freebsd-nq/module/zfs/vdev_rebuild.c

1148 lines
35 KiB
C
Raw Normal View History

Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
*
* Copyright (c) 2018, Intel Corporation.
* Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
*/
#include <sys/vdev_impl.h>
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
#include <sys/vdev_draid.h>
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
#include <sys/dsl_scan.h>
#include <sys/spa_impl.h>
#include <sys/metaslab_impl.h>
#include <sys/vdev_rebuild.h>
#include <sys/zio.h>
#include <sys/dmu_tx.h>
#include <sys/arc.h>
#include <sys/zap.h>
/*
* This file contains the sequential reconstruction implementation for
* resilvering. This form of resilvering is internally referred to as device
* rebuild to avoid conflating it with the traditional healing reconstruction
* performed by the dsl scan code.
*
* When replacing a device, or scrubbing the pool, ZFS has historically used
* a process called resilvering which is a form of healing reconstruction.
* This approach has the advantage that as blocks are read from disk their
* checksums can be immediately verified and the data repaired. Unfortunately,
* it also results in a random IO pattern to the disk even when extra care
* is taken to sequentialize the IO as much as possible. This substantially
* increases the time required to resilver the pool and restore redundancy.
*
* For mirrored devices it's possible to implement an alternate sequential
* reconstruction strategy when resilvering. Sequential reconstruction
* behaves like a traditional RAID rebuild and reconstructs a device in LBA
* order without verifying the checksum. After this phase completes a second
* scrub phase is started to verify all of the checksums. This two phase
* process will take longer than the healing reconstruction described above.
* However, it has that advantage that after the reconstruction first phase
* completes redundancy has been restored. At this point the pool can incur
* another device failure without risking data loss.
*
* There are a few noteworthy limitations and other advantages of resilvering
* using sequential reconstruction vs healing reconstruction.
*
* Limitations:
*
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
* - Sequential reconstruction is not possible on RAIDZ due to its
* variable stripe width. Note dRAID uses a fixed stripe width which
* avoids this issue, but comes at the expense of some usable capacity.
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
*
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
* - Block checksums are not verified during sequential reconstruction.
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
* Similar to traditional RAID the parity/mirror data is reconstructed
* but cannot be immediately double checked. For this reason when the
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
* last active resilver completes the pool is automatically scrubbed
* by default.
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
*
* - Deferred resilvers using sequential reconstruction are not currently
* supported. When adding another vdev to an active top-level resilver
* it must be restarted.
*
* Advantages:
*
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
* - Sequential reconstruction is performed in LBA order which may be faster
* than healing reconstruction particularly when using using HDDs (or
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
* especially with SMR devices). Only allocated capacity is resilvered.
*
* - Sequential reconstruction is not constrained by ZFS block boundaries.
* This allows it to issue larger IOs to disk which span multiple blocks
* allowing all of these logical blocks to be repaired with a single IO.
*
* - Unlike a healing resilver or scrub which are pool wide operations,
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
* sequential reconstruction is handled by the top-level vdevs. This
* allows for it to be started or canceled on a top-level vdev without
* impacting any other top-level vdevs in the pool.
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
*
* - Data only referenced by a pool checkpoint will be repaired because
* that space is reflected in the space maps. This differs for a
* healing resilver or scrub which will not repair that data.
*/
/*
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
* Size of rebuild reads; defaults to 1MiB per data disk and is capped at
* SPA_MAXBLOCKSIZE.
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
*/
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
unsigned long zfs_rebuild_max_segment = 1024 * 1024;
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
/*
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
* Maximum number of parallelly executed bytes per leaf vdev caused by a
* sequential resilver. We attempt to strike a balance here between keeping
* the vdev queues full of I/Os at all times and not overflowing the queues
* to cause long latency, which would cause long txg sync times.
*
* A large default value can be safely used here because the default target
* segment size is also large (zfs_rebuild_max_segment=1M). This helps keep
* the queue depth short.
*
* 32MB was selected as the default value to achieve good performance with
* a large 90-drive dRAID HDD configuration (draid2:8d:90c:2s). A sequential
* rebuild was unable to saturate all of the drives using smaller values.
* With a value of 32MB the sequential resilver write rate was measured at
* 800MB/s sustained while rebuilding to a distributed spare.
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
*/
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
unsigned long zfs_rebuild_vdev_limit = 32 << 20;
/*
* Automatically start a pool scrub when the last active sequential resilver
* completes in order to verify the checksums of all blocks which have been
* resilvered. This option is enabled by default and is strongly recommended.
*/
int zfs_rebuild_scrub_enabled = 1;
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
/*
* For vdev_rebuild_initiate_sync() and vdev_rebuild_reset_sync().
