o Merge in changes to the NetBSD sources:
pcmciavar.h 1.9->1.12
1.12, enami, minor coding nits
1.11, augustss, (pcmcia_devinfo NRFB)
1.10, cgd, add generic lookup routines
pcmcia.c 1.14->1.23
1.23, drochner, (probe code printing, NRFB)
1.22, augustss, KNF
1.21, uch, (hpcmips tweaks NRFB)
1.20, chopps, remove bogus debug
1.19, enami, minor coding nits
1.18, augustss, (pcmcia_devinfo NRFB)
1.17, nathanw, LP64 printf fixes
1.16, cgd, add generic lookup routines
1.15, aymeric, printf fixes
NRFB == not relevant to freebsd
o Expand the pccard matching routines to include the ability to match
against the CIS strings since our current driver database is based on
that.
o Add lots more ivars to get the information necessary to snag these values.
2000-09-22 01:15:26 +00:00
|
|
|
/* $NetBSD: pcmcia.c,v 1.23 2000/07/28 19:17:02 drochner Exp $ */
|
1999-10-26 06:52:31 +00:00
|
|
|
|
2005-01-06 01:43:34 +00:00
|
|
|
/*-
|
2017-11-27 14:52:40 +00:00
|
|
|
* SPDX-License-Identifier: BSD-4-Clause
|
|
|
|
*
|
1999-10-26 06:52:31 +00:00
|
|
|
* Copyright (c) 1997 Marc Horowitz. All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
|
|
* must display the following acknowledgement:
|
|
|
|
* This product includes software developed by Marc Horowitz.
|
|
|
|
* 4. The name of the author may not be used to endorse or promote products
|
|
|
|
* derived from this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
2003-08-24 17:55:58 +00:00
|
|
|
#include <sys/cdefs.h>
|
|
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
|
1999-10-26 06:52:31 +00:00
|
|
|
#include <sys/param.h>
|
Extract eventfilter declarations to sys/_eventfilter.h
This allows replacing "sys/eventfilter.h" includes with "sys/_eventfilter.h"
in other header files (e.g., sys/{bus,conf,cpu}.h) and reduces header
pollution substantially.
EVENTHANDLER_DECLARE and EVENTHANDLER_LIST_DECLAREs were moved out of .c
files into appropriate headers (e.g., sys/proc.h, powernv/opal.h).
As a side effect of reduced header pollution, many .c files and headers no
longer contain needed definitions. The remainder of the patch addresses
adding appropriate includes to fix those files.
LOCK_DEBUG and LOCK_FILE_LINE_ARG are moved to sys/_lock.h, as required by
sys/mutex.h since r326106 (but silently protected by header pollution prior
to this change).
No functional change (intended). Of course, any out of tree modules that
relied on header pollution for sys/eventhandler.h, sys/lock.h, or
sys/mutex.h inclusion need to be fixed. __FreeBSD_version has been bumped.
2019-05-20 00:38:23 +00:00
|
|
|
#include <sys/kernel.h>
|
|
|
|
#include <sys/lock.h>
|
1999-10-26 06:52:31 +00:00
|
|
|
#include <sys/malloc.h>
|
|
|
|
#include <sys/module.h>
|
Extract eventfilter declarations to sys/_eventfilter.h
This allows replacing "sys/eventfilter.h" includes with "sys/_eventfilter.h"
in other header files (e.g., sys/{bus,conf,cpu}.h) and reduces header
pollution substantially.
EVENTHANDLER_DECLARE and EVENTHANDLER_LIST_DECLAREs were moved out of .c
files into appropriate headers (e.g., sys/proc.h, powernv/opal.h).
As a side effect of reduced header pollution, many .c files and headers no
longer contain needed definitions. The remainder of the patch addresses
adding appropriate includes to fix those files.
LOCK_DEBUG and LOCK_FILE_LINE_ARG are moved to sys/_lock.h, as required by
sys/mutex.h since r326106 (but silently protected by header pollution prior
to this change).
No functional change (intended). Of course, any out of tree modules that
relied on header pollution for sys/eventhandler.h, sys/lock.h, or
sys/mutex.h inclusion need to be fixed. __FreeBSD_version has been bumped.
2019-05-20 00:38:23 +00:00
|
|
|
#include <sys/mutex.h>
|
1999-10-26 06:52:31 +00:00
|
|
|
#include <sys/queue.h>
|
2018-06-27 04:11:14 +00:00
|
|
|
#include <sys/sbuf.h>
|
2002-03-07 08:03:53 +00:00
|
|
|
#include <sys/sysctl.h>
|
Extract eventfilter declarations to sys/_eventfilter.h
This allows replacing "sys/eventfilter.h" includes with "sys/_eventfilter.h"
in other header files (e.g., sys/{bus,conf,cpu}.h) and reduces header
pollution substantially.
EVENTHANDLER_DECLARE and EVENTHANDLER_LIST_DECLAREs were moved out of .c
files into appropriate headers (e.g., sys/proc.h, powernv/opal.h).
As a side effect of reduced header pollution, many .c files and headers no
longer contain needed definitions. The remainder of the patch addresses
adding appropriate includes to fix those files.
LOCK_DEBUG and LOCK_FILE_LINE_ARG are moved to sys/_lock.h, as required by
sys/mutex.h since r326106 (but silently protected by header pollution prior
to this change).
No functional change (intended). Of course, any out of tree modules that
relied on header pollution for sys/eventhandler.h, sys/lock.h, or
sys/mutex.h inclusion need to be fixed. __FreeBSD_version has been bumped.
2019-05-20 00:38:23 +00:00
|
|
|
#include <sys/systm.h>
|
1999-10-26 06:52:31 +00:00
|
|
|
|
|
|
|
#include <sys/bus.h>
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <sys/rman.h>
|
|
|
|
#include <machine/resource.h>
|
|
|
|
|
2001-09-02 06:37:41 +00:00
|
|
|
#include <net/ethernet.h>
|
|
|
|
|
1999-10-26 06:52:31 +00:00
|
|
|
#include <dev/pccard/pccardreg.h>
|
|
|
|
#include <dev/pccard/pccardvar.h>
|
2005-09-20 06:47:33 +00:00
|
|
|
#include <dev/pccard/pccardvarp.h>
|
2005-04-12 06:00:06 +00:00
|
|
|
#include <dev/pccard/pccard_cis.h>
|
1999-10-26 06:52:31 +00:00
|
|
|
|
2000-01-06 07:30:28 +00:00
|
|
|
#include "power_if.h"
|
2000-04-13 06:42:58 +00:00
|
|
|
#include "card_if.h"
|
2000-01-06 07:30:28 +00:00
|
|
|
|
|
|
|
#define PCCARDDEBUG
|
|
|
|
|
2002-03-07 08:03:53 +00:00
|
|
|
/* sysctl vars */
|
2020-02-26 14:26:36 +00:00
|
|
|
static SYSCTL_NODE(_hw, OID_AUTO, pccard, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
|
|
|
|
"PCCARD parameters");
|
2002-03-07 08:03:53 +00:00
|
|
|
|
2002-02-04 15:55:21 +00:00
|
|
|
int pccard_debug = 0;
|
2014-06-28 03:56:17 +00:00
|
|
|
SYSCTL_INT(_hw_pccard, OID_AUTO, debug, CTLFLAG_RWTUN,
|
2002-03-07 08:03:53 +00:00
|
|
|
&pccard_debug, 0,
|
|
|
|
"pccard debug");
|
|
|
|
|
|
|
|
int pccard_cis_debug = 0;
|
2014-06-28 03:56:17 +00:00
|
|
|
SYSCTL_INT(_hw_pccard, OID_AUTO, cis_debug, CTLFLAG_RWTUN,
|
2002-03-07 08:03:53 +00:00
|
|
|
&pccard_cis_debug, 0, "pccard CIS debug");
|
|
|
|
|
|
|
|
#ifdef PCCARDDEBUG
|
1999-10-26 06:52:31 +00:00
|
|
|
#define DPRINTF(arg) if (pccard_debug) printf arg
|
2000-01-06 07:30:28 +00:00
|
|
|
#define DEVPRINTF(arg) if (pccard_debug) device_printf arg
|
2000-10-19 22:36:41 +00:00
|
|
|
#define PRVERBOSE(arg) printf arg
|
|
|
|
#define DEVPRVERBOSE(arg) device_printf arg
|
1999-10-26 06:52:31 +00:00
|
|
|
#else
|
|
|
|
#define DPRINTF(arg)
|
2000-01-06 07:30:28 +00:00
|
|
|
#define DEVPRINTF(arg)
|
2000-10-19 22:36:41 +00:00
|
|
|
#define PRVERBOSE(arg) if (bootverbose) printf arg
|
|
|
|
#define DEVPRVERBOSE(arg) if (bootverbose) device_printf arg
|
1999-10-26 06:52:31 +00:00
|
|
|
#endif
|
|
|
|
|
2001-08-27 00:09:42 +00:00
|
|
|
static int pccard_ccr_read(struct pccard_function *pf, int ccr);
|
|
|
|
static void pccard_ccr_write(struct pccard_function *pf, int ccr, int val);
|
|
|
|
static int pccard_attach_card(device_t dev);
|
2002-11-02 23:00:28 +00:00
|
|
|
static int pccard_detach_card(device_t dev);
|
2008-08-06 07:34:35 +00:00
|
|
|
static void pccard_function_init(struct pccard_function *pf, int entry);
|
2001-08-27 00:09:42 +00:00
|
|
|
static void pccard_function_free(struct pccard_function *pf);
|
|
|
|
static int pccard_function_enable(struct pccard_function *pf);
|
|
|
|
static void pccard_function_disable(struct pccard_function *pf);
|
|
|
|
static int pccard_probe(device_t dev);
|
|
|
|
static int pccard_attach(device_t dev);
|
|
|
|
static int pccard_detach(device_t dev);
|
|
|
|
static void pccard_print_resources(struct resource_list *rl,
|
|
|
|
const char *name, int type, int count, const char *format);
|
|
|
|
static int pccard_print_child(device_t dev, device_t child);
|
|
|
|
static int pccard_set_resource(device_t dev, device_t child, int type,
|
2016-01-27 02:23:54 +00:00
|
|
|
int rid, rman_res_t start, rman_res_t count);
|
2001-08-27 00:09:42 +00:00
|
|
|
static int pccard_get_resource(device_t dev, device_t child, int type,
|
2016-01-27 02:23:54 +00:00
|
|
|
int rid, rman_res_t *startp, rman_res_t *countp);
|
2001-08-27 00:09:42 +00:00
|
|
|
static void pccard_delete_resource(device_t dev, device_t child, int type,
|
|
|
|
int rid);
|
|
|
|
static int pccard_set_res_flags(device_t dev, device_t child, int type,
|
2009-02-05 19:38:31 +00:00
|
|
|
int rid, u_long flags);
|
2001-08-27 00:09:42 +00:00
|
|
|
static int pccard_set_memory_offset(device_t dev, device_t child, int rid,
|
2005-01-24 06:48:26 +00:00
|
|
|
uint32_t offset, uint32_t *deltap);
|
2008-08-06 07:34:35 +00:00
|
|
|
static int pccard_probe_and_attach_child(device_t dev, device_t child,
|
|
|
|
struct pccard_function *pf);
|
2002-10-07 23:05:33 +00:00
|
|
|
static void pccard_probe_nomatch(device_t cbdev, device_t child);
|
2001-08-27 00:09:42 +00:00
|
|
|
static int pccard_read_ivar(device_t bus, device_t child, int which,
|
2009-02-05 19:38:31 +00:00
|
|
|
uintptr_t *result);
|
2001-08-27 00:09:42 +00:00
|
|
|
static void pccard_driver_added(device_t dev, driver_t *driver);
|
|
|
|
static struct resource *pccard_alloc_resource(device_t dev,
|
2016-01-27 02:23:54 +00:00
|
|
|
device_t child, int type, int *rid, rman_res_t start,
|
|
|
|
rman_res_t end, rman_res_t count, u_int flags);
|
2001-08-27 00:09:42 +00:00
|
|
|
static int pccard_release_resource(device_t dev, device_t child, int type,
|
|
|
|
int rid, struct resource *r);
|
|
|
|
static void pccard_child_detached(device_t parent, device_t dev);
|
2007-05-31 19:29:20 +00:00
|
|
|
static int pccard_filter(void *arg);
|
|
|
|
static void pccard_intr(void *arg);
|
2001-08-27 00:09:42 +00:00
|
|
|
static int pccard_setup_intr(device_t dev, device_t child,
|
2007-02-23 12:19:07 +00:00
|
|
|
struct resource *irq, int flags, driver_filter_t *filt,
|
|
|
|
driver_intr_t *intr, void *arg, void **cookiep);
|
2001-08-27 00:09:42 +00:00
|
|
|
static int pccard_teardown_intr(device_t dev, device_t child,
|
|
|
|
struct resource *r, void *cookie);
|
1999-10-26 06:52:31 +00:00
|
|
|
|
2002-05-30 17:38:00 +00:00
|
|
|
static const struct pccard_product *
|
|
|
|
pccard_do_product_lookup(device_t bus, device_t dev,
|
|
|
|
const struct pccard_product *tab, size_t ent_size,
|
|
|
|
pccard_product_match_fn matchfn);
|
|
|
|
|
|
|
|
|
2001-08-27 00:09:42 +00:00
|
|
|
static int
|
2001-03-22 05:41:20 +00:00
|
|
|
pccard_ccr_read(struct pccard_function *pf, int ccr)
|
1999-10-26 06:52:31 +00:00
|
|
|
{
|
|
|
|
return (bus_space_read_1(pf->pf_ccrt, pf->pf_ccrh,
|
|
|
|
pf->pf_ccr_offset + ccr));
|
|
|
|
}
|
|
|
|
|
2001-08-27 00:09:42 +00:00
|
|
|
static void
|
2001-03-22 05:41:20 +00:00
|
|
|
pccard_ccr_write(struct pccard_function *pf, int ccr, int val)
|
1999-10-26 06:52:31 +00:00
|
|
|
{
|
|
|
|
if ((pf->ccr_mask) & (1 << (ccr / 2))) {
|
|
|
|
bus_space_write_1(pf->pf_ccrt, pf->pf_ccrh,
|
|
|
|
pf->pf_ccr_offset + ccr, val);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2003-04-08 07:02:03 +00:00
|
|
|
static int
|
|
|
|
pccard_set_default_descr(device_t dev)
|
|
|
|
{
|
2003-10-26 00:51:40 +00:00
|
|
|
const char *vendorstr, *prodstr;
|
2004-08-16 15:57:18 +00:00
|
|
|
uint32_t vendor, prod;
|
2003-10-26 00:51:40 +00:00
|
|
|
char *str;
|
2003-04-08 07:02:03 +00:00
|
|
|
|
|
|
|
if (pccard_get_vendor_str(dev, &vendorstr))
|
|
|
|
return (0);
|
|
|
|
if (pccard_get_product_str(dev, &prodstr))
|
|
|
|
return (0);
|
2004-08-16 15:57:18 +00:00
|
|
|
if (vendorstr != NULL && prodstr != NULL) {
|
|
|
|
str = malloc(strlen(vendorstr) + strlen(prodstr) + 2, M_DEVBUF,
|
|
|
|
M_WAITOK);
|
|
|
|
sprintf(str, "%s %s", vendorstr, prodstr);
|
|
|
|
device_set_desc_copy(dev, str);
|
|
|
|
free(str, M_DEVBUF);
|
|
|
|
} else {
|
|
|
|
if (pccard_get_vendor(dev, &vendor))
|
|
|
|
return (0);
|
|
|
|
if (pccard_get_product(dev, &prod))
|
|
|
|
return (0);
|
|
|
|
str = malloc(100, M_DEVBUF, M_WAITOK);
|
2009-02-05 23:51:11 +00:00
|
|
|
snprintf(str, 100, "vendor=%#x product=%#x", vendor, prod);
|
2004-08-16 15:57:18 +00:00
|
|
|
device_set_desc_copy(dev, str);
|
|
|
|
free(str, M_DEVBUF);
|
|
|
|
}
|
2003-04-08 07:02:03 +00:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2000-04-13 06:42:58 +00:00
|
|
|
static int
|
|
|
|
pccard_attach_card(device_t dev)
|
1999-10-26 06:52:31 +00:00
|
|
|
{
|
2000-08-19 19:22:04 +00:00
|
|
|
struct pccard_softc *sc = PCCARD_SOFTC(dev);
|
1999-10-26 06:52:31 +00:00
|
|
|
struct pccard_function *pf;
|
2000-09-16 06:52:20 +00:00
|
|
|
struct pccard_ivar *ivar;
|
2000-06-18 05:28:59 +00:00
|
|
|
device_t child;
|
2002-08-31 18:34:30 +00:00
|
|
|
int i;
|
1999-10-26 06:52:31 +00:00
|
|
|
|
2005-12-28 05:30:09 +00:00
|
|
|
if (!STAILQ_EMPTY(&sc->card.pf_head)) {
|
|
|
|
if (bootverbose || pccard_debug)
|
|
|
|
device_printf(dev, "Card already inserted.\n");
|
|
|
|
}
|
1999-10-26 06:52:31 +00:00
|
|
|
|
2000-01-06 07:30:28 +00:00
|
|
|
DEVPRINTF((dev, "chip_socket_enable\n"));
|
|
|
|
POWER_ENABLE_SOCKET(device_get_parent(dev), dev);
|
1999-10-26 06:52:31 +00:00
|
|
|
|
2000-01-06 07:30:28 +00:00
|
|
|
DEVPRINTF((dev, "read_cis\n"));
|
1999-10-26 06:52:31 +00:00
|
|
|
pccard_read_cis(sc);
|
|
|
|
|
2000-01-06 07:30:28 +00:00
|
|
|
DEVPRINTF((dev, "check_cis_quirks\n"));
|
1999-10-26 06:52:31 +00:00
|
|
|
pccard_check_cis_quirks(dev);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* bail now if the card has no functions, or if there was an error in
|
|
|
|
* the cis.
