freebsd-nq/sys/kern/kern_clock.c

484 lines
13 KiB
C
Raw Normal View History

1994-05-24 10:09:53 +00:00
/*-
* Copyright (c) 1982, 1986, 1991, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
1999-08-28 01:08:13 +00:00
* $FreeBSD$
1994-05-24 10:09:53 +00:00
*/
#include "opt_ntp.h"
1994-05-24 10:09:53 +00:00
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/kernel.h>
#include <sys/lock.h>
2001-10-11 17:53:43 +00:00
#include <sys/ktr.h>
#include <sys/mutex.h>
1994-05-24 10:09:53 +00:00
#include <sys/proc.h>
#include <sys/resource.h>
1994-05-24 10:09:53 +00:00
#include <sys/resourcevar.h>
#include <sys/sched.h>
#include <sys/signalvar.h>
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
#include <sys/smp.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <sys/sysctl.h>
#include <sys/bus.h>
#include <sys/interrupt.h>
#include <sys/timetc.h>
1994-05-24 10:09:53 +00:00
#include <machine/cpu.h>
#include <machine/limits.h>
1994-05-24 10:09:53 +00:00
#ifdef GPROF
#include <sys/gmon.h>
#endif
Device Polling code for -current. Non-SMP, i386-only, no polling in the idle loop at the moment. To use this code you must compile a kernel with options DEVICE_POLLING and at runtime enable polling with sysctl kern.polling.enable=1 The percentage of CPU reserved to userland can be set with sysctl kern.polling.user_frac=NN (default is 50) while the remainder is used by polling device drivers and netisr's. These are the only two variables that you should need to touch. There are a few more parameters in kern.polling but the default values are adequate for all purposes. See the code in kern_poll.c for more details on them. Polling in the idle loop will be implemented shortly by introducing a kernel thread which does the job. Until then, the amount of CPU dedicated to polling will never exceed (100-user_frac). The equivalent (actually, better) code for -stable is at http://info.iet.unipi.it/~luigi/polling/ and also supports polling in the idle loop. NOTE to Alpha developers: There is really nothing in this code that is i386-specific. If you move the 2 lines supporting the new option from sys/conf/{files,options}.i386 to sys/conf/{files,options} I am pretty sure that this should work on the Alpha as well, just that I do not have a suitable test box to try it. If someone feels like trying it, I would appreciate it. NOTE to other developers: sure some things could be done better, and as always I am open to constructive criticism, which a few of you have already given and I greatly appreciated. However, before proposing radical architectural changes, please take some time to possibly try out this code, or at the very least read the comments in kern_poll.c, especially re. the reason why I am using a soft netisr and cannot (I believe) replace it with a simple timeout. Quick description of files touched by this commit: sys/conf/files.i386 new file kern/kern_poll.c sys/conf/options.i386 new option sys/i386/i386/trap.c poll in trap (disabled by default) sys/kern/kern_clock.c initialization and hardclock hooks. sys/kern/kern_intr.c minor swi_net changes sys/kern/kern_poll.c the bulk of the code. sys/net/if.h new flag sys/net/if_var.h declaration for functions used in device drivers. sys/net/netisr.h NETISR_POLL sys/dev/fxp/if_fxp.c sys/dev/fxp/if_fxpvar.h sys/pci/if_dc.c sys/pci/if_dcreg.h sys/pci/if_sis.c sys/pci/if_sisreg.h device driver modifications
2001-12-14 17:56:12 +00:00
#ifdef DEVICE_POLLING
extern void hardclock_device_poll(void);
#endif /* DEVICE_POLLING */
2002-03-19 21:25:46 +00:00
static void initclocks(void *dummy);
SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
/* Some of these don't belong here, but it's easiest to concentrate them. */
long cp_time[CPUSTATES];
SYSCTL_OPAQUE(_kern, OID_AUTO, cp_time, CTLFLAG_RD, &cp_time, sizeof(cp_time),
"LU", "CPU time statistics");
1994-05-24 10:09:53 +00:00
/*
* Clock handling routines.
*
* This code is written to operate with two timers that run independently of
* each other.
1994-05-24 10:09:53 +00:00
*
* The main timer, running hz times per second, is used to trigger interval
* timers, timeouts and rescheduling as needed.