*/
static void vdev_rebuild_thread(void *arg);
/*
* Clear the per-vdev rebuild bytes value for a vdev tree.
*/
static void
clear_rebuild_bytes(vdev_t *vd)
{
vdev_stat_t *vs = &vd->vdev_stat;
for (uint64_t i = 0; i < vd->vdev_children; i++)
clear_rebuild_bytes(vd->vdev_child[i]);
mutex_enter(&vd->vdev_stat_lock);
vs->vs_rebuild_processed = 0;
mutex_exit(&vd->vdev_stat_lock);
}
/*
* Determines whether a vdev_rebuild_thread() should be stopped.
*/
static boolean_t
vdev_rebuild_should_stop(vdev_t *vd)
{
return (!vdev_writeable(vd) || vd->vdev_removing ||
vd->vdev_rebuild_exit_wanted ||
vd->vdev_rebuild_cancel_wanted ||
vd->vdev_rebuild_reset_wanted);
}
/*
* Determine if the rebuild should be canceled. This may happen when all
* vdevs with MISSING DTLs are detached.
*/
static boolean_t
vdev_rebuild_should_cancel(vdev_t *vd)
{
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
if (!vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg))
return (B_TRUE);
return (B_FALSE);
}
/*
* The sync task for updating the on-disk state of a rebuild. This is
* scheduled by vdev_rebuild_range().
*/
static void
vdev_rebuild_update_sync(void *arg, dmu_tx_t *tx)
{
int vdev_id = (uintptr_t)arg;
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
vdev_t *vd = vdev_lookup_top(spa, vdev_id);
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
uint64_t txg = dmu_tx_get_txg(tx);
mutex_enter(&vd->vdev_rebuild_lock);
if (vr->vr_scan_offset[txg & TXG_MASK] > 0) {
vrp->vrp_last_offset = vr->vr_scan_offset[txg & TXG_MASK];
vr->vr_scan_offset[txg & TXG_MASK] = 0;
}
vrp->vrp_scan_time_ms = vr->vr_prev_scan_time_ms +
NSEC2MSEC(gethrtime() - vr->vr_pass_start_time);
VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
REBUILD_PHYS_ENTRIES, vrp, tx));
mutex_exit(&vd->vdev_rebuild_lock);
}
/*
* Initialize the on-disk state for a new rebuild, start the rebuild thread.
*/
static void
vdev_rebuild_initiate_sync(void *arg, dmu_tx_t *tx)
{
int vdev_id = (uintptr_t)arg;
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
vdev_t *vd = vdev_lookup_top(spa, vdev_id);
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
ASSERT(vd->vdev_rebuilding);
spa_feature_incr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
mutex_enter(&vd->vdev_rebuild_lock);
bzero(vrp, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
vrp->vrp_rebuild_state = VDEV_REBUILD_ACTIVE;
vrp->vrp_min_txg = 0;
vrp->vrp_max_txg = dmu_tx_get_txg(tx);
vrp->vrp_start_time = gethrestime_sec();
vrp->vrp_scan_time_ms = 0;
vr->vr_prev_scan_time_ms = 0;
/*
* Rebuilds are currently only used when replacing a device, in which
* case there must be DTL_MISSING entries. In the future, we could
* allow rebuilds to be used in a way similar to a scrub. This would
* be useful because it would allow us to rebuild the space used by
* pool checkpoints.
*/
VERIFY(vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg));
VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
REBUILD_PHYS_ENTRIES, vrp, tx));
spa_history_log_internal(spa, "rebuild", tx,
"vdev_id=%llu vdev_guid=%llu started",
(u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
vd->vdev_rebuild_thread = thread_create(NULL, 0,
vdev_rebuild_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
mutex_exit(&vd->vdev_rebuild_lock);
}
static void
vdev_rebuild_log_notify(spa_t *spa, vdev_t *vd, char *name)
{
nvlist_t *aux = fnvlist_alloc();
fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, "sequential");
spa_event_notify(spa, vd, aux, name);
nvlist_free(aux);
}
/*
* Called to request that a new rebuild be started. The feature will remain
* active for the duration of the rebuild, then revert to the enabled state.
*/
static void
vdev_rebuild_initiate(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
ASSERT(vd->vdev_top == vd);
ASSERT(MUTEX_HELD(&vd->vdev_rebuild_lock));
ASSERT(!vd->vdev_rebuilding);
dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
vd->vdev_rebuilding = B_TRUE;
dsl_sync_task_nowait(spa_get_dsl(spa), vdev_rebuild_initiate_sync,
(void *)(uintptr_t)vd->vdev_id, tx);
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
dmu_tx_commit(tx);
vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_START);
}
/*
* Update the on-disk state to completed when a rebuild finishes.
