != NULL)
|
|
|
|
rxchan = c;
|
|
|
|
}
|
|
|
|
|
2008-04-20 20:35:46 +00:00
|
|
|
/* XXX probe response in sta mode when !scanning? */
|
Begin plumbing ieee80211_rx_stats through the receive path.
Smart NICs with firmware (eg wpi, iwn, the new atheros parts, the intel 7260
series, etc) support doing a lot of things in firmware. This includes but
isn't limited to things like scanning, sending probe requests and receiving
probe responses. However, net80211 doesn't know about any of this - it still
drives the whole scan/probe infrastructure itself.
In order to move towards suppoting smart NICs, the receive path needs to
know about the channel/details for each received packet. In at least
the iwn and 7260 firmware (and I believe wpi, but I haven't tried it yet)
it will do the scanning, power-save and off-channel buffering for you -
all you need to do is handle receiving beacons and probe responses on
channels that aren't what you're currently on. However the whole receive
path is peppered with ic->ic_curchan and manual scan/powersave handling.
The beacon parsing code also checks ic->ic_curchan to determine if the
received beacon is on the correct channel or not.[1]
So:
* add freq/ieee values to ieee80211_rx_stats;
* change ieee80211_parse_beacon() to accept the 'current' channel
as an argument;
* modify the iv_input() and iv_recv_mgmt() methods to include the rx_stats;
* add a new method - ieee80211_lookup_channel_rxstats() - that looks up
a channel based on the contents of ieee80211_rx_stats;
* if it exists, use it in the mgmt path to switch the current channel
(which still defaults to ic->ic_curchan) over to something determined
by rx_stats.
This is enough to kick-start scan offload support in the Intel 7260
driver that Rui/I are working on. It also is a good start for scan
offload support for a handful of existing NICs (wpi, iwn, some USB
parts) and it'll very likely dramatically improve stability/performance
there. It's not the whole thing - notably, we don't need to do powersave,
we should not scan all channels, and we should leave probe request sending
to the firmware and not do it ourselves. But, this allows for continued
development on the above features whilst actually having a somewhat
working NIC.
TODO:
* Finish tidying up how the net80211 input path works.
Right now ieee80211_input / ieee80211_input_all act as the top-level
that everything feeds into; it should change so the MIMO input routines
are those and the legacy routines are phased out.
* The band selection should be done by the driver, not by the net80211
layer.
* ieee80211_lookup_channel_rxstats() only determines 11b or 11g channels
for now - this is enough for scanning, but not 100% true in all cases.
If we ever need to handle off-channel scan support for things like
static-40MHz or static-80MHz, or turbo-G, or half/quarter rates,
then we should extend this.
[1] This is a side effect of frequency-hopping and CCK modes - you
can receive beacons when you think you're on a different channel.
In particular, CCK (which is used by the low 11b rates, eg beacons!)
is decodable from adjacent channels - just at a low SNR.
FH is a side effect of having the hardware/firmware do the frequency
hopping - it may pick up beacons transmitted from other FH networks
that are in a different phase of hopping frequencies.
2015-05-25 16:37:41 +00:00
|
|
|
if (ieee80211_parse_beacon(ni, m0, rxchan, &scan) != 0) {
|
2012-02-28 21:43:29 +00:00
|
|
|
if (! (ic->ic_flags & IEEE80211_F_SCAN))
|
|
|
|
vap->iv_stats.is_beacon_bad++;
|
2008-04-20 20:35:46 +00:00
|
|
|
return;
|
2012-02-28 04:05:35 +00:00
|
|
|
}
|
2014-04-24 01:39:53 +00:00
|
|
|
|
2008-04-20 20:35:46 +00:00
|
|
|
/*
|
|
|
|
* Count frame now that we know it's to be processed.
|
|
|
|
*/
|
|
|
|
if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
|
|
|
|
vap->iv_stats.is_rx_beacon++; /* XXX remove */
|
|
|
|
IEEE80211_NODE_STAT(ni, rx_beacons);
|
|
|
|
} else
|
|
|
|
IEEE80211_NODE_STAT(ni, rx_proberesp);
|
|
|
|
/*
|
|
|
|
* When operating in station mode, check for state updates.
|
|
|
|
* Be careful to ignore beacons received while doing a
|
|
|
|
* background scan. We consider only 11g/WMM stuff right now.
|
|
|
|
*/
|
|
|
|
if (ni->ni_associd != 0 &&
|
|
|
|
((ic->ic_flags & IEEE80211_F_SCAN) == 0 ||
|
|
|
|
IEEE80211_ADDR_EQ(wh->i_addr2, ni->ni_bssid))) {
|
|
|
|
/* record tsf of last beacon */
|
|
|
|
memcpy(ni->ni_tstamp.data, scan.tstamp,
|
|
|
|
sizeof(ni->ni_tstamp));
|
|
|
|
/* count beacon frame for s/w bmiss handling */
|
|
|
|
vap->iv_swbmiss_count++;
|
|
|
|
vap->iv_bmiss_count = 0;
|
|
|
|
if (ni->ni_erp != scan.erp) {
|
|
|
|
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ASSOC,
|
|
|
|
wh->i_addr2,
|
|
|
|
"erp change: was 0x%x, now 0x%x",
|
|
|
|
ni->ni_erp, scan.erp);
|
|
|
|
if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
|
|
|
|
(ni->ni_erp & IEEE80211_ERP_USE_PROTECTION))
|
|
|
|
ic->ic_flags |= IEEE80211_F_USEPROT;
|
|
|
|
else
|
|
|
|
ic->ic_flags &= ~IEEE80211_F_USEPROT;
|
|
|
|
ni->ni_erp = scan.erp;
|
|
|
|
/* XXX statistic */
|
|
|
|
/* XXX driver notification */
|
|
|
|
}
|
|
|
|
if ((ni->ni_capinfo ^ scan.capinfo) & IEEE80211_CAPINFO_SHORT_SLOTTIME) {
|
|
|
|
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ASSOC,
|
|
|
|
wh->i_addr2,
|
|
|
|
"capabilities change: was 0x%x, now 0x%x",
|
|
|
|
ni->ni_capinfo, scan.capinfo);
|
|
|
|
/*
|
|
|
|
* NB: we assume short preamble doesn't
|
|
|
|
* change dynamically
|
|
|
|
*/
|
[net80211] Migrate short slot time configuration into per-vap and deferred taskqueue updates.
The 11b/11g ERP and slot time update handling are two things which weren't
migrated into the per-VAP state when Sam did the initial VAP work.
That makes sense for a lot of setups where net80211 is driving radio state
and the radio only cares about the shared state.
However, as noted by a now deleted comment, the ERP and slot time updates
aren't EXACTLY correct/accurate - they only take into account the most
RECENTLY created VAP, and the state updates when one creates/destroys
VAPs isn't exactly great.
So:
* track the short slot logic per VAP;
* whenever the slot time configuration changes, just push it into a deferred
task queue update so drivers don't have to serialise it themselves;
* if a driver registers a per-VAP slot time handler then it'll just get the
per VAP one;
* .. if a driver registers a global one then the legacy behaviour is maintained -
a single slot time is calculated and pushed out.
Note that the calculated slot time is better than the existing logic - if ANY
of the VAPs require long slot then it's disabled for all VAPs rather than
whatever the last configured VAP did.
Now, this isn't entirely complete - the rest of ERP tracking around short/long
slot capable station tracking needs to be converted into per-VAP, as well
as the preamble/barker flags. Luckily those also can be done in a similar
fashion - keep per-VAP counters/flags and unify them before doing the driver
update. I'll defer that work until later.
All the existing drivers can keep doing what they're doing with the global
slot time flags as that is maintained. One driver (iwi) used the per-VAP
flags instead of the ic flags, so now that driver will work properly.
This unblocks some ath10k porting work as the firmware takes the slot time
configuration per-VAP rather than globally, and some firmware handles
STA+AP and STA+STA (on same/different channels) configurations where
the firmware will switch slot time as appropriate.