1994-05-24 10:09:53 +00:00
*
* The second timer handles kernel and user profiling,
* and does resource use estimation. If the second timer is programmable,
* it is randomized to avoid aliasing between the two clocks. For example,
* the randomization prevents an adversary from always giving up the cpu
* just before its quantum expires. Otherwise, it would never accumulate
* cpu ticks. The mean frequency of the second timer is stathz.
*
* If no second timer exists, stathz will be zero; in this case we drive
* profiling and statistics off the main clock. This WILL NOT be accurate;
* do not do it unless absolutely necessary.
*
1994-05-24 10:09:53 +00:00
* The statistics clock may (or may not) be run at a higher rate while
* profiling. This profile clock runs at profhz. We require that profhz
* be an integral multiple of stathz.
*
* If the statistics clock is running fast, it must be divided by the ratio
* profhz/stathz for statistics. (For profiling, every tick counts.)
1994-05-24 10:09:53 +00:00
*
* Time-of-day is maintained using a "timecounter", which may or may
* not be related to the hardware generating the above mentioned
* interrupts.
1994-05-24 10:09:53 +00:00
*/
int stathz;
int profhz;
int profprocs;
1994-05-24 10:09:53 +00:00
int ticks;
int psratio;
1994-05-24 10:09:53 +00:00
/*
* Initialize clock frequencies and start both clocks running.
*/
/* ARGSUSED*/
static void
initclocks(dummy)
void *dummy;
1994-05-24 10:09:53 +00:00
{
register int i;
/*
* Set divisors to 1 (normal case) and let the machine-specific
* code do its bit.
*/
cpu_initclocks();
/*
* Compute profhz/stathz, and fix profhz if needed.
*/
i = stathz ? stathz : hz;
if (profhz == 0)
profhz = i;
psratio = profhz / i;
}
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
/*
* Each time the real-time timer fires, this function is called on all CPUs.
* Note that hardclock() calls hardclock_process() for the boot CPU, so only
* the other CPUs in the system need to call this function.
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
*/
void
hardclock_process(frame)
register struct clockframe *frame;
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
{
struct pstats *pstats;
struct thread *td = curthread;
struct proc *p = td->td_proc;
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
/*
* Run current process's virtual and profile time, as needed.
*/
mtx_lock_spin_flags(&sched_lock, MTX_QUIET);
if (p->p_flag & P_THREADED) {
/* XXXKSE What to do? */
} else {
pstats = p->p_stats;
if (CLKF_USERMODE(frame) &&
timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) {
p->p_sflag |= PS_ALRMPEND;
td->td_flags |= TDF_ASTPENDING;
}
if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) {
p->p_sflag |= PS_PROFPEND;
td->td_flags |= TDF_ASTPENDING;
}
}
mtx_unlock_spin_flags(&sched_lock, MTX_QUIET);
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
}
1994-05-24 10:09:53 +00:00
/*
* The real-time timer, interrupting hz times per second.
*/
void
hardclock(frame)
register struct clockframe *frame;
{
int need_softclock = 0;
1994-05-24 10:09:53 +00:00
CTR0(KTR_CLK, "hardclock fired");
hardclock_process(frame);
tc_ticktock();
1994-05-24 10:09:53 +00:00
/*
* If no separate statistics clock is available, run it from here.