|
|
|
|
*/
|
|
|
|
|
2001-01-06 18:04:55 +00:00
|
|
|
if (sc->card.error) {
|
2002-08-31 18:34:30 +00:00
|
|
|
device_printf(dev, "CARD ERROR!\n");
|
1999-10-26 06:52:31 +00:00
|
|
|
return (1);
|
2001-01-06 18:04:55 +00:00
|
|
|
}
|
|
|
|
if (STAILQ_EMPTY(&sc->card.pf_head)) {
|
2002-08-31 18:34:30 +00:00
|
|
|
device_printf(dev, "Card has no functions!\n");
|
1999-10-26 06:52:31 +00:00
|
|
|
return (1);
|
2001-01-06 18:04:55 +00:00
|
|
|
}
|
1999-10-26 06:52:31 +00:00
|
|
|
|
2002-02-09 21:34:06 +00:00
|
|
|
if (bootverbose || pccard_debug)
|
1999-10-26 06:52:31 +00:00
|
|
|
pccard_print_cis(dev);
|
|
|
|
|
2000-01-06 07:30:28 +00:00
|
|
|
DEVPRINTF((dev, "functions scanning\n"));
|
2002-08-31 18:34:30 +00:00
|
|
|
i = -1;
|
1999-10-26 06:52:31 +00:00
|
|
|
STAILQ_FOREACH(pf, &sc->card.pf_head, pf_list) {
|
2002-08-31 18:34:30 +00:00
|
|
|
i++;
|
|
|
|
if (STAILQ_EMPTY(&pf->cfe_head)) {
|
|
|
|
device_printf(dev,
|
|
|
|
"Function %d has no config entries.!\n", i);
|
1999-10-26 06:52:31 +00:00
|
|
|
continue;
|
2002-08-31 18:34:30 +00:00
|
|
|
}
|
1999-10-26 06:52:31 +00:00
|
|
|
pf->sc = sc;
|
|
|
|
pf->cfe = NULL;
|
2000-08-22 04:25:57 +00:00
|
|
|
pf->dev = NULL;
|
1999-10-26 06:52:31 +00:00
|
|
|
}
|
2002-10-07 23:05:33 +00:00
|
|
|
DEVPRINTF((dev, "Card has %d functions. pccard_mfc is %d\n", i + 1,
|
2002-08-31 18:34:30 +00:00
|
|
|
pccard_mfc(sc)));
|
2001-08-27 00:09:42 +00:00
|
|
|
|
2018-03-20 22:01:18 +00:00
|
|
|
mtx_lock(&Giant);
|
1999-10-26 06:52:31 +00:00
|
|
|
STAILQ_FOREACH(pf, &sc->card.pf_head, pf_list) {
|
|
|
|
if (STAILQ_EMPTY(&pf->cfe_head))
|
|
|
|
continue;
|
2000-10-29 16:29:05 +00:00
|
|
|
ivar = malloc(sizeof(struct pccard_ivar), M_DEVBUF,
|
2003-02-19 05:47:46 +00:00
|
|
|
M_WAITOK | M_ZERO);
|
2005-03-18 16:37:51 +00:00
|
|
|
resource_list_init(&ivar->resources);
|
2000-06-18 05:28:59 +00:00
|
|
|
child = device_add_child(dev, NULL, -1);
|
2000-09-16 06:52:20 +00:00
|
|
|
device_set_ivars(child, ivar);
|
2005-07-13 15:00:59 +00:00
|
|
|
ivar->pf = pf;
|
2000-10-16 07:51:12 +00:00
|
|
|
pf->dev = child;
|
2008-08-06 07:34:35 +00:00
|
|
|
pccard_probe_and_attach_child(dev, child, pf);
|
1999-10-26 06:52:31 +00:00
|
|
|
}
|
2018-03-20 22:01:18 +00:00
|
|
|
mtx_unlock(&Giant);
|
2001-03-22 05:41:20 +00:00
|
|
|
return (0);
|
1999-10-26 06:52:31 +00:00
|
|
|
}
|
|
|
|
|
2008-08-06 07:34:35 +00:00
|
|
|
static int
|
|
|
|
pccard_probe_and_attach_child(device_t dev, device_t child,
|
|
|
|
struct pccard_function *pf)
|
|
|
|
{
|
|
|
|
struct pccard_softc *sc = PCCARD_SOFTC(dev);
|
|
|
|
int error;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* In NetBSD, the drivers are responsible for activating each
|
|
|
|
* function of a card and selecting the config to use. In
|
|
|
|
* FreeBSD, all that's done automatically in the typical lazy
|
2019-09-24 16:49:42 +00:00
|
|
|
* way we do device resource allocation (except we pick the
|
2008-08-06 07:34:35 +00:00
|
|
|
* cfe up front). This is the biggest depature from the
|
2008-08-07 21:16:14 +00:00
|
|
|
* inherited NetBSD model, apart from the FreeBSD resource code.
|
2008-08-06 07:34:35 +00:00
|
|
|
*
|
|
|
|
* This seems to work well in practice for most cards.
|
|
|
|
* However, there are two cases that are problematic. If a
|
|
|
|
* driver wishes to pick and chose which config entry to use,
|
|
|
|
* then this method falls down. These are usually older
|
|
|
|
* cards. In addition, there are some cards that have
|
|
|
|
* multiple hardware units on the cards, but presents only one
|
|
|
|
* CIS chain. These cards are combination cards, but only one
|
|
|
|
* of these units can be on at a time.
|
|
|
|
*
|
|
|
|
* To overcome this limitation, while preserving the basic
|
|
|
|
* model, the probe routine can select a cfe and try to
|
|
|
|
* activate it. If that succeeds, then we'll keep track of
|
|
|
|
* and let that information persist until we attach the card.
|
|
|
|
* Probe routines that do this MUST return 0, and cannot
|
|
|
|
* participate in the bidding process for a device. This
|
|
|
|
* seems harsh until you realize that if a probe routine knows
|
|
|
|
* enough to override the cfe we pick, then chances are very
|
|
|
|
* very good that it is the only driver that could hope to
|
|
|
|
* cope with the card. Bidding is for generic drivers, and
|
|
|
|
* while some of them may also match, none of them will do
|
|
|
|
* configuration override.
|
|
|
|
*/
|
|
|
|
error = device_probe(child);
|
|
|
|
if (error != 0)
|
|
|
|
goto out;
|
|
|
|
pccard_function_init(pf, -1);
|
|
|
|
if (sc->sc_enabled_count == 0)
|
|
|
|
POWER_ENABLE_SOCKET(device_get_parent(dev), dev);
|
|
|
|
if (pccard_function_enable(pf) == 0 &&
|
|
|
|
pccard_set_default_descr(child) == 0 &&
|
|
|
|
device_attach(child) == 0) {
|
2009-02-05 23:51:11 +00:00
|
|
|
DEVPRINTF((sc->dev, "function %d CCR at %d offset %#x "
|
|
|
|
"mask %#x: %#x %#x %#x %#x, %#x %#x %#x %#x, %#x\n",
|
2008-08-06 07:34:35 +00:00
|
|
|
pf->number, pf->pf_ccr_window, pf->pf_ccr_offset,
|
|
|
|
pf->ccr_mask, pccard_ccr_read(pf, 0x00),
|
|
|
|
pccard_ccr_read(pf, 0x02), pccard_ccr_read(pf, 0x04),
|
|
|
|
pccard_ccr_read(pf, 0x06), pccard_ccr_read(pf, 0x0A),
|
|
|
|
pccard_ccr_read(pf, 0x0C), pccard_ccr_read(pf, 0x0E),
|
|
|
|
pccard_ccr_read(pf, 0x10), pccard_ccr_read(pf, 0x12)));
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
error = ENXIO;
|
|
|
|
out:;
|
|
|
|
/*
|
|
|
|
* Probe may fail AND also try to select a cfe, if so, free
|
|
|
|
* it. This is how we do cfe override. Or the attach fails.
|
|
|
|
* Either way, we have to clean up.
|
|
|
|
*/
|
|
|
|
if (pf->cfe != NULL)
|
|
|
|
pccard_function_disable(pf);
|
|
|
|
pf->cfe = NULL;
|
|
|
|
pccard_function_free(pf);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
2000-04-13 06:42:58 +00:00
|
|
|
static int
|
2002-11-02 23:00:28 +00:00
|
|
|
pccard_detach_card(device_t dev)
|
1999-10-26 06:52:31 +00:00
|
|
|
{
|
2000-08-19 19:22:04 +00:00
|
|
|
struct pccard_softc *sc = PCCARD_SOFTC(dev);
|
1999-10-26 06:52:31 +00:00
|
|
|
struct pccard_function *pf;
|
2001-08-27 00:09:42 +00:00
|
|
|
struct pccard_config_entry *cfe;
|
2007-02-03 07:09:36 +00:00
|
|
|
struct pccard_ivar *devi;
|
2003-09-05 03:08:08 +00:00
|
|
|
int state;
|
1999-10-26 06:52:31 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* We are running on either the PCCARD socket's event thread
|
|
|
|
* or in user context detaching a device by user request.
|
|
|
|
*/
|
|
|
|
STAILQ_FOREACH(pf, &sc->card.pf_head, pf_list) {
|
2003-09-05 03:08:08 +00:00
|
|
|
if (pf->dev == NULL)
|
|
|
|
continue;
|
|
|
|
state = device_get_state(pf->dev);
|
2001-08-27 00:09:42 +00:00
|
|
|
if (state == DS_ATTACHED || state == DS_BUSY)
|
|
|
|
device_detach(pf->dev);
|
2001-11-26 07:14:00 +00:00
|
|
|
if (pf->cfe != NULL)
|
|
|
|
pccard_function_disable(pf);
|
2001-08-27 00:09:42 +00:00
|
|
|
pccard_function_free(pf);
|
2007-02-03 07:09:36 +00:00
|
|
|
devi = PCCARD_IVAR(pf->dev);
|
2002-11-14 05:13:52 +00:00
|
|
|
device_delete_child(dev, pf->dev);
|
2007-02-03 07:09:36 +00:00
|
|
|
free(devi, M_DEVBUF);
|
1999-10-26 06:52:31 +00:00
|
|
|
}
|
2001-08-27 00:09:42 +00:00
|
|
|
if (sc->sc_enabled_count == 0)
|
|
|
|
POWER_DISABLE_SOCKET(device_get_parent(dev), dev);
|
|
|
|
|
|
|
|
while (NULL != (pf = STAILQ_FIRST(&sc->card.pf_head))) {
|
|
|
|
while (NULL != (cfe = STAILQ_FIRST(&pf->cfe_head))) {
|
|
|
|
STAILQ_REMOVE_HEAD(&pf->cfe_head, cfe_list);
|
|
|
|
free(cfe, M_DEVBUF);
|
|
|
|
}
|
|
|
|
STAILQ_REMOVE_HEAD(&sc->card.pf_head, pf_list);
|
|
|
|
free(pf, M_DEVBUF);
|
|
|
|
}
|
2005-12-28 05:30:09 +00:00
|
|
|
STAILQ_INIT(&sc->card.pf_head);
|
2001-03-22 05:41:20 +00:00
|
|
|
return (0);
|
1999-10-26 06:52:31 +00:00
|
|
|
}
|
|
|
|
|
2002-05-30 17:38:00 +00:00
|
|
|
static const struct pccard_product *
|
|
|
|
pccard_do_product_lookup(device_t bus, device_t dev,
|
2003-03-18 02:40:40 +00:00
|
|
|
const struct pccard_product *tab, size_t ent_size,
|
|
|
|
pccard_product_match_fn matchfn)
|
o Merge in changes to the NetBSD sources:
pcmciavar.h 1.9->1.12
1.12, enami, minor coding nits
1.11, augustss, (pcmcia_devinfo NRFB)
1.10, cgd, add generic lookup routines
pcmcia.c 1.14->1.23
1.23, drochner, (probe code printing, NRFB)
1.22, augustss, KNF
1.21, uch, (hpcmips tweaks NRFB)
1.20, chopps, remove bogus debug
1.19, enami, minor coding nits
1.18, augustss, (pcmcia_devinfo NRFB)
1.17, nathanw, LP64 printf fixes
1.16, cgd, add generic lookup routines
1.15, aymeric, printf fixes
NRFB == not relevant to freebsd
o Expand the pccard matching routines to include the ability to match
against the CIS strings since our current driver database is based on
that.
o Add lots more ivars to get the information necessary to snag these values.
2000-09-22 01:15:26 +00:00
|
|
|
{
|
|
|
|
const struct pccard_product *ent;
|
|
|
|
int matches;
|
2005-01-24 06:48:26 +00:00
|
|
|
uint32_t vendor;
|
|
|
|
uint32_t prod;
|
2003-10-26 00:51:40 +00:00
|
|
|
const char *vendorstr;
|
|
|
|
const char *prodstr;
|
2005-01-17 06:54:48 +00:00
|
|
|
const char *cis3str;
|
|
|
|
const char *cis4str;
|
o Merge in changes to the NetBSD sources:
pcmciavar.h 1.9->1.12
1.12, enami, minor coding nits
1.11, augustss, (pcmcia_devinfo NRFB)
1.10, cgd, add generic lookup routines
pcmcia.c 1.14->1.23
1.23, drochner, (probe code printing, NRFB)
1.22, augustss, KNF
1.21, uch, (hpcmips tweaks NRFB)
1.20, chopps, remove bogus debug
1.19, enami, minor coding nits
1.18, augustss, (pcmcia_devinfo NRFB)
1.17, nathanw, LP64 printf fixes
1.16, cgd, add generic lookup routines
1.15, aymeric, printf fixes
NRFB == not relevant to freebsd
o Expand the pccard matching routines to include the ability to match
against the CIS strings since our current driver database is based on
that.
o Add lots more ivars to get the information necessary to snag these values.