Tested:
* AR9380, STA/AP mode
* AR9880 (ath10k), STA mode
2020-06-05 06:21:23 +00:00
|
|
|
ieee80211_vap_set_shortslottime(vap,
|
2008-04-20 20:35:46 +00:00
|
|
|
IEEE80211_IS_CHAN_A(ic->ic_bsschan) ||
|
|
|
|
(scan.capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME));
|
|
|
|
ni->ni_capinfo = (ni->ni_capinfo &~ IEEE80211_CAPINFO_SHORT_SLOTTIME)
|
|
|
|
| (scan.capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME);
|
|
|
|
/* XXX statistic */
|
|
|
|
}
|
|
|
|
if (scan.wme != NULL &&
|
|
|
|
(ni->ni_flags & IEEE80211_NODE_QOS) &&
|
|
|
|
ieee80211_parse_wmeparams(vap, scan.wme, wh) > 0)
|
|
|
|
ieee80211_wme_updateparams(vap);
|
2009-03-24 20:39:08 +00:00
|
|
|
#ifdef IEEE80211_SUPPORT_SUPERG
|
2008-04-20 20:35:46 +00:00
|
|
|
if (scan.ath != NULL)
|
|
|
|
ieee80211_parse_athparams(ni, scan.ath, wh);
|
2009-03-24 20:39:08 +00:00
|
|
|
#endif
|
2008-09-21 23:44:15 +00:00
|
|
|
if (scan.htcap != NULL && scan.htinfo != NULL &&
|
2009-06-07 22:00:22 +00:00
|
|
|
(vap->iv_flags_ht & IEEE80211_FHT_HT)) {
|
2008-04-20 20:35:46 +00:00
|
|
|
/* XXX state changes? */
|
[net80211] Initial VHT node upgrade/downgrade support and initial IE parsing.
This is the bulk of the magic to start enabling VHT channel negotiation.
It is absolutely, positively not yet even a complete VHT wave-1 implementation.
* parse IEs in scan, assoc req/resp, probe req/resp;
* break apart the channel upgrade from the HT IE parsing - do it after the
VHT IEs are parsed;
* (dirty! sigh) add channel width decision making in ieee80211_ht.c htinfo_update_chw().
This is the main bit where negotiated channel promotion through IEs occur.
* Shoehorn in VHT node init ,teardown, rate control, etc calls like the HT
versions;
* Do VHT channel adjustment where appropriate
Tested:
* monitor mode, ath10k port
* STA mode, ath10k port - VHT20, VHT40, VHT80 modes
TODO:
* IBSS;
* hostap;
* (ignore mesh, wds for now);
* finish 11n state engine - channel width change, opmode notifications, SMPS, etc;
* VHT basic rate negotiation and acceptance criteria when scanning, associating, etc;
* VHT control/management frame handling (group managment and operating mode being
the two big ones);
* Verify TX/RX VHT rate negotiation is actually working correctly.
Whilst here, add some comments about seqno allocation and locking. To achieve
the full VHT rates I need to push seqno allocation into the drivers and
finally remove the IEEE80211_TX_LOCK() I added years ago to fix issues. :/
2017-01-13 07:02:04 +00:00
|
|
|
ieee80211_ht_updateparams(ni,
|
|
|
|
scan.htcap, scan.htinfo);
|
|
|
|
do_ht = 1;
|
|
|
|
}
|
|
|
|
if (scan.vhtcap != NULL && scan.vhtopmode != NULL &&
|
|
|
|
(vap->iv_flags_vht & IEEE80211_FVHT_VHT)) {
|
|
|
|
/* XXX state changes? */
|
|
|
|
ieee80211_vht_updateparams(ni,
|
|
|
|
scan.vhtcap, scan.vhtopmode);
|
|
|
|
do_ht = 1;
|
|
|
|
}
|
|
|
|
if (do_ht) {
|
|
|
|
if (ieee80211_ht_updateparams_final(ni,
|
2012-03-25 03:11:57 +00:00
|
|
|
scan.htcap, scan.htinfo))
|
|
|
|
ht_state_change = 1;
|
2008-04-20 20:35:46 +00:00
|
|
|
}
|
[net80211] Initial VHT node upgrade/downgrade support and initial IE parsing.
This is the bulk of the magic to start enabling VHT channel negotiation.
It is absolutely, positively not yet even a complete VHT wave-1 implementation.
* parse IEs in scan, assoc req/resp, probe req/resp;
* break apart the channel upgrade from the HT IE parsing - do it after the
VHT IEs are parsed;
* (dirty! sigh) add channel width decision making in ieee80211_ht.c htinfo_update_chw().
This is the main bit where negotiated channel promotion through IEs occur.
* Shoehorn in VHT node init ,teardown, rate control, etc calls like the HT
versions;
* Do VHT channel adjustment where appropriate
Tested:
* monitor mode, ath10k port
* STA mode, ath10k port - VHT20, VHT40, VHT80 modes
TODO:
* IBSS;
* hostap;
* (ignore mesh, wds for now);
* finish 11n state engine - channel width change, opmode notifications, SMPS, etc;
* VHT basic rate negotiation and acceptance criteria when scanning, associating, etc;
* VHT control/management frame handling (group managment and operating mode being
the two big ones);
* Verify TX/RX VHT rate negotiation is actually working correctly.
Whilst here, add some comments about seqno allocation and locking. To achieve
the full VHT rates I need to push seqno allocation into the drivers and
finally remove the IEEE80211_TX_LOCK() I added years ago to fix issues. :/
2017-01-13 07:02:04 +00:00
|
|
|
|
2017-02-09 04:07:30 +00:00
|
|
|
/*
|
|
|
|
* If we have a quiet time IE then report it up to
|
|
|
|
* the driver.
|
|
|
|
*
|
|
|
|
* Otherwise, inform the driver that the quiet time
|
|
|
|
* IE has disappeared - only do that once rather than
|
|
|
|
* spamming it each time.
|
|
|
|
*/
|
|
|
|
if (scan.quiet) {
|
2011-11-08 04:00:24 +00:00
|
|
|
ic->ic_set_quiet(ni, scan.quiet);
|
2017-02-09 04:07:30 +00:00
|
|
|
ni->ni_quiet_ie_set = 1;
|
|
|
|
memcpy(&ni->ni_quiet_ie, scan.quiet,
|
|
|
|
sizeof(struct ieee80211_quiet_ie));
|
|
|
|
} else {
|
|
|
|
if (ni->ni_quiet_ie_set == 1)
|
|
|
|
ic->ic_set_quiet(ni, NULL);
|
|
|
|
ni->ni_quiet_ie_set = 0;
|
|
|
|
bzero(&ni->ni_quiet_ie,
|
|
|
|
sizeof(struct ieee80211_quiet_ie));
|
|
|
|
}
|
2014-04-24 01:39:53 +00:00
|
|
|
|
2008-04-20 20:35:46 +00:00
|
|
|
if (scan.tim != NULL) {
|
|
|
|
struct ieee80211_tim_ie *tim =
|
|
|
|
(struct ieee80211_tim_ie *) scan.tim;
|
2014-04-24 01:39:53 +00:00
|
|
|
/*
|
|
|
|
* XXX Check/debug this code; see if it's about
|
|
|
|
* the right time to force the VAP awake if we
|
|
|
|
* receive a frame destined for us?
|
|
|
|
*/
|
2008-04-20 20:35:46 +00:00
|
|
|
int aid = IEEE80211_AID(ni->ni_associd);
|
|
|
|
int ix = aid / NBBY;
|
|
|
|
int min = tim->tim_bitctl &~ 1;
|
|
|
|
int max = tim->tim_len + min - 4;
|
2014-12-21 04:48:54 +00:00
|
|
|
int tim_ucast = 0, tim_mcast = 0;
|
2014-04-24 01:39:53 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Only do this for unicast traffic in the TIM
|
|
|
|
* The multicast traffic notification for
|
|
|
|
* the scan notification stuff should occur
|
|
|
|
* differently.
