freebsd-nq/sys/cam/cam_periph.h

260 lines
8.2 KiB
C
Raw Normal View History

/*-
* Data structures and definitions for CAM peripheral ("type") drivers.
*
* Copyright (c) 1997, 1998 Justin T. Gibbs.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
1999-08-28 01:08:13 +00:00
* $FreeBSD$
*/
#ifndef _CAM_CAM_PERIPH_H
#define _CAM_CAM_PERIPH_H 1
#include <sys/queue.h>
#include <cam/cam_sim.h>
#ifdef _KERNEL
Merge CAM locking changes from the projects/camlock branch to radically reduce lock congestion and improve SMP scalability of the SCSI/ATA stack, preparing the ground for the coming next GEOM direct dispatch support. Replace big per-SIM locks with bunch of smaller ones: - per-LUN locks to protect device and peripheral drivers state; - per-target locks to protect list of LUNs on target; - per-bus locks to protect reference counting; - per-send queue locks to protect queue of CCBs to be sent; - per-done queue locks to protect queue of completed CCBs; - remaining per-SIM locks now protect only HBA driver internals. While holding LUN lock it is allowed (while not recommended for performance reasons) to take SIM lock. The opposite acquisition order is forbidden. All the other locks are leaf locks, that can be taken anywhere, but should not be cascaded. Many functions, such as: xpt_action(), xpt_done(), xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM lock to be held. To keep compatibility and solve cases where SIM lock can't be dropped, all xpt_async() calls in addition to xpt_done() calls are queued to completion threads for async processing in clean environment without SIM lock held. Instead of single CAM SWI thread, used for commands completion processing before, use multiple (depending on number of CPUs) threads. Load balanced between them using "hash" of the device B:T:L address. HBA drivers that can drop SIM lock during completion processing and have sufficient number of completion threads to efficiently scale to multiple CPUs can use new function xpt_done_direct() to avoid extra context switch. Make ahci(4) driver to use this mechanism depending on hardware setup. Sponsored by: iXsystems, Inc. MFC after: 2 months
2013-10-21 12:00:26 +00:00
#include <sys/taskqueue.h>
2013-03-29 11:53:20 +00:00
#include <cam/cam_xpt.h>
struct devstat;
extern struct cam_periph *xpt_periph;
extern struct periph_driver **periph_drivers;
void periphdriver_register(void *);
int periphdriver_unregister(void *);
MFp4: Large set of CAM inprovements. - Unify bus reset/probe sequence. Whenever bus attached at boot or later, CAM will automatically reset and scan it. It allows to remove duplicate code from many drivers. - Any bus, attached before CAM completed it's boot-time initialization, will equally join to the process, delaying boot if needed. - New kern.cam.boot_delay loader tunable should help controllers that are still unable to register their buses in time (such as slow USB/ PCCard/ CardBus devices), by adding one more event to wait on boot. - To allow synchronization between different CAM levels, concept of requests priorities was extended. Priorities now split between several "run levels". Device can be freezed at specified level, allowing higher priority requests to pass. For example, no payload requests allowed, until PMP driver enable port. ATA XPT negotiate transfer parameters, periph driver configure caching and so on. - Frozen requests are no more counted by request allocation scheduler. It fixes deadlocks, when frozen low priority payload requests occupying slots, required by higher levels to manage theit execution. - Two last changes were holding proper ATA reinitialization and error recovery implementation. Now it is done: SATA controllers and Port Multipliers now implement automatic hot-plug and should correctly recover from timeouts and bus resets. - Improve SCSI error recovery for devices on buses without automatic sense reporting, such as ATAPI or USB. For example, it allows CAM to wait, while CD drive loads disk, instead of immediately return error status. - Decapitalize diagnostic messages and make them more readable and sensible. - Teach PMP driver to limit maximum speed on fan-out ports. - Make boot wait for PMP scan completes, and make rescan more reliable. - Fix pass driver, to return CCB to user level in case of error. - Increase number of retries in cd driver, as device may return several UAs.
2010-01-28 08:41:30 +00:00
void periphdriver_init(int level);
#include <sys/module.h>
#define PERIPHDRIVER_DECLARE(name, driver) \
static int name ## _modevent(module_t mod, int type, void *data) \
{ \
switch (type) { \
case MOD_LOAD: \
periphdriver_register(data); \
break; \
case MOD_UNLOAD: \
return (periphdriver_unregister(data)); \
default: \
return EOPNOTSUPP; \
} \
return 0; \
} \
static moduledata_t name ## _mod = { \
#name, \
name ## _modevent, \
(void *)&driver \
}; \
DECLARE_MODULE(name, name ## _mod, SI_SUB_DRIVERS, SI_ORDER_ANY); \
MODULE_DEPEND(name, cam, 1, 1, 1)
/*
* Callback informing the peripheral driver it can perform it's
* initialization since the XPT is now fully initialized.
*/
typedef void (periph_init_t)(void);
/*
* Callback requesting the peripheral driver to remove its instances
* and shutdown, if possible.