*/
static void
vdev_rebuild_complete_sync(void *arg, dmu_tx_t *tx)
{
int vdev_id = (uintptr_t)arg;
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
vdev_t *vd = vdev_lookup_top(spa, vdev_id);
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
mutex_enter(&vd->vdev_rebuild_lock);
vrp->vrp_rebuild_state = VDEV_REBUILD_COMPLETE;
vrp->vrp_end_time = gethrestime_sec();
VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
REBUILD_PHYS_ENTRIES, vrp, tx));
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
vdev_dtl_reassess(vd, tx->tx_txg, vrp->vrp_max_txg, B_TRUE, B_TRUE);
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
spa_feature_decr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
spa_history_log_internal(spa, "rebuild", tx,
"vdev_id=%llu vdev_guid=%llu complete",
(u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_FINISH);
/* Handles detaching of spares */
spa_async_request(spa, SPA_ASYNC_REBUILD_DONE);
vd->vdev_rebuilding = B_FALSE;
mutex_exit(&vd->vdev_rebuild_lock);
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
/*
* While we're in syncing context take the opportunity to
* setup the scrub when there are no more active rebuilds.
*/
if (!vdev_rebuild_active(spa->spa_root_vdev) &&
zfs_rebuild_scrub_enabled) {
pool_scan_func_t func = POOL_SCAN_SCRUB;
dsl_scan_setup_sync(&func, tx);
}
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
cv_broadcast(&vd->vdev_rebuild_cv);
}
/*
* Update the on-disk state to canceled when a rebuild finishes.
*/
static void
vdev_rebuild_cancel_sync(void *arg, dmu_tx_t *tx)
{
int vdev_id = (uintptr_t)arg;
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
vdev_t *vd = vdev_lookup_top(spa, vdev_id);
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
mutex_enter(&vd->vdev_rebuild_lock);
vrp->vrp_rebuild_state = VDEV_REBUILD_CANCELED;
vrp->vrp_end_time = gethrestime_sec();
VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
REBUILD_PHYS_ENTRIES, vrp, tx));
spa_feature_decr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
spa_history_log_internal(spa, "rebuild", tx,
"vdev_id=%llu vdev_guid=%llu canceled",
(u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_FINISH);
vd->vdev_rebuild_cancel_wanted = B_FALSE;
vd->vdev_rebuilding = B_FALSE;
mutex_exit(&vd->vdev_rebuild_lock);
spa_notify_waiters(spa);
cv_broadcast(&vd->vdev_rebuild_cv);
}
/*
* Resets the progress of a running rebuild. This will occur when a new
* vdev is added to rebuild.
*/
static void
vdev_rebuild_reset_sync(void *arg, dmu_tx_t *tx)
{
int vdev_id = (uintptr_t)arg;
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
vdev_t *vd = vdev_lookup_top(spa, vdev_id);
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
mutex_enter(&vd->vdev_rebuild_lock);
ASSERT(vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
vrp->vrp_last_offset = 0;
vrp->vrp_min_txg = 0;
vrp->vrp_max_txg = dmu_tx_get_txg(tx);
vrp->vrp_bytes_scanned = 0;
vrp->vrp_bytes_issued = 0;
vrp->vrp_bytes_rebuilt = 0;
vrp->vrp_bytes_est = 0;
vrp->vrp_scan_time_ms = 0;
vr->vr_prev_scan_time_ms = 0;
/* See vdev_rebuild_initiate_sync comment */
VERIFY(vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg));
VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
REBUILD_PHYS_ENTRIES, vrp, tx));
spa_history_log_internal(spa, "rebuild", tx,
"vdev_id=%llu vdev_guid=%llu reset",
(u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
vd->vdev_rebuild_reset_wanted = B_FALSE;
ASSERT(vd->vdev_rebuilding);
vd->vdev_rebuild_thread = thread_create(NULL, 0,
vdev_rebuild_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
mutex_exit(&vd->vdev_rebuild_lock);
}
/*
* Clear the last rebuild status.
*/
void
vdev_rebuild_clear_sync(void *arg, dmu_tx_t *tx)
{
int vdev_id = (uintptr_t)arg;
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
vdev_t *vd = vdev_lookup_top(spa, vdev_id);
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
objset_t *mos = spa_meta_objset(spa);
mutex_enter(&vd->vdev_rebuild_lock);
if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD) ||
vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE) {
mutex_exit(&vd->vdev_rebuild_lock);
return;
}
clear_rebuild_bytes(vd);
bzero(vrp, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
if (vd->vdev_top_zap != 0 && zap_contains(mos, vd->vdev_top_zap,
VDEV_TOP_ZAP_VDEV_REBUILD_PHYS) == 0) {
VERIFY0(zap_update(mos, vd->vdev_top_zap,
VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
REBUILD_PHYS_ENTRIES, vrp, tx));
}
mutex_exit(&vd->vdev_rebuild_lock);
}
/*
* The zio_done_func_t callback for each rebuild I/O issued. It's responsible
* for updating the rebuild stats and limiting the number of in flight I/Os.