|
|
|
|
*/
|
|
|
|
if (min <= ix && ix <= max &&
|
|
|
|
isset(tim->tim_bitmap - min, aid)) {
|
2014-12-21 04:48:54 +00:00
|
|
|
tim_ucast = 1;
|
2014-04-24 01:39:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2014-12-21 04:48:54 +00:00
|
|
|
* Do a separate notification
|
2014-04-24 01:39:53 +00:00
|
|
|
* for the multicast bit being set.
|
|
|
|
*/
|
2014-04-25 01:20:10 +00:00
|
|
|
if (tim->tim_bitctl & 1) {
|
2014-12-21 04:48:54 +00:00
|
|
|
tim_mcast = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the TIM indicates there's traffic for
|
|
|
|
* us then get us out of STA mode powersave.
|
|
|
|
*/
|
|
|
|
if (tim_ucast == 1) {
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Wake us out of SLEEP state if we're
|
|
|
|
* in it; and if we're doing bgscan
|
|
|
|
* then wake us out of STA powersave.
|
|
|
|
*/
|
2014-04-24 01:39:53 +00:00
|
|
|
ieee80211_sta_tim_notify(vap, 1);
|
2014-12-21 04:48:54 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* This is preventing us from
|
|
|
|
* continuing a bgscan; because it
|
|
|
|
* tricks the contbgscan()
|
|
|
|
* routine to think there's always
|
|
|
|
* traffic for us.
|
|
|
|
*
|
|
|
|
* I think we need both an RX and
|
|
|
|
* TX ic_lastdata field.
|
|
|
|
*/
|
2008-04-20 20:35:46 +00:00
|
|
|
ic->ic_lastdata = ticks;
|
|
|
|
}
|
2014-04-25 01:20:10 +00:00
|
|
|
|
2008-04-20 20:35:46 +00:00
|
|
|
ni->ni_dtim_count = tim->tim_count;
|
|
|
|
ni->ni_dtim_period = tim->tim_period;
|
|
|
|
}
|
2009-06-04 15:57:38 +00:00
|
|
|
if (scan.csa != NULL &&
|
|
|
|
(vap->iv_flags & IEEE80211_F_DOTH))
|
|
|
|
ieee80211_parse_csaparams(vap, scan.csa, wh);
|
|
|
|
else if (ic->ic_flags & IEEE80211_F_CSAPENDING) {
|
|
|
|
/*
|
|
|
|
* No CSA ie or 11h disabled, but a channel
|
|
|
|
* switch is pending; drop out so we aren't
|
|
|
|
* stuck in CSA state. If the AP really is
|
|
|
|
* moving we'll get a beacon miss and scan.
|
|
|
|
*/
|
|
|
|
IEEE80211_LOCK(ic);
|
|
|
|
ieee80211_csa_cancelswitch(ic);
|
|
|
|
IEEE80211_UNLOCK(ic);
|
|
|
|
}
|
2008-04-20 20:35:46 +00:00
|
|
|
/*
|
|
|
|
* If scanning, pass the info to the scan module.
|
|
|
|
* Otherwise, check if it's the right time to do
|
|
|
|
* a background scan. Background scanning must
|
|
|
|
* be enabled and we must not be operating in the
|
|
|
|
* turbo phase of dynamic turbo mode. Then,
|
|
|
|
* it's been a while since the last background
|
|
|
|
* scan and if no data frames have come through
|
|
|
|
* recently, kick off a scan. Note that this
|
|
|
|
* is the mechanism by which a background scan
|
|
|
|
* is started _and_ continued each time we
|
|
|
|
* return on-channel to receive a beacon from
|
|
|
|
* our ap.
|
|
|
|
*/
|
|
|
|
if (ic->ic_flags & IEEE80211_F_SCAN) {
|
Begin plumbing ieee80211_rx_stats through the receive path.
Smart NICs with firmware (eg wpi, iwn, the new atheros parts, the intel 7260
series, etc) support doing a lot of things in firmware. This includes but
isn't limited to things like scanning, sending probe requests and receiving
probe responses. However, net80211 doesn't know about any of this - it still
drives the whole scan/probe infrastructure itself.
In order to move towards suppoting smart NICs, the receive path needs to
know about the channel/details for each received packet. In at least
the iwn and 7260 firmware (and I believe wpi, but I haven't tried it yet)
it will do the scanning, power-save and off-channel buffering for you -
all you need to do is handle receiving beacons and probe responses on
channels that aren't what you're currently on. However the whole receive
path is peppered with ic->ic_curchan and manual scan/powersave handling.
The beacon parsing code also checks ic->ic_curchan to determine if the
received beacon is on the correct channel or not.[1]
So:
* add freq/ieee values to ieee80211_rx_stats;
* change ieee80211_parse_beacon() to accept the 'current' channel
as an argument;
* modify the iv_input() and iv_recv_mgmt() methods to include the rx_stats;
* add a new method - ieee80211_lookup_channel_rxstats() - that looks up
a channel based on the contents of ieee80211_rx_stats;
* if it exists, use it in the mgmt path to switch the current channel
(which still defaults to ic->ic_curchan) over to something determined
by rx_stats.
This is enough to kick-start scan offload support in the Intel 7260
driver that Rui/I are working on. It also is a good start for scan
offload support for a handful of existing NICs (wpi, iwn, some USB
parts) and it'll very likely dramatically improve stability/performance
there. It's not the whole thing - notably, we don't need to do powersave,
we should not scan all channels, and we should leave probe request sending
to the firmware and not do it ourselves. But, this allows for continued
development on the above features whilst actually having a somewhat
working NIC.
TODO:
* Finish tidying up how the net80211 input path works.
Right now ieee80211_input / ieee80211_input_all act as the top-level
that everything feeds into; it should change so the MIMO input routines
are those and the legacy routines are phased out.
* The band selection should be done by the driver, not by the net80211
layer.
* ieee80211_lookup_channel_rxstats() only determines 11b or 11g channels
for now - this is enough for scanning, but not 100% true in all cases.
If we ever need to handle off-channel scan support for things like
static-40MHz or static-80MHz, or turbo-G, or half/quarter rates,
then we should extend this.
[1] This is a side effect of frequency-hopping and CCK modes - you
can receive beacons when you think you're on a different channel.
In particular, CCK (which is used by the low 11b rates, eg beacons!)
is decodable from adjacent channels - just at a low SNR.
FH is a side effect of having the hardware/firmware do the frequency
hopping - it may pick up beacons transmitted from other FH networks
that are in a different phase of hopping frequencies.
2015-05-25 16:37:41 +00:00
|
|
|
ieee80211_add_scan(vap, rxchan,
|
Prepare for supporting driver-overridden curchan when submitting scan
results.
Right now the scan infrastructure assumes the channel is under net80211
control, and that when receiving beacon frames for scanning, the
current channel is indeed what ic_curchan is set to.
But firmware NICs with firmware scan support need more than this -
they can do background scans whilst hiding the off-channel behaviour
from net80211. Ie, net80211 still thinks everything is associated
and on the main channel, but it's getting scan results from all the
background traffic.
However sta_add() pays attention to ic_curchan and discards scan
results that aren't on the right channel. CCK beacon frames can be
decoded from adjacent channels so the receive path and sta_add
discard these as appropriate. This is fine for software scanning
like for ath(4), but not for firmware NICs. So with those, the
whole concept of background firmware scanning won't work without
major hacks (eg, overriding ic_curchan before calling the beacon
input / scan add.)
As part of my scan overhaul, modify sta_add() and the scan_add()
APIs to take an explicit current channel. The normal RX path
will set it to ic_curchan so it's a no-op. However, drivers may
decide to (eventually!) override the scan method to set the
"right" current channel based on what the firmware reports the
scan state is.
