1996-09-18 05:35:50 +00:00
|
|
|
|
/* Perform various loop optimizations, including strength reduction.
|
|
|
|
|
Copyright (C) 1987, 88, 89, 91-4, 1995 Free Software Foundation, Inc.
|
|
|
|
|
|
|
|
|
|
This file is part of GNU CC.
|
|
|
|
|
|
|
|
|
|
GNU CC is free software; you can redistribute it and/or modify
|
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
|
|
|
any later version.
|
|
|
|
|
|
|
|
|
|
GNU CC is distributed in the hope that it will be useful,
|
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
|
along with GNU CC; see the file COPYING. If not, write to
|
|
|
|
|
the Free Software Foundation, 59 Temple Place - Suite 330,
|
|
|
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* This is the loop optimization pass of the compiler.
|
|
|
|
|
It finds invariant computations within loops and moves them
|
|
|
|
|
to the beginning of the loop. Then it identifies basic and
|
|
|
|
|
general induction variables. Strength reduction is applied to the general
|
|
|
|
|
induction variables, and induction variable elimination is applied to
|
|
|
|
|
the basic induction variables.
|
|
|
|
|
|
|
|
|
|
It also finds cases where
|
|
|
|
|
a register is set within the loop by zero-extending a narrower value
|
|
|
|
|
and changes these to zero the entire register once before the loop
|
|
|
|
|
and merely copy the low part within the loop.
|
|
|
|
|
|
|
|
|
|
Most of the complexity is in heuristics to decide when it is worth
|
|
|
|
|
while to do these things. */
|
|
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
|
#include "config.h"
|
|
|
|
|
#include "rtl.h"
|
|
|
|
|
#include "obstack.h"
|
|
|
|
|
#include "expr.h"
|
|
|
|
|
#include "insn-config.h"
|
|
|
|
|
#include "insn-flags.h"
|
|
|
|
|
#include "regs.h"
|
|
|
|
|
#include "hard-reg-set.h"
|
|
|
|
|
#include "recog.h"
|
|
|
|
|
#include "flags.h"
|
|
|
|
|
#include "real.h"
|
|
|
|
|
#include "loop.h"
|
|
|
|
|
|
|
|
|
|
/* Vector mapping INSN_UIDs to luids.
|
|
|
|
|
The luids are like uids but increase monotonically always.
|
|
|
|
|
We use them to see whether a jump comes from outside a given loop. */
|
|
|
|
|
|
|
|
|
|
int *uid_luid;
|
|
|
|
|
|
|
|
|
|
/* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
|
|
|
|
|
number the insn is contained in. */
|
|
|
|
|
|
|
|
|
|
int *uid_loop_num;
|
|
|
|
|
|
|
|
|
|
/* 1 + largest uid of any insn. */
|
|
|
|
|
|
|
|
|
|
int max_uid_for_loop;
|
|
|
|
|
|
|
|
|
|
/* 1 + luid of last insn. */
|
|
|
|
|
|
|
|
|
|
static int max_luid;
|
|
|
|
|
|
|
|
|
|
/* Number of loops detected in current function. Used as index to the
|
|
|
|
|
next few tables. */
|
|
|
|
|
|
|
|
|
|
static int max_loop_num;
|
|
|
|
|
|
|
|
|
|
/* Indexed by loop number, contains the first and last insn of each loop. */
|
|
|
|
|
|
|
|
|
|
static rtx *loop_number_loop_starts, *loop_number_loop_ends;
|
|
|
|
|
|
|
|
|
|
/* For each loop, gives the containing loop number, -1 if none. */
|
|
|
|
|
|
|
|
|
|
int *loop_outer_loop;
|
|
|
|
|
|
|
|
|
|
/* Indexed by loop number, contains a nonzero value if the "loop" isn't
|
|
|
|
|
really a loop (an insn outside the loop branches into it). */
|
|
|
|
|
|
|
|
|
|
static char *loop_invalid;
|
|
|
|
|
|
|
|
|
|
/* Indexed by loop number, links together all LABEL_REFs which refer to
|
|
|
|
|
code labels outside the loop. Used by routines that need to know all
|
|
|
|
|
loop exits, such as final_biv_value and final_giv_value.
|
|
|
|
|
|
|
|
|
|
This does not include loop exits due to return instructions. This is
|
|
|
|
|
because all bivs and givs are pseudos, and hence must be dead after a
|
|
|
|
|
return, so the presense of a return does not affect any of the
|
|
|
|
|
optimizations that use this info. It is simpler to just not include return
|
|
|
|
|
instructions on this list. */
|
|
|
|
|
|
|
|
|
|
rtx *loop_number_exit_labels;
|
|
|
|
|
|
|
|
|
|
/* Indexed by loop number, counts the number of LABEL_REFs on
|
|
|
|
|
loop_number_exit_labels for this loop and all loops nested inside it. */
|
|
|
|
|
|
|
|
|
|
int *loop_number_exit_count;
|
|
|
|
|
|
|
|
|
|
/* Holds the number of loop iterations. It is zero if the number could not be
|
|
|
|
|
calculated. Must be unsigned since the number of iterations can
|
|
|
|
|
be as high as 2^wordsize-1. For loops with a wider iterator, this number
|
|
|
|
|
will will be zero if the number of loop iterations is too large for an
|
|
|
|
|
unsigned integer to hold. */
|
|
|
|
|
|
|
|
|
|
unsigned HOST_WIDE_INT loop_n_iterations;
|
|
|
|
|
|
|
|
|
|
/* Nonzero if there is a subroutine call in the current loop.
|
|
|
|
|
(unknown_address_altered is also nonzero in this case.) */
|
|
|
|
|
|
|
|
|
|
static int loop_has_call;
|
|
|
|
|
|
|
|
|
|
/* Nonzero if there is a volatile memory reference in the current
|
|
|
|
|
loop. */
|
|
|
|
|
|
|
|
|
|
static int loop_has_volatile;
|
|
|
|
|
|
|
|
|
|
/* Added loop_continue which is the NOTE_INSN_LOOP_CONT of the
|
|
|
|
|
current loop. A continue statement will generate a branch to
|
|
|
|
|
NEXT_INSN (loop_continue). */
|
|
|
|
|
|
|
|
|
|
static rtx loop_continue;
|
|
|
|
|
|
|
|
|
|
/* Indexed by register number, contains the number of times the reg
|
|
|
|
|
is set during the loop being scanned.
|
|
|
|
|
During code motion, a negative value indicates a reg that has been
|
|
|
|
|
made a candidate; in particular -2 means that it is an candidate that
|
|
|
|
|
we know is equal to a constant and -1 means that it is an candidate
|
|
|
|
|
not known equal to a constant.
|
|
|
|
|
After code motion, regs moved have 0 (which is accurate now)
|
|
|
|
|
while the failed candidates have the original number of times set.
|
|
|
|
|
|
|
|
|
|
Therefore, at all times, == 0 indicates an invariant register;
|
|
|
|
|
< 0 a conditionally invariant one. */
|
|
|
|
|
|
|
|
|
|
static short *n_times_set;
|
|
|
|
|
|
|
|
|
|
/* Original value of n_times_set; same except that this value
|
|
|
|
|
is not set negative for a reg whose sets have been made candidates
|
|
|
|
|
and not set to 0 for a reg that is moved. */
|
|
|
|
|
|
|
|
|
|
static short *n_times_used;
|
|
|
|
|
|
|
|
|
|
/* Index by register number, 1 indicates that the register
|
|
|
|
|
cannot be moved or strength reduced. */
|
|
|
|
|
|
|
|
|
|
static char *may_not_optimize;
|
|
|
|
|
|
|
|
|
|
/* Nonzero means reg N has already been moved out of one loop.
|
|
|
|
|
This reduces the desire to move it out of another. */
|
|
|
|
|
|
|
|
|
|
static char *moved_once;
|
|
|
|
|
|
|
|
|
|
/* Array of MEMs that are stored in this loop. If there are too many to fit
|
|
|
|
|
here, we just turn on unknown_address_altered. */
|
|
|
|
|
|
|
|
|
|
#define NUM_STORES 20
|
|
|
|
|
static rtx loop_store_mems[NUM_STORES];
|
|
|
|
|
|
|
|
|
|
/* Index of first available slot in above array. */
|
|
|
|
|
static int loop_store_mems_idx;
|
|
|
|
|
|
|
|
|
|
/* Nonzero if we don't know what MEMs were changed in the current loop.
|
|
|
|
|
This happens if the loop contains a call (in which case `loop_has_call'
|
|
|
|
|
will also be set) or if we store into more than NUM_STORES MEMs. */
|
|
|
|
|
|
|
|
|
|
static int unknown_address_altered;
|
|
|
|
|
|
|
|
|
|
/* Count of movable (i.e. invariant) instructions discovered in the loop. */
|
|
|
|
|
static int num_movables;
|
|
|
|
|
|
|
|
|
|
/* Count of memory write instructions discovered in the loop. */
|
|
|
|
|
static int num_mem_sets;
|
|
|
|
|
|
|
|
|
|
/* Number of loops contained within the current one, including itself. */
|
|
|
|
|
static int loops_enclosed;
|
|
|
|
|
|
|
|
|
|
/* Bound on pseudo register number before loop optimization.
|
|
|
|
|
A pseudo has valid regscan info if its number is < max_reg_before_loop. */
|
|
|
|
|
int max_reg_before_loop;
|
|
|
|
|
|
|
|
|
|
/* This obstack is used in product_cheap_p to allocate its rtl. It
|
|
|
|
|
may call gen_reg_rtx which, in turn, may reallocate regno_reg_rtx.
|
|
|
|
|
If we used the same obstack that it did, we would be deallocating
|
|
|
|
|
that array. */
|
|
|
|
|
|
|
|
|
|
static struct obstack temp_obstack;
|
|
|
|
|
|
|
|
|
|
/* This is where the pointer to the obstack being used for RTL is stored. */
|
|
|
|
|
|
|
|
|
|
extern struct obstack *rtl_obstack;
|
|
|
|
|
|
|
|
|
|
#define obstack_chunk_alloc xmalloc
|
|
|
|
|
#define obstack_chunk_free free
|
|
|
|
|
|
|
|
|
|
extern char *oballoc ();
|
|
|
|
|
|
|
|
|
|
/* During the analysis of a loop, a chain of `struct movable's
|
|
|
|
|
is made to record all the movable insns found.
|
|
|
|
|
Then the entire chain can be scanned to decide which to move. */
|
|
|
|
|
|
|
|
|
|
struct movable
|
|
|
|
|
{
|
|
|
|
|
rtx insn; /* A movable insn */
|
|
|
|
|
rtx set_src; /* The expression this reg is set from. */
|
|
|
|
|
rtx set_dest; /* The destination of this SET. */
|
|
|
|
|
rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
|
|
|
|
|
of any registers used within the LIBCALL. */
|
|
|
|
|
int consec; /* Number of consecutive following insns
|
|
|
|
|
that must be moved with this one. */
|
|
|
|
|
int regno; /* The register it sets */
|
|
|
|
|
short lifetime; /* lifetime of that register;
|
|
|
|
|
may be adjusted when matching movables
|
|
|
|
|
that load the same value are found. */
|
|
|
|
|
short savings; /* Number of insns we can move for this reg,
|
|
|
|
|
including other movables that force this
|
|
|
|
|
or match this one. */
|
|
|
|
|
unsigned int cond : 1; /* 1 if only conditionally movable */
|
|
|
|
|
unsigned int force : 1; /* 1 means MUST move this insn */
|
|
|
|
|
unsigned int global : 1; /* 1 means reg is live outside this loop */
|
|
|
|
|
/* If PARTIAL is 1, GLOBAL means something different:
|
|
|
|
|
that the reg is live outside the range from where it is set
|
|
|
|
|
to the following label. */
|
|
|
|
|
unsigned int done : 1; /* 1 inhibits further processing of this */
|
|
|
|
|
|
|
|
|
|
unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
|
|
|
|
|
In particular, moving it does not make it
|
|
|
|
|
invariant. */
|
|
|
|
|
unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
|
|
|
|
|
load SRC, rather than copying INSN. */
|
|
|
|
|
unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
|
|
|
|
|
enum machine_mode savemode; /* Nonzero means it is a mode for a low part
|
|
|
|
|
that we should avoid changing when clearing
|
|
|
|
|
the rest of the reg. */
|
|
|
|
|
struct movable *match; /* First entry for same value */
|
|
|
|
|
struct movable *forces; /* An insn that must be moved if this is */
|
|
|
|
|
struct movable *next;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
FILE *loop_dump_stream;
|
|
|
|
|
|
|
|
|
|
/* Forward declarations. */
|
|
|
|
|
|
|
|
|
|
static void find_and_verify_loops ();
|
|
|
|
|
static void mark_loop_jump ();
|
|
|
|
|
static void prescan_loop ();
|
|
|
|
|
static int reg_in_basic_block_p ();
|
|
|
|
|
static int consec_sets_invariant_p ();
|
|
|
|
|
static rtx libcall_other_reg ();
|
|
|
|
|
static int labels_in_range_p ();
|
|
|
|
|
static void count_loop_regs_set ();
|
|
|
|
|
static void note_addr_stored ();
|
|
|
|
|
static int loop_reg_used_before_p ();
|
|
|
|
|
static void scan_loop ();
|
|
|
|
|
static void replace_call_address ();
|
|
|
|
|
static rtx skip_consec_insns ();
|
|
|
|
|
static int libcall_benefit ();
|
|
|
|
|
static void ignore_some_movables ();
|
|
|
|
|
static void force_movables ();
|
|
|
|
|
static void combine_movables ();
|
|
|
|
|
static int rtx_equal_for_loop_p ();
|
|
|
|
|
static void move_movables ();
|
|
|
|
|
static void strength_reduce ();
|
|
|
|
|
static int valid_initial_value_p ();
|
|
|
|
|
static void find_mem_givs ();
|
|
|
|
|
static void record_biv ();
|
|
|
|
|
static void check_final_value ();
|
|
|
|
|
static void record_giv ();
|
|
|
|
|
static void update_giv_derive ();
|
|
|
|
|
static int basic_induction_var ();
|
|
|
|
|
static rtx simplify_giv_expr ();
|
|
|
|
|
static int general_induction_var ();
|
|
|
|
|
static int consec_sets_giv ();
|
|
|
|
|
static int check_dbra_loop ();
|
|
|
|
|
static rtx express_from ();
|
|
|
|
|
static int combine_givs_p ();
|
|
|
|
|
static void combine_givs ();
|
|
|
|
|
static int product_cheap_p ();
|
|
|
|
|
static int maybe_eliminate_biv ();
|
|
|
|
|
static int maybe_eliminate_biv_1 ();
|
|
|
|
|
static int last_use_this_basic_block ();
|
|
|
|
|
static void record_initial ();
|
|
|
|
|
static void update_reg_last_use ();
|
|
|
|
|
|
|
|
|
|
/* Relative gain of eliminating various kinds of operations. */
|
|
|
|
|
int add_cost;
|
|
|
|
|
#if 0
|
|
|
|
|
int shift_cost;
|
|
|
|
|
int mult_cost;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
|
|
|
|
|
copy the value of the strength reduced giv to its original register. */
|
|
|
|
|
int copy_cost;
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
init_loop ()
|
|
|
|
|
{
|
|
|
|
|
char *free_point = (char *) oballoc (1);
|
|
|
|
|
rtx reg = gen_rtx (REG, word_mode, 0);
|
|
|
|
|
|
|
|
|
|
add_cost = rtx_cost (gen_rtx (PLUS, word_mode, reg, reg), SET);
|
|
|
|
|
|
|
|
|
|
/* We multiply by 2 to reconcile the difference in scale between
|
|
|
|
|
these two ways of computing costs. Otherwise the cost of a copy
|
|
|
|
|
will be far less than the cost of an add. */
|
|
|
|
|
|
|
|
|
|
copy_cost = 2 * 2;
|
|
|
|
|
|
|
|
|
|
/* Free the objects we just allocated. */
|
|
|
|
|
obfree (free_point);
|
|
|
|
|
|
|
|
|
|
/* Initialize the obstack used for rtl in product_cheap_p. */
|
|
|
|
|
gcc_obstack_init (&temp_obstack);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Entry point of this file. Perform loop optimization
|
|
|
|
|
on the current function. F is the first insn of the function
|
|
|
|
|
and DUMPFILE is a stream for output of a trace of actions taken
|
|
|
|
|
(or 0 if none should be output). */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
loop_optimize (f, dumpfile)
|
|
|
|
|
/* f is the first instruction of a chain of insns for one function */
|
|
|
|
|
rtx f;
|
|
|
|
|
FILE *dumpfile;
|
|
|
|
|
{
|
|
|
|
|
register rtx insn;
|
|
|
|
|
register int i;
|
|
|
|
|
rtx last_insn;
|
|
|
|
|
|
|
|
|
|
loop_dump_stream = dumpfile;
|
|
|
|
|
|
|
|
|
|
init_recog_no_volatile ();
|
|
|
|
|
init_alias_analysis ();
|
|
|
|
|
|
|
|
|
|
max_reg_before_loop = max_reg_num ();
|
|
|
|
|
|
|
|
|
|
moved_once = (char *) alloca (max_reg_before_loop);
|
|
|
|
|
bzero (moved_once, max_reg_before_loop);
|
|
|
|
|
|
|
|
|
|
regs_may_share = 0;
|
|
|
|
|
|
|
|
|
|
/* Count the number of loops. */
|
|
|
|
|
|
|
|
|
|
max_loop_num = 0;
|
|
|
|
|
for (insn = f; insn; insn = NEXT_INSN (insn))
|
|
|
|
|
{
|
|
|
|
|
if (GET_CODE (insn) == NOTE
|
|
|
|
|
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
|
|
|
|
|
max_loop_num++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Don't waste time if no loops. */
|
|
|
|
|
if (max_loop_num == 0)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
/* Get size to use for tables indexed by uids.
|
|
|
|
|
Leave some space for labels allocated by find_and_verify_loops. */
|
|
|
|
|
max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
|
|
|
|
|
|
|
|
|
|
uid_luid = (int *) alloca (max_uid_for_loop * sizeof (int));
|
|
|
|
|
uid_loop_num = (int *) alloca (max_uid_for_loop * sizeof (int));
|
|
|
|
|
|
|
|
|
|
bzero ((char *) uid_luid, max_uid_for_loop * sizeof (int));
|
|
|
|
|
bzero ((char *) uid_loop_num, max_uid_for_loop * sizeof (int));
|
|
|
|
|
|
|
|
|
|
/* Allocate tables for recording each loop. We set each entry, so they need
|
|
|
|
|
not be zeroed. */
|
|
|
|
|
loop_number_loop_starts = (rtx *) alloca (max_loop_num * sizeof (rtx));
|
|
|
|
|
loop_number_loop_ends = (rtx *) alloca (max_loop_num * sizeof (rtx));
|
|
|
|
|
loop_outer_loop = (int *) alloca (max_loop_num * sizeof (int));
|
|
|
|
|
loop_invalid = (char *) alloca (max_loop_num * sizeof (char));
|
|
|
|
|
loop_number_exit_labels = (rtx *) alloca (max_loop_num * sizeof (rtx));
|
|
|
|
|
loop_number_exit_count = (int *) alloca (max_loop_num * sizeof (int));
|
|
|
|
|
|
|
|
|
|
/* Find and process each loop.
|
|
|
|
|
First, find them, and record them in order of their beginnings. */
|
|
|
|
|
find_and_verify_loops (f);
|
|
|
|
|
|
|
|
|
|
/* Now find all register lifetimes. This must be done after
|
|
|
|
|
find_and_verify_loops, because it might reorder the insns in the
|
|
|
|
|
function. */
|
|
|
|
|
reg_scan (f, max_reg_num (), 1);
|
|
|
|
|
|
|
|
|
|
/* See if we went too far. */
|
|
|
|
|
if (get_max_uid () > max_uid_for_loop)
|
|
|
|
|
abort ();
|
|
|
|
|
|
|
|
|
|
/* Compute the mapping from uids to luids.
|
|
|
|
|
LUIDs are numbers assigned to insns, like uids,
|
|
|
|
|
except that luids increase monotonically through the code.
|
|
|
|
|
Don't assign luids to line-number NOTEs, so that the distance in luids
|
|
|
|
|
between two insns is not affected by -g. */
|
|
|
|
|
|
|
|
|
|
for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
|
|
|
|
|
{
|
|
|
|
|
last_insn = insn;
|
|
|
|
|
if (GET_CODE (insn) != NOTE
|
|
|
|
|
|| NOTE_LINE_NUMBER (insn) <= 0)
|
|
|
|
|
uid_luid[INSN_UID (insn)] = ++i;
|
|
|
|
|
else
|
|
|
|
|
/* Give a line number note the same luid as preceding insn. */
|
|
|
|
|
uid_luid[INSN_UID (insn)] = i;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
max_luid = i + 1;
|
|
|
|
|
|
|
|
|
|
/* Don't leave gaps in uid_luid for insns that have been
|
|
|
|
|
deleted. It is possible that the first or last insn
|
|
|
|
|
using some register has been deleted by cross-jumping.
|
|
|
|
|
Make sure that uid_luid for that former insn's uid
|
|
|
|
|
points to the general area where that insn used to be. */
|
|
|
|
|
for (i = 0; i < max_uid_for_loop; i++)
|
|
|
|
|
{
|
|
|
|
|
uid_luid[0] = uid_luid[i];
|
|
|
|
|
if (uid_luid[0] != 0)
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
for (i = 0; i < max_uid_for_loop; i++)
|
|
|
|
|
if (uid_luid[i] == 0)
|
|
|
|
|
uid_luid[i] = uid_luid[i - 1];
|
|
|
|
|
|
|
|
|
|
/* Create a mapping from loops to BLOCK tree nodes. */
|
|
|
|
|
if (flag_unroll_loops && write_symbols != NO_DEBUG)
|
|
|
|
|
find_loop_tree_blocks ();
|
|
|
|
|
|
|
|
|
|
/* Now scan the loops, last ones first, since this means inner ones are done
|
|
|
|
|
before outer ones. */
|
|
|
|
|
for (i = max_loop_num-1; i >= 0; i--)
|
|
|
|
|
if (! loop_invalid[i] && loop_number_loop_ends[i])
|
|
|
|
|
scan_loop (loop_number_loop_starts[i], loop_number_loop_ends[i],
|
|
|
|
|
max_reg_num ());
|
|
|
|
|
|
|
|
|
|
/* If debugging and unrolling loops, we must replicate the tree nodes
|
|
|
|
|
corresponding to the blocks inside the loop, so that the original one
|
|
|
|
|
to one mapping will remain. */
|
|
|
|
|
if (flag_unroll_loops && write_symbols != NO_DEBUG)
|
|
|
|
|
unroll_block_trees ();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Optimize one loop whose start is LOOP_START and end is END.
|
|
|
|
|
LOOP_START is the NOTE_INSN_LOOP_BEG and END is the matching
|
|
|
|
|
NOTE_INSN_LOOP_END. */
|
|
|
|
|
|
|
|
|
|
/* ??? Could also move memory writes out of loops if the destination address
|
|
|
|
|
is invariant, the source is invariant, the memory write is not volatile,
|
|
|
|
|
and if we can prove that no read inside the loop can read this address
|
|
|
|
|
before the write occurs. If there is a read of this address after the
|
|
|
|
|
write, then we can also mark the memory read as invariant. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
scan_loop (loop_start, end, nregs)
|
|
|
|
|
rtx loop_start, end;
|
|
|
|
|
int nregs;
|
|
|
|
|
{
|
|
|
|
|
register int i;
|
|
|
|
|
register rtx p;
|
|
|
|
|
/* 1 if we are scanning insns that could be executed zero times. */
|
|
|
|
|
int maybe_never = 0;
|
|
|
|
|
/* 1 if we are scanning insns that might never be executed
|
|
|
|
|
due to a subroutine call which might exit before they are reached. */
|
|
|
|
|
int call_passed = 0;
|
|
|
|
|
/* For a rotated loop that is entered near the bottom,
|
|
|
|
|
this is the label at the top. Otherwise it is zero. */
|
|
|
|
|
rtx loop_top = 0;
|
|
|
|
|
/* Jump insn that enters the loop, or 0 if control drops in. */
|
|
|
|
|
rtx loop_entry_jump = 0;
|
|
|
|
|
/* Place in the loop where control enters. */
|
|
|
|
|
rtx scan_start;
|
|
|
|
|
/* Number of insns in the loop. */
|
|
|
|
|
int insn_count;
|
|
|
|
|
int in_libcall = 0;
|
|
|
|
|
int tem;
|
|
|
|
|
rtx temp;
|
|
|
|
|
/* The SET from an insn, if it is the only SET in the insn. */
|
|
|
|
|
rtx set, set1;
|
|
|
|
|
/* Chain describing insns movable in current loop. */
|
|
|
|
|
struct movable *movables = 0;
|
|
|
|
|
/* Last element in `movables' -- so we can add elements at the end. */
|
|
|
|
|
struct movable *last_movable = 0;
|
|
|
|
|
/* Ratio of extra register life span we can justify
|
|
|
|
|
for saving an instruction. More if loop doesn't call subroutines
|
|
|
|
|
since in that case saving an insn makes more difference
|
|
|
|
|
and more registers are available. */
|
|
|
|
|
int threshold;
|
|
|
|
|
/* If we have calls, contains the insn in which a register was used
|
|
|
|
|
if it was used exactly once; contains const0_rtx if it was used more
|
|
|
|
|
than once. */
|
|
|
|
|
rtx *reg_single_usage = 0;
|
|
|
|
|
/* Nonzero if we are scanning instructions in a sub-loop. */
|
|
|
|
|
int loop_depth = 0;
|
|
|
|
|
|
|
|
|
|
n_times_set = (short *) alloca (nregs * sizeof (short));
|
|
|
|
|
n_times_used = (short *) alloca (nregs * sizeof (short));
|
|
|
|
|
may_not_optimize = (char *) alloca (nregs);
|
|
|
|
|
|
|
|
|
|
/* Determine whether this loop starts with a jump down to a test at
|
|
|
|
|
the end. This will occur for a small number of loops with a test
|
|
|
|
|
that is too complex to duplicate in front of the loop.
|
|
|
|
|
|
|
|
|
|
We search for the first insn or label in the loop, skipping NOTEs.
|
|
|
|
|
However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
|
|
|
|
|
(because we might have a loop executed only once that contains a
|
|
|
|
|
loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
|
|
|
|
|
(in case we have a degenerate loop).
|
|
|
|
|
|
|
|
|
|
Note that if we mistakenly think that a loop is entered at the top
|
|
|
|
|
when, in fact, it is entered at the exit test, the only effect will be
|
|
|
|
|
slightly poorer optimization. Making the opposite error can generate
|
|
|
|
|
incorrect code. Since very few loops now start with a jump to the
|
|
|
|
|
exit test, the code here to detect that case is very conservative. */
|
|
|
|
|
|
|
|
|
|
for (p = NEXT_INSN (loop_start);
|
|
|
|
|
p != end
|
|
|
|
|
&& GET_CODE (p) != CODE_LABEL && GET_RTX_CLASS (GET_CODE (p)) != 'i'
|
|
|
|
|
&& (GET_CODE (p) != NOTE
|
|
|
|
|
|| (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
|
|
|
|
|
&& NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
|
|
|
|
|
p = NEXT_INSN (p))
|
|
|
|
|
;
|
|
|
|
|
|
|
|
|
|
scan_start = p;
|
|
|
|
|
|
|
|
|
|
/* Set up variables describing this loop. */
|
|
|
|
|
prescan_loop (loop_start, end);
|
|
|
|
|
threshold = (loop_has_call ? 1 : 2) * (1 + n_non_fixed_regs);
|
|
|
|
|
|
|
|
|
|
/* If loop has a jump before the first label,
|
|
|
|
|
the true entry is the target of that jump.
|
|
|
|
|
Start scan from there.
|
|
|
|
|
But record in LOOP_TOP the place where the end-test jumps
|
|
|
|
|
back to so we can scan that after the end of the loop. */
|
|
|
|
|
if (GET_CODE (p) == JUMP_INSN)
|
|
|
|
|
{
|
|
|
|
|
loop_entry_jump = p;
|
|
|
|
|
|
|
|
|
|
/* Loop entry must be unconditional jump (and not a RETURN) */
|
|
|
|
|
if (simplejump_p (p)
|
|
|
|
|
&& JUMP_LABEL (p) != 0
|
|
|
|
|
/* Check to see whether the jump actually
|
|
|
|
|
jumps out of the loop (meaning it's no loop).
|
|
|
|
|
This case can happen for things like
|
|
|
|
|
do {..} while (0). If this label was generated previously
|
|
|
|
|
by loop, we can't tell anything about it and have to reject
|
|
|
|
|
the loop. */
|
|
|
|
|
&& INSN_UID (JUMP_LABEL (p)) < max_uid_for_loop
|
|
|
|
|
&& INSN_LUID (JUMP_LABEL (p)) >= INSN_LUID (loop_start)
|
|
|
|
|
&& INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (end))
|
|
|
|
|
{
|
|
|
|
|
loop_top = next_label (scan_start);
|
|
|
|
|
scan_start = JUMP_LABEL (p);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If SCAN_START was an insn created by loop, we don't know its luid
|
|
|
|
|
as required by loop_reg_used_before_p. So skip such loops. (This
|
|
|
|
|
test may never be true, but it's best to play it safe.)
|
|
|
|
|
|
|
|
|
|
Also, skip loops where we do not start scanning at a label. This
|
|
|
|
|
test also rejects loops starting with a JUMP_INSN that failed the
|
|
|
|
|
test above. */
|
|
|
|
|
|
|
|
|
|
if (INSN_UID (scan_start) >= max_uid_for_loop
|
|
|
|
|
|| GET_CODE (scan_start) != CODE_LABEL)
|
|
|
|
|
{
|
|
|
|
|
if (loop_dump_stream)
|
|
|
|
|
fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
|
|
|
|
|
INSN_UID (loop_start), INSN_UID (end));
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Count number of times each reg is set during this loop.
|
|
|
|
|
Set may_not_optimize[I] if it is not safe to move out
|
|
|
|
|
the setting of register I. If this loop has calls, set
|
|
|
|
|
reg_single_usage[I]. */
|
|
|
|
|
|
|
|
|
|
bzero ((char *) n_times_set, nregs * sizeof (short));
|
|
|
|
|
bzero (may_not_optimize, nregs);
|
|
|
|
|
|
|
|
|
|
if (loop_has_call)
|
|
|
|
|
{
|
|
|
|
|
reg_single_usage = (rtx *) alloca (nregs * sizeof (rtx));
|
|
|
|
|
bzero ((char *) reg_single_usage, nregs * sizeof (rtx));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
count_loop_regs_set (loop_top ? loop_top : loop_start, end,
|
|
|
|
|
may_not_optimize, reg_single_usage, &insn_count, nregs);
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
|
|
|
|
may_not_optimize[i] = 1, n_times_set[i] = 1;
|
|
|
|
|
bcopy ((char *) n_times_set, (char *) n_times_used, nregs * sizeof (short));
|
|
|
|
|
|
|
|
|
|
if (loop_dump_stream)
|
|
|
|
|
{
|
|
|
|
|
fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
|
|
|
|
|
INSN_UID (loop_start), INSN_UID (end), insn_count);
|
|
|
|
|
if (loop_continue)
|
|
|
|
|
fprintf (loop_dump_stream, "Continue at insn %d.\n",
|
|
|
|
|
INSN_UID (loop_continue));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Scan through the loop finding insns that are safe to move.
|
|
|
|
|
Set n_times_set negative for the reg being set, so that
|
|
|
|
|
this reg will be considered invariant for subsequent insns.
|
|
|
|
|
We consider whether subsequent insns use the reg
|
|
|
|
|
in deciding whether it is worth actually moving.
|
|
|
|
|
|
|
|
|
|
MAYBE_NEVER is nonzero if we have passed a conditional jump insn
|
|
|
|
|
and therefore it is possible that the insns we are scanning
|
|
|
|
|
would never be executed. At such times, we must make sure
|
|
|
|
|
that it is safe to execute the insn once instead of zero times.
|
|
|
|
|
When MAYBE_NEVER is 0, all insns will be executed at least once
|
|
|
|
|
so that is not a problem. */
|
|
|
|
|
|
|
|
|
|
p = scan_start;
|
|
|
|
|
while (1)
|
|
|
|
|
{
|
|
|
|
|
p = NEXT_INSN (p);
|
|
|
|
|
/* At end of a straight-in loop, we are done.
|
|
|
|
|
At end of a loop entered at the bottom, scan the top. */
|
|
|
|
|
if (p == scan_start)
|
|
|
|
|
break;
|
|
|
|
|
if (p == end)
|
|
|
|
|
{
|
|
|
|
|
if (loop_top != 0)
|
|
|
|
|
p = loop_top;
|
|
|
|
|
else
|
|
|
|
|
break;
|
|
|
|
|
if (p == scan_start)
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
|
|
|
|
|
&& find_reg_note (p, REG_LIBCALL, NULL_RTX))
|
|
|
|
|
in_libcall = 1;
|
|
|
|
|
else if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
|
|
|
|
|
&& find_reg_note (p, REG_RETVAL, NULL_RTX))
|
|
|
|
|
in_libcall = 0;
|
|
|
|
|
|
|
|
|
|
if (GET_CODE (p) == INSN
|
|
|
|
|
&& (set = single_set (p))
|
|
|
|
|
&& GET_CODE (SET_DEST (set)) == REG
|
|
|
|
|
&& ! may_not_optimize[REGNO (SET_DEST (set))])
|
|
|
|
|
{
|
|
|
|
|
int tem1 = 0;
|
|
|
|
|
int tem2 = 0;
|
|
|
|
|
int move_insn = 0;
|
|
|
|
|
rtx src = SET_SRC (set);
|
|
|
|
|
rtx dependencies = 0;
|
|
|
|
|
|
|
|
|
|
/* Figure out what to use as a source of this insn. If a REG_EQUIV
|
|
|
|
|
note is given or if a REG_EQUAL note with a constant operand is
|
|
|
|
|
specified, use it as the source and mark that we should move
|
|
|
|
|
this insn by calling emit_move_insn rather that duplicating the
|
|
|
|
|
insn.
|
|
|
|
|
|
|
|
|
|
Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
|
|
|
|
|
is present. */
|
|
|
|
|
temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
|
|
|
|
|
if (temp)
|
|
|
|
|
src = XEXP (temp, 0), move_insn = 1;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
|
|
|
|
|
if (temp && CONSTANT_P (XEXP (temp, 0)))
|
|
|
|
|
src = XEXP (temp, 0), move_insn = 1;
|
|
|
|
|
if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
|
|
|
|
|
{
|
|
|
|
|
src = XEXP (temp, 0);
|
|
|
|
|
/* A libcall block can use regs that don't appear in
|
|
|
|
|
the equivalent expression. To move the libcall,
|
|
|
|
|
we must move those regs too. */
|
|
|
|
|
dependencies = libcall_other_reg (p, src);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Don't try to optimize a register that was made
|
|
|
|
|
by loop-optimization for an inner loop.
|
|
|
|
|
We don't know its life-span, so we can't compute the benefit. */
|
|
|
|
|
if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
|
|
|
|
|
;
|
|
|
|
|
/* In order to move a register, we need to have one of three cases:
|
|
|
|
|
(1) it is used only in the same basic block as the set
|
|
|
|
|
(2) it is not a user variable and it is not used in the
|
|
|
|
|
exit test (this can cause the variable to be used
|
|
|
|
|
before it is set just like a user-variable).
