FreeBSD/mips port. The FreeBSD/mips port targets mips32, mips64,
mips32r2 and mips64r2 (and close relatives) processors. There
presently is support for ADMtek ADM5120, A mips 4Kc in a malta board,
the RB533 routerboard (based on IDT RC32434) and some preliminary
support for sibtye/broadcom designs. Other hardware support will be
forthcomcing.
This port boots multiuser under gxemul emulating the malta board and
also bootstraps on the hardware whose support is forthcoming...
Oleksandr Tymoshenko, Wojciech Koszek, Warner Losh, Olivier Houchard,
Randall Stewert and others that have contributed to the mips2 and/or
mips2-jnpr perforce branches. Juniper contirbuted a generic mips port
late in the life cycle of the misp2 branch. Warner Losh merged the
mips2 and Juniper code bases, and others list above have worked for
the past several months to get to multiuser.
In addition, the mips2 work owe a debt to the trail blazing efforts of
the original mips branch in perforce done by Juli Mallett.
2008-04-13 07:27:37 +00:00
|
|
|
/* $OpenBSD: vmparam.h,v 1.2 1998/09/15 10:50:12 pefo Exp $ */
|
|
|
|
/* $NetBSD: vmparam.h,v 1.5 1994/10/26 21:10:10 cgd Exp $ */
|
|
|
|
|
|
|
|
/*
|
2017-11-20 19:43:44 +00:00
|
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
|
|
*
|
FreeBSD/mips port. The FreeBSD/mips port targets mips32, mips64,
mips32r2 and mips64r2 (and close relatives) processors. There
presently is support for ADMtek ADM5120, A mips 4Kc in a malta board,
the RB533 routerboard (based on IDT RC32434) and some preliminary
support for sibtye/broadcom designs. Other hardware support will be
forthcomcing.
This port boots multiuser under gxemul emulating the malta board and
also bootstraps on the hardware whose support is forthcoming...
Oleksandr Tymoshenko, Wojciech Koszek, Warner Losh, Olivier Houchard,
Randall Stewert and others that have contributed to the mips2 and/or
mips2-jnpr perforce branches. Juniper contirbuted a generic mips port
late in the life cycle of the misp2 branch. Warner Losh merged the
mips2 and Juniper code bases, and others list above have worked for
the past several months to get to multiuser.
In addition, the mips2 work owe a debt to the trail blazing efforts of
the original mips branch in perforce done by Juli Mallett.
2008-04-13 07:27:37 +00:00
|
|
|
* Copyright (c) 1988 University of Utah.
|
|
|
|
* Copyright (c) 1992, 1993
|
|
|
|
* The Regents of the University of California. All rights reserved.
|
|
|
|
*
|
|
|
|
* This code is derived from software contributed to Berkeley by
|
|
|
|
* the Systems Programming Group of the University of Utah Computer
|
|
|
|
* Science Department and Ralph Campbell.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
2017-02-28 23:42:47 +00:00
|
|
|
* 3. Neither the name of the University nor the names of its contributors
|
FreeBSD/mips port. The FreeBSD/mips port targets mips32, mips64,
mips32r2 and mips64r2 (and close relatives) processors. There
presently is support for ADMtek ADM5120, A mips 4Kc in a malta board,
the RB533 routerboard (based on IDT RC32434) and some preliminary
support for sibtye/broadcom designs. Other hardware support will be
forthcomcing.
This port boots multiuser under gxemul emulating the malta board and
also bootstraps on the hardware whose support is forthcoming...
Oleksandr Tymoshenko, Wojciech Koszek, Warner Losh, Olivier Houchard,
Randall Stewert and others that have contributed to the mips2 and/or
mips2-jnpr perforce branches. Juniper contirbuted a generic mips port
late in the life cycle of the misp2 branch. Warner Losh merged the
mips2 and Juniper code bases, and others list above have worked for
the past several months to get to multiuser.
In addition, the mips2 work owe a debt to the trail blazing efforts of
the original mips branch in perforce done by Juli Mallett.