So for example, iwn, rsu and other NICs will eventually do this:
* driver issues scan start firmware command;
* firmware sends a "scan start on channel X" notify;
* firmware sends a bunch of beacon RX's as part of
the scan results;
* .. and the driver will replace scan_add() curchan with channel X,
so scan results are correct.
* firmware sends a "scan start on channel Y" notify;
* firmware sends more beacons...
* .. the driver replaces scan_add() curchan with channel Y.
Note:
* Eventually, net80211 should eventually grow the idea of a per-packet
current channel. It's possible in various modes (eg WAVE, P2P, etc)
that individual frames can come in from different channels and that
is under firmware control rather than driver/net80211 control, so
we should support that.
2015-05-10 22:07:53 +00:00
|
|
|
&scan, wh, subtype, rssi, nf);
|
2008-04-20 20:35:46 +00:00
|
|
|
} else if (contbgscan(vap)) {
|
|
|
|
ieee80211_bg_scan(vap, 0);
|
|
|
|
} else if (startbgscan(vap)) {
|
|
|
|
vap->iv_stats.is_scan_bg++;
|
|
|
|
#if 0
|
|
|
|
/* wakeup if we are sleeing */
|
|
|
|
ieee80211_set_pwrsave(vap, 0);
|
|
|
|
#endif
|
|
|
|
ieee80211_bg_scan(vap, 0);
|
|
|
|
}
|
2012-03-25 03:11:57 +00:00
|
|
|
|
2014-04-24 01:39:53 +00:00
|
|
|
/*
|
|
|
|
* Put the station to sleep if we haven't seen
|
|
|
|
* traffic in a while.
|
|
|
|
*/
|
|
|
|
IEEE80211_LOCK(ic);
|
|
|
|
ieee80211_sta_ps_timer_check(vap);
|
|
|
|
IEEE80211_UNLOCK(ic);
|
|
|
|
|
2012-03-25 03:11:57 +00:00
|
|
|
/*
|
|
|
|
* If we've had a channel width change (eg HT20<->HT40)
|
|
|
|
* then schedule a delayed driver notification.
|
|
|
|
*/
|
|
|
|
if (ht_state_change)
|
|
|
|
ieee80211_update_chw(ic);
|
2008-04-20 20:35:46 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* If scanning, just pass information to the scan module.
|
|
|
|
*/
|
|
|
|
if (ic->ic_flags & IEEE80211_F_SCAN) {
|
|
|
|
if (ic->ic_flags_ext & IEEE80211_FEXT_PROBECHAN) {
|
|
|
|
/*
|
|
|
|
* Actively scanning a channel marked passive;
|
|
|
|
* send a probe request now that we know there
|
|
|
|
* is 802.11 traffic present.
|
|
|
|
*
|
|
|
|
* XXX check if the beacon we recv'd gives
|
|
|
|
* us what we need and suppress the probe req
|
|
|
|
*/
|
|
|
|
ieee80211_probe_curchan(vap, 1);
|
|
|
|
ic->ic_flags_ext &= ~IEEE80211_FEXT_PROBECHAN;
|
|
|
|
}
|
Begin plumbing ieee80211_rx_stats through the receive path.
Smart NICs with firmware (eg wpi, iwn, the new atheros parts, the intel 7260
series, etc) support doing a lot of things in firmware. This includes but
isn't limited to things like scanning, sending probe requests and receiving
probe responses. However, net80211 doesn't know about any of this - it still
drives the whole scan/probe infrastructure itself.
In order to move towards suppoting smart NICs, the receive path needs to
know about the channel/details for each received packet. In at least
the iwn and 7260 firmware (and I believe wpi, but I haven't tried it yet)
it will do the scanning, power-save and off-channel buffering for you -
all you need to do is handle receiving beacons and probe responses on
channels that aren't what you're currently on. However the whole receive
path is peppered with ic->ic_curchan and manual scan/powersave handling.
The beacon parsing code also checks ic->ic_curchan to determine if the
received beacon is on the correct channel or not.[1]
So:
* add freq/ieee values to ieee80211_rx_stats;
* change ieee80211_parse_beacon() to accept the 'current' channel
as an argument;
* modify the iv_input() and iv_recv_mgmt() methods to include the rx_stats;
* add a new method - ieee80211_lookup_channel_rxstats() - that looks up
a channel based on the contents of ieee80211_rx_stats;
* if it exists, use it in the mgmt path to switch the current channel
(which still defaults to ic->ic_curchan) over to something determined
by rx_stats.
This is enough to kick-start scan offload support in the Intel 7260
driver that Rui/I are working on. It also is a good start for scan
offload support for a handful of existing NICs (wpi, iwn, some USB
parts) and it'll very likely dramatically improve stability/performance
there. It's not the whole thing - notably, we don't need to do powersave,
we should not scan all channels, and we should leave probe request sending
to the firmware and not do it ourselves. But, this allows for continued
development on the above features whilst actually having a somewhat
working NIC.
TODO:
* Finish tidying up how the net80211 input path works.
Right now ieee80211_input / ieee80211_input_all act as the top-level
that everything feeds into; it should change so the MIMO input routines
are those and the legacy routines are phased out.
* The band selection should be done by the driver, not by the net80211
layer.
* ieee80211_lookup_channel_rxstats() only determines 11b or 11g channels
for now - this is enough for scanning, but not 100% true in all cases.
If we ever need to handle off-channel scan support for things like
static-40MHz or static-80MHz, or turbo-G, or half/quarter rates,
then we should extend this.
[1] This is a side effect of frequency-hopping and CCK modes - you
can receive beacons when you think you're on a different channel.
In particular, CCK (which is used by the low 11b rates, eg beacons!)
is decodable from adjacent channels - just at a low SNR.
FH is a side effect of having the hardware/firmware do the frequency
hopping - it may pick up beacons transmitted from other FH networks
that are in a different phase of hopping frequencies.
2015-05-25 16:37:41 +00:00
|
|
|
ieee80211_add_scan(vap, rxchan, &scan, wh,
|
Prepare for supporting driver-overridden curchan when submitting scan
results.
Right now the scan infrastructure assumes the channel is under net80211
control, and that when receiving beacon frames for scanning, the
current channel is indeed what ic_curchan is set to.
But firmware NICs with firmware scan support need more than this -
they can do background scans whilst hiding the off-channel behaviour
from net80211. Ie, net80211 still thinks everything is associated
and on the main channel, but it's getting scan results from all the
background traffic.
However sta_add() pays attention to ic_curchan and discards scan
results that aren't on the right channel. CCK beacon frames can be
decoded from adjacent channels so the receive path and sta_add
discard these as appropriate. This is fine for software scanning
like for ath(4), but not for firmware NICs. So with those, the
whole concept of background firmware scanning won't work without
major hacks (eg, overriding ic_curchan before calling the beacon
input / scan add.)
As part of my scan overhaul, modify sta_add() and the scan_add()
APIs to take an explicit current channel. The normal RX path
will set it to ic_curchan so it's a no-op. However, drivers may
decide to (eventually!) override the scan method to set the
"right" current channel based on what the firmware reports the
scan state is.
So for example, iwn, rsu and other NICs will eventually do this:
* driver issues scan start firmware command;
* firmware sends a "scan start on channel X" notify;
* firmware sends a bunch of beacon RX's as part of
the scan results;
* .. and the driver will replace scan_add() curchan with channel X,
so scan results are correct.
* firmware sends a "scan start on channel Y" notify;
* firmware sends more beacons...
* .. the driver replaces scan_add() curchan with channel Y.
Note:
* Eventually, net80211 should eventually grow the idea of a per-packet
current channel. It's possible in various modes (eg WAVE, P2P, etc)
that individual frames can come in from different channels and that
is under firmware control rather than driver/net80211 control, so
we should support that.