|
|
|
|
|
(3) the set is guaranteed to be executed once the loop starts,
|
|
|
|
|
and the reg is not used until after that. */
|
|
|
|
|
else if (! ((! maybe_never
|
|
|
|
|
&& ! loop_reg_used_before_p (set, p, loop_start,
|
|
|
|
|
scan_start, end))
|
|
|
|
|
|| (! REG_USERVAR_P (SET_DEST (set))
|
|
|
|
|
&& ! REG_LOOP_TEST_P (SET_DEST (set)))
|
|
|
|
|
|| reg_in_basic_block_p (p, SET_DEST (set))))
|
|
|
|
|
;
|
|
|
|
|
else if ((tem = invariant_p (src))
|
|
|
|
|
&& (dependencies == 0
|
|
|
|
|
|| (tem2 = invariant_p (dependencies)) != 0)
|
|
|
|
|
&& (n_times_set[REGNO (SET_DEST (set))] == 1
|
|
|
|
|
|| (tem1
|
|
|
|
|
= consec_sets_invariant_p (SET_DEST (set),
|
|
|
|
|
n_times_set[REGNO (SET_DEST (set))],
|
|
|
|
|
p)))
|
|
|
|
|
/* If the insn can cause a trap (such as divide by zero),
|
|
|
|
|
can't move it unless it's guaranteed to be executed
|
|
|
|
|
once loop is entered. Even a function call might
|
|
|
|
|
prevent the trap insn from being reached
|
|
|
|
|
(since it might exit!) */
|
|
|
|
|
&& ! ((maybe_never || call_passed)
|
|
|
|
|
&& may_trap_p (src)))
|
|
|
|
|
{
|
|
|
|
|
register struct movable *m;
|
|
|
|
|
register int regno = REGNO (SET_DEST (set));
|
|
|
|
|
|
|
|
|
|
/* A potential lossage is where we have a case where two insns
|
|
|
|
|
can be combined as long as they are both in the loop, but
|
|
|
|
|
we move one of them outside the loop. For large loops,
|
|
|
|
|
this can lose. The most common case of this is the address
|
|
|
|
|
of a function being called.
|
|
|
|
|
|
|
|
|
|
Therefore, if this register is marked as being used exactly
|
|
|
|
|
once if we are in a loop with calls (a "large loop"), see if
|
|
|
|
|
we can replace the usage of this register with the source
|
|
|
|
|
of this SET. If we can, delete this insn.
|
|
|
|
|
|
|
|
|
|
Don't do this if P has a REG_RETVAL note or if we have
|
|
|
|
|
SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
|
|
|
|
|
|
|
|
|
|
if (reg_single_usage && reg_single_usage[regno] != 0
|
|
|
|
|
&& reg_single_usage[regno] != const0_rtx
|
|
|
|
|
&& regno_first_uid[regno] == INSN_UID (p)
|
|
|
|
|
&& (regno_last_uid[regno]
|
|
|
|
|
== INSN_UID (reg_single_usage[regno]))
|
|
|
|
|
&& n_times_set[REGNO (SET_DEST (set))] == 1
|
|
|
|
|
&& ! side_effects_p (SET_SRC (set))
|
|
|
|
|
&& ! find_reg_note (p, REG_RETVAL, NULL_RTX)
|
|
|
|
|
#ifdef SMALL_REGISTER_CLASSES
|
|
|
|
|
&& ! (GET_CODE (SET_SRC (set)) == REG
|
|
|
|
|
&& REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)
|
|
|
|
|
#endif
|
|
|
|
|
/* This test is not redundant; SET_SRC (set) might be
|
|
|
|
|
a call-clobbered register and the life of REGNO
|
|
|
|
|
might span a call. */
|
|
|
|
|
&& ! modified_between_p (SET_SRC (set), p,
|
|
|
|
|
reg_single_usage[regno])
|
|
|
|
|
&& no_labels_between_p (p, reg_single_usage[regno])
|
|
|
|
|
&& validate_replace_rtx (SET_DEST (set), SET_SRC (set),
|
|
|
|
|
reg_single_usage[regno]))
|
|
|
|
|
{
|
|
|
|
|
/* Replace any usage in a REG_EQUAL note. Must copy the
|
|
|
|
|
new source, so that we don't get rtx sharing between the
|
|
|
|
|
SET_SOURCE and REG_NOTES of insn p. */
|
|
|
|
|
REG_NOTES (reg_single_usage[regno])
|
|
|
|
|
= replace_rtx (REG_NOTES (reg_single_usage[regno]),
|
|
|
|
|
SET_DEST (set), copy_rtx (SET_SRC (set)));
|
|
|
|
|
|
|
|
|
|
PUT_CODE (p, NOTE);
|
|
|
|
|
NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
|
|
|
|
|
NOTE_SOURCE_FILE (p) = 0;
|
|
|
|
|
n_times_set[regno] = 0;
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
m = (struct movable *) alloca (sizeof (struct movable));
|
|
|
|
|
m->next = 0;
|
|
|
|
|
m->insn = p;
|
|
|
|
|
m->set_src = src;
|
|
|
|
|
m->dependencies = dependencies;
|
|
|
|
|
m->set_dest = SET_DEST (set);
|
|
|
|
|
m->force = 0;
|
|
|
|
|
m->consec = n_times_set[REGNO (SET_DEST (set))] - 1;
|
|
|
|
|
m->done = 0;
|
|
|
|
|
m->forces = 0;
|
|
|
|
|
m->partial = 0;
|
|
|
|
|
m->move_insn = move_insn;
|
|
|
|
|
m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
|
|
|
|
|
m->savemode = VOIDmode;
|
|
|
|
|
m->regno = regno;
|
|
|
|
|
/* Set M->cond if either invariant_p or consec_sets_invariant_p
|
|
|
|
|
returned 2 (only conditionally invariant). */
|
|
|
|
|
m->cond = ((tem | tem1 | tem2) > 1);
|
|
|
|
|
m->global = (uid_luid[regno_last_uid[regno]] > INSN_LUID (end)
|
|
|
|
|
|| uid_luid[regno_first_uid[regno]] < INSN_LUID (loop_start));
|
|
|
|
|
m->match = 0;
|
|
|
|
|
m->lifetime = (uid_luid[regno_last_uid[regno]]
|
|
|
|
|
- uid_luid[regno_first_uid[regno]]);
|
|
|
|
|
m->savings = n_times_used[regno];
|
|
|
|
|
if (find_reg_note (p, REG_RETVAL, NULL_RTX))
|
|
|
|
|
m->savings += libcall_benefit (p);
|
|
|
|
|
n_times_set[regno] = move_insn ? -2 : -1;
|
|
|
|
|
/* Add M to the end of the chain MOVABLES. */
|
|
|
|
|
if (movables == 0)
|
|
|
|
|
movables = m;
|
|
|
|
|
else
|
|
|
|
|
last_movable->next = m;
|
|
|
|
|
last_movable = m;
|
|
|
|
|
|
|
|
|
|
if (m->consec > 0)
|
|
|
|
|
{
|
|
|
|
|
/* Skip this insn, not checking REG_LIBCALL notes. */
|
|
|
|
|
p = next_nonnote_insn (p);
|
|
|
|
|
/* Skip the consecutive insns, if there are any. */
|
|
|
|
|
p = skip_consec_insns (p, m->consec);
|
|
|
|
|
/* Back up to the last insn of the consecutive group. */
|
|
|
|
|
p = prev_nonnote_insn (p);
|
|
|
|
|
|
|
|
|
|
/* We must now reset m->move_insn, m->is_equiv, and possibly
|
|
|
|
|
m->set_src to correspond to the effects of all the
|
|
|
|
|
insns. */
|
|
|
|
|
temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
|
|
|
|
|
if (temp)
|
|
|
|
|
m->set_src = XEXP (temp, 0), m->move_insn = 1;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
|
|
|
|
|
if (temp && CONSTANT_P (XEXP (temp, 0)))
|
|
|
|
|
m->set_src = XEXP (temp, 0), m->move_insn = 1;
|
|
|
|
|
else
|
|
|
|
|
m->move_insn = 0;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
/* If this register is always set within a STRICT_LOW_PART
|
|
|
|
|
or set to zero, then its high bytes are constant.
|
|
|
|
|
So clear them outside the loop and within the loop
|
|
|
|
|
just load the low bytes.
|
|
|
|
|
We must check that the machine has an instruction to do so.
|
|
|
|
|
Also, if the value loaded into the register
|
|
|
|
|
depends on the same register, this cannot be done. */
|
|
|
|
|
else if (SET_SRC (set) == const0_rtx
|
|
|
|
|
&& GET_CODE (NEXT_INSN (p)) == INSN
|
|
|
|
|
&& (set1 = single_set (NEXT_INSN (p)))
|
|
|
|
|
&& GET_CODE (set1) == SET
|
|
|
|
|
&& (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
|
|
|
|
|
&& (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
|
|
|
|
|
&& (SUBREG_REG (XEXP (SET_DEST (set1), 0))
|
|
|
|
|
== SET_DEST (set))
|
|
|
|
|
&& !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
|
|
|
|
|
{
|
|
|
|
|
register int regno = REGNO (SET_DEST (set));
|
|
|
|
|
if (n_times_set[regno] == 2)
|
|
|
|
|
{
|
|
|
|
|
register struct movable *m;
|
|
|
|
|
m = (struct movable *) alloca (sizeof (struct movable));
|
|
|
|
|
m->next = 0;
|
|
|
|
|
m->insn = p;
|
|
|
|
|
m->set_dest = SET_DEST (set);
|
|
|
|
|
m->dependencies = 0;
|
|
|
|
|
m->force = 0;
|
|
|
|
|
m->consec = 0;
|
|
|
|
|
m->done = 0;
|
|
|
|
|
m->forces = 0;
|
|
|
|
|
m->move_insn = 0;
|
|
|
|
|
m->partial = 1;
|
|
|
|
|
/* If the insn may not be executed on some cycles,
|
|
|
|
|
we can't clear the whole reg; clear just high part.
|
|
|
|
|
Not even if the reg is used only within this loop.
|
|
|
|
|
Consider this:
|
|
|
|
|
while (1)
|
|
|
|
|
while (s != t) {
|
|
|
|
|
if (foo ()) x = *s;
|
|
|
|
|
use (x);
|
|
|
|
|
}
|
|
|
|
|
Clearing x before the inner loop could clobber a value
|
|
|
|
|
being saved from the last time around the outer loop.
|
|
|
|
|
However, if the reg is not used outside this loop
|
|
|
|
|
and all uses of the register are in the same
|
|
|
|
|
basic block as the store, there is no problem.
|
|
|
|
|
|
|
|
|
|
If this insn was made by loop, we don't know its
|
|
|
|
|
INSN_LUID and hence must make a conservative
|
|
|
|
|
assumption. */
|
|
|
|
|
m->global = (INSN_UID (p) >= max_uid_for_loop
|
|
|
|
|
|| (uid_luid[regno_last_uid[regno]]
|
|
|
|
|
> INSN_LUID (end))
|
|
|
|
|
|| (uid_luid[regno_first_uid[regno]]
|
|
|
|
|
< INSN_LUID (p))
|
|
|
|
|
|| (labels_in_range_p
|
|
|
|
|
(p, uid_luid[regno_first_uid[regno]])));
|
|
|
|
|
if (maybe_never && m->global)
|
|
|
|
|
m->savemode = GET_MODE (SET_SRC (set1));
|
|
|
|
|
else
|
|
|
|
|
m->savemode = VOIDmode;
|
|
|
|
|
m->regno = regno;
|
|
|
|
|
m->cond = 0;
|
|
|
|
|
m->match = 0;
|
|
|
|
|
m->lifetime = (uid_luid[regno_last_uid[regno]]
|
|
|
|
|
- uid_luid[regno_first_uid[regno]]);
|
|
|
|
|
m->savings = 1;
|
|
|
|
|
n_times_set[regno] = -1;
|
|
|
|
|
/* Add M to the end of the chain MOVABLES. */
|
|
|
|
|
if (movables == 0)
|
|
|
|
|
movables = m;
|
|
|
|
|
else
|
|
|
|
|
last_movable->next = m;
|
|
|
|
|
last_movable = m;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
/* Past a call insn, we get to insns which might not be executed
|
|
|
|
|
because the call might exit. This matters for insns that trap.
|
|
|
|
|
Call insns inside a REG_LIBCALL/REG_RETVAL block always return,
|
|
|
|
|
so they don't count. */
|
|
|
|
|
else if (GET_CODE (p) == CALL_INSN && ! in_libcall)
|
|
|
|
|
call_passed = 1;
|
|
|
|
|
/* Past a label or a jump, we get to insns for which we
|
|
|
|
|
can't count on whether or how many times they will be
|
|
|
|
|
executed during each iteration. Therefore, we can
|
|
|
|
|
only move out sets of trivial variables
|
|
|
|
|
(those not used after the loop). */
|
|
|
|
|
/* This code appears in three places, once in scan_loop, and twice
|
|
|
|
|
in strength_reduce. */
|
|
|
|
|
else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
|
|
|
|
|
/* If we enter the loop in the middle, and scan around to the
|
|
|
|
|
beginning, don't set maybe_never for that. This must be an
|
|
|
|
|
unconditional jump, otherwise the code at the top of the
|
|
|
|
|
loop might never be executed. Unconditional jumps are
|
|
|
|
|
followed a by barrier then loop end. */
|
|
|
|
|
&& ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
|
|
|
|
|
&& NEXT_INSN (NEXT_INSN (p)) == end
|
|
|
|
|
&& simplejump_p (p)))
|
|
|
|
|
maybe_never = 1;
|
|
|
|
|
else if (GET_CODE (p) == NOTE)
|
|
|
|
|
{
|
|
|
|
|
/* At the virtual top of a converted loop, insns are again known to
|
|
|
|
|
be executed: logically, the loop begins here even though the exit
|
|
|
|
|
code has been duplicated. */
|
|
|
|
|
if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
|
|
|
|
|
maybe_never = call_passed = 0;
|
|
|
|
|
else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
|
|
|
|
|
loop_depth++;
|
|
|
|
|
else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
|
|
|
|
|
loop_depth--;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If one movable subsumes another, ignore that other. */
|
|
|
|
|
|
|
|
|
|
ignore_some_movables (movables);
|
|
|
|
|
|
|
|
|
|
/* For each movable insn, see if the reg that it loads
|
|
|
|
|
leads when it dies right into another conditionally movable insn.
|
|
|
|
|
If so, record that the second insn "forces" the first one,
|
|
|
|
|
since the second can be moved only if the first is. */
|
|
|
|
|
|
|
|
|
|
force_movables (movables);
|
|
|
|
|
|
|
|
|
|
/* See if there are multiple movable insns that load the same value.
|
|
|
|
|
If there are, make all but the first point at the first one
|
|
|
|
|
through the `match' field, and add the priorities of them
|
|
|
|
|
all together as the priority of the first. */
|
|
|
|
|
|
|
|
|
|
combine_movables (movables, nregs);
|
|
|
|
|
|
|
|
|
|
/* Now consider each movable insn to decide whether it is worth moving.
|
|
|
|
|
Store 0 in n_times_set for each reg that is moved. */
|
|
|
|
|
|
|
|
|
|
move_movables (movables, threshold,
|
|
|
|
|
insn_count, loop_start, end, nregs);
|
|
|
|
|
|
|
|
|
|
/* Now candidates that still are negative are those not moved.
|
|
|
|
|
Change n_times_set to indicate that those are not actually invariant. */
|
|
|
|
|
for (i = 0; i < nregs; i++)
|
|
|
|
|
if (n_times_set[i] < 0)
|
|
|
|
|
n_times_set[i] = n_times_used[i];
|
|
|
|
|
|
|
|
|
|
if (flag_strength_reduce)
|
|
|
|
|
strength_reduce (scan_start, end, loop_top,
|
|
|
|
|
insn_count, loop_start, end);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Add elements to *OUTPUT to record all the pseudo-regs
|
|
|
|
|
mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
record_excess_regs (in_this, not_in_this, output)
|
|
|
|
|
rtx in_this, not_in_this;
|
|
|
|
|
rtx *output;
|
|
|
|
|
{
|
|
|
|
|
enum rtx_code code;
|
|
|
|
|
char *fmt;
|
|
|
|
|
int i;
|
|
|
|
|
|
|
|
|
|
code = GET_CODE (in_this);
|
|
|
|
|
|
|
|
|
|
switch (code)
|
|
|
|
|
{
|
|
|
|
|
case PC:
|
|
|
|
|
case CC0:
|
|
|
|
|
case CONST_INT:
|
|
|
|
|
case CONST_DOUBLE:
|
|
|
|
|
case CONST:
|
|
|
|
|
case SYMBOL_REF:
|
|
|
|
|
case LABEL_REF:
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
case REG:
|
|
|
|
|
if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
|
|
|
|
|
&& ! reg_mentioned_p (in_this, not_in_this))
|
|
|
|
|
*output = gen_rtx (EXPR_LIST, VOIDmode, in_this, *output);
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fmt = GET_RTX_FORMAT (code);
|
|
|
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
|
|
|
|
{
|
|
|
|
|
int j;
|
|
|
|
|
|
|
|
|
|
switch (fmt[i])
|
|
|
|
|
{
|
|
|
|
|
case 'E':
|
|
|
|
|
for (j = 0; j < XVECLEN (in_this, i); j++)
|
|
|
|
|
record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'e':
|
|
|
|
|
record_excess_regs (XEXP (in_this, i), not_in_this, output);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Check what regs are referred to in the libcall block ending with INSN,
|
|
|
|
|
aside from those mentioned in the equivalent value.
|
|
|
|
|
If there are none, return 0.
|
|
|
|
|
If there are one or more, return an EXPR_LIST containing all of them. */
|
|
|
|
|
|
|
|
|
|
static rtx
|
|
|
|
|
libcall_other_reg (insn, equiv)
|
|
|
|
|
rtx insn, equiv;
|
|
|
|
|
{
|
|
|
|
|
rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
|
|
|
|
|
rtx p = XEXP (note, 0);
|
|
|
|
|
rtx output = 0;
|
|
|
|
|
|
|
|
|
|
/* First, find all the regs used in the libcall block
|
|
|
|
|
that are not mentioned as inputs to the result. */
|
|
|
|
|
|
|
|
|
|
while (p != insn)
|
|
|
|
|
{
|
|
|
|
|
if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
|
|
|
|
|
|| GET_CODE (p) == CALL_INSN)
|
|
|
|
|
record_excess_regs (PATTERN (p), equiv, &output);
|
|
|
|
|
p = NEXT_INSN (p);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return output;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return 1 if all uses of REG
|
|
|
|
|
are between INSN and the end of the basic block. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
reg_in_basic_block_p (insn, reg)
|
|
|
|
|
rtx insn, reg;
|
|
|
|
|
{
|
|
|
|
|
int regno = REGNO (reg);
|
|
|
|
|
rtx p;
|
|
|
|
|
|
|
|
|
|
if (regno_first_uid[regno] != INSN_UID (insn))
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* Search this basic block for the already recorded last use of the reg. */
|
|
|
|
|
for (p = insn; p; p = NEXT_INSN (p))
|
|
|
|
|
{
|
|
|
|
|
switch (GET_CODE (p))
|
|
|
|
|
{
|
|
|
|
|
case NOTE:
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case INSN:
|
|
|
|
|
case CALL_INSN:
|
|
|
|
|
/* Ordinary insn: if this is the last use, we win. */
|
|
|
|
|
if (regno_last_uid[regno] == INSN_UID (p))
|
|
|
|
|
return 1;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case JUMP_INSN:
|
|
|
|
|
/* Jump insn: if this is the last use, we win. */
|
|
|
|
|
if (regno_last_uid[regno] == INSN_UID (p))
|
|
|
|
|
return 1;
|
|
|
|
|
/* Otherwise, it's the end of the basic block, so we lose. */
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
case CODE_LABEL:
|
|
|
|
|
case BARRIER:
|
|
|
|
|
/* It's the end of the basic block, so we lose. */
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* The "last use" doesn't follow the "first use"?? */
|
|
|
|
|
abort ();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Compute the benefit of eliminating the insns in the block whose
|
|
|
|
|
last insn is LAST. This may be a group of insns used to compute a
|
|
|
|
|
value directly or can contain a library call. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
libcall_benefit (last)
|
|
|
|
|
rtx last;
|
|
|
|
|
{
|
|
|
|
|
rtx insn;
|
|
|
|
|
int benefit = 0;
|
|
|
|
|
|
|
|
|
|
for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
|
|
|
|
|
insn != last; insn = NEXT_INSN (insn))
|
|
|
|
|
{
|
|
|
|
|
if (GET_CODE (insn) == CALL_INSN)
|
|
|
|
|
benefit += 10; /* Assume at least this many insns in a library
|
|
|
|
|
routine. */
|
|
|
|
|
else if (GET_CODE (insn) == INSN
|
|
|
|
|
&& GET_CODE (PATTERN (insn)) != USE
|
|
|
|
|
&& GET_CODE (PATTERN (insn)) != CLOBBER)
|
|
|
|
|
benefit++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return benefit;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Skip COUNT insns from INSN, counting library calls as 1 insn. */
|
|
|
|
|
|
|
|
|
|
static rtx
|
|
|
|
|
skip_consec_insns (insn, count)
|
|
|
|
|
rtx insn;
|
|
|
|
|
int count;
|
|
|
|
|
{
|
|
|
|
|
for (; count > 0; count--)
|
|
|
|
|
{
|
|
|
|
|
rtx temp;
|
|
|
|
|
|
|
|
|
|
/* If first insn of libcall sequence, skip to end. */
|
|
|
|
|
/* Do this at start of loop, since INSN is guaranteed to
|
|
|
|
|
be an insn here. */
|
|
|
|
|
if (GET_CODE (insn) != NOTE
|
|
|
|
|
&& (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
|
|
|
|
|
insn = XEXP (temp, 0);
|
|
|
|
|
|
|
|
|
|
do insn = NEXT_INSN (insn);
|
|
|
|
|
while (GET_CODE (insn) == NOTE);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return insn;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Ignore any movable whose insn falls within a libcall
|
|
|
|
|
which is part of another movable.
|
|
|
|
|
We make use of the fact that the movable for the libcall value
|
|
|
|
|
was made later and so appears later on the chain. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
ignore_some_movables (movables)
|
|
|
|
|
struct movable *movables;
|
|
|
|
|
{
|
|
|
|
|
register struct movable *m, *m1;
|
|
|
|
|
|
|
|
|
|
for (m = movables; m; m = m->next)
|
|
|
|
|
{
|
|
|
|
|
/* Is this a movable for the value of a libcall? */
|
|
|
|
|
rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
|
|
|
|
|
if (note)
|
|
|
|
|
{
|
|
|
|
|
rtx insn;
|
|
|
|
|
/* Check for earlier movables inside that range,
|
|
|
|
|
and mark them invalid. We cannot use LUIDs here because
|
|
|
|
|
insns created by loop.c for prior loops don't have LUIDs.
|
|
|
|
|
Rather than reject all such insns from movables, we just
|
|
|
|
|
explicitly check each insn in the libcall (since invariant
|
|
|
|
|
libcalls aren't that common). */
|
|
|
|
|
for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
|
|
|
|
|
for (m1 = movables; m1 != m; m1 = m1->next)
|
|
|
|
|
if (m1->insn == insn)
|
|
|
|
|
m1->done = 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* For each movable insn, see if the reg that it loads
|
|
|
|
|
leads when it dies right into another conditionally movable insn.
|
|
|
|
|
If so, record that the second insn "forces" the first one,
|
|
|
|
|
since the second can be moved only if the first is. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
force_movables (movables)
|
|
|
|
|
struct movable *movables;
|
|
|
|
|
{
|
|
|
|
|
register struct movable *m, *m1;
|
|
|
|
|
for (m1 = movables; m1; m1 = m1->next)
|
|
|
|
|
/* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
|
|
|
|
|
if (!m1->partial && !m1->done)
|
|
|
|
|
{
|
|
|
|
|
int regno = m1->regno;
|
|
|
|
|
for (m = m1->next; m; m = m->next)
|
|
|
|
|
/* ??? Could this be a bug? What if CSE caused the
|
|
|
|
|
register of M1 to be used after this insn?
|
|
|
|
|
Since CSE does not update regno_last_uid,
|
|
|
|
|
this insn M->insn might not be where it dies.
|
|
|
|
|
But very likely this doesn't matter; what matters is
|
|
|
|
|
that M's reg is computed from M1's reg. */
|
|
|
|
|
if (INSN_UID (m->insn) == regno_last_uid[regno]
|
|
|
|
|
&& !m->done)
|
|
|
|
|
break;
|
|
|
|
|
if (m != 0 && m->set_src == m1->set_dest
|
|
|
|
|
/* If m->consec, m->set_src isn't valid. */
|
|
|
|
|
&& m->consec == 0)
|
|
|
|
|
m = 0;
|
|
|
|
|
|
|
|
|
|
/* Increase the priority of the moving the first insn
|
|
|
|
|
since it permits the second to be moved as well. */
|
|
|
|
|
if (m != 0)
|
|
|
|
|
{
|
|
|
|
|
m->forces = m1;
|
|
|
|
|
m1->lifetime += m->lifetime;
|
|
|
|
|
m1->savings += m1->savings;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Find invariant expressions that are equal and can be combined into
|
|
|
|
|
one register. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
combine_movables (movables, nregs)
|
|
|
|
|
struct movable *movables;
|
|
|
|
|
int nregs;
|
|
|
|
|
{
|
|
|
|
|
register struct movable *m;
|
|
|
|
|
char *matched_regs = (char *) alloca (nregs);
|
|
|
|
|
enum machine_mode mode;
|
|
|
|
|
|
|
|
|
|
/* Regs that are set more than once are not allowed to match
|
|
|
|
|
or be matched. I'm no longer sure why not. */
|
|
|
|
|
/* Perhaps testing m->consec_sets would be more appropriate here? */
|
|
|
|
|
|
|
|
|
|
for (m = movables; m; m = m->next)
|
|
|
|
|
if (m->match == 0 && n_times_used[m->regno] == 1 && !m->partial)
|
|
|
|
|
{
|
|
|
|
|
register struct movable *m1;
|
|
|
|
|
int regno = m->regno;
|
|
|
|
|
|
|
|
|
|
bzero (matched_regs, nregs);
|
|
|
|
|
matched_regs[regno] = 1;
|
|
|
|
|
|
|
|
|
|
for (m1 = movables; m1; m1 = m1->next)
|
|
|
|
|
if (m != m1 && m1->match == 0 && n_times_used[m1->regno] == 1
|
|
|
|
|
/* A reg used outside the loop mustn't be eliminated. */
|
|
|
|
|
&& !m1->global
|
|
|
|
|
/* A reg used for zero-extending mustn't be eliminated. */
|
|
|
|
|
&& !m1->partial
|
|
|
|
|
&& (matched_regs[m1->regno]
|
|
|
|
|
||
|
|
|
|
|
(
|
|
|
|
|
/* Can combine regs with different modes loaded from the
|
|
|
|
|
same constant only if the modes are the same or
|
|
|
|
|
if both are integer modes with M wider or the same
|
|
|
|
|
width as M1. The check for integer is redundant, but
|
|
|
|
|
safe, since the only case of differing destination
|
|
|
|
|
modes with equal sources is when both sources are
|
|
|
|
|
VOIDmode, i.e., CONST_INT. */
|
|
|
|
|
(GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
|
|
|
|
|
|| (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
|
|
|
|
|
&& GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
|
|
|
|
|
&& (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
|
|
|
|
|
>= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
|
|
|
|
|
/* See if the source of M1 says it matches M. */
|
|
|
|
|
&& ((GET_CODE (m1->set_src) == REG
|
|
|
|
|
&& matched_regs[REGNO (m1->set_src)])
|
|
|
|
|
|| rtx_equal_for_loop_p (m->set_src, m1->set_src,
|
|
|
|
|
movables))))
|
|
|
|
|
&& ((m->dependencies == m1->dependencies)
|
|
|
|
|
|| rtx_equal_p (m->dependencies, m1->dependencies)))
|
|
|
|
|
{
|
|
|
|
|
m->lifetime += m1->lifetime;
|
|
|
|
|
m->savings += m1->savings;
|
|
|
|
|
m1->done = 1;
|
|
|
|
|
m1->match = m;
|
|
|
|
|
matched_regs[m1->regno] = 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Now combine the regs used for zero-extension.
|
|
|
|
|
This can be done for those not marked `global'
|
|
|
|
|
provided their lives don't overlap. */
|
|
|
|
|
|
|
|
|
|
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
|
|
|
|
|
mode = GET_MODE_WIDER_MODE (mode))
|
|
|
|
|
{
|
|
|
|
|
register struct movable *m0 = 0;
|
|
|
|
|
|
|
|
|
|
/* Combine all the registers for extension from mode MODE.
|
|
|
|
|
Don't combine any that are used outside this loop. */
|
|
|
|
|
for (m = movables; m; m = m->next)
|
|
|
|
|
if (m->partial && ! m->global
|
|
|
|
|
&& mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
|
|
|
|
|
{
|
|
|
|
|
register struct movable *m1;
|
|
|
|
|
int first = uid_luid[regno_first_uid[m->regno]];
|
|
|
|
|
int last = uid_luid[regno_last_uid[m->regno]];
|
|
|
|
|
|
|
|
|
|
if (m0 == 0)
|
|
|
|
|
{
|
|
|
|
|
/* First one: don't check for overlap, just record it. */
|
|
|
|
|
m0 = m;
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Make sure they extend to the same mode.
|
|
|
|
|
(Almost always true.) */
|
|
|
|
|
if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
/* We already have one: check for overlap with those
|
|
|
|
|
already combined together. */
|
|
|
|
|
for (m1 = movables; m1 != m; m1 = m1->next)
|
|
|
|
|
if (m1 == m0 || (m1->partial && m1->match == m0))
|
|
|
|
|
if (! (uid_luid[regno_first_uid[m1->regno]] > last
|
|
|
|
|
|| uid_luid[regno_last_uid[m1->regno]] < first))
|
|
|
|
|
goto overlap;
|
|
|
|
|
|
|
|
|
|
/* No overlap: we can combine this with the others. */
|
|
|
|
|
m0->lifetime += m->lifetime;
|
|
|
|
|
m0->savings += m->savings;
|
|
|
|
|
m->done = 1;
|
|
|
|
|
m->match = m0;
|
|
|
|
|
|
|
|
|
|
overlap: ;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return 1 if regs X and Y will become the same if moved. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
regs_match_p (x, y, movables)
|
|
|
|
|
rtx x, y;
|
|
|
|
|
struct movable *movables;
|
|
|
|
|
{
|
|
|
|
|
int xn = REGNO (x);
|
|
|
|
|
int yn = REGNO (y);
|
|
|
|
|
struct movable *mx, *my;
|
|
|
|
|
|
|
|
|
|
for (mx = movables; mx; mx = mx->next)
|
|
|
|
|
if (mx->regno == xn)
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
for (my = movables; my; my = my->next)
|
|
|
|
|
if (my->regno == yn)
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
return (mx && my
|
|
|
|
|
&& ((mx->match == my->match && mx->match != 0)
|
|
|
|
|
|| mx->match == my
|
|
|
|
|
|| mx == my->match));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return 1 if X and Y are identical-looking rtx's.
|
|
|
|
|
This is the Lisp function EQUAL for rtx arguments.
|
|
|
|
|
|
|
|
|
|
If two registers are matching movables or a movable register and an
|
|
|
|
|
equivalent constant, consider them equal. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
rtx_equal_for_loop_p (x, y, movables)
|
|
|
|
|
rtx x, y;
|
|
|
|
|
struct movable *movables;
|
|
|
|
|
{
|
|
|
|
|
register int i;
|
|
|
|
|
register int j;
|
|
|
|
|
register struct movable *m;
|
|
|
|
|
register enum rtx_code code;
|
|
|
|
|
register char *fmt;
|
|
|
|
|
|
|
|
|
|
if (x == y)
|
|
|
|
|
return 1;
|
|
|
|
|
if (x == 0 || y == 0)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
code = GET_CODE (x);
|
|
|
|
|
|
|
|
|
|
/* If we have a register and a constant, they may sometimes be
|
|
|
|
|
equal. */
|
|
|
|
|
if (GET_CODE (x) == REG && n_times_set[REGNO (x)] == -2
|
|
|
|
|
&& CONSTANT_P (y))
|
|
|
|
|
for (m = movables; m; m = m->next)
|
|
|
|
|
if (m->move_insn && m->regno == REGNO (x)
|
|
|
|
|
&& rtx_equal_p (m->set_src, y))
|
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
|
|
else if (GET_CODE (y) == REG && n_times_set[REGNO (y)] == -2
|
|
|
|
|
&& CONSTANT_P (x))
|
|
|
|
|
for (m = movables; m; m = m->next)
|
|
|
|
|
if (m->move_insn && m->regno == REGNO (y)
|
|
|
|
|
&& rtx_equal_p (m->set_src, x))
|
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
|
|
/* Otherwise, rtx's of different codes cannot be equal. */
|
|
|
|
|
if (code != GET_CODE (y))
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
|
|
|
|
|
(REG:SI x) and (REG:HI x) are NOT equivalent. */
|
|
|
|
|
|
|
|
|
|
if (GET_MODE (x) != GET_MODE (y))
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* These three types of rtx's can be compared nonrecursively. */
|
|
|
|
|
if (code == REG)
|
|
|
|
|
return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
|
|
|
|
|
|
|
|
|
|
if (code == LABEL_REF)
|
|
|
|
|
return XEXP (x, 0) == XEXP (y, 0);
|
|
|
|
|
if (code == SYMBOL_REF)
|
|
|
|
|
return XSTR (x, 0) == XSTR (y, 0);
|
|
|
|
|
|
|
|
|
|
/* Compare the elements. If any pair of corresponding elements
|
|
|
|
|
fail to match, return 0 for the whole things. */
|
|
|
|
|
|
|
|
|
|
fmt = GET_RTX_FORMAT (code);
|
|
|
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
|
|
|
|
{
|
|
|
|
|
switch (fmt[i])
|
|
|
|
|
{
|
|
|
|
|
case 'w':
|
|
|
|
|
if (XWINT (x, i) != XWINT (y, i))
|
|
|
|
|
return 0;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'i':
|
|
|
|
|
if (XINT (x, i) != XINT (y, i))
|
|
|
|
|
return 0;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'E':
|
|
|
|
|
/* Two vectors must have the same length. */
|
|
|
|
|
if (XVECLEN (x, i) != XVECLEN (y, i))
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* And the corresponding elements must match. */
|
|
|
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
|
|
|
|
if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j), movables) == 0)
|
|
|
|
|
return 0;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'e':
|
|
|
|
|
if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables) == 0)
|
|
|
|
|
return 0;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 's':
|
|
|
|
|
if (strcmp (XSTR (x, i), XSTR (y, i)))
|
|
|
|
|
return 0;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'u':
|
|
|
|
|
/* These are just backpointers, so they don't matter. */
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case '0':
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
/* It is believed that rtx's at this level will never
|
|
|
|
|
contain anything but integers and other rtx's,
|
|
|
|
|
except for within LABEL_REFs and SYMBOL_REFs. */
|
|
|
|
|
default:
|
|
|
|
|
abort ();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
|
|
|
|
|
insns in INSNS which use thet reference. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
add_label_notes (x, insns)
|
|
|
|
|
rtx x;
|
|
|
|
|
rtx insns;
|
|
|
|
|
{
|
|
|
|
|
enum rtx_code code = GET_CODE (x);
|
|
|
|
|
int i, j;
|
|
|
|
|
char *fmt;
|
|
|
|
|
rtx insn;
|
|
|
|
|
|
|
|
|
|
if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
|
|
|
|
|
{
|
|
|
|
|
rtx next = next_real_insn (XEXP (x, 0));
|
|
|
|
|
|
|
|
|
|
/* Don't record labels that refer to dispatch tables.