2000-09-22 01:15:26 +00:00
|
|
|
|
|
|
|
#ifdef DIAGNOSTIC
|
|
|
|
if (sizeof *ent > ent_size)
|
2003-03-18 02:40:40 +00:00
|
|
|
panic("pccard_product_lookup: bogus ent_size %jd",
|
|
|
|
(intmax_t) ent_size);
|
o Merge in changes to the NetBSD sources:
pcmciavar.h 1.9->1.12
1.12, enami, minor coding nits
1.11, augustss, (pcmcia_devinfo NRFB)
1.10, cgd, add generic lookup routines
pcmcia.c 1.14->1.23
1.23, drochner, (probe code printing, NRFB)
1.22, augustss, KNF
1.21, uch, (hpcmips tweaks NRFB)
1.20, chopps, remove bogus debug
1.19, enami, minor coding nits
1.18, augustss, (pcmcia_devinfo NRFB)
1.17, nathanw, LP64 printf fixes
1.16, cgd, add generic lookup routines
1.15, aymeric, printf fixes
NRFB == not relevant to freebsd
o Expand the pccard matching routines to include the ability to match
against the CIS strings since our current driver database is based on
that.
o Add lots more ivars to get the information necessary to snag these values.
2000-09-22 01:15:26 +00:00
|
|
|
#endif
|
|
|
|
if (pccard_get_vendor(dev, &vendor))
|
|
|
|
return (NULL);
|
|
|
|
if (pccard_get_product(dev, &prod))
|
|
|
|
return (NULL);
|
|
|
|
if (pccard_get_vendor_str(dev, &vendorstr))
|
|
|
|
return (NULL);
|
|
|
|
if (pccard_get_product_str(dev, &prodstr))
|
|
|
|
return (NULL);
|
2005-01-17 06:54:48 +00:00
|
|
|
if (pccard_get_cis3_str(dev, &cis3str))
|
|
|
|
return (NULL);
|
|
|
|
if (pccard_get_cis4_str(dev, &cis4str))
|
|
|
|
return (NULL);
|
2003-04-10 04:11:15 +00:00
|
|
|
for (ent = tab; ent->pp_vendor != 0; ent =
|
2001-08-27 00:09:42 +00:00
|
|
|
(const struct pccard_product *) ((const char *) ent + ent_size)) {
|
o Merge in changes to the NetBSD sources:
pcmciavar.h 1.9->1.12
1.12, enami, minor coding nits
1.11, augustss, (pcmcia_devinfo NRFB)
1.10, cgd, add generic lookup routines
pcmcia.c 1.14->1.23
1.23, drochner, (probe code printing, NRFB)
1.22, augustss, KNF
1.21, uch, (hpcmips tweaks NRFB)
1.20, chopps, remove bogus debug
1.19, enami, minor coding nits
1.18, augustss, (pcmcia_devinfo NRFB)
1.17, nathanw, LP64 printf fixes
1.16, cgd, add generic lookup routines
1.15, aymeric, printf fixes
NRFB == not relevant to freebsd
o Expand the pccard matching routines to include the ability to match
against the CIS strings since our current driver database is based on
that.
o Add lots more ivars to get the information necessary to snag these values.
2000-09-22 01:15:26 +00:00
|
|
|
matches = 1;
|
2001-11-20 06:15:24 +00:00
|
|
|
if (ent->pp_vendor == PCCARD_VENDOR_ANY &&
|
2003-04-04 14:40:01 +00:00
|
|
|
ent->pp_product == PCCARD_PRODUCT_ANY &&
|
2001-11-20 06:15:24 +00:00
|
|
|
ent->pp_cis[0] == NULL &&
|
|
|
|
ent->pp_cis[1] == NULL) {
|
2003-04-09 15:54:00 +00:00
|
|
|
if (ent->pp_name)
|
|
|
|
device_printf(dev,
|
|
|
|
"Total wildcard entry ignored for %s\n",
|
|
|
|
ent->pp_name);
|
2001-11-20 06:15:24 +00:00
|
|
|
continue;
|
|
|
|
}
|
o Merge in changes to the NetBSD sources:
pcmciavar.h 1.9->1.12
1.12, enami, minor coding nits
1.11, augustss, (pcmcia_devinfo NRFB)
1.10, cgd, add generic lookup routines
pcmcia.c 1.14->1.23
1.23, drochner, (probe code printing, NRFB)
1.22, augustss, KNF
1.21, uch, (hpcmips tweaks NRFB)
1.20, chopps, remove bogus debug
1.19, enami, minor coding nits
1.18, augustss, (pcmcia_devinfo NRFB)
1.17, nathanw, LP64 printf fixes
1.16, cgd, add generic lookup routines
1.15, aymeric, printf fixes
NRFB == not relevant to freebsd
o Expand the pccard matching routines to include the ability to match
against the CIS strings since our current driver database is based on
that.
o Add lots more ivars to get the information necessary to snag these values.
2000-09-22 01:15:26 +00:00
|
|
|
if (matches && ent->pp_vendor != PCCARD_VENDOR_ANY &&
|
|
|
|
vendor != ent->pp_vendor)
|
|
|
|
matches = 0;
|
|
|
|
if (matches && ent->pp_product != PCCARD_PRODUCT_ANY &&
|
|
|
|
prod != ent->pp_product)
|
|
|
|
matches = 0;
|
2001-01-21 08:09:00 +00:00
|
|
|
if (matches && ent->pp_cis[0] &&
|
2004-08-16 15:57:18 +00:00
|
|
|
(vendorstr == NULL ||
|
|
|
|
strcmp(ent->pp_cis[0], vendorstr) != 0))
|
o Merge in changes to the NetBSD sources:
pcmciavar.h 1.9->1.12
1.12, enami, minor coding nits
1.11, augustss, (pcmcia_devinfo NRFB)
1.10, cgd, add generic lookup routines
pcmcia.c 1.14->1.23
1.23, drochner, (probe code printing, NRFB)
1.22, augustss, KNF
1.21, uch, (hpcmips tweaks NRFB)
1.20, chopps, remove bogus debug
1.19, enami, minor coding nits
1.18, augustss, (pcmcia_devinfo NRFB)
1.17, nathanw, LP64 printf fixes
1.16, cgd, add generic lookup routines
1.15, aymeric, printf fixes
NRFB == not relevant to freebsd
o Expand the pccard matching routines to include the ability to match
against the CIS strings since our current driver database is based on
that.
o Add lots more ivars to get the information necessary to snag these values.
2000-09-22 01:15:26 +00:00
|
|
|
matches = 0;
|
2001-01-21 08:09:00 +00:00
|
|
|
if (matches && ent->pp_cis[1] &&
|
2004-08-16 15:57:18 +00:00
|
|
|
(prodstr == NULL ||
|
|
|
|
strcmp(ent->pp_cis[1], prodstr) != 0))
|
o Merge in changes to the NetBSD sources:
pcmciavar.h 1.9->1.12
1.12, enami, minor coding nits
1.11, augustss, (pcmcia_devinfo NRFB)
1.10, cgd, add generic lookup routines
pcmcia.c 1.14->1.23
1.23, drochner, (probe code printing, NRFB)
1.22, augustss, KNF
1.21, uch, (hpcmips tweaks NRFB)
1.20, chopps, remove bogus debug
1.19, enami, minor coding nits
1.18, augustss, (pcmcia_devinfo NRFB)
1.17, nathanw, LP64 printf fixes
1.16, cgd, add generic lookup routines
1.15, aymeric, printf fixes
NRFB == not relevant to freebsd
o Expand the pccard matching routines to include the ability to match
against the CIS strings since our current driver database is based on
that.
o Add lots more ivars to get the information necessary to snag these values.
2000-09-22 01:15:26 +00:00
|
|
|
matches = 0;
|
2005-01-17 06:54:48 +00:00
|
|
|
if (matches && ent->pp_cis[2] &&
|
|
|
|
(cis3str == NULL ||
|
|
|
|
strcmp(ent->pp_cis[2], cis3str) != 0))
|
|
|
|
matches = 0;
|
|
|
|
if (matches && ent->pp_cis[3] &&
|
|
|
|
(cis4str == NULL ||
|
|
|
|
strcmp(ent->pp_cis[3], cis4str) != 0))
|
|
|
|
matches = 0;
|
o Merge in changes to the NetBSD sources:
pcmciavar.h 1.9->1.12
1.12, enami, minor coding nits
1.11, augustss, (pcmcia_devinfo NRFB)
1.10, cgd, add generic lookup routines
pcmcia.c 1.14->1.23
1.23, drochner, (probe code printing, NRFB)
1.22, augustss, KNF
1.21, uch, (hpcmips tweaks NRFB)
1.20, chopps, remove bogus debug
1.19, enami, minor coding nits
1.18, augustss, (pcmcia_devinfo NRFB)
1.17, nathanw, LP64 printf fixes
1.16, cgd, add generic lookup routines
1.15, aymeric, printf fixes
NRFB == not relevant to freebsd
o Expand the pccard matching routines to include the ability to match
against the CIS strings since our current driver database is based on
that.
o Add lots more ivars to get the information necessary to snag these values.
2000-09-22 01:15:26 +00:00
|
|
|
if (matchfn != NULL)
|
|
|
|
matches = (*matchfn)(dev, ent, matches);
|
|
|
|
if (matches)
|
|
|
|
return (ent);
|
|
|
|
}
|
|
|
|
return (NULL);
|
|
|
|
}
|
|
|
|
|
2008-08-06 07:34:35 +00:00
|
|
|
/**
|
|
|
|
* @brief pccard_select_cfe
|
|
|
|
*
|
|
|
|
* Select a cfe entry to use. Should be called from the pccard's probe
|
|
|
|
* routine after it knows for sure that it wants this card.
|
|
|
|
*
|
|
|
|
* XXX I think we need to make this symbol be static, ala the kobj stuff
|
|
|
|
* we do for everything else. This is a quick hack.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
pccard_select_cfe(device_t dev, int entry)
|
|
|
|
{
|
|
|
|
struct pccard_ivar *devi = PCCARD_IVAR(dev);
|
|
|
|
struct pccard_function *pf = devi->pf;
|
|
|
|
|
|
|
|
pccard_function_init(pf, entry);
|
|
|
|
return (pf->cfe ? 0 : ENOMEM);
|
|
|
|
}
|
|
|
|
|
1999-10-26 06:52:31 +00:00
|
|
|
/*
|
|
|
|
* Initialize a PCCARD function. May be called as long as the function is
|
|
|
|
* disabled.
|
2001-08-27 01:18:21 +00:00
|
|
|
*
|
|
|
|
* Note: pccard_function_init should not keep resources allocated. It should
|
|
|
|
* only set them up ala isa pnp, set the values in the rl lists, and return.
|
|
|
|
* Any resource held after pccard_function_init is called is a bug. However,
|
|
|
|
* the bus routines to get the resources also assume that pccard_function_init
|
|
|
|
* does this, so they need to be fixed too.
|
1999-10-26 06:52:31 +00:00
|
|
|
*/
|
2001-08-27 00:09:42 +00:00
|
|
|
static void
|
2008-08-06 07:34:35 +00:00
|
|
|
pccard_function_init(struct pccard_function *pf, int entry)
|
1999-10-26 06:52:31 +00:00
|
|
|
{
|
2000-09-16 06:52:20 +00:00
|
|
|
struct pccard_config_entry *cfe;
|
2000-10-17 06:29:21 +00:00
|
|
|
struct pccard_ivar *devi = PCCARD_IVAR(pf->dev);
|
|
|
|
struct resource_list *rl = &devi->resources;
|
2001-01-07 20:40:23 +00:00
|
|
|
struct resource_list_entry *rle;
|
2017-02-20 03:43:12 +00:00
|
|
|
struct resource *r = NULL;
|
2012-06-28 07:26:44 +00:00
|
|
|
struct pccard_ce_iospace *ios;
|
|
|
|
struct pccard_ce_memspace *mems;
|
2000-10-17 06:29:21 +00:00
|
|
|
device_t bus;
|
2016-01-27 02:23:54 +00:00
|
|
|
rman_res_t start, end, len;
|
2005-04-12 15:25:31 +00:00
|
|
|
int i, rid, spaces;
|
2000-09-16 06:52:20 +00:00
|
|
|
|
2001-01-06 18:04:55 +00:00
|
|
|
if (pf->pf_flags & PFF_ENABLED) {
|
|
|
|
printf("pccard_function_init: function is enabled");
|
|
|
|
return;
|
|
|
|
}
|
2008-08-06 07:34:35 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Driver probe routine requested a specific entry already
|
|
|
|
* that succeeded.
|
|
|
|
*/
|
|
|
|
if (pf->cfe != NULL)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* walk the list of configuration entries until we find one that
|
|
|
|
* we can allocate all the resources to.
|
|
|
|
*/
|
2000-10-17 06:29:21 +00:00
|
|
|
bus = device_get_parent(pf->dev);
|
2001-02-04 16:08:18 +00:00
|
|
|
STAILQ_FOREACH(cfe, &pf->cfe_head, cfe_list) {
|
2005-04-12 06:00:06 +00:00
|
|
|
if (cfe->iftype != PCCARD_IFTYPE_IO)
|
|
|
|
continue;
|
2008-08-06 07:34:35 +00:00
|
|
|
if (entry != -1 && cfe->number != entry)
|
|
|
|
continue;
|
2002-02-19 05:04:37 +00:00
|
|
|
spaces = 0;
|
2000-10-16 07:51:12 +00:00
|
|
|
for (i = 0; i < cfe->num_iospace; i++) {
|
2012-06-28 07:26:44 +00:00
|
|
|
ios = cfe->iospace + i;
|
|
|
|
start = ios->start;
|
2000-10-22 04:46:56 +00:00
|
|
|
if (start)
|
2012-06-28 07:26:44 +00:00
|
|
|
end = start + ios->length - 1;
|
2000-10-22 04:46:56 +00:00
|
|
|
else
|
2016-03-03 05:07:35 +00:00
|
|
|
end = ~0;
|
Use uintmax_t (typedef'd to rman_res_t type) for rman ranges.
On some architectures, u_long isn't large enough for resource definitions.
Particularly, powerpc and arm allow 36-bit (or larger) physical addresses, but
type `long' is only 32-bit. This extends rman's resources to uintmax_t. With
this change, any resource can feasibly be placed anywhere in physical memory
(within the constraints of the driver).
Why uintmax_t and not something machine dependent, or uint64_t? Though it's
possible for uintmax_t to grow, it's highly unlikely it will become 128-bit on
32-bit architectures. 64-bit architectures should have plenty of RAM to absorb
the increase on resource sizes if and when this occurs, and the number of
resources on memory-constrained systems should be sufficiently small as to not
pose a drastic overhead. That being said, uintmax_t was chosen for source
clarity. If it's specified as uint64_t, all printf()-like calls would either
need casts to uintmax_t, or be littered with PRI*64 macros. Casts to uintmax_t
aren't horrible, but it would also bake into the API for
resource_list_print_type() either a hidden assumption that entries get cast to
uintmax_t for printing, or these calls would need the PRI*64 macros. Since
source code is meant to be read more often than written, I chose the clearest
path of simply using uintmax_t.
Tested on a PowerPC p5020-based board, which places all device resources in
0xfxxxxxxxx, and has 8GB RAM.
Regression tested on qemu-system-i386
Regression tested on qemu-system-mips (malta profile)
Tested PAE and devinfo on virtualbox (live CD)
Special thanks to bz for his testing on ARM.