2015-05-10 22:07:53 +00:00
|
|
|
subtype, rssi, nf);
|
2008-04-20 20:35:46 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case IEEE80211_FC0_SUBTYPE_AUTH: {
|
|
|
|
uint16_t algo, seq, status;
|
|
|
|
/*
|
|
|
|
* auth frame format
|
|
|
|
* [2] algorithm
|
|
|
|
* [2] sequence
|
|
|
|
* [2] status
|
|
|
|
* [tlv*] challenge
|
|
|
|
*/
|
|
|
|
IEEE80211_VERIFY_LENGTH(efrm - frm, 6, return);
|
|
|
|
algo = le16toh(*(uint16_t *)frm);
|
|
|
|
seq = le16toh(*(uint16_t *)(frm + 2));
|
|
|
|
status = le16toh(*(uint16_t *)(frm + 4));
|
|
|
|
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr2,
|
|
|
|
"recv auth frame with algorithm %d seq %d", algo, seq);
|
|
|
|
|
|
|
|
if (vap->iv_flags & IEEE80211_F_COUNTERM) {
|
|
|
|
IEEE80211_DISCARD(vap,
|
|
|
|
IEEE80211_MSG_AUTH | IEEE80211_MSG_CRYPTO,
|
|
|
|
wh, "auth", "%s", "TKIP countermeasures enabled");
|
|
|
|
vap->iv_stats.is_rx_auth_countermeasures++;
|
|
|
|
if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
|
|
|
|
ieee80211_send_error(ni, wh->i_addr2,
|
|
|
|
IEEE80211_FC0_SUBTYPE_AUTH,
|
|
|
|
IEEE80211_REASON_MIC_FAILURE);
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (algo == IEEE80211_AUTH_ALG_SHARED)
|
2009-05-20 20:00:40 +00:00
|
|
|
sta_auth_shared(ni, wh, frm + 6, efrm, rssi, nf,
|
2008-04-20 20:35:46 +00:00
|
|
|
seq, status);
|
2009-05-20 20:00:40 +00:00
|
|
|
else if (algo == IEEE80211_AUTH_ALG_OPEN)
|
|
|
|
sta_auth_open(ni, wh, rssi, nf, seq, status);
|
2008-04-20 20:35:46 +00:00
|
|
|
else {
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
|
|
|
|
wh, "auth", "unsupported alg %d", algo);
|
|
|
|
vap->iv_stats.is_rx_auth_unsupported++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
|
|
|
|
case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: {
|
|
|
|
uint16_t capinfo, associd;
|
|
|
|
uint16_t status;
|
|
|
|
|
|
|
|
if (vap->iv_state != IEEE80211_S_ASSOC) {
|
|
|
|
vap->iv_stats.is_rx_mgtdiscard++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* asresp frame format
|
|
|
|
* [2] capability information
|
|
|
|
* [2] status
|
|
|
|
* [2] association ID
|
|
|
|
* [tlv] supported rates
|
|
|
|
* [tlv] extended supported rates
|
|
|
|
* [tlv] WME
|
|
|
|
* [tlv] HT capabilities
|
|
|
|
* [tlv] HT info
|
|
|
|
*/
|
|
|
|
IEEE80211_VERIFY_LENGTH(efrm - frm, 6, return);
|
|
|
|
ni = vap->iv_bss;
|
|
|
|
capinfo = le16toh(*(uint16_t *)frm);
|
|
|
|
frm += 2;
|
|
|
|
status = le16toh(*(uint16_t *)frm);
|
|
|
|
frm += 2;
|
|
|
|
if (status != 0) {
|
|
|
|
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ASSOC,
|
|
|
|
wh->i_addr2, "%sassoc failed (reason %d)",
|
|
|
|
ISREASSOC(subtype) ? "re" : "", status);
|
|
|
|
vap->iv_stats.is_rx_auth_fail++; /* XXX */
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
associd = le16toh(*(uint16_t *)frm);
|
|
|
|
frm += 2;
|
|
|
|
|
|
|
|
rates = xrates = wme = htcap = htinfo = NULL;
|
[net80211] Initial VHT node upgrade/downgrade support and initial IE parsing.
This is the bulk of the magic to start enabling VHT channel negotiation.
It is absolutely, positively not yet even a complete VHT wave-1 implementation.
* parse IEs in scan, assoc req/resp, probe req/resp;
* break apart the channel upgrade from the HT IE parsing - do it after the
VHT IEs are parsed;
* (dirty! sigh) add channel width decision making in ieee80211_ht.c htinfo_update_chw().
This is the main bit where negotiated channel promotion through IEs occur.
* Shoehorn in VHT node init ,teardown, rate control, etc calls like the HT
versions;
* Do VHT channel adjustment where appropriate
Tested:
* monitor mode, ath10k port
* STA mode, ath10k port - VHT20, VHT40, VHT80 modes
TODO:
* IBSS;
* hostap;
* (ignore mesh, wds for now);
* finish 11n state engine - channel width change, opmode notifications, SMPS, etc;
* VHT basic rate negotiation and acceptance criteria when scanning, associating, etc;
* VHT control/management frame handling (group managment and operating mode being
the two big ones);
* Verify TX/RX VHT rate negotiation is actually working correctly.
Whilst here, add some comments about seqno allocation and locking. To achieve
the full VHT rates I need to push seqno allocation into the drivers and
finally remove the IEEE80211_TX_LOCK() I added years ago to fix issues. :/
2017-01-13 07:02:04 +00:00
|
|
|
vhtcap = vhtopmode = NULL;
|
2008-04-20 20:35:46 +00:00
|
|
|
while (efrm - frm > 1) {
|
|
|
|
IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return);
|
|
|
|
switch (*frm) {
|
|
|
|
case IEEE80211_ELEMID_RATES:
|
|
|
|
rates = frm;
|
|
|
|
break;
|
|
|
|
case IEEE80211_ELEMID_XRATES:
|
|
|
|
xrates = frm;
|
|
|
|
break;
|
|
|
|
case IEEE80211_ELEMID_HTCAP:
|
|
|
|
htcap = frm;
|
|
|
|
break;
|
|
|
|
case IEEE80211_ELEMID_HTINFO:
|
|
|
|
htinfo = frm;
|
|
|
|
break;
|
|
|
|
case IEEE80211_ELEMID_VENDOR:
|
|
|
|
if (iswmeoui(frm))
|
|
|
|
wme = frm;
|
2009-06-07 22:00:22 +00:00
|
|
|
else if (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) {
|
2008-04-20 20:35:46 +00:00
|
|
|
/*
|
|
|
|
* Accept pre-draft HT ie's if the
|
|
|
|
* standard ones have not been seen.
|
|
|
|
*/
|
|
|
|
if (ishtcapoui(frm)) {
|
|
|
|
if (htcap == NULL)
|
|
|
|
htcap = frm;
|
|
|
|
} else if (ishtinfooui(frm)) {
|
|
|
|
if (htinfo == NULL)
|
2011-03-13 12:21:04 +00:00
|
|
|
htinfo = frm;
|
2008-04-20 20:35:46 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
/* XXX Atheros OUI support */
|
|
|
|
break;
|
[net80211] Initial VHT node upgrade/downgrade support and initial IE parsing.
This is the bulk of the magic to start enabling VHT channel negotiation.
It is absolutely, positively not yet even a complete VHT wave-1 implementation.
* parse IEs in scan, assoc req/resp, probe req/resp;
* break apart the channel upgrade from the HT IE parsing - do it after the
VHT IEs are parsed;
* (dirty! sigh) add channel width decision making in ieee80211_ht.c htinfo_update_chw().
This is the main bit where negotiated channel promotion through IEs occur.
* Shoehorn in VHT node init ,teardown, rate control, etc calls like the HT
versions;
* Do VHT channel adjustment where appropriate
Tested:
* monitor mode, ath10k port
* STA mode, ath10k port - VHT20, VHT40, VHT80 modes
TODO:
* IBSS;
* hostap;
* (ignore mesh, wds for now);
* finish 11n state engine - channel width change, opmode notifications, SMPS, etc;
* VHT basic rate negotiation and acceptance criteria when scanning, associating, etc;
* VHT control/management frame handling (group managment and operating mode being
the two big ones);
* Verify TX/RX VHT rate negotiation is actually working correctly.