|
|
|
|
|
This is not necessary, since the tablejump references the same label.
|
|
|
|
|
And if we did record them, flow.c would make worse code. */
|
|
|
|
|
if (next == 0
|
|
|
|
|
|| ! (GET_CODE (next) == JUMP_INSN
|
|
|
|
|
&& (GET_CODE (PATTERN (next)) == ADDR_VEC
|
|
|
|
|
|| GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC)))
|
|
|
|
|
{
|
|
|
|
|
for (insn = insns; insn; insn = NEXT_INSN (insn))
|
|
|
|
|
if (reg_mentioned_p (XEXP (x, 0), insn))
|
|
|
|
|
REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_LABEL, XEXP (x, 0),
|
|
|
|
|
REG_NOTES (insn));
|
|
|
|
|
}
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fmt = GET_RTX_FORMAT (code);
|
|
|
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
|
|
|
|
{
|
|
|
|
|
if (fmt[i] == 'e')
|
|
|
|
|
add_label_notes (XEXP (x, i), insns);
|
|
|
|
|
else if (fmt[i] == 'E')
|
|
|
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
|
|
|
|
add_label_notes (XVECEXP (x, i, j), insns);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Scan MOVABLES, and move the insns that deserve to be moved.
|
|
|
|
|
If two matching movables are combined, replace one reg with the
|
|
|
|
|
other throughout. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
move_movables (movables, threshold, insn_count, loop_start, end, nregs)
|
|
|
|
|
struct movable *movables;
|
|
|
|
|
int threshold;
|
|
|
|
|
int insn_count;
|
|
|
|
|
rtx loop_start;
|
|
|
|
|
rtx end;
|
|
|
|
|
int nregs;
|
|
|
|
|
{
|
|
|
|
|
rtx new_start = 0;
|
|
|
|
|
register struct movable *m;
|
|
|
|
|
register rtx p;
|
|
|
|
|
/* Map of pseudo-register replacements to handle combining
|
|
|
|
|
when we move several insns that load the same value
|
|
|
|
|
into different pseudo-registers. */
|
|
|
|
|
rtx *reg_map = (rtx *) alloca (nregs * sizeof (rtx));
|
|
|
|
|
char *already_moved = (char *) alloca (nregs);
|
|
|
|
|
|
|
|
|
|
bzero (already_moved, nregs);
|
|
|
|
|
bzero ((char *) reg_map, nregs * sizeof (rtx));
|
|
|
|
|
|
|
|
|
|
num_movables = 0;
|
|
|
|
|
|
|
|
|
|
for (m = movables; m; m = m->next)
|
|
|
|
|
{
|
|
|
|
|
/* Describe this movable insn. */
|
|
|
|
|
|
|
|
|
|
if (loop_dump_stream)
|
|
|
|
|
{
|
|
|
|
|
fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
|
|
|
|
|
INSN_UID (m->insn), m->regno, m->lifetime);
|
|
|
|
|
if (m->consec > 0)
|
|
|
|
|
fprintf (loop_dump_stream, "consec %d, ", m->consec);
|
|
|
|
|
if (m->cond)
|
|
|
|
|
fprintf (loop_dump_stream, "cond ");
|
|
|
|
|
if (m->force)
|
|
|
|
|
fprintf (loop_dump_stream, "force ");
|
|
|
|
|
if (m->global)
|
|
|
|
|
fprintf (loop_dump_stream, "global ");
|
|
|
|
|
if (m->done)
|
|
|
|
|
fprintf (loop_dump_stream, "done ");
|
|
|
|
|
if (m->move_insn)
|
|
|
|
|
fprintf (loop_dump_stream, "move-insn ");
|
|
|
|
|
if (m->match)
|
|
|
|
|
fprintf (loop_dump_stream, "matches %d ",
|
|
|
|
|
INSN_UID (m->match->insn));
|
|
|
|
|
if (m->forces)
|
|
|
|
|
fprintf (loop_dump_stream, "forces %d ",
|
|
|
|
|
INSN_UID (m->forces->insn));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Count movables. Value used in heuristics in strength_reduce. */
|
|
|
|
|
num_movables++;
|
|
|
|
|
|
|
|
|
|
/* Ignore the insn if it's already done (it matched something else).
|
|
|
|
|
Otherwise, see if it is now safe to move. */
|
|
|
|
|
|
|
|
|
|
if (!m->done
|
|
|
|
|
&& (! m->cond
|
|
|
|
|
|| (1 == invariant_p (m->set_src)
|
|
|
|
|
&& (m->dependencies == 0
|
|
|
|
|
|| 1 == invariant_p (m->dependencies))
|
|
|
|
|
&& (m->consec == 0
|
|
|
|
|
|| 1 == consec_sets_invariant_p (m->set_dest,
|
|
|
|
|
m->consec + 1,
|
|
|
|
|
m->insn))))
|
|
|
|
|
&& (! m->forces || m->forces->done))
|
|
|
|
|
{
|
|
|
|
|
register int regno;
|
|
|
|
|
register rtx p;
|
|
|
|
|
int savings = m->savings;
|
|
|
|
|
|
|
|
|
|
/* We have an insn that is safe to move.
|
|
|
|
|
Compute its desirability. */
|
|
|
|
|
|
|
|
|
|
p = m->insn;
|
|
|
|
|
regno = m->regno;
|
|
|
|
|
|
|
|
|
|
if (loop_dump_stream)
|
|
|
|
|
fprintf (loop_dump_stream, "savings %d ", savings);
|
|
|
|
|
|
|
|
|
|
if (moved_once[regno])
|
|
|
|
|
{
|
|
|
|
|
insn_count *= 2;
|
|
|
|
|
|
|
|
|
|
if (loop_dump_stream)
|
|
|
|
|
fprintf (loop_dump_stream, "halved since already moved ");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* An insn MUST be moved if we already moved something else
|
|
|
|
|
which is safe only if this one is moved too: that is,
|
|
|
|
|
if already_moved[REGNO] is nonzero. */
|
|
|
|
|
|
|
|
|
|
/* An insn is desirable to move if the new lifetime of the
|
|
|
|
|
register is no more than THRESHOLD times the old lifetime.
|
|
|
|
|
If it's not desirable, it means the loop is so big
|
|
|
|
|
that moving won't speed things up much,
|
|
|
|
|
and it is liable to make register usage worse. */
|
|
|
|
|
|
|
|
|
|
/* It is also desirable to move if it can be moved at no
|
|
|
|
|
extra cost because something else was already moved. */
|
|
|
|
|
|
|
|
|
|
if (already_moved[regno]
|
|
|
|
|
|| (threshold * savings * m->lifetime) >= insn_count
|
|
|
|
|
|| (m->forces && m->forces->done
|
|
|
|
|
&& n_times_used[m->forces->regno] == 1))
|
|
|
|
|
{
|
|
|
|
|
int count;
|
|
|
|
|
register struct movable *m1;
|
|
|
|
|
rtx first;
|
|
|
|
|
|
|
|
|
|
/* Now move the insns that set the reg. */
|
|
|
|
|
|
|
|
|
|
if (m->partial && m->match)
|
|
|
|
|
{
|
|
|
|
|
rtx newpat, i1;
|
|
|
|
|
rtx r1, r2;
|
|
|
|
|
/* Find the end of this chain of matching regs.
|
|
|
|
|
Thus, we load each reg in the chain from that one reg.
|
|
|
|
|
And that reg is loaded with 0 directly,
|
|
|
|
|
since it has ->match == 0. */
|
|
|
|
|
for (m1 = m; m1->match; m1 = m1->match);
|
|
|
|
|
newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
|
|
|
|
|
SET_DEST (PATTERN (m1->insn)));
|
|
|
|
|
i1 = emit_insn_before (newpat, loop_start);
|
|
|
|
|
|
|
|
|
|
/* Mark the moved, invariant reg as being allowed to
|
|
|
|
|
share a hard reg with the other matching invariant. */
|
|
|
|
|
REG_NOTES (i1) = REG_NOTES (m->insn);
|
|
|
|
|
r1 = SET_DEST (PATTERN (m->insn));
|
|
|
|
|
r2 = SET_DEST (PATTERN (m1->insn));
|
|
|
|
|
regs_may_share = gen_rtx (EXPR_LIST, VOIDmode, r1,
|
|
|
|
|
gen_rtx (EXPR_LIST, VOIDmode, r2,
|
|
|
|
|
regs_may_share));
|
|
|
|
|
delete_insn (m->insn);
|
|
|
|
|
|
|
|
|
|
if (new_start == 0)
|
|
|
|
|
new_start = i1;
|
|
|
|
|
|
|
|
|
|
if (loop_dump_stream)
|
|
|
|
|
fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
|
|
|
|
|
}
|
|
|
|
|
/* If we are to re-generate the item being moved with a
|
|
|
|
|
new move insn, first delete what we have and then emit
|
|
|
|
|
the move insn before the loop. */
|
|
|
|
|
else if (m->move_insn)
|
|
|
|
|
{
|
|
|
|
|
rtx i1, temp;
|
|
|
|
|
|
|
|
|
|
for (count = m->consec; count >= 0; count--)
|
|
|
|
|
{
|
|
|
|
|
/* If this is the first insn of a library call sequence,
|
|
|
|
|
skip to the end. */
|
|
|
|
|
if (GET_CODE (p) != NOTE
|
|
|
|
|
&& (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
|
|
|
|
|
p = XEXP (temp, 0);
|
|
|
|
|
|
|
|
|
|
/* If this is the last insn of a libcall sequence, then
|
|
|
|
|
delete every insn in the sequence except the last.
|
|
|
|
|
The last insn is handled in the normal manner. */
|
|
|
|
|
if (GET_CODE (p) != NOTE
|
|
|
|
|
&& (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
|
|
|
|
|
{
|
|
|
|
|
temp = XEXP (temp, 0);
|
|
|
|
|
while (temp != p)
|
|
|
|
|
temp = delete_insn (temp);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
p = delete_insn (p);
|
|
|
|
|
while (p && GET_CODE (p) == NOTE)
|
|
|
|
|
p = NEXT_INSN (p);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
start_sequence ();
|
|
|
|
|
emit_move_insn (m->set_dest, m->set_src);
|
|
|
|
|
temp = get_insns ();
|
|
|
|
|
end_sequence ();
|
|
|
|
|
|
|
|
|
|
add_label_notes (m->set_src, temp);
|
|
|
|
|
|
|
|
|
|
i1 = emit_insns_before (temp, loop_start);
|
|
|
|
|
if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
|
|
|
|
|
REG_NOTES (i1)
|
|
|
|
|
= gen_rtx (EXPR_LIST,
|
|
|
|
|
m->is_equiv ? REG_EQUIV : REG_EQUAL,
|
|
|
|
|
m->set_src, REG_NOTES (i1));
|
|
|
|
|
|
|
|
|
|
if (loop_dump_stream)
|
|
|
|
|
fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
|
|
|
|
|
|
|
|
|
|
/* The more regs we move, the less we like moving them. */
|
|
|
|
|
threshold -= 3;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
for (count = m->consec; count >= 0; count--)
|
|
|
|
|
{
|
|
|
|
|
rtx i1, temp;
|
|
|
|
|
|
|
|
|
|
/* If first insn of libcall sequence, skip to end. */
|
|
|
|
|
/* Do this at start of loop, since p is guaranteed to
|
|
|
|
|
be an insn here. */
|
|
|
|
|
if (GET_CODE (p) != NOTE
|
|
|
|
|
&& (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
|
|
|
|
|
p = XEXP (temp, 0);
|
|
|
|
|
|
|
|
|
|
/* If last insn of libcall sequence, move all
|
|
|
|
|
insns except the last before the loop. The last
|
|
|
|
|
insn is handled in the normal manner. */
|
|
|
|
|
if (GET_CODE (p) != NOTE
|
|
|
|
|
&& (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
|
|
|
|
|
{
|
|
|
|
|
rtx fn_address = 0;
|
|
|
|
|
rtx fn_reg = 0;
|
|
|
|
|
rtx fn_address_insn = 0;
|
|
|
|
|
|
|
|
|
|
first = 0;
|
|
|
|
|
for (temp = XEXP (temp, 0); temp != p;
|
|
|
|
|
temp = NEXT_INSN (temp))
|
|
|
|
|
{
|
|
|
|
|
rtx body;
|
|
|
|
|
rtx n;
|
|
|
|
|
rtx next;
|
|
|
|
|
|
|
|
|
|
if (GET_CODE (temp) == NOTE)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
body = PATTERN (temp);
|
|
|
|
|
|
|
|
|
|
/* Find the next insn after TEMP,
|
|
|
|
|
not counting USE or NOTE insns. */
|
|
|
|
|
for (next = NEXT_INSN (temp); next != p;
|
|
|
|
|
next = NEXT_INSN (next))
|
|
|
|
|
if (! (GET_CODE (next) == INSN
|
|
|
|
|
&& GET_CODE (PATTERN (next)) == USE)
|
|
|
|
|
&& GET_CODE (next) != NOTE)
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
/* If that is the call, this may be the insn
|
|
|
|
|
that loads the function address.
|
|
|
|
|
|
|
|
|
|
Extract the function address from the insn
|
|
|
|
|
that loads it into a register.
|
|
|
|
|
If this insn was cse'd, we get incorrect code.
|
|
|
|
|
|
|
|
|
|
So emit a new move insn that copies the
|
|
|
|
|
function address into the register that the
|
|
|
|
|
call insn will use. flow.c will delete any
|
|
|
|
|
redundant stores that we have created. */
|
|
|
|
|
if (GET_CODE (next) == CALL_INSN
|
|
|
|
|
&& GET_CODE (body) == SET
|
|
|
|
|
&& GET_CODE (SET_DEST (body)) == REG
|
|
|
|
|
&& (n = find_reg_note (temp, REG_EQUAL,
|
|
|
|
|
NULL_RTX)))
|
|
|
|
|
{
|
|
|
|
|
fn_reg = SET_SRC (body);
|
|
|
|
|
if (GET_CODE (fn_reg) != REG)
|
|
|
|
|
fn_reg = SET_DEST (body);
|
|
|
|
|
fn_address = XEXP (n, 0);
|
|
|
|
|
fn_address_insn = temp;
|
|
|
|
|
}
|
|
|
|
|
/* We have the call insn.
|
|
|
|
|
If it uses the register we suspect it might,
|
|
|
|
|
load it with the correct address directly. */
|
|
|
|
|
if (GET_CODE (temp) == CALL_INSN
|
|
|
|
|
&& fn_address != 0
|
|
|
|
|
&& reg_referenced_p (fn_reg, body))
|
|
|
|
|
emit_insn_after (gen_move_insn (fn_reg,
|
|
|
|
|
fn_address),
|
|
|
|
|
fn_address_insn);
|
|
|
|
|
|
|
|
|
|
if (GET_CODE (temp) == CALL_INSN)
|
|
|
|
|
{
|
|
|
|
|
i1 = emit_call_insn_before (body, loop_start);
|
|
|
|
|
/* Because the USAGE information potentially
|
|
|
|
|
contains objects other than hard registers
|
|
|
|
|
we need to copy it. */
|
|
|
|
|
if (CALL_INSN_FUNCTION_USAGE (temp))
|
|
|
|
|
CALL_INSN_FUNCTION_USAGE (i1) =
|
|
|
|
|
copy_rtx (CALL_INSN_FUNCTION_USAGE (temp));
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
i1 = emit_insn_before (body, loop_start);
|
|
|
|
|
if (first == 0)
|
|
|
|
|
first = i1;
|
|
|
|
|
if (temp == fn_address_insn)
|
|
|
|
|
fn_address_insn = i1;
|
|
|
|
|
REG_NOTES (i1) = REG_NOTES (temp);
|
|
|
|
|
delete_insn (temp);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (m->savemode != VOIDmode)
|
|
|
|
|
{
|
|
|
|
|
/* P sets REG to zero; but we should clear only
|
|
|
|
|
the bits that are not covered by the mode
|
|
|
|
|
m->savemode. */
|
|
|
|
|
rtx reg = m->set_dest;
|
|
|
|
|
rtx sequence;
|
|
|
|
|
rtx tem;
|
|
|
|
|
|
|
|
|
|
start_sequence ();
|
|
|
|
|
tem = expand_binop
|
|
|
|
|
(GET_MODE (reg), and_optab, reg,
|
|
|
|
|
GEN_INT ((((HOST_WIDE_INT) 1
|
|
|
|
|
<< GET_MODE_BITSIZE (m->savemode)))
|
|
|
|
|
- 1),
|
|
|
|
|
reg, 1, OPTAB_LIB_WIDEN);
|
|
|
|
|
if (tem == 0)
|
|
|
|
|
abort ();
|
|
|
|
|
if (tem != reg)
|
|
|
|
|
emit_move_insn (reg, tem);
|
|
|
|
|
sequence = gen_sequence ();
|
|
|
|
|
end_sequence ();
|
|
|
|
|
i1 = emit_insn_before (sequence, loop_start);
|
|
|
|
|
}
|
|
|
|
|
else if (GET_CODE (p) == CALL_INSN)
|
|
|
|
|
{
|
|
|
|
|
i1 = emit_call_insn_before (PATTERN (p), loop_start);
|
|
|
|
|
/* Because the USAGE information potentially
|
|
|
|
|
contains objects other than hard registers
|
|
|
|
|
we need to copy it. */
|
|
|
|
|
if (CALL_INSN_FUNCTION_USAGE (p))
|
|
|
|
|
CALL_INSN_FUNCTION_USAGE (i1) =
|
|
|
|
|
copy_rtx (CALL_INSN_FUNCTION_USAGE (p));
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
i1 = emit_insn_before (PATTERN (p), loop_start);
|
|
|
|
|
|
|
|
|
|
REG_NOTES (i1) = REG_NOTES (p);
|
|
|
|
|
|
|
|
|
|
/* If there is a REG_EQUAL note present whose value is
|
|
|
|
|
not loop invariant, then delete it, since it may
|
|
|
|
|
cause problems with later optimization passes.
|
|
|
|
|
It is possible for cse to create such notes
|
|
|
|
|
like this as a result of record_jump_cond. */
|
|
|
|
|
|
|
|
|
|
if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
|
|
|
|
|
&& ! invariant_p (XEXP (temp, 0)))
|
|
|
|
|
remove_note (i1, temp);
|
|
|
|
|
|
|
|
|
|
if (new_start == 0)
|
|
|
|
|
new_start = i1;
|
|
|
|
|
|
|
|
|
|
if (loop_dump_stream)
|
|
|
|
|
fprintf (loop_dump_stream, " moved to %d",
|
|
|
|
|
INSN_UID (i1));
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
/* This isn't needed because REG_NOTES is copied
|
|
|
|
|
below and is wrong since P might be a PARALLEL. */
|
|
|
|
|
if (REG_NOTES (i1) == 0
|
|
|
|
|
&& ! m->partial /* But not if it's a zero-extend clr. */
|
|
|
|
|
&& ! m->global /* and not if used outside the loop
|
|
|
|
|
(since it might get set outside). */
|
|
|
|
|
&& CONSTANT_P (SET_SRC (PATTERN (p))))
|
|
|
|
|
REG_NOTES (i1)
|
|
|
|
|
= gen_rtx (EXPR_LIST, REG_EQUAL,
|
|
|
|
|
SET_SRC (PATTERN (p)), REG_NOTES (i1));
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* If library call, now fix the REG_NOTES that contain
|
|
|
|
|
insn pointers, namely REG_LIBCALL on FIRST
|
|
|
|
|
and REG_RETVAL on I1. */
|
|
|
|
|
if (temp = find_reg_note (i1, REG_RETVAL, NULL_RTX))
|
|
|
|
|
{
|
|
|
|
|
XEXP (temp, 0) = first;
|
|
|
|
|
temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
|
|
|
|
|
XEXP (temp, 0) = i1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
delete_insn (p);
|
|
|
|
|
do p = NEXT_INSN (p);
|
|
|
|
|
while (p && GET_CODE (p) == NOTE);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* The more regs we move, the less we like moving them. */
|
|
|
|
|
threshold -= 3;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Any other movable that loads the same register
|
|
|
|
|
MUST be moved. */
|
|
|
|
|
already_moved[regno] = 1;
|
|
|
|
|
|
|
|
|
|
/* This reg has been moved out of one loop. */
|
|
|
|
|
moved_once[regno] = 1;
|
|
|
|
|
|
|
|
|
|
/* The reg set here is now invariant. */
|
|
|
|
|
if (! m->partial)
|
|
|
|
|
n_times_set[regno] = 0;
|
|
|
|
|
|
|
|
|
|
m->done = 1;
|
|
|
|
|
|
|
|
|
|
/* Change the length-of-life info for the register
|
|
|
|
|
to say it lives at least the full length of this loop.
|
|
|
|
|
This will help guide optimizations in outer loops. */
|
|
|
|
|
|
|
|
|
|
if (uid_luid[regno_first_uid[regno]] > INSN_LUID (loop_start))
|
|
|
|
|
/* This is the old insn before all the moved insns.
|
|
|
|
|
We can't use the moved insn because it is out of range
|
|
|
|
|
in uid_luid. Only the old insns have luids. */
|
|
|
|
|
regno_first_uid[regno] = INSN_UID (loop_start);
|
|
|
|
|
if (uid_luid[regno_last_uid[regno]] < INSN_LUID (end))
|
|
|
|
|
regno_last_uid[regno] = INSN_UID (end);
|
|
|
|
|
|
|
|
|
|
/* Combine with this moved insn any other matching movables. */
|
|
|
|
|
|
|
|
|
|
if (! m->partial)
|
|
|
|
|
for (m1 = movables; m1; m1 = m1->next)
|
|
|
|
|
if (m1->match == m)
|
|
|
|
|
{
|
|
|
|
|
rtx temp;
|
|
|
|
|
|
|
|
|
|
/* Schedule the reg loaded by M1
|
|
|
|
|
for replacement so that shares the reg of M.
|
|
|
|
|
If the modes differ (only possible in restricted
|
|
|
|
|
circumstances, make a SUBREG. */
|
|
|
|
|
if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
|
|
|
|
|
reg_map[m1->regno] = m->set_dest;
|
|
|
|
|
else
|
|
|
|
|
reg_map[m1->regno]
|
|
|
|
|
= gen_lowpart_common (GET_MODE (m1->set_dest),
|
|
|
|
|
m->set_dest);
|
|
|
|
|
|
|
|
|
|
/* Get rid of the matching insn
|
|
|
|
|
and prevent further processing of it. */
|
|
|
|
|
m1->done = 1;
|
|
|
|
|
|
|
|
|
|
/* if library call, delete all insn except last, which
|
|
|
|
|
is deleted below */
|
|
|
|
|
if (temp = find_reg_note (m1->insn, REG_RETVAL,
|
|
|
|
|
NULL_RTX))
|
|
|
|
|
{
|
|
|
|
|
for (temp = XEXP (temp, 0); temp != m1->insn;
|
|
|
|
|
temp = NEXT_INSN (temp))
|
|
|
|
|
delete_insn (temp);
|
|
|
|
|
}
|
|
|
|
|
delete_insn (m1->insn);
|
|
|
|
|
|
|
|
|
|
/* Any other movable that loads the same register
|
|
|
|
|
MUST be moved. */
|
|
|
|
|
already_moved[m1->regno] = 1;
|
|
|
|
|
|
|
|
|
|
/* The reg merged here is now invariant,
|
|
|
|
|
if the reg it matches is invariant. */
|
|
|
|
|
if (! m->partial)
|
|
|
|
|
n_times_set[m1->regno] = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else if (loop_dump_stream)
|
|
|
|
|
fprintf (loop_dump_stream, "not desirable");
|
|
|
|
|
}
|
|
|
|
|
else if (loop_dump_stream && !m->match)
|
|
|
|
|
fprintf (loop_dump_stream, "not safe");
|
|
|
|
|
|
|
|
|
|
if (loop_dump_stream)
|
|
|
|
|
fprintf (loop_dump_stream, "\n");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (new_start == 0)
|
|
|
|
|
new_start = loop_start;
|
|
|
|
|
|
|
|
|
|
/* Go through all the instructions in the loop, making
|
|
|
|
|
all the register substitutions scheduled in REG_MAP. */
|
|
|
|
|
for (p = new_start; p != end; p = NEXT_INSN (p))
|
|
|
|
|
if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
|
|
|
|
|
|| GET_CODE (p) == CALL_INSN)
|
|
|
|
|
{
|
|
|
|
|
replace_regs (PATTERN (p), reg_map, nregs, 0);
|
|
|
|
|
replace_regs (REG_NOTES (p), reg_map, nregs, 0);
|
|
|
|
|
INSN_CODE (p) = -1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
/* Scan X and replace the address of any MEM in it with ADDR.
|
|
|
|
|
REG is the address that MEM should have before the replacement. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
replace_call_address (x, reg, addr)
|
|
|
|
|
rtx x, reg, addr;
|
|
|
|
|
{
|
|
|
|
|
register enum rtx_code code;
|
|
|
|
|
register int i;
|
|
|
|
|
register char *fmt;
|
|
|
|
|
|
|
|
|
|
if (x == 0)
|
|
|
|
|
return;
|
|
|
|
|
code = GET_CODE (x);
|
|
|
|
|
switch (code)
|
|
|
|
|
{
|
|
|
|
|
case PC:
|
|
|
|
|
case CC0:
|
|
|
|
|
case CONST_INT:
|
|
|
|
|
case CONST_DOUBLE:
|
|
|
|
|
case CONST:
|
|
|
|
|
case SYMBOL_REF:
|
|
|
|
|
case LABEL_REF:
|
|
|
|
|
case REG:
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
case SET:
|
|
|
|
|
/* Short cut for very common case. */
|
|
|
|
|
replace_call_address (XEXP (x, 1), reg, addr);
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
case CALL:
|
|
|
|
|
/* Short cut for very common case. */
|
|
|
|
|
replace_call_address (XEXP (x, 0), reg, addr);
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
case MEM:
|
|
|
|
|
/* If this MEM uses a reg other than the one we expected,
|
|
|
|
|
something is wrong. */
|
|
|
|
|
if (XEXP (x, 0) != reg)
|
|
|
|
|
abort ();
|
|
|
|
|
XEXP (x, 0) = addr;
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fmt = GET_RTX_FORMAT (code);
|
|
|
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
|
|
|
|
{
|
|
|
|
|
if (fmt[i] == 'e')
|
|
|
|
|
replace_call_address (XEXP (x, i), reg, addr);
|
|
|
|
|
if (fmt[i] == 'E')
|
|
|
|
|
{
|
|
|
|
|
register int j;
|
|
|
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
|
|
|
|
replace_call_address (XVECEXP (x, i, j), reg, addr);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Return the number of memory refs to addresses that vary
|
|
|
|
|
in the rtx X. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
count_nonfixed_reads (x)
|
|
|
|
|
rtx x;
|
|
|
|
|
{
|
|
|
|
|
register enum rtx_code code;
|
|
|
|
|
register int i;
|
|
|
|
|
register char *fmt;
|
|
|
|
|
int value;
|
|
|
|
|
|
|
|
|
|
if (x == 0)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
code = GET_CODE (x);
|
|
|
|
|
switch (code)
|
|
|
|
|
{
|
|
|
|
|
case PC:
|
|
|
|
|
case CC0:
|
|
|
|
|
case CONST_INT:
|
|
|
|
|
case CONST_DOUBLE:
|
|
|
|
|
case CONST:
|
|
|
|
|
case SYMBOL_REF:
|
|
|
|
|
case LABEL_REF:
|
|
|
|
|
case REG:
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
case MEM:
|
|
|
|
|
return ((invariant_p (XEXP (x, 0)) != 1)
|
|
|
|
|
+ count_nonfixed_reads (XEXP (x, 0)));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
value = 0;
|
|
|
|
|
fmt = GET_RTX_FORMAT (code);
|
|
|
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
|
|
|
|
{
|
|
|
|
|
if (fmt[i] == 'e')
|
|
|
|
|
value += count_nonfixed_reads (XEXP (x, i));
|
|
|
|
|
if (fmt[i] == 'E')
|
|
|
|
|
{
|
|
|
|
|
register int j;
|
|
|
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
|
|
|
|
value += count_nonfixed_reads (XVECEXP (x, i, j));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return value;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
/* P is an instruction that sets a register to the result of a ZERO_EXTEND.
|
|
|
|
|
Replace it with an instruction to load just the low bytes
|
|
|
|
|
if the machine supports such an instruction,
|
|
|
|
|
and insert above LOOP_START an instruction to clear the register. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
constant_high_bytes (p, loop_start)
|
|
|
|
|
rtx p, loop_start;
|
|
|
|
|
{
|
|
|
|
|
register rtx new;
|
|
|
|
|
register int insn_code_number;
|
|
|
|
|
|
|
|
|
|
/* Try to change (SET (REG ...) (ZERO_EXTEND (..:B ...)))
|
|
|
|
|
to (SET (STRICT_LOW_PART (SUBREG:B (REG...))) ...). */
|
|
|
|
|
|
|
|
|
|
new = gen_rtx (SET, VOIDmode,
|
|
|
|
|
gen_rtx (STRICT_LOW_PART, VOIDmode,
|
|
|
|
|
gen_rtx (SUBREG, GET_MODE (XEXP (SET_SRC (PATTERN (p)), 0)),
|
|
|
|
|
SET_DEST (PATTERN (p)),
|
|
|
|
|
0)),
|
|
|
|
|
XEXP (SET_SRC (PATTERN (p)), 0));
|
|
|
|
|
insn_code_number = recog (new, p);
|
|
|
|
|
|
|
|
|
|
if (insn_code_number)
|
|
|
|
|
{
|
|
|
|
|
register int i;
|
|
|
|
|
|
|
|
|
|
/* Clear destination register before the loop. */
|
|
|
|
|
emit_insn_before (gen_rtx (SET, VOIDmode,
|
|
|
|
|
SET_DEST (PATTERN (p)),
|
|
|
|
|
const0_rtx),
|
|
|
|
|
loop_start);
|
|
|
|
|
|
|
|
|
|
/* Inside the loop, just load the low part. */
|
|
|
|
|
PATTERN (p) = new;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Scan a loop setting the variables `unknown_address_altered',
|
|
|
|
|
`num_mem_sets', `loop_continue', loops_enclosed', `loop_has_call',
|
|
|
|
|
and `loop_has_volatile'.
|
|
|
|
|
Also, fill in the array `loop_store_mems'. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
prescan_loop (start, end)
|
|
|
|
|
rtx start, end;
|
|
|
|
|
{
|
|
|
|
|
register int level = 1;
|
|
|
|
|
register rtx insn;
|
|
|
|
|
|
|
|
|
|
unknown_address_altered = 0;
|
|
|
|
|
loop_has_call = 0;
|
|
|
|
|
loop_has_volatile = 0;
|
|
|
|
|
loop_store_mems_idx = 0;
|
|
|
|
|
|
|
|
|
|
num_mem_sets = 0;
|
|
|
|
|
loops_enclosed = 1;
|
|
|
|
|
loop_continue = 0;
|
|
|
|
|
|
|
|
|
|
for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
|
|
|
|
|
insn = NEXT_INSN (insn))
|
|
|
|
|
{
|
|
|
|
|
if (GET_CODE (insn) == NOTE)
|
|
|
|
|
{
|
|
|
|
|
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
|
|
|
|
|
{
|
|
|
|
|
++level;
|
|
|
|
|
/* Count number of loops contained in this one. */
|
|
|
|
|
loops_enclosed++;
|
|
|
|
|
}
|
|
|
|
|
else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
|
|
|
|
|
{
|
|
|
|
|
--level;
|
|
|
|
|
if (level == 0)
|
|
|
|
|
{
|
|
|
|
|
end = insn;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
|
|
|
|
|
{
|
|
|
|
|
if (level == 1)
|
|
|
|
|
loop_continue = insn;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else if (GET_CODE (insn) == CALL_INSN)
|
|
|
|
|
{
|
|
|
|
|
unknown_address_altered = 1;
|
|
|
|
|
loop_has_call = 1;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
|
|
|
|
|
{
|
|
|
|
|
if (volatile_refs_p (PATTERN (insn)))
|
|
|
|
|
loop_has_volatile = 1;
|
|
|
|
|
|
|
|
|
|
note_stores (PATTERN (insn), note_addr_stored);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Scan the function looking for loops. Record the start and end of each loop.
|
|
|
|
|
Also mark as invalid loops any loops that contain a setjmp or are branched
|
|
|
|
|
to from outside the loop. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
find_and_verify_loops (f)
|
|
|
|
|
rtx f;
|
|
|
|
|
{
|
|
|
|
|
rtx insn, label;
|
|
|
|
|
int current_loop = -1;
|
|
|
|
|
int next_loop = -1;
|
|
|
|
|
int loop;
|
|
|
|
|
|
|
|
|
|
/* If there are jumps to undefined labels,
|
|
|
|
|
treat them as jumps out of any/all loops.
|
|
|
|
|
This also avoids writing past end of tables when there are no loops. */
|
|
|
|
|
uid_loop_num[0] = -1;
|
|
|
|
|
|
|
|
|
|
/* Find boundaries of loops, mark which loops are contained within
|
|
|
|
|
loops, and invalidate loops that have setjmp. */
|
|
|
|
|
|
|
|
|
|
for (insn = f; insn; insn = NEXT_INSN (insn))
|
|
|
|
|
{
|
|
|
|
|
if (GET_CODE (insn) == NOTE)
|
|
|
|
|
switch (NOTE_LINE_NUMBER (insn))
|
|
|
|
|
{
|
|
|
|
|
case NOTE_INSN_LOOP_BEG:
|
|
|
|
|
loop_number_loop_starts[++next_loop] = insn;
|
|
|
|
|
loop_number_loop_ends[next_loop] = 0;
|
|
|
|
|
loop_outer_loop[next_loop] = current_loop;
|
|
|
|
|
loop_invalid[next_loop] = 0;
|
|
|
|
|
loop_number_exit_labels[next_loop] = 0;
|
|
|
|
|
loop_number_exit_count[next_loop] = 0;
|
|
|
|
|
current_loop = next_loop;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case NOTE_INSN_SETJMP:
|
|
|
|
|
/* In this case, we must invalidate our current loop and any
|
|
|
|
|
enclosing loop. */
|
|
|
|
|
for (loop = current_loop; loop != -1; loop = loop_outer_loop[loop])
|
|
|
|
|
{
|
|
|
|
|
loop_invalid[loop] = 1;
|
|
|
|
|
if (loop_dump_stream)
|
|
|
|
|
fprintf (loop_dump_stream,
|
|
|
|
|
"\nLoop at %d ignored due to setjmp.\n",
|
|
|
|
|
INSN_UID (loop_number_loop_starts[loop]));
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case NOTE_INSN_LOOP_END:
|
|
|
|
|
if (current_loop == -1)
|
|
|
|
|
abort ();
|
|
|
|
|
|
|
|
|
|
loop_number_loop_ends[current_loop] = insn;
|
|
|
|
|
current_loop = loop_outer_loop[current_loop];
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
|
|
|
|
|
enclosing loop, but this doesn't matter. */
|
|
|
|
|
uid_loop_num[INSN_UID (insn)] = current_loop;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Any loop containing a label used in an initializer must be invalidated,
|
|
|
|
|
because it can be jumped into from anywhere. */
|
|
|
|
|
|
|
|
|
|
for (label = forced_labels; label; label = XEXP (label, 1))
|
|
|
|
|
{
|
|
|
|
|
int loop_num;
|
|
|
|
|
|
|
|
|
|
for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
|
|
|
|
|
loop_num != -1;
|
|
|
|
|
loop_num = loop_outer_loop[loop_num])
|
|
|
|
|
loop_invalid[loop_num] = 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Now scan all insn's in the function. If any JUMP_INSN branches into a
|
|
|
|
|
loop that it is not contained within, that loop is marked invalid.