Reviewed By: bz, jhb (previous)
Relnotes: Yes
Sponsored by: Alex Perez/Inertial Computing
Differential Revision: https://reviews.freebsd.org/D4544
2016-03-18 01:28:41 +00:00
|
|
|
DEVPRINTF((bus, "I/O rid %d start %#jx end %#jx\n",
|
2002-02-19 05:04:37 +00:00
|
|
|
i, start, end));
|
2005-04-12 06:00:06 +00:00
|
|
|
rid = i;
|
2012-06-28 07:26:44 +00:00
|
|
|
len = ios->length;
|
2005-04-12 15:25:31 +00:00
|
|
|
r = bus_alloc_resource(bus, SYS_RES_IOPORT, &rid,
|
|
|
|
start, end, len, rman_make_alignment_flags(len));
|
2012-06-28 07:26:44 +00:00
|
|
|
if (r == NULL) {
|
|
|
|
DEVPRINTF((bus, "I/O rid %d failed\n", i));
|
2000-10-16 07:51:12 +00:00
|
|
|
goto not_this_one;
|
2012-06-28 07:26:44 +00:00
|
|
|
}
|
2005-04-12 04:30:35 +00:00
|
|
|
rle = resource_list_add(rl, SYS_RES_IOPORT,
|
2012-06-28 07:26:44 +00:00
|
|
|
rid, rman_get_start(r), rman_get_end(r), len);
|
2005-04-12 04:30:35 +00:00
|
|
|
if (rle == NULL)
|
2005-04-12 06:00:06 +00:00
|
|
|
panic("Cannot add resource rid %d IOPORT", rid);
|
2001-05-10 06:55:39 +00:00
|
|
|
rle->res = r;
|
2002-02-19 05:04:37 +00:00
|
|
|
spaces++;
|
2000-10-16 07:51:12 +00:00
|
|
|
}
|
2005-04-12 06:00:06 +00:00
|
|
|
for (i = 0; i < cfe->num_memspace; i++) {
|
2012-06-28 07:26:44 +00:00
|
|
|
mems = cfe->memspace + i;
|
|
|
|
start = mems->cardaddr + mems->hostaddr;
|
2005-04-12 06:00:06 +00:00
|
|
|
if (start)
|
2012-06-28 07:26:44 +00:00
|
|
|
end = start + mems->length - 1;
|
2005-04-12 06:00:06 +00:00
|
|
|
else
|
2016-03-03 05:07:35 +00:00
|
|
|
end = ~0;
|
Use uintmax_t (typedef'd to rman_res_t type) for rman ranges.
On some architectures, u_long isn't large enough for resource definitions.
Particularly, powerpc and arm allow 36-bit (or larger) physical addresses, but
type `long' is only 32-bit. This extends rman's resources to uintmax_t. With
this change, any resource can feasibly be placed anywhere in physical memory
(within the constraints of the driver).
Why uintmax_t and not something machine dependent, or uint64_t? Though it's
possible for uintmax_t to grow, it's highly unlikely it will become 128-bit on
32-bit architectures. 64-bit architectures should have plenty of RAM to absorb
the increase on resource sizes if and when this occurs, and the number of
resources on memory-constrained systems should be sufficiently small as to not
pose a drastic overhead. That being said, uintmax_t was chosen for source
clarity. If it's specified as uint64_t, all printf()-like calls would either
need casts to uintmax_t, or be littered with PRI*64 macros. Casts to uintmax_t
aren't horrible, but it would also bake into the API for
resource_list_print_type() either a hidden assumption that entries get cast to
uintmax_t for printing, or these calls would need the PRI*64 macros. Since
source code is meant to be read more often than written, I chose the clearest
path of simply using uintmax_t.
Tested on a PowerPC p5020-based board, which places all device resources in
0xfxxxxxxxx, and has 8GB RAM.
Regression tested on qemu-system-i386
Regression tested on qemu-system-mips (malta profile)
Tested PAE and devinfo on virtualbox (live CD)
Special thanks to bz for his testing on ARM.
Reviewed By: bz, jhb (previous)
Relnotes: Yes
Sponsored by: Alex Perez/Inertial Computing
Differential Revision: https://reviews.freebsd.org/D4544
2016-03-18 01:28:41 +00:00
|
|
|
DEVPRINTF((bus, "Memory rid %d start %#jx end %#jx\ncardaddr %#jx hostaddr %#jx length %#jx\n",
|
2012-06-28 07:26:44 +00:00
|
|
|
i, start, end, mems->cardaddr, mems->hostaddr,
|
|
|
|
mems->length));
|
2005-04-12 06:00:06 +00:00
|
|
|
rid = i;
|
2012-06-28 07:26:44 +00:00
|
|
|
len = mems->length;
|
2005-04-12 15:25:31 +00:00
|
|
|
r = bus_alloc_resource(bus, SYS_RES_MEMORY, &rid,
|
|
|
|
start, end, len, rman_make_alignment_flags(len));
|
2012-06-28 07:26:44 +00:00
|
|
|
if (r == NULL) {
|
|
|
|
DEVPRINTF((bus, "Memory rid %d failed\n", i));
|
|
|
|
// goto not_this_one;
|
|
|
|
continue;
|
|
|
|
}
|
2005-04-12 06:00:06 +00:00
|
|
|
rle = resource_list_add(rl, SYS_RES_MEMORY,
|
2012-06-28 07:26:44 +00:00
|
|
|
rid, rman_get_start(r), rman_get_end(r), len);
|
2005-04-12 06:00:06 +00:00
|
|
|
if (rle == NULL)
|
|
|
|
panic("Cannot add resource rid %d MEM", rid);
|
|
|
|
rle->res = r;
|
|
|
|
spaces++;
|
2002-02-19 05:04:37 +00:00
|
|
|
}
|
|
|
|
if (spaces == 0) {
|
2005-01-19 20:21:44 +00:00
|
|
|
DEVPRINTF((bus, "Neither memory nor I/O mapped\n"));
|
2002-02-19 05:04:37 +00:00
|
|
|
goto not_this_one;
|
2000-10-16 07:51:12 +00:00
|
|
|
}
|
|
|
|
if (cfe->irqmask) {
|
2005-04-12 06:00:06 +00:00
|
|
|
rid = 0;
|
2005-04-12 15:25:31 +00:00
|
|
|
r = bus_alloc_resource_any(bus, SYS_RES_IRQ, &rid,
|
|
|
|
RF_SHAREABLE);
|
2012-06-28 07:26:44 +00:00
|
|
|
if (r == NULL) {
|
|
|
|
DEVPRINTF((bus, "IRQ rid %d failed\n", rid));
|
2000-10-16 07:51:12 +00:00
|
|
|
goto not_this_one;
|
2012-06-28 07:26:44 +00:00
|
|
|
}
|
2005-04-12 06:00:06 +00:00
|
|
|
rle = resource_list_add(rl, SYS_RES_IRQ, rid,
|
2000-10-17 06:29:21 +00:00
|
|
|
rman_get_start(r), rman_get_end(r), 1);
|
2005-04-12 04:30:35 +00:00
|
|
|
if (rle == NULL)
|
2005-04-12 06:00:06 +00:00
|
|
|
panic("Cannot add resource rid %d IRQ", rid);
|
2001-05-10 06:55:39 +00:00
|
|
|
rle->res = r;
|
2000-10-16 07:51:12 +00:00
|
|
|
}
|
|
|
|
/* If we get to here, we've allocated all we need */
|
2000-10-15 17:21:50 +00:00
|
|
|
pf->cfe = cfe;
|
2000-10-16 07:51:12 +00:00
|
|
|
break;
|
|
|
|
not_this_one:;
|
2000-10-22 04:46:56 +00:00
|
|
|
DEVPRVERBOSE((bus, "Allocation failed for cfe %d\n",
|
|
|
|
cfe->number));
|
2005-04-12 15:25:31 +00:00
|
|
|
resource_list_purge(rl);
|
2000-10-15 17:21:50 +00:00
|
|
|
}
|
1999-10-26 06:52:31 +00:00
|
|
|
}
|
|
|
|
|
2001-08-27 00:09:42 +00:00
|
|
|
/*
|
|
|
|
* Free resources allocated by pccard_function_init(), May be called as long
|
|
|
|
* as the function is disabled.
|
2001-08-27 01:18:21 +00:00
|
|
|
*
|
|
|
|
* NOTE: This function should be unnecessary. pccard_function_init should
|
|
|
|
* never keep resources initialized.
|
2001-08-27 00:09:42 +00:00
|
|
|
*/
|
|
|
|
static void
|
|
|
|
pccard_function_free(struct pccard_function *pf)
|
|
|
|
{
|
|
|
|
struct pccard_ivar *devi = PCCARD_IVAR(pf->dev);
|
|
|
|
struct resource_list_entry *rle;
|
|
|
|
|
|
|
|
if (pf->pf_flags & PFF_ENABLED) {
|
2008-08-06 07:34:35 +00:00
|
|
|
printf("pccard_function_free: function is enabled");
|
2001-08-27 00:09:42 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2005-03-18 05:19:50 +00:00
|
|
|
STAILQ_FOREACH(rle, &devi->resources, link) {
|
2001-08-27 00:09:42 +00:00
|
|
|
if (rle->res) {
|
2003-04-08 07:02:03 +00:00
|
|
|
if (rman_get_device(rle->res) != pf->sc->dev)
|
2001-08-27 00:09:42 +00:00
|
|
|
device_printf(pf->sc->dev,
|
|
|
|
"function_free: Resource still owned by "
|
|
|
|
"child, oops. "
|
Use uintmax_t (typedef'd to rman_res_t type) for rman ranges.
On some architectures, u_long isn't large enough for resource definitions.
Particularly, powerpc and arm allow 36-bit (or larger) physical addresses, but
type `long' is only 32-bit. This extends rman's resources to uintmax_t. With
this change, any resource can feasibly be placed anywhere in physical memory
(within the constraints of the driver).
Why uintmax_t and not something machine dependent, or uint64_t? Though it's
possible for uintmax_t to grow, it's highly unlikely it will become 128-bit on
32-bit architectures. 64-bit architectures should have plenty of RAM to absorb
the increase on resource sizes if and when this occurs, and the number of
resources on memory-constrained systems should be sufficiently small as to not
pose a drastic overhead. That being said, uintmax_t was chosen for source
clarity. If it's specified as uint64_t, all printf()-like calls would either
need casts to uintmax_t, or be littered with PRI*64 macros. Casts to uintmax_t
aren't horrible, but it would also bake into the API for
resource_list_print_type() either a hidden assumption that entries get cast to
uintmax_t for printing, or these calls would need the PRI*64 macros. Since
source code is meant to be read more often than written, I chose the clearest
path of simply using uintmax_t.
Tested on a PowerPC p5020-based board, which places all device resources in
0xfxxxxxxxx, and has 8GB RAM.
Regression tested on qemu-system-i386
Regression tested on qemu-system-mips (malta profile)
Tested PAE and devinfo on virtualbox (live CD)
Special thanks to bz for his testing on ARM.
Reviewed By: bz, jhb (previous)
Relnotes: Yes
Sponsored by: Alex Perez/Inertial Computing
Differential Revision: https://reviews.freebsd.org/D4544
2016-03-18 01:28:41 +00:00
|
|
|
"(type=%d, rid=%d, addr=%#jx)\n",
|
2001-08-27 00:09:42 +00:00
|
|
|
rle->type, rle->rid,
|
|
|
|
rman_get_start(rle->res));
|
|
|
|
BUS_RELEASE_RESOURCE(device_get_parent(pf->sc->dev),
|
2003-04-08 07:02:03 +00:00
|
|
|
pf->sc->dev, rle->type, rle->rid, rle->res);
|
2001-08-27 00:09:42 +00:00
|
|
|
rle->res = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
resource_list_free(&devi->resources);
|
|
|
|
}
|
|
|
|
|
2003-11-02 20:18:19 +00:00
|
|
|
static void
|
2016-01-27 02:23:54 +00:00
|
|
|
pccard_mfc_adjust_iobase(struct pccard_function *pf, rman_res_t addr,
|
|
|
|
rman_res_t offset, rman_res_t size)
|
2003-11-02 20:18:19 +00:00
|
|
|
{
|
2003-11-03 16:04:31 +00:00
|
|
|
bus_size_t iosize, tmp;
|
2003-11-02 20:18:19 +00:00
|
|
|
|
|
|
|
if (addr != 0) {
|
|
|
|
if (pf->pf_mfc_iomax == 0) {
|
|
|
|
pf->pf_mfc_iobase = addr + offset;
|
|
|
|
pf->pf_mfc_iomax = pf->pf_mfc_iobase + size;
|
|
|
|
} else {
|
|
|
|
/* this makes the assumption that nothing overlaps */
|
|
|
|
if (pf->pf_mfc_iobase > addr + offset)
|
|
|
|
pf->pf_mfc_iobase = addr + offset;
|
|
|
|
if (pf->pf_mfc_iomax < addr + offset + size)
|
|
|
|
pf->pf_mfc_iomax = addr + offset + size;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
tmp = pf->pf_mfc_iomax - pf->pf_mfc_iobase;
|
|
|
|
/* round up to nearest (2^n)-1 */
|
|
|
|
for (iosize = 1; iosize < tmp; iosize <<= 1)
|
|
|
|
;
|
|
|
|
iosize--;
|
|
|
|
|
2003-11-04 06:30:59 +00:00
|
|
|
DEVPRINTF((pf->dev, "MFC: I/O base %#jx IOSIZE %#jx\n",
|
|
|
|
(uintmax_t)pf->pf_mfc_iobase, (uintmax_t)(iosize + 1)));
|
2003-11-02 20:18:19 +00:00
|
|
|
pccard_ccr_write(pf, PCCARD_CCR_IOBASE0,
|
|
|
|
pf->pf_mfc_iobase & 0xff);
|
|
|
|
pccard_ccr_write(pf, PCCARD_CCR_IOBASE1,
|
|
|
|
(pf->pf_mfc_iobase >> 8) & 0xff);
|
|
|
|
pccard_ccr_write(pf, PCCARD_CCR_IOBASE2, 0);
|
|
|
|
pccard_ccr_write(pf, PCCARD_CCR_IOBASE3, 0);
|
|
|
|
pccard_ccr_write(pf, PCCARD_CCR_IOSIZE, iosize);
|
|
|
|
}
|
|
|
|
|
1999-10-26 06:52:31 +00:00
|
|
|
/* Enable a PCCARD function */
|
2001-08-27 00:09:42 +00:00
|
|
|
static int
|
2000-01-10 06:58:17 +00:00
|
|
|
pccard_function_enable(struct pccard_function *pf)
|
1999-10-26 06:52:31 +00:00
|
|
|
{
|
|
|
|
struct pccard_function *tmp;
|
|
|
|
int reg;
|
2000-01-10 06:58:17 +00:00
|
|
|
device_t dev = pf->sc->dev;
|
2001-01-07 08:08:54 +00:00
|
|
|
|
2000-10-19 22:36:41 +00:00
|
|
|
if (pf->cfe == NULL) {
|
|
|
|
DEVPRVERBOSE((dev, "No config entry could be allocated.\n"));
|
2001-03-22 05:41:20 +00:00
|
|
|
return (ENOMEM);
|
2000-10-19 22:36:41 +00:00
|
|
|
}
|
1999-10-26 06:52:31 +00:00
|
|
|
|
2008-08-07 20:52:54 +00:00
|
|
|
if (pf->pf_flags & PFF_ENABLED)
|
1999-10-26 06:52:31 +00:00
|
|
|
return (0);
|
2008-08-07 20:52:54 +00:00
|
|
|
pf->sc->sc_enabled_count++;
|
1999-10-26 06:52:31 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* it's possible for different functions' CCRs to be in the same
|
|
|
|
* underlying page. Check for that.
|
|
|
|
*/
|
|
|
|
STAILQ_FOREACH(tmp, &pf->sc->card.pf_head, pf_list) {
|
|
|
|
if ((tmp->pf_flags & PFF_ENABLED) &&
|
|
|
|
(pf->ccr_base >= (tmp->ccr_base - tmp->pf_ccr_offset)) &&
|
|
|
|
((pf->ccr_base + PCCARD_CCR_SIZE) <=
|
2001-08-27 00:09:42 +00:00
|
|
|
(tmp->ccr_base - tmp->pf_ccr_offset +
|
|
|
|
tmp->pf_ccr_realsize))) {
|
1999-10-26 06:52:31 +00:00
|
|
|
pf->pf_ccrt = tmp->pf_ccrt;
|
|
|
|
pf->pf_ccrh = tmp->pf_ccrh;
|
|
|
|
pf->pf_ccr_realsize = tmp->pf_ccr_realsize;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* pf->pf_ccr_offset = (tmp->pf_ccr_offset -
|
|
|
|
* tmp->ccr_base) + pf->ccr_base;
|
|
|
|
*/
|
2001-01-06 18:04:55 +00:00
|
|
|
/* pf->pf_ccr_offset =
|
1999-10-26 06:52:31 +00:00
|
|
|
(tmp->pf_ccr_offset + pf->ccr_base) -
|
2001-01-06 18:04:55 +00:00
|
|
|
tmp->ccr_base; */
|
1999-10-26 06:52:31 +00:00
|
|
|
pf->pf_ccr_window = tmp->pf_ccr_window;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (tmp == NULL) {
|
2000-01-10 06:58:17 +00:00
|
|
|
pf->ccr_rid = 0;
|
2016-02-27 03:38:01 +00:00
|
|
|
pf->ccr_res = bus_alloc_resource_anywhere(dev, SYS_RES_MEMORY,
|
|
|
|
&pf->ccr_rid, PCCARD_MEM_PAGE_SIZE, RF_ACTIVE);
|
2001-01-06 18:04:55 +00:00
|
|
|
if (!pf->ccr_res)
|
1999-10-26 06:52:31 +00:00
|
|
|
goto bad;
|
Use uintmax_t (typedef'd to rman_res_t type) for rman ranges.