*/
typedef int (periph_deinit_t)(void);
struct periph_driver {
periph_init_t *init;
char *driver_name;
TAILQ_HEAD(,cam_periph) units;
u_int generation;
u_int flags;
#define CAM_PERIPH_DRV_EARLY 0x01
periph_deinit_t *deinit;
};
typedef enum {
CAM_PERIPH_BIO
} cam_periph_type;
/* Generically useful offsets into the peripheral private area */
#define ppriv_ptr0 periph_priv.entries[0].ptr
#define ppriv_ptr1 periph_priv.entries[1].ptr
#define ppriv_field0 periph_priv.entries[0].field
#define ppriv_field1 periph_priv.entries[1].field
typedef void periph_start_t (struct cam_periph *periph,
union ccb *start_ccb);
typedef cam_status periph_ctor_t (struct cam_periph *periph,
void *arg);
Fix a problem with the way we handled device invalidation when attaching to a device failed. In theory, the same steps that happen when we get an AC_LOST_DEVICE async notification should have been taken when a driver fails to attach. In practice, that wasn't the case. This only affected the da, cd and ch drivers, but the fix affects all peripheral drivers. There were several possible problems: - In the da driver, we didn't remove the peripheral's softc from the da driver's linked list of softcs. Once the peripheral and softc got removed, we'd get a kernel panic the next time the timeout routine called dasendorderedtag(). - In the da, cd and possibly ch drivers, we didn't remove the peripheral's devstat structure from the devstat queue. Once the peripheral and softc were removed, this could cause a panic if anyone tried to access device statistics. (one component of the linked list wouldn't exist anymore) - In the cd driver, we didn't take the peripheral off the changer run queue if it was scheduled to run. In practice, it's highly unlikely, and maybe impossible that the peripheral would have been on the changer run queue at that stage of the probe process. The fix is: - Add a new peripheral callback function (the "oninvalidate" function) that is called the first time cam_periph_invalidate() is called for a peripheral. - Create new foooninvalidate() routines for each peripheral driver. This routine is always called at splsoftcam(), and contains all the stuff that used to be in the AC_LOST_DEVICE case of the async callback handler. - Move the devstat cleanup call to the destructor/cleanup routines, since some of the drivers do I/O in their close routines. - Make sure that when we're flushing the buffer queue, we traverse it at splbio(). - Add a check for the invalid flag in the pt driver's open routine. Reviewed by: gibbs
1998-10-22 22:16:56 +00:00
typedef void periph_oninv_t (struct cam_periph *periph);
typedef void periph_dtor_t (struct cam_periph *periph);
struct cam_periph {
periph_start_t *periph_start;
Fix a problem with the way we handled device invalidation when attaching to a device failed. In theory, the same steps that happen when we get an AC_LOST_DEVICE async notification should have been taken when a driver fails to attach. In practice, that wasn't the case. This only affected the da, cd and ch drivers, but the fix affects all peripheral drivers. There were several possible problems: - In the da driver, we didn't remove the peripheral's softc from the da driver's linked list of softcs. Once the peripheral and softc got removed, we'd get a kernel panic the next time the timeout routine called dasendorderedtag(). - In the da, cd and possibly ch drivers, we didn't remove the peripheral's devstat structure from the devstat queue. Once the peripheral and softc were removed, this could cause a panic if anyone tried to access device statistics. (one component of the linked list wouldn't exist anymore) - In the cd driver, we didn't take the peripheral off the changer run queue if it was scheduled to run. In practice, it's highly unlikely, and maybe impossible that the peripheral would have been on the changer run queue at that stage of the probe process. The fix is: - Add a new peripheral callback function (the "oninvalidate" function) that is called the first time cam_periph_invalidate() is called for a peripheral. - Create new foooninvalidate() routines for each peripheral driver. This routine is always called at splsoftcam(), and contains all the stuff that used to be in the AC_LOST_DEVICE case of the async callback handler. - Move the devstat cleanup call to the destructor/cleanup routines, since some of the drivers do I/O in their close routines. - Make sure that when we're flushing the buffer queue, we traverse it at splbio(). - Add a check for the invalid flag in the pt driver's open routine. Reviewed by: gibbs
1998-10-22 22:16:56 +00:00
periph_oninv_t *periph_oninval;
periph_dtor_t *periph_dtor;
char *periph_name;
struct cam_path *path; /* Compiled path to device */
void *softc;
struct cam_sim *sim;
u_int32_t unit_number;
cam_periph_type type;
u_int32_t flags;
#define CAM_PERIPH_RUNNING 0x01
#define CAM_PERIPH_LOCKED 0x02
#define CAM_PERIPH_LOCK_WANTED 0x04
#define CAM_PERIPH_INVALID 0x08
#define CAM_PERIPH_NEW_DEV_FOUND 0x10
#define CAM_PERIPH_RECOVERY_INPROG 0x20
Merge CAM locking changes from the projects/camlock branch to radically reduce lock congestion and improve SMP scalability of the SCSI/ATA stack, preparing the ground for the coming next GEOM direct dispatch support. Replace big per-SIM locks with bunch of smaller ones: - per-LUN locks to protect device and peripheral drivers state; - per-target locks to protect list of LUNs on target; - per-bus locks to protect reference counting; - per-send queue locks to protect queue of CCBs to be sent; - per-done queue locks to protect queue of completed CCBs; - remaining per-SIM locks now protect only HBA driver internals. While holding LUN lock it is allowed (while not recommended for performance reasons) to take SIM lock. The opposite acquisition order is forbidden. All the other locks are leaf locks, that can be taken anywhere, but should not be cascaded. Many functions, such as: xpt_action(), xpt_done(), xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM lock to be held. To keep compatibility and solve cases where SIM lock can't be dropped, all xpt_async() calls in addition to xpt_done() calls are queued to completion threads for async processing in clean environment without SIM lock held. Instead of single CAM SWI thread, used for commands completion processing before, use multiple (depending on number of CPUs) threads. Load balanced between them using "hash" of the device B:T:L address. HBA drivers that can drop SIM lock during completion processing and have sufficient number of completion threads to efficiently scale to multiple CPUs can use new function xpt_done_direct() to avoid extra context switch. Make ahci(4) driver to use this mechanism depending on hardware setup. Sponsored by: iXsystems, Inc. MFC after: 2 months