2008-04-13 07:27:37 +00:00
|
|
|
* may be used to endorse or promote products derived from this software
|
|
|
|
* without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* from: Utah Hdr: vmparam.h 1.16 91/01/18
|
|
|
|
* @(#)vmparam.h 8.2 (Berkeley) 4/22/94
|
|
|
|
* JNPR: vmparam.h,v 1.3.2.1 2007/09/10 06:01:28 girish
|
|
|
|
* $FreeBSD$
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef _MACHINE_VMPARAM_H_
|
|
|
|
#define _MACHINE_VMPARAM_H_
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Machine dependent constants mips processors.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Virtual memory related constants, all in bytes
|
|
|
|
*/
|
|
|
|
#ifndef MAXTSIZ
|
|
|
|
#define MAXTSIZ (128UL*1024*1024) /* max text size */
|
|
|
|
#endif
|
|
|
|
#ifndef DFLDSIZ
|
|
|
|
#define DFLDSIZ (128UL*1024*1024) /* initial data size limit */
|
|
|
|
#endif
|
|
|
|
#ifndef MAXDSIZ
|
|
|
|
#define MAXDSIZ (1*1024UL*1024*1024) /* max data size */
|
|
|
|
#endif
|
|
|
|
#ifndef DFLSSIZ
|
|
|
|
#define DFLSSIZ (8UL*1024*1024) /* initial stack size limit */
|
|
|
|
#endif
|
|
|
|
#ifndef MAXSSIZ
|
|
|
|
#define MAXSSIZ (64UL*1024*1024) /* max stack size */
|
|
|
|
#endif
|
|
|
|
#ifndef SGROWSIZ
|
|
|
|
#define SGROWSIZ (128UL*1024) /* amount to grow stack */
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Mach derived constants
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* user/kernel map constants */
|
|
|
|
#define VM_MIN_ADDRESS ((vm_offset_t)0x00000000)
|
2010-04-17 07:20:01 +00:00
|
|
|
#define VM_MAX_ADDRESS ((vm_offset_t)(intptr_t)(int32_t)0xffffffff)
|
|
|
|
|
|
|
|
#define VM_MINUSER_ADDRESS ((vm_offset_t)0x00000000)
|
FreeBSD/mips port. The FreeBSD/mips port targets mips32, mips64,
mips32r2 and mips64r2 (and close relatives) processors. There
presently is support for ADMtek ADM5120, A mips 4Kc in a malta board,
the RB533 routerboard (based on IDT RC32434) and some preliminary
support for sibtye/broadcom designs. Other hardware support will be
forthcomcing.
This port boots multiuser under gxemul emulating the malta board and
also bootstraps on the hardware whose support is forthcoming...
Oleksandr Tymoshenko, Wojciech Koszek, Warner Losh, Olivier Houchard,
Randall Stewert and others that have contributed to the mips2 and/or
mips2-jnpr perforce branches. Juniper contirbuted a generic mips port
late in the life cycle of the misp2 branch. Warner Losh merged the
mips2 and Juniper code bases, and others list above have worked for
the past several months to get to multiuser.
In addition, the mips2 work owe a debt to the trail blazing efforts of
the original mips branch in perforce done by Juli Mallett.
2008-04-13 07:27:37 +00:00
|
|
|
|
2010-08-18 12:52:21 +00:00
|
|
|
#ifdef __mips_n64
|
2010-07-29 20:02:56 +00:00
|
|
|
#define VM_MAXUSER_ADDRESS (VM_MINUSER_ADDRESS + (NPDEPG * NBSEG))
|
2010-06-24 08:08:43 +00:00
|
|
|
#define VM_MIN_KERNEL_ADDRESS ((vm_offset_t)0xc000000000000000)
|
2010-07-29 20:02:56 +00:00
|
|
|
#define VM_MAX_KERNEL_ADDRESS (VM_MIN_KERNEL_ADDRESS + (NPDEPG * NBSEG))
|
2010-06-24 08:08:43 +00:00
|
|
|
#else
|
|
|
|
#define VM_MAXUSER_ADDRESS ((vm_offset_t)0x80000000)
|
|
|
|
#define VM_MIN_KERNEL_ADDRESS ((vm_offset_t)0xC0000000)
|
|
|
|
#define VM_MAX_KERNEL_ADDRESS ((vm_offset_t)0xFFFFC000)
|
|
|
|
#endif
|
FreeBSD/mips port. The FreeBSD/mips port targets mips32, mips64,
mips32r2 and mips64r2 (and close relatives) processors. There
presently is support for ADMtek ADM5120, A mips 4Kc in a malta board,
the RB533 routerboard (based on IDT RC32434) and some preliminary
support for sibtye/broadcom designs. Other hardware support will be
forthcomcing.
This port boots multiuser under gxemul emulating the malta board and
also bootstraps on the hardware whose support is forthcoming...
Oleksandr Tymoshenko, Wojciech Koszek, Warner Losh, Olivier Houchard,
Randall Stewert and others that have contributed to the mips2 and/or
mips2-jnpr perforce branches. Juniper contirbuted a generic mips port
late in the life cycle of the misp2 branch. Warner Losh merged the
mips2 and Juniper code bases, and others list above have worked for
the past several months to get to multiuser.
In addition, the mips2 work owe a debt to the trail blazing efforts of
the original mips branch in perforce done by Juli Mallett.