Whilst here, add some comments about seqno allocation and locking. To achieve
the full VHT rates I need to push seqno allocation into the drivers and
finally remove the IEEE80211_TX_LOCK() I added years ago to fix issues. :/
2017-01-13 07:02:04 +00:00
|
|
|
case IEEE80211_ELEMID_VHT_CAP:
|
|
|
|
vhtcap = frm;
|
|
|
|
break;
|
|
|
|
case IEEE80211_ELEMID_VHT_OPMODE:
|
|
|
|
vhtopmode = frm;
|
|
|
|
break;
|
2008-04-20 20:35:46 +00:00
|
|
|
}
|
|
|
|
frm += frm[1] + 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
IEEE80211_VERIFY_ELEMENT(rates, IEEE80211_RATE_MAXSIZE, return);
|
|
|
|
if (xrates != NULL)
|
|
|
|
IEEE80211_VERIFY_ELEMENT(xrates,
|
|
|
|
IEEE80211_RATE_MAXSIZE - rates[1], return);
|
|
|
|
rate = ieee80211_setup_rates(ni, rates, xrates,
|
|
|
|
IEEE80211_F_JOIN |
|
|
|
|
IEEE80211_F_DOSORT | IEEE80211_F_DOFRATE |
|
|
|
|
IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
|
|
|
|
if (rate & IEEE80211_RATE_BASIC) {
|
|
|
|
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ASSOC,
|
|
|
|
wh->i_addr2,
|
|
|
|
"%sassoc failed (rate set mismatch)",
|
|
|
|
ISREASSOC(subtype) ? "re" : "");
|
|
|
|
vap->iv_stats.is_rx_assoc_norate++;
|
|
|
|
ieee80211_new_state(vap, IEEE80211_S_SCAN,
|
|
|
|
IEEE80211_SCAN_FAIL_STATUS);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
ni->ni_capinfo = capinfo;
|
|
|
|
ni->ni_associd = associd;
|
|
|
|
if (ni->ni_jointime == 0)
|
|
|
|
ni->ni_jointime = time_uptime;
|
|
|
|
if (wme != NULL &&
|
|
|
|
ieee80211_parse_wmeparams(vap, wme, wh) >= 0) {
|
|
|
|
ni->ni_flags |= IEEE80211_NODE_QOS;
|
|
|
|
ieee80211_wme_updateparams(vap);
|
|
|
|
} else
|
|
|
|
ni->ni_flags &= ~IEEE80211_NODE_QOS;
|
|
|
|
/*
|
|
|
|
* Setup HT state according to the negotiation.
|
|
|
|
*
|
|
|
|
* NB: shouldn't need to check if HT use is enabled but some
|
|
|
|
* ap's send back HT ie's even when we don't indicate we
|
|
|
|
* are HT capable in our AssocReq.
|
|
|
|
*/
|
|
|
|
if (htcap != NULL && htinfo != NULL &&
|
2009-06-07 22:00:22 +00:00
|
|
|
(vap->iv_flags_ht & IEEE80211_FHT_HT)) {
|
2008-09-21 23:44:15 +00:00
|
|
|
ieee80211_ht_node_init(ni);
|
|
|
|
ieee80211_ht_updateparams(ni, htcap, htinfo);
|
[net80211] Initial VHT node upgrade/downgrade support and initial IE parsing.
This is the bulk of the magic to start enabling VHT channel negotiation.
It is absolutely, positively not yet even a complete VHT wave-1 implementation.
* parse IEs in scan, assoc req/resp, probe req/resp;
* break apart the channel upgrade from the HT IE parsing - do it after the
VHT IEs are parsed;
* (dirty! sigh) add channel width decision making in ieee80211_ht.c htinfo_update_chw().
This is the main bit where negotiated channel promotion through IEs occur.
* Shoehorn in VHT node init ,teardown, rate control, etc calls like the HT
versions;
* Do VHT channel adjustment where appropriate
Tested:
* monitor mode, ath10k port
* STA mode, ath10k port - VHT20, VHT40, VHT80 modes
TODO:
* IBSS;
* hostap;
* (ignore mesh, wds for now);
* finish 11n state engine - channel width change, opmode notifications, SMPS, etc;
* VHT basic rate negotiation and acceptance criteria when scanning, associating, etc;
* VHT control/management frame handling (group managment and operating mode being
the two big ones);
* Verify TX/RX VHT rate negotiation is actually working correctly.
Whilst here, add some comments about seqno allocation and locking. To achieve
the full VHT rates I need to push seqno allocation into the drivers and
finally remove the IEEE80211_TX_LOCK() I added years ago to fix issues. :/
2017-01-13 07:02:04 +00:00
|
|
|
|
|
|
|
if ((vhtcap != NULL) && (vhtopmode != NULL) &
|
|
|
|
(vap->iv_flags_vht & IEEE80211_FVHT_VHT)) {
|
|
|
|
/*
|
|
|
|
* Log if we get a VHT assoc/reassoc response.
|
|
|
|
* We aren't ready for 2GHz VHT support.
|
|
|
|
*/
|
|
|
|
if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
|
|
|
|
printf("%s: peer %6D: VHT on 2GHz, ignoring\n",
|
|
|
|
__func__,
|
|
|
|
ni->ni_macaddr,
|
|
|
|
":");
|
|
|
|
} else {
|
|
|
|
ieee80211_vht_node_init(ni);
|
|
|
|
ieee80211_vht_updateparams(ni, vhtcap, vhtopmode);
|
|
|
|
ieee80211_setup_vht_rates(ni, vhtcap, vhtopmode);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ieee80211_ht_updateparams_final(ni, htcap, htinfo);
|
2008-04-20 20:35:46 +00:00
|
|
|
ieee80211_setup_htrates(ni, htcap,
|
|
|
|
IEEE80211_F_JOIN | IEEE80211_F_DOBRS);
|
|
|
|
ieee80211_setup_basic_htrates(ni, htinfo);
|
[net80211] Initial VHT node upgrade/downgrade support and initial IE parsing.
This is the bulk of the magic to start enabling VHT channel negotiation.
It is absolutely, positively not yet even a complete VHT wave-1 implementation.
* parse IEs in scan, assoc req/resp, probe req/resp;
* break apart the channel upgrade from the HT IE parsing - do it after the
VHT IEs are parsed;
* (dirty! sigh) add channel width decision making in ieee80211_ht.c htinfo_update_chw().
This is the main bit where negotiated channel promotion through IEs occur.
* Shoehorn in VHT node init ,teardown, rate control, etc calls like the HT
versions;
* Do VHT channel adjustment where appropriate
Tested:
* monitor mode, ath10k port
* STA mode, ath10k port - VHT20, VHT40, VHT80 modes
TODO:
* IBSS;
* hostap;
* (ignore mesh, wds for now);
* finish 11n state engine - channel width change, opmode notifications, SMPS, etc;
* VHT basic rate negotiation and acceptance criteria when scanning, associating, etc;
* VHT control/management frame handling (group managment and operating mode being
the two big ones);
* Verify TX/RX VHT rate negotiation is actually working correctly.
Whilst here, add some comments about seqno allocation and locking. To achieve
the full VHT rates I need to push seqno allocation into the drivers and
finally remove the IEEE80211_TX_LOCK() I added years ago to fix issues. :/
2017-01-13 07:02:04 +00:00
|
|
|
|
2009-06-11 04:43:42 +00:00
|
|
|
ieee80211_node_setuptxparms(ni);
|
2010-11-06 18:17:20 +00:00
|
|
|
ieee80211_ratectl_node_init(ni);
|
2008-04-20 20:35:46 +00:00
|
|
|
}
|
[net80211] Initial A-MSDU support for testing / evaluation
A-MSDU is another 11n aggregation mechanism where multiple ethernet
frames get LLC encapsulated (so they have a length field), padded,
and put in a single MPDU (802.11 MAC frame.) This means it gets sent
out as a single frame, with a single seqno, it's acked as one frame, etc.