2013-10-21 12:00:26 +00:00
#define CAM_PERIPH_RUN_TASK 0x40
Fix a race condition in CAM peripheral free handling, locking in the CAM XPT bus traversal code, and a number of other periph level issues. cam_periph.h, cam_periph.c: Modify cam_periph_acquire() to test the CAM_PERIPH_INVALID flag prior to allowing a reference count to be gained on a peripheral. Callers of this function will receive CAM_REQ_CMP_ERR status in the situation of attempting to reference an invalidated periph. This guarantees that a peripheral scheduled for a deferred free will not be accessed during its wait for destruction. Panic during attempts to drop a reference count on a peripheral that already has a zero reference count. In cam_periph_list(), use a local sbuf with SBUF_FIXEDLEN set so that mallocs do not occur while the xpt topology lock is held, regardless of the allocation policy of the passed in sbuf. Add a new routine, cam_periph_release_locked_buses(), that can be called when the caller already holds the CAM topology lock. Add some extra debugging for duplicate peripheral allocations in cam_periph_alloc(). Treat CAM_DEV_NOT_THERE much the same as a selection timeout (AC_LOST_DEVICE is emitted), but forgo retries. cam_xpt.c: Revamp the way the EDT traversal code does locking and reference counting. This was broken, since it assumed that the EDT would not change during traversal, but that assumption is no longer valid. So, to prevent devices from going away while we traverse the EDT, make sure we properly lock everything and hold references on devices that we are using. The two peripheral driver traversal routines should be examined. xptpdperiphtraverse() holds the topology lock for the entire time it runs. xptperiphtraverse() is now locked properly, but only holds the topology lock while it is traversing the list, and not while the traversal function is running. The bus locking code in xptbustraverse() should also be revisited at a later time, since it is complex and should probably be simplified. scsi_da.c: Pay attention to the return value from cam_periph_acquire(). Return 0 always from daclose() even if the disk is now gone. Add some rudimentary error injection support. scsi_sg.c: Fix reference counting in the sg(4) driver. The sg driver was calling cam_periph_release() on close, but never called cam_periph_acquire() (which increments the reference count) on open. The periph code correctly complained that the sg(4) driver was trying to decrement the refcount when it was already 0. Sponsored by: Spectra Logic MFC after: 2 weeks
2012-01-12 00:41:48 +00:00
#define CAM_PERIPH_FREE 0x80
#define CAM_PERIPH_ANNOUNCED 0x100
Merge CAM locking changes from the projects/camlock branch to radically reduce lock congestion and improve SMP scalability of the SCSI/ATA stack, preparing the ground for the coming next GEOM direct dispatch support. Replace big per-SIM locks with bunch of smaller ones: - per-LUN locks to protect device and peripheral drivers state; - per-target locks to protect list of LUNs on target; - per-bus locks to protect reference counting; - per-send queue locks to protect queue of CCBs to be sent; - per-done queue locks to protect queue of completed CCBs; - remaining per-SIM locks now protect only HBA driver internals. While holding LUN lock it is allowed (while not recommended for performance reasons) to take SIM lock. The opposite acquisition order is forbidden. All the other locks are leaf locks, that can be taken anywhere, but should not be cascaded. Many functions, such as: xpt_action(), xpt_done(), xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM lock to be held. To keep compatibility and solve cases where SIM lock can't be dropped, all xpt_async() calls in addition to xpt_done() calls are queued to completion threads for async processing in clean environment without SIM lock held. Instead of single CAM SWI thread, used for commands completion processing before, use multiple (depending on number of CPUs) threads. Load balanced between them using "hash" of the device B:T:L address. HBA drivers that can drop SIM lock during completion processing and have sufficient number of completion threads to efficiently scale to multiple CPUs can use new function xpt_done_direct() to avoid extra context switch. Make ahci(4) driver to use this mechanism depending on hardware setup. Sponsored by: iXsystems, Inc. MFC after: 2 months
2013-10-21 12:00:26 +00:00
uint32_t scheduled_priority;
uint32_t immediate_priority;
int periph_allocating;
int periph_allocated;
u_int32_t refcount;
SLIST_HEAD(, ccb_hdr) ccb_list; /* For "immediate" requests */
SLIST_ENTRY(cam_periph) periph_links;
TAILQ_ENTRY(cam_periph) unit_links;
ac_callback_t *deferred_callback;
ac_code deferred_ac;
Merge CAM locking changes from the projects/camlock branch to radically reduce lock congestion and improve SMP scalability of the SCSI/ATA stack, preparing the ground for the coming next GEOM direct dispatch support. Replace big per-SIM locks with bunch of smaller ones: - per-LUN locks to protect device and peripheral drivers state; - per-target locks to protect list of LUNs on target; - per-bus locks to protect reference counting; - per-send queue locks to protect queue of CCBs to be sent; - per-done queue locks to protect queue of completed CCBs; - remaining per-SIM locks now protect only HBA driver internals. While holding LUN lock it is allowed (while not recommended for performance reasons) to take SIM lock. The opposite acquisition order is forbidden. All the other locks are leaf locks, that can be taken anywhere, but should not be cascaded. Many functions, such as: xpt_action(), xpt_done(), xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM lock to be held. To keep compatibility and solve cases where SIM lock can't be dropped, all xpt_async() calls in addition to xpt_done() calls are queued to completion threads for async processing in clean environment without SIM lock held. Instead of single CAM SWI thread, used for commands completion processing before, use multiple (depending on number of CPUs) threads. Load balanced between them using "hash" of the device B:T:L address. HBA drivers that can drop SIM lock during completion processing and have sufficient number of completion threads to efficiently scale to multiple CPUs can use new function xpt_done_direct() to avoid extra context switch. Make ahci(4) driver to use this mechanism depending on hardware setup. Sponsored by: iXsystems, Inc. MFC after: 2 months