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
*
* XXX: this only works for UP
1994-05-24 10:09:53 +00:00
*/
if (stathz == 0) {
profclock(frame);
1994-05-24 10:09:53 +00:00
statclock(frame);
}
1994-05-24 10:09:53 +00:00
Device Polling code for -current. Non-SMP, i386-only, no polling in the idle loop at the moment. To use this code you must compile a kernel with options DEVICE_POLLING and at runtime enable polling with sysctl kern.polling.enable=1 The percentage of CPU reserved to userland can be set with sysctl kern.polling.user_frac=NN (default is 50) while the remainder is used by polling device drivers and netisr's. These are the only two variables that you should need to touch. There are a few more parameters in kern.polling but the default values are adequate for all purposes. See the code in kern_poll.c for more details on them. Polling in the idle loop will be implemented shortly by introducing a kernel thread which does the job. Until then, the amount of CPU dedicated to polling will never exceed (100-user_frac). The equivalent (actually, better) code for -stable is at http://info.iet.unipi.it/~luigi/polling/ and also supports polling in the idle loop. NOTE to Alpha developers: There is really nothing in this code that is i386-specific. If you move the 2 lines supporting the new option from sys/conf/{files,options}.i386 to sys/conf/{files,options} I am pretty sure that this should work on the Alpha as well, just that I do not have a suitable test box to try it. If someone feels like trying it, I would appreciate it. NOTE to other developers: sure some things could be done better, and as always I am open to constructive criticism, which a few of you have already given and I greatly appreciated. However, before proposing radical architectural changes, please take some time to possibly try out this code, or at the very least read the comments in kern_poll.c, especially re. the reason why I am using a soft netisr and cannot (I believe) replace it with a simple timeout. Quick description of files touched by this commit: sys/conf/files.i386 new file kern/kern_poll.c sys/conf/options.i386 new option sys/i386/i386/trap.c poll in trap (disabled by default) sys/kern/kern_clock.c initialization and hardclock hooks. sys/kern/kern_intr.c minor swi_net changes sys/kern/kern_poll.c the bulk of the code. sys/net/if.h new flag sys/net/if_var.h declaration for functions used in device drivers. sys/net/netisr.h NETISR_POLL sys/dev/fxp/if_fxp.c sys/dev/fxp/if_fxpvar.h sys/pci/if_dc.c sys/pci/if_dcreg.h sys/pci/if_sis.c sys/pci/if_sisreg.h device driver modifications
2001-12-14 17:56:12 +00:00
#ifdef DEVICE_POLLING
hardclock_device_poll(); /* this is very short and quick */
Device Polling code for -current. Non-SMP, i386-only, no polling in the idle loop at the moment. To use this code you must compile a kernel with options DEVICE_POLLING and at runtime enable polling with sysctl kern.polling.enable=1 The percentage of CPU reserved to userland can be set with sysctl kern.polling.user_frac=NN (default is 50) while the remainder is used by polling device drivers and netisr's. These are the only two variables that you should need to touch. There are a few more parameters in kern.polling but the default values are adequate for all purposes. See the code in kern_poll.c for more details on them. Polling in the idle loop will be implemented shortly by introducing a kernel thread which does the job. Until then, the amount of CPU dedicated to polling will never exceed (100-user_frac). The equivalent (actually, better) code for -stable is at http://info.iet.unipi.it/~luigi/polling/ and also supports polling in the idle loop. NOTE to Alpha developers: There is really nothing in this code that is i386-specific. If you move the 2 lines supporting the new option from sys/conf/{files,options}.i386 to sys/conf/{files,options} I am pretty sure that this should work on the Alpha as well, just that I do not have a suitable test box to try it. If someone feels like trying it, I would appreciate it. NOTE to other developers: sure some things could be done better, and as always I am open to constructive criticism, which a few of you have already given and I greatly appreciated. However, before proposing radical architectural changes, please take some time to possibly try out this code, or at the very least read the comments in kern_poll.c, especially re. the reason why I am using a soft netisr and cannot (I believe) replace it with a simple timeout. Quick description of files touched by this commit: sys/conf/files.i386 new file kern/kern_poll.c sys/conf/options.i386 new option sys/i386/i386/trap.c poll in trap (disabled by default) sys/kern/kern_clock.c initialization and hardclock hooks. sys/kern/kern_intr.c minor swi_net changes sys/kern/kern_poll.c the bulk of the code. sys/net/if.h new flag sys/net/if_var.h declaration for functions used in device drivers. sys/net/netisr.h NETISR_POLL sys/dev/fxp/if_fxp.c sys/dev/fxp/if_fxpvar.h sys/pci/if_dc.c sys/pci/if_dcreg.h sys/pci/if_sis.c sys/pci/if_sisreg.h device driver modifications
2001-12-14 17:56:12 +00:00
#endif /* DEVICE_POLLING */
/*
* Process callouts at a very low cpu priority, so we don't keep the
* relatively high clock interrupt priority any longer than necessary.