*/
static void
vdev_rebuild_cb(zio_t *zio)
{
vdev_rebuild_t *vr = zio->io_private;
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
vdev_t *vd = vr->vr_top_vdev;
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
mutex_enter(&vr->vr_io_lock);
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
/*
* The I/O failed because the top-level vdev was unavailable.
* Attempt to roll back to the last completed offset, in order
* resume from the correct location if the pool is resumed.
* (This works because spa_sync waits on spa_txg_zio before
* it runs sync tasks.)
*/
uint64_t *off = &vr->vr_scan_offset[zio->io_txg & TXG_MASK];
*off = MIN(*off, zio->io_offset);
} else if (zio->io_error) {
vrp->vrp_errors++;
}
abd_free(zio->io_abd);
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
ASSERT3U(vr->vr_bytes_inflight, >, 0);
vr->vr_bytes_inflight -= zio->io_size;
cv_broadcast(&vr->vr_io_cv);
mutex_exit(&vr->vr_io_lock);
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
}
/*
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
* Initialize a block pointer that can be used to read the given segment
* for sequential rebuild.
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
*/
static void
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
vdev_rebuild_blkptr_init(blkptr_t *bp, vdev_t *vd, uint64_t start,
uint64_t asize)
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
{
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
ASSERT(vd->vdev_ops == &vdev_draid_ops ||
vd->vdev_ops == &vdev_mirror_ops ||
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
vd->vdev_ops == &vdev_replacing_ops ||
vd->vdev_ops == &vdev_spare_ops);
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
uint64_t psize = vd->vdev_ops == &vdev_draid_ops ?
vdev_draid_asize_to_psize(vd, asize) : asize;
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
BP_ZERO(bp);
DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
DVA_SET_OFFSET(&bp->blk_dva[0], start);
DVA_SET_GANG(&bp->blk_dva[0], 0);
DVA_SET_ASIZE(&bp->blk_dva[0], asize);
BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
BP_SET_LSIZE(bp, psize);
BP_SET_PSIZE(bp, psize);
BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
BP_SET_TYPE(bp, DMU_OT_NONE);
BP_SET_LEVEL(bp, 0);
BP_SET_DEDUP(bp, 0);
BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
}
/*
* Issues a rebuild I/O and takes care of rate limiting the number of queued
* rebuild I/Os. The provided start and size must be properly aligned for the
* top-level vdev type being rebuilt.
*/
static int
vdev_rebuild_range(vdev_rebuild_t *vr, uint64_t start, uint64_t size)
{
uint64_t ms_id __maybe_unused = vr->vr_scan_msp->ms_id;
vdev_t *vd = vr->vr_top_vdev;
spa_t *spa = vd->vdev_spa;
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
blkptr_t blk;
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
ASSERT3U(ms_id, ==, start >> vd->vdev_ms_shift);
ASSERT3U(ms_id, ==, (start + size - 1) >> vd->vdev_ms_shift);
vr->vr_pass_bytes_scanned += size;
vr->vr_rebuild_phys.vrp_bytes_scanned += size;
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
/*
* Rebuild the data in this range by constructing a special block
* pointer. It has no relation to any existing blocks in the pool.
* However, by disabling checksum verification and issuing a scrub IO
* we can reconstruct and repair any children with missing data.
*/
vdev_rebuild_blkptr_init(&blk, vd, start, size);
uint64_t psize = BP_GET_PSIZE(&blk);
if (!vdev_dtl_need_resilver(vd, &blk.blk_dva[0], psize, TXG_UNKNOWN))
return (0);
mutex_enter(&vr->vr_io_lock);
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
/* Limit in flight rebuild I/Os */
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
while (vr->vr_bytes_inflight >= vr->vr_bytes_inflight_max)
cv_wait(&vr->vr_io_cv, &vr->vr_io_lock);
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
vr->vr_bytes_inflight += psize;
mutex_exit(&vr->vr_io_lock);
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
uint64_t txg = dmu_tx_get_txg(tx);
spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
mutex_enter(&vd->vdev_rebuild_lock);
/* This is the first I/O for this txg. */
if (vr->vr_scan_offset[txg & TXG_MASK] == 0) {
vr->vr_scan_offset[txg & TXG_MASK] = start;
dsl_sync_task_nowait(spa_get_dsl(spa),
vdev_rebuild_update_sync,
(void *)(uintptr_t)vd->vdev_id, tx);
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
}
/* When exiting write out our progress. */
if (vdev_rebuild_should_stop(vd)) {
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
mutex_enter(&vr->vr_io_lock);
vr->vr_bytes_inflight -= psize;
mutex_exit(&vr->vr_io_lock);
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
mutex_exit(&vd->vdev_rebuild_lock);
dmu_tx_commit(tx);
return (SET_ERROR(EINTR));
}
mutex_exit(&vd->vdev_rebuild_lock);
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
dmu_tx_commit(tx);
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
vr->vr_scan_offset[txg & TXG_MASK] = start + size;
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
vr->vr_pass_bytes_issued += size;
vr->vr_rebuild_phys.vrp_bytes_issued += size;
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
zio_nowait(zio_read(spa->spa_txg_zio[txg & TXG_MASK], spa, &blk,
abd_alloc(psize, B_FALSE), psize, vdev_rebuild_cb, vr,
ZIO_PRIORITY_REBUILD, ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL |
ZIO_FLAG_RESILVER, NULL));
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
return (0);
}
/*
* Issues rebuild I/Os for all ranges in the provided vr->vr_tree range tree.