2013-10-21 12:00:26 +00:00
struct task periph_run_task;
};
#define CAM_PERIPH_MAXMAPS 2
struct cam_periph_map_info {
int num_bufs_used;
struct buf *bp[CAM_PERIPH_MAXMAPS];
};
Fix a problem with the way we handled device invalidation when attaching to a device failed. In theory, the same steps that happen when we get an AC_LOST_DEVICE async notification should have been taken when a driver fails to attach. In practice, that wasn't the case. This only affected the da, cd and ch drivers, but the fix affects all peripheral drivers. There were several possible problems: - In the da driver, we didn't remove the peripheral's softc from the da driver's linked list of softcs. Once the peripheral and softc got removed, we'd get a kernel panic the next time the timeout routine called dasendorderedtag(). - In the da, cd and possibly ch drivers, we didn't remove the peripheral's devstat structure from the devstat queue. Once the peripheral and softc were removed, this could cause a panic if anyone tried to access device statistics. (one component of the linked list wouldn't exist anymore) - In the cd driver, we didn't take the peripheral off the changer run queue if it was scheduled to run. In practice, it's highly unlikely, and maybe impossible that the peripheral would have been on the changer run queue at that stage of the probe process. The fix is: - Add a new peripheral callback function (the "oninvalidate" function) that is called the first time cam_periph_invalidate() is called for a peripheral. - Create new foooninvalidate() routines for each peripheral driver. This routine is always called at splsoftcam(), and contains all the stuff that used to be in the AC_LOST_DEVICE case of the async callback handler. - Move the devstat cleanup call to the destructor/cleanup routines, since some of the drivers do I/O in their close routines. - Make sure that when we're flushing the buffer queue, we traverse it at splbio(). - Add a check for the invalid flag in the pt driver's open routine. Reviewed by: gibbs
1998-10-22 22:16:56 +00:00
cam_status cam_periph_alloc(periph_ctor_t *periph_ctor,
periph_oninv_t *periph_oninvalidate,
periph_dtor_t *periph_dtor,
periph_start_t *periph_start,
char *name, cam_periph_type type, struct cam_path *,
ac_callback_t *, ac_code, void *arg);
struct cam_periph *cam_periph_find(struct cam_path *path, char *name);
Lay groundwork in CAM for recording and reporting physical path and other device attributes stored in the CAM Existing Device Table (EDT). This includes some infrastructure requried by the enclosure services driver to export physical path information. Make the CAM device advanced info interface accept store requests. sys/cam/scsi/scsi_all.c: sys/cam/scsi/scsi_all.h: - Replace scsi_get_sas_addr() with a scsi_get_devid() which takes a callback that decides whether to accept a particular descriptor. Provide callbacks for NAA IEEE Registered addresses and for SAS addresses, replacing the old function. This is needed because the old function doesn't work for an enclosure address for a SAS device, which is not flagged as a SAS address, but is NAA IEEE Registered. It may be worthwhile merging this interface with the devid match interface. - Add a few more defines for some device ID fields. sbin/camcontrol/camcontrol.c: - Update for the CCB_DEV_ADVINFO interface change. cam/cam_xpt_internal.h: - Add the new fields for the physical path string to the CAM EDT. cam/cam_ccb.h: - Rename CCB_GDEV_ADVINFO to simply CCB_DEV_ADVINFO, and the ccb structure to ccb_dev_advinfo. - Add a flag that changes this CCB's action to store, rather than the default, retrieve. - Add a new buffer type, CDAI_TYPE_PHYS_PATH, for the new CAM EDT physpath field. - Remove the never-implemented transport & proto flags. cam/cam_xpt.c: cam/cam_xpt.h: - Add xpt_getattr(), which provides a wrapper for fetching a device's attribute using the GEOM strings as key. This method currently supports "GEOM::ident" and "GEOM::physpath". Submitted by: will Reviewed by : gibbs Extend the XPT_DEV_MATCH api to allow a device search by device ID. As far as the API is concerned, device ID is a binary blob to be interpreted by the transport layer. The SCSI implementation assumes it is an array of VPD device ID descriptors. sys/cam/cam_ccb.h: Create a new structure, device_id_match_pattern, and update the XPT_DEV_MATCH datastructures and flags so that this pattern type can be used. sys/cam/cam_xpt.c: - A single pattern matching on both inquiry data and device ID is invalid. Report any violators. - Pass device ID match requests through to the new routine scsi_devid_match(). The direct call of a SCSI routine is a layering violation, but no worse than the one a few lines up that checks inquiry data. Defer cleaning this up until our future, larger, rototilling of CAM. - Zero out cam_ed and cam_et nodes on allocation. Prior to this change, device_id_len and device_id were not inialized, preventing proper detection of the presence of this information. sys/cam/scsi/scsi_all.c: sys/cam/scsi/scsi_all.h: Add the scsi_match_devid() routine. Add a helper function for extracting peripherial driver names sys/cam/cam_periph.c: sys/cam/cam_periph.h: Add the cam_periph_list() method which fills an sbuf with a comma delimited list of the peripheral instances associated with a given CAM path. Add a helper functions for SCSI commands used by the SES driver. sys/cam/scsi/scsi_all.c: sys/cam/scsi/scsi_all.h: Add structure definitions and csio filling functions for the receive diagnostic results and send diagnostic commands. Misc CAM XPT cleanups. sys/cam/cam_xpt.c: Broadcast AC_FOUND_DEVICE and AC_PATH_REGISTERED events at the time async event handlers are attached even when registering just for events on a partitular SIM. Previously, you had to register for these events on all SIMs in the system in order to get the initial broadcast even though subsequent device and path arrivals would be delivered. sys/cam/cam_xpt.c: Remove SIM mutex held asserts from path accessors. CAM paths are reference counted and it is this reference count, not the sim mutex, that garantees they are stable. Sponsored by: Spectra Logic Corporation