On some architectures, u_long isn't large enough for resource definitions.
Particularly, powerpc and arm allow 36-bit (or larger) physical addresses, but
type `long' is only 32-bit. This extends rman's resources to uintmax_t. With
this change, any resource can feasibly be placed anywhere in physical memory
(within the constraints of the driver).
Why uintmax_t and not something machine dependent, or uint64_t? Though it's
possible for uintmax_t to grow, it's highly unlikely it will become 128-bit on
32-bit architectures. 64-bit architectures should have plenty of RAM to absorb
the increase on resource sizes if and when this occurs, and the number of
resources on memory-constrained systems should be sufficiently small as to not
pose a drastic overhead. That being said, uintmax_t was chosen for source
clarity. If it's specified as uint64_t, all printf()-like calls would either
need casts to uintmax_t, or be littered with PRI*64 macros. Casts to uintmax_t
aren't horrible, but it would also bake into the API for
resource_list_print_type() either a hidden assumption that entries get cast to
uintmax_t for printing, or these calls would need the PRI*64 macros. Since
source code is meant to be read more often than written, I chose the clearest
path of simply using uintmax_t.
Tested on a PowerPC p5020-based board, which places all device resources in
0xfxxxxxxxx, and has 8GB RAM.
Regression tested on qemu-system-i386
Regression tested on qemu-system-mips (malta profile)
Tested PAE and devinfo on virtualbox (live CD)
Special thanks to bz for his testing on ARM.
Reviewed By: bz, jhb (previous)
Relnotes: Yes
Sponsored by: Alex Perez/Inertial Computing
Differential Revision: https://reviews.freebsd.org/D4544
2016-03-18 01:28:41 +00:00
|
|
|
DEVPRINTF((dev, "ccr_res == %#jx-%#jx, base=%#x\n",
|
2001-01-07 08:08:54 +00:00
|
|
|
rman_get_start(pf->ccr_res), rman_get_end(pf->ccr_res),
|
|
|
|
pf->ccr_base));
|
2000-06-18 05:28:59 +00:00
|
|
|
CARD_SET_RES_FLAGS(device_get_parent(dev), dev, SYS_RES_MEMORY,
|
|
|
|
pf->ccr_rid, PCCARD_A_MEM_ATTR);
|
2001-01-06 18:04:55 +00:00
|
|
|
CARD_SET_MEMORY_OFFSET(device_get_parent(dev), dev,
|
2001-01-07 16:31:09 +00:00
|
|
|
pf->ccr_rid, pf->ccr_base, &pf->pf_ccr_offset);
|
2000-01-10 06:58:17 +00:00
|
|
|
pf->pf_ccrt = rman_get_bustag(pf->ccr_res);
|
|
|
|
pf->pf_ccrh = rman_get_bushandle(pf->ccr_res);
|
|
|
|
pf->pf_ccr_realsize = 1;
|
1999-10-26 06:52:31 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
reg = (pf->cfe->number & PCCARD_CCR_OPTION_CFINDEX);
|
|
|
|
reg |= PCCARD_CCR_OPTION_LEVIREQ;
|
|
|
|
if (pccard_mfc(pf->sc)) {
|
|
|
|
reg |= (PCCARD_CCR_OPTION_FUNC_ENABLE |
|
|
|
|
PCCARD_CCR_OPTION_ADDR_DECODE);
|
2001-08-27 01:24:33 +00:00
|
|
|
/* PCCARD_CCR_OPTION_IRQ_ENABLE set elsewhere as needed */
|
1999-10-26 06:52:31 +00:00
|
|
|
}
|
|
|
|
pccard_ccr_write(pf, PCCARD_CCR_OPTION, reg);
|
|
|
|
|
|
|
|
reg = 0;
|
|
|
|
if ((pf->cfe->flags & PCCARD_CFE_IO16) == 0)
|
|
|
|
reg |= PCCARD_CCR_STATUS_IOIS8;
|
|
|
|
if (pf->cfe->flags & PCCARD_CFE_AUDIO)
|
|
|
|
reg |= PCCARD_CCR_STATUS_AUDIO;
|
|
|
|
pccard_ccr_write(pf, PCCARD_CCR_STATUS, reg);
|
|
|
|
|
|
|
|
pccard_ccr_write(pf, PCCARD_CCR_SOCKETCOPY, 0);
|
|
|
|
|
2003-11-02 20:18:19 +00:00
|
|
|
if (pccard_mfc(pf->sc))
|
|
|
|
pccard_mfc_adjust_iobase(pf, 0, 0, 0);
|
1999-10-26 06:52:31 +00:00
|
|
|
|
|
|
|
#ifdef PCCARDDEBUG
|
|
|
|
if (pccard_debug) {
|
|
|
|
STAILQ_FOREACH(tmp, &pf->sc->card.pf_head, pf_list) {
|
2001-01-06 18:04:55 +00:00
|
|
|
device_printf(tmp->sc->dev,
|
2009-02-05 23:51:11 +00:00
|
|
|
"function %d CCR at %d offset %#x: "
|
|
|
|
"%#x %#x %#x %#x, %#x %#x %#x %#x, %#x\n",
|
2001-01-06 18:04:55 +00:00
|
|
|
tmp->number, tmp->pf_ccr_window,
|
2000-01-06 07:30:28 +00:00
|
|
|
tmp->pf_ccr_offset,
|
|
|
|
pccard_ccr_read(tmp, 0x00),
|
|
|
|
pccard_ccr_read(tmp, 0x02),
|
|
|
|
pccard_ccr_read(tmp, 0x04),
|
|
|
|
pccard_ccr_read(tmp, 0x06),
|
|
|
|
pccard_ccr_read(tmp, 0x0A),
|
2001-01-06 18:04:55 +00:00
|
|
|
pccard_ccr_read(tmp, 0x0C),
|
2000-01-06 07:30:28 +00:00
|
|
|
pccard_ccr_read(tmp, 0x0E),
|
|
|
|
pccard_ccr_read(tmp, 0x10),
|
|
|
|
pccard_ccr_read(tmp, 0x12));
|
1999-10-26 06:52:31 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
pf->pf_flags |= PFF_ENABLED;
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
bad:
|
|
|
|
/*
|
|
|
|
* Decrement the reference count, and power down the socket, if
|
|
|
|
* necessary.
|
|
|
|
*/
|
2001-08-27 00:09:42 +00:00
|
|
|
pf->sc->sc_enabled_count--;
|
2000-08-26 00:07:40 +00:00
|
|
|
DEVPRINTF((dev, "bad --enabled_count = %d\n", pf->sc->sc_enabled_count));
|
1999-10-26 06:52:31 +00:00
|
|
|
|
|
|
|
return (1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Disable PCCARD function. */
|
2001-08-27 00:09:42 +00:00
|
|
|
static void
|
2000-01-10 06:58:17 +00:00
|
|
|
pccard_function_disable(struct pccard_function *pf)
|
1999-10-26 06:52:31 +00:00
|
|
|
{
|
|
|
|
struct pccard_function *tmp;
|
2000-01-10 06:58:17 +00:00
|
|
|
device_t dev = pf->sc->dev;
|
1999-10-26 06:52:31 +00:00
|
|
|
|
|
|
|
if (pf->cfe == NULL)
|
2000-06-18 05:28:59 +00:00
|
|
|
panic("pccard_function_disable: function not initialized");
|
1999-10-26 06:52:31 +00:00
|
|
|
|
2008-08-07 20:52:54 +00:00
|
|
|
if ((pf->pf_flags & PFF_ENABLED) == 0)
|
1999-10-26 06:52:31 +00:00
|
|
|
return;
|
2001-01-06 18:04:55 +00:00
|
|
|
if (pf->intr_handler != NULL) {
|
2001-08-27 00:09:42 +00:00
|
|
|
struct pccard_ivar *devi = PCCARD_IVAR(pf->dev);
|
|
|
|
struct resource_list_entry *rle =
|
|
|
|
resource_list_find(&devi->resources, SYS_RES_IRQ, 0);
|
2005-04-12 04:30:35 +00:00
|
|
|
if (rle == NULL)
|
|
|
|
panic("Can't disable an interrupt with no IRQ res\n");
|
2001-08-27 00:09:42 +00:00
|
|
|
BUS_TEARDOWN_INTR(dev, pf->dev, rle->res,
|
|
|
|
pf->intr_handler_cookie);
|
2001-01-06 18:04:55 +00:00
|
|
|
}
|
|
|
|
|
1999-10-26 06:52:31 +00:00
|
|
|
/*
|
|
|
|
* it's possible for different functions' CCRs to be in the same
|
|
|
|
* underlying page. Check for that. Note we mark us as disabled
|
|
|
|
* first to avoid matching ourself.
|
|
|
|
*/
|
|
|
|
|
|
|
|
pf->pf_flags &= ~PFF_ENABLED;
|
|
|
|
STAILQ_FOREACH(tmp, &pf->sc->card.pf_head, pf_list) {
|
|
|
|
if ((tmp->pf_flags & PFF_ENABLED) &&
|
|
|
|
(pf->ccr_base >= (tmp->ccr_base - tmp->pf_ccr_offset)) &&
|
|
|
|
((pf->ccr_base + PCCARD_CCR_SIZE) <=
|
2001-08-27 00:09:42 +00:00
|
|
|
(tmp->ccr_base - tmp->pf_ccr_offset +
|
|
|
|
tmp->pf_ccr_realsize)))
|
1999-10-26 06:52:31 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Not used by anyone else; unmap the CCR. */
|
|
|
|
if (tmp == NULL) {
|
2001-01-06 18:04:55 +00:00
|
|
|
bus_release_resource(dev, SYS_RES_MEMORY, pf->ccr_rid,
|
2000-01-10 06:58:17 +00:00
|
|
|
pf->ccr_res);
|
|
|
|
pf->ccr_res = NULL;
|
1999-10-26 06:52:31 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Decrement the reference count, and power down the socket, if
|
|
|
|
* necessary.
|
|
|
|
*/
|
2001-08-27 00:09:42 +00:00
|
|
|
pf->sc->sc_enabled_count--;
|
1999-10-26 06:52:31 +00:00
|
|
|
}
|
|
|
|
|
1999-11-29 06:42:55 +00:00
|
|
|
#define PCCARD_NPORT 2
|
|
|
|
#define PCCARD_NMEM 5
|
|
|
|
#define PCCARD_NIRQ 1
|
|
|
|
#define PCCARD_NDRQ 0
|
|
|
|
|
1999-10-26 06:52:31 +00:00
|
|
|
static int
|
|
|
|
pccard_probe(device_t dev)
|
|
|
|
{
|
2000-10-19 22:36:41 +00:00
|
|
|
device_set_desc(dev, "16-bit PCCard bus");
|
2005-09-20 19:34:10 +00:00
|
|
|
return (0);
|
1999-10-26 06:52:31 +00:00
|
|
|
}
|
|
|
|
|
2000-04-13 06:42:58 +00:00
|
|
|
static int
|
|
|
|
pccard_attach(device_t dev)
|
|
|
|
{
|
2000-08-19 19:22:04 +00:00
|
|
|
struct pccard_softc *sc = PCCARD_SOFTC(dev);
|
2005-09-20 06:47:33 +00:00
|
|
|
int err;
|
2000-06-18 05:28:59 +00:00
|
|
|
|
2000-04-13 06:42:58 +00:00
|
|
|
sc->dev = dev;
|
2000-06-18 05:28:59 +00:00
|
|
|
sc->sc_enabled_count = 0;
|
2005-09-20 06:47:33 +00:00
|
|
|
if ((err = pccard_device_create(sc)) != 0)
|
|
|
|
return (err);
|
2005-12-28 05:30:09 +00:00
|
|
|
STAILQ_INIT(&sc->card.pf_head);
|
2001-03-22 05:41:20 +00:00
|
|
|
return (bus_generic_attach(dev));
|
2000-04-13 06:42:58 +00:00
|
|
|
}
|
|
|
|
|
2001-08-27 00:09:42 +00:00
|
|
|
static int
|
|
|
|
pccard_detach(device_t dev)
|
|
|
|
{
|
2002-11-02 23:00:28 +00:00
|
|
|
pccard_detach_card(dev);
|
2005-09-20 06:47:33 +00:00
|
|
|
pccard_device_destroy(device_get_softc(dev));
|
|
|
|
return (0);
|
2001-08-27 00:09:42 +00:00
|
|
|
}
|
|
|
|
|
2001-12-15 05:58:28 +00:00
|
|
|
static int
|
|
|
|
pccard_suspend(device_t self)
|
|
|
|
{
|
2002-11-02 23:00:28 +00:00
|
|
|
pccard_detach_card(self);
|
2001-12-15 05:58:28 +00:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static
|
|
|
|
int
|
|
|
|
pccard_resume(device_t self)
|
|
|
|
{
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
1999-11-29 06:42:55 +00:00
|
|
|
static void
|
|
|
|
pccard_print_resources(struct resource_list *rl, const char *name, int type,
|
|
|
|
int count, const char *format)
|
|
|
|
{
|
|
|
|
struct resource_list_entry *rle;
|
|
|
|
int printed;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
printed = 0;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
|
|
rle = resource_list_find(rl, type, i);
|
2001-05-10 06:55:39 +00:00
|
|
|
if (rle != NULL) {
|
1999-11-29 06:42:55 +00:00
|
|
|
if (printed == 0)
|
|
|
|
printf(" %s ", name);
|
|
|
|
else if (printed > 0)
|
|
|
|
printf(",");
|
|
|
|
printed++;
|
|
|
|
printf(format, rle->start);
|
|
|
|
if (rle->count > 1) {
|
|
|
|
printf("-");
|
|
|
|
printf(format, rle->start + rle->count - 1);
|
|
|
|
}
|
|
|
|
} else if (i > 3) {
|
|
|
|
/* check the first few regardless */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
pccard_print_child(device_t dev, device_t child)
|
|
|
|
{
|
2000-10-09 03:40:15 +00:00
|
|
|
struct pccard_ivar *devi = PCCARD_IVAR(child);
|
1999-11-29 06:42:55 +00:00
|
|
|
struct resource_list *rl = &devi->resources;
|
|
|
|
int retval = 0;
|
|
|
|
|
|
|
|
retval += bus_print_child_header(dev, child);
|
|
|
|
retval += printf(" at");
|
|
|
|
|
2001-05-10 06:55:39 +00:00
|
|
|
if (devi != NULL) {
|
1999-11-29 06:42:55 +00:00
|
|
|
pccard_print_resources(rl, "port", SYS_RES_IOPORT,
|
|
|
|
PCCARD_NPORT, "%#lx");
|
|
|
|
pccard_print_resources(rl, "iomem", SYS_RES_MEMORY,
|
|
|
|
PCCARD_NMEM, "%#lx");
|
|
|
|
pccard_print_resources(rl, "irq", SYS_RES_IRQ, PCCARD_NIRQ,
|
|
|
|
"%ld");
|
2001-01-06 18:04:55 +00:00
|
|
|
pccard_print_resources(rl, "drq", SYS_RES_DRQ, PCCARD_NDRQ,
|
1999-11-29 06:42:55 +00:00
|
|
|
"%ld");
|
2005-07-13 15:00:59 +00:00
|
|
|
retval += printf(" function %d config %d", devi->pf->number,
|
|
|
|
devi->pf->cfe->number);
|
1999-11-29 06:42:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
retval += bus_print_child_footer(dev, child);
|
|
|
|
|
|
|
|
return (retval);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
pccard_set_resource(device_t dev, device_t child, int type, int rid,
|
2016-01-27 02:23:54 +00:00
|
|
|
rman_res_t start, rman_res_t count)
|
1999-11-29 06:42:55 +00:00
|
|
|
{
|
2000-10-09 03:40:15 +00:00
|
|
|
struct pccard_ivar *devi = PCCARD_IVAR(child);
|