*/
static int
vdev_rebuild_ranges(vdev_rebuild_t *vr)
{
vdev_t *vd = vr->vr_top_vdev;
zfs_btree_t *t = &vr->vr_scan_tree->rt_root;
zfs_btree_index_t idx;
int error;
for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL;
rs = zfs_btree_next(t, &idx, &idx)) {
uint64_t start = rs_get_start(rs, vr->vr_scan_tree);
uint64_t size = rs_get_end(rs, vr->vr_scan_tree) - start;
/*
* zfs_scan_suspend_progress can be set to disable rebuild
* progress for testing. See comment in dsl_scan_sync().
*/
while (zfs_scan_suspend_progress &&
!vdev_rebuild_should_stop(vd)) {
delay(hz);
}
while (size > 0) {
uint64_t chunk_size;
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
/*
* Split range into legally-sized logical chunks
* given the constraints of the top-level vdev
* being rebuilt (dRAID or mirror).
*/
ASSERT3P(vd->vdev_ops, !=, NULL);
chunk_size = vd->vdev_ops->vdev_op_rebuild_asize(vd,
start, size, zfs_rebuild_max_segment);
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
error = vdev_rebuild_range(vr, start, chunk_size);
if (error != 0)
return (error);
size -= chunk_size;
start += chunk_size;
}
}
return (0);
}
/*
* Calculates the estimated capacity which remains to be scanned. Since
* we traverse the pool in metaslab order only allocated capacity beyond
* the vrp_last_offset need be considered. All lower offsets must have
* already been rebuilt and are thus already included in vrp_bytes_scanned.
*/
static void
vdev_rebuild_update_bytes_est(vdev_t *vd, uint64_t ms_id)
{
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
uint64_t bytes_est = vrp->vrp_bytes_scanned;
if (vrp->vrp_last_offset < vd->vdev_ms[ms_id]->ms_start)
return;
for (uint64_t i = ms_id; i < vd->vdev_ms_count; i++) {
metaslab_t *msp = vd->vdev_ms[i];
mutex_enter(&msp->ms_lock);
bytes_est += metaslab_allocated_space(msp);
mutex_exit(&msp->ms_lock);
}
vrp->vrp_bytes_est = bytes_est;
}
/*
* Load from disk the top-level vdev's rebuild information.
*/
int
vdev_rebuild_load(vdev_t *vd)
{
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
spa_t *spa = vd->vdev_spa;
int err = 0;
mutex_enter(&vd->vdev_rebuild_lock);
vd->vdev_rebuilding = B_FALSE;
if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD)) {
bzero(vrp, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
mutex_exit(&vd->vdev_rebuild_lock);
return (SET_ERROR(ENOTSUP));
}
ASSERT(vd->vdev_top == vd);
err = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
REBUILD_PHYS_ENTRIES, vrp);
/*
* A missing or damaged VDEV_TOP_ZAP_VDEV_REBUILD_PHYS should
* not prevent a pool from being imported. Clear the rebuild
* status allowing a new resilver/rebuild to be started.
*/
if (err == ENOENT || err == EOVERFLOW || err == ECKSUM) {
bzero(vrp, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
} else if (err) {
mutex_exit(&vd->vdev_rebuild_lock);
return (err);
}
vr->vr_prev_scan_time_ms = vrp->vrp_scan_time_ms;
vr->vr_top_vdev = vd;
mutex_exit(&vd->vdev_rebuild_lock);
return (0);
}
/*
* Each scan thread is responsible for rebuilding a top-level vdev. The
* rebuild progress in tracked on-disk in VDEV_TOP_ZAP_VDEV_REBUILD_PHYS.