2011-06-14 14:53:17 +00:00
int cam_periph_list(struct cam_path *, struct sbuf *);
cam_status cam_periph_acquire(struct cam_periph *periph);
void cam_periph_doacquire(struct cam_periph *periph);
void cam_periph_release(struct cam_periph *periph);
void cam_periph_release_locked(struct cam_periph *periph);
Fix a race condition in CAM peripheral free handling, locking in the CAM XPT bus traversal code, and a number of other periph level issues. cam_periph.h, cam_periph.c: Modify cam_periph_acquire() to test the CAM_PERIPH_INVALID flag prior to allowing a reference count to be gained on a peripheral. Callers of this function will receive CAM_REQ_CMP_ERR status in the situation of attempting to reference an invalidated periph. This guarantees that a peripheral scheduled for a deferred free will not be accessed during its wait for destruction. Panic during attempts to drop a reference count on a peripheral that already has a zero reference count. In cam_periph_list(), use a local sbuf with SBUF_FIXEDLEN set so that mallocs do not occur while the xpt topology lock is held, regardless of the allocation policy of the passed in sbuf. Add a new routine, cam_periph_release_locked_buses(), that can be called when the caller already holds the CAM topology lock. Add some extra debugging for duplicate peripheral allocations in cam_periph_alloc(). Treat CAM_DEV_NOT_THERE much the same as a selection timeout (AC_LOST_DEVICE is emitted), but forgo retries. cam_xpt.c: Revamp the way the EDT traversal code does locking and reference counting. This was broken, since it assumed that the EDT would not change during traversal, but that assumption is no longer valid. So, to prevent devices from going away while we traverse the EDT, make sure we properly lock everything and hold references on devices that we are using. The two peripheral driver traversal routines should be examined. xptpdperiphtraverse() holds the topology lock for the entire time it runs. xptperiphtraverse() is now locked properly, but only holds the topology lock while it is traversing the list, and not while the traversal function is running. The bus locking code in xptbustraverse() should also be revisited at a later time, since it is complex and should probably be simplified. scsi_da.c: Pay attention to the return value from cam_periph_acquire(). Return 0 always from daclose() even if the disk is now gone. Add some rudimentary error injection support. scsi_sg.c: Fix reference counting in the sg(4) driver. The sg driver was calling cam_periph_release() on close, but never called cam_periph_acquire() (which increments the reference count) on open. The periph code correctly complained that the sg(4) driver was trying to decrement the refcount when it was already 0. Sponsored by: Spectra Logic MFC after: 2 weeks
2012-01-12 00:41:48 +00:00
void cam_periph_release_locked_buses(struct cam_periph *periph);
int cam_periph_hold(struct cam_periph *periph, int priority);
void cam_periph_unhold(struct cam_periph *periph);
void cam_periph_invalidate(struct cam_periph *periph);
int cam_periph_mapmem(union ccb *ccb,
struct cam_periph_map_info *mapinfo,
u_int maxmap);
void cam_periph_unmapmem(union ccb *ccb,
struct cam_periph_map_info *mapinfo);
union ccb *cam_periph_getccb(struct cam_periph *periph,
u_int32_t priority);
int cam_periph_runccb(union ccb *ccb,
int (*error_routine)(union ccb *ccb,
cam_flags camflags,
u_int32_t sense_flags),
cam_flags camflags, u_int32_t sense_flags,
struct devstat *ds);
int cam_periph_ioctl(struct cam_periph *periph, u_long cmd,
caddr_t addr,
int (*error_routine)(union ccb *ccb,
cam_flags camflags,
u_int32_t sense_flags));
void cam_freeze_devq(struct cam_path *path);
u_int32_t cam_release_devq(struct cam_path *path, u_int32_t relsim_flags,
MFp4: Large set of CAM inprovements. - Unify bus reset/probe sequence. Whenever bus attached at boot or later, CAM will automatically reset and scan it. It allows to remove duplicate code from many drivers. - Any bus, attached before CAM completed it's boot-time initialization, will equally join to the process, delaying boot if needed. - New kern.cam.boot_delay loader tunable should help controllers that are still unable to register their buses in time (such as slow USB/ PCCard/ CardBus devices), by adding one more event to wait on boot. - To allow synchronization between different CAM levels, concept of requests priorities was extended. Priorities now split between several "run levels". Device can be freezed at specified level, allowing higher priority requests to pass. For example, no payload requests allowed, until PMP driver enable port. ATA XPT negotiate transfer parameters, periph driver configure caching and so on. - Frozen requests are no more counted by request allocation scheduler. It fixes deadlocks, when frozen low priority payload requests occupying slots, required by higher levels to manage theit execution. - Two last changes were holding proper ATA reinitialization and error recovery implementation. Now it is done: SATA controllers and Port Multipliers now implement automatic hot-plug and should correctly recover from timeouts and bus resets. - Improve SCSI error recovery for devices on buses without automatic sense reporting, such as ATAPI or USB. For example, it allows CAM to wait, while CD drive loads disk, instead of immediately return error status. - Decapitalize diagnostic messages and make them more readable and sensible. - Teach PMP driver to limit maximum speed on fan-out ports. - Make boot wait for PMP scan completes, and make rescan more reliable. - Fix pass driver, to return CCB to user level in case of error. - Increase number of retries in cd driver, as device may return several UAs.