It turns out that, hah, atheros fast frames is almost but not quite
like this, so I'm reusing all of the current superg/fast-frames stuff
in order to actually transmit A-MSDU. Yes, this means that A-MSDU
frames are also only aggregated two at a time, so it's not necessarily
a huge win, but it's better than nothing.
This doesn't do anything by default - the driver needs to say it does
A-MSDU as well as set the AMSDU software TX capability so this code path
gets exercised.
For now, the only driver that enables this is urtwn. I'll enable it
for rsu at some point soon.
Tested:
* Add an amsdu encap path to aggregate two frames, same as the
fast-frames path.
* Always do the superg init/teardown and node init/teardown stuff,
regardless of whether the nodes are doing fast-frames (the ATH
capability stuff.) That way we can reuse it for amsdu.
* Don't do AMSDU for multicast/broadcast and EAPOL frames.
* If we're doing A-MPDU, then don't bother doing FF/A-MSDU.
We can likely do both together, but I don't want to change
behaviour.
* Teach the fast frames approx txtime logic to support the 11n
rates. But, since we don't currently have a full "current rate"
support, assume it's HT20, long-gi, etc. That way we overshoot
on the TX time estimation, so we're always inside the requirements.
(And we only aggregate two frames for now, so we're not really
going to exceed that.)
* Drop the maximum FF age default down to 2ms, otherwise we end up
with some very annoyingly large latencies.
TODO:
* We only aggregate two ethernet frames, so I'm not checking the max
A-MSDU size. But when it comes time to support >2 frames, we should
obey that.
Tested:
* urtwn(4)
2016-04-06 01:21:51 +00:00
|
|
|
|
2016-04-09 21:57:34 +00:00
|
|
|
/*
|
|
|
|
* Always initialise FF/superg state; we can use this
|
|
|
|
* for doing A-MSDU encapsulation as well.
|
|
|
|
*/
|
|
|
|
#ifdef IEEE80211_SUPPORT_SUPERG
|
|
|
|
ieee80211_ff_node_init(ni);
|
|
|
|
#endif
|
|
|
|
|
2008-04-20 20:35:46 +00:00
|
|
|
/*
|
|
|
|
* Configure state now that we are associated.
|
|
|
|
*
|
|
|
|
* XXX may need different/additional driver callbacks?
|
|
|
|
*/
|
|
|
|
if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
|
|
|
|
(ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
|
|
|
|
ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
|
|
|
|
ic->ic_flags &= ~IEEE80211_F_USEBARKER;
|
|
|
|
} else {
|
|
|
|
ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
|
|
|
|
ic->ic_flags |= IEEE80211_F_USEBARKER;
|
|
|
|
}
|
[net80211] Migrate short slot time configuration into per-vap and deferred taskqueue updates.
The 11b/11g ERP and slot time update handling are two things which weren't
migrated into the per-VAP state when Sam did the initial VAP work.
That makes sense for a lot of setups where net80211 is driving radio state
and the radio only cares about the shared state.
However, as noted by a now deleted comment, the ERP and slot time updates
aren't EXACTLY correct/accurate - they only take into account the most
RECENTLY created VAP, and the state updates when one creates/destroys
VAPs isn't exactly great.
So:
* track the short slot logic per VAP;
* whenever the slot time configuration changes, just push it into a deferred
task queue update so drivers don't have to serialise it themselves;
* if a driver registers a per-VAP slot time handler then it'll just get the
per VAP one;
* .. if a driver registers a global one then the legacy behaviour is maintained -
a single slot time is calculated and pushed out.
Note that the calculated slot time is better than the existing logic - if ANY
of the VAPs require long slot then it's disabled for all VAPs rather than
whatever the last configured VAP did.
Now, this isn't entirely complete - the rest of ERP tracking around short/long
slot capable station tracking needs to be converted into per-VAP, as well
as the preamble/barker flags. Luckily those also can be done in a similar
fashion - keep per-VAP counters/flags and unify them before doing the driver
update. I'll defer that work until later.
All the existing drivers can keep doing what they're doing with the global
slot time flags as that is maintained. One driver (iwi) used the per-VAP
flags instead of the ic flags, so now that driver will work properly.
This unblocks some ath10k porting work as the firmware takes the slot time
configuration per-VAP rather than globally, and some firmware handles
STA+AP and STA+STA (on same/different channels) configurations where
the firmware will switch slot time as appropriate.
Tested:
* AR9380, STA/AP mode
* AR9880 (ath10k), STA mode
2020-06-05 06:21:23 +00:00
|
|
|
ieee80211_vap_set_shortslottime(vap,
|
2008-04-20 20:35:46 +00:00
|
|
|
IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
|
|
|
|
(ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME));
|
|
|
|
/*
|
|
|
|
* Honor ERP protection.
|
|
|
|
*
|
|
|
|
* NB: ni_erp should zero for non-11g operation.
|
|
|
|
*/
|
|
|
|
if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
|
|
|
|
(ni->ni_erp & IEEE80211_ERP_USE_PROTECTION))
|
|
|
|
ic->ic_flags |= IEEE80211_F_USEPROT;
|
|
|
|
else
|
|
|
|
ic->ic_flags &= ~IEEE80211_F_USEPROT;
|
|
|
|
IEEE80211_NOTE_MAC(vap,
|
|
|
|
IEEE80211_MSG_ASSOC | IEEE80211_MSG_DEBUG, wh->i_addr2,
|
2020-06-05 07:38:46 +00:00
|
|
|
"%sassoc success at aid %d: %s preamble, %s slot time%s%s%s%s%s%s%s%s%s",
|
2008-04-20 20:35:46 +00:00
|
|
|
ISREASSOC(subtype) ? "re" : "",
|
|
|
|
IEEE80211_NODE_AID(ni),
|
|
|
|
ic->ic_flags&IEEE80211_F_SHPREAMBLE ? "short" : "long",
|
[net80211] Migrate short slot time configuration into per-vap and deferred taskqueue updates.
The 11b/11g ERP and slot time update handling are two things which weren't
migrated into the per-VAP state when Sam did the initial VAP work.
That makes sense for a lot of setups where net80211 is driving radio state
and the radio only cares about the shared state.
However, as noted by a now deleted comment, the ERP and slot time updates
aren't EXACTLY correct/accurate - they only take into account the most
RECENTLY created VAP, and the state updates when one creates/destroys
VAPs isn't exactly great.
So:
* track the short slot logic per VAP;
* whenever the slot time configuration changes, just push it into a deferred
task queue update so drivers don't have to serialise it themselves;
* if a driver registers a per-VAP slot time handler then it'll just get the
per VAP one;
* .. if a driver registers a global one then the legacy behaviour is maintained -
a single slot time is calculated and pushed out.
Note that the calculated slot time is better than the existing logic - if ANY
of the VAPs require long slot then it's disabled for all VAPs rather than
whatever the last configured VAP did.
Now, this isn't entirely complete - the rest of ERP tracking around short/long
slot capable station tracking needs to be converted into per-VAP, as well
as the preamble/barker flags. Luckily those also can be done in a similar
fashion - keep per-VAP counters/flags and unify them before doing the driver
update. I'll defer that work until later.
All the existing drivers can keep doing what they're doing with the global
slot time flags as that is maintained. One driver (iwi) used the per-VAP
flags instead of the ic flags, so now that driver will work properly.
This unblocks some ath10k porting work as the firmware takes the slot time
configuration per-VAP rather than globally, and some firmware handles
STA+AP and STA+STA (on same/different channels) configurations where
the firmware will switch slot time as appropriate.