1999-11-29 06:42:55 +00:00
|
|
|
struct resource_list *rl = &devi->resources;
|
|
|
|
|
|
|
|
if (type != SYS_RES_IOPORT && type != SYS_RES_MEMORY
|
|
|
|
&& type != SYS_RES_IRQ && type != SYS_RES_DRQ)
|
2001-03-22 05:41:20 +00:00
|
|
|
return (EINVAL);
|
1999-11-29 06:42:55 +00:00
|
|
|
if (rid < 0)
|
2001-03-22 05:41:20 +00:00
|
|
|
return (EINVAL);
|
1999-11-29 06:42:55 +00:00
|
|
|
if (type == SYS_RES_IOPORT && rid >= PCCARD_NPORT)
|
2001-03-22 05:41:20 +00:00
|
|
|
return (EINVAL);
|
1999-11-29 06:42:55 +00:00
|
|
|
if (type == SYS_RES_MEMORY && rid >= PCCARD_NMEM)
|
2001-03-22 05:41:20 +00:00
|
|
|
return (EINVAL);
|
1999-11-29 06:42:55 +00:00
|
|
|
if (type == SYS_RES_IRQ && rid >= PCCARD_NIRQ)
|
2001-03-22 05:41:20 +00:00
|
|
|
return (EINVAL);
|
1999-11-29 06:42:55 +00:00
|
|
|
if (type == SYS_RES_DRQ && rid >= PCCARD_NDRQ)
|
2001-03-22 05:41:20 +00:00
|
|
|
return (EINVAL);
|
1999-11-29 06:42:55 +00:00
|
|
|
|
|
|
|
resource_list_add(rl, type, rid, start, start + count - 1, count);
|
2001-08-27 00:09:42 +00:00
|
|
|
if (NULL != resource_list_alloc(rl, device_get_parent(dev), dev,
|
|
|
|
type, &rid, start, start + count - 1, count, 0))
|
|
|
|
return 0;
|
|
|
|
else
|
|
|
|
return ENOMEM;
|
1999-11-29 06:42:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
pccard_get_resource(device_t dev, device_t child, int type, int rid,
|
2016-01-27 02:23:54 +00:00
|
|
|
rman_res_t *startp, rman_res_t *countp)
|
1999-11-29 06:42:55 +00:00
|
|
|
{
|
2000-10-09 03:40:15 +00:00
|
|
|
struct pccard_ivar *devi = PCCARD_IVAR(child);
|
1999-11-29 06:42:55 +00:00
|
|
|
struct resource_list *rl = &devi->resources;
|
|
|
|
struct resource_list_entry *rle;
|
|
|
|
|
|
|
|
rle = resource_list_find(rl, type, rid);
|
2001-05-10 06:55:39 +00:00
|
|
|
if (rle == NULL)
|
2001-03-22 05:41:20 +00:00
|
|
|
return (ENOENT);
|
2001-01-06 18:04:55 +00:00
|
|
|
|
2001-05-10 06:55:39 +00:00
|
|
|
if (startp != NULL)
|
1999-11-29 06:42:55 +00:00
|
|
|
*startp = rle->start;
|
2001-05-10 06:55:39 +00:00
|
|
|
if (countp != NULL)
|
1999-11-29 06:42:55 +00:00
|
|
|
*countp = rle->count;
|
|
|
|
|
2001-03-22 05:41:20 +00:00
|
|
|
return (0);
|
1999-11-29 06:42:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
pccard_delete_resource(device_t dev, device_t child, int type, int rid)
|
|
|
|
{
|
2000-10-09 03:40:15 +00:00
|
|
|
struct pccard_ivar *devi = PCCARD_IVAR(child);
|
1999-11-29 06:42:55 +00:00
|
|
|
struct resource_list *rl = &devi->resources;
|
|
|
|
resource_list_delete(rl, type, rid);
|
|
|
|
}
|
|
|
|
|
2000-04-13 06:42:58 +00:00
|
|
|
static int
|
|
|
|
pccard_set_res_flags(device_t dev, device_t child, int type, int rid,
|
2009-02-05 19:38:31 +00:00
|
|
|
u_long flags)
|
2000-04-13 06:42:58 +00:00
|
|
|
{
|
2001-03-22 05:41:20 +00:00
|
|
|
return (CARD_SET_RES_FLAGS(device_get_parent(dev), child, type,
|
|
|
|
rid, flags));
|
2000-04-13 06:42:58 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
pccard_set_memory_offset(device_t dev, device_t child, int rid,
|
2005-01-24 06:48:26 +00:00
|
|
|
uint32_t offset, uint32_t *deltap)
|
2001-01-06 18:04:55 +00:00
|
|
|
|
2000-04-13 06:42:58 +00:00
|
|
|
{
|
2001-03-22 05:41:20 +00:00
|
|
|
return (CARD_SET_MEMORY_OFFSET(device_get_parent(dev), child, rid,
|
|
|
|
offset, deltap));
|
2000-04-13 06:42:58 +00:00
|
|
|
}
|
|
|
|
|
2002-10-07 23:05:33 +00:00
|
|
|
static void
|
|
|
|
pccard_probe_nomatch(device_t bus, device_t child)
|
|
|
|
{
|
|
|
|
struct pccard_ivar *devi = PCCARD_IVAR(child);
|
2005-07-13 15:00:59 +00:00
|
|
|
struct pccard_function *pf = devi->pf;
|
2002-10-07 23:05:33 +00:00
|
|
|
struct pccard_softc *sc = PCCARD_SOFTC(bus);
|
2005-07-15 01:43:08 +00:00
|
|
|
int i;
|
2002-10-07 23:05:33 +00:00
|
|
|
|
|
|
|
device_printf(bus, "<unknown card>");
|
2005-07-14 20:40:42 +00:00
|
|
|
printf(" (manufacturer=0x%04x, product=0x%04x, function_type=%d) "
|
|
|
|
"at function %d\n", sc->card.manufacturer, sc->card.product,
|
|
|
|
pf->function, pf->number);
|
|
|
|
device_printf(bus, " CIS info: ");
|
|
|
|
for (i = 0; sc->card.cis1_info[i] != NULL && i < 4; i++)
|
|
|
|
printf("%s%s", i > 0 ? ", " : "", sc->card.cis1_info[i]);
|
|
|
|
printf("\n");
|
2002-10-07 23:05:33 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
pccard_child_location_str(device_t bus, device_t child, char *buf,
|
|
|
|
size_t buflen)
|
|
|
|
{
|
|
|
|
struct pccard_ivar *devi = PCCARD_IVAR(child);
|
2005-07-13 15:00:59 +00:00
|
|
|
struct pccard_function *pf = devi->pf;
|
2002-10-07 23:05:33 +00:00
|
|
|
|
2005-07-13 15:00:59 +00:00
|
|
|
snprintf(buf, buflen, "function=%d", pf->number);
|
2002-10-07 23:05:33 +00:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
pccard_child_pnpinfo_str(device_t bus, device_t child, char *buf,
|
|
|
|
size_t buflen)
|
|
|
|
{
|
|
|
|
struct pccard_ivar *devi = PCCARD_IVAR(child);
|
2005-07-13 15:00:59 +00:00
|
|
|
struct pccard_function *pf = devi->pf;
|
2002-10-07 23:05:33 +00:00
|
|
|
struct pccard_softc *sc = PCCARD_SOFTC(bus);
|
2018-06-27 04:11:14 +00:00
|
|
|
struct sbuf sb;
|
|
|
|
|
|
|
|
sbuf_new(&sb, buf, buflen, SBUF_FIXEDLEN | SBUF_INCLUDENUL);
|
|
|
|
sbuf_printf(&sb, "manufacturer=0x%04x product=0x%04x "
|
|
|
|
"cisvendor=\"", sc->card.manufacturer, sc->card.product);
|
|
|
|
devctl_safe_quote_sb(&sb, sc->card.cis1_info[0]);
|
|
|
|
sbuf_printf(&sb, "\" cisproduct=\"");
|
|
|
|
devctl_safe_quote_sb(&sb, sc->card.cis1_info[1]);
|
|
|
|
sbuf_printf(&sb, "\" function_type=%d", pf->function);
|
|
|
|
sbuf_finish(&sb);
|
|
|
|
sbuf_delete(&sb);
|
2002-10-07 23:05:33 +00:00
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
Implement indirection in the pccard probe/attach. This should make it
possible to have different probe/attach semantics between the two
systems and yet still use the same driver for both.
Compatibility methods for OLDCARD drivers. We use these routines to make
it possible to call the OLDCARD driver's probe routine in the context that
it expects. For OLDCARD these are implemented as pass throughs to the
device_{probe,attach} routines. For NEWCARD they are implemented such
such that probe becomes strictly a matching routine and attach does both
the old probe and old attach.
compat devices should use the following:
/* Device interface */
DEVMETHOD(device_probe), pccard_compat_probe),
DEVMETHOD(device_attach), pccard_compat_attach),
/* Card interface */
DEVMETHOD(card_compat_match, foo_match), /* newly written */
DEVMETHOD(card_compat_probe, foo_probe), /* old probe */
DEVMETHOD(card_compat_attach, foo_attach), /* old attach */
This will allow a single driver binary image to be used for both
OLDCARD and NEWCARD.
Drivers wishing to not retain OLDCARD compatibility needn't do this.
ep driver minorly updated.
sn driver updated more than minorly. Add module dependencies to allow
module to load. Also change name to if_sn. Add some debugging code.
attempt to fix the cannot allocate memory problem I'd been seeing.
Minor formatting nits.
2000-09-19 04:39:20 +00:00
|
|
|
static int
|
2009-02-05 19:38:31 +00:00
|
|
|
pccard_read_ivar(device_t bus, device_t child, int which, uintptr_t *result)
|
Implement indirection in the pccard probe/attach. This should make it
possible to have different probe/attach semantics between the two
systems and yet still use the same driver for both.
Compatibility methods for OLDCARD drivers. We use these routines to make
it possible to call the OLDCARD driver's probe routine in the context that
it expects. For OLDCARD these are implemented as pass throughs to the
device_{probe,attach} routines. For NEWCARD they are implemented such
such that probe becomes strictly a matching routine and attach does both
the old probe and old attach.
compat devices should use the following:
/* Device interface */
DEVMETHOD(device_probe), pccard_compat_probe),
DEVMETHOD(device_attach), pccard_compat_attach),
/* Card interface */
DEVMETHOD(card_compat_match, foo_match), /* newly written */
DEVMETHOD(card_compat_probe, foo_probe), /* old probe */
DEVMETHOD(card_compat_attach, foo_attach), /* old attach */
This will allow a single driver binary image to be used for both
OLDCARD and NEWCARD.
Drivers wishing to not retain OLDCARD compatibility needn't do this.
ep driver minorly updated.
sn driver updated more than minorly. Add module dependencies to allow
module to load. Also change name to if_sn. Add some debugging code.
attempt to fix the cannot allocate memory problem I'd been seeing.
Minor formatting nits.
2000-09-19 04:39:20 +00:00
|
|
|
{
|
2000-10-09 03:40:15 +00:00
|
|
|
struct pccard_ivar *devi = PCCARD_IVAR(child);
|
2005-07-13 15:00:59 +00:00
|
|
|
struct pccard_function *pf = devi->pf;
|
2000-10-07 05:48:51 +00:00
|
|
|
struct pccard_softc *sc = PCCARD_SOFTC(bus);
|
|
|
|
|
2005-07-13 15:00:59 +00:00
|
|
|
if (!pf)
|
|
|
|
panic("No pccard function pointer");
|
2000-10-07 05:48:51 +00:00
|
|
|
switch (which) {
|
|
|
|
default:
|
2005-07-13 15:00:59 +00:00
|
|
|
return (EINVAL);
|
2009-03-03 18:57:59 +00:00
|
|
|
case PCCARD_IVAR_FUNCE_DISK:
|
|
|
|
*(uint16_t *)result = pf->pf_funce_disk_interface |
|
|
|
|
(pf->pf_funce_disk_power << 8);
|
|
|
|
break;
|
2000-10-07 05:48:51 +00:00
|
|
|
case PCCARD_IVAR_ETHADDR:
|
2005-07-13 15:00:59 +00:00
|
|
|
bcopy(pf->pf_funce_lan_nid, result, ETHER_ADDR_LEN);
|
2000-10-07 05:48:51 +00:00
|
|
|
break;
|
|
|
|
case PCCARD_IVAR_VENDOR:
|
2005-07-13 15:00:59 +00:00
|
|
|
*(uint32_t *)result = sc->card.manufacturer;
|
2000-10-07 05:48:51 +00:00
|
|
|
break;
|
|
|
|
case PCCARD_IVAR_PRODUCT:
|
2005-07-13 15:00:59 +00:00
|
|
|
*(uint32_t *)result = sc->card.product;
|
2000-10-07 05:48:51 +00:00
|
|
|
break;
|
2002-02-20 14:30:46 +00:00
|
|
|
case PCCARD_IVAR_PRODEXT:
|
2005-07-13 15:00:59 +00:00
|
|
|
*(uint16_t *)result = sc->card.prodext;
|
2002-02-20 14:30:46 +00:00
|
|
|
break;
|
2001-04-21 04:08:39 +00:00
|
|
|
case PCCARD_IVAR_FUNCTION:
|
2005-07-13 15:00:59 +00:00
|
|
|
*(uint32_t *)result = pf->function;
|
2001-04-21 04:08:39 +00:00
|
|
|
break;
|
2000-10-07 05:48:51 +00:00
|
|
|
case PCCARD_IVAR_FUNCTION_NUMBER:
|
2005-07-13 15:00:59 +00:00
|
|
|
*(uint32_t *)result = pf->number;
|
2000-10-07 05:48:51 +00:00
|
|
|
break;
|
|
|
|
case PCCARD_IVAR_VENDOR_STR:
|
2005-07-13 15:00:59 +00:00
|
|
|
*(const char **)result = sc->card.cis1_info[0];
|
2000-10-07 05:48:51 +00:00
|
|
|
break;
|
|
|
|
case PCCARD_IVAR_PRODUCT_STR:
|
2005-07-13 15:00:59 +00:00
|
|
|
*(const char **)result = sc->card.cis1_info[1];
|
2000-10-07 05:48:51 +00:00
|
|
|
break;
|
|
|
|
case PCCARD_IVAR_CIS3_STR:
|
2005-07-13 15:00:59 +00:00
|
|
|
*(const char **)result = sc->card.cis1_info[2];
|
2000-10-07 05:48:51 +00:00
|
|
|
break;
|
2000-10-15 17:21:50 +00:00
|
|
|
case PCCARD_IVAR_CIS4_STR:
|
2005-07-13 15:00:59 +00:00
|
|
|
*(const char **)result = sc->card.cis1_info[3];
|
2000-10-15 17:21:50 +00:00
|
|
|
break;
|
2000-10-07 05:48:51 +00:00
|
|
|
}
|
|
|
|
return (0);
|
Implement indirection in the pccard probe/attach. This should make it
possible to have different probe/attach semantics between the two
systems and yet still use the same driver for both.