2010-01-28 08:41:30 +00:00
u_int32_t opening_reduction, u_int32_t arg,
int getcount_only);
void cam_periph_async(struct cam_periph *periph, u_int32_t code,
struct cam_path *path, void *arg);
void cam_periph_bus_settle(struct cam_periph *periph,
u_int bus_settle_ms);
void cam_periph_freeze_after_event(struct cam_periph *periph,
struct timeval* event_time,
u_int duration_ms);
int cam_periph_error(union ccb *ccb, cam_flags camflags,
u_int32_t sense_flags, union ccb *save_ccb);
Merge CAM locking changes from the projects/camlock branch to radically reduce lock congestion and improve SMP scalability of the SCSI/ATA stack, preparing the ground for the coming next GEOM direct dispatch support. Replace big per-SIM locks with bunch of smaller ones: - per-LUN locks to protect device and peripheral drivers state; - per-target locks to protect list of LUNs on target; - per-bus locks to protect reference counting; - per-send queue locks to protect queue of CCBs to be sent; - per-done queue locks to protect queue of completed CCBs; - remaining per-SIM locks now protect only HBA driver internals. While holding LUN lock it is allowed (while not recommended for performance reasons) to take SIM lock. The opposite acquisition order is forbidden. All the other locks are leaf locks, that can be taken anywhere, but should not be cascaded. Many functions, such as: xpt_action(), xpt_done(), xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM lock to be held. To keep compatibility and solve cases where SIM lock can't be dropped, all xpt_async() calls in addition to xpt_done() calls are queued to completion threads for async processing in clean environment without SIM lock held. Instead of single CAM SWI thread, used for commands completion processing before, use multiple (depending on number of CPUs) threads. Load balanced between them using "hash" of the device B:T:L address. HBA drivers that can drop SIM lock during completion processing and have sufficient number of completion threads to efficiently scale to multiple CPUs can use new function xpt_done_direct() to avoid extra context switch. Make ahci(4) driver to use this mechanism depending on hardware setup. Sponsored by: iXsystems, Inc. MFC after: 2 months
2013-10-21 12:00:26 +00:00
static __inline struct mtx *
cam_periph_mtx(struct cam_periph *periph)
{
Merge CAM locking changes from the projects/camlock branch to radically reduce lock congestion and improve SMP scalability of the SCSI/ATA stack, preparing the ground for the coming next GEOM direct dispatch support. Replace big per-SIM locks with bunch of smaller ones: - per-LUN locks to protect device and peripheral drivers state; - per-target locks to protect list of LUNs on target; - per-bus locks to protect reference counting; - per-send queue locks to protect queue of CCBs to be sent; - per-done queue locks to protect queue of completed CCBs; - remaining per-SIM locks now protect only HBA driver internals. While holding LUN lock it is allowed (while not recommended for performance reasons) to take SIM lock. The opposite acquisition order is forbidden. All the other locks are leaf locks, that can be taken anywhere, but should not be cascaded. Many functions, such as: xpt_action(), xpt_done(), xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM lock to be held. To keep compatibility and solve cases where SIM lock can't be dropped, all xpt_async() calls in addition to xpt_done() calls are queued to completion threads for async processing in clean environment without SIM lock held. Instead of single CAM SWI thread, used for commands completion processing before, use multiple (depending on number of CPUs) threads. Load balanced between them using "hash" of the device B:T:L address. HBA drivers that can drop SIM lock during completion processing and have sufficient number of completion threads to efficiently scale to multiple CPUs can use new function xpt_done_direct() to avoid extra context switch. Make ahci(4) driver to use this mechanism depending on hardware setup. Sponsored by: iXsystems, Inc. MFC after: 2 months
2013-10-21 12:00:26 +00:00
return (xpt_path_mtx(periph->path));
}
Merge CAM locking changes from the projects/camlock branch to radically reduce lock congestion and improve SMP scalability of the SCSI/ATA stack, preparing the ground for the coming next GEOM direct dispatch support. Replace big per-SIM locks with bunch of smaller ones: - per-LUN locks to protect device and peripheral drivers state; - per-target locks to protect list of LUNs on target; - per-bus locks to protect reference counting; - per-send queue locks to protect queue of CCBs to be sent; - per-done queue locks to protect queue of completed CCBs; - remaining per-SIM locks now protect only HBA driver internals. While holding LUN lock it is allowed (while not recommended for performance reasons) to take SIM lock. The opposite acquisition order is forbidden. All the other locks are leaf locks, that can be taken anywhere, but should not be cascaded. Many functions, such as: xpt_action(), xpt_done(), xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM lock to be held. To keep compatibility and solve cases where SIM lock can't be dropped, all xpt_async() calls in addition to xpt_done() calls are queued to completion threads for async processing in clean environment without SIM lock held. Instead of single CAM SWI thread, used for commands completion processing before, use multiple (depending on number of CPUs) threads. Load balanced between them using "hash" of the device B:T:L address. HBA drivers that can drop SIM lock during completion processing and have sufficient number of completion threads to efficiently scale to multiple CPUs can use new function xpt_done_direct() to avoid extra context switch. Make ahci(4) driver to use this mechanism depending on hardware setup. Sponsored by: iXsystems, Inc. MFC after: 2 months