|
|
|
|
|
If any INSN or CALL_INSN uses a label's address, then the loop containing
|
|
|
|
|
that label is marked invalid, because it could be jumped into from
|
|
|
|
|
anywhere.
|
|
|
|
|
|
|
|
|
|
Also look for blocks of code ending in an unconditional branch that
|
|
|
|
|
exits the loop. If such a block is surrounded by a conditional
|
|
|
|
|
branch around the block, move the block elsewhere (see below) and
|
|
|
|
|
invert the jump to point to the code block. This may eliminate a
|
|
|
|
|
label in our loop and will simplify processing by both us and a
|
|
|
|
|
possible second cse pass. */
|
|
|
|
|
|
|
|
|
|
for (insn = f; insn; insn = NEXT_INSN (insn))
|
|
|
|
|
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
|
|
|
|
|
{
|
|
|
|
|
int this_loop_num = uid_loop_num[INSN_UID (insn)];
|
|
|
|
|
|
|
|
|
|
if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
|
|
|
|
|
{
|
|
|
|
|
rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
|
|
|
|
|
if (note)
|
|
|
|
|
{
|
|
|
|
|
int loop_num;
|
|
|
|
|
|
|
|
|
|
for (loop_num = uid_loop_num[INSN_UID (XEXP (note, 0))];
|
|
|
|
|
loop_num != -1;
|
|
|
|
|
loop_num = loop_outer_loop[loop_num])
|
|
|
|
|
loop_invalid[loop_num] = 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (GET_CODE (insn) != JUMP_INSN)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
mark_loop_jump (PATTERN (insn), this_loop_num);
|
|
|
|
|
|
|
|
|
|
/* See if this is an unconditional branch outside the loop. */
|
|
|
|
|
if (this_loop_num != -1
|
|
|
|
|
&& (GET_CODE (PATTERN (insn)) == RETURN
|
|
|
|
|
|| (simplejump_p (insn)
|
|
|
|
|
&& (uid_loop_num[INSN_UID (JUMP_LABEL (insn))]
|
|
|
|
|
!= this_loop_num)))
|
|
|
|
|
&& get_max_uid () < max_uid_for_loop)
|
|
|
|
|
{
|
|
|
|
|
rtx p;
|
|
|
|
|
rtx our_next = next_real_insn (insn);
|
|
|
|
|
int dest_loop;
|
|
|
|
|
int outer_loop = -1;
|
|
|
|
|
|
|
|
|
|
/* Go backwards until we reach the start of the loop, a label,
|
|
|
|
|
or a JUMP_INSN. */
|
|
|
|
|
for (p = PREV_INSN (insn);
|
|
|
|
|
GET_CODE (p) != CODE_LABEL
|
|
|
|
|
&& ! (GET_CODE (p) == NOTE
|
|
|
|
|
&& NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
|
|
|
|
|
&& GET_CODE (p) != JUMP_INSN;
|
|
|
|
|
p = PREV_INSN (p))
|
|
|
|
|
;
|
|
|
|
|
|
|
|
|
|
/* Check for the case where we have a jump to an inner nested
|
|
|
|
|
loop, and do not perform the optimization in that case. */
|
|
|
|
|
|
|
|
|
|
if (JUMP_LABEL (insn))
|
|
|
|
|
{
|
|
|
|
|
dest_loop = uid_loop_num[INSN_UID (JUMP_LABEL (insn))];
|
|
|
|
|
if (dest_loop != -1)
|
|
|
|
|
{
|
|
|
|
|
for (outer_loop = dest_loop; outer_loop != -1;
|
|
|
|
|
outer_loop = loop_outer_loop[outer_loop])
|
|
|
|
|
if (outer_loop == this_loop_num)
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Make sure that the target of P is within the current loop. */
|
|
|
|
|
|
|
|
|
|
if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
|
|
|
|
|
&& uid_loop_num[INSN_UID (JUMP_LABEL (p))] != this_loop_num)
|
|
|
|
|
outer_loop = this_loop_num;
|
|
|
|
|
|
|
|
|
|
/* If we stopped on a JUMP_INSN to the next insn after INSN,
|
|
|
|
|
we have a block of code to try to move.
|
|
|
|
|
|
|
|
|
|
We look backward and then forward from the target of INSN
|
|
|
|
|
to find a BARRIER at the same loop depth as the target.
|
|
|
|
|
If we find such a BARRIER, we make a new label for the start
|
|
|
|
|
of the block, invert the jump in P and point it to that label,
|
|
|
|
|
and move the block of code to the spot we found. */
|
|
|
|
|
|
|
|
|
|
if (outer_loop == -1
|
|
|
|
|
&& GET_CODE (p) == JUMP_INSN
|
|
|
|
|
&& JUMP_LABEL (p) != 0
|
|
|
|
|
/* Just ignore jumps to labels that were never emitted.
|
|
|
|
|
These always indicate compilation errors. */
|
|
|
|
|
&& INSN_UID (JUMP_LABEL (p)) != 0
|
|
|
|
|
&& condjump_p (p)
|
|
|
|
|
&& ! simplejump_p (p)
|
|
|
|
|
&& next_real_insn (JUMP_LABEL (p)) == our_next)
|
|
|
|
|
{
|
|
|
|
|
rtx target
|
|
|
|
|
= JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
|
|
|
|
|
int target_loop_num = uid_loop_num[INSN_UID (target)];
|
|
|
|
|
rtx loc;
|
|
|
|
|
|
|
|
|
|
for (loc = target; loc; loc = PREV_INSN (loc))
|
|
|
|
|
if (GET_CODE (loc) == BARRIER
|
|
|
|
|
&& uid_loop_num[INSN_UID (loc)] == target_loop_num)
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
if (loc == 0)
|
|
|
|
|
for (loc = target; loc; loc = NEXT_INSN (loc))
|
|
|
|
|
if (GET_CODE (loc) == BARRIER
|
|
|
|
|
&& uid_loop_num[INSN_UID (loc)] == target_loop_num)
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
if (loc)
|
|
|
|
|
{
|
|
|
|
|
rtx cond_label = JUMP_LABEL (p);
|
|
|
|
|
rtx new_label = get_label_after (p);
|
|
|
|
|
|
|
|
|
|
/* Ensure our label doesn't go away. */
|
|
|
|
|
LABEL_NUSES (cond_label)++;
|
|
|
|
|
|
|
|
|
|
/* Verify that uid_loop_num is large enough and that
|
|
|
|
|
we can invert P. */
|
|
|
|
|
if (invert_jump (p, new_label))
|
|
|
|
|
{
|
|
|
|
|
rtx q, r;
|
|
|
|
|
|
|
|
|
|
/* Include the BARRIER after INSN and copy the
|
|
|
|
|
block after LOC. */
|
|
|
|
|
new_label = squeeze_notes (new_label, NEXT_INSN (insn));
|
|
|
|
|
reorder_insns (new_label, NEXT_INSN (insn), loc);
|
|
|
|
|
|
|
|
|
|
/* All those insns are now in TARGET_LOOP_NUM. */
|
|
|
|
|
for (q = new_label; q != NEXT_INSN (NEXT_INSN (insn));
|
|
|
|
|
q = NEXT_INSN (q))
|
|
|
|
|
uid_loop_num[INSN_UID (q)] = target_loop_num;
|
|
|
|
|
|
|
|
|
|
/* The label jumped to by INSN is no longer a loop exit.
|
|
|
|
|
Unless INSN does not have a label (e.g., it is a
|
|
|
|
|
RETURN insn), search loop_number_exit_labels to find
|
|
|
|
|
its label_ref, and remove it. Also turn off
|
|
|
|
|
LABEL_OUTSIDE_LOOP_P bit. */
|
|
|
|
|
if (JUMP_LABEL (insn))
|
|
|
|
|
{
|
|
|
|
|
int loop_num;
|
|
|
|
|
|
|
|
|
|
for (q = 0,
|
|
|
|
|
r = loop_number_exit_labels[this_loop_num];
|
|
|
|
|
r; q = r, r = LABEL_NEXTREF (r))
|
|
|
|
|
if (XEXP (r, 0) == JUMP_LABEL (insn))
|
|
|
|
|
{
|
|
|
|
|
LABEL_OUTSIDE_LOOP_P (r) = 0;
|
|
|
|
|
if (q)
|
|
|
|
|
LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
|
|
|
|
|
else
|
|
|
|
|
loop_number_exit_labels[this_loop_num]
|
|
|
|
|
= LABEL_NEXTREF (r);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (loop_num = this_loop_num;
|
|
|
|
|
loop_num != -1 && loop_num != target_loop_num;
|
|
|
|
|
loop_num = loop_outer_loop[loop_num])
|
|
|
|
|
loop_number_exit_count[loop_num]--;
|
|
|
|
|
|
|
|
|
|
/* If we didn't find it, then something is wrong. */
|
|
|
|
|
if (! r)
|
|
|
|
|
abort ();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* P is now a jump outside the loop, so it must be put
|
|
|
|
|
in loop_number_exit_labels, and marked as such.
|
|
|
|
|
The easiest way to do this is to just call
|
|
|
|
|
mark_loop_jump again for P. */
|
|
|
|
|
mark_loop_jump (PATTERN (p), this_loop_num);
|
|
|
|
|
|
|
|
|
|
/* If INSN now jumps to the insn after it,
|
|
|
|
|
delete INSN. */
|
|
|
|
|
if (JUMP_LABEL (insn) != 0
|
|
|
|
|
&& (next_real_insn (JUMP_LABEL (insn))
|
|
|
|
|
== next_real_insn (insn)))
|
|
|
|
|
delete_insn (insn);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Continue the loop after where the conditional
|
|
|
|
|
branch used to jump, since the only branch insn
|
|
|
|
|
in the block (if it still remains) is an inter-loop
|
|
|
|
|
branch and hence needs no processing. */
|
|
|
|
|
insn = NEXT_INSN (cond_label);
|
|
|
|
|
|
|
|
|
|
if (--LABEL_NUSES (cond_label) == 0)
|
|
|
|
|
delete_insn (cond_label);
|
|
|
|
|
|
|
|
|
|
/* This loop will be continued with NEXT_INSN (insn). */
|
|
|
|
|
insn = PREV_INSN (insn);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If any label in X jumps to a loop different from LOOP_NUM and any of the
|
|
|
|
|
loops it is contained in, mark the target loop invalid.
|
|
|
|
|
|
|
|
|
|
For speed, we assume that X is part of a pattern of a JUMP_INSN. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
mark_loop_jump (x, loop_num)
|
|
|
|
|
rtx x;
|
|
|
|
|
int loop_num;
|
|
|
|
|
{
|
|
|
|
|
int dest_loop;
|
|
|
|
|
int outer_loop;
|
|
|
|
|
int i;
|
|
|
|
|
|
|
|
|
|
switch (GET_CODE (x))
|
|
|
|
|
{
|
|
|
|
|
case PC:
|
|
|
|
|
case USE:
|
|
|
|
|
case CLOBBER:
|
|
|
|
|
case REG:
|
|
|
|
|
case MEM:
|
|
|
|
|
case CONST_INT:
|
|
|
|
|
case CONST_DOUBLE:
|
|
|
|
|
case RETURN:
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
case CONST:
|
|
|
|
|
/* There could be a label reference in here. */
|
|
|
|
|
mark_loop_jump (XEXP (x, 0), loop_num);
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
case PLUS:
|
|
|
|
|
case MINUS:
|
|
|
|
|
case MULT:
|
|
|
|
|
mark_loop_jump (XEXP (x, 0), loop_num);
|
|
|
|
|
mark_loop_jump (XEXP (x, 1), loop_num);
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
case SIGN_EXTEND:
|
|
|
|
|
case ZERO_EXTEND:
|
|
|
|
|
mark_loop_jump (XEXP (x, 0), loop_num);
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
case LABEL_REF:
|
|
|
|
|
dest_loop = uid_loop_num[INSN_UID (XEXP (x, 0))];
|
|
|
|
|
|
|
|
|
|
/* Link together all labels that branch outside the loop. This
|
|
|
|
|
is used by final_[bg]iv_value and the loop unrolling code. Also
|
|
|
|
|
mark this LABEL_REF so we know that this branch should predict
|
|
|
|
|
false. */
|
|
|
|
|
|
|
|
|
|
/* A check to make sure the label is not in an inner nested loop,
|
|
|
|
|
since this does not count as a loop exit. */
|
|
|
|
|
if (dest_loop != -1)
|
|
|
|
|
{
|
|
|
|
|
for (outer_loop = dest_loop; outer_loop != -1;
|
|
|
|
|
outer_loop = loop_outer_loop[outer_loop])
|
|
|
|
|
if (outer_loop == loop_num)
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
outer_loop = -1;
|
|
|
|
|
|
|
|
|
|
if (loop_num != -1 && outer_loop == -1)
|
|
|
|
|
{
|
|
|
|
|
LABEL_OUTSIDE_LOOP_P (x) = 1;
|
|
|
|
|
LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
|
|
|
|
|
loop_number_exit_labels[loop_num] = x;
|
|
|
|
|
|
|
|
|
|
for (outer_loop = loop_num;
|
|
|
|
|
outer_loop != -1 && outer_loop != dest_loop;
|
|
|
|
|
outer_loop = loop_outer_loop[outer_loop])
|
|
|
|
|
loop_number_exit_count[outer_loop]++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If this is inside a loop, but not in the current loop or one enclosed
|
|
|
|
|
by it, it invalidates at least one loop. */
|
|
|
|
|
|
|
|
|
|
if (dest_loop == -1)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
/* We must invalidate every nested loop containing the target of this
|
|
|
|
|
label, except those that also contain the jump insn. */
|
|
|
|
|
|
|
|
|
|
for (; dest_loop != -1; dest_loop = loop_outer_loop[dest_loop])
|
|
|
|
|
{
|
|
|
|
|
/* Stop when we reach a loop that also contains the jump insn. */
|
|
|
|
|
for (outer_loop = loop_num; outer_loop != -1;
|
|
|
|
|
outer_loop = loop_outer_loop[outer_loop])
|
|
|
|
|
if (dest_loop == outer_loop)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
/* If we get here, we know we need to invalidate a loop. */
|
|
|
|
|
if (loop_dump_stream && ! loop_invalid[dest_loop])
|
|
|
|
|
fprintf (loop_dump_stream,
|
|
|
|
|
"\nLoop at %d ignored due to multiple entry points.\n",
|
|
|
|
|
INSN_UID (loop_number_loop_starts[dest_loop]));
|
|
|
|
|
|
|
|
|
|
loop_invalid[dest_loop] = 1;
|
|
|
|
|
}
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
case SET:
|
|
|
|
|
/* If this is not setting pc, ignore. */
|
|
|
|
|
if (SET_DEST (x) == pc_rtx)
|
|
|
|
|
mark_loop_jump (SET_SRC (x), loop_num);
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
case IF_THEN_ELSE:
|
|
|
|
|
mark_loop_jump (XEXP (x, 1), loop_num);
|
|
|
|
|
mark_loop_jump (XEXP (x, 2), loop_num);
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
case PARALLEL:
|
|
|
|
|
case ADDR_VEC:
|
|
|
|
|
for (i = 0; i < XVECLEN (x, 0); i++)
|
|
|
|
|
mark_loop_jump (XVECEXP (x, 0, i), loop_num);
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
case ADDR_DIFF_VEC:
|
|
|
|
|
for (i = 0; i < XVECLEN (x, 1); i++)
|
|
|
|
|
mark_loop_jump (XVECEXP (x, 1, i), loop_num);
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
/* Treat anything else (such as a symbol_ref)
|
|
|
|
|
as a branch out of this loop, but not into any loop. */
|
|
|
|
|
|
|
|
|
|
if (loop_num != -1)
|
|
|
|
|
{
|
|
|
|
|
loop_number_exit_labels[loop_num] = x;
|
|
|
|
|
|
|
|
|
|
for (outer_loop = loop_num; outer_loop != -1;
|
|
|
|
|
outer_loop = loop_outer_loop[outer_loop])
|
|
|
|
|
loop_number_exit_count[outer_loop]++;
|
|
|
|
|
}
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return nonzero if there is a label in the range from
|
|
|
|
|
insn INSN to and including the insn whose luid is END
|
|
|
|
|
INSN must have an assigned luid (i.e., it must not have
|
|
|
|
|
been previously created by loop.c). */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
labels_in_range_p (insn, end)
|
|
|
|
|
rtx insn;
|
|
|
|
|
int end;
|
|
|
|
|
{
|
|
|
|
|
while (insn && INSN_LUID (insn) <= end)
|
|
|
|
|
{
|
|
|
|
|
if (GET_CODE (insn) == CODE_LABEL)
|
|
|
|
|
return 1;
|
|
|
|
|
insn = NEXT_INSN (insn);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Record that a memory reference X is being set. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
note_addr_stored (x)
|
|
|
|
|
rtx x;
|
|
|
|
|
{
|
|
|
|
|
register int i;
|
|
|
|
|
|
|
|
|
|
if (x == 0 || GET_CODE (x) != MEM)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
/* Count number of memory writes.
|
|
|
|
|
This affects heuristics in strength_reduce. */
|
|
|
|
|
num_mem_sets++;
|
|
|
|
|
|
|
|
|
|
/* BLKmode MEM means all memory is clobbered. */
|
|
|
|
|
if (GET_MODE (x) == BLKmode)
|
|
|
|
|
unknown_address_altered = 1;
|
|
|
|
|
|
|
|
|
|
if (unknown_address_altered)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < loop_store_mems_idx; i++)
|
|
|
|
|
if (rtx_equal_p (XEXP (loop_store_mems[i], 0), XEXP (x, 0))
|
|
|
|
|
&& MEM_IN_STRUCT_P (x) == MEM_IN_STRUCT_P (loop_store_mems[i]))
|
|
|
|
|
{
|
|
|
|
|
/* We are storing at the same address as previously noted. Save the
|
|
|
|
|
wider reference. */
|
|
|
|
|
if (GET_MODE_SIZE (GET_MODE (x))
|
|
|
|
|
> GET_MODE_SIZE (GET_MODE (loop_store_mems[i])))
|
|
|
|
|
loop_store_mems[i] = x;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (i == NUM_STORES)
|
|
|
|
|
unknown_address_altered = 1;
|
|
|
|
|
|
|
|
|
|
else if (i == loop_store_mems_idx)
|
|
|
|
|
loop_store_mems[loop_store_mems_idx++] = x;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return nonzero if the rtx X is invariant over the current loop.
|
|
|
|
|
|
|
|
|
|
The value is 2 if we refer to something only conditionally invariant.
|
|
|
|
|
|
|
|
|
|
If `unknown_address_altered' is nonzero, no memory ref is invariant.
|
|
|
|
|
Otherwise, a memory ref is invariant if it does not conflict with
|
|
|
|
|
anything stored in `loop_store_mems'. */
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
|
invariant_p (x)
|
|
|
|
|
register rtx x;
|
|
|
|
|
{
|
|
|
|
|
register int i;
|
|
|
|
|
register enum rtx_code code;
|
|
|
|
|
register char *fmt;
|
|
|
|
|
int conditional = 0;
|
|
|
|
|
|
|
|
|
|
if (x == 0)
|
|
|
|
|
return 1;
|
|
|
|
|
code = GET_CODE (x);
|
|
|
|
|
switch (code)
|
|
|
|
|
{
|
|
|
|
|
case CONST_INT:
|
|
|
|
|
case CONST_DOUBLE:
|
|
|
|
|
case SYMBOL_REF:
|
|
|
|
|
case CONST:
|
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
|
|
case LABEL_REF:
|
|
|
|
|
/* A LABEL_REF is normally invariant, however, if we are unrolling
|
|
|
|
|
loops, and this label is inside the loop, then it isn't invariant.
|
|
|
|
|
This is because each unrolled copy of the loop body will have
|
|
|
|
|
a copy of this label. If this was invariant, then an insn loading
|
|
|
|
|
the address of this label into a register might get moved outside
|
|
|
|
|
the loop, and then each loop body would end up using the same label.
|
|
|
|
|
|
|
|
|
|
We don't know the loop bounds here though, so just fail for all
|
|
|
|
|
labels. */
|
|
|
|
|
if (flag_unroll_loops)
|
|
|
|
|
return 0;
|
|
|
|
|
else
|
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
|
|
case PC:
|
|
|
|
|
case CC0:
|
|
|
|
|
case UNSPEC_VOLATILE:
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
case REG:
|
|
|
|
|
/* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
|
|
|
|
|
since the reg might be set by initialization within the loop. */
|
|
|
|
|
if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
|
|
|
|
|
|| x == arg_pointer_rtx)
|
|
|
|
|
return 1;
|
|
|
|
|
if (loop_has_call
|
|
|
|
|
&& REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
|
|
|
|
|
return 0;
|
|
|
|
|
if (n_times_set[REGNO (x)] < 0)
|
|
|
|
|
return 2;
|
|
|
|
|
return n_times_set[REGNO (x)] == 0;
|
|
|
|
|
|
|
|
|
|
case MEM:
|
|
|
|
|
/* Volatile memory references must be rejected. Do this before
|
|
|
|
|
checking for read-only items, so that volatile read-only items
|
|
|
|
|
will be rejected also. */
|
|
|
|
|
if (MEM_VOLATILE_P (x))
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* Read-only items (such as constants in a constant pool) are
|
|
|
|
|
invariant if their address is. */
|
|
|
|
|
if (RTX_UNCHANGING_P (x))
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
/* If we filled the table (or had a subroutine call), any location
|
|
|
|
|
in memory could have been clobbered. */
|
|
|
|
|
if (unknown_address_altered)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* See if there is any dependence between a store and this load. */
|
|
|
|
|
for (i = loop_store_mems_idx - 1; i >= 0; i--)
|
|
|
|
|
if (true_dependence (loop_store_mems[i], x))
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* It's not invalidated by a store in memory
|
|
|
|
|
but we must still verify the address is invariant. */
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case ASM_OPERANDS:
|
|
|
|
|
/* Don't mess with insns declared volatile. */
|
|
|
|
|
if (MEM_VOLATILE_P (x))
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fmt = GET_RTX_FORMAT (code);
|
|
|
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
|
|
|
|
{
|
|
|
|
|
if (fmt[i] == 'e')
|
|
|
|
|
{
|
|
|
|
|
int tem = invariant_p (XEXP (x, i));
|
|
|
|
|
if (tem == 0)
|
|
|
|
|
return 0;
|
|
|
|
|
if (tem == 2)
|
|
|
|
|
conditional = 1;
|
|
|
|
|
}
|
|
|
|
|
else if (fmt[i] == 'E')
|
|
|
|
|
{
|
|
|
|
|
register int j;
|
|
|
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
|
|
|
|
{
|
|
|
|
|
int tem = invariant_p (XVECEXP (x, i, j));
|
|
|
|
|
if (tem == 0)
|
|
|
|
|
return 0;
|
|
|
|
|
if (tem == 2)
|
|
|
|
|
conditional = 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return 1 + conditional;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Return nonzero if all the insns in the loop that set REG
|
|
|
|
|
are INSN and the immediately following insns,
|
|
|
|
|
and if each of those insns sets REG in an invariant way
|
|
|
|
|
(not counting uses of REG in them).
|
|
|
|
|
|
|
|
|
|
The value is 2 if some of these insns are only conditionally invariant.
|
|
|
|
|
|
|
|
|
|
We assume that INSN itself is the first set of REG
|
|
|
|
|
and that its source is invariant. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
consec_sets_invariant_p (reg, n_sets, insn)
|
|
|
|
|
int n_sets;
|
|
|
|
|
rtx reg, insn;
|
|
|
|
|
{
|
|
|
|
|
register rtx p = insn;
|
|
|
|
|
register int regno = REGNO (reg);
|
|
|
|
|
rtx temp;
|
|
|
|
|
/* Number of sets we have to insist on finding after INSN. */
|
|
|
|
|
int count = n_sets - 1;
|
|
|
|
|
int old = n_times_set[regno];
|
|
|
|
|
int value = 0;
|
|
|
|
|
int this;
|
|
|
|
|
|
|
|
|
|
/* If N_SETS hit the limit, we can't rely on its value. */
|
|
|
|
|
if (n_sets == 127)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
n_times_set[regno] = 0;
|
|
|
|
|
|
|
|
|
|
while (count > 0)
|
|
|
|
|
{
|
|
|
|
|
register enum rtx_code code;
|
|
|
|
|
rtx set;
|
|
|
|
|
|
|
|
|
|
p = NEXT_INSN (p);
|
|
|
|
|
code = GET_CODE (p);
|
|
|
|
|
|
|
|
|
|
/* If library call, skip to end of of it. */
|
|
|
|
|
if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
|
|
|
|
|
p = XEXP (temp, 0);
|
|
|
|
|
|
|
|
|
|
this = 0;
|
|
|
|
|
if (code == INSN
|
|
|
|
|
&& (set = single_set (p))
|
|
|
|
|
&& GET_CODE (SET_DEST (set)) == REG
|
|
|
|
|
&& REGNO (SET_DEST (set)) == regno)
|
|
|
|
|
{
|
|
|
|
|
this = invariant_p (SET_SRC (set));
|
|
|
|
|
if (this != 0)
|
|
|
|
|
value |= this;
|
|
|
|
|
else if (temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
|
|
|
|
|
{
|
|
|
|
|
/* If this is a libcall, then any invariant REG_EQUAL note is OK.
|
|
|
|
|
If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
|
|
|
|
|
notes are OK. */
|
|
|
|
|
this = (CONSTANT_P (XEXP (temp, 0))
|
|
|
|
|
|| (find_reg_note (p, REG_RETVAL, NULL_RTX)
|
|
|
|
|
&& invariant_p (XEXP (temp, 0))));
|
|
|
|
|
if (this != 0)
|
|
|
|
|
value |= this;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (this != 0)
|
|
|
|
|
count--;
|
|
|
|
|
else if (code != NOTE)
|
|
|
|
|
{
|
|
|
|
|
n_times_set[regno] = old;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
n_times_set[regno] = old;
|
|
|
|
|
/* If invariant_p ever returned 2, we return 2. */
|
|
|
|
|
return 1 + (value & 2);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
/* I don't think this condition is sufficient to allow INSN
|
|
|
|
|
to be moved, so we no longer test it. */
|
|
|
|
|
|
|
|
|
|
/* Return 1 if all insns in the basic block of INSN and following INSN
|
|
|
|
|
that set REG are invariant according to TABLE. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
all_sets_invariant_p (reg, insn, table)
|
|
|
|
|
rtx reg, insn;
|
|
|
|
|
short *table;
|
|
|
|
|
{
|
|
|
|
|
register rtx p = insn;
|
|
|
|
|
register int regno = REGNO (reg);
|
|
|
|
|
|
|
|
|
|
while (1)
|
|
|
|
|
{
|
|
|
|
|
register enum rtx_code code;
|
|
|
|
|
p = NEXT_INSN (p);
|
|
|
|
|
code = GET_CODE (p);
|
|
|
|
|
if (code == CODE_LABEL || code == JUMP_INSN)
|
|
|
|
|
return 1;
|
|
|
|
|
if (code == INSN && GET_CODE (PATTERN (p)) == SET
|
|
|
|
|
&& GET_CODE (SET_DEST (PATTERN (p))) == REG
|
|
|
|
|
&& REGNO (SET_DEST (PATTERN (p))) == regno)
|
|
|
|
|
{
|
|
|
|
|
if (!invariant_p (SET_SRC (PATTERN (p)), table))
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif /* 0 */
|
|
|
|
|
|
|
|
|
|
/* Look at all uses (not sets) of registers in X. For each, if it is
|
|
|
|
|
the single use, set USAGE[REGNO] to INSN; if there was a previous use in
|
|
|
|
|
a different insn, set USAGE[REGNO] to const0_rtx. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
find_single_use_in_loop (insn, x, usage)
|
|
|
|
|
rtx insn;
|
|
|
|
|
rtx x;
|
|
|
|
|
rtx *usage;
|
|
|
|
|
{
|
|
|
|
|
enum rtx_code code = GET_CODE (x);
|
|
|
|
|
char *fmt = GET_RTX_FORMAT (code);
|
|
|
|
|
int i, j;
|
|
|
|
|
|
|
|
|
|
if (code == REG)
|
|
|
|
|
usage[REGNO (x)]
|
|
|
|
|
= (usage[REGNO (x)] != 0 && usage[REGNO (x)] != insn)
|
|
|
|
|
? const0_rtx : insn;
|
|
|
|
|
|
|
|
|
|
else if (code == SET)
|
|
|
|
|
{
|
|
|
|
|
/* Don't count SET_DEST if it is a REG; otherwise count things
|
|
|
|
|
in SET_DEST because if a register is partially modified, it won't
|
|
|
|
|
show up as a potential movable so we don't care how USAGE is set
|
|
|
|
|
for it. */
|
|
|
|
|
if (GET_CODE (SET_DEST (x)) != REG)
|
|
|
|
|
find_single_use_in_loop (insn, SET_DEST (x), usage);
|
|
|
|
|
find_single_use_in_loop (insn, SET_SRC (x), usage);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
|
|
|
|
{
|
|
|
|
|
if (fmt[i] == 'e' && XEXP (x, i) != 0)
|
|
|
|
|
find_single_use_in_loop (insn, XEXP (x, i), usage);
|
|
|
|
|
else if (fmt[i] == 'E')
|
|
|
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
|
|
|
|
find_single_use_in_loop (insn, XVECEXP (x, i, j), usage);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Increment N_TIMES_SET at the index of each register
|
|
|
|
|
that is modified by an insn between FROM and TO.
|
|
|
|
|
If the value of an element of N_TIMES_SET becomes 127 or more,
|
|
|
|
|
stop incrementing it, to avoid overflow.
|
|
|
|
|
|
|
|
|
|
Store in SINGLE_USAGE[I] the single insn in which register I is
|
|
|
|
|
used, if it is only used once. Otherwise, it is set to 0 (for no
|
|
|
|
|
uses) or const0_rtx for more than one use. This parameter may be zero,
|
|
|
|
|
in which case this processing is not done.
|
|
|
|
|
|
|
|
|
|
Store in *COUNT_PTR the number of actual instruction
|
|
|
|
|
in the loop. We use this to decide what is worth moving out. */
|
|
|
|
|
|
|
|
|
|
/* last_set[n] is nonzero iff reg n has been set in the current basic block.
|
|
|
|
|
In that case, it is the insn that last set reg n. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
count_loop_regs_set (from, to, may_not_move, single_usage, count_ptr, nregs)
|
|
|
|
|
register rtx from, to;
|
|
|
|
|
char *may_not_move;
|
|
|
|
|
rtx *single_usage;
|
|
|
|
|
int *count_ptr;
|
|
|
|
|
int nregs;
|
|
|
|
|
{
|
|
|
|
|
register rtx *last_set = (rtx *) alloca (nregs * sizeof (rtx));
|
|
|
|
|
register rtx insn;
|
|
|
|
|
register int count = 0;
|
|
|
|
|
register rtx dest;
|
|
|
|
|
|
|
|
|
|
bzero ((char *) last_set, nregs * sizeof (rtx));
|
|
|
|
|
for (insn = from; insn != to; insn = NEXT_INSN (insn))
|
|
|
|
|
{
|
|
|
|
|
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
|
|
|
|
|
{
|
|
|
|
|
++count;
|
|
|
|
|
|
|
|
|
|
/* If requested, record registers that have exactly one use. */
|
|
|
|
|
if (single_usage)
|
|
|
|
|
{
|
|
|
|
|
find_single_use_in_loop (insn, PATTERN (insn), single_usage);
|
|
|
|
|
|
|
|
|
|
/* Include uses in REG_EQUAL notes. */
|
|
|
|
|
if (REG_NOTES (insn))
|
|
|
|
|
find_single_use_in_loop (insn, REG_NOTES (insn), single_usage);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (GET_CODE (PATTERN (insn)) == CLOBBER
|
|
|
|
|
&& GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
|
|
|
|
|
/* Don't move a reg that has an explicit clobber.
|
|
|
|
|
We might do so sometimes, but it's not worth the pain. */
|
|
|
|
|
may_not_move[REGNO (XEXP (PATTERN (insn), 0))] = 1;
|
|
|
|
|
|
|
|
|
|
if (GET_CODE (PATTERN (insn)) == SET
|
|
|
|
|
|| GET_CODE (PATTERN (insn)) == CLOBBER)
|
|
|
|
|
{
|
|
|
|
|
dest = SET_DEST (PATTERN (insn));
|
|
|
|
|
while (GET_CODE (dest) == SUBREG
|
|
|
|
|
|| GET_CODE (dest) == ZERO_EXTRACT
|
|
|
|
|
|| GET_CODE (dest) == SIGN_EXTRACT
|
|
|
|
|
|| GET_CODE (dest) == STRICT_LOW_PART)
|
|
|
|
|
dest = XEXP (dest, 0);
|
|
|
|
|
if (GET_CODE (dest) == REG)
|
|
|
|
|
{
|
|
|
|
|
register int regno = REGNO (dest);
|
|
|
|
|
/* If this is the first setting of this reg
|
|
|
|
|
in current basic block, and it was set before,
|
|
|
|
|
it must be set in two basic blocks, so it cannot
|
|
|
|
|
be moved out of the loop. */
|
|
|
|
|
if (n_times_set[regno] > 0 && last_set[regno] == 0)
|
|
|
|
|
may_not_move[regno] = 1;
|
|
|
|
|
/* If this is not first setting in current basic block,
|
|
|
|
|
see if reg was used in between previous one and this.
|
|
|
|
|
If so, neither one can be moved. */
|
|
|
|
|
if (last_set[regno] != 0
|
|
|
|
|
&& reg_used_between_p (dest, last_set[regno], insn))
|
|
|
|
|
may_not_move[regno] = 1;
|
|
|
|
|
if (n_times_set[regno] < 127)
|
|
|
|
|
++n_times_set[regno];
|
|
|
|
|
last_set[regno] = insn;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else if (GET_CODE (PATTERN (insn)) == PARALLEL)
|
|
|
|
|
{
|
|
|
|
|
register int i;
|
|
|
|
|
for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
|
|
|
|
|
{
|
|
|
|
|
register rtx x = XVECEXP (PATTERN (insn), 0, i);
|
|
|
|
|
if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
|
|
|
|
|
/* Don't move a reg that has an explicit clobber.
|
|
|
|
|
It's not worth the pain to try to do it correctly. */
|
|
|
|
|
may_not_move[REGNO (XEXP (x, 0))] = 1;
|
|
|
|
|
|
|
|
|
|
if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
|
|
|
|
|
{
|
|
|
|
|
dest = SET_DEST (x);
|
|
|
|
|
while (GET_CODE (dest) == SUBREG
|
|
|
|
|
|| GET_CODE (dest) == ZERO_EXTRACT
|
|
|
|
|
|| GET_CODE (dest) == SIGN_EXTRACT
|
|
|
|
|
|| GET_CODE (dest) == STRICT_LOW_PART)
|
|
|
|
|
dest = XEXP (dest, 0);
|
|
|
|
|
if (GET_CODE (dest) == REG)
|
|
|
|
|
{
|
|
|
|
|
register int regno = REGNO (dest);
|
|
|
|
|
if (n_times_set[regno] > 0 && last_set[regno] == 0)
|
|
|
|
|
may_not_move[regno] = 1;
|
|
|
|
|
if (last_set[regno] != 0
|
|
|
|
|
&& reg_used_between_p (dest, last_set[regno], insn))
|
|
|
|
|
may_not_move[regno] = 1;
|
|
|
|
|
if (n_times_set[regno] < 127)
|
|
|
|
|
++n_times_set[regno];
|
|
|
|
|
last_set[regno] = insn;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
|
|
|
|
|
bzero ((char *) last_set, nregs * sizeof (rtx));
|
|
|
|
|
}
|
|
|
|
|
*count_ptr = count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Given a loop that is bounded by LOOP_START and LOOP_END
|
|
|
|
|
and that is entered at SCAN_START,
|
|
|
|
|
return 1 if the register set in SET contained in insn INSN is used by
|
|
|
|
|
any insn that precedes INSN in cyclic order starting
|
|
|
|
|
from the loop entry point.