Compatibility methods for OLDCARD drivers. We use these routines to make
it possible to call the OLDCARD driver's probe routine in the context that
it expects. For OLDCARD these are implemented as pass throughs to the
device_{probe,attach} routines. For NEWCARD they are implemented such
such that probe becomes strictly a matching routine and attach does both
the old probe and old attach.
compat devices should use the following:
/* Device interface */
DEVMETHOD(device_probe), pccard_compat_probe),
DEVMETHOD(device_attach), pccard_compat_attach),
/* Card interface */
DEVMETHOD(card_compat_match, foo_match), /* newly written */
DEVMETHOD(card_compat_probe, foo_probe), /* old probe */
DEVMETHOD(card_compat_attach, foo_attach), /* old attach */
This will allow a single driver binary image to be used for both
OLDCARD and NEWCARD.
Drivers wishing to not retain OLDCARD compatibility needn't do this.
ep driver minorly updated.
sn driver updated more than minorly. Add module dependencies to allow
module to load. Also change name to if_sn. Add some debugging code.
attempt to fix the cannot allocate memory problem I'd been seeing.
Minor formatting nits.
2000-09-19 04:39:20 +00:00
|
|
|
}
|
|
|
|
|
2000-10-07 05:48:51 +00:00
|
|
|
static void
|
|
|
|
pccard_driver_added(device_t dev, driver_t *driver)
|
|
|
|
{
|
2001-08-27 00:09:42 +00:00
|
|
|
struct pccard_softc *sc = PCCARD_SOFTC(dev);
|
|
|
|
struct pccard_function *pf;
|
|
|
|
device_t child;
|
|
|
|
|
|
|
|
STAILQ_FOREACH(pf, &sc->card.pf_head, pf_list) {
|
|
|
|
if (STAILQ_EMPTY(&pf->cfe_head))
|
|
|
|
continue;
|
|
|
|
child = pf->dev;
|
|
|
|
if (device_get_state(child) != DS_NOTPRESENT)
|
|
|
|
continue;
|
2008-08-06 07:34:35 +00:00
|
|
|
pccard_probe_and_attach_child(dev, child, pf);
|
2001-08-27 00:09:42 +00:00
|
|
|
}
|
|
|
|
return;
|
2000-10-07 05:48:51 +00:00
|
|
|
}
|
Implement indirection in the pccard probe/attach. This should make it
possible to have different probe/attach semantics between the two
systems and yet still use the same driver for both.
Compatibility methods for OLDCARD drivers. We use these routines to make
it possible to call the OLDCARD driver's probe routine in the context that
it expects. For OLDCARD these are implemented as pass throughs to the
device_{probe,attach} routines. For NEWCARD they are implemented such
such that probe becomes strictly a matching routine and attach does both
the old probe and old attach.
compat devices should use the following:
/* Device interface */
DEVMETHOD(device_probe), pccard_compat_probe),
DEVMETHOD(device_attach), pccard_compat_attach),
/* Card interface */
DEVMETHOD(card_compat_match, foo_match), /* newly written */
DEVMETHOD(card_compat_probe, foo_probe), /* old probe */
DEVMETHOD(card_compat_attach, foo_attach), /* old attach */
This will allow a single driver binary image to be used for both
OLDCARD and NEWCARD.
Drivers wishing to not retain OLDCARD compatibility needn't do this.
ep driver minorly updated.
sn driver updated more than minorly. Add module dependencies to allow
module to load. Also change name to if_sn. Add some debugging code.
attempt to fix the cannot allocate memory problem I'd been seeing.
Minor formatting nits.
2000-09-19 04:39:20 +00:00
|
|
|
|
2000-10-17 06:29:21 +00:00
|
|
|
static struct resource *
|
|
|
|
pccard_alloc_resource(device_t dev, device_t child, int type, int *rid,
|
2016-01-27 02:23:54 +00:00
|
|
|
rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
|
2000-10-17 06:29:21 +00:00
|
|
|
{
|
2001-08-27 00:09:42 +00:00
|
|
|
struct pccard_ivar *dinfo;
|
2017-02-20 03:43:12 +00:00
|
|
|
struct resource_list_entry *rle = NULL;
|
2001-08-27 00:09:42 +00:00
|
|
|
int passthrough = (device_get_parent(child) != dev);
|
2016-02-20 01:32:58 +00:00
|
|
|
int isdefault = (RMAN_IS_DEFAULT_RANGE(start, end) && count == 1);
|
2002-10-07 23:05:33 +00:00
|
|
|
struct resource *r = NULL;
|
2000-10-17 06:29:21 +00:00
|
|
|
|
2003-11-02 20:18:19 +00:00
|
|
|
/* XXX I'm no longer sure this is right */
|
2001-08-27 00:09:42 +00:00
|
|
|
if (passthrough) {
|
|
|
|
return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
|
|
|
|
type, rid, start, end, count, flags));
|
2000-10-17 06:29:21 +00:00
|
|
|
}
|
2001-01-06 18:04:55 +00:00
|
|
|
|
2001-08-27 00:09:42 +00:00
|
|
|
dinfo = device_get_ivars(child);
|
|
|
|
rle = resource_list_find(&dinfo->resources, type, *rid);
|
|
|
|
|
2003-11-02 20:18:19 +00:00
|
|
|
if (rle == NULL && isdefault)
|
|
|
|
return (NULL); /* no resource of that type/rid */
|
|
|
|
if (rle == NULL || rle->res == NULL) {
|
2005-04-12 15:25:31 +00:00
|
|
|
/* XXX Need to adjust flags */
|
2003-11-02 20:18:19 +00:00
|
|
|
r = bus_alloc_resource(dev, type, rid, start, end,
|
2005-04-12 15:25:31 +00:00
|
|
|
count, flags);
|
2003-11-02 20:18:19 +00:00
|
|
|
if (r == NULL)
|
|
|
|
goto bad;
|
|
|
|
resource_list_add(&dinfo->resources, type, *rid,
|
|
|
|
rman_get_start(r), rman_get_end(r), count);
|
|
|
|
rle = resource_list_find(&dinfo->resources, type, *rid);
|
|
|
|
if (!rle)
|
|
|
|
goto bad;
|
|
|
|
rle->res = r;
|
2000-10-18 02:21:00 +00:00
|
|
|
}
|
2003-11-02 20:18:19 +00:00
|
|
|
/*
|
2005-04-12 15:25:31 +00:00
|
|
|
* If dev doesn't own the device, then we can't give this device
|
|
|
|
* out.
|
2003-11-02 20:18:19 +00:00
|
|
|
*/
|
2003-04-08 07:02:03 +00:00
|
|
|
if (rman_get_device(rle->res) != dev)
|
2002-10-07 23:05:33 +00:00
|
|
|
return (NULL);
|
2005-04-12 15:25:31 +00:00
|
|
|
rman_set_device(rle->res, child);
|
|
|
|
if (flags & RF_ACTIVE)
|
|
|
|
BUS_ACTIVATE_RESOURCE(dev, child, type, *rid, rle->res);
|
2002-10-07 23:05:33 +00:00
|
|
|
return (rle->res);
|
|
|
|
bad:;
|
|
|
|
device_printf(dev, "WARNING: Resource not reserved by pccard\n");
|
|
|
|
return (NULL);
|
2000-10-17 06:29:21 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
pccard_release_resource(device_t dev, device_t child, int type, int rid,
|
|
|
|
struct resource *r)
|
|
|
|
{
|
2001-08-27 00:09:42 +00:00
|
|
|
struct pccard_ivar *dinfo;
|
|
|
|
int passthrough = (device_get_parent(child) != dev);
|
2017-02-20 03:43:12 +00:00
|
|
|
struct resource_list_entry *rle = NULL;
|
2001-01-06 18:04:55 +00:00
|
|
|
|
2001-08-27 00:09:42 +00:00
|
|
|
if (passthrough)
|
|
|
|
return BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
|
|
|
|
type, rid, r);
|
2001-01-06 18:04:55 +00:00
|
|
|
|
2001-08-27 00:09:42 +00:00
|
|
|
dinfo = device_get_ivars(child);
|
2001-01-06 18:04:55 +00:00
|
|
|
|
2001-08-27 00:09:42 +00:00
|
|
|
rle = resource_list_find(&dinfo->resources, type, rid);
|
2001-01-06 18:04:55 +00:00
|
|
|
|
2001-08-27 00:09:42 +00:00
|
|
|
if (!rle) {
|
|
|
|
device_printf(dev, "Allocated resource not found, "
|
Use uintmax_t (typedef'd to rman_res_t type) for rman ranges.
On some architectures, u_long isn't large enough for resource definitions.
Particularly, powerpc and arm allow 36-bit (or larger) physical addresses, but
type `long' is only 32-bit. This extends rman's resources to uintmax_t. With
this change, any resource can feasibly be placed anywhere in physical memory
(within the constraints of the driver).
Why uintmax_t and not something machine dependent, or uint64_t? Though it's
possible for uintmax_t to grow, it's highly unlikely it will become 128-bit on
32-bit architectures. 64-bit architectures should have plenty of RAM to absorb
the increase on resource sizes if and when this occurs, and the number of
resources on memory-constrained systems should be sufficiently small as to not
pose a drastic overhead. That being said, uintmax_t was chosen for source
clarity. If it's specified as uint64_t, all printf()-like calls would either
need casts to uintmax_t, or be littered with PRI*64 macros. Casts to uintmax_t
aren't horrible, but it would also bake into the API for
resource_list_print_type() either a hidden assumption that entries get cast to
uintmax_t for printing, or these calls would need the PRI*64 macros. Since
source code is meant to be read more often than written, I chose the clearest
path of simply using uintmax_t.
Tested on a PowerPC p5020-based board, which places all device resources in
0xfxxxxxxxx, and has 8GB RAM.
Regression tested on qemu-system-i386
Regression tested on qemu-system-mips (malta profile)
Tested PAE and devinfo on virtualbox (live CD)
Special thanks to bz for his testing on ARM.
Reviewed By: bz, jhb (previous)
Relnotes: Yes
Sponsored by: Alex Perez/Inertial Computing
Differential Revision: https://reviews.freebsd.org/D4544
2016-03-18 01:28:41 +00:00
|
|
|
"%d %#x %#jx %#jx\n",
|
2001-08-27 00:09:42 +00:00
|
|
|
type, rid, rman_get_start(r), rman_get_size(r));
|
|
|
|
return ENOENT;
|
2001-01-06 18:04:55 +00:00
|
|
|
}
|
2001-08-27 00:09:42 +00:00
|
|
|
if (!rle->res) {
|
|
|
|
device_printf(dev, "Allocated resource not recorded\n");
|
|
|
|
return ENOENT;
|
2001-01-06 18:04:55 +00:00
|
|
|
}
|
2005-04-12 15:25:31 +00:00
|
|
|
/*
|
|
|
|
* Deactivate the resource (since it is being released), and
|
|
|
|
* assign it to the bus.
|
|
|
|
*/
|
|
|
|
BUS_DEACTIVATE_RESOURCE(dev, child, type, rid, rle->res);
|
|
|
|
rman_set_device(rle->res, dev);
|
|
|
|
return (0);
|
2000-10-17 06:29:21 +00:00
|
|
|
}
|
|
|
|
|
2000-10-19 22:36:41 +00:00
|
|
|
static void
|
|
|
|
pccard_child_detached(device_t parent, device_t dev)
|
|
|
|
{
|
|
|
|
struct pccard_ivar *ivar = PCCARD_IVAR(dev);
|
2005-07-13 15:00:59 +00:00
|
|
|
struct pccard_function *pf = ivar->pf;
|
2000-10-19 22:36:41 +00:00
|
|
|
|
2001-08-27 00:09:42 +00:00
|
|
|
pccard_function_disable(pf);
|
2000-10-19 22:36:41 +00:00
|
|
|
}
|
|
|
|
|
2007-02-23 12:19:07 +00:00
|
|
|
static int
|
2007-05-31 19:29:20 +00:00
|
|
|
pccard_filter(void *arg)
|
2001-01-07 20:40:23 +00:00
|
|
|
{
|
2001-08-27 00:09:42 +00:00
|
|
|
struct pccard_function *pf = (struct pccard_function*) arg;
|
|
|
|
int reg;
|
2002-09-04 06:53:37 +00:00
|
|
|
int doisr = 1;
|
2001-08-27 00:09:42 +00:00
|
|
|
|
2001-08-27 01:24:33 +00:00
|
|
|
/*
|
2002-09-04 06:53:37 +00:00
|
|
|
* MFC cards know if they interrupted, so we have to ack the
|
|
|
|
* interrupt and call the ISR. Non-MFC cards don't have these
|
|
|
|
* bits, so they always get called. Many non-MFC cards have
|
|
|
|
* this bit set always upon read, but some do not.
|
|
|
|
*
|
|
|
|
* We always ack the interrupt, even if there's no ISR
|
|
|
|
* for the card. This is done on the theory that acking
|
|
|
|
* the interrupt will pacify the card enough to keep an
|
|
|
|
* interrupt storm from happening. Of course this won't
|
|
|
|
* help in the non-MFC case.
|
2003-06-13 21:30:29 +00:00
|
|
|
*
|
|
|
|
* This has no impact for MPSAFEness of the client drivers.
|
|
|
|
* We register this with whatever flags the intr_handler
|
|
|
|
* was registered with. All these functions are MPSAFE.