*/
static void
vdev_rebuild_thread(void *arg)
{
vdev_t *vd = arg;
spa_t *spa = vd->vdev_spa;
int error = 0;
/*
* If there's a scrub in process request that it be stopped. This
* is not required for a correct rebuild, but we do want rebuilds to
* emulate the resilver behavior as much as possible.
*/
dsl_pool_t *dsl = spa_get_dsl(spa);
if (dsl_scan_scrubbing(dsl))
dsl_scan_cancel(dsl);
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
mutex_enter(&vd->vdev_rebuild_lock);
ASSERT3P(vd->vdev_top, ==, vd);
ASSERT3P(vd->vdev_rebuild_thread, !=, NULL);
ASSERT(vd->vdev_rebuilding);
ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REBUILD));
ASSERT3B(vd->vdev_rebuild_cancel_wanted, ==, B_FALSE);
ASSERT3B(vd->vdev_rebuild_reset_wanted, ==, B_FALSE);
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
vr->vr_top_vdev = vd;
vr->vr_scan_msp = NULL;
vr->vr_scan_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
mutex_init(&vr->vr_io_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&vr->vr_io_cv, NULL, CV_DEFAULT, NULL);
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
vr->vr_pass_start_time = gethrtime();
vr->vr_pass_bytes_scanned = 0;
vr->vr_pass_bytes_issued = 0;
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
vr->vr_bytes_inflight_max = MAX(1ULL << 20,
zfs_rebuild_vdev_limit * vd->vdev_children);
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
uint64_t update_est_time = gethrtime();
vdev_rebuild_update_bytes_est(vd, 0);
clear_rebuild_bytes(vr->vr_top_vdev);
mutex_exit(&vd->vdev_rebuild_lock);
/*
* Systematically walk the metaslabs and issue rebuild I/Os for
* all ranges in the allocated space map.
*/
for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
metaslab_t *msp = vd->vdev_ms[i];
vr->vr_scan_msp = msp;
/*
* Removal of vdevs from the vdev tree may eliminate the need
* for the rebuild, in which case it should be canceled. The
* vdev_rebuild_cancel_wanted flag is set until the sync task
* completes. This may be after the rebuild thread exits.
*/
if (vdev_rebuild_should_cancel(vd)) {
vd->vdev_rebuild_cancel_wanted = B_TRUE;
error = EINTR;
break;
}
ASSERT0(range_tree_space(vr->vr_scan_tree));
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
/* Disable any new allocations to this metaslab */
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
metaslab_disable(msp);
spa_config_exit(spa, SCL_CONFIG, FTAG);
mutex_enter(&msp->ms_sync_lock);
mutex_enter(&msp->ms_lock);
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
/*
* If there are outstanding allocations wait for them to be
* synced. This is needed to ensure all allocated ranges are
* on disk and therefore will be rebuilt.
*/
for (int j = 0; j < TXG_SIZE; j++) {
if (range_tree_space(msp->ms_allocating[j])) {
mutex_exit(&msp->ms_lock);
mutex_exit(&msp->ms_sync_lock);
txg_wait_synced(dsl, 0);
mutex_enter(&msp->ms_sync_lock);
mutex_enter(&msp->ms_lock);
break;
}
}
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
/*
* When a metaslab has been allocated from read its allocated
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
* ranges from the space map object into the vr_scan_tree.
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
* Then add inflight / unflushed ranges and remove inflight /
* unflushed frees. This is the minimum range to be rebuilt.
*/
if (msp->ms_sm != NULL) {
VERIFY0(space_map_load(msp->ms_sm,
vr->vr_scan_tree, SM_ALLOC));
for (int i = 0; i < TXG_SIZE; i++) {
ASSERT0(range_tree_space(
msp->ms_allocating[i]));
}
range_tree_walk(msp->ms_unflushed_allocs,
range_tree_add, vr->vr_scan_tree);
range_tree_walk(msp->ms_unflushed_frees,
range_tree_remove, vr->vr_scan_tree);
/*
* Remove ranges which have already been rebuilt based
* on the last offset. This can happen when restarting
* a scan after exporting and re-importing the pool.
*/
range_tree_clear(vr->vr_scan_tree, 0,
vrp->vrp_last_offset);
}
mutex_exit(&msp->ms_lock);
mutex_exit(&msp->ms_sync_lock);
/*
* To provide an accurate estimate re-calculate the estimated
* size every 5 minutes to account for recent allocations and
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
* frees made to space maps which have not yet been rebuilt.
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
*/
if (gethrtime() > update_est_time + SEC2NSEC(300)) {
update_est_time = gethrtime();
vdev_rebuild_update_bytes_est(vd, i);
}
/*
* Walk the allocated space map and issue the rebuild I/O.