*/
mtx_lock_spin_flags(&callout_lock, MTX_QUIET);
ticks++;
if (TAILQ_FIRST(&callwheel[ticks & callwheelmask]) != NULL) {
need_softclock = 1;
} else if (softticks + 1 == ticks)
++softticks;
mtx_unlock_spin_flags(&callout_lock, MTX_QUIET);
/*
* swi_sched acquires sched_lock, so we don't want to call it with
* callout_lock held; incorrect locking order.
*/
if (need_softclock)
Change the preemption code for software interrupt thread schedules and mutex releases to not require flags for the cases when preemption is not allowed: The purpose of the MTX_NOSWITCH and SWI_NOSWITCH flags is to prevent switching to a higher priority thread on mutex releease and swi schedule, respectively when that switch is not safe. Now that the critical section API maintains a per-thread nesting count, the kernel can easily check whether or not it should switch without relying on flags from the programmer. This fixes a few bugs in that all current callers of swi_sched() used SWI_NOSWITCH, when in fact, only the ones called from fast interrupt handlers and the swi_sched of softclock needed this flag. Note that to ensure that swi_sched()'s in clock and fast interrupt handlers do not switch, these handlers have to be explicitly wrapped in critical_enter/exit pairs. Presently, just wrapping the handlers is sufficient, but in the future with the fully preemptive kernel, the interrupt must be EOI'd before critical_exit() is called. (critical_exit() can switch due to a deferred preemption in a fully preemptive kernel.) I've tested the changes to the interrupt code on i386 and alpha. I have not tested ia64, but the interrupt code is almost identical to the alpha code, so I expect it will work fine. PowerPC and ARM do not yet have interrupt code in the tree so they shouldn't be broken. Sparc64 is broken, but that's been ok'd by jake and tmm who will be fixing the interrupt code for sparc64 shortly. Reviewed by: peter Tested on: i386, alpha
2002-01-05 08:47:13 +00:00
swi_sched(softclock_ih, 0);
init_main.c subr_autoconf.c: Add support for "interrupt driven configuration hooks". A component of the kernel can register a hook, most likely during auto-configuration, and receive a callback once interrupt services are available. This callback will occur before the root and dump devices are configured, so the configuration task can affect the selection of those two devices or complete any tasks that need to be performed prior to launching init. System boot is posponed so long as a hook is registered. The hook owner is responsible for removing the hook once their task is complete or the system boot can continue. kern_acct.c kern_clock.c kern_exit.c kern_synch.c kern_time.c: Change the interface and implementation for the kernel callout service. The new implemntaion is based on the work of Adam M. Costello and George Varghese, published in a technical report entitled "Redesigning the BSD Callout and Timer Facilities". The interface used in FreeBSD is a little different than the one outlined in the paper. The new function prototypes are: struct callout_handle timeout(void (*func)(void *), void *arg, int ticks); void untimeout(void (*func)(void *), void *arg, struct callout_handle handle); If a client wishes to remove a timeout, it must store the callout_handle returned by timeout and pass it to untimeout. The new implementation gives 0(1) insert and removal of callouts making this interface scale well even for applications that keep 100s of callouts outstanding. See the updated timeout.9 man page for more details.
1997-09-21 22:00:25 +00:00
}
1994-05-24 10:09:53 +00:00
/*
* Compute number of ticks in the specified amount of time.
1994-05-24 10:09:53 +00:00
*/
int
tvtohz(tv)
1994-05-24 10:09:53 +00:00
struct timeval *tv;
{
register unsigned long ticks;
register long sec, usec;
1994-05-24 10:09:53 +00:00
/*
* If the number of usecs in the whole seconds part of the time
* difference fits in a long, then the total number of usecs will
* fit in an unsigned long. Compute the total and convert it to
* ticks, rounding up and adding 1 to allow for the current tick
* to expire. Rounding also depends on unsigned long arithmetic
* to avoid overflow.
1994-05-24 10:09:53 +00:00
*
* Otherwise, if the number of ticks in the whole seconds part of
* the time difference fits in a long, then convert the parts to
* ticks separately and add, using similar rounding methods and
* overflow avoidance. This method would work in the previous
* case but it is slightly slower and assumes that hz is integral.
*
* Otherwise, round the time difference down to the maximum
* representable value.
*
* If ints have 32 bits, then the maximum value for any timeout in
* 10ms ticks is 248 days.