|
|
|
|
|
|
|
|
|
|
We don't want to use INSN_LUID here because if we restrict INSN to those
|
|
|
|
|
that have a valid INSN_LUID, it means we cannot move an invariant out
|
|
|
|
|
from an inner loop past two loops. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
loop_reg_used_before_p (set, insn, loop_start, scan_start, loop_end)
|
|
|
|
|
rtx set, insn, loop_start, scan_start, loop_end;
|
|
|
|
|
{
|
|
|
|
|
rtx reg = SET_DEST (set);
|
|
|
|
|
rtx p;
|
|
|
|
|
|
|
|
|
|
/* Scan forward checking for register usage. If we hit INSN, we
|
|
|
|
|
are done. Otherwise, if we hit LOOP_END, wrap around to LOOP_START. */
|
|
|
|
|
for (p = scan_start; p != insn; p = NEXT_INSN (p))
|
|
|
|
|
{
|
|
|
|
|
if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
|
|
|
|
|
&& reg_overlap_mentioned_p (reg, PATTERN (p)))
|
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
|
|
if (p == loop_end)
|
|
|
|
|
p = loop_start;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* A "basic induction variable" or biv is a pseudo reg that is set
|
|
|
|
|
(within this loop) only by incrementing or decrementing it. */
|
|
|
|
|
/* A "general induction variable" or giv is a pseudo reg whose
|
|
|
|
|
value is a linear function of a biv. */
|
|
|
|
|
|
|
|
|
|
/* Bivs are recognized by `basic_induction_var';
|
|
|
|
|
Givs by `general_induct_var'. */
|
|
|
|
|
|
|
|
|
|
/* Indexed by register number, indicates whether or not register is an
|
|
|
|
|
induction variable, and if so what type. */
|
|
|
|
|
|
|
|
|
|
enum iv_mode *reg_iv_type;
|
|
|
|
|
|
|
|
|
|
/* Indexed by register number, contains pointer to `struct induction'
|
|
|
|
|
if register is an induction variable. This holds general info for
|
|
|
|
|
all induction variables. */
|
|
|
|
|
|
|
|
|
|
struct induction **reg_iv_info;
|
|
|
|
|
|
|
|
|
|
/* Indexed by register number, contains pointer to `struct iv_class'
|
|
|
|
|
if register is a basic induction variable. This holds info describing
|
|
|
|
|
the class (a related group) of induction variables that the biv belongs
|
|
|
|
|
to. */
|
|
|
|
|
|
|
|
|
|
struct iv_class **reg_biv_class;
|
|
|
|
|
|
|
|
|
|
/* The head of a list which links together (via the next field)
|
|
|
|
|
every iv class for the current loop. */
|
|
|
|
|
|
|
|
|
|
struct iv_class *loop_iv_list;
|
|
|
|
|
|
|
|
|
|
/* Communication with routines called via `note_stores'. */
|
|
|
|
|
|
|
|
|
|
static rtx note_insn;
|
|
|
|
|
|
|
|
|
|
/* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
|
|
|
|
|
|
|
|
|
|
static rtx addr_placeholder;
|
|
|
|
|
|
|
|
|
|
/* ??? Unfinished optimizations, and possible future optimizations,
|
|
|
|
|
for the strength reduction code. */
|
|
|
|
|
|
|
|
|
|
/* ??? There is one more optimization you might be interested in doing: to
|
|
|
|
|
allocate pseudo registers for frequently-accessed memory locations.
|
|
|
|
|
If the same memory location is referenced each time around, it might
|
|
|
|
|
be possible to copy it into a register before and out after.
|
|
|
|
|
This is especially useful when the memory location is a variable which
|
|
|
|
|
is in a stack slot because somewhere its address is taken. If the
|
|
|
|
|
loop doesn't contain a function call and the variable isn't volatile,
|
|
|
|
|
it is safe to keep the value in a register for the duration of the
|
|
|
|
|
loop. One tricky thing is that the copying of the value back from the
|
|
|
|
|
register has to be done on all exits from the loop. You need to check that
|
|
|
|
|
all the exits from the loop go to the same place. */
|
|
|
|
|
|
|
|
|
|
/* ??? The interaction of biv elimination, and recognition of 'constant'
|
|
|
|
|
bivs, may cause problems. */
|
|
|
|
|
|
|
|
|
|
/* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
|
|
|
|
|
performance problems.
|
|
|
|
|
|
|
|
|
|
Perhaps don't eliminate things that can be combined with an addressing
|
|
|
|
|
mode. Find all givs that have the same biv, mult_val, and add_val;
|
|
|
|
|
then for each giv, check to see if its only use dies in a following
|
|
|
|
|
memory address. If so, generate a new memory address and check to see
|
|
|
|
|
if it is valid. If it is valid, then store the modified memory address,
|
|
|
|
|
otherwise, mark the giv as not done so that it will get its own iv. */
|
|
|
|
|
|
|
|
|
|
/* ??? Could try to optimize branches when it is known that a biv is always
|
|
|
|
|
positive. */
|
|
|
|
|
|
|
|
|
|
/* ??? When replace a biv in a compare insn, we should replace with closest
|
|
|
|
|
giv so that an optimized branch can still be recognized by the combiner,
|
|
|
|
|
e.g. the VAX acb insn. */
|
|
|
|
|
|
|
|
|
|
/* ??? Many of the checks involving uid_luid could be simplified if regscan
|
|
|
|
|
was rerun in loop_optimize whenever a register was added or moved.
|
|
|
|
|
Also, some of the optimizations could be a little less conservative. */
|
|
|
|
|
|
|
|
|
|
/* Perform strength reduction and induction variable elimination. */
|
|
|
|
|
|
|
|
|
|
/* Pseudo registers created during this function will be beyond the last
|
|
|
|
|
valid index in several tables including n_times_set and regno_last_uid.
|
|
|
|
|
This does not cause a problem here, because the added registers cannot be
|
|
|
|
|
givs outside of their loop, and hence will never be reconsidered.
|
|
|
|
|
But scan_loop must check regnos to make sure they are in bounds. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
strength_reduce (scan_start, end, loop_top, insn_count,
|
|
|
|
|
loop_start, loop_end)
|
|
|
|
|
rtx scan_start;
|
|
|
|
|
rtx end;
|
|
|
|
|
rtx loop_top;
|
|
|
|
|
int insn_count;
|
|
|
|
|
rtx loop_start;
|
|
|
|
|
rtx loop_end;
|
|
|
|
|
{
|
|
|
|
|
rtx p;
|
|
|
|
|
rtx set;
|
|
|
|
|
rtx inc_val;
|
|
|
|
|
rtx mult_val;
|
|
|
|
|
rtx dest_reg;
|
|
|
|
|
/* This is 1 if current insn is not executed at least once for every loop
|
|
|
|
|
iteration. */
|
|
|
|
|
int not_every_iteration = 0;
|
|
|
|
|
/* This is 1 if current insn may be executed more than once for every
|
|
|
|
|
loop iteration. */
|
|
|
|
|
int maybe_multiple = 0;
|
|
|
|
|
/* Temporary list pointers for traversing loop_iv_list. */
|
|
|
|
|
struct iv_class *bl, **backbl;
|
|
|
|
|
/* Ratio of extra register life span we can justify
|
|
|
|
|
for saving an instruction. More if loop doesn't call subroutines
|
|
|
|
|
since in that case saving an insn makes more difference
|
|
|
|
|
and more registers are available. */
|
|
|
|
|
/* ??? could set this to last value of threshold in move_movables */
|
|
|
|
|
int threshold = (loop_has_call ? 1 : 2) * (3 + n_non_fixed_regs);
|
|
|
|
|
/* Map of pseudo-register replacements. */
|
|
|
|
|
rtx *reg_map;
|
|
|
|
|
int call_seen;
|
|
|
|
|
rtx test;
|
|
|
|
|
rtx end_insert_before;
|
|
|
|
|
int loop_depth = 0;
|
|
|
|
|
|
|
|
|
|
reg_iv_type = (enum iv_mode *) alloca (max_reg_before_loop
|
|
|
|
|
* sizeof (enum iv_mode *));
|
|
|
|
|
bzero ((char *) reg_iv_type, max_reg_before_loop * sizeof (enum iv_mode *));
|
|
|
|
|
reg_iv_info = (struct induction **)
|
|
|
|
|
alloca (max_reg_before_loop * sizeof (struct induction *));
|
|
|
|
|
bzero ((char *) reg_iv_info, (max_reg_before_loop
|
|
|
|
|
* sizeof (struct induction *)));
|
|
|
|
|
reg_biv_class = (struct iv_class **)
|
|
|
|
|
alloca (max_reg_before_loop * sizeof (struct iv_class *));
|
|
|
|
|
bzero ((char *) reg_biv_class, (max_reg_before_loop
|
|
|
|
|
* sizeof (struct iv_class *)));
|
|
|
|
|
|
|
|
|
|
loop_iv_list = 0;
|
|
|
|
|
addr_placeholder = gen_reg_rtx (Pmode);
|
|
|
|
|
|
|
|
|
|
/* Save insn immediately after the loop_end. Insns inserted after loop_end
|
|
|
|
|
must be put before this insn, so that they will appear in the right
|
|
|
|
|
order (i.e. loop order).
|
|
|
|
|
|
|
|
|
|
If loop_end is the end of the current function, then emit a
|
|
|
|
|
NOTE_INSN_DELETED after loop_end and set end_insert_before to the
|
|
|
|
|
dummy note insn. */
|
|
|
|
|
if (NEXT_INSN (loop_end) != 0)
|
|
|
|
|
end_insert_before = NEXT_INSN (loop_end);
|
|
|
|
|
else
|
|
|
|
|
end_insert_before = emit_note_after (NOTE_INSN_DELETED, loop_end);
|
|
|
|
|
|
|
|
|
|
/* Scan through loop to find all possible bivs. */
|
|
|
|
|
|
|
|
|
|
p = scan_start;
|
|
|
|
|
while (1)
|
|
|
|
|
{
|
|
|
|
|
p = NEXT_INSN (p);
|
|
|
|
|
/* At end of a straight-in loop, we are done.
|
|
|
|
|
At end of a loop entered at the bottom, scan the top. */
|
|
|
|
|
if (p == scan_start)
|
|
|
|
|
break;
|
|
|
|
|
if (p == end)
|
|
|
|
|
{
|
|
|
|
|
if (loop_top != 0)
|
|
|
|
|
p = loop_top;
|
|
|
|
|
else
|
|
|
|
|
break;
|
|
|
|
|
if (p == scan_start)
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (GET_CODE (p) == INSN
|
|
|
|
|
&& (set = single_set (p))
|
|
|
|
|
&& GET_CODE (SET_DEST (set)) == REG)
|
|
|
|
|
{
|
|
|
|
|
dest_reg = SET_DEST (set);
|
|
|
|
|
if (REGNO (dest_reg) < max_reg_before_loop
|
|
|
|
|
&& REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
|
|
|
|
|
&& reg_iv_type[REGNO (dest_reg)] != NOT_BASIC_INDUCT)
|
|
|
|
|
{
|
|
|
|
|
if (basic_induction_var (SET_SRC (set), GET_MODE (SET_SRC (set)),
|
|
|
|
|
dest_reg, p, &inc_val, &mult_val))
|
|
|
|
|
{
|
|
|
|
|
/* It is a possible basic induction variable.
|
|
|
|
|
Create and initialize an induction structure for it. */
|
|
|
|
|
|
|
|
|
|
struct induction *v
|
|
|
|
|
= (struct induction *) alloca (sizeof (struct induction));
|
|
|
|
|
|
|
|
|
|
record_biv (v, p, dest_reg, inc_val, mult_val,
|
|
|
|
|
not_every_iteration, maybe_multiple);
|
|
|
|
|
reg_iv_type[REGNO (dest_reg)] = BASIC_INDUCT;
|
|
|
|
|
}
|
|
|
|
|
else if (REGNO (dest_reg) < max_reg_before_loop)
|
|
|
|
|
reg_iv_type[REGNO (dest_reg)] = NOT_BASIC_INDUCT;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Past CODE_LABEL, we get to insns that may be executed multiple
|
|
|
|
|
times. The only way we can be sure that they can't is if every
|
|
|
|
|
every jump insn between here and the end of the loop either
|
|
|
|
|
returns, exits the loop, or is a forward jump. */
|
|
|
|
|
|
|
|
|
|
if (GET_CODE (p) == CODE_LABEL)
|
|
|
|
|
{
|
|
|
|
|
rtx insn = p;
|
|
|
|
|
|
|
|
|
|
maybe_multiple = 0;
|
|
|
|
|
|
|
|
|
|
while (1)
|
|
|
|
|
{
|
|
|
|
|
insn = NEXT_INSN (insn);
|
|
|
|
|
if (insn == scan_start)
|
|
|
|
|
break;
|
|
|
|
|
if (insn == end)
|
|
|
|
|
{
|
|
|
|
|
if (loop_top != 0)
|
|
|
|
|
insn = loop_top;
|
|
|
|
|
else
|
|
|
|
|
break;
|
|
|
|
|
if (insn == scan_start)
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (GET_CODE (insn) == JUMP_INSN
|
|
|
|
|
&& GET_CODE (PATTERN (insn)) != RETURN
|
|
|
|
|
&& (! condjump_p (insn)
|
|
|
|
|
|| (JUMP_LABEL (insn) != 0
|
|
|
|
|
&& (INSN_UID (JUMP_LABEL (insn)) >= max_uid_for_loop
|
|
|
|
|
|| INSN_UID (insn) >= max_uid_for_loop
|
|
|
|
|
|| (INSN_LUID (JUMP_LABEL (insn))
|
|
|
|
|
< INSN_LUID (insn))))))
|
|
|
|
|
{
|
|
|
|
|
maybe_multiple = 1;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Past a label or a jump, we get to insns for which we can't count
|
|
|
|
|
on whether or how many times they will be executed during each
|
|
|
|
|
iteration. */
|
|
|
|
|
/* This code appears in three places, once in scan_loop, and twice
|
|
|
|
|
in strength_reduce. */
|
|
|
|
|
if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
|
|
|
|
|
/* If we enter the loop in the middle, and scan around to the
|
|
|
|
|
beginning, don't set not_every_iteration for that.
|
|
|
|
|
This can be any kind of jump, since we want to know if insns
|
|
|
|
|
will be executed if the loop is executed. */
|
|
|
|
|
&& ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
|
|
|
|
|
&& ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
|
|
|
|
|
|| (NEXT_INSN (p) == loop_end && condjump_p (p)))))
|
|
|
|
|
not_every_iteration = 1;
|
|
|
|
|
|
|
|
|
|
else if (GET_CODE (p) == NOTE)
|
|
|
|
|
{
|
|
|
|
|
/* At the virtual top of a converted loop, insns are again known to
|
|
|
|
|
be executed each iteration: logically, the loop begins here
|
|
|
|
|
even though the exit code has been duplicated. */
|
|
|
|
|
if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
|
|
|
|
|
not_every_iteration = 0;
|
|
|
|
|
else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
|
|
|
|
|
loop_depth++;
|
|
|
|
|
else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
|
|
|
|
|
loop_depth--;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Unlike in the code motion pass where MAYBE_NEVER indicates that
|
|
|
|
|
an insn may never be executed, NOT_EVERY_ITERATION indicates whether
|
|
|
|
|
or not an insn is known to be executed each iteration of the
|
|
|
|
|
loop, whether or not any iterations are known to occur.
|
|
|
|
|
|
|
|
|
|
Therefore, if we have just passed a label and have no more labels
|
|
|
|
|
between here and the test insn of the loop, we know these insns
|
|
|
|
|
will be executed each iteration. This can also happen if we
|
|
|
|
|
have just passed a jump, for example, when there are nested loops. */
|
|
|
|
|
|
|
|
|
|
if (not_every_iteration && GET_CODE (p) == CODE_LABEL
|
|
|
|
|
&& no_labels_between_p (p, loop_end))
|
|
|
|
|
not_every_iteration = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Scan loop_iv_list to remove all regs that proved not to be bivs.
|
|
|
|
|
Make a sanity check against n_times_set. */
|
|
|
|
|
for (backbl = &loop_iv_list, bl = *backbl; bl; bl = bl->next)
|
|
|
|
|
{
|
|
|
|
|
if (reg_iv_type[bl->regno] != BASIC_INDUCT
|
|
|
|
|
/* Above happens if register modified by subreg, etc. */
|
|
|
|
|
/* Make sure it is not recognized as a basic induction var: */
|
|
|
|
|
|| n_times_set[bl->regno] != bl->biv_count
|
|
|
|
|
/* If never incremented, it is invariant that we decided not to
|
|
|
|
|
move. So leave it alone. */
|
|
|
|
|
|| ! bl->incremented)
|
|
|
|
|
{
|
|
|
|
|
if (loop_dump_stream)
|
|
|
|
|
fprintf (loop_dump_stream, "Reg %d: biv discarded, %s\n",
|
|
|
|
|
bl->regno,
|
|
|
|
|
(reg_iv_type[bl->regno] != BASIC_INDUCT
|
|
|
|
|
? "not induction variable"
|
|
|
|
|
: (! bl->incremented ? "never incremented"
|
|
|
|
|
: "count error")));
|
|
|
|
|
|
|
|
|
|
reg_iv_type[bl->regno] = NOT_BASIC_INDUCT;
|
|
|
|
|
*backbl = bl->next;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
backbl = &bl->next;
|
|
|
|
|
|
|
|
|
|
if (loop_dump_stream)
|
|
|
|
|
fprintf (loop_dump_stream, "Reg %d: biv verified\n", bl->regno);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Exit if there are no bivs. */
|
|
|
|
|
if (! loop_iv_list)
|
|
|
|
|
{
|
|
|
|
|
/* Can still unroll the loop anyways, but indicate that there is no
|
|
|
|
|
strength reduction info available. */
|
|
|
|
|
if (flag_unroll_loops)
|
|
|
|
|
unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 0);
|
|
|
|
|
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Find initial value for each biv by searching backwards from loop_start,
|
|
|
|
|
halting at first label. Also record any test condition. */
|
|
|
|
|
|
|
|
|
|
call_seen = 0;
|
|
|
|
|
for (p = loop_start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
|
|
|
|
|
{
|
|
|
|
|
note_insn = p;
|
|
|
|
|
|
|
|
|
|
if (GET_CODE (p) == CALL_INSN)
|
|
|
|
|
call_seen = 1;
|
|
|
|
|
|
|
|
|
|
if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
|
|
|
|
|
|| GET_CODE (p) == CALL_INSN)
|
|
|
|
|
note_stores (PATTERN (p), record_initial);
|
|
|
|
|
|
|
|
|
|
/* Record any test of a biv that branches around the loop if no store
|
|
|
|
|
between it and the start of loop. We only care about tests with
|
|
|
|
|
constants and registers and only certain of those. */
|
|
|
|
|
if (GET_CODE (p) == JUMP_INSN
|
|
|
|
|
&& JUMP_LABEL (p) != 0
|
|
|
|
|
&& next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop_end)
|
|
|
|
|
&& (test = get_condition_for_loop (p)) != 0
|
|
|
|
|
&& GET_CODE (XEXP (test, 0)) == REG
|
|
|
|
|
&& REGNO (XEXP (test, 0)) < max_reg_before_loop
|
|
|
|
|
&& (bl = reg_biv_class[REGNO (XEXP (test, 0))]) != 0
|
|
|
|
|
&& valid_initial_value_p (XEXP (test, 1), p, call_seen, loop_start)
|
|
|
|
|
&& bl->init_insn == 0)
|
|
|
|
|
{
|
|
|
|
|
/* If an NE test, we have an initial value! */
|
|
|
|
|
if (GET_CODE (test) == NE)
|
|
|
|
|
{
|
|
|
|
|
bl->init_insn = p;
|
|
|
|
|
bl->init_set = gen_rtx (SET, VOIDmode,
|
|
|
|
|
XEXP (test, 0), XEXP (test, 1));
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
bl->initial_test = test;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Look at the each biv and see if we can say anything better about its
|
|
|
|
|
initial value from any initializing insns set up above. (This is done
|
|
|
|
|
in two passes to avoid missing SETs in a PARALLEL.) */
|
|
|
|
|
for (bl = loop_iv_list; bl; bl = bl->next)
|
|
|
|
|
{
|
|
|
|
|
rtx src;
|
|
|
|
|
|
|
|
|
|
if (! bl->init_insn)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
src = SET_SRC (bl->init_set);
|
|
|
|
|
|
|
|
|
|
if (loop_dump_stream)
|
|
|
|
|
fprintf (loop_dump_stream,
|
|
|
|
|
"Biv %d initialized at insn %d: initial value ",
|
|
|
|
|
bl->regno, INSN_UID (bl->init_insn));
|
|
|
|
|
|
|
|
|
|
if ((GET_MODE (src) == GET_MODE (regno_reg_rtx[bl->regno])
|
|
|
|
|
|| GET_MODE (src) == VOIDmode)
|
|
|
|
|
&& valid_initial_value_p (src, bl->init_insn, call_seen, loop_start))
|
|
|
|
|
{
|
|
|
|
|
bl->initial_value = src;
|
|
|
|
|
|
|
|
|
|
if (loop_dump_stream)
|
|
|
|
|
{
|
|
|
|
|
if (GET_CODE (src) == CONST_INT)
|
|
|
|
|
fprintf (loop_dump_stream, "%d\n", INTVAL (src));
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
print_rtl (loop_dump_stream, src);
|
|
|
|
|
fprintf (loop_dump_stream, "\n");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Biv initial value is not simple move,
|
|
|
|
|
so let it keep initial value of "itself". */
|
|
|
|
|
|
|
|
|
|
if (loop_dump_stream)
|
|
|
|
|
fprintf (loop_dump_stream, "is complex\n");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Search the loop for general induction variables. */
|
|
|
|
|
|
|
|
|
|
/* A register is a giv if: it is only set once, it is a function of a
|
|
|
|
|
biv and a constant (or invariant), and it is not a biv. */
|
|
|
|
|
|
|
|
|
|
not_every_iteration = 0;
|
|
|
|
|
loop_depth = 0;
|
|
|
|
|
p = scan_start;
|
|
|
|
|
while (1)
|
|
|
|
|
{
|
|
|
|
|
p = NEXT_INSN (p);
|
|
|
|
|
/* At end of a straight-in loop, we are done.
|
|
|
|
|
At end of a loop entered at the bottom, scan the top. */
|
|
|
|
|
if (p == scan_start)
|
|
|
|
|
break;
|
|
|
|
|
if (p == end)
|
|
|
|
|
{
|
|
|
|
|
if (loop_top != 0)
|
|
|
|
|
p = loop_top;
|
|
|
|
|
else
|
|
|
|
|
break;
|
|
|
|
|
if (p == scan_start)
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Look for a general induction variable in a register. */
|
|
|
|
|
if (GET_CODE (p) == INSN
|
|
|
|
|
&& (set = single_set (p))
|
|
|
|
|
&& GET_CODE (SET_DEST (set)) == REG
|
|
|
|
|
&& ! may_not_optimize[REGNO (SET_DEST (set))])
|
|
|
|
|
{
|
|
|
|
|
rtx src_reg;
|
|
|
|
|
rtx add_val;
|
|
|
|
|
rtx mult_val;
|
|
|
|
|
int benefit;
|
|
|
|
|
rtx regnote = 0;
|
|
|
|
|
|
|
|
|
|
dest_reg = SET_DEST (set);
|
|
|
|
|
if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
if (/* SET_SRC is a giv. */
|
|
|
|
|
((benefit = general_induction_var (SET_SRC (set),
|
|
|
|
|
&src_reg, &add_val,
|
|
|
|
|
&mult_val))
|
|
|
|
|
/* Equivalent expression is a giv. */
|
|
|
|
|
|| ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
|
|
|
|
|
&& (benefit = general_induction_var (XEXP (regnote, 0),
|
|
|
|
|
&src_reg,
|
|
|
|
|
&add_val, &mult_val))))
|
|
|
|
|
/* Don't try to handle any regs made by loop optimization.
|
|
|
|
|
We have nothing on them in regno_first_uid, etc. */
|
|
|
|
|
&& REGNO (dest_reg) < max_reg_before_loop
|
|
|
|
|
/* Don't recognize a BASIC_INDUCT_VAR here. */
|
|
|
|
|
&& dest_reg != src_reg
|
|
|
|
|
/* This must be the only place where the register is set. */
|
|
|
|
|
&& (n_times_set[REGNO (dest_reg)] == 1
|
|
|
|
|
/* or all sets must be consecutive and make a giv. */
|
|
|
|
|
|| (benefit = consec_sets_giv (benefit, p,
|
|
|
|
|
src_reg, dest_reg,
|
|
|
|
|
&add_val, &mult_val))))
|
|
|
|
|
{
|
|
|
|
|
int count;
|
|
|
|
|
struct induction *v
|
|
|
|
|
= (struct induction *) alloca (sizeof (struct induction));
|
|
|
|
|
rtx temp;
|
|
|
|
|
|
|
|
|
|
/* If this is a library call, increase benefit. */
|
|
|
|
|
if (find_reg_note (p, REG_RETVAL, NULL_RTX))
|
|
|
|
|
benefit += libcall_benefit (p);
|
|
|
|
|
|
|
|
|
|
/* Skip the consecutive insns, if there are any. */
|
|
|
|
|
for (count = n_times_set[REGNO (dest_reg)] - 1;
|
|
|
|
|
count > 0; count--)
|
|
|
|
|
{
|
|
|
|
|
/* If first insn of libcall sequence, skip to end.
|
|
|
|
|
Do this at start of loop, since INSN is guaranteed to
|
|
|
|
|
be an insn here. */
|
|
|
|
|
if (GET_CODE (p) != NOTE
|
|
|
|
|
&& (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
|
|
|
|
|
p = XEXP (temp, 0);
|
|
|
|
|
|
|
|
|
|
do p = NEXT_INSN (p);
|
|
|
|
|
while (GET_CODE (p) == NOTE);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
record_giv (v, p, src_reg, dest_reg, mult_val, add_val, benefit,
|
|
|
|
|
DEST_REG, not_every_iteration, NULL_PTR, loop_start,
|
|
|
|
|
loop_end);
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifndef DONT_REDUCE_ADDR
|
|
|
|
|
/* Look for givs which are memory addresses. */
|
|
|
|
|
/* This resulted in worse code on a VAX 8600. I wonder if it
|
|
|
|
|
still does. */
|
|
|
|
|
if (GET_CODE (p) == INSN)
|
|
|
|
|
find_mem_givs (PATTERN (p), p, not_every_iteration, loop_start,
|
|
|
|
|
loop_end);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Update the status of whether giv can derive other givs. This can
|
|
|
|
|
change when we pass a label or an insn that updates a biv. */
|
|
|
|
|
if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
|
|
|
|
|
|| GET_CODE (p) == CODE_LABEL)
|
|
|
|
|
update_giv_derive (p);
|
|
|
|
|
|
|
|
|
|
/* Past a label or a jump, we get to insns for which we can't count
|
|
|
|
|
on whether or how many times they will be executed during each
|
|
|
|
|
iteration. */
|
|
|
|
|
/* This code appears in three places, once in scan_loop, and twice
|
|
|
|
|
in strength_reduce. */
|
|
|
|
|
if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
|
|
|
|
|
/* If we enter the loop in the middle, and scan around
|
|
|
|
|
to the beginning, don't set not_every_iteration for that.
|
|
|
|
|
This can be any kind of jump, since we want to know if insns
|
|
|
|
|
will be executed if the loop is executed. */
|
|
|
|
|
&& ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
|
|
|
|
|
&& ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
|
|
|
|
|
|| (NEXT_INSN (p) == loop_end && condjump_p (p)))))
|
|
|
|
|
not_every_iteration = 1;
|
|
|
|
|
|
|
|
|
|
else if (GET_CODE (p) == NOTE)
|
|
|
|
|
{
|
|
|
|
|
/* At the virtual top of a converted loop, insns are again known to
|
|
|
|
|
be executed each iteration: logically, the loop begins here
|
|
|
|
|
even though the exit code has been duplicated. */
|
|
|
|
|
if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
|
|
|
|
|
not_every_iteration = 0;
|
|
|
|
|
else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
|
|
|
|
|
loop_depth++;
|
|
|
|
|
else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
|
|
|
|
|
loop_depth--;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Unlike in the code motion pass where MAYBE_NEVER indicates that
|
|
|
|
|
an insn may never be executed, NOT_EVERY_ITERATION indicates whether
|
|
|
|
|
or not an insn is known to be executed each iteration of the
|
|
|
|
|
loop, whether or not any iterations are known to occur.
|
|
|
|
|
|
|
|
|
|
Therefore, if we have just passed a label and have no more labels
|
|
|
|
|
between here and the test insn of the loop, we know these insns
|
|
|
|
|
will be executed each iteration. */
|
|
|
|
|
|
|
|
|
|
if (not_every_iteration && GET_CODE (p) == CODE_LABEL
|
|
|
|
|
&& no_labels_between_p (p, loop_end))
|
|
|
|
|
not_every_iteration = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Try to calculate and save the number of loop iterations. This is
|
|
|
|
|
set to zero if the actual number can not be calculated. This must
|
|
|
|
|
be called after all giv's have been identified, since otherwise it may
|
|
|
|
|
fail if the iteration variable is a giv. */
|
|
|
|
|
|
|
|
|
|
loop_n_iterations = loop_iterations (loop_start, loop_end);
|
|
|
|
|
|
|
|
|
|
/* Now for each giv for which we still don't know whether or not it is
|
|
|
|
|
replaceable, check to see if it is replaceable because its final value
|
|
|
|
|
can be calculated. This must be done after loop_iterations is called,
|
|
|
|
|
so that final_giv_value will work correctly. */
|
|
|
|
|
|
|
|
|
|
for (bl = loop_iv_list; bl; bl = bl->next)
|
|
|
|
|
{
|
|
|
|
|
struct induction *v;
|
|
|
|
|
|
|
|
|
|
for (v = bl->giv; v; v = v->next_iv)
|
|
|
|
|
if (! v->replaceable && ! v->not_replaceable)
|
|
|
|
|
check_final_value (v, loop_start, loop_end);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Try to prove that the loop counter variable (if any) is always
|
|
|
|
|
nonnegative; if so, record that fact with a REG_NONNEG note
|
|
|
|
|
so that "decrement and branch until zero" insn can be used. */
|
|
|
|
|
check_dbra_loop (loop_end, insn_count, loop_start);
|
|
|
|
|
|
|
|
|
|
/* Create reg_map to hold substitutions for replaceable giv regs. */
|
|
|
|
|
reg_map = (rtx *) alloca (max_reg_before_loop * sizeof (rtx));
|
|
|
|
|
bzero ((char *) reg_map, max_reg_before_loop * sizeof (rtx));
|
|
|
|
|
|
|
|
|
|
/* Examine each iv class for feasibility of strength reduction/induction
|
|
|
|
|
variable elimination. */
|
|
|
|
|
|
|
|
|
|
for (bl = loop_iv_list; bl; bl = bl->next)
|
|
|
|
|
{
|
|
|
|
|
struct induction *v;
|
|
|
|
|
int benefit;
|
|
|
|
|
int all_reduced;
|
|
|
|
|
rtx final_value = 0;
|
|
|
|
|
|
|
|
|
|
/* Test whether it will be possible to eliminate this biv
|
|
|
|
|
provided all givs are reduced. This is possible if either
|
|
|
|
|
the reg is not used outside the loop, or we can compute
|
|
|
|
|
what its final value will be.
|
|
|
|
|
|
|
|
|
|
For architectures with a decrement_and_branch_until_zero insn,
|
|
|
|
|
don't do this if we put a REG_NONNEG note on the endtest for
|
|
|
|
|
this biv. */
|
|
|
|
|
|
|
|
|
|
/* Compare against bl->init_insn rather than loop_start.
|
|
|
|
|
We aren't concerned with any uses of the biv between
|
|
|
|
|
init_insn and loop_start since these won't be affected
|
|
|
|
|
by the value of the biv elsewhere in the function, so
|
|
|
|
|
long as init_insn doesn't use the biv itself.
|
|
|
|
|
March 14, 1989 -- self@bayes.arc.nasa.gov */
|
|
|
|
|
|
|
|
|
|
if ((uid_luid[regno_last_uid[bl->regno]] < INSN_LUID (loop_end)
|
|
|
|
|
&& bl->init_insn
|
|
|
|
|
&& INSN_UID (bl->init_insn) < max_uid_for_loop
|
|
|
|
|
&& uid_luid[regno_first_uid[bl->regno]] >= INSN_LUID (bl->init_insn)
|
|
|
|
|
#ifdef HAVE_decrement_and_branch_until_zero
|
|
|
|
|
&& ! bl->nonneg
|
|
|
|
|
#endif
|
|
|
|
|
&& ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
|
|
|
|
|
|| ((final_value = final_biv_value (bl, loop_start, loop_end))
|
|
|
|
|
#ifdef HAVE_decrement_and_branch_until_zero
|
|
|
|
|
&& ! bl->nonneg
|
|
|
|
|
#endif
|
|
|
|
|
))
|
|
|
|
|
bl->eliminable = maybe_eliminate_biv (bl, loop_start, end, 0,
|
|
|
|
|
threshold, insn_count);
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (loop_dump_stream)
|
|
|
|
|
{
|
|
|
|
|
fprintf (loop_dump_stream,
|
|
|
|
|
"Cannot eliminate biv %d.\n",
|
|
|
|
|
bl->regno);
|
|
|
|
|
fprintf (loop_dump_stream,
|
|
|
|
|
"First use: insn %d, last use: insn %d.\n",
|
|
|
|
|
regno_first_uid[bl->regno],
|
|
|
|
|
regno_last_uid[bl->regno]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Combine all giv's for this iv_class. */
|
|
|
|
|
combine_givs (bl);
|
|
|
|
|
|
|
|
|
|
/* This will be true at the end, if all givs which depend on this
|
|
|
|
|
biv have been strength reduced.
|
|
|
|
|
We can't (currently) eliminate the biv unless this is so. */
|
|
|
|
|
all_reduced = 1;
|
|
|
|
|
|
|
|
|
|
/* Check each giv in this class to see if we will benefit by reducing
|
|
|
|
|
it. Skip giv's combined with others. */
|
|
|
|
|
for (v = bl->giv; v; v = v->next_iv)
|
|
|
|
|
{
|
|
|
|
|
struct induction *tv;
|
|
|
|
|
|
|
|
|
|
if (v->ignore || v->same)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
benefit = v->benefit;
|
|
|
|
|
|
|
|
|
|
/* Reduce benefit if not replaceable, since we will insert
|
|
|
|
|
a move-insn to replace the insn that calculates this giv.