Tested:
* AR9380, STA/AP mode
* AR9880 (ath10k), STA mode
2020-06-05 06:21:23 +00:00
|
|
|
vap->iv_flags&IEEE80211_F_SHSLOT ? "short" : "long",
|
2008-04-20 20:35:46 +00:00
|
|
|
ic->ic_flags&IEEE80211_F_USEPROT ? ", protection" : "",
|
|
|
|
ni->ni_flags & IEEE80211_NODE_QOS ? ", QoS" : "",
|
|
|
|
ni->ni_flags & IEEE80211_NODE_HT ?
|
2008-09-06 17:51:02 +00:00
|
|
|
(ni->ni_chw == 40 ? ", HT40" : ", HT20") : "",
|
2008-04-20 20:35:46 +00:00
|
|
|
ni->ni_flags & IEEE80211_NODE_AMPDU ? " (+AMPDU)" : "",
|
2020-06-05 07:38:46 +00:00
|
|
|
ni->ni_flags & IEEE80211_NODE_AMSDU ? " (+AMSDU)" : "",
|
2008-09-21 23:59:14 +00:00
|
|
|
ni->ni_flags & IEEE80211_NODE_MIMO_RTS ? " (+SMPS-DYN)" :
|
|
|
|
ni->ni_flags & IEEE80211_NODE_MIMO_PS ? " (+SMPS)" : "",
|
2008-09-22 00:10:22 +00:00
|
|
|
ni->ni_flags & IEEE80211_NODE_RIFS ? " (+RIFS)" : "",
|
2008-04-20 20:35:46 +00:00
|
|
|
IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF) ?
|
|
|
|
", fast-frames" : "",
|
|
|
|
IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_TURBOP) ?
|
|
|
|
", turbo" : ""
|
|
|
|
);
|
|
|
|
ieee80211_new_state(vap, IEEE80211_S_RUN, subtype);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case IEEE80211_FC0_SUBTYPE_DEAUTH: {
|
|
|
|
uint16_t reason;
|
|
|
|
|
|
|
|
if (vap->iv_state == IEEE80211_S_SCAN) {
|
|
|
|
vap->iv_stats.is_rx_mgtdiscard++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (!IEEE80211_ADDR_EQ(wh->i_addr1, vap->iv_myaddr)) {
|
|
|
|
/* NB: can happen when in promiscuous mode */
|
|
|
|
vap->iv_stats.is_rx_mgtdiscard++;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* deauth frame format
|
|
|
|
* [2] reason
|
|
|
|
*/
|
|
|
|
IEEE80211_VERIFY_LENGTH(efrm - frm, 2, return);
|
|
|
|
reason = le16toh(*(uint16_t *)frm);
|
|
|
|
|
|
|
|
vap->iv_stats.is_rx_deauth++;
|
|
|
|
vap->iv_stats.is_rx_deauth_code = reason;
|
|
|
|
IEEE80211_NODE_STAT(ni, rx_deauth);
|
|
|
|
|
|
|
|
IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
|
2016-04-20 20:30:18 +00:00
|
|
|
"recv deauthenticate (reason: %d (%s))", reason,
|
|
|
|
ieee80211_reason_to_string(reason));
|
2008-04-20 20:35:46 +00:00
|
|
|
ieee80211_new_state(vap, IEEE80211_S_AUTH,
|
|
|
|
(reason << 8) | IEEE80211_FC0_SUBTYPE_DEAUTH);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case IEEE80211_FC0_SUBTYPE_DISASSOC: {
|
|
|
|
uint16_t reason;
|
|
|
|
|
|
|
|
if (vap->iv_state != IEEE80211_S_RUN &&
|
|
|
|
vap->iv_state != IEEE80211_S_ASSOC &&
|
|
|
|
vap->iv_state != IEEE80211_S_AUTH) {
|
|
|
|
vap->iv_stats.is_rx_mgtdiscard++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (!IEEE80211_ADDR_EQ(wh->i_addr1, vap->iv_myaddr)) {
|
|
|
|
/* NB: can happen when in promiscuous mode */
|
|
|
|
vap->iv_stats.is_rx_mgtdiscard++;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* disassoc frame format
|
|
|
|
* [2] reason
|
|
|
|
*/
|
|
|
|
IEEE80211_VERIFY_LENGTH(efrm - frm, 2, return);
|
|
|
|
reason = le16toh(*(uint16_t *)frm);
|
|
|
|
|
|
|
|
vap->iv_stats.is_rx_disassoc++;
|
|
|
|
vap->iv_stats.is_rx_disassoc_code = reason;
|
|
|
|
IEEE80211_NODE_STAT(ni, rx_disassoc);
|
|
|
|
|
|
|
|
IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
|
2016-04-20 20:30:18 +00:00
|
|
|
"recv disassociate (reason: %d (%s))", reason,
|
|
|
|
ieee80211_reason_to_string(reason));
|
2008-04-20 20:35:46 +00:00
|
|
|
ieee80211_new_state(vap, IEEE80211_S_ASSOC, 0);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case IEEE80211_FC0_SUBTYPE_ACTION:
|
2011-02-21 19:59:43 +00:00
|
|
|
case IEEE80211_FC0_SUBTYPE_ACTION_NOACK:
|
2011-02-22 19:05:42 +00:00
|
|
|
if (!IEEE80211_ADDR_EQ(vap->iv_myaddr, wh->i_addr1) &&
|
|
|
|
!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
|
|
|
|
wh, NULL, "%s", "not for us");
|
|
|
|
vap->iv_stats.is_rx_mgtdiscard++;
|
|
|
|
} else if (vap->iv_state != IEEE80211_S_RUN) {
|
2011-02-21 19:59:43 +00:00
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
|
|
|
|
wh, NULL, "wrong state %s",
|
|
|
|
ieee80211_state_name[vap->iv_state]);
|
2008-04-20 20:35:46 +00:00
|
|
|
vap->iv_stats.is_rx_mgtdiscard++;
|
2011-02-22 19:05:42 +00:00
|
|
|
} else {
|
|
|
|
if (ieee80211_parse_action(ni, m0) == 0)
|
|
|
|
(void)ic->ic_recv_action(ni, wh, frm, efrm);
|
2011-02-21 19:59:43 +00:00
|
|
|
}
|
2008-04-20 20:35:46 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
|
|
|
|
case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
|
2011-02-21 19:59:43 +00:00
|
|
|
case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
|
2016-02-19 05:59:38 +00:00
|
|
|
case IEEE80211_FC0_SUBTYPE_TIMING_ADV:
|
2011-02-21 19:59:43 +00:00
|
|
|
case IEEE80211_FC0_SUBTYPE_ATIM:
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
|
|
|
|
wh, NULL, "%s", "not handled");
|
2008-04-20 20:35:46 +00:00
|
|
|
vap->iv_stats.is_rx_mgtdiscard++;
|
2011-02-21 19:59:43 +00:00
|
|
|
break;
|
|
|
|
|
2008-04-20 20:35:46 +00:00
|
|
|
default:
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
|
2011-02-21 19:59:43 +00:00
|
|
|
wh, "mgt", "subtype 0x%x not handled", subtype);
|
2008-04-20 20:35:46 +00:00
|
|
|
vap->iv_stats.is_rx_badsubtype++;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#undef ISREASSOC
|
|
|
|
}
|
2009-04-26 21:46:04 +00:00
|
|
|
|
|
|
|
static void
|
2010-03-18 11:06:38 +00:00
|
|
|
sta_recv_ctl(struct ieee80211_node *ni, struct mbuf *m, int subtype)
|
2009-04-26 21:46:04 +00:00
|
|
|
{
|
2010-03-18 11:06:38 +00:00
|
|
|
switch (subtype) {
|
|
|
|
case IEEE80211_FC0_SUBTYPE_BAR:
|
|
|
|
ieee80211_recv_bar(ni, m);
|
|
|
|
break;
|
|
|
|
}
|
2009-04-26 21:46:04 +00:00
|
|
|
}
|