2008-04-13 07:27:37 +00:00
|
|
|
|
2010-07-29 20:02:56 +00:00
|
|
|
#define KERNBASE ((vm_offset_t)(intptr_t)(int32_t)0x80000000)
|
|
|
|
/*
|
|
|
|
* USRSTACK needs to start a little below 0x8000000 because the R8000
|
|
|
|
* and some QED CPUs perform some virtual address checks before the
|
|
|
|
* offset is calculated.
|
|
|
|
*/
|
|
|
|
#define USRSTACK (VM_MAXUSER_ADDRESS - PAGE_SIZE)
|
2012-03-03 08:19:18 +00:00
|
|
|
#ifdef __mips_n64
|
|
|
|
#define FREEBSD32_USRSTACK (((vm_offset_t)0x80000000) - PAGE_SIZE)
|
|
|
|
#endif
|
|
|
|
|
FreeBSD/mips port. The FreeBSD/mips port targets mips32, mips64,
mips32r2 and mips64r2 (and close relatives) processors. There
presently is support for ADMtek ADM5120, A mips 4Kc in a malta board,
the RB533 routerboard (based on IDT RC32434) and some preliminary
support for sibtye/broadcom designs. Other hardware support will be
forthcomcing.
This port boots multiuser under gxemul emulating the malta board and
also bootstraps on the hardware whose support is forthcoming...
Oleksandr Tymoshenko, Wojciech Koszek, Warner Losh, Olivier Houchard,
Randall Stewert and others that have contributed to the mips2 and/or
mips2-jnpr perforce branches. Juniper contirbuted a generic mips port
late in the life cycle of the misp2 branch. Warner Losh merged the
mips2 and Juniper code bases, and others list above have worked for
the past several months to get to multiuser.
In addition, the mips2 work owe a debt to the trail blazing efforts of
the original mips branch in perforce done by Juli Mallett.
2008-04-13 07:27:37 +00:00
|
|
|
/*
|
|
|
|
* Disable superpage reservations. (not sure if this is right
|
|
|
|
* I copied it from ARM)
|
|
|
|
*/
|
|
|
|
#ifndef VM_NRESERVLEVEL
|
|
|
|
#define VM_NRESERVLEVEL 0
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
As of r257209, all architectures have defined VM_KMEM_SIZE_SCALE. In other
words, every architecture is now auto-sizing the kmem arena. This revision
changes kmeminit() so that the definition of VM_KMEM_SIZE_SCALE becomes
mandatory and the definition of VM_KMEM_SIZE becomes optional.
Replace or eliminate all existing definitions of VM_KMEM_SIZE. With
auto-sizing enabled, VM_KMEM_SIZE effectively became an alternate spelling
for VM_KMEM_SIZE_MIN on most architectures. Use VM_KMEM_SIZE_MIN for
clarity.
Change kmeminit() so that the effect of defining VM_KMEM_SIZE is similar to
that of setting the tunable vm.kmem_size. Whereas the macros
VM_KMEM_SIZE_{MAX,MIN,SCALE} have had the same effect as the tunables
vm.kmem_size_{max,min,scale}, the effects of VM_KMEM_SIZE and vm.kmem_size
have been distinct. In particular, whereas VM_KMEM_SIZE was overridden by
VM_KMEM_SIZE_{MAX,MIN,SCALE} and vm.kmem_size_{max,min,scale}, vm.kmem_size
was not. Remedy this inconsistency. Now, VM_KMEM_SIZE can be used to set
the size of the kmem arena at compile-time without that value being
overridden by auto-sizing.
Update the nearby comments to reflect the kmem submap being replaced by the
kmem arena. Stop duplicating the auto-sizing formula in every machine-
dependent vmparam.h and place it in kmeminit() where auto-sizing takes
place.
Reviewed by: kib (an earlier version)
Sponsored by: EMC / Isilon Storage Division
2013-11-08 16:25:00 +00:00
|
|
|
* How many physical pages per kmem arena virtual page.
|
FreeBSD/mips port. The FreeBSD/mips port targets mips32, mips64,
mips32r2 and mips64r2 (and close relatives) processors. There
presently is support for ADMtek ADM5120, A mips 4Kc in a malta board,
the RB533 routerboard (based on IDT RC32434) and some preliminary
support for sibtye/broadcom designs. Other hardware support will be
forthcomcing.
This port boots multiuser under gxemul emulating the malta board and
also bootstraps on the hardware whose support is forthcoming...
Oleksandr Tymoshenko, Wojciech Koszek, Warner Losh, Olivier Houchard,
Randall Stewert and others that have contributed to the mips2 and/or
mips2-jnpr perforce branches. Juniper contirbuted a generic mips port
late in the life cycle of the misp2 branch. Warner Losh merged the
mips2 and Juniper code bases, and others list above have worked for
the past several months to get to multiuser.
In addition, the mips2 work owe a debt to the trail blazing efforts of
the original mips branch in perforce done by Juli Mallett.
2008-04-13 07:27:37 +00:00
|
|
|
*/
|
|
|
|
#ifndef VM_KMEM_SIZE_SCALE
|
|
|
|
#define VM_KMEM_SIZE_SCALE (3)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
As of r257209, all architectures have defined VM_KMEM_SIZE_SCALE. In other
words, every architecture is now auto-sizing the kmem arena. This revision
changes kmeminit() so that the definition of VM_KMEM_SIZE_SCALE becomes
mandatory and the definition of VM_KMEM_SIZE becomes optional.