1994-05-24 10:09:53 +00:00
*/
sec = tv->tv_sec;
usec = tv->tv_usec;
if (usec < 0) {
sec--;
usec += 1000000;
}
if (sec < 0) {
#ifdef DIAGNOSTIC
if (usec > 0) {
sec++;
usec -= 1000000;
}
printf("tvotohz: negative time difference %ld sec %ld usec\n",
sec, usec);
#endif
ticks = 1;
} else if (sec <= LONG_MAX / 1000000)
ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
/ tick + 1;
else if (sec <= LONG_MAX / hz)
ticks = sec * hz
+ ((unsigned long)usec + (tick - 1)) / tick + 1;
else
ticks = LONG_MAX;
if (ticks > INT_MAX)
ticks = INT_MAX;
return ((int)ticks);
1994-05-24 10:09:53 +00:00
}
/*
* Start profiling on a process.
*
* Kernel profiling passes proc0 which never exits and hence
* keeps the profile clock running constantly.
*/
void
startprofclock(p)
register struct proc *p;
{
2001-01-24 10:43:25 +00:00
/*
* XXX; Right now sched_lock protects statclock(), but perhaps
* it should be protected later on by a time_lock, which would
* cover psdiv, etc. as well.
*/
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&sched_lock);
if (p->p_sflag & PS_STOPPROF) {
mtx_unlock_spin(&sched_lock);
return;
}
2001-01-24 10:43:25 +00:00
if ((p->p_sflag & PS_PROFIL) == 0) {
p->p_sflag |= PS_PROFIL;
if (++profprocs == 1)
cpu_startprofclock();
1994-05-24 10:09:53 +00:00
}
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&sched_lock);
1994-05-24 10:09:53 +00:00
}
/*
* Stop profiling on a process.
*/
void
stopprofclock(p)
register struct proc *p;
{
PROC_LOCK_ASSERT(p, MA_OWNED);
retry:
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&sched_lock);
2001-01-24 10:43:25 +00:00
if (p->p_sflag & PS_PROFIL) {
if (p->p_profthreads) {
p->p_sflag |= PS_STOPPROF;
mtx_unlock_spin(&sched_lock);
msleep(&p->p_profthreads, &p->p_mtx, PPAUSE,
"stopprof", NULL);
goto retry;
}
p->p_sflag &= ~(PS_PROFIL|PS_STOPPROF);
if (--profprocs == 0)
cpu_stopprofclock();
1994-05-24 10:09:53 +00:00
}
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&sched_lock);
1994-05-24 10:09:53 +00:00
}
/*
* Statistics clock. Grab profile sample, and if divider reaches 0,
* do process and kernel statistics. Most of the statistics are only
* used by user-level statistics programs. The main exceptions are
* ke->ke_uticks, p->p_sticks, p->p_iticks, and p->p_estcpu.
* This should be called by all active processors.
1994-05-24 10:09:53 +00:00
*/
void
statclock(frame)
register struct clockframe *frame;
1994-05-24 10:09:53 +00:00
{
struct pstats *pstats;
struct rusage *ru;
struct vmspace *vm;
struct thread *td;
struct kse *ke;
struct proc *p;
long rss;
td = curthread;
p = td->td_proc;
mtx_lock_spin_flags(&sched_lock, MTX_QUIET);
ke = td->td_kse;
if (CLKF_USERMODE(frame)) {
1994-05-24 10:09:53 +00:00
/*
* Charge the time as appropriate.
1994-05-24 10:09:53 +00:00
*/
if (p->p_flag & P_THREADED)
thread_statclock(1);
p->p_uticks++;
if (ke->ke_ksegrp->kg_nice > NZERO)
1994-05-24 10:09:53 +00:00
cp_time[CP_NICE]++;
else
cp_time[CP_USER]++;
} else {
/*
* Came from kernel mode, so we were:
* - handling an interrupt,
* - doing syscall or trap work on behalf of the current
* user process, or
* - spinning in the idle loop.
* Whichever it is, charge the time as appropriate.
* Note that we charge interrupts to the current process,
* regardless of whether they are ``for'' that process,
* so that we know how much of its real time was spent
* in ``non-process'' (i.e., interrupt) work.
