freebsd-nq/contrib/ntp/util/tg.c

654 lines
16 KiB
C
Raw Normal View History

/*
* tg.c generate WWV or IRIG signals for test
*/
/*
* This program can generate audio signals that simulate the WWV/H
* broadcast timecode. Alternatively, it can generate the IRIG-B
* timecode commonly used to synchronize laboratory equipment. It is
* intended to test the WWV/H driver (refclock_wwv.c) and the IRIG
* driver (refclock_irig.c) in the NTP driver collection.
*
* Besides testing the drivers themselves, this program can be used to
* synchronize remote machines over audio transmission lines or program
* feeds. The program reads the time on the local machine and sets the
* initial epoch of the signal generator within one millisecond.
* Alernatively, the initial epoch can be set to an arbitrary time. This
* is useful when searching for bugs and testing for correct response to
* a leap second in UTC. Note however, the ultimate accuracy is limited
* by the intrinsic frequency error of the codec sample clock, which can
# reach well over 100 PPM.
*
* The default is to route generated signals to the line output
* jack; the s option on the command line routes these signals to the
* internal speaker as well. The v option controls the speaker volume
* over the range 0-255. The signal generator by default uses WWV
* format; the h option switches to WWVH format and the i option
* switches to IRIG-B format.
*
* Once started the program runs continuously. The default initial epoch
* for the signal generator is read from the computer system clock when
* the program starts. The y option specifies an alternate epoch using a
* string yydddhhmmss, where yy is the year of century, ddd the day of
* year, hh the hour of day and mm the minute of hour. For instance,
* 1946Z on 1 January 2006 is 060011946. The l option lights the leap
* warning bit in the WWV/H timecode, so is handy to check for correct
* behavior at the next leap second epoch. The remaining options are
* specified below under the Parse Options heading. Most of these are
* for testing.
*
* During operation the program displays the WWV/H timecode (9 digits)
* or IRIG timecode (20 digits) as each new string is constructed. The
* display is followed by the BCD binary bits as transmitted. Note that
* the transmissionorder is low-order first as the frame is processed
* left to right. For WWV/H The leap warning L preceeds the first bit.
* For IRIG the on-time marker M preceeds the first (units) bit, so its
* code is delayed one bit and the next digit (tens) needs only three
* bits.
*
* The program has been tested with the Sun Blade 1500 running Solaris
* 10, but not yet with other machines. It uses no special features and
* should be readily portable to other hardware and operating systems.
*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <sys/audio.h>
#include <math.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>
#define SECOND 8000 /* one second of 125-us samples */
#define BUFLNG 400 /* buffer size */
#define DEVICE "/dev/audio" /* default audio device */
#define WWV 0 /* WWV encoder */
#define IRIG 1 /* IRIG-B encoder */
#define OFF 0 /* zero amplitude */
#define LOW 1 /* low amplitude */
#define HIGH 2 /* high amplitude */
#define DATA0 200 /* WWV/H 0 pulse */
#define DATA1 500 /* WWV/H 1 pulse */
#define PI 800 /* WWV/H PI pulse */
#define M2 2 /* IRIG 0 pulse */
#define M5 5 /* IRIG 1 pulse */
#define M8 8 /* IRIG PI pulse */
/*
* Companded sine table amplitude 3000 units
*/
int c3000[] = {1, 48, 63, 70, 78, 82, 85, 89, 92, 94, /* 0-9 */
96, 98, 99, 100, 101, 101, 102, 103, 103, 103, /* 10-19 */
103, 103, 103, 103, 102, 101, 101, 100, 99, 98, /* 20-29 */
96, 94, 92, 89, 85, 82, 78, 70, 63, 48, /* 30-39 */
129, 176, 191, 198, 206, 210, 213, 217, 220, 222, /* 40-49 */
224, 226, 227, 228, 229, 229, 230, 231, 231, 231, /* 50-59 */
231, 231, 231, 231, 230, 229, 229, 228, 227, 226, /* 60-69 */
224, 222, 220, 217, 213, 210, 206, 198, 191, 176}; /* 70-79 */
/*
* Companded sine table amplitude 6000 units
*/
int c6000[] = {1, 63, 78, 86, 93, 98, 101, 104, 107, 110, /* 0-9 */
112, 113, 115, 116, 117, 117, 118, 118, 119, 119, /* 10-19 */
119, 119, 119, 118, 118, 117, 117, 116, 115, 113, /* 20-29 */
112, 110, 107, 104, 101, 98, 93, 86, 78, 63, /* 30-39 */
129, 191, 206, 214, 221, 226, 229, 232, 235, 238, /* 40-49 */
240, 241, 243, 244, 245, 245, 246, 246, 247, 247, /* 50-59 */
247, 247, 247, 246, 246, 245, 245, 244, 243, 241, /* 60-69 */
240, 238, 235, 232, 229, 226, 221, 214, 206, 191}; /* 70-79 */
/*
* Decoder operations at the end of each second are driven by a state
* machine. The transition matrix consists of a dispatch table indexed
* by second number. Each entry in the table contains a case switch
* number and argument.