Replace or eliminate all existing definitions of VM_KMEM_SIZE. With
auto-sizing enabled, VM_KMEM_SIZE effectively became an alternate spelling
for VM_KMEM_SIZE_MIN on most architectures. Use VM_KMEM_SIZE_MIN for
clarity.
Change kmeminit() so that the effect of defining VM_KMEM_SIZE is similar to
that of setting the tunable vm.kmem_size. Whereas the macros
VM_KMEM_SIZE_{MAX,MIN,SCALE} have had the same effect as the tunables
vm.kmem_size_{max,min,scale}, the effects of VM_KMEM_SIZE and vm.kmem_size
have been distinct. In particular, whereas VM_KMEM_SIZE was overridden by
VM_KMEM_SIZE_{MAX,MIN,SCALE} and vm.kmem_size_{max,min,scale}, vm.kmem_size
was not. Remedy this inconsistency. Now, VM_KMEM_SIZE can be used to set
the size of the kmem arena at compile-time without that value being
overridden by auto-sizing.
Update the nearby comments to reflect the kmem submap being replaced by the
kmem arena. Stop duplicating the auto-sizing formula in every machine-
dependent vmparam.h and place it in kmeminit() where auto-sizing takes
place.
Reviewed by: kib (an earlier version)
Sponsored by: EMC / Isilon Storage Division
2013-11-08 16:25:00 +00:00
|
|
|
* Optional floor (in bytes) on the size of the kmem arena.
|
|
|
|
*/
|
|
|
|
#ifndef VM_KMEM_SIZE_MIN
|
|
|
|
#define VM_KMEM_SIZE_MIN (12 * 1024 * 1024)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Optional ceiling (in bytes) on the size of the kmem arena: 40% of the
|
|
|
|
* kernel map.
|
FreeBSD/mips port. The FreeBSD/mips port targets mips32, mips64,
mips32r2 and mips64r2 (and close relatives) processors. There
presently is support for ADMtek ADM5120, A mips 4Kc in a malta board,
the RB533 routerboard (based on IDT RC32434) and some preliminary
support for sibtye/broadcom designs. Other hardware support will be
forthcomcing.
This port boots multiuser under gxemul emulating the malta board and
also bootstraps on the hardware whose support is forthcoming...
Oleksandr Tymoshenko, Wojciech Koszek, Warner Losh, Olivier Houchard,
Randall Stewert and others that have contributed to the mips2 and/or
mips2-jnpr perforce branches. Juniper contirbuted a generic mips port
late in the life cycle of the misp2 branch. Warner Losh merged the
mips2 and Juniper code bases, and others list above have worked for
the past several months to get to multiuser.
In addition, the mips2 work owe a debt to the trail blazing efforts of
the original mips branch in perforce done by Juli Mallett.
2008-04-13 07:27:37 +00:00
|
|
|
*/
|
|
|
|
#ifndef VM_KMEM_SIZE_MAX
|
2013-01-12 18:06:21 +00:00
|
|
|
#define VM_KMEM_SIZE_MAX ((VM_MAX_KERNEL_ADDRESS - \
|
|
|
|
VM_MIN_KERNEL_ADDRESS + 1) * 2 / 5)
|
FreeBSD/mips port. The FreeBSD/mips port targets mips32, mips64,
mips32r2 and mips64r2 (and close relatives) processors. There
presently is support for ADMtek ADM5120, A mips 4Kc in a malta board,
the RB533 routerboard (based on IDT RC32434) and some preliminary
support for sibtye/broadcom designs. Other hardware support will be
forthcomcing.
This port boots multiuser under gxemul emulating the malta board and
also bootstraps on the hardware whose support is forthcoming...
Oleksandr Tymoshenko, Wojciech Koszek, Warner Losh, Olivier Houchard,
Randall Stewert and others that have contributed to the mips2 and/or
mips2-jnpr perforce branches. Juniper contirbuted a generic mips port
late in the life cycle of the misp2 branch. Warner Losh merged the
mips2 and Juniper code bases, and others list above have worked for
the past several months to get to multiuser.
In addition, the mips2 work owe a debt to the trail blazing efforts of
the original mips branch in perforce done by Juli Mallett.
2008-04-13 07:27:37 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
/* initial pagein size of beginning of executable file */
|
|
|
|
#ifndef VM_INITIAL_PAGEIN
|
|
|
|
#define VM_INITIAL_PAGEIN 16
|
|
|
|
#endif
|
|
|
|
|
2010-12-09 06:34:28 +00:00
|
|
|
#define UMA_MD_SMALL_ALLOC
|
|
|
|
|
FreeBSD/mips port. The FreeBSD/mips port targets mips32, mips64,
mips32r2 and mips64r2 (and close relatives) processors. There
presently is support for ADMtek ADM5120, A mips 4Kc in a malta board,
the RB533 routerboard (based on IDT RC32434) and some preliminary
support for sibtye/broadcom designs. Other hardware support will be
forthcomcing.
This port boots multiuser under gxemul emulating the malta board and
also bootstraps on the hardware whose support is forthcoming...