|
|
|
|
|
Don't do this unless the giv is a user variable, since it
|
|
|
|
|
will often be marked non-replaceable because of the duplication
|
|
|
|
|
of the exit code outside the loop. In such a case, the copies
|
|
|
|
|
we insert are dead and will be deleted. So they don't have
|
|
|
|
|
a cost. Similar situations exist. */
|
|
|
|
|
/* ??? The new final_[bg]iv_value code does a much better job
|
|
|
|
|
of finding replaceable giv's, and hence this code may no longer
|
|
|
|
|
be necessary. */
|
|
|
|
|
if (! v->replaceable && ! bl->eliminable
|
|
|
|
|
&& REG_USERVAR_P (v->dest_reg))
|
|
|
|
|
benefit -= copy_cost;
|
|
|
|
|
|
|
|
|
|
/* Decrease the benefit to count the add-insns that we will
|
|
|
|
|
insert to increment the reduced reg for the giv. */
|
|
|
|
|
benefit -= add_cost * bl->biv_count;
|
|
|
|
|
|
|
|
|
|
/* Decide whether to strength-reduce this giv or to leave the code
|
|
|
|
|
unchanged (recompute it from the biv each time it is used).
|
|
|
|
|
This decision can be made independently for each giv. */
|
|
|
|
|
|
|
|
|
|
/* ??? Perhaps attempt to guess whether autoincrement will handle
|
|
|
|
|
some of the new add insns; if so, can increase BENEFIT
|
|
|
|
|
(undo the subtraction of add_cost that was done above). */
|
|
|
|
|
|
|
|
|
|
/* If an insn is not to be strength reduced, then set its ignore
|
|
|
|
|
flag, and clear all_reduced. */
|
|
|
|
|
|
|
|
|
|
/* A giv that depends on a reversed biv must be reduced if it is
|
|
|
|
|
used after the loop exit, otherwise, it would have the wrong
|
|
|
|
|
value after the loop exit. To make it simple, just reduce all
|
|
|
|
|
of such giv's whether or not we know they are used after the loop
|
|
|
|
|
exit. */
|
|
|
|
|
|
|
|
|
|
if (v->lifetime * threshold * benefit < insn_count
|
|
|
|
|
&& ! bl->reversed)
|
|
|
|
|
{
|
|
|
|
|
if (loop_dump_stream)
|
|
|
|
|
fprintf (loop_dump_stream,
|
|
|
|
|
"giv of insn %d not worth while, %d vs %d.\n",
|
|
|
|
|
INSN_UID (v->insn),
|
|
|
|
|
v->lifetime * threshold * benefit, insn_count);
|
|
|
|
|
v->ignore = 1;
|
|
|
|
|
all_reduced = 0;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Check that we can increment the reduced giv without a
|
|
|
|
|
multiply insn. If not, reject it. */
|
|
|
|
|
|
|
|
|
|
for (tv = bl->biv; tv; tv = tv->next_iv)
|
|
|
|
|
if (tv->mult_val == const1_rtx
|
|
|
|
|
&& ! product_cheap_p (tv->add_val, v->mult_val))
|
|
|
|
|
{
|
|
|
|
|
if (loop_dump_stream)
|
|
|
|
|
fprintf (loop_dump_stream,
|
|
|
|
|
"giv of insn %d: would need a multiply.\n",
|
|
|
|
|
INSN_UID (v->insn));
|
|
|
|
|
v->ignore = 1;
|
|
|
|
|
all_reduced = 0;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Reduce each giv that we decided to reduce. */
|
|
|
|
|
|
|
|
|
|
for (v = bl->giv; v; v = v->next_iv)
|
|
|
|
|
{
|
|
|
|
|
struct induction *tv;
|
|
|
|
|
if (! v->ignore && v->same == 0)
|
|
|
|
|
{
|
|
|
|
|
v->new_reg = gen_reg_rtx (v->mode);
|
|
|
|
|
|
|
|
|
|
/* For each place where the biv is incremented,
|
|
|
|
|
add an insn to increment the new, reduced reg for the giv. */
|
|
|
|
|
for (tv = bl->biv; tv; tv = tv->next_iv)
|
|
|
|
|
{
|
|
|
|
|
if (tv->mult_val == const1_rtx)
|
|
|
|
|
emit_iv_add_mult (tv->add_val, v->mult_val,
|
|
|
|
|
v->new_reg, v->new_reg, tv->insn);
|
|
|
|
|
else /* tv->mult_val == const0_rtx */
|
|
|
|
|
/* A multiply is acceptable here
|
|
|
|
|
since this is presumed to be seldom executed. */
|
|
|
|
|
emit_iv_add_mult (tv->add_val, v->mult_val,
|
|
|
|
|
v->add_val, v->new_reg, tv->insn);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Add code at loop start to initialize giv's reduced reg. */
|
|
|
|
|
|
|
|
|
|
emit_iv_add_mult (bl->initial_value, v->mult_val,
|
|
|
|
|
v->add_val, v->new_reg, loop_start);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Rescan all givs. If a giv is the same as a giv not reduced, mark it
|
|
|
|
|
as not reduced.
|
|
|
|
|
|
|
|
|
|
For each giv register that can be reduced now: if replaceable,
|
|
|
|
|
substitute reduced reg wherever the old giv occurs;
|
|
|
|
|
else add new move insn "giv_reg = reduced_reg".
|
|
|
|
|
|
|
|
|
|
Also check for givs whose first use is their definition and whose
|
|
|
|
|
last use is the definition of another giv. If so, it is likely
|
|
|
|
|
dead and should not be used to eliminate a biv. */
|
|
|
|
|
for (v = bl->giv; v; v = v->next_iv)
|
|
|
|
|
{
|
|
|
|
|
if (v->same && v->same->ignore)
|
|
|
|
|
v->ignore = 1;
|
|
|
|
|
|
|
|
|
|
if (v->ignore)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
if (v->giv_type == DEST_REG
|
|
|
|
|
&& regno_first_uid[REGNO (v->dest_reg)] == INSN_UID (v->insn))
|
|
|
|
|
{
|
|
|
|
|
struct induction *v1;
|
|
|
|
|
|
|
|
|
|
for (v1 = bl->giv; v1; v1 = v1->next_iv)
|
|
|
|
|
if (regno_last_uid[REGNO (v->dest_reg)] == INSN_UID (v1->insn))
|
|
|
|
|
v->maybe_dead = 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Update expression if this was combined, in case other giv was
|
|
|
|
|
replaced. */
|
|
|
|
|
if (v->same)
|
|
|
|
|
v->new_reg = replace_rtx (v->new_reg,
|
|
|
|
|
v->same->dest_reg, v->same->new_reg);
|
|
|
|
|
|
|
|
|
|
if (v->giv_type == DEST_ADDR)
|
|
|
|
|
/* Store reduced reg as the address in the memref where we found
|
|
|
|
|
this giv. */
|
|
|
|
|
validate_change (v->insn, v->location, v->new_reg, 0);
|
|
|
|
|
else if (v->replaceable)
|
|
|
|
|
{
|
|
|
|
|
reg_map[REGNO (v->dest_reg)] = v->new_reg;
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
/* I can no longer duplicate the original problem. Perhaps
|
|
|
|
|
this is unnecessary now? */
|
|
|
|
|
|
|
|
|
|
/* Replaceable; it isn't strictly necessary to delete the old
|
|
|
|
|
insn and emit a new one, because v->dest_reg is now dead.
|
|
|
|
|
|
|
|
|
|
However, especially when unrolling loops, the special
|
|
|
|
|
handling for (set REG0 REG1) in the second cse pass may
|
|
|
|
|
make v->dest_reg live again. To avoid this problem, emit
|
|
|
|
|
an insn to set the original giv reg from the reduced giv.
|
|
|
|
|
We can not delete the original insn, since it may be part
|
|
|
|
|
of a LIBCALL, and the code in flow that eliminates dead
|
|
|
|
|
libcalls will fail if it is deleted. */
|
|
|
|
|
emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
|
|
|
|
|
v->insn);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Not replaceable; emit an insn to set the original giv reg from
|
|
|
|
|
the reduced giv, same as above. */
|
|
|
|
|
emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
|
|
|
|
|
v->insn);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* When a loop is reversed, givs which depend on the reversed
|
|
|
|
|
biv, and which are live outside the loop, must be set to their
|
|
|
|
|
correct final value. This insn is only needed if the giv is
|
|
|
|
|
not replaceable. The correct final value is the same as the
|
|
|
|
|
value that the giv starts the reversed loop with. */
|
|
|
|
|
if (bl->reversed && ! v->replaceable)
|
|
|
|
|
emit_iv_add_mult (bl->initial_value, v->mult_val,
|
|
|
|
|
v->add_val, v->dest_reg, end_insert_before);
|
|
|
|
|
else if (v->final_value)
|
|
|
|
|
{
|
|
|
|
|
rtx insert_before;
|
|
|
|
|
|
|
|
|
|
/* If the loop has multiple exits, emit the insn before the
|
|
|
|
|
loop to ensure that it will always be executed no matter
|
|
|
|
|
how the loop exits. Otherwise, emit the insn after the loop,
|
|
|
|
|
since this is slightly more efficient. */
|
|
|
|
|
if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
|
|
|
|
|
insert_before = loop_start;
|
|
|
|
|
else
|
|
|
|
|
insert_before = end_insert_before;
|
|
|
|
|
emit_insn_before (gen_move_insn (v->dest_reg, v->final_value),
|
|
|
|
|
insert_before);
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
/* If the insn to set the final value of the giv was emitted
|
|
|
|
|
before the loop, then we must delete the insn inside the loop
|
|
|
|
|
that sets it. If this is a LIBCALL, then we must delete
|
|
|
|
|
every insn in the libcall. Note, however, that
|
|
|
|
|
final_giv_value will only succeed when there are multiple
|
|
|
|
|
exits if the giv is dead at each exit, hence it does not
|
|
|
|
|
matter that the original insn remains because it is dead
|
|
|
|
|
anyways. */
|
|
|
|
|
/* Delete the insn inside the loop that sets the giv since
|
|
|
|
|
the giv is now set before (or after) the loop. */
|
|
|
|
|
delete_insn (v->insn);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (loop_dump_stream)
|
|
|
|
|
{
|
|
|
|
|
fprintf (loop_dump_stream, "giv at %d reduced to ",
|
|
|
|
|
INSN_UID (v->insn));
|
|
|
|
|
print_rtl (loop_dump_stream, v->new_reg);
|
|
|
|
|
fprintf (loop_dump_stream, "\n");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* All the givs based on the biv bl have been reduced if they
|
|
|
|
|
merit it. */
|
|
|
|
|
|
|
|
|
|
/* For each giv not marked as maybe dead that has been combined with a
|
|
|
|
|
second giv, clear any "maybe dead" mark on that second giv.
|
|
|
|
|
v->new_reg will either be or refer to the register of the giv it
|
|
|
|
|
combined with.
|
|
|
|
|
|
|
|
|
|
Doing this clearing avoids problems in biv elimination where a
|
|
|
|
|
giv's new_reg is a complex value that can't be put in the insn but
|
|
|
|
|
the giv combined with (with a reg as new_reg) is marked maybe_dead.
|
|
|
|
|
Since the register will be used in either case, we'd prefer it be
|
|
|
|
|
used from the simpler giv. */
|
|
|
|
|
|
|
|
|
|
for (v = bl->giv; v; v = v->next_iv)
|
|
|
|
|
if (! v->maybe_dead && v->same)
|
|
|
|
|
v->same->maybe_dead = 0;
|
|
|
|
|
|
|
|
|
|
/* Try to eliminate the biv, if it is a candidate.
|
|
|
|
|
This won't work if ! all_reduced,
|
|
|
|
|
since the givs we planned to use might not have been reduced.
|
|
|
|
|
|
|
|
|
|
We have to be careful that we didn't initially think we could eliminate
|
|
|
|
|
this biv because of a giv that we now think may be dead and shouldn't
|
|
|
|
|
be used as a biv replacement.
|
|
|
|
|
|
|
|
|
|
Also, there is the possibility that we may have a giv that looks
|
|
|
|
|
like it can be used to eliminate a biv, but the resulting insn
|
|
|
|
|
isn't valid. This can happen, for example, on the 88k, where a
|
|
|
|
|
JUMP_INSN can compare a register only with zero. Attempts to
|
|
|
|
|
replace it with a compare with a constant will fail.
|
|
|
|
|
|
|
|
|
|
Note that in cases where this call fails, we may have replaced some
|
|
|
|
|
of the occurrences of the biv with a giv, but no harm was done in
|
|
|
|
|
doing so in the rare cases where it can occur. */
|
|
|
|
|
|
|
|
|
|
if (all_reduced == 1 && bl->eliminable
|
|
|
|
|
&& maybe_eliminate_biv (bl, loop_start, end, 1,
|
|
|
|
|
threshold, insn_count))
|
|
|
|
|
|
|
|
|
|
{
|
|
|
|
|
/* ?? If we created a new test to bypass the loop entirely,
|
|
|
|
|
or otherwise drop straight in, based on this test, then
|
|
|
|
|
we might want to rewrite it also. This way some later
|
|
|
|
|
pass has more hope of removing the initialization of this
|
|
|
|
|
biv entirely. */
|
|
|
|
|
|
|
|
|
|
/* If final_value != 0, then the biv may be used after loop end
|
|
|
|
|
and we must emit an insn to set it just in case.
|
|
|
|
|
|
|
|
|
|
Reversed bivs already have an insn after the loop setting their
|
|
|
|
|
value, so we don't need another one. We can't calculate the
|
|
|
|
|
proper final value for such a biv here anyways. */
|
|
|
|
|
if (final_value != 0 && ! bl->reversed)
|
|
|
|
|
{
|
|
|
|
|
rtx insert_before;
|
|
|
|
|
|
|
|
|
|
/* If the loop has multiple exits, emit the insn before the
|
|
|
|
|
loop to ensure that it will always be executed no matter
|
|
|
|
|
how the loop exits. Otherwise, emit the insn after the
|
|
|
|
|
loop, since this is slightly more efficient. */
|
|
|
|
|
if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
|
|
|
|
|
insert_before = loop_start;
|
|
|
|
|
else
|
|
|
|
|
insert_before = end_insert_before;
|
|
|
|
|
|
|
|
|
|
emit_insn_before (gen_move_insn (bl->biv->dest_reg, final_value),
|
|
|
|
|
end_insert_before);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
/* Delete all of the instructions inside the loop which set
|
|
|
|
|
the biv, as they are all dead. If is safe to delete them,
|
|
|
|
|
because an insn setting a biv will never be part of a libcall. */
|
|
|
|
|
/* However, deleting them will invalidate the regno_last_uid info,
|
|
|
|
|
so keeping them around is more convenient. Final_biv_value
|
|
|
|
|
will only succeed when there are multiple exits if the biv
|
|
|
|
|
is dead at each exit, hence it does not matter that the original
|
|
|
|
|
insn remains, because it is dead anyways. */
|
|
|
|
|
for (v = bl->biv; v; v = v->next_iv)
|
|
|
|
|
delete_insn (v->insn);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
if (loop_dump_stream)
|
|
|
|
|
fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
|
|
|
|
|
bl->regno);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Go through all the instructions in the loop, making all the
|
|
|
|
|
register substitutions scheduled in REG_MAP. */
|
|
|
|
|
|
|
|
|
|
for (p = loop_start; p != end; p = NEXT_INSN (p))
|
|
|
|
|
if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
|
|
|
|
|
|| GET_CODE (p) == CALL_INSN)
|
|
|
|
|
{
|
|
|
|
|
replace_regs (PATTERN (p), reg_map, max_reg_before_loop, 0);
|
|
|
|
|
replace_regs (REG_NOTES (p), reg_map, max_reg_before_loop, 0);
|
|
|
|
|
INSN_CODE (p) = -1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Unroll loops from within strength reduction so that we can use the
|
|
|
|
|
induction variable information that strength_reduce has already
|
|
|
|
|
collected. */
|
|
|
|
|
|
|
|
|
|
if (flag_unroll_loops)
|
|
|
|
|
unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 1);
|
|
|
|
|
|
|
|
|
|
if (loop_dump_stream)
|
|
|
|
|
fprintf (loop_dump_stream, "\n");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return 1 if X is a valid source for an initial value (or as value being
|
|
|
|
|
compared against in an initial test).
|
|
|
|
|
|
|
|
|
|
X must be either a register or constant and must not be clobbered between
|
|
|
|
|
the current insn and the start of the loop.
|
|
|
|
|
|
|
|
|
|
INSN is the insn containing X. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
valid_initial_value_p (x, insn, call_seen, loop_start)
|
|
|
|
|
rtx x;
|
|
|
|
|
rtx insn;
|
|
|
|
|
int call_seen;
|
|
|
|
|
rtx loop_start;
|
|
|
|
|
{
|
|
|
|
|
if (CONSTANT_P (x))
|
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
|
|
/* Only consider pseudos we know about initialized in insns whose luids
|
|
|
|
|
we know. */
|
|
|
|
|
if (GET_CODE (x) != REG
|
|
|
|
|
|| REGNO (x) >= max_reg_before_loop)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* Don't use call-clobbered registers across a call which clobbers it. On
|
|
|
|
|
some machines, don't use any hard registers at all. */
|
|
|
|
|
if (REGNO (x) < FIRST_PSEUDO_REGISTER
|
|
|
|
|
#ifndef SMALL_REGISTER_CLASSES
|
|
|
|
|
&& call_used_regs[REGNO (x)] && call_seen
|
|
|
|
|
#endif
|
|
|
|
|
)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* Don't use registers that have been clobbered before the start of the
|
|
|
|
|
loop. */
|
|
|
|
|
if (reg_set_between_p (x, insn, loop_start))
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Scan X for memory refs and check each memory address
|
|
|
|
|
as a possible giv. INSN is the insn whose pattern X comes from.
|
|
|
|
|
NOT_EVERY_ITERATION is 1 if the insn might not be executed during
|
|
|
|
|
every loop iteration. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
find_mem_givs (x, insn, not_every_iteration, loop_start, loop_end)
|
|
|
|
|
rtx x;
|
|
|
|
|
rtx insn;
|
|
|
|
|
int not_every_iteration;
|
|
|
|
|
rtx loop_start, loop_end;
|
|
|
|
|
{
|
|
|
|
|
register int i, j;
|
|
|
|
|
register enum rtx_code code;
|
|
|
|
|
register char *fmt;
|
|
|
|
|
|
|
|
|
|
if (x == 0)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
code = GET_CODE (x);
|
|
|
|
|
switch (code)
|
|
|
|
|
{
|
|
|
|
|
case REG:
|
|
|
|
|
case CONST_INT:
|
|
|
|
|
case CONST:
|
|
|
|
|
case CONST_DOUBLE:
|
|
|
|
|
case SYMBOL_REF:
|
|
|
|
|
case LABEL_REF:
|
|
|
|
|
case PC:
|
|
|
|
|
case CC0:
|
|
|
|
|
case ADDR_VEC:
|
|
|
|
|
case ADDR_DIFF_VEC:
|
|
|
|
|
case USE:
|
|
|
|
|
case CLOBBER:
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
case MEM:
|
|
|
|
|
{
|
|
|
|
|
rtx src_reg;
|
|
|
|
|
rtx add_val;
|
|
|
|
|
rtx mult_val;
|
|
|
|
|
int benefit;
|
|
|
|
|
|
|
|
|
|
benefit = general_induction_var (XEXP (x, 0),
|
|
|
|
|
&src_reg, &add_val, &mult_val);
|
|
|
|
|
|
|
|
|
|
/* Don't make a DEST_ADDR giv with mult_val == 1 && add_val == 0.
|
|
|
|
|
Such a giv isn't useful. */
|
|
|
|
|
if (benefit > 0 && (mult_val != const1_rtx || add_val != const0_rtx))
|
|
|
|
|
{
|
|
|
|
|
/* Found one; record it. */
|
|
|
|
|
struct induction *v
|
|
|
|
|
= (struct induction *) oballoc (sizeof (struct induction));
|
|
|
|
|
|
|
|
|
|
record_giv (v, insn, src_reg, addr_placeholder, mult_val,
|
|
|
|
|
add_val, benefit, DEST_ADDR, not_every_iteration,
|
|
|
|
|
&XEXP (x, 0), loop_start, loop_end);
|
|
|
|
|
|
|
|
|
|
v->mem_mode = GET_MODE (x);
|
|
|
|
|
}
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Recursively scan the subexpressions for other mem refs. */
|
|
|
|
|
|
|
|
|
|
fmt = GET_RTX_FORMAT (code);
|
|
|
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
|
|
|
|
if (fmt[i] == 'e')
|
|
|
|
|
find_mem_givs (XEXP (x, i), insn, not_every_iteration, loop_start,
|
|
|
|
|
loop_end);
|
|
|
|
|
else if (fmt[i] == 'E')
|
|
|
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
|
|
|
|
find_mem_givs (XVECEXP (x, i, j), insn, not_every_iteration,
|
|
|
|
|
loop_start, loop_end);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Fill in the data about one biv update.
|
|
|
|
|
V is the `struct induction' in which we record the biv. (It is
|
|
|
|
|
allocated by the caller, with alloca.)
|
|
|
|
|
INSN is the insn that sets it.
|
|
|
|
|
DEST_REG is the biv's reg.
|
|
|
|
|
|
|
|
|
|
MULT_VAL is const1_rtx if the biv is being incremented here, in which case
|
|
|
|
|
INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
|
|
|
|
|
being set to INC_VAL.
|
|
|
|
|
|
|
|
|
|
NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
|
|
|
|
|
executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
|
|
|
|
|
can be executed more than once per iteration. If MAYBE_MULTIPLE
|
|
|
|
|
and NOT_EVERY_ITERATION are both zero, we know that the biv update is
|
|
|
|
|
executed exactly once per iteration. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
record_biv (v, insn, dest_reg, inc_val, mult_val,
|
|
|
|
|
not_every_iteration, maybe_multiple)
|
|
|
|
|
struct induction *v;
|
|
|
|
|
rtx insn;
|
|
|
|
|
rtx dest_reg;
|
|
|
|
|
rtx inc_val;
|
|
|
|
|
rtx mult_val;
|
|
|
|
|
int not_every_iteration;
|
|
|
|
|
int maybe_multiple;
|
|
|
|
|
{
|
|
|
|
|
struct iv_class *bl;
|
|
|
|
|
|
|
|
|
|
v->insn = insn;
|
|
|
|
|
v->src_reg = dest_reg;
|
|
|
|
|
v->dest_reg = dest_reg;
|
|
|
|
|
v->mult_val = mult_val;
|
|
|
|
|
v->add_val = inc_val;
|
|
|
|
|
v->mode = GET_MODE (dest_reg);
|
|
|
|
|
v->always_computable = ! not_every_iteration;
|
|
|
|
|
v->maybe_multiple = maybe_multiple;
|
|
|
|
|
|
|
|
|
|
/* Add this to the reg's iv_class, creating a class
|
|
|
|
|
if this is the first incrementation of the reg. */
|
|
|
|
|
|
|
|
|
|
bl = reg_biv_class[REGNO (dest_reg)];
|
|
|
|
|
if (bl == 0)
|
|
|
|
|
{
|
|
|
|
|
/* Create and initialize new iv_class. */
|
|
|
|
|
|
|
|
|
|
bl = (struct iv_class *) oballoc (sizeof (struct iv_class));
|
|
|
|
|
|
|
|
|
|
bl->regno = REGNO (dest_reg);
|
|
|
|
|
bl->biv = 0;
|
|
|
|
|
bl->giv = 0;
|
|
|
|
|
bl->biv_count = 0;
|
|
|
|
|
bl->giv_count = 0;
|
|
|
|
|
|
|
|
|
|
/* Set initial value to the reg itself. */
|
|
|
|
|
bl->initial_value = dest_reg;
|
|
|
|
|
/* We haven't seen the initializing insn yet */
|
|
|
|
|
bl->init_insn = 0;
|
|
|
|
|
bl->init_set = 0;
|
|
|
|
|
bl->initial_test = 0;
|
|
|
|
|
bl->incremented = 0;
|
|
|
|
|
bl->eliminable = 0;
|
|
|
|
|
bl->nonneg = 0;
|
|
|
|
|
bl->reversed = 0;
|
|
|
|
|
bl->total_benefit = 0;
|
|
|
|
|
|
|
|
|
|
/* Add this class to loop_iv_list. */
|
|
|
|
|
bl->next = loop_iv_list;
|
|
|
|
|
loop_iv_list = bl;
|
|
|
|
|
|
|
|
|
|
/* Put it in the array of biv register classes. */
|
|
|
|
|
reg_biv_class[REGNO (dest_reg)] = bl;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Update IV_CLASS entry for this biv. */
|
|
|
|
|
v->next_iv = bl->biv;
|
|
|
|
|
bl->biv = v;
|
|
|
|
|
bl->biv_count++;
|
|
|
|
|
if (mult_val == const1_rtx)
|
|
|
|
|
bl->incremented = 1;
|
|
|
|
|
|
|
|
|
|
if (loop_dump_stream)
|
|
|
|
|
{
|
|
|
|
|
fprintf (loop_dump_stream,
|
|
|
|
|
"Insn %d: possible biv, reg %d,",
|
|
|
|
|
INSN_UID (insn), REGNO (dest_reg));
|
|
|
|
|
if (GET_CODE (inc_val) == CONST_INT)
|
|
|
|
|
fprintf (loop_dump_stream, " const = %d\n",
|
|
|
|
|
INTVAL (inc_val));
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
fprintf (loop_dump_stream, " const = ");
|
|
|
|
|
print_rtl (loop_dump_stream, inc_val);
|
|
|
|
|
fprintf (loop_dump_stream, "\n");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Fill in the data about one giv.
|
|
|
|
|
V is the `struct induction' in which we record the giv. (It is
|
|
|
|
|
allocated by the caller, with alloca.)
|
|
|
|
|
INSN is the insn that sets it.
|
|
|
|
|
BENEFIT estimates the savings from deleting this insn.
|
|
|
|
|
TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
|
|
|
|
|
into a register or is used as a memory address.
|
|
|
|
|
|
|
|
|
|
SRC_REG is the biv reg which the giv is computed from.
|
|
|
|
|
DEST_REG is the giv's reg (if the giv is stored in a reg).
|
|
|
|
|
MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
|
|
|
|
|
LOCATION points to the place where this giv's value appears in INSN. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
record_giv (v, insn, src_reg, dest_reg, mult_val, add_val, benefit,
|
|
|
|
|
type, not_every_iteration, location, loop_start, loop_end)
|
|
|
|
|
struct induction *v;
|
|
|
|
|
rtx insn;
|
|
|
|
|
rtx src_reg;
|
|
|
|
|
rtx dest_reg;
|
|
|
|
|
rtx mult_val, add_val;
|
|
|
|
|
int benefit;
|
|
|
|
|
enum g_types type;
|
|
|
|
|
int not_every_iteration;
|
|
|
|
|
rtx *location;
|
|
|
|
|
rtx loop_start, loop_end;
|
|
|
|
|
{
|
|
|
|
|
struct induction *b;
|
|
|
|
|
struct iv_class *bl;
|
|
|
|
|
rtx set = single_set (insn);
|
|
|
|
|
rtx p;
|
|
|
|
|
|
|
|
|
|
v->insn = insn;
|
|
|
|
|
v->src_reg = src_reg;
|
|
|
|
|
v->giv_type = type;
|
|
|
|
|
v->dest_reg = dest_reg;
|
|
|
|
|
v->mult_val = mult_val;
|
|
|
|
|
v->add_val = add_val;
|
|
|
|
|
v->benefit = benefit;
|
|
|
|
|
v->location = location;
|
|
|
|
|
v->cant_derive = 0;
|
|
|
|
|
v->combined_with = 0;
|
|
|
|
|
v->maybe_multiple = 0;
|
|
|
|
|
v->maybe_dead = 0;
|
|
|
|
|
v->derive_adjustment = 0;
|
|
|
|
|
v->same = 0;
|
|
|
|
|
v->ignore = 0;
|
|
|
|
|
v->new_reg = 0;
|
|
|
|
|
v->final_value = 0;
|
|
|
|
|
v->same_insn = 0;
|
|
|
|
|
|
|
|
|
|
/* The v->always_computable field is used in update_giv_derive, to
|
|
|
|
|
determine whether a giv can be used to derive another giv. For a
|
|
|
|
|
DEST_REG giv, INSN computes a new value for the giv, so its value
|
|
|
|
|
isn't computable if INSN insn't executed every iteration.
|
|
|
|
|
However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
|
|
|
|
|
it does not compute a new value. Hence the value is always computable
|
|
|
|
|
regardless of whether INSN is executed each iteration. */
|
|
|
|
|
|
|
|
|
|
if (type == DEST_ADDR)
|
|
|
|
|
v->always_computable = 1;
|
|
|
|
|
else
|
|
|
|
|
v->always_computable = ! not_every_iteration;
|
|
|
|
|
|
|
|
|
|
if (type == DEST_ADDR)
|
|
|
|
|
{
|
|
|
|
|
v->mode = GET_MODE (*location);
|
|
|
|
|
v->lifetime = 1;
|
|
|
|
|
v->times_used = 1;
|
|
|
|
|
}
|
|
|
|
|
else /* type == DEST_REG */
|
|
|
|
|
{
|
|
|
|
|
v->mode = GET_MODE (SET_DEST (set));
|
|
|
|
|
|
|
|
|
|
v->lifetime = (uid_luid[regno_last_uid[REGNO (dest_reg)]]
|
|
|
|
|
- uid_luid[regno_first_uid[REGNO (dest_reg)]]);
|
|
|
|
|
|
|
|
|
|
v->times_used = n_times_used[REGNO (dest_reg)];
|
|
|
|
|
|
|
|
|
|
/* If the lifetime is zero, it means that this register is
|
|
|
|
|
really a dead store. So mark this as a giv that can be
|
|
|
|
|
ignored. This will not prevent the biv from being eliminated. */
|
|
|
|
|
if (v->lifetime == 0)
|
|
|
|
|
v->ignore = 1;
|
|
|
|
|
|
|
|
|
|
reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
|
|
|
|
|
reg_iv_info[REGNO (dest_reg)] = v;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Add the giv to the class of givs computed from one biv. */
|
|
|
|
|
|
|
|
|
|
bl = reg_biv_class[REGNO (src_reg)];
|
|
|
|
|
if (bl)
|
|
|
|
|
{
|
|
|
|
|
v->next_iv = bl->giv;
|
|
|
|
|
bl->giv = v;
|
|
|
|
|
/* Don't count DEST_ADDR. This is supposed to count the number of
|
|
|
|
|
insns that calculate givs. */
|
|
|
|
|
if (type == DEST_REG)
|
|
|
|
|
bl->giv_count++;
|
|
|
|
|
bl->total_benefit += benefit;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
/* Fatal error, biv missing for this giv? */
|
|
|
|
|
abort ();
|
|
|
|
|
|
|
|
|
|
if (type == DEST_ADDR)
|
|
|
|
|
v->replaceable = 1;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* The giv can be replaced outright by the reduced register only if all
|
|
|
|
|
of the following conditions are true:
|
|
|
|
|
- the insn that sets the giv is always executed on any iteration
|
|
|
|
|
on which the giv is used at all
|
|
|
|
|
(there are two ways to deduce this:
|
|
|
|
|
either the insn is executed on every iteration,
|
|
|
|
|
or all uses follow that insn in the same basic block),
|
|
|
|
|
- the giv is not used outside the loop
|
|
|
|
|
- no assignments to the biv occur during the giv's lifetime. */
|
|
|
|
|
|
|
|
|
|
if (regno_first_uid[REGNO (dest_reg)] == INSN_UID (insn)
|
|
|
|
|
/* Previous line always fails if INSN was moved by loop opt. */
|
|
|
|
|
&& uid_luid[regno_last_uid[REGNO (dest_reg)]] < INSN_LUID (loop_end)
|
|
|
|
|
&& (! not_every_iteration
|
|
|
|
|
|| last_use_this_basic_block (dest_reg, insn)))
|
|
|
|
|
{
|
|
|
|
|
/* Now check that there are no assignments to the biv within the
|
|
|
|
|
giv's lifetime. This requires two separate checks. */
|
|
|
|
|
|
|
|
|
|
/* Check each biv update, and fail if any are between the first
|
|
|
|
|
and last use of the giv.
|
|
|
|
|
|
|
|
|
|
If this loop contains an inner loop that was unrolled, then
|
|
|
|
|
the insn modifying the biv may have been emitted by the loop
|
|
|
|
|
unrolling code, and hence does not have a valid luid. Just
|
|
|
|
|
mark the biv as not replaceable in this case. It is not very
|
|
|
|
|
useful as a biv, because it is used in two different loops.
|
|
|
|
|
It is very unlikely that we would be able to optimize the giv
|
|
|
|
|
using this biv anyways. */
|
|
|
|
|
|
|
|
|
|
v->replaceable = 1;
|
|
|
|
|
for (b = bl->biv; b; b = b->next_iv)
|
|
|
|
|
{
|
|
|
|
|
if (INSN_UID (b->insn) >= max_uid_for_loop
|
|
|
|
|
|| ((uid_luid[INSN_UID (b->insn)]
|
|
|
|
|
>= uid_luid[regno_first_uid[REGNO (dest_reg)]])
|
|
|
|
|
&& (uid_luid[INSN_UID (b->insn)]
|
|
|
|
|
<= uid_luid[regno_last_uid[REGNO (dest_reg)]])))
|
|
|
|
|
{
|
|
|
|
|
v->replaceable = 0;
|
|
|
|
|
v->not_replaceable = 1;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If there are any backwards branches that go from after the
|
|
|
|
|
biv update to before it, then this giv is not replaceable. */
|
|
|
|
|
if (v->replaceable)
|
|
|
|
|
for (b = bl->biv; b; b = b->next_iv)
|
|
|
|
|
if (back_branch_in_range_p (b->insn, loop_start, loop_end))
|
|
|
|
|
{
|
|
|
|
|
v->replaceable = 0;
|
|
|
|
|
v->not_replaceable = 1;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* May still be replaceable, we don't have enough info here to
|
|
|
|
|
decide. */
|
|
|
|
|
v->replaceable = 0;
|
|
|
|
|
v->not_replaceable = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (loop_dump_stream)
|
|
|
|
|
{
|
|
|
|
|
if (type == DEST_REG)
|
|
|
|
|
fprintf (loop_dump_stream, "Insn %d: giv reg %d",
|
|
|
|
|
INSN_UID (insn), REGNO (dest_reg));
|
|
|
|
|
else
|
|
|
|
|
fprintf (loop_dump_stream, "Insn %d: dest address",
|
|
|
|
|
INSN_UID (insn));
|
|
|
|
|
|
|
|
|
|
fprintf (loop_dump_stream, " src reg %d benefit %d",
|
|
|
|
|
REGNO (src_reg), v->benefit);
|
|
|
|
|
fprintf (loop_dump_stream, " used %d lifetime %d",
|
|
|
|
|
v->times_used, v->lifetime);
|
|
|
|
|
|
|
|
|
|
if (v->replaceable)
|
|
|
|
|
fprintf (loop_dump_stream, " replaceable");
|
|
|
|
|
|
|
|
|
|
if (GET_CODE (mult_val) == CONST_INT)
|
|
|
|
|
fprintf (loop_dump_stream, " mult %d",
|
|
|
|
|
INTVAL (mult_val));
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
fprintf (loop_dump_stream, " mult ");
|
|
|
|
|
print_rtl (loop_dump_stream, mult_val);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (GET_CODE (add_val) == CONST_INT)
|
|
|
|
|
fprintf (loop_dump_stream, " add %d",
|
|
|
|
|
INTVAL (add_val));
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
fprintf (loop_dump_stream, " add ");
|
|
|
|
|
print_rtl (loop_dump_stream, add_val);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (loop_dump_stream)
|
|
|
|
|
fprintf (loop_dump_stream, "\n");
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* All this does is determine whether a giv can be made replaceable because
|
|
|
|
|
its final value can be calculated. This code can not be part of record_giv
|
|
|
|
|
above, because final_giv_value requires that the number of loop iterations
|
|
|
|
|
be known, and that can not be accurately calculated until after all givs
|
|
|
|
|
have been identified. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
check_final_value (v, loop_start, loop_end)
|
|
|
|
|
struct induction *v;
|
|
|
|
|
rtx loop_start, loop_end;
|
|
|
|
|
{
|
|
|
|
|
struct iv_class *bl;
|
|
|
|
|
rtx final_value = 0;
|
|
|
|
|
|
|
|
|
|
bl = reg_biv_class[REGNO (v->src_reg)];
|
|
|
|
|
|
|
|
|
|
/* DEST_ADDR givs will never reach here, because they are always marked
|
|
|
|
|
replaceable above in record_giv. */
|
|
|
|
|
|
|
|
|
|
/* The giv can be replaced outright by the reduced register only if all
|
|
|
|
|
of the following conditions are true:
|
|
|
|
|
- the insn that sets the giv is always executed on any iteration
|
|
|
|
|
on which the giv is used at all
|
|
|
|
|
(there are two ways to deduce this:
|
|
|
|
|
either the insn is executed on every iteration,
|
|
|
|
|
or all uses follow that insn in the same basic block),
|
|
|
|
|
- its final value can be calculated (this condition is different
|
|
|
|
|
than the one above in record_giv)
|
|
|
|
|
- no assignments to the biv occur during the giv's lifetime. */
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
/* This is only called now when replaceable is known to be false. */
|
|
|
|
|
/* Clear replaceable, so that it won't confuse final_giv_value. */
|
|
|
|
|
v->replaceable = 0;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
if ((final_value = final_giv_value (v, loop_start, loop_end))
|
|
|
|
|
&& (v->always_computable || last_use_this_basic_block (v->dest_reg, v->insn)))
|
|
|
|
|
{
|
|
|
|
|
int biv_increment_seen = 0;
|
|
|
|
|
rtx p = v->insn;
|
|
|
|
|
rtx last_giv_use;
|
|
|
|
|
|
|
|
|
|
v->replaceable = 1;
|
|
|
|
|
|
|
|
|
|
/* When trying to determine whether or not a biv increment occurs
|
|
|
|
|
during the lifetime of the giv, we can ignore uses of the variable
|
|
|
|
|
outside the loop because final_value is true. Hence we can not
|
|
|
|
|
use regno_last_uid and regno_first_uid as above in record_giv. */
|
|
|
|
|
|
|
|
|
|
/* Search the loop to determine whether any assignments to the
|
|
|
|
|
biv occur during the giv's lifetime. Start with the insn
|
|
|
|
|
that sets the giv, and search around the loop until we come
|
|
|
|
|
back to that insn again.