*/
struct progx {
int sw; /* case switch number */
int arg; /* argument */
};
/*
* Case switch numbers
*/
#define DATA 0 /* send data (0, 1, PI) */
#define COEF 1 /* send BCD bit */
#define DEC 2 /* decrement to next digit */
#define MIN 3 /* minute pulse */
#define LEAP 4 /* leap warning */
#define DUT1 5 /* DUT1 bits */
#define DST1 6 /* DST1 bit */
#define DST2 7 /* DST2 bit */
/*
* WWV/H format (100-Hz, 9 digits, 1 m frame)
*/
struct progx progx[] = {
{MIN, 800}, /* 0 minute sync pulse */
{DATA, DATA0}, /* 1 */
{DST2, 0}, /* 2 DST2 */
{LEAP, 0}, /* 3 leap warning */
{COEF, 1}, /* 4 1 year units */
{COEF, 2}, /* 5 2 */
{COEF, 4}, /* 6 4 */
{COEF, 8}, /* 7 8 */
{DEC, DATA0}, /* 8 */
{DATA, PI}, /* 9 p1 */
{COEF, 1}, /* 10 1 minute units */
{COEF, 2}, /* 11 2 */
{COEF, 4}, /* 12 4 */
{COEF, 8}, /* 13 8 */
{DEC, DATA0}, /* 14 */
{COEF, 1}, /* 15 10 minute tens */
{COEF, 2}, /* 16 20 */
{COEF, 4}, /* 17 40 */
{COEF, 8}, /* 18 80 (not used) */
{DEC, PI}, /* 19 p2 */
{COEF, 1}, /* 20 1 hour units */
{COEF, 2}, /* 21 2 */
{COEF, 4}, /* 22 4 */
{COEF, 8}, /* 23 8 */
{DEC, DATA0}, /* 24 */
{COEF, 1}, /* 25 10 hour tens */
{COEF, 2}, /* 26 20 */
{COEF, 4}, /* 27 40 (not used) */
{COEF, 8}, /* 28 80 (not used) */
{DEC, PI}, /* 29 p3 */
{COEF, 1}, /* 30 1 day units */
{COEF, 2}, /* 31 2 */
{COEF, 4}, /* 32 4 */
{COEF, 8}, /* 33 8 */
{DEC, DATA0}, /* 34 not used */
{COEF, 1}, /* 35 10 day tens */
{COEF, 2}, /* 36 20 */
{COEF, 4}, /* 37 40 */
{COEF, 8}, /* 38 80 */
{DEC, PI}, /* 39 p4 */
{COEF, 1}, /* 40 100 day hundreds */
{COEF, 2}, /* 41 200 */
{COEF, 4}, /* 42 400 (not used) */
{COEF, 8}, /* 43 800 (not used) */
{DEC, DATA0}, /* 44 */
{DATA, DATA0}, /* 45 */
{DATA, DATA0}, /* 46 */
{DATA, DATA0}, /* 47 */
{DATA, DATA0}, /* 48 */
{DATA, PI}, /* 49 p5 */
{DUT1, 8}, /* 50 DUT1 sign */
{COEF, 1}, /* 51 10 year tens */
{COEF, 2}, /* 52 20 */
{COEF, 4}, /* 53 40 */
{COEF, 8}, /* 54 80 */
{DST1, 0}, /* 55 DST1 */
{DUT1, 1}, /* 56 0.1 DUT1 fraction */
{DUT1, 2}, /* 57 0.2 */
{DUT1, 4}, /* 58 0.4 */
{DATA, PI}, /* 59 p6 */
{DATA, DATA0}, /* 60 leap */
};
/*
* IRIG format except first frame (1000 Hz, 20 digits, 1 s frame)
*/
struct progx progy[] = {
{COEF, 1}, /* 0 1 units */
{COEF, 2}, /* 1 2 */
{COEF, 4}, /* 2 4 */
{COEF, 8}, /* 3 8 */
{DEC, M2}, /* 4 im */
{COEF, 1}, /* 5 10 tens */
{COEF, 2}, /* 6 20 */
{COEF, 4}, /* 7 40 */
{COEF, 8}, /* 8 80 */
{DEC, M8}, /* 9 pi */
};
/*
* IRIG format first frame (1000 Hz, 20 digits, 1 s frame)
*/
struct progx progz[] = {
{MIN, M8}, /* 0 pi (second) */
{COEF, 1}, /* 1 1 units */
{COEF, 2}, /* 2 2 */
{COEF, 4}, /* 3 4 */
{COEF, 8}, /* 4 8 */
{DEC, M2}, /* 5 im */
{COEF, 1}, /* 6 10 tens */
{COEF, 2}, /* 7 20 */
{COEF, 4}, /* 8 40 */
{DEC, M8}, /* 9 pi */
};
/*
* Forward declarations