|
2001-08-27 01:24:33 +00:00
|
|
|
*/
|
2002-09-04 06:53:37 +00:00
|
|
|
if (pccard_mfc(pf->sc)) {
|
|
|
|
reg = pccard_ccr_read(pf, PCCARD_CCR_STATUS);
|
|
|
|
if (reg & PCCARD_CCR_STATUS_INTR)
|
|
|
|
pccard_ccr_write(pf, PCCARD_CCR_STATUS,
|
|
|
|
reg & ~PCCARD_CCR_STATUS_INTR);
|
|
|
|
else
|
|
|
|
doisr = 0;
|
2001-01-06 18:04:55 +00:00
|
|
|
}
|
2007-02-23 12:19:07 +00:00
|
|
|
if (doisr) {
|
2007-05-31 19:29:20 +00:00
|
|
|
if (pf->intr_filter != NULL)
|
|
|
|
return (pf->intr_filter(pf->intr_handler_arg));
|
2007-06-16 23:33:57 +00:00
|
|
|
return (FILTER_SCHEDULE_THREAD);
|
2007-02-23 12:19:07 +00:00
|
|
|
}
|
2007-05-31 19:29:20 +00:00
|
|
|
return (FILTER_STRAY);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
pccard_intr(void *arg)
|
|
|
|
{
|
|
|
|
struct pccard_function *pf = (struct pccard_function*) arg;
|
|
|
|
|
|
|
|
pf->intr_handler(pf->intr_handler_arg);
|
2001-01-06 18:04:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2001-01-07 20:40:23 +00:00
|
|
|
pccard_setup_intr(device_t dev, device_t child, struct resource *irq,
|
2007-02-23 12:19:07 +00:00
|
|
|
int flags, driver_filter_t *filt, driver_intr_t *intr, void *arg,
|
|
|
|
void **cookiep)
|
2001-01-06 18:04:55 +00:00
|
|
|
{
|
2002-08-31 18:34:30 +00:00
|
|
|
struct pccard_softc *sc = PCCARD_SOFTC(dev);
|
2001-01-06 18:04:55 +00:00
|
|
|
struct pccard_ivar *ivar = PCCARD_IVAR(child);
|
2005-07-13 15:00:59 +00:00
|
|
|
struct pccard_function *pf = ivar->pf;
|
2002-02-10 03:34:44 +00:00
|
|
|
int err;
|
2001-01-06 18:04:55 +00:00
|
|
|
|
2007-05-31 19:29:20 +00:00
|
|
|
if (pf->intr_filter != NULL || pf->intr_handler != NULL)
|
2002-08-12 22:34:12 +00:00
|
|
|
panic("Only one interrupt handler per function allowed");
|
2007-05-31 19:29:20 +00:00
|
|
|
pf->intr_filter = filt;
|
2005-07-13 15:00:59 +00:00
|
|
|
pf->intr_handler = intr;
|
|
|
|
pf->intr_handler_arg = arg;
|
2019-01-07 06:19:51 +00:00
|
|
|
err = bus_generic_setup_intr(dev, child, irq, flags, pccard_filter,
|
|
|
|
intr ? pccard_intr : NULL, pf, cookiep);
|
|
|
|
if (err != 0) {
|
|
|
|
pf->intr_filter = NULL;
|
|
|
|
pf->intr_handler = NULL;
|
|
|
|
return (err);
|
|
|
|
}
|
2005-07-13 15:00:59 +00:00
|
|
|
pf->intr_handler_cookie = *cookiep;
|
2002-08-31 18:34:30 +00:00
|
|
|
if (pccard_mfc(sc)) {
|
2005-07-13 15:00:59 +00:00
|
|
|
pccard_ccr_write(pf, PCCARD_CCR_OPTION,
|
|
|
|
pccard_ccr_read(pf, PCCARD_CCR_OPTION) |
|
2002-08-31 18:34:30 +00:00
|
|
|
PCCARD_CCR_OPTION_IREQ_ENABLE);
|
|
|
|
}
|
2001-03-22 05:41:20 +00:00
|
|
|
return (0);
|
2001-01-06 18:04:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2001-01-07 20:40:23 +00:00
|
|
|
pccard_teardown_intr(device_t dev, device_t child, struct resource *r,
|
|
|
|
void *cookie)
|
2001-01-06 18:04:55 +00:00
|
|
|
{
|
2002-08-31 18:34:30 +00:00
|
|
|
struct pccard_softc *sc = PCCARD_SOFTC(dev);
|
2001-01-06 18:04:55 +00:00
|
|
|
struct pccard_ivar *ivar = PCCARD_IVAR(child);
|
2005-07-13 15:00:59 +00:00
|
|
|
struct pccard_function *pf = ivar->pf;
|
2001-08-27 00:09:42 +00:00
|
|
|
int ret;
|
2001-01-06 18:04:55 +00:00
|
|
|
|
2002-08-31 18:34:30 +00:00
|
|
|
if (pccard_mfc(sc)) {
|
2005-07-13 15:00:59 +00:00
|
|
|
pccard_ccr_write(pf, PCCARD_CCR_OPTION,
|
|
|
|
pccard_ccr_read(pf, PCCARD_CCR_OPTION) &
|
2002-08-31 18:34:30 +00:00
|
|
|
~PCCARD_CCR_OPTION_IREQ_ENABLE);
|
|
|
|
}
|
2002-02-10 03:34:44 +00:00
|
|
|
ret = bus_generic_teardown_intr(dev, child, r, cookie);
|
2001-08-27 00:09:42 +00:00
|
|
|
if (ret == 0) {
|
2005-07-13 15:00:59 +00:00
|
|
|
pf->intr_handler = NULL;
|
|
|
|
pf->intr_handler_arg = NULL;
|
|
|
|
pf->intr_handler_cookie = NULL;
|
2001-01-06 18:04:55 +00:00
|
|
|
}
|
2001-08-27 00:09:42 +00:00
|
|
|
|
|
|
|
return (ret);
|
2001-01-06 18:04:55 +00:00
|
|
|
}
|
|
|
|
|
2003-11-02 20:18:19 +00:00
|
|
|
static int
|
|
|
|
pccard_activate_resource(device_t brdev, device_t child, int type, int rid,
|
|
|
|
struct resource *r)
|
|
|
|
{
|
|
|
|
struct pccard_ivar *ivar = PCCARD_IVAR(child);
|
2005-07-13 15:00:59 +00:00
|
|
|
struct pccard_function *pf = ivar->pf;
|
2003-11-02 20:18:19 +00:00
|
|
|
|
|
|
|
switch(type) {
|
|
|
|
case SYS_RES_IOPORT:
|
|
|
|
/*
|
|
|
|
* We need to adjust IOBASE[01] and IOSIZE if we're an MFC
|
|
|
|
* card.
|
|
|
|
*/
|
|
|
|
if (pccard_mfc(pf->sc))
|
|
|
|
pccard_mfc_adjust_iobase(pf, rman_get_start(r), 0,
|
|
|
|
rman_get_size(r));
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return (bus_generic_activate_resource(brdev, child, type, rid, r));
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
pccard_deactivate_resource(device_t brdev, device_t child, int type,
|
|
|
|
int rid, struct resource *r)
|
|
|
|
{
|
|
|
|
/* XXX undo pccard_activate_resource? XXX */
|
|
|
|
return (bus_generic_deactivate_resource(brdev, child, type, rid, r));
|
|
|
|
}
|
|
|
|
|
2005-09-13 17:56:36 +00:00
|
|
|
static int
|
|
|
|
pccard_attr_read_impl(device_t brdev, device_t child, uint32_t offset,
|
|
|
|
uint8_t *val)
|
|
|
|
{
|
|
|
|
struct pccard_ivar *devi = PCCARD_IVAR(child);
|
|
|
|
struct pccard_function *pf = devi->pf;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Optimization. Most of the time, devices want to access
|
|
|
|
* the same page of the attribute memory that the CCR is in.
|
|
|
|
* We take advantage of this fact here.
|
|
|
|
*/
|
|
|
|
if (offset / PCCARD_MEM_PAGE_SIZE ==
|
|
|
|
pf->ccr_base / PCCARD_MEM_PAGE_SIZE)
|
|
|
|
*val = bus_space_read_1(pf->pf_ccrt, pf->pf_ccrh,
|
|
|
|
offset % PCCARD_MEM_PAGE_SIZE);
|
|
|
|
else {
|
|
|
|
CARD_SET_MEMORY_OFFSET(brdev, child, pf->ccr_rid, offset,
|
|
|
|
&offset);
|
|
|
|
*val = bus_space_read_1(pf->pf_ccrt, pf->pf_ccrh, offset);
|
|
|
|
CARD_SET_MEMORY_OFFSET(brdev, child, pf->ccr_rid, pf->ccr_base,
|
|
|
|
&offset);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
pccard_attr_write_impl(device_t brdev, device_t child, uint32_t offset,
|
|
|
|
uint8_t val)
|
|
|
|
{
|
|
|
|
struct pccard_ivar *devi = PCCARD_IVAR(child);
|
|
|
|
struct pccard_function *pf = devi->pf;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Optimization. Most of the time, devices want to access
|
|
|
|
* the same page of the attribute memory that the CCR is in.
|
|
|
|
* We take advantage of this fact here.
|
|
|
|
*/
|
|
|
|
if (offset / PCCARD_MEM_PAGE_SIZE ==
|
|
|
|
pf->ccr_base / PCCARD_MEM_PAGE_SIZE)
|
|
|
|
bus_space_write_1(pf->pf_ccrt, pf->pf_ccrh,
|
|
|
|
offset % PCCARD_MEM_PAGE_SIZE, val);
|
|
|
|
else {
|
|
|
|
CARD_SET_MEMORY_OFFSET(brdev, child, pf->ccr_rid, offset,
|
|
|
|
&offset);
|
|
|
|
bus_space_write_1(pf->pf_ccrt, pf->pf_ccrh, offset, val);
|
|
|
|
CARD_SET_MEMORY_OFFSET(brdev, child, pf->ccr_rid, pf->ccr_base,
|
|
|
|
&offset);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
pccard_ccr_read_impl(device_t brdev, device_t child, uint32_t offset,
|
|
|
|
uint8_t *val)
|
|
|
|
{
|
|
|
|
struct pccard_ivar *devi = PCCARD_IVAR(child);
|
|
|
|
|
|
|
|
*val = pccard_ccr_read(devi->pf, offset);
|
2011-06-06 16:27:38 +00:00
|
|
|
DEVPRINTF((child, "ccr_read of %#x (%#x) is %#x\n", offset,
|
|
|
|
devi->pf->pf_ccr_offset, *val));
|
2005-09-13 17:56:36 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
pccard_ccr_write_impl(device_t brdev, device_t child, uint32_t offset,
|
|
|
|
uint8_t val)
|
|
|
|
{
|
|
|
|
struct pccard_ivar *devi = PCCARD_IVAR(child);
|
|
|
|
struct pccard_function *pf = devi->pf;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Can't use pccard_ccr_write since client drivers may access
|
|
|
|
* registers not contained in the 'mask' if they are non-standard.
|
|
|
|
*/
|
2011-06-06 16:27:38 +00:00
|
|
|
DEVPRINTF((child, "ccr_write of %#x to %#x (%#x)\n", val, offset,
|
|
|
|
devi->pf->pf_ccr_offset));
|
2005-09-13 17:56:36 +00:00
|
|
|
bus_space_write_1(pf->pf_ccrt, pf->pf_ccrh, pf->pf_ccr_offset + offset,
|
|
|
|
val);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
1999-10-26 06:52:31 +00:00
|
|
|
static device_method_t pccard_methods[] = {
|
|
|
|
/* Device interface */
|
|
|
|
DEVMETHOD(device_probe, pccard_probe),
|
2000-04-13 06:42:58 +00:00
|
|
|
DEVMETHOD(device_attach, pccard_attach),
|
2001-08-27 00:09:42 +00:00
|
|
|
DEVMETHOD(device_detach, pccard_detach),
|
1999-10-26 06:52:31 +00:00
|
|
|
DEVMETHOD(device_shutdown, bus_generic_shutdown),
|
2001-12-15 05:58:28 +00:00
|
|
|
DEVMETHOD(device_suspend, pccard_suspend),
|
|
|
|
DEVMETHOD(device_resume, pccard_resume),
|
1999-10-26 06:52:31 +00:00
|
|
|
|
|
|
|
/* Bus interface */
|
|
|
|
DEVMETHOD(bus_print_child, pccard_print_child),
|
2000-10-07 05:48:51 +00:00
|
|
|
DEVMETHOD(bus_driver_added, pccard_driver_added),
|
2000-10-19 22:36:41 +00:00
|
|
|
DEVMETHOD(bus_child_detached, pccard_child_detached),
|
2000-10-17 06:29:21 +00:00
|
|
|
DEVMETHOD(bus_alloc_resource, pccard_alloc_resource),
|
|
|
|
DEVMETHOD(bus_release_resource, pccard_release_resource),
|
2003-11-02 20:18:19 +00:00
|
|
|
DEVMETHOD(bus_activate_resource, pccard_activate_resource),
|
|
|
|
DEVMETHOD(bus_deactivate_resource, pccard_deactivate_resource),
|
2001-01-06 18:04:55 +00:00
|
|
|
DEVMETHOD(bus_setup_intr, pccard_setup_intr),
|
|
|
|
DEVMETHOD(bus_teardown_intr, pccard_teardown_intr),
|
1999-10-26 06:52:31 +00:00
|
|
|
DEVMETHOD(bus_set_resource, pccard_set_resource),
|
|
|
|
DEVMETHOD(bus_get_resource, pccard_get_resource),
|
|
|
|
DEVMETHOD(bus_delete_resource, pccard_delete_resource),
|
2002-10-07 23:05:33 +00:00
|
|
|
DEVMETHOD(bus_probe_nomatch, pccard_probe_nomatch),
|
Implement indirection in the pccard probe/attach. This should make it
possible to have different probe/attach semantics between the two
systems and yet still use the same driver for both.
Compatibility methods for OLDCARD drivers. We use these routines to make
it possible to call the OLDCARD driver's probe routine in the context that
it expects. For OLDCARD these are implemented as pass throughs to the
device_{probe,attach} routines. For NEWCARD they are implemented such
such that probe becomes strictly a matching routine and attach does both
the old probe and old attach.
compat devices should use the following:
/* Device interface */
DEVMETHOD(device_probe), pccard_compat_probe),
DEVMETHOD(device_attach), pccard_compat_attach),
/* Card interface */
DEVMETHOD(card_compat_match, foo_match), /* newly written */
DEVMETHOD(card_compat_probe, foo_probe), /* old probe */
DEVMETHOD(card_compat_attach, foo_attach), /* old attach */
This will allow a single driver binary image to be used for both
OLDCARD and NEWCARD.
Drivers wishing to not retain OLDCARD compatibility needn't do this.
ep driver minorly updated.
sn driver updated more than minorly. Add module dependencies to allow
module to load. Also change name to if_sn. Add some debugging code.
attempt to fix the cannot allocate memory problem I'd been seeing.
Minor formatting nits.
2000-09-19 04:39:20 +00:00
|
|
|
DEVMETHOD(bus_read_ivar, pccard_read_ivar),
|
2002-10-07 23:05:33 +00:00
|
|
|
DEVMETHOD(bus_child_pnpinfo_str, pccard_child_pnpinfo_str),
|
|
|
|
DEVMETHOD(bus_child_location_str, pccard_child_location_str),
|
1999-10-26 06:52:31 +00:00
|
|
|
|
2000-04-13 06:42:58 +00:00
|
|
|
/* Card Interface */
|
|
|
|
DEVMETHOD(card_set_res_flags, pccard_set_res_flags),
|
|
|
|
DEVMETHOD(card_set_memory_offset, pccard_set_memory_offset),
|
|
|
|
DEVMETHOD(card_attach_card, pccard_attach_card),
|
|
|
|
DEVMETHOD(card_detach_card, pccard_detach_card),
|
2005-09-13 17:56:36 +00:00
|
|
|
DEVMETHOD(card_do_product_lookup, pccard_do_product_lookup),
|
Add a much-requested feature: The ability for pccard attachments to
scan the CIS for interesting tuples. 95% of what can be obtained from
the CIS is harvested by the pccard layer and presented to the user in
standard function calls. However, there are special needs at times
where the standard stuff doesn't suffice. This is for those special
cases.
CARD_SCAN_CIS(device_get_parent(dev), function, argp)
scans the CIS of the card, passing each tuple to function with
the tuple and argp as its arguments. Returning 0 continues the scan,
while returning 1 terminates the scan. The value of the last
invocation of function is returned from this function.
int (*pccard_scan_t)(struct pccard_tuple *tuple, void *argp)
function called for each tuple. Elements of the CIS tuple can be
read with pccard_tuple_read_{1,2,3,4,n}(). You are reading
the actual tuple memory each time, in case your card has
registers in the CIS.
# I suppose these things should be documented in pccard(4) or something like
# that.
# I plan on unifying cardbus CIS support in a similar way.
Approved by: re (scottl)
2005-07-01 03:40:28 +00:00
|
|
|
DEVMETHOD(card_cis_scan, pccard_scan_cis),
|
2005-09-13 17:56:36 +00:00
|
|
|
DEVMETHOD(card_attr_read, pccard_attr_read_impl),
|
|
|
|
DEVMETHOD(card_attr_write, pccard_attr_write_impl),
|
|
|
|
DEVMETHOD(card_ccr_read, pccard_ccr_read_impl),
|
|
|
|
DEVMETHOD(card_ccr_write, pccard_ccr_write_impl),
|
2000-04-13 06:42:58 +00:00
|
|
|
|
1999-10-26 06:52:31 +00:00
|
|
|
{ 0, 0 }
|
|
|
|
};
|
|
|
|
|
|
|
|
static driver_t pccard_driver = {
|
|
|
|
"pccard",
|
|
|
|
pccard_methods,
|
2000-08-19 19:22:04 +00:00
|
|
|
sizeof(struct pccard_softc)
|
1999-10-26 06:52:31 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
devclass_t pccard_devclass;
|
|
|
|
|
2002-08-15 08:02:23 +00:00
|
|
|
/* Maybe we need to have a slot device? */
|
1999-11-29 06:42:55 +00:00
|
|
|
DRIVER_MODULE(pccard, pcic, pccard_driver, pccard_devclass, 0, 0);
|
2002-08-15 08:02:23 +00:00
|
|
|
DRIVER_MODULE(pccard, cbb, pccard_driver, pccard_devclass, 0, 0);
|
2000-08-22 04:25:57 +00:00
|
|
|
MODULE_VERSION(pccard, 1);
|