|
|
|
|
|
|
|
|
|
|
Also fail if there is a jump within the giv's lifetime that jumps
|
|
|
|
|
to somewhere outside the lifetime but still within the loop. This
|
|
|
|
|
catches spaghetti code where the execution order is not linear, and
|
|
|
|
|
hence the above test fails. Here we assume that the giv lifetime
|
|
|
|
|
does not extend from one iteration of the loop to the next, so as
|
|
|
|
|
to make the test easier. Since the lifetime isn't known yet,
|
|
|
|
|
this requires two loops. See also record_giv above. */
|
|
|
|
|
|
|
|
|
|
last_giv_use = v->insn;
|
|
|
|
|
|
|
|
|
|
while (1)
|
|
|
|
|
{
|
|
|
|
|
p = NEXT_INSN (p);
|
|
|
|
|
if (p == loop_end)
|
|
|
|
|
p = NEXT_INSN (loop_start);
|
|
|
|
|
if (p == v->insn)
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
|
|
|
|
|
|| GET_CODE (p) == CALL_INSN)
|
|
|
|
|
{
|
|
|
|
|
if (biv_increment_seen)
|
|
|
|
|
{
|
|
|
|
|
if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
|
|
|
|
|
{
|
|
|
|
|
v->replaceable = 0;
|
|
|
|
|
v->not_replaceable = 1;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else if (GET_CODE (PATTERN (p)) == SET
|
|
|
|
|
&& SET_DEST (PATTERN (p)) == v->src_reg)
|
|
|
|
|
biv_increment_seen = 1;
|
|
|
|
|
else if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
|
|
|
|
|
last_giv_use = p;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Now that the lifetime of the giv is known, check for branches
|
|
|
|
|
from within the lifetime to outside the lifetime if it is still
|
|
|
|
|
replaceable. */
|
|
|
|
|
|
|
|
|
|
if (v->replaceable)
|
|
|
|
|
{
|
|
|
|
|
p = v->insn;
|
|
|
|
|
while (1)
|
|
|
|
|
{
|
|
|
|
|
p = NEXT_INSN (p);
|
|
|
|
|
if (p == loop_end)
|
|
|
|
|
p = NEXT_INSN (loop_start);
|
|
|
|
|
if (p == last_giv_use)
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
|
|
|
|
|
&& LABEL_NAME (JUMP_LABEL (p))
|
|
|
|
|
&& ((INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (v->insn)
|
|
|
|
|
&& INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop_start))
|
|
|
|
|
|| (INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (last_giv_use)
|
|
|
|
|
&& INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop_end))))
|
|
|
|
|
{
|
|
|
|
|
v->replaceable = 0;
|
|
|
|
|
v->not_replaceable = 1;
|
|
|
|
|
|
|
|
|
|
if (loop_dump_stream)
|
|
|
|
|
fprintf (loop_dump_stream,
|
|
|
|
|
"Found branch outside giv lifetime.\n");
|
|
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If it is replaceable, then save the final value. */
|
|
|
|
|
if (v->replaceable)
|
|
|
|
|
v->final_value = final_value;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (loop_dump_stream && v->replaceable)
|
|
|
|
|
fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
|
|
|
|
|
INSN_UID (v->insn), REGNO (v->dest_reg));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Update the status of whether a giv can derive other givs.
|
|
|
|
|
|
|
|
|
|
We need to do something special if there is or may be an update to the biv
|
|
|
|
|
between the time the giv is defined and the time it is used to derive
|
|
|
|
|
another giv.
|
|
|
|
|
|
|
|
|
|
In addition, a giv that is only conditionally set is not allowed to
|
|
|
|
|
derive another giv once a label has been passed.
|
|
|
|
|
|
|
|
|
|
The cases we look at are when a label or an update to a biv is passed. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
update_giv_derive (p)
|
|
|
|
|
rtx p;
|
|
|
|
|
{
|
|
|
|
|
struct iv_class *bl;
|
|
|
|
|
struct induction *biv, *giv;
|
|
|
|
|
rtx tem;
|
|
|
|
|
int dummy;
|
|
|
|
|
|
|
|
|
|
/* Search all IV classes, then all bivs, and finally all givs.
|
|
|
|
|
|
|
|
|
|
There are three cases we are concerned with. First we have the situation
|
|
|
|
|
of a giv that is only updated conditionally. In that case, it may not
|
|
|
|
|
derive any givs after a label is passed.
|
|
|
|
|
|
|
|
|
|
The second case is when a biv update occurs, or may occur, after the
|
|
|
|
|
definition of a giv. For certain biv updates (see below) that are
|
|
|
|
|
known to occur between the giv definition and use, we can adjust the
|
|
|
|
|
giv definition. For others, or when the biv update is conditional,
|
|
|
|
|
we must prevent the giv from deriving any other givs. There are two
|
|
|
|
|
sub-cases within this case.
|
|
|
|
|
|
|
|
|
|
If this is a label, we are concerned with any biv update that is done
|
|
|
|
|
conditionally, since it may be done after the giv is defined followed by
|
|
|
|
|
a branch here (actually, we need to pass both a jump and a label, but
|
|
|
|
|
this extra tracking doesn't seem worth it).
|
|
|
|
|
|
|
|
|
|
If this is a jump, we are concerned about any biv update that may be
|
|
|
|
|
executed multiple times. We are actually only concerned about
|
|
|
|
|
backward jumps, but it is probably not worth performing the test
|
|
|
|
|
on the jump again here.
|
|
|
|
|
|
|
|
|
|
If this is a biv update, we must adjust the giv status to show that a
|
|
|
|
|
subsequent biv update was performed. If this adjustment cannot be done,
|
|
|
|
|
the giv cannot derive further givs. */
|
|
|
|
|
|
|
|
|
|
for (bl = loop_iv_list; bl; bl = bl->next)
|
|
|
|
|
for (biv = bl->biv; biv; biv = biv->next_iv)
|
|
|
|
|
if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
|
|
|
|
|
|| biv->insn == p)
|
|
|
|
|
{
|
|
|
|
|
for (giv = bl->giv; giv; giv = giv->next_iv)
|
|
|
|
|
{
|
|
|
|
|
/* If cant_derive is already true, there is no point in
|
|
|
|
|
checking all of these conditions again. */
|
|
|
|
|
if (giv->cant_derive)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
/* If this giv is conditionally set and we have passed a label,
|
|
|
|
|
it cannot derive anything. */
|
|
|
|
|
if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
|
|
|
|
|
giv->cant_derive = 1;
|
|
|
|
|
|
|
|
|
|
/* Skip givs that have mult_val == 0, since
|
|
|
|
|
they are really invariants. Also skip those that are
|
|
|
|
|
replaceable, since we know their lifetime doesn't contain
|
|
|
|
|
any biv update. */
|
|
|
|
|
else if (giv->mult_val == const0_rtx || giv->replaceable)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
/* The only way we can allow this giv to derive another
|
|
|
|
|
is if this is a biv increment and we can form the product
|
|
|
|
|
of biv->add_val and giv->mult_val. In this case, we will
|
|
|
|
|
be able to compute a compensation. */
|
|
|
|
|
else if (biv->insn == p)
|
|
|
|
|
{
|
|
|
|
|
tem = 0;
|
|
|
|
|
|
|
|
|
|
if (biv->mult_val == const1_rtx)
|
|
|
|
|
tem = simplify_giv_expr (gen_rtx (MULT, giv->mode,
|
|
|
|
|
biv->add_val,
|
|
|
|
|
giv->mult_val),
|
|
|
|
|
&dummy);
|
|
|
|
|
|
|
|
|
|
if (tem && giv->derive_adjustment)
|
|
|
|
|
tem = simplify_giv_expr (gen_rtx (PLUS, giv->mode, tem,
|
|
|
|
|
giv->derive_adjustment),
|
|
|
|
|
&dummy);
|
|
|
|
|
if (tem)
|
|
|
|
|
giv->derive_adjustment = tem;
|
|
|
|
|
else
|
|
|
|
|
giv->cant_derive = 1;
|
|
|
|
|
}
|
|
|
|
|
else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
|
|
|
|
|
|| (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
|
|
|
|
|
giv->cant_derive = 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Check whether an insn is an increment legitimate for a basic induction var.
|
|
|
|
|
X is the source of insn P, or a part of it.
|
|
|
|
|
MODE is the mode in which X should be interpreted.
|
|
|
|
|
|
|
|
|
|
DEST_REG is the putative biv, also the destination of the insn.
|
|
|
|
|
We accept patterns of these forms:
|
|
|
|
|
REG = REG + INVARIANT (includes REG = REG - CONSTANT)
|
|
|
|
|
REG = INVARIANT + REG
|
|
|
|
|
|
|
|
|
|
If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
|
|
|
|
|
and store the additive term into *INC_VAL.
|
|
|
|
|
|
|
|
|
|
If X is an assignment of an invariant into DEST_REG, we set
|
|
|
|
|
*MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
|
|
|
|
|
|
|
|
|
|
We also want to detect a BIV when it corresponds to a variable
|
|
|
|
|
whose mode was promoted via PROMOTED_MODE. In that case, an increment
|
|
|
|
|
of the variable may be a PLUS that adds a SUBREG of that variable to
|
|
|
|
|
an invariant and then sign- or zero-extends the result of the PLUS
|
|
|
|
|
into the variable.
|
|
|
|
|
|
|
|
|
|
Most GIVs in such cases will be in the promoted mode, since that is the
|
|
|
|
|
probably the natural computation mode (and almost certainly the mode
|
|
|
|
|
used for addresses) on the machine. So we view the pseudo-reg containing
|
|
|
|
|
the variable as the BIV, as if it were simply incremented.
|
|
|
|
|
|
|
|
|
|
Note that treating the entire pseudo as a BIV will result in making
|
|
|
|
|
simple increments to any GIVs based on it. However, if the variable
|
|
|
|
|
overflows in its declared mode but not its promoted mode, the result will
|
|
|
|
|
be incorrect. This is acceptable if the variable is signed, since
|
|
|
|
|
overflows in such cases are undefined, but not if it is unsigned, since
|
|
|
|
|
those overflows are defined. So we only check for SIGN_EXTEND and
|
|
|
|
|
not ZERO_EXTEND.
|
|
|
|
|
|
|
|
|
|
If we cannot find a biv, we return 0. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
basic_induction_var (x, mode, dest_reg, p, inc_val, mult_val)
|
|
|
|
|
register rtx x;
|
|
|
|
|
enum machine_mode mode;
|
|
|
|
|
rtx p;
|
|
|
|
|
rtx dest_reg;
|
|
|
|
|
rtx *inc_val;
|
|
|
|
|
rtx *mult_val;
|
|
|
|
|
{
|
|
|
|
|
register enum rtx_code code;
|
|
|
|
|
rtx arg;
|
|
|
|
|
rtx insn, set = 0;
|
|
|
|
|
|
|
|
|
|
code = GET_CODE (x);
|
|
|
|
|
switch (code)
|
|
|
|
|
{
|
|
|
|
|
case PLUS:
|
|
|
|
|
if (XEXP (x, 0) == dest_reg
|
|
|
|
|
|| (GET_CODE (XEXP (x, 0)) == SUBREG
|
|
|
|
|
&& SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
|
|
|
|
|
&& SUBREG_REG (XEXP (x, 0)) == dest_reg))
|
|
|
|
|
arg = XEXP (x, 1);
|
|
|
|
|
else if (XEXP (x, 1) == dest_reg
|
|
|
|
|
|| (GET_CODE (XEXP (x, 1)) == SUBREG
|
|
|
|
|
&& SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
|
|
|
|
|
&& SUBREG_REG (XEXP (x, 1)) == dest_reg))
|
|
|
|
|
arg = XEXP (x, 0);
|
|
|
|
|
else
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
if (invariant_p (arg) != 1)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
*inc_val = convert_modes (GET_MODE (dest_reg), GET_MODE (x), arg, 0);
|
|
|
|
|
*mult_val = const1_rtx;
|
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
|
|
case SUBREG:
|
|
|
|
|
/* If this is a SUBREG for a promoted variable, check the inner
|
|
|
|
|
value. */
|
|
|
|
|
if (SUBREG_PROMOTED_VAR_P (x))
|
|
|
|
|
return basic_induction_var (SUBREG_REG (x), GET_MODE (SUBREG_REG (x)),
|
|
|
|
|
dest_reg, p, inc_val, mult_val);
|
|
|
|
|
|
|
|
|
|
case REG:
|
|
|
|
|
/* If this register is assigned in the previous insn, look at its
|
|
|
|
|
source, but don't go outside the loop or past a label. */
|
|
|
|
|
|
|
|
|
|
for (insn = PREV_INSN (p);
|
|
|
|
|
(insn && GET_CODE (insn) == NOTE
|
|
|
|
|
&& NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
|
|
|
|
|
insn = PREV_INSN (insn))
|
|
|
|
|
;
|
|
|
|
|
|
|
|
|
|
if (insn)
|
|
|
|
|
set = single_set (insn);
|
|
|
|
|
|
|
|
|
|
if (set != 0
|
|
|
|
|
&& (SET_DEST (set) == x
|
|
|
|
|
|| (GET_CODE (SET_DEST (set)) == SUBREG
|
|
|
|
|
&& (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
|
|
|
|
|
<= UNITS_PER_WORD)
|
|
|
|
|
&& SUBREG_REG (SET_DEST (set)) == x)))
|
|
|
|
|
return basic_induction_var (SET_SRC (set),
|
|
|
|
|
(GET_MODE (SET_SRC (set)) == VOIDmode
|
|
|
|
|
? GET_MODE (x)
|
|
|
|
|
: GET_MODE (SET_SRC (set))),
|
|
|
|
|
dest_reg, insn,
|
|
|
|
|
inc_val, mult_val);
|
|
|
|
|
/* ... fall through ... */
|
|
|
|
|
|
|
|
|
|
/* Can accept constant setting of biv only when inside inner most loop.
|
|
|
|
|
Otherwise, a biv of an inner loop may be incorrectly recognized
|
|
|
|
|
as a biv of the outer loop,
|
|
|
|
|
causing code to be moved INTO the inner loop. */
|
|
|
|
|
case MEM:
|
|
|
|
|
if (invariant_p (x) != 1)
|
|
|
|
|
return 0;
|
|
|
|
|
case CONST_INT:
|
|
|
|
|
case SYMBOL_REF:
|
|
|
|
|
case CONST:
|
|
|
|
|
if (loops_enclosed == 1)
|
|
|
|
|
{
|
|
|
|
|
/* Possible bug here? Perhaps we don't know the mode of X. */
|
|
|
|
|
*inc_val = convert_modes (GET_MODE (dest_reg), mode, x, 0);
|
|
|
|
|
*mult_val = const0_rtx;
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
case SIGN_EXTEND:
|
|
|
|
|
return basic_induction_var (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
|
|
|
|
|
dest_reg, p, inc_val, mult_val);
|
|
|
|
|
case ASHIFTRT:
|
|
|
|
|
/* Similar, since this can be a sign extension. */
|
|
|
|
|
for (insn = PREV_INSN (p);
|
|
|
|
|
(insn && GET_CODE (insn) == NOTE
|
|
|
|
|
&& NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
|
|
|
|
|
insn = PREV_INSN (insn))
|
|
|
|
|
;
|
|
|
|
|
|
|
|
|
|
if (insn)
|
|
|
|
|
set = single_set (insn);
|
|
|
|
|
|
|
|
|
|
if (set && SET_DEST (set) == XEXP (x, 0)
|
|
|
|
|
&& GET_CODE (XEXP (x, 1)) == CONST_INT
|
|
|
|
|
&& INTVAL (XEXP (x, 1)) >= 0
|
|
|
|
|
&& GET_CODE (SET_SRC (set)) == ASHIFT
|
|
|
|
|
&& XEXP (x, 1) == XEXP (SET_SRC (set), 1))
|
|
|
|
|
return basic_induction_var (XEXP (SET_SRC (set), 0),
|
|
|
|
|
GET_MODE (XEXP (x, 0)),
|
|
|
|
|
dest_reg, insn, inc_val, mult_val);
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* A general induction variable (giv) is any quantity that is a linear
|
|
|
|
|
function of a basic induction variable,
|
|
|
|
|
i.e. giv = biv * mult_val + add_val.
|
|
|
|
|
The coefficients can be any loop invariant quantity.
|
|
|
|
|
A giv need not be computed directly from the biv;
|
|
|
|
|
it can be computed by way of other givs. */
|
|
|
|
|
|
|
|
|
|
/* Determine whether X computes a giv.
|
|
|
|
|
If it does, return a nonzero value
|
|
|
|
|
which is the benefit from eliminating the computation of X;
|
|
|
|
|
set *SRC_REG to the register of the biv that it is computed from;
|
|
|
|
|
set *ADD_VAL and *MULT_VAL to the coefficients,
|
|
|
|
|
such that the value of X is biv * mult + add; */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
general_induction_var (x, src_reg, add_val, mult_val)
|
|
|
|
|
rtx x;
|
|
|
|
|
rtx *src_reg;
|
|
|
|
|
rtx *add_val;
|
|
|
|
|
rtx *mult_val;
|
|
|
|
|
{
|
|
|
|
|
rtx orig_x = x;
|
|
|
|
|
int benefit = 0;
|
|
|
|
|
char *storage;
|
|
|
|
|
|
|
|
|
|
/* If this is an invariant, forget it, it isn't a giv. */
|
|
|
|
|
if (invariant_p (x) == 1)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* See if the expression could be a giv and get its form.
|
|
|
|
|
Mark our place on the obstack in case we don't find a giv. */
|
|
|
|
|
storage = (char *) oballoc (0);
|
|
|
|
|
x = simplify_giv_expr (x, &benefit);
|
|
|
|
|
if (x == 0)
|
|
|
|
|
{
|
|
|
|
|
obfree (storage);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
switch (GET_CODE (x))
|
|
|
|
|
{
|
|
|
|
|
case USE:
|
|
|
|
|
case CONST_INT:
|
|
|
|
|
/* Since this is now an invariant and wasn't before, it must be a giv
|
|
|
|
|
with MULT_VAL == 0. It doesn't matter which BIV we associate this
|
|
|
|
|
with. */
|
|
|
|
|
*src_reg = loop_iv_list->biv->dest_reg;
|
|
|
|
|
*mult_val = const0_rtx;
|
|
|
|
|
*add_val = x;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case REG:
|
|
|
|
|
/* This is equivalent to a BIV. */
|
|
|
|
|
*src_reg = x;
|
|
|
|
|
*mult_val = const1_rtx;
|
|
|
|
|
*add_val = const0_rtx;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case PLUS:
|
|
|
|
|
/* Either (plus (biv) (invar)) or
|
|
|
|
|
(plus (mult (biv) (invar_1)) (invar_2)). */
|
|
|
|
|
if (GET_CODE (XEXP (x, 0)) == MULT)
|
|
|
|
|
{
|
|
|
|
|
*src_reg = XEXP (XEXP (x, 0), 0);
|
|
|
|
|
*mult_val = XEXP (XEXP (x, 0), 1);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
*src_reg = XEXP (x, 0);
|
|
|
|
|
*mult_val = const1_rtx;
|
|
|
|
|
}
|
|
|
|
|
*add_val = XEXP (x, 1);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case MULT:
|
|
|
|
|
/* ADD_VAL is zero. */
|
|
|
|
|
*src_reg = XEXP (x, 0);
|
|
|
|
|
*mult_val = XEXP (x, 1);
|
|
|
|
|
*add_val = const0_rtx;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
abort ();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
|
|
|
|
|
unless they are CONST_INT). */
|
|
|
|
|
if (GET_CODE (*add_val) == USE)
|
|
|
|
|
*add_val = XEXP (*add_val, 0);
|
|
|
|
|
if (GET_CODE (*mult_val) == USE)
|
|
|
|
|
*mult_val = XEXP (*mult_val, 0);
|
|
|
|
|
|
|
|
|
|
benefit += rtx_cost (orig_x, SET);
|
|
|
|
|
|
|
|
|
|
/* Always return some benefit if this is a giv so it will be detected
|
|
|
|
|
as such. This allows elimination of bivs that might otherwise
|
|
|
|
|
not be eliminated. */
|
|
|
|
|
return benefit == 0 ? 1 : benefit;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Given an expression, X, try to form it as a linear function of a biv.
|
|
|
|
|
We will canonicalize it to be of the form
|
|
|
|
|
(plus (mult (BIV) (invar_1))
|
|
|
|
|
(invar_2))
|
|
|
|
|
with possible degeneracies.
|
|
|
|
|
|
|
|
|
|
The invariant expressions must each be of a form that can be used as a
|
|
|
|
|
machine operand. We surround then with a USE rtx (a hack, but localized
|
|
|
|
|
and certainly unambiguous!) if not a CONST_INT for simplicity in this
|
|
|
|
|
routine; it is the caller's responsibility to strip them.
|
|
|
|
|
|
|
|
|
|
If no such canonicalization is possible (i.e., two biv's are used or an
|
|
|
|
|
expression that is neither invariant nor a biv or giv), this routine
|
|
|
|
|
returns 0.
|
|
|
|
|
|
|
|
|
|
For a non-zero return, the result will have a code of CONST_INT, USE,
|
|
|
|
|
REG (for a BIV), PLUS, or MULT. No other codes will occur.
|
|
|
|
|
|
|
|
|
|
*BENEFIT will be incremented by the benefit of any sub-giv encountered. */
|
|
|
|
|
|
|
|
|
|
static rtx
|
|
|
|
|
simplify_giv_expr (x, benefit)
|
|
|
|
|
rtx x;
|
|
|
|
|
int *benefit;
|
|
|
|
|
{
|
|
|
|
|
enum machine_mode mode = GET_MODE (x);
|
|
|
|
|
rtx arg0, arg1;
|
|
|
|
|
rtx tem;
|
|
|
|
|
|
|
|
|
|
/* If this is not an integer mode, or if we cannot do arithmetic in this
|
|
|
|
|
mode, this can't be a giv. */
|
|
|
|
|
if (mode != VOIDmode
|
|
|
|
|
&& (GET_MODE_CLASS (mode) != MODE_INT
|
|
|
|
|
|| GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
switch (GET_CODE (x))
|
|
|
|
|
{
|
|
|
|
|
case PLUS:
|
|
|
|
|
arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
|
|
|
|
|
arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
|
|
|
|
|
if (arg0 == 0 || arg1 == 0)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* Put constant last, CONST_INT last if both constant. */
|
|
|
|
|
if ((GET_CODE (arg0) == USE
|
|
|
|
|
|| GET_CODE (arg0) == CONST_INT)
|
|
|
|
|
&& GET_CODE (arg1) != CONST_INT)
|
|
|
|
|
tem = arg0, arg0 = arg1, arg1 = tem;
|
|
|
|
|
|
|
|
|
|
/* Handle addition of zero, then addition of an invariant. */
|
|
|
|
|
if (arg1 == const0_rtx)
|
|
|
|
|
return arg0;
|
|
|
|
|
else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
|
|
|
|
|
switch (GET_CODE (arg0))
|
|
|
|
|
{
|
|
|
|
|
case CONST_INT:
|
|
|
|
|
case USE:
|
|
|
|
|
/* Both invariant. Only valid if sum is machine operand.
|
|
|
|
|
First strip off possible USE on first operand. */
|
|
|
|
|
if (GET_CODE (arg0) == USE)
|
|
|
|
|
arg0 = XEXP (arg0, 0);
|
|
|
|
|
|
|
|
|
|
tem = 0;
|
|
|
|
|
if (CONSTANT_P (arg0) && GET_CODE (arg1) == CONST_INT)
|
|
|
|
|
{
|
|
|
|
|
tem = plus_constant (arg0, INTVAL (arg1));
|
|
|
|
|
if (GET_CODE (tem) != CONST_INT)
|
|
|
|
|
tem = gen_rtx (USE, mode, tem);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return tem;
|
|
|
|
|
|
|
|
|
|
case REG:
|
|
|
|
|
case MULT:
|
|
|
|
|
/* biv + invar or mult + invar. Return sum. */
|
|
|
|
|
return gen_rtx (PLUS, mode, arg0, arg1);
|
|
|
|
|
|
|
|
|
|
case PLUS:
|
|
|
|
|
/* (a + invar_1) + invar_2. Associate. */
|
|
|
|
|
return simplify_giv_expr (gen_rtx (PLUS, mode,
|
|
|
|
|
XEXP (arg0, 0),
|
|
|
|
|
gen_rtx (PLUS, mode,
|
|
|
|
|
XEXP (arg0, 1), arg1)),
|
|
|
|
|
benefit);
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
abort ();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Each argument must be either REG, PLUS, or MULT. Convert REG to
|
|
|
|
|
MULT to reduce cases. */
|
|
|
|
|
if (GET_CODE (arg0) == REG)
|
|
|
|
|
arg0 = gen_rtx (MULT, mode, arg0, const1_rtx);
|
|
|
|
|
if (GET_CODE (arg1) == REG)
|
|
|
|
|
arg1 = gen_rtx (MULT, mode, arg1, const1_rtx);
|
|
|
|
|
|
|
|
|
|
/* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
|
|
|
|
|
Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
|
|
|
|
|
Recurse to associate the second PLUS. */
|
|
|
|
|
if (GET_CODE (arg1) == MULT)
|
|
|
|
|
tem = arg0, arg0 = arg1, arg1 = tem;
|
|
|
|
|
|
|
|
|
|
if (GET_CODE (arg1) == PLUS)
|
|
|
|
|
return simplify_giv_expr (gen_rtx (PLUS, mode,
|
|
|
|
|
gen_rtx (PLUS, mode,
|
|
|
|
|
arg0, XEXP (arg1, 0)),
|
|
|
|
|
XEXP (arg1, 1)),
|
|
|
|
|
benefit);
|
|
|
|
|
|
|
|
|
|
/* Now must have MULT + MULT. Distribute if same biv, else not giv. */
|
|
|
|
|
if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
|
|
|
|
|
abort ();
|
|
|
|
|
|
|
|
|
|
if (XEXP (arg0, 0) != XEXP (arg1, 0))
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
return simplify_giv_expr (gen_rtx (MULT, mode,
|
|
|
|
|
XEXP (arg0, 0),
|
|
|
|
|
gen_rtx (PLUS, mode,
|
|
|
|
|
XEXP (arg0, 1),
|
|
|
|
|
XEXP (arg1, 1))),
|
|
|
|
|
benefit);
|
|
|
|
|
|
|
|
|
|
case MINUS:
|
|
|
|
|
/* Handle "a - b" as "a + b * (-1)". */
|
|
|
|
|
return simplify_giv_expr (gen_rtx (PLUS, mode,
|
|
|
|
|
XEXP (x, 0),
|
|
|
|
|
gen_rtx (MULT, mode,
|
|
|
|
|
XEXP (x, 1), constm1_rtx)),
|
|
|
|
|
benefit);
|
|
|
|
|
|
|
|
|
|
case MULT:
|
|
|
|
|
arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
|
|
|
|
|
arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
|
|
|
|
|
if (arg0 == 0 || arg1 == 0)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* Put constant last, CONST_INT last if both constant. */
|
|
|
|
|
if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
|
|
|
|
|
&& GET_CODE (arg1) != CONST_INT)
|
|
|
|
|
tem = arg0, arg0 = arg1, arg1 = tem;
|
|
|
|
|
|
|
|
|
|
/* If second argument is not now constant, not giv. */
|
|
|
|
|
if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* Handle multiply by 0 or 1. */
|
|
|
|
|
if (arg1 == const0_rtx)
|
|
|
|
|
return const0_rtx;
|
|
|
|
|
|
|
|
|
|
else if (arg1 == const1_rtx)
|
|
|
|
|
return arg0;
|
|
|
|
|
|
|
|
|
|
switch (GET_CODE (arg0))
|
|
|
|
|
{
|
|
|
|
|
case REG:
|
|
|
|
|
/* biv * invar. Done. */
|
|
|
|
|
return gen_rtx (MULT, mode, arg0, arg1);
|
|
|
|
|
|
|
|
|
|
case CONST_INT:
|
|
|
|
|
/* Product of two constants. */
|
|
|
|
|
return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
|
|
|
|
|
|
|
|
|
|
case USE:
|
|
|
|
|
/* invar * invar. Not giv. */
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
case MULT:
|
|
|
|
|
/* (a * invar_1) * invar_2. Associate. */
|
|
|
|
|
return simplify_giv_expr (gen_rtx (MULT, mode,
|
|
|
|
|
XEXP (arg0, 0),
|
|
|
|
|
gen_rtx (MULT, mode,
|
|
|
|
|
XEXP (arg0, 1), arg1)),
|
|
|
|
|
benefit);
|
|
|
|
|
|
|
|
|
|
case PLUS:
|
|
|
|
|
/* (a + invar_1) * invar_2. Distribute. */
|
|
|
|
|
return simplify_giv_expr (gen_rtx (PLUS, mode,
|
|
|
|
|
gen_rtx (MULT, mode,
|
|
|
|
|
XEXP (arg0, 0), arg1),
|
|
|
|
|
gen_rtx (MULT, mode,
|
|
|
|
|
XEXP (arg0, 1), arg1)),
|
|
|
|
|
benefit);
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
abort ();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
case ASHIFT:
|
|
|
|
|
/* Shift by constant is multiply by power of two. */
|
|
|
|
|
if (GET_CODE (XEXP (x, 1)) != CONST_INT)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
return simplify_giv_expr (gen_rtx (MULT, mode,
|
|
|
|
|
XEXP (x, 0),
|
|
|
|
|
GEN_INT ((HOST_WIDE_INT) 1
|
|
|
|
|
<< INTVAL (XEXP (x, 1)))),
|
|
|
|
|
benefit);
|
|
|
|
|
|
|
|
|
|
case NEG:
|
|
|
|
|
/* "-a" is "a * (-1)" */
|
|
|
|
|
return simplify_giv_expr (gen_rtx (MULT, mode, XEXP (x, 0), constm1_rtx),
|
|
|
|
|
benefit);
|
|
|
|
|
|
|
|
|
|
case NOT:
|
|
|
|
|
/* "~a" is "-a - 1". Silly, but easy. */
|
|
|
|
|
return simplify_giv_expr (gen_rtx (MINUS, mode,
|
|
|
|
|
gen_rtx (NEG, mode, XEXP (x, 0)),
|
|
|
|
|
const1_rtx),
|
|
|
|
|
benefit);
|
|
|
|
|
|
|
|
|
|
case USE:
|
|
|
|
|
/* Already in proper form for invariant. */
|
|
|
|
|
return x;
|
|
|
|
|
|
|
|
|
|
case REG:
|
|
|
|
|
/* If this is a new register, we can't deal with it. */
|
|
|
|
|
if (REGNO (x) >= max_reg_before_loop)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* Check for biv or giv. */
|
|
|
|
|
switch (reg_iv_type[REGNO (x)])
|
|
|
|
|
{
|
|
|
|
|
case BASIC_INDUCT:
|
|
|
|
|
return x;
|
|
|
|
|
case GENERAL_INDUCT:
|
|
|
|
|
{
|
|
|
|
|
struct induction *v = reg_iv_info[REGNO (x)];
|
|
|
|
|
|
|
|
|
|
/* Form expression from giv and add benefit. Ensure this giv
|
|
|
|
|
can derive another and subtract any needed adjustment if so. */
|
|
|
|
|
*benefit += v->benefit;
|
|
|
|
|
if (v->cant_derive)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
tem = gen_rtx (PLUS, mode, gen_rtx (MULT, mode,
|
|
|
|
|
v->src_reg, v->mult_val),
|
|
|
|
|
v->add_val);
|
|
|
|
|
if (v->derive_adjustment)
|
|
|
|
|
tem = gen_rtx (MINUS, mode, tem, v->derive_adjustment);
|
|
|
|
|
return simplify_giv_expr (tem, benefit);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Fall through to general case. */
|
|
|
|
|
default:
|
|
|
|
|
/* If invariant, return as USE (unless CONST_INT).
|
|
|
|
|
Otherwise, not giv. */
|
|
|
|
|
if (GET_CODE (x) == USE)
|
|
|
|
|
x = XEXP (x, 0);
|
|
|
|
|
|
|
|
|
|
if (invariant_p (x) == 1)
|
|
|
|
|
{
|
|
|
|
|
if (GET_CODE (x) == CONST_INT)
|
|
|
|
|
return x;
|
|
|
|
|
else
|
|
|
|
|
return gen_rtx (USE, mode, x);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Help detect a giv that is calculated by several consecutive insns;
|
|
|
|
|
for example,
|
|
|
|
|
giv = biv * M
|
|
|
|
|
giv = giv + A
|
|
|
|
|
The caller has already identified the first insn P as having a giv as dest;
|
|
|
|
|
we check that all other insns that set the same register follow
|
|
|
|
|
immediately after P, that they alter nothing else,
|
|
|
|
|
and that the result of the last is still a giv.
|
|
|
|
|
|
|
|
|
|
The value is 0 if the reg set in P is not really a giv.
|
|
|
|
|
Otherwise, the value is the amount gained by eliminating
|
|
|
|
|
all the consecutive insns that compute the value.