*/
void sec(int); /* send second */
void digit(int); /* encode digit */
void peep(int, int, int); /* send cycles */
void delay(int); /* delay samples */
/*
* Global variables
*/
char buffer[BUFLNG]; /* output buffer */
int bufcnt = 0; /* buffer counter */
int second = 0; /* seconds counter */
int fd; /* audio codec file descriptor */
int tone = 1000; /* WWV sync frequency */
int level = AUDIO_MAX_GAIN / 8; /* output level */
int port = AUDIO_LINE_OUT; /* output port */
int encode = WWV; /* encoder select */
int leap = 0; /* leap indicator */
int dst = 0; /* winter/summer time */
int dut1 = 0; /* DUT1 correction (sign, magnitude) */
int utc = 0; /* option epoch */
/*
* Main program
*/
int
main(
int argc, /* command line options */
char **argv /* poiniter to list of tokens */
)
{
struct timeval tv; /* system clock at startup */
audio_info_t info; /* Sun audio structure */
struct tm *tm = NULL; /* structure returned by gmtime */
char device[50]; /* audio device */
char code[100]; /* timecode */
int rval, temp, arg, sw, ptr;
int minute, hour, day, year;
int i;
/*
* Parse options
*/
strlcpy(device, DEVICE, sizeof(device));
year = 0;
while ((temp = getopt(argc, argv, "a:dhilsu:v:y:")) != -1) {
switch (temp) {
case 'a': /* specify audio device (/dev/audio) */
strlcpy(device, optarg, sizeof(device));
break;
case 'd': /* set DST for summer (WWV/H only) */
dst++;
break;
case 'h': /* select WWVH sync frequency */
tone = 1200;
break;
case 'i': /* select irig format */
encode = IRIG;
break;
case 'l': /* set leap warning bit (WWV/H only) */
leap++;
break;
case 's': /* enable speaker */
port |= AUDIO_SPEAKER;
break;
case 'u': /* set DUT1 offset (-7 to +7) */
sscanf(optarg, "%d", &dut1);
if (dut1 < 0)
dut1 = abs(dut1);
else
dut1 |= 0x8;
break;
case 'v': /* set output level (0-255) */
sscanf(optarg, "%d", &level);
break;
case 'y': /* set initial date and time */
sscanf(optarg, "%2d%3d%2d%2d", &year, &day,
&hour, &minute);
utc++;
break;
defult:
printf("invalid option %c\n", temp);
break;
}
}
/*
* Open audio device and set options
*/
fd = open("/dev/audio", O_WRONLY);
if (fd <= 0) {
printf("audio open %s\n", strerror(errno));
exit(1);
}
rval = ioctl(fd, AUDIO_GETINFO, &info);
if (rval < 0) {
printf("audio control %s\n", strerror(errno));
exit(0);
}
info.play.port = port;
info.play.gain = level;
info.play.sample_rate = SECOND;
info.play.channels = 1;
info.play.precision = 8;
info.play.encoding = AUDIO_ENCODING_ULAW;
printf("port %d gain %d rate %d chan %d prec %d encode %d\n",
info.play.port, info.play.gain, info.play.sample_rate,
info.play.channels, info.play.precision,
info.play.encoding);
ioctl(fd, AUDIO_SETINFO, &info);
/*
* Unless specified otherwise, read the system clock and
* initialize the time.