Oleksandr Tymoshenko, Wojciech Koszek, Warner Losh, Olivier Houchard,
Randall Stewert and others that have contributed to the mips2 and/or
mips2-jnpr perforce branches. Juniper contirbuted a generic mips port
late in the life cycle of the misp2 branch. Warner Losh merged the
mips2 and Juniper code bases, and others list above have worked for
the past several months to get to multiuser.
In addition, the mips2 work owe a debt to the trail blazing efforts of
the original mips branch in perforce done by Juli Mallett.
2008-04-13 07:27:37 +00:00
|
|
|
/*
|
|
|
|
* max number of non-contig chunks of physical RAM you can have
|
|
|
|
*/
|
|
|
|
#define VM_PHYSSEG_MAX 32
|
|
|
|
|
|
|
|
/*
|
2010-04-24 03:11:35 +00:00
|
|
|
* The physical address space is sparsely populated.
|
FreeBSD/mips port. The FreeBSD/mips port targets mips32, mips64,
mips32r2 and mips64r2 (and close relatives) processors. There
presently is support for ADMtek ADM5120, A mips 4Kc in a malta board,
the RB533 routerboard (based on IDT RC32434) and some preliminary
support for sibtye/broadcom designs. Other hardware support will be
forthcomcing.
This port boots multiuser under gxemul emulating the malta board and
also bootstraps on the hardware whose support is forthcoming...
Oleksandr Tymoshenko, Wojciech Koszek, Warner Losh, Olivier Houchard,
Randall Stewert and others that have contributed to the mips2 and/or
mips2-jnpr perforce branches. Juniper contirbuted a generic mips port
late in the life cycle of the misp2 branch. Warner Losh merged the
mips2 and Juniper code bases, and others list above have worked for
the past several months to get to multiuser.
In addition, the mips2 work owe a debt to the trail blazing efforts of
the original mips branch in perforce done by Juli Mallett.
2008-04-13 07:27:37 +00:00
|
|
|
*/
|
2010-04-24 03:11:35 +00:00
|
|
|
#define VM_PHYSSEG_SPARSE
|
FreeBSD/mips port. The FreeBSD/mips port targets mips32, mips64,
mips32r2 and mips64r2 (and close relatives) processors. There
presently is support for ADMtek ADM5120, A mips 4Kc in a malta board,
the RB533 routerboard (based on IDT RC32434) and some preliminary
support for sibtye/broadcom designs. Other hardware support will be
forthcomcing.
This port boots multiuser under gxemul emulating the malta board and
also bootstraps on the hardware whose support is forthcoming...
Oleksandr Tymoshenko, Wojciech Koszek, Warner Losh, Olivier Houchard,
Randall Stewert and others that have contributed to the mips2 and/or
mips2-jnpr perforce branches. Juniper contirbuted a generic mips port
late in the life cycle of the misp2 branch. Warner Losh merged the
mips2 and Juniper code bases, and others list above have worked for
the past several months to get to multiuser.
In addition, the mips2 work owe a debt to the trail blazing efforts of
the original mips branch in perforce done by Juli Mallett.
2008-04-13 07:27:37 +00:00
|
|
|
|
|
|
|
/*
|
2015-06-08 04:59:32 +00:00
|
|
|
* Create two free page pools: VM_FREEPOOL_DEFAULT is the default pool
|
FreeBSD/mips port. The FreeBSD/mips port targets mips32, mips64,
mips32r2 and mips64r2 (and close relatives) processors. There
presently is support for ADMtek ADM5120, A mips 4Kc in a malta board,
the RB533 routerboard (based on IDT RC32434) and some preliminary
support for sibtye/broadcom designs. Other hardware support will be
forthcomcing.
This port boots multiuser under gxemul emulating the malta board and
also bootstraps on the hardware whose support is forthcoming...
Oleksandr Tymoshenko, Wojciech Koszek, Warner Losh, Olivier Houchard,
Randall Stewert and others that have contributed to the mips2 and/or
mips2-jnpr perforce branches. Juniper contirbuted a generic mips port
late in the life cycle of the misp2 branch. Warner Losh merged the
mips2 and Juniper code bases, and others list above have worked for
the past several months to get to multiuser.
In addition, the mips2 work owe a debt to the trail blazing efforts of
the original mips branch in perforce done by Juli Mallett.
2008-04-13 07:27:37 +00:00
|
|
|
* from which physical pages are allocated and VM_FREEPOOL_DIRECT is
|
|
|
|
* the pool from which physical pages for small UMA objects are
|
|
|
|
* allocated.
|
|
|
|
*/
|
2015-06-08 04:59:32 +00:00
|
|
|
#define VM_NFREEPOOL 2
|
FreeBSD/mips port. The FreeBSD/mips port targets mips32, mips64,
mips32r2 and mips64r2 (and close relatives) processors. There
presently is support for ADMtek ADM5120, A mips 4Kc in a malta board,
the RB533 routerboard (based on IDT RC32434) and some preliminary
support for sibtye/broadcom designs. Other hardware support will be
forthcomcing.