*/
if ((td->td_ithd != NULL) || td->td_intr_nesting_level >= 2) {
p->p_iticks++;
1994-05-24 10:09:53 +00:00
cp_time[CP_INTR]++;
} else {
if (p->p_flag & P_THREADED)
thread_statclock(0);
td->td_sticks++;
p->p_sticks++;
if (p != PCPU_GET(idlethread)->td_proc)
cp_time[CP_SYS]++;
else
cp_time[CP_IDLE]++;
}
1994-05-24 10:09:53 +00:00
}
sched_clock(td);
/* Update resource usage integrals and maximums. */
if ((pstats = p->p_stats) != NULL &&
(ru = &pstats->p_ru) != NULL &&
(vm = p->p_vmspace) != NULL) {
ru->ru_ixrss += pgtok(vm->vm_tsize);
ru->ru_idrss += pgtok(vm->vm_dsize);
ru->ru_isrss += pgtok(vm->vm_ssize);
rss = pgtok(vmspace_resident_count(vm));
if (ru->ru_maxrss < rss)
ru->ru_maxrss = rss;
1994-05-24 10:09:53 +00:00
}
mtx_unlock_spin_flags(&sched_lock, MTX_QUIET);
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
}
- Change fast interrupts on x86 to push a full interrupt frame and to return through doreti to handle ast's. This is necessary for the clock interrupts to work properly. - Change the clock interrupts on the x86 to be fast instead of threaded. This is needed because both hardclock() and statclock() need to run in the context of the current process, not in a separate thread context. - Kill the prevproc hack as it is no longer needed. - We really need Giant when we call psignal(), but we don't want to block during the clock interrupt. Instead, use two p_flag's in the proc struct to mark the current process as having a pending SIGVTALRM or a SIGPROF and let them be delivered during ast() when hardclock() has finished running. - Remove CLKF_BASEPRI, which was #ifdef'd out on the x86 anyways. It was broken on the x86 if it was turned on since cpl is gone. It's only use was to bogusly run softclock() directly during hardclock() rather than scheduling an SWI. - Remove the COM_LOCK simplelock and replace it with a clock_lock spin mutex. Since the spin mutex already handles disabling/restoring interrupts appropriately, this also lets us axe all the *_intr() fu. - Back out the hacks in the APIC_IO x86 cpu_initclocks() code to use temporary fast interrupts for the APIC trial. - Add two new process flags P_ALRMPEND and P_PROFPEND to mark the pending signals in hardclock() that are to be delivered in ast(). Submitted by: jakeb (making statclock safe in a fast interrupt) Submitted by: cp (concept of delaying signals until ast())
2000-10-06 02:20:21 +00:00
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
void
profclock(frame)
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
register struct clockframe *frame;
{
struct thread *td;
#ifdef GPROF
struct gmonparam *g;
int i;
#endif
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
td = curthread;
if (CLKF_USERMODE(frame)) {
/*
* Came from user mode; CPU was in user state.
* If this process is being profiled, record the tick.
* if there is no related user location yet, don't
* bother trying to count it.
*/
td = curthread;
2003-02-25 05:14:18 +00:00
if (td->td_proc->p_sflag & PS_PROFIL)
addupc_intr(td, CLKF_PC(frame), 1);
}
#ifdef GPROF
else {
/*
* Kernel statistics are just like addupc_intr, only easier.
*/
g = &_gmonparam;
if (g->state == GMON_PROF_ON) {
i = CLKF_PC(frame) - g->lowpc;
if (i < g->textsize) {
i /= HISTFRACTION * sizeof(*g->kcount);
g->kcount[i]++;
}
}
}
#endif
1994-05-24 10:09:53 +00:00
}
/*
* Return information about system clocks.
*/
static int
sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
1994-05-24 10:09:53 +00:00
{
struct clockinfo clkinfo;
/*
* Construct clockinfo structure.
*/
bzero(&clkinfo, sizeof(clkinfo));
1994-05-24 10:09:53 +00:00
clkinfo.hz = hz;
clkinfo.tick = tick;
clkinfo.profhz = profhz;
clkinfo.stathz = stathz ? stathz : hz;
return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
1994-05-24 10:09:53 +00:00
}
SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
0, 0, sysctl_kern_clockrate, "S,clockinfo",
"Rate and period of various kernel clocks");