*/
if (!utc) {
gettimeofday(&tv, NULL);
tm = gmtime(&tv.tv_sec);
minute = tm->tm_min;
hour = tm->tm_hour;
day = tm->tm_yday + 1;
year = tm->tm_year % 100;
second = tm->tm_sec;
/*
* Delay the first second so the generator is accurately
* aligned with the system clock within one sample (125
* microseconds ).
*/
delay(SECOND - tv.tv_usec * 8 / 1000);
}
memset(code, 0, sizeof(code));
switch (encode) {
/*
* For WWV/H and default time, carefully set the signal
* generator seconds number to agree with the current time.
*/
case WWV:
printf("year %d day %d time %02d:%02d:%02d tone %d\n",
year, day, hour, minute, second, tone);
snprintf(code, sizeof(code), "%01d%03d%02d%02d%01d",
year / 10, day, hour, minute, year % 10);
printf("%s\n", code);
ptr = 8;
for (i = 0; i <= second; i++) {
if (progx[i].sw == DEC)
ptr--;
}
break;
/*
* For IRIG the signal generator runs every second, so requires
* no additional alignment.
*/
case IRIG:
printf("sbs %x year %d day %d time %02d:%02d:%02d\n",
0, year, day, hour, minute, second);
break;
}
/*
* Run the signal generator to generate new timecode strings
* once per minute for WWV/H and once per second for IRIG.
*/
while(1) {
/*
* Crank the state machine to propagate carries to the
* year of century. Note that we delayed up to one
* second for alignment after reading the time, so this
* is the next second.
*/
second = (second + 1) % 60;
if (second == 0) {
minute++;
if (minute >= 60) {
minute = 0;
hour++;
}
if (hour >= 24) {
hour = 0;
day++;
}
/*
* At year rollover check for leap second.
*/
if (day >= (year & 0x3 ? 366 : 367)) {
if (leap) {
sec(DATA0);
printf("\nleap!");
leap = 0;
}
day = 1;
year++;
}
if (encode == WWV) {
snprintf(code, sizeof(code),
"%01d%03d%02d%02d%01d", year / 10,
day, hour, minute, year % 10);
printf("\n%s\n", code);
ptr = 8;
}
}
if (encode == IRIG) {
snprintf(code, sizeof(code),
"%04x%04d%06d%02d%02d%02d", 0, year, day,
hour, minute, second);
printf("%s\n", code);
ptr = 19;
}
/*
* Generate data for the second
*/
switch(encode) {
/*
* The IRIG second consists of 20 BCD digits of width-
* modulateod pulses at 2, 5 and 8 ms and modulated 50
* percent on the 1000-Hz carrier.