This port boots multiuser under gxemul emulating the malta board and
also bootstraps on the hardware whose support is forthcoming...
Oleksandr Tymoshenko, Wojciech Koszek, Warner Losh, Olivier Houchard,
Randall Stewert and others that have contributed to the mips2 and/or
mips2-jnpr perforce branches. Juniper contirbuted a generic mips port
late in the life cycle of the misp2 branch. Warner Losh merged the
mips2 and Juniper code bases, and others list above have worked for
the past several months to get to multiuser.
In addition, the mips2 work owe a debt to the trail blazing efforts of
the original mips branch in perforce done by Juli Mallett.
2008-04-13 07:27:37 +00:00
|
|
|
#define VM_FREEPOOL_DEFAULT 0
|
|
|
|
#define VM_FREEPOOL_DIRECT 1
|
|
|
|
|
|
|
|
/*
|
The physical memory allocator supports the use of distinct free lists for
managing pages from different address ranges. Generally speaking, this
feature is used to increase the likelihood that physical pages are
available that can meet special DMA requirements or can be accessed through
a limited-coverage direct mapping (e.g., MIPS). However, prior to this
change, the configuration of the free lists was static, i.e., it was
determined at compile time. Consequentally, free lists could be created
for address ranges that held no actual pages, for example, on 32-bit MIPS-
based systems with 512 MB or less of physical memory. This change makes
the creation of the free lists dynamic, i.e., it is based on the available
physical memory at boot time.
On 64-bit x86-based systems with 64 GB or more of physical memory, create
free lists for managing pages with physical addresses below 4 GB. This
change is to address reported problems with initializing devices that
require the allocation of physical pages below 4 GB on some systems with
128 GB or more of physical memory.
PR: 185727
Differential Revision: https://reviews.freebsd.org/D1274
Reviewed by: jhb, kib
MFC after: 3 weeks
Sponsored by: EMC / Isilon Storage Division
2014-12-31 00:54:38 +00:00
|
|
|
* Create up to two free lists on !__mips_n64: VM_FREELIST_DEFAULT is for
|
|
|
|
* physical pages that are above the largest physical address that is
|
|
|
|
* accessible through the direct map (KSEG0) and VM_FREELIST_LOWMEM is for
|
|
|
|
* physical pages that are below that address. VM_LOWMEM_BOUNDARY is the
|
|
|
|
* physical address for the end of the direct map (KSEG0).
|
FreeBSD/mips port. The FreeBSD/mips port targets mips32, mips64,
mips32r2 and mips64r2 (and close relatives) processors. There
presently is support for ADMtek ADM5120, A mips 4Kc in a malta board,
the RB533 routerboard (based on IDT RC32434) and some preliminary
support for sibtye/broadcom designs. Other hardware support will be
forthcomcing.
This port boots multiuser under gxemul emulating the malta board and
also bootstraps on the hardware whose support is forthcoming...
Oleksandr Tymoshenko, Wojciech Koszek, Warner Losh, Olivier Houchard,
Randall Stewert and others that have contributed to the mips2 and/or
mips2-jnpr perforce branches. Juniper contirbuted a generic mips port
late in the life cycle of the misp2 branch. Warner Losh merged the
mips2 and Juniper code bases, and others list above have worked for
the past several months to get to multiuser.
In addition, the mips2 work owe a debt to the trail blazing efforts of
the original mips branch in perforce done by Juli Mallett.
2008-04-13 07:27:37 +00:00
|
|
|
*/
|
2010-08-18 12:52:21 +00:00
|
|
|
#ifdef __mips_n64
|
FreeBSD/mips port. The FreeBSD/mips port targets mips32, mips64,
mips32r2 and mips64r2 (and close relatives) processors. There
presently is support for ADMtek ADM5120, A mips 4Kc in a malta board,
the RB533 routerboard (based on IDT RC32434) and some preliminary
support for sibtye/broadcom designs. Other hardware support will be
forthcomcing.
This port boots multiuser under gxemul emulating the malta board and
also bootstraps on the hardware whose support is forthcoming...
Oleksandr Tymoshenko, Wojciech Koszek, Warner Losh, Olivier Houchard,
Randall Stewert and others that have contributed to the mips2 and/or
mips2-jnpr perforce branches. Juniper contirbuted a generic mips port
late in the life cycle of the misp2 branch. Warner Losh merged the
mips2 and Juniper code bases, and others list above have worked for
the past several months to get to multiuser.
In addition, the mips2 work owe a debt to the trail blazing efforts of
the original mips branch in perforce done by Juli Mallett.
2008-04-13 07:27:37 +00:00
|
|
|
#define VM_NFREELIST 1
|
|
|
|
#define VM_FREELIST_DEFAULT 0
|
2010-07-25 04:19:05 +00:00
|
|
|
#define VM_FREELIST_DIRECT VM_FREELIST_DEFAULT
|
Redo the page table page allocation on MIPS, as suggested by
alc@.