*/
error = vdev_rebuild_ranges(vr);
range_tree_vacate(vr->vr_scan_tree, NULL, NULL);
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
metaslab_enable(msp, B_FALSE, B_FALSE);
if (error != 0)
break;
}
range_tree_destroy(vr->vr_scan_tree);
spa_config_exit(spa, SCL_CONFIG, FTAG);
/* Wait for any remaining rebuild I/O to complete */
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
mutex_enter(&vr->vr_io_lock);
while (vr->vr_bytes_inflight > 0)
cv_wait(&vr->vr_io_cv, &vr->vr_io_lock);
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
mutex_exit(&vr->vr_io_lock);
mutex_destroy(&vr->vr_io_lock);
cv_destroy(&vr->vr_io_cv);
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
dsl_pool_t *dp = spa_get_dsl(spa);
dmu_tx_t *tx = dmu_tx_create_dd(dp->dp_mos_dir);
VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
mutex_enter(&vd->vdev_rebuild_lock);
if (error == 0) {
/*
* After a successful rebuild clear the DTLs of all ranges
* which were missing when the rebuild was started. These
* ranges must have been rebuilt as a consequence of rebuilding
* all allocated space. Note that unlike a scrub or resilver
* the rebuild operation will reconstruct data only referenced
* by a pool checkpoint. See the dsl_scan_done() comments.
*/
dsl_sync_task_nowait(dp, vdev_rebuild_complete_sync,
(void *)(uintptr_t)vd->vdev_id, tx);
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
} else if (vd->vdev_rebuild_cancel_wanted) {
/*
* The rebuild operation was canceled. This will occur when
* a device participating in the rebuild is detached.
*/
dsl_sync_task_nowait(dp, vdev_rebuild_cancel_sync,
(void *)(uintptr_t)vd->vdev_id, tx);
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
} else if (vd->vdev_rebuild_reset_wanted) {
/*
* Reset the running rebuild without canceling and restarting
* it. This will occur when a new device is attached and must
* participate in the rebuild.
*/
dsl_sync_task_nowait(dp, vdev_rebuild_reset_sync,
(void *)(uintptr_t)vd->vdev_id, tx);
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
} else {
/*
* The rebuild operation should be suspended. This may occur
* when detaching a child vdev or when exporting the pool. The
* rebuild is left in the active state so it will be resumed.
*/
ASSERT(vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
vd->vdev_rebuilding = B_FALSE;
}
dmu_tx_commit(tx);
vd->vdev_rebuild_thread = NULL;
mutex_exit(&vd->vdev_rebuild_lock);
spa_config_exit(spa, SCL_CONFIG, FTAG);
cv_broadcast(&vd->vdev_rebuild_cv);
thread_exit();
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
}
/*
* Returns B_TRUE if any top-level vdev are rebuilding.
*/
boolean_t
vdev_rebuild_active(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
boolean_t ret = B_FALSE;
if (vd == spa->spa_root_vdev) {
for (uint64_t i = 0; i < vd->vdev_children; i++) {
ret = vdev_rebuild_active(vd->vdev_child[i]);
if (ret)
return (ret);
}
} else if (vd->vdev_top_zap != 0) {
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
mutex_enter(&vd->vdev_rebuild_lock);
ret = (vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
mutex_exit(&vd->vdev_rebuild_lock);
}
return (ret);
}
/*
* Start a rebuild operation. The rebuild may be restarted when the
* top-level vdev is currently actively rebuilding.
*/
void
vdev_rebuild(vdev_t *vd)
{
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
vdev_rebuild_phys_t *vrp __maybe_unused = &vr->vr_rebuild_phys;
ASSERT(vd->vdev_top == vd);
ASSERT(vdev_is_concrete(vd));
ASSERT(!vd->vdev_removing);
ASSERT(spa_feature_is_enabled(vd->vdev_spa,
SPA_FEATURE_DEVICE_REBUILD));
mutex_enter(&vd->vdev_rebuild_lock);
if (vd->vdev_rebuilding) {
ASSERT3U(vrp->vrp_rebuild_state, ==, VDEV_REBUILD_ACTIVE);
/*
* Signal a running rebuild operation that it should restart
* from the beginning because a new device was attached. The
* vdev_rebuild_reset_wanted flag is set until the sync task
* completes. This may be after the rebuild thread exits.