2013-10-21 12:00:26 +00:00
#define cam_periph_owned(periph) \
mtx_owned(xpt_path_mtx((periph)->path))
Merge CAM locking changes from the projects/camlock branch to radically reduce lock congestion and improve SMP scalability of the SCSI/ATA stack, preparing the ground for the coming next GEOM direct dispatch support. Replace big per-SIM locks with bunch of smaller ones: - per-LUN locks to protect device and peripheral drivers state; - per-target locks to protect list of LUNs on target; - per-bus locks to protect reference counting; - per-send queue locks to protect queue of CCBs to be sent; - per-done queue locks to protect queue of completed CCBs; - remaining per-SIM locks now protect only HBA driver internals. While holding LUN lock it is allowed (while not recommended for performance reasons) to take SIM lock. The opposite acquisition order is forbidden. All the other locks are leaf locks, that can be taken anywhere, but should not be cascaded. Many functions, such as: xpt_action(), xpt_done(), xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM lock to be held. To keep compatibility and solve cases where SIM lock can't be dropped, all xpt_async() calls in addition to xpt_done() calls are queued to completion threads for async processing in clean environment without SIM lock held. Instead of single CAM SWI thread, used for commands completion processing before, use multiple (depending on number of CPUs) threads. Load balanced between them using "hash" of the device B:T:L address. HBA drivers that can drop SIM lock during completion processing and have sufficient number of completion threads to efficiently scale to multiple CPUs can use new function xpt_done_direct() to avoid extra context switch. Make ahci(4) driver to use this mechanism depending on hardware setup. Sponsored by: iXsystems, Inc. MFC after: 2 months
2013-10-21 12:00:26 +00:00
#define cam_periph_lock(periph) \
mtx_lock(xpt_path_mtx((periph)->path))
Merge CAM locking changes from the projects/camlock branch to radically reduce lock congestion and improve SMP scalability of the SCSI/ATA stack, preparing the ground for the coming next GEOM direct dispatch support. Replace big per-SIM locks with bunch of smaller ones: - per-LUN locks to protect device and peripheral drivers state; - per-target locks to protect list of LUNs on target; - per-bus locks to protect reference counting; - per-send queue locks to protect queue of CCBs to be sent; - per-done queue locks to protect queue of completed CCBs; - remaining per-SIM locks now protect only HBA driver internals. While holding LUN lock it is allowed (while not recommended for performance reasons) to take SIM lock. The opposite acquisition order is forbidden. All the other locks are leaf locks, that can be taken anywhere, but should not be cascaded. Many functions, such as: xpt_action(), xpt_done(), xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM lock to be held. To keep compatibility and solve cases where SIM lock can't be dropped, all xpt_async() calls in addition to xpt_done() calls are queued to completion threads for async processing in clean environment without SIM lock held. Instead of single CAM SWI thread, used for commands completion processing before, use multiple (depending on number of CPUs) threads. Load balanced between them using "hash" of the device B:T:L address. HBA drivers that can drop SIM lock during completion processing and have sufficient number of completion threads to efficiently scale to multiple CPUs can use new function xpt_done_direct() to avoid extra context switch. Make ahci(4) driver to use this mechanism depending on hardware setup. Sponsored by: iXsystems, Inc. MFC after: 2 months
2013-10-21 12:00:26 +00:00
#define cam_periph_unlock(periph) \
mtx_unlock(xpt_path_mtx((periph)->path))
#define cam_periph_assert(periph, what) \
mtx_assert(xpt_path_mtx((periph)->path), (what))
#define cam_periph_sleep(periph, chan, priority, wmesg, timo) \
xpt_path_sleep((periph)->path, (chan), (priority), (wmesg), (timo))
Lay groundwork in CAM for recording and reporting physical path and other device attributes stored in the CAM Existing Device Table (EDT). This includes some infrastructure requried by the enclosure services driver to export physical path information. Make the CAM device advanced info interface accept store requests. sys/cam/scsi/scsi_all.c: sys/cam/scsi/scsi_all.h: - Replace scsi_get_sas_addr() with a scsi_get_devid() which takes a callback that decides whether to accept a particular descriptor. Provide callbacks for NAA IEEE Registered addresses and for SAS addresses, replacing the old function. This is needed because the old function doesn't work for an enclosure address for a SAS device, which is not flagged as a SAS address, but is NAA IEEE Registered. It may be worthwhile merging this interface with the devid match interface. - Add a few more defines for some device ID fields. sbin/camcontrol/camcontrol.c: - Update for the CCB_DEV_ADVINFO interface change. cam/cam_xpt_internal.h: - Add the new fields for the physical path string to the CAM EDT. cam/cam_ccb.h: - Rename