The UMA zone based allocation is replaced by a scheme that creates
a new free page list for the KSEG0 region, and a new function
in sys/vm that allocates pages from a specific free page list.
This also fixes a race condition introduced by the UMA based page table
page allocation code. Dropping the page queue and pmap locks before
the call to uma_zfree, and re-acquiring them afterwards will introduce
a race condtion(noted by alc@).
The changes are :
- Revert the earlier changes in MIPS pmap.c that added UMA zone for
page table pages.
- Add a new freelist VM_FREELIST_HIGHMEM to MIPS vmparam.h for memory that
is not directly mapped (in 32bit kernel). Normal page allocations will first
try the HIGHMEM freelist and then the default(direct mapped) freelist.
- Add a new function 'vm_page_t vm_page_alloc_freelist(int flind, int
order, int req)' to vm/vm_page.c to allocate a page from a specified
freelist. The MIPS page table pages will be allocated using this function
from the freelist containing direct mapped pages.
- Move the page initialization code from vm_phys_alloc_contig() to a
new function vm_page_alloc_init(), and use this function to initialize
pages in vm_page_alloc_freelist() too.
- Split the function vm_phys_alloc_pages(int pool, int order) to create
vm_phys_alloc_freelist_pages(int flind, int pool, int order), and use
this function from both vm_page_alloc_freelist() and vm_phys_alloc_pages().
Reviewed by: alc
2010-07-21 09:27:00 +00:00
|
|
|
#else
|
|
|
|
#define VM_NFREELIST 2
|
The physical memory allocator supports the use of distinct free lists for
managing pages from different address ranges. Generally speaking, this
feature is used to increase the likelihood that physical pages are
available that can meet special DMA requirements or can be accessed through
a limited-coverage direct mapping (e.g., MIPS). However, prior to this
change, the configuration of the free lists was static, i.e., it was
determined at compile time. Consequentally, free lists could be created
for address ranges that held no actual pages, for example, on 32-bit MIPS-
based systems with 512 MB or less of physical memory. This change makes
the creation of the free lists dynamic, i.e., it is based on the available
physical memory at boot time.
On 64-bit x86-based systems with 64 GB or more of physical memory, create
free lists for managing pages with physical addresses below 4 GB. This
change is to address reported problems with initializing devices that
require the allocation of physical pages below 4 GB on some systems with
128 GB or more of physical memory.
PR: 185727
Differential Revision: https://reviews.freebsd.org/D1274
Reviewed by: jhb, kib
MFC after: 3 weeks
Sponsored by: EMC / Isilon Storage Division
2014-12-31 00:54:38 +00:00
|
|
|
#define VM_FREELIST_DEFAULT 0
|
|
|
|
#define VM_FREELIST_LOWMEM 1
|
|
|
|
#define VM_FREELIST_DIRECT VM_FREELIST_LOWMEM
|
|
|
|
#define VM_LOWMEM_BOUNDARY ((vm_paddr_t)0x20000000)
|
Redo the page table page allocation on MIPS, as suggested by
alc@.
The UMA zone based allocation is replaced by a scheme that creates
a new free page list for the KSEG0 region, and a new function
in sys/vm that allocates pages from a specific free page list.
This also fixes a race condition introduced by the UMA based page table
page allocation code. Dropping the page queue and pmap locks before
the call to uma_zfree, and re-acquiring them afterwards will introduce
a race condtion(noted by alc@).
The changes are :
- Revert the earlier changes in MIPS pmap.c that added UMA zone for
page table pages.
- Add a new freelist VM_FREELIST_HIGHMEM to MIPS vmparam.h for memory that
is not directly mapped (in 32bit kernel). Normal page allocations will first
try the HIGHMEM freelist and then the default(direct mapped) freelist.
- Add a new function 'vm_page_t vm_page_alloc_freelist(int flind, int
order, int req)' to vm/vm_page.c to allocate a page from a specified
freelist. The MIPS page table pages will be allocated using this function
from the freelist containing direct mapped pages.
- Move the page initialization code from vm_phys_alloc_contig() to a
new function vm_page_alloc_init(), and use this function to initialize
pages in vm_page_alloc_freelist() too.
- Split the function vm_phys_alloc_pages(int pool, int order) to create
vm_phys_alloc_freelist_pages(int flind, int pool, int order), and use
this function from both vm_page_alloc_freelist() and vm_phys_alloc_pages().
Reviewed by: alc
2010-07-21 09:27:00 +00:00
|
|
|
#endif
|
FreeBSD/mips port. The FreeBSD/mips port targets mips32, mips64,
mips32r2 and mips64r2 (and close relatives) processors. There
presently is support for ADMtek ADM5120, A mips 4Kc in a malta board,
the RB533 routerboard (based on IDT RC32434) and some preliminary
support for sibtye/broadcom designs. Other hardware support will be
forthcomcing.