*/
if (!vd->vdev_rebuild_reset_wanted)
vd->vdev_rebuild_reset_wanted = B_TRUE;
} else {
vdev_rebuild_initiate(vd);
}
mutex_exit(&vd->vdev_rebuild_lock);
}
static void
vdev_rebuild_restart_impl(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
if (vd == spa->spa_root_vdev) {
for (uint64_t i = 0; i < vd->vdev_children; i++)
vdev_rebuild_restart_impl(vd->vdev_child[i]);
} else if (vd->vdev_top_zap != 0) {
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
mutex_enter(&vd->vdev_rebuild_lock);
if (vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE &&
vdev_writeable(vd) && !vd->vdev_rebuilding) {
ASSERT(spa_feature_is_active(spa,
SPA_FEATURE_DEVICE_REBUILD));
vd->vdev_rebuilding = B_TRUE;
vd->vdev_rebuild_thread = thread_create(NULL, 0,
vdev_rebuild_thread, vd, 0, &p0, TS_RUN,
maxclsyspri);
}
mutex_exit(&vd->vdev_rebuild_lock);
}
}
/*
* Conditionally restart all of the vdev_rebuild_thread's for a pool. The
* feature flag must be active and the rebuild in the active state. This
* cannot be used to start a new rebuild.
*/
void
vdev_rebuild_restart(spa_t *spa)
{
ASSERT(MUTEX_HELD(&spa_namespace_lock));
vdev_rebuild_restart_impl(spa->spa_root_vdev);
}
/*
* Stop and wait for all of the vdev_rebuild_thread's associated with the
* vdev tree provide to be terminated (canceled or stopped).
*/
void
vdev_rebuild_stop_wait(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
ASSERT(MUTEX_HELD(&spa_namespace_lock));
if (vd == spa->spa_root_vdev) {
for (uint64_t i = 0; i < vd->vdev_children; i++)
vdev_rebuild_stop_wait(vd->vdev_child[i]);
} else if (vd->vdev_top_zap != 0) {
ASSERT(vd == vd->vdev_top);
mutex_enter(&vd->vdev_rebuild_lock);
if (vd->vdev_rebuild_thread != NULL) {
vd->vdev_rebuild_exit_wanted = B_TRUE;
while (vd->vdev_rebuilding) {
cv_wait(&vd->vdev_rebuild_cv,
&vd->vdev_rebuild_lock);
}
vd->vdev_rebuild_exit_wanted = B_FALSE;
}
mutex_exit(&vd->vdev_rebuild_lock);
}
}
/*
* Stop all rebuild operations but leave them in the active state so they
* will be resumed when importing the pool.
*/
void
vdev_rebuild_stop_all(spa_t *spa)
{
vdev_rebuild_stop_wait(spa->spa_root_vdev);
}
/*
* Rebuild statistics reported per top-level vdev.
*/
int
vdev_rebuild_get_stats(vdev_t *tvd, vdev_rebuild_stat_t *vrs)
{
spa_t *spa = tvd->vdev_spa;
if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
return (SET_ERROR(ENOTSUP));
if (tvd != tvd->vdev_top || tvd->vdev_top_zap == 0)
return (SET_ERROR(EINVAL));
int error = zap_contains(spa_meta_objset(spa),
tvd->vdev_top_zap, VDEV_TOP_ZAP_VDEV_REBUILD_PHYS);
if (error == ENOENT) {
bzero(vrs, sizeof (vdev_rebuild_stat_t));
vrs->vrs_state = VDEV_REBUILD_NONE;
error = 0;
} else if (error == 0) {
vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
mutex_enter(&tvd->vdev_rebuild_lock);
vrs->vrs_state = vrp->vrp_rebuild_state;
vrs->vrs_start_time = vrp->vrp_start_time;
vrs->vrs_end_time = vrp->vrp_end_time;
vrs->vrs_scan_time_ms = vrp->vrp_scan_time_ms;
vrs->vrs_bytes_scanned = vrp->vrp_bytes_scanned;
vrs->vrs_bytes_issued = vrp->vrp_bytes_issued;
vrs->vrs_bytes_rebuilt = vrp->vrp_bytes_rebuilt;
vrs->vrs_bytes_est = vrp->vrp_bytes_est;
vrs->vrs_errors = vrp->vrp_errors;
vrs->vrs_pass_time_ms = NSEC2MSEC(gethrtime() -
vr->vr_pass_start_time);
vrs->vrs_pass_bytes_scanned = vr->vr_pass_bytes_scanned;
vrs->vrs_pass_bytes_issued = vr->vr_pass_bytes_issued;
mutex_exit(&tvd->vdev_rebuild_lock);
}
return (error);
}
/* BEGIN CSTYLED */
ZFS_MODULE_PARAM(zfs, zfs_, rebuild_max_segment, ULONG, ZMOD_RW,
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 13:51:51 -08:00
"Max segment size in bytes of rebuild reads");
ZFS_MODULE_PARAM(zfs, zfs_, rebuild_vdev_limit, ULONG, ZMOD_RW,
"Max bytes in flight per leaf vdev for sequential resilvers");
ZFS_MODULE_PARAM(zfs, zfs_, rebuild_scrub_enabled, INT, ZMOD_RW,
"Automatically scrub after sequential resilver completes");
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 11:05:50 -07:00
/* END CSTYLED */