CCB_GDEV_ADVINFO to simply CCB_DEV_ADVINFO, and the ccb structure to ccb_dev_advinfo. - Add a flag that changes this CCB's action to store, rather than the default, retrieve. - Add a new buffer type, CDAI_TYPE_PHYS_PATH, for the new CAM EDT physpath field. - Remove the never-implemented transport & proto flags. cam/cam_xpt.c: cam/cam_xpt.h: - Add xpt_getattr(), which provides a wrapper for fetching a device's attribute using the GEOM strings as key. This method currently supports "GEOM::ident" and "GEOM::physpath". Submitted by: will Reviewed by : gibbs Extend the XPT_DEV_MATCH api to allow a device search by device ID. As far as the API is concerned, device ID is a binary blob to be interpreted by the transport layer. The SCSI implementation assumes it is an array of VPD device ID descriptors. sys/cam/cam_ccb.h: Create a new structure, device_id_match_pattern, and update the XPT_DEV_MATCH datastructures and flags so that this pattern type can be used. sys/cam/cam_xpt.c: - A single pattern matching on both inquiry data and device ID is invalid. Report any violators. - Pass device ID match requests through to the new routine scsi_devid_match(). The direct call of a SCSI routine is a layering violation, but no worse than the one a few lines up that checks inquiry data. Defer cleaning this up until our future, larger, rototilling of CAM. - Zero out cam_ed and cam_et nodes on allocation. Prior to this change, device_id_len and device_id were not inialized, preventing proper detection of the presence of this information. sys/cam/scsi/scsi_all.c: sys/cam/scsi/scsi_all.h: Add the scsi_match_devid() routine. Add a helper function for extracting peripherial driver names sys/cam/cam_periph.c: sys/cam/cam_periph.h: Add the cam_periph_list() method which fills an sbuf with a comma delimited list of the peripheral instances associated with a given CAM path. Add a helper functions for SCSI commands used by the SES driver. sys/cam/scsi/scsi_all.c: sys/cam/scsi/scsi_all.h: Add structure definitions and csio filling functions for the receive diagnostic results and send diagnostic commands. Misc CAM XPT cleanups. sys/cam/cam_xpt.c: Broadcast AC_FOUND_DEVICE and AC_PATH_REGISTERED events at the time async event handlers are attached even when registering just for events on a partitular SIM. Previously, you had to register for these events on all SIMs in the system in order to get the initial broadcast even though subsequent device and path arrivals would be delivered. sys/cam/cam_xpt.c: Remove SIM mutex held asserts from path accessors. CAM paths are reference counted and it is this reference count, not the sim mutex, that garantees they are stable. Sponsored by: Spectra Logic Corporation
2011-06-14 14:53:17 +00:00
static inline struct cam_periph *
cam_periph_acquire_first(struct periph_driver *driver)
{
struct cam_periph *periph;
xpt_lock_buses();
periph = TAILQ_FIRST(&driver->units);
while (periph != NULL && (periph->flags & CAM_PERIPH_INVALID) != 0)
periph = TAILQ_NEXT(periph, unit_links);
if (periph != NULL)
periph->refcount++;
xpt_unlock_buses();
return (periph);
}
static inline struct cam_periph *
cam_periph_acquire_next(struct cam_periph *pperiph)
{
struct cam_periph *periph = pperiph;
Merge CAM locking changes from the projects/camlock branch to radically reduce lock congestion and improve SMP scalability of the SCSI/ATA stack, preparing the ground for the coming next GEOM direct dispatch support. Replace big per-SIM locks with bunch of smaller ones: - per-LUN locks to protect device and peripheral drivers state; - per-target locks to protect list of LUNs on target; - per-bus locks to protect reference counting; - per-send queue locks to protect queue of CCBs to be sent; - per-done queue locks to protect queue of completed CCBs; - remaining per-SIM locks now protect only HBA driver internals. While holding LUN lock it is allowed (while not recommended for performance reasons) to take SIM lock. The opposite acquisition order is forbidden. All the other locks are leaf locks, that can be taken anywhere, but should not be cascaded. Many functions, such as: xpt_action(), xpt_done(), xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM lock to be held. To keep compatibility and solve cases where SIM lock can't be dropped, all xpt_async() calls in addition to xpt_done() calls are queued to completion threads for async processing in clean environment without SIM lock held. Instead of single CAM SWI thread, used for commands completion processing before, use multiple (depending on number of CPUs) threads. Load balanced between them using "hash" of the device B:T:L address. HBA drivers that can drop SIM lock during completion processing and have sufficient number of completion threads to efficiently scale to multiple CPUs can use new function xpt_done_direct() to avoid extra context switch. Make ahci(4) driver to use this mechanism depending on hardware setup. Sponsored by: iXsystems, Inc. MFC after: 2 months
2013-10-21 12:00:26 +00:00
cam_periph_assert(pperiph, MA_NOTOWNED);
xpt_lock_buses();
do {
periph = TAILQ_NEXT(periph, unit_links);
} while (periph != NULL && (periph->flags & CAM_PERIPH_INVALID) != 0);
if (periph != NULL)
periph->refcount++;
xpt_unlock_buses();
cam_periph_release(pperiph);
return (periph);
}
#define CAM_PERIPH_FOREACH(periph, driver) \
for ((periph) = cam_periph_acquire_first(driver); \
(periph) != NULL; \
(periph) = cam_periph_acquire_next(periph))
#endif /* _KERNEL */
#endif /* _CAM_CAM_PERIPH_H */