This port boots multiuser under gxemul emulating the malta board and
also bootstraps on the hardware whose support is forthcoming...
Oleksandr Tymoshenko, Wojciech Koszek, Warner Losh, Olivier Houchard,
Randall Stewert and others that have contributed to the mips2 and/or
mips2-jnpr perforce branches. Juniper contirbuted a generic mips port
late in the life cycle of the misp2 branch. Warner Losh merged the
mips2 and Juniper code bases, and others list above have worked for
the past several months to get to multiuser.
In addition, the mips2 work owe a debt to the trail blazing efforts of
the original mips branch in perforce done by Juli Mallett.
2008-04-13 07:27:37 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The largest allocation size is 1MB.
|
|
|
|
*/
|
|
|
|
#define VM_NFREEORDER 9
|
|
|
|
|
2011-05-13 19:35:01 +00:00
|
|
|
#define ZERO_REGION_SIZE (64 * 1024) /* 64KB */
|
|
|
|
|
2014-08-05 09:44:10 +00:00
|
|
|
#ifndef __mips_n64
|
|
|
|
#define SFBUF
|
2014-09-06 22:38:32 +00:00
|
|
|
#define SFBUF_MAP
|
Remove SFBUF_OPTIONAL_DIRECT_MAP and such hacks, replacing them across the
kernel by PHYS_TO_DMAP() as previously present on amd64, arm64, riscv, and
powerpc64. This introduces a new MI macro (PMAP_HAS_DMAP) that can be
evaluated at runtime to determine if the architecture has a direct map;
if it does not (or does) unconditionally and PMAP_HAS_DMAP is either 0 or
1, the compiler can remove the conditional logic.
As part of this, implement PHYS_TO_DMAP() on sparc64 and mips64, which had
similar things but spelled differently. 32-bit MIPS has a partial direct-map
that maps poorly to this concept and is unchanged.
Reviewed by: kib
Suggestions from: marius, alc, kib
Runtime tested on: amd64, powerpc64, powerpc, mips64
2018-01-19 17:46:31 +00:00
|
|
|
#define PMAP_HAS_DMAP 0
|
|
|
|
#else
|
|
|
|
#define PMAP_HAS_DMAP 1
|
2014-08-05 09:44:10 +00:00
|
|
|
#endif
|
|
|
|
|
Remove SFBUF_OPTIONAL_DIRECT_MAP and such hacks, replacing them across the
kernel by PHYS_TO_DMAP() as previously present on amd64, arm64, riscv, and
powerpc64. This introduces a new MI macro (PMAP_HAS_DMAP) that can be
evaluated at runtime to determine if the architecture has a direct map;
if it does not (or does) unconditionally and PMAP_HAS_DMAP is either 0 or
1, the compiler can remove the conditional logic.
As part of this, implement PHYS_TO_DMAP() on sparc64 and mips64, which had
similar things but spelled differently. 32-bit MIPS has a partial direct-map
that maps poorly to this concept and is unchanged.
Reviewed by: kib
Suggestions from: marius, alc, kib
Runtime tested on: amd64, powerpc64, powerpc, mips64
2018-01-19 17:46:31 +00:00
|
|
|
#define PHYS_TO_DMAP(x) MIPS_PHYS_TO_DIRECT(x)
|
|
|
|
#define DMAP_TO_PHYS(x) MIPS_DIRECT_TO_PHYS(x)
|
|
|
|
|
2020-09-23 19:34:21 +00:00
|
|
|
/*
|
|
|
|
* No non-transparent large page support in the pmap.
|
|
|
|
*/
|
|
|
|
#define PMAP_HAS_LARGEPAGES 0
|
|
|
|
|
2020-09-21 22:20:37 +00:00
|
|
|
/*
|
|
|
|
* Need a page dump array for minidump.
|
|
|
|
*/
|
|
|
|
#define MINIDUMP_PAGE_TRACKING 1
|
|
|
|
|
FreeBSD/mips port. The FreeBSD/mips port targets mips32, mips64,
mips32r2 and mips64r2 (and close relatives) processors. There
presently is support for ADMtek ADM5120, A mips 4Kc in a malta board,
the RB533 routerboard (based on IDT RC32434) and some preliminary
support for sibtye/broadcom designs. Other hardware support will be
forthcomcing.
This port boots multiuser under gxemul emulating the malta board and
also bootstraps on the hardware whose support is forthcoming...
Oleksandr Tymoshenko, Wojciech Koszek, Warner Losh, Olivier Houchard,
Randall Stewert and others that have contributed to the mips2 and/or
mips2-jnpr perforce branches. Juniper contirbuted a generic mips port
late in the life cycle of the misp2 branch. Warner Losh merged the
mips2 and Juniper code bases, and others list above have worked for
the past several months to get to multiuser.
In addition, the mips2 work owe a debt to the trail blazing efforts of
the original mips branch in perforce done by Juli Mallett.
2008-04-13 07:27:37 +00:00
|
|
|
#endif /* !_MACHINE_VMPARAM_H_ */
|