*/
case IRIG:
for (i = 0; i < 100; i++) {
if (i < 10) {
sw = progz[i].sw;
arg = progz[i].arg;
} else {
sw = progy[i % 10].sw;
arg = progy[i % 10].arg;
}
switch(sw) {
case COEF: /* send BCD bit */
if (code[ptr] & arg) {
peep(M5, 1000, HIGH);
peep(M5, 1000, LOW);
printf("1");
} else {
peep(M2, 1000, HIGH);
peep(M8, 1000, LOW);
printf("0");
}
break;
case DEC: /* send IM/PI bit */
ptr--;
printf(" ");
peep(arg, 1000, HIGH);
peep(10 - arg, 1000, LOW);
break;
case MIN: /* send data bit */
peep(arg, 1000, HIGH);
peep(10 - arg, 1000, LOW);
printf("M ");
break;
}
if (ptr < 0)
break;
}
printf("\n");
break;
/*
* The WWV/H second consists of 9 BCD digits of width-
* modulateod pulses 200, 500 and 800 ms at 100-Hz.
*/
case WWV:
sw = progx[second].sw;
arg = progx[second].arg;
switch(sw) {
case DATA: /* send data bit */
sec(arg);
break;
case COEF: /* send BCD bit */
if (code[ptr] & arg) {
sec(DATA1);
printf("1");
} else {
sec(DATA0);
printf("0");
}
break;
case LEAP: /* send leap bit */
if (leap) {
sec(DATA1);
printf("L ");
} else {
sec(DATA0);
printf(" ");
}
break;
case DEC: /* send data bit */
ptr--;
sec(arg);
printf(" ");
break;
case MIN: /* send minute sync */
peep(arg, tone, HIGH);
peep(1000 - arg, tone, OFF);
break;
case DUT1: /* send DUT1 bits */
if (dut1 & arg)
sec(DATA1);
else
sec(DATA0);
break;
case DST1: /* send DST1 bit */
ptr--;
if (dst)
sec(DATA1);
else
sec(DATA0);
printf(" ");
break;
case DST2: /* send DST2 bit */
if (dst)
sec(DATA1);
else
sec(DATA0);
break;
}
}
}
}
/*
* Generate WWV/H 0 or 1 data pulse.
*/
void sec(
int code /* DATA0, DATA1, PI */
)
{
/*
* The WWV data pulse begins with 5 ms of 1000 Hz follwed by a
* guard time of 25 ms. The data pulse is 170, 570 or 770 ms at
* 100 Hz corresponding to 0, 1 or position indicator (PI),
* respectively. Note the 100-Hz data pulses are transmitted 6
* dB below the 1000-Hz sync pulses. Originally the data pulses
* were transmited 10 dB below the sync pulses, but the station
* engineers increased that to 6 dB because the Heath GC-1000
* WWV/H radio clock worked much better.
*/
peep(5, tone, HIGH); /* send seconds tick */
peep(25, tone, OFF);
peep(code - 30, 100, LOW); /* send data */
peep(1000 - code, 100, OFF);
}
/*
* Generate cycles of 100 Hz or any multiple of 100 Hz.
*/
void peep(
int pulse, /* pulse length (ms) */
int freq, /* frequency (Hz) */
int amp /* amplitude */
)
{
int increm; /* phase increment */
int i, j;
if (amp == OFF || freq == 0)
increm = 10;
else
increm = freq / 100;
j = 0;
for (i = 0 ; i < pulse * 8; i++) {
switch (amp) {
case HIGH:
buffer[bufcnt++] = ~c6000[j];
break;
case LOW:
buffer[bufcnt++] = ~c3000[j];
break;
default:
buffer[bufcnt++] = ~0;
}
if (bufcnt >= BUFLNG) {
write(fd, buffer, BUFLNG);
bufcnt = 0;
}
j = (j + increm) % 80;
}
}
/*
* Delay for initial phasing
*/
void delay (
int delay /* delay in samples */
)
{
int samples; /* samples remaining */
samples = delay;
memset(buffer, 0, BUFLNG);
while (samples >= BUFLNG) {
write(fd, buffer, BUFLNG);
samples -= BUFLNG;
}
write(fd, buffer, samples);
}