|
|
|
|
|
|
|
|
|
|
FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
|
|
|
|
|
SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
|
|
|
|
|
|
|
|
|
|
The coefficients of the ultimate giv value are stored in
|
|
|
|
|
*MULT_VAL and *ADD_VAL. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
consec_sets_giv (first_benefit, p, src_reg, dest_reg,
|
|
|
|
|
add_val, mult_val)
|
|
|
|
|
int first_benefit;
|
|
|
|
|
rtx p;
|
|
|
|
|
rtx src_reg;
|
|
|
|
|
rtx dest_reg;
|
|
|
|
|
rtx *add_val;
|
|
|
|
|
rtx *mult_val;
|
|
|
|
|
{
|
|
|
|
|
int count;
|
|
|
|
|
enum rtx_code code;
|
|
|
|
|
int benefit;
|
|
|
|
|
rtx temp;
|
|
|
|
|
rtx set;
|
|
|
|
|
|
|
|
|
|
/* Indicate that this is a giv so that we can update the value produced in
|
|
|
|
|
each insn of the multi-insn sequence.
|
|
|
|
|
|
|
|
|
|
This induction structure will be used only by the call to
|
|
|
|
|
general_induction_var below, so we can allocate it on our stack.
|
|
|
|
|
If this is a giv, our caller will replace the induct var entry with
|
|
|
|
|
a new induction structure. */
|
|
|
|
|
struct induction *v
|
|
|
|
|
= (struct induction *) alloca (sizeof (struct induction));
|
|
|
|
|
v->src_reg = src_reg;
|
|
|
|
|
v->mult_val = *mult_val;
|
|
|
|
|
v->add_val = *add_val;
|
|
|
|
|
v->benefit = first_benefit;
|
|
|
|
|
v->cant_derive = 0;
|
|
|
|
|
v->derive_adjustment = 0;
|
|
|
|
|
|
|
|
|
|
reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
|
|
|
|
|
reg_iv_info[REGNO (dest_reg)] = v;
|
|
|
|
|
|
|
|
|
|
count = n_times_set[REGNO (dest_reg)] - 1;
|
|
|
|
|
|
|
|
|
|
while (count > 0)
|
|
|
|
|
{
|
|
|
|
|
p = NEXT_INSN (p);
|
|
|
|
|
code = GET_CODE (p);
|
|
|
|
|
|
|
|
|
|
/* If libcall, skip to end of call sequence. */
|
|
|
|
|
if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
|
|
|
|
|
p = XEXP (temp, 0);
|
|
|
|
|
|
|
|
|
|
if (code == INSN
|
|
|
|
|
&& (set = single_set (p))
|
|
|
|
|
&& GET_CODE (SET_DEST (set)) == REG
|
|
|
|
|
&& SET_DEST (set) == dest_reg
|
|
|
|
|
&& ((benefit = general_induction_var (SET_SRC (set), &src_reg,
|
|
|
|
|
add_val, mult_val))
|
|
|
|
|
/* Giv created by equivalent expression. */
|
|
|
|
|
|| ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
|
|
|
|
|
&& (benefit = general_induction_var (XEXP (temp, 0), &src_reg,
|
|
|
|
|
add_val, mult_val))))
|
|
|
|
|
&& src_reg == v->src_reg)
|
|
|
|
|
{
|
|
|
|
|
if (find_reg_note (p, REG_RETVAL, NULL_RTX))
|
|
|
|
|
benefit += libcall_benefit (p);
|
|
|
|
|
|
|
|
|
|
count--;
|
|
|
|
|
v->mult_val = *mult_val;
|
|
|
|
|
v->add_val = *add_val;
|
|
|
|
|
v->benefit = benefit;
|
|
|
|
|
}
|
|
|
|
|
else if (code != NOTE)
|
|
|
|
|
{
|
|
|
|
|
/* Allow insns that set something other than this giv to a
|
|
|
|
|
constant. Such insns are needed on machines which cannot
|
|
|
|
|
include long constants and should not disqualify a giv. */
|
|
|
|
|
if (code == INSN
|
|
|
|
|
&& (set = single_set (p))
|
|
|
|
|
&& SET_DEST (set) != dest_reg
|
|
|
|
|
&& CONSTANT_P (SET_SRC (set)))
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
reg_iv_type[REGNO (dest_reg)] = UNKNOWN_INDUCT;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return v->benefit;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return an rtx, if any, that expresses giv G2 as a function of the register
|
|
|
|
|
represented by G1. If no such expression can be found, or it is clear that
|
|
|
|
|
it cannot possibly be a valid address, 0 is returned.
|
|
|
|
|
|
|
|
|
|
To perform the computation, we note that
|
|
|
|
|
G1 = a * v + b and
|
|
|
|
|
G2 = c * v + d
|
|
|
|
|
where `v' is the biv.
|
|
|
|
|
|
|
|
|
|
So G2 = (c/a) * G1 + (d - b*c/a) */
|
|
|
|
|
|
|
|
|
|
#ifdef ADDRESS_COST
|
|
|
|
|
static rtx
|
|
|
|
|
express_from (g1, g2)
|
|
|
|
|
struct induction *g1, *g2;
|
|
|
|
|
{
|
|
|
|
|
rtx mult, add;
|
|
|
|
|
|
|
|
|
|
/* The value that G1 will be multiplied by must be a constant integer. Also,
|
|
|
|
|
the only chance we have of getting a valid address is if b*c/a (see above
|
|
|
|
|
for notation) is also an integer. */
|
|
|
|
|
if (GET_CODE (g1->mult_val) != CONST_INT
|
|
|
|
|
|| GET_CODE (g2->mult_val) != CONST_INT
|
|
|
|
|
|| GET_CODE (g1->add_val) != CONST_INT
|
|
|
|
|
|| g1->mult_val == const0_rtx
|
|
|
|
|
|| INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
|
|
|
|
|
add = plus_constant (g2->add_val, - INTVAL (g1->add_val) * INTVAL (mult));
|
|
|
|
|
|
|
|
|
|
/* Form simplified final result. */
|
|
|
|
|
if (mult == const0_rtx)
|
|
|
|
|
return add;
|
|
|
|
|
else if (mult == const1_rtx)
|
|
|
|
|
mult = g1->dest_reg;
|
|
|
|
|
else
|
|
|
|
|
mult = gen_rtx (MULT, g2->mode, g1->dest_reg, mult);
|
|
|
|
|
|
|
|
|
|
if (add == const0_rtx)
|
|
|
|
|
return mult;
|
|
|
|
|
else
|
|
|
|
|
return gen_rtx (PLUS, g2->mode, mult, add);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Return 1 if giv G2 can be combined with G1. This means that G2 can use
|
|
|
|
|
(either directly or via an address expression) a register used to represent
|
|
|
|
|
G1. Set g2->new_reg to a represtation of G1 (normally just
|
|
|
|
|
g1->dest_reg). */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
combine_givs_p (g1, g2)
|
|
|
|
|
struct induction *g1, *g2;
|
|
|
|
|
{
|
|
|
|
|
rtx tem;
|
|
|
|
|
|
|
|
|
|
/* If these givs are identical, they can be combined. */
|
|
|
|
|
if (rtx_equal_p (g1->mult_val, g2->mult_val)
|
|
|
|
|
&& rtx_equal_p (g1->add_val, g2->add_val))
|
|
|
|
|
{
|
|
|
|
|
g2->new_reg = g1->dest_reg;
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifdef ADDRESS_COST
|
|
|
|
|
/* If G2 can be expressed as a function of G1 and that function is valid
|
|
|
|
|
as an address and no more expensive than using a register for G2,
|
|
|
|
|
the expression of G2 in terms of G1 can be used. */
|
|
|
|
|
if (g2->giv_type == DEST_ADDR
|
|
|
|
|
&& (tem = express_from (g1, g2)) != 0
|
|
|
|
|
&& memory_address_p (g2->mem_mode, tem)
|
|
|
|
|
&& ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location))
|
|
|
|
|
{
|
|
|
|
|
g2->new_reg = tem;
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Check all pairs of givs for iv_class BL and see if any can be combined with
|
|
|
|
|
any other. If so, point SAME to the giv combined with and set NEW_REG to
|
|
|
|
|
be an expression (in terms of the other giv's DEST_REG) equivalent to the
|
|
|
|
|
giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
combine_givs (bl)
|
|
|
|
|
struct iv_class *bl;
|
|
|
|
|
{
|
|
|
|
|
struct induction *g1, *g2;
|
|
|
|
|
int pass;
|
|
|
|
|
|
|
|
|
|
for (g1 = bl->giv; g1; g1 = g1->next_iv)
|
|
|
|
|
for (pass = 0; pass <= 1; pass++)
|
|
|
|
|
for (g2 = bl->giv; g2; g2 = g2->next_iv)
|
|
|
|
|
if (g1 != g2
|
|
|
|
|
/* First try to combine with replaceable givs, then all givs. */
|
|
|
|
|
&& (g1->replaceable || pass == 1)
|
|
|
|
|
/* If either has already been combined or is to be ignored, can't
|
|
|
|
|
combine. */
|
|
|
|
|
&& ! g1->ignore && ! g2->ignore && ! g1->same && ! g2->same
|
|
|
|
|
/* If something has been based on G2, G2 cannot itself be based
|
|
|
|
|
on something else. */
|
|
|
|
|
&& ! g2->combined_with
|
|
|
|
|
&& combine_givs_p (g1, g2))
|
|
|
|
|
{
|
|
|
|
|
/* g2->new_reg set by `combine_givs_p' */
|
|
|
|
|
g2->same = g1;
|
|
|
|
|
g1->combined_with = 1;
|
|
|
|
|
g1->benefit += g2->benefit;
|
|
|
|
|
/* ??? The new final_[bg]iv_value code does a much better job
|
|
|
|
|
of finding replaceable giv's, and hence this code may no
|
|
|
|
|
longer be necessary. */
|
|
|
|
|
if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
|
|
|
|
|
g1->benefit -= copy_cost;
|
|
|
|
|
g1->lifetime += g2->lifetime;
|
|
|
|
|
g1->times_used += g2->times_used;
|
|
|
|
|
|
|
|
|
|
if (loop_dump_stream)
|
|
|
|
|
fprintf (loop_dump_stream, "giv at %d combined with giv at %d\n",
|
|
|
|
|
INSN_UID (g2->insn), INSN_UID (g1->insn));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* EMIT code before INSERT_BEFORE to set REG = B * M + A. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
emit_iv_add_mult (b, m, a, reg, insert_before)
|
|
|
|
|
rtx b; /* initial value of basic induction variable */
|
|
|
|
|
rtx m; /* multiplicative constant */
|
|
|
|
|
rtx a; /* additive constant */
|
|
|
|
|
rtx reg; /* destination register */
|
|
|
|
|
rtx insert_before;
|
|
|
|
|
{
|
|
|
|
|
rtx seq;
|
|
|
|
|
rtx result;
|
|
|
|
|
|
|
|
|
|
/* Prevent unexpected sharing of these rtx. */
|
|
|
|
|
a = copy_rtx (a);
|
|
|
|
|
b = copy_rtx (b);
|
|
|
|
|
|
|
|
|
|
/* Increase the lifetime of any invariants moved further in code. */
|
|
|
|
|
update_reg_last_use (a, insert_before);
|
|
|
|
|
update_reg_last_use (b, insert_before);
|
|
|
|
|
update_reg_last_use (m, insert_before);
|
|
|
|
|
|
|
|
|
|
start_sequence ();
|
|
|
|
|
result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 0);
|
|
|
|
|
if (reg != result)
|
|
|
|
|
emit_move_insn (reg, result);
|
|
|
|
|
seq = gen_sequence ();
|
|
|
|
|
end_sequence ();
|
|
|
|
|
|
|
|
|
|
emit_insn_before (seq, insert_before);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Test whether A * B can be computed without
|
|
|
|
|
an actual multiply insn. Value is 1 if so. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
product_cheap_p (a, b)
|
|
|
|
|
rtx a;
|
|
|
|
|
rtx b;
|
|
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
rtx tmp;
|
|
|
|
|
struct obstack *old_rtl_obstack = rtl_obstack;
|
|
|
|
|
char *storage = (char *) obstack_alloc (&temp_obstack, 0);
|
|
|
|
|
int win = 1;
|
|
|
|
|
|
|
|
|
|
/* If only one is constant, make it B. */
|
|
|
|
|
if (GET_CODE (a) == CONST_INT)
|
|
|
|
|
tmp = a, a = b, b = tmp;
|
|
|
|
|
|
|
|
|
|
/* If first constant, both constant, so don't need multiply. */
|
|
|
|
|
if (GET_CODE (a) == CONST_INT)
|
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
|
|
/* If second not constant, neither is constant, so would need multiply. */
|
|
|
|
|
if (GET_CODE (b) != CONST_INT)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* One operand is constant, so might not need multiply insn. Generate the
|
|
|
|
|
code for the multiply and see if a call or multiply, or long sequence
|
|
|
|
|
of insns is generated. */
|
|
|
|
|
|
|
|
|
|
rtl_obstack = &temp_obstack;
|
|
|
|
|
start_sequence ();
|
|
|
|
|
expand_mult (GET_MODE (a), a, b, NULL_RTX, 0);
|
|
|
|
|
tmp = gen_sequence ();
|
|
|
|
|
end_sequence ();
|
|
|
|
|
|
|
|
|
|
if (GET_CODE (tmp) == SEQUENCE)
|
|
|
|
|
{
|
|
|
|
|
if (XVEC (tmp, 0) == 0)
|
|
|
|
|
win = 1;
|
|
|
|
|
else if (XVECLEN (tmp, 0) > 3)
|
|
|
|
|
win = 0;
|
|
|
|
|
else
|
|
|
|
|
for (i = 0; i < XVECLEN (tmp, 0); i++)
|
|
|
|
|
{
|
|
|
|
|
rtx insn = XVECEXP (tmp, 0, i);
|
|
|
|
|
|
|
|
|
|
if (GET_CODE (insn) != INSN
|
|
|
|
|
|| (GET_CODE (PATTERN (insn)) == SET
|
|
|
|
|
&& GET_CODE (SET_SRC (PATTERN (insn))) == MULT)
|
|
|
|
|
|| (GET_CODE (PATTERN (insn)) == PARALLEL
|
|
|
|
|
&& GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
|
|
|
|
|
&& GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == MULT))
|
|
|
|
|
{
|
|
|
|
|
win = 0;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else if (GET_CODE (tmp) == SET
|
|
|
|
|
&& GET_CODE (SET_SRC (tmp)) == MULT)
|
|
|
|
|
win = 0;
|
|
|
|
|
else if (GET_CODE (tmp) == PARALLEL
|
|
|
|
|
&& GET_CODE (XVECEXP (tmp, 0, 0)) == SET
|
|
|
|
|
&& GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
|
|
|
|
|
win = 0;
|
|
|
|
|
|
|
|
|
|
/* Free any storage we obtained in generating this multiply and restore rtl
|
|
|
|
|
allocation to its normal obstack. */
|
|
|
|
|
obstack_free (&temp_obstack, storage);
|
|
|
|
|
rtl_obstack = old_rtl_obstack;
|
|
|
|
|
|
|
|
|
|
return win;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Check to see if loop can be terminated by a "decrement and branch until
|
|
|
|
|
zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
|
|
|
|
|
Also try reversing an increment loop to a decrement loop
|
|
|
|
|
to see if the optimization can be performed.
|
|
|
|
|
Value is nonzero if optimization was performed. */
|
|
|
|
|
|
|
|
|
|
/* This is useful even if the architecture doesn't have such an insn,
|
|
|
|
|
because it might change a loops which increments from 0 to n to a loop
|
|
|
|
|
which decrements from n to 0. A loop that decrements to zero is usually
|
|
|
|
|
faster than one that increments from zero. */
|
|
|
|
|
|
|
|
|
|
/* ??? This could be rewritten to use some of the loop unrolling procedures,
|
|
|
|
|
such as approx_final_value, biv_total_increment, loop_iterations, and
|
|
|
|
|
final_[bg]iv_value. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
check_dbra_loop (loop_end, insn_count, loop_start)
|
|
|
|
|
rtx loop_end;
|
|
|
|
|
int insn_count;
|
|
|
|
|
rtx loop_start;
|
|
|
|
|
{
|
|
|
|
|
struct iv_class *bl;
|
|
|
|
|
rtx reg;
|
|
|
|
|
rtx jump_label;
|
|
|
|
|
rtx final_value;
|
|
|
|
|
rtx start_value;
|
|
|
|
|
rtx new_add_val;
|
|
|
|
|
rtx comparison;
|
|
|
|
|
rtx before_comparison;
|
|
|
|
|
rtx p;
|
|
|
|
|
|
|
|
|
|
/* If last insn is a conditional branch, and the insn before tests a
|
|
|
|
|
register value, try to optimize it. Otherwise, we can't do anything. */
|
|
|
|
|
|
|
|
|
|
comparison = get_condition_for_loop (PREV_INSN (loop_end));
|
|
|
|
|
if (comparison == 0)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* Check all of the bivs to see if the compare uses one of them.
|
|
|
|
|
Skip biv's set more than once because we can't guarantee that
|
|
|
|
|
it will be zero on the last iteration. Also skip if the biv is
|
|
|
|
|
used between its update and the test insn. */
|
|
|
|
|
|
|
|
|
|
for (bl = loop_iv_list; bl; bl = bl->next)
|
|
|
|
|
{
|
|
|
|
|
if (bl->biv_count == 1
|
|
|
|
|
&& bl->biv->dest_reg == XEXP (comparison, 0)
|
|
|
|
|
&& ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
|
|
|
|
|
PREV_INSN (PREV_INSN (loop_end))))
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (! bl)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* Look for the case where the basic induction variable is always
|
|
|
|
|
nonnegative, and equals zero on the last iteration.
|
|
|
|
|
In this case, add a reg_note REG_NONNEG, which allows the
|
|
|
|
|
m68k DBRA instruction to be used. */
|
|
|
|
|
|
|
|
|
|
if (((GET_CODE (comparison) == GT
|
|
|
|
|
&& GET_CODE (XEXP (comparison, 1)) == CONST_INT
|
|
|
|
|
&& INTVAL (XEXP (comparison, 1)) == -1)
|
|
|
|
|
|| (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
|
|
|
|
|
&& GET_CODE (bl->biv->add_val) == CONST_INT
|
|
|
|
|
&& INTVAL (bl->biv->add_val) < 0)
|
|
|
|
|
{
|
|
|
|
|
/* Initial value must be greater than 0,
|
|
|
|
|
init_val % -dec_value == 0 to ensure that it equals zero on
|
|
|
|
|
the last iteration */
|
|
|
|
|
|
|
|
|
|
if (GET_CODE (bl->initial_value) == CONST_INT
|
|
|
|
|
&& INTVAL (bl->initial_value) > 0
|
|
|
|
|
&& (INTVAL (bl->initial_value) %
|
|
|
|
|
(-INTVAL (bl->biv->add_val))) == 0)
|
|
|
|
|
{
|
|
|
|
|
/* register always nonnegative, add REG_NOTE to branch */
|
|
|
|
|
REG_NOTES (PREV_INSN (loop_end))
|
|
|
|
|
= gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
|
|
|
|
|
REG_NOTES (PREV_INSN (loop_end)));
|
|
|
|
|
bl->nonneg = 1;
|
|
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If the decrement is 1 and the value was tested as >= 0 before
|
|
|
|
|
the loop, then we can safely optimize. */
|
|
|
|
|
for (p = loop_start; p; p = PREV_INSN (p))
|
|
|
|
|
{
|
|
|
|
|
if (GET_CODE (p) == CODE_LABEL)
|
|
|
|
|
break;
|
|
|
|
|
if (GET_CODE (p) != JUMP_INSN)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
before_comparison = get_condition_for_loop (p);
|
|
|
|
|
if (before_comparison
|
|
|
|
|
&& XEXP (before_comparison, 0) == bl->biv->dest_reg
|
|
|
|
|
&& GET_CODE (before_comparison) == LT
|
|
|
|
|
&& XEXP (before_comparison, 1) == const0_rtx
|
|
|
|
|
&& ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
|
|
|
|
|
&& INTVAL (bl->biv->add_val) == -1)
|
|
|
|
|
{
|
|
|
|
|
REG_NOTES (PREV_INSN (loop_end))
|
|
|
|
|
= gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
|
|
|
|
|
REG_NOTES (PREV_INSN (loop_end)));
|
|
|
|
|
bl->nonneg = 1;
|
|
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else if (num_mem_sets <= 1)
|
|
|
|
|
{
|
|
|
|
|
/* Try to change inc to dec, so can apply above optimization. */
|
|
|
|
|
/* Can do this if:
|
|
|
|
|
all registers modified are induction variables or invariant,
|
|
|
|
|
all memory references have non-overlapping addresses
|
|
|
|
|
(obviously true if only one write)
|
|
|
|
|
allow 2 insns for the compare/jump at the end of the loop. */
|
|
|
|
|
/* Also, we must avoid any instructions which use both the reversed
|
|
|
|
|
biv and another biv. Such instructions will fail if the loop is
|
|
|
|
|
reversed. We meet this condition by requiring that either
|
|
|
|
|
no_use_except_counting is true, or else that there is only
|
|
|
|
|
one biv. */
|
|
|
|
|
int num_nonfixed_reads = 0;
|
|
|
|
|
/* 1 if the iteration var is used only to count iterations. */
|
|
|
|
|
int no_use_except_counting = 0;
|
|
|
|
|
/* 1 if the loop has no memory store, or it has a single memory store
|
|
|
|
|
which is reversible. */
|
|
|
|
|
int reversible_mem_store = 1;
|
|
|
|
|
|
|
|
|
|
for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
|
|
|
|
|
if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
|
|
|
|
|
num_nonfixed_reads += count_nonfixed_reads (PATTERN (p));
|
|
|
|
|
|
|
|
|
|
if (bl->giv_count == 0
|
|
|
|
|
&& ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
|
|
|
|
|
{
|
|
|
|
|
rtx bivreg = regno_reg_rtx[bl->regno];
|
|
|
|
|
|
|
|
|
|
/* If there are no givs for this biv, and the only exit is the
|
|
|
|
|
fall through at the end of the the loop, then
|
|
|
|
|
see if perhaps there are no uses except to count. */
|
|
|
|
|
no_use_except_counting = 1;
|
|
|
|
|
for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
|
|
|
|
|
if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
|
|
|
|
|
{
|
|
|
|
|
rtx set = single_set (p);
|
|
|
|
|
|
|
|
|
|
if (set && GET_CODE (SET_DEST (set)) == REG
|
|
|
|
|
&& REGNO (SET_DEST (set)) == bl->regno)
|
|
|
|
|
/* An insn that sets the biv is okay. */
|
|
|
|
|
;
|
|
|
|
|
else if (p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
|
|
|
|
|
|| p == prev_nonnote_insn (loop_end))
|
|
|
|
|
/* Don't bother about the end test. */
|
|
|
|
|
;
|
|
|
|
|
else if (reg_mentioned_p (bivreg, PATTERN (p)))
|
|
|
|
|
/* Any other use of the biv is no good. */
|
|
|
|
|
{
|
|
|
|
|
no_use_except_counting = 0;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If the loop has a single store, and the destination address is
|
|
|
|
|
invariant, then we can't reverse the loop, because this address
|
|
|
|
|
might then have the wrong value at loop exit.
|
|
|
|
|
This would work if the source was invariant also, however, in that
|
|
|
|
|
case, the insn should have been moved out of the loop. */
|
|
|
|
|
|
|
|
|
|
if (num_mem_sets == 1)
|
|
|
|
|
reversible_mem_store
|
|
|
|
|
= (! unknown_address_altered
|
|
|
|
|
&& ! invariant_p (XEXP (loop_store_mems[0], 0)));
|
|
|
|
|
|
|
|
|
|
/* This code only acts for innermost loops. Also it simplifies
|
|
|
|
|
the memory address check by only reversing loops with
|
|
|
|
|
zero or one memory access.
|
|
|
|
|
Two memory accesses could involve parts of the same array,
|
|
|
|
|
and that can't be reversed. */
|
|
|
|
|
|
|
|
|
|
if (num_nonfixed_reads <= 1
|
|
|
|
|
&& !loop_has_call
|
|
|
|
|
&& !loop_has_volatile
|
|
|
|
|
&& reversible_mem_store
|
|
|
|
|
&& (no_use_except_counting
|
|
|
|
|
|| ((bl->giv_count + bl->biv_count + num_mem_sets
|
|
|
|
|
+ num_movables + 2 == insn_count)
|
|
|
|
|
&& (bl == loop_iv_list && bl->next == 0))))
|
|
|
|
|
{
|
|
|
|
|
rtx tem;
|
|
|
|
|
|
|
|
|
|
/* Loop can be reversed. */
|
|
|
|
|
if (loop_dump_stream)
|
|
|
|
|
fprintf (loop_dump_stream, "Can reverse loop\n");
|
|
|
|
|
|
|
|
|
|
/* Now check other conditions:
|
|
|
|
|
initial_value must be zero,
|
|
|
|
|
final_value % add_val == 0, so that when reversed, the
|
|
|
|
|
biv will be zero on the last iteration.
|
|
|
|
|
|
|
|
|
|
This test can probably be improved since +/- 1 in the constant
|
|
|
|
|
can be obtained by changing LT to LE and vice versa; this is
|
|
|
|
|
confusing. */
|
|
|
|
|
|
|
|
|
|
if (comparison && bl->initial_value == const0_rtx
|
|
|
|
|
&& GET_CODE (XEXP (comparison, 1)) == CONST_INT
|
|
|
|
|
/* LE gets turned into LT */
|
|
|
|
|
&& GET_CODE (comparison) == LT
|
|
|
|
|
&& (INTVAL (XEXP (comparison, 1))
|
|
|
|
|
% INTVAL (bl->biv->add_val)) == 0)
|
|
|
|
|
{
|
|
|
|
|
/* Register will always be nonnegative, with value
|
|
|
|
|
0 on last iteration if loop reversed */
|
|
|
|
|
|
|
|
|
|
/* Save some info needed to produce the new insns. */
|
|
|
|
|
reg = bl->biv->dest_reg;
|
|
|
|
|
jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 1);
|
|
|
|
|
new_add_val = GEN_INT (- INTVAL (bl->biv->add_val));
|
|
|
|
|
|
|
|
|
|
final_value = XEXP (comparison, 1);
|
|
|
|
|
start_value = GEN_INT (INTVAL (XEXP (comparison, 1))
|
|
|
|
|
- INTVAL (bl->biv->add_val));
|
|
|
|
|
|
|
|
|
|
/* Initialize biv to start_value before loop start.
|
|
|
|
|
The old initializing insn will be deleted as a
|
|
|
|
|
dead store by flow.c. */
|
|
|
|
|
emit_insn_before (gen_move_insn (reg, start_value), loop_start);
|
|
|
|
|
|
|
|
|
|
/* Add insn to decrement register, and delete insn
|
|
|
|
|
that incremented the register. */
|
|
|
|
|
p = emit_insn_before (gen_add2_insn (reg, new_add_val),
|
|
|
|
|
bl->biv->insn);
|
|
|
|
|
delete_insn (bl->biv->insn);
|
|
|
|
|
|
|
|
|
|
/* Update biv info to reflect its new status. */
|
|
|
|
|
bl->biv->insn = p;
|
|
|
|
|
bl->initial_value = start_value;
|
|
|
|
|
bl->biv->add_val = new_add_val;
|
|
|
|
|
|
|
|
|
|
/* Inc LABEL_NUSES so that delete_insn will
|
|
|
|
|
not delete the label. */
|
|
|
|
|
LABEL_NUSES (XEXP (jump_label, 0)) ++;
|
|
|
|
|
|
|
|
|
|
/* Emit an insn after the end of the loop to set the biv's
|
|
|
|
|
proper exit value if it is used anywhere outside the loop. */
|
|
|
|
|
if ((regno_last_uid[bl->regno]
|
|
|
|
|
!= INSN_UID (PREV_INSN (PREV_INSN (loop_end))))
|
|
|
|
|
|| ! bl->init_insn
|
|
|
|
|
|| regno_first_uid[bl->regno] != INSN_UID (bl->init_insn))
|
|
|
|
|
emit_insn_after (gen_move_insn (reg, final_value),
|
|
|
|
|
loop_end);
|
|
|
|
|
|
|
|
|
|
/* Delete compare/branch at end of loop. */
|
|
|
|
|
delete_insn (PREV_INSN (loop_end));
|
|
|
|
|
delete_insn (PREV_INSN (loop_end));
|
|
|
|
|
|
|
|
|
|
/* Add new compare/branch insn at end of loop. */
|
|
|
|
|
start_sequence ();
|
|
|
|
|
emit_cmp_insn (reg, const0_rtx, GE, NULL_RTX,
|
|
|
|
|
GET_MODE (reg), 0, 0);
|
|
|
|
|
emit_jump_insn (gen_bge (XEXP (jump_label, 0)));
|
|
|
|
|
tem = gen_sequence ();
|
|
|
|
|
end_sequence ();
|
|
|
|
|
emit_jump_insn_before (tem, loop_end);
|
|
|
|
|
|
|
|
|
|
for (tem = PREV_INSN (loop_end);
|
|
|
|
|
tem && GET_CODE (tem) != JUMP_INSN; tem = PREV_INSN (tem))
|
|
|
|
|
;
|
|
|
|
|
if (tem)
|
|
|
|
|
{
|
|
|
|
|
JUMP_LABEL (tem) = XEXP (jump_label, 0);
|
|
|
|
|
|
|
|
|
|
/* Increment of LABEL_NUSES done above. */
|
|
|
|
|
/* Register is now always nonnegative,
|
|
|
|
|
so add REG_NONNEG note to the branch. */
|
|
|
|
|
REG_NOTES (tem) = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
|
|
|
|
|
REG_NOTES (tem));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bl->nonneg = 1;
|
|
|
|
|
|
|
|
|
|
/* Mark that this biv has been reversed. Each giv which depends
|
|
|
|
|
on this biv, and which is also live past the end of the loop
|
|
|
|
|
will have to be fixed up. */
|
|
|
|
|
|
|
|
|
|
bl->reversed = 1;
|
|
|
|
|
|
|
|
|
|
if (loop_dump_stream)
|
|
|
|
|
fprintf (loop_dump_stream,
|
|
|
|
|
"Reversed loop and added reg_nonneg\n");
|
|
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Verify whether the biv BL appears to be eliminable,
|
|
|
|
|
based on the insns in the loop that refer to it.
|
|
|
|
|
LOOP_START is the first insn of the loop, and END is the end insn.
|
|
|
|
|
|
|
|
|
|
If ELIMINATE_P is non-zero, actually do the elimination.
|
|
|
|
|
|
|
|
|
|
THRESHOLD and INSN_COUNT are from loop_optimize and are used to
|
|
|
|
|
determine whether invariant insns should be placed inside or at the
|
|
|
|
|
start of the loop. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
maybe_eliminate_biv (bl, loop_start, end, eliminate_p, threshold, insn_count)
|
|
|
|
|
struct iv_class *bl;
|
|
|
|
|
rtx loop_start;
|
|
|
|
|
rtx end;
|
|
|
|
|
int eliminate_p;
|
|
|
|
|
int threshold, insn_count;
|
|
|
|
|
{
|
|
|
|
|
rtx reg = bl->biv->dest_reg;
|
|
|
|
|
rtx p;
|
|
|
|
|
|
|
|
|
|
/* Scan all insns in the loop, stopping if we find one that uses the
|
|
|
|
|
biv in a way that we cannot eliminate. */
|
|
|
|
|
|
|
|
|
|
for (p = loop_start; p != end; p = NEXT_INSN (p))
|
|
|
|
|
{
|
|
|
|
|
enum rtx_code code = GET_CODE (p);
|
|
|
|
|
rtx where = threshold >= insn_count ? loop_start : p;
|
|
|
|
|
|
|
|
|
|
if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
|
|
|
|
|
&& reg_mentioned_p (reg, PATTERN (p))
|
|
|
|
|
&& ! maybe_eliminate_biv_1 (PATTERN (p), p, bl, eliminate_p, where))
|
|
|
|
|
{
|
|
|
|
|
if (loop_dump_stream)
|
|
|
|
|
fprintf (loop_dump_stream,
|
|
|
|
|
"Cannot eliminate biv %d: biv used in insn %d.\n",
|
|
|
|
|
bl->regno, INSN_UID (p));
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (p == end)
|
|
|
|
|
{
|
|
|
|
|
if (loop_dump_stream)
|
|
|
|
|
fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
|
|
|
|
|
bl->regno, eliminate_p ? "was" : "can be");
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If BL appears in X (part of the pattern of INSN), see if we can
|
|
|
|
|
eliminate its use. If so, return 1. If not, return 0.
|
|
|
|
|
|
|
|
|
|
If BIV does not appear in X, return 1.
|
|
|
|
|
|
|
|
|
|
If ELIMINATE_P is non-zero, actually do the elimination. WHERE indicates
|
|
|
|
|
where extra insns should be added. Depending on how many items have been
|
|
|
|
|
moved out of the loop, it will either be before INSN or at the start of
|
|
|
|
|
the loop. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
maybe_eliminate_biv_1 (x, insn, bl, eliminate_p, where)
|
|
|
|
|
rtx x, insn;
|
|
|
|
|
struct iv_class *bl;
|
|
|
|
|
int eliminate_p;
|
|
|
|
|
rtx where;
|
|
|
|
|
{
|
|
|
|
|
enum rtx_code code = GET_CODE (x);
|
|
|
|
|
rtx reg = bl->biv->dest_reg;
|
|
|
|
|
enum machine_mode mode = GET_MODE (reg);
|
|
|
|
|
struct induction *v;
|
|
|
|
|
rtx arg, new, tem;
|
|
|
|
|
int arg_operand;
|
|
|
|
|
char *fmt;
|
|
|
|
|
int i, j;
|
|
|
|
|
|
|
|
|
|
switch (code)
|
|
|
|
|
{
|
|
|
|
|
case REG:
|
|
|
|
|
/* If we haven't already been able to do something with this BIV,
|
|
|
|
|
we can't eliminate it. */
|
|
|
|
|
if (x == reg)
|
|
|
|
|
return 0;
|
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
|
|
case SET:
|
|
|
|
|
/* If this sets the BIV, it is not a problem. */
|
|
|
|
|
if (SET_DEST (x) == reg)
|
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
|
|
/* If this is an insn that defines a giv, it is also ok because
|
|
|
|
|
it will go away when the giv is reduced. */
|
|
|
|
|
for (v = bl->giv; v; v = v->next_iv)
|
|
|
|
|
if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
|
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
|
|
#ifdef HAVE_cc0
|
|
|
|
|
if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
|
|
|
|
|
{
|
|
|
|
|
/* Can replace with any giv that was reduced and
|
|
|
|
|
that has (MULT_VAL != 0) and (ADD_VAL == 0).
|
1996-09-18 05:45:16 +00:00
|
|
|
|
Require a constant for MULT_VAL, so we know it's nonzero.
|
|
|
|
|
??? We disable this optimization to avoid potential
|
|
|
|
|
overflows. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
for (v = bl->giv; v; v = v->next_iv)
|
|
|
|
|
if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
|
|
|
|
|
&& v->add_val == const0_rtx
|
|
|
|
|
&& ! v->ignore && ! v->maybe_dead && v->always_computable
|
1996-09-18 05:45:16 +00:00
|
|
|
|
&& v->mode == mode
|
|
|
|
|
&& 0)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
|
|
|
|
if (! eliminate_p)
|
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
|
|
/* If the giv has the opposite direction of change,
|
|
|
|
|
then reverse the comparison. */
|
|
|
|
|
if (INTVAL (v->mult_val) < 0)
|
|
|
|
|
new = gen_rtx (COMPARE, GET_MODE (v->new_reg),
|
|
|
|
|
const0_rtx, v->new_reg);
|
|
|
|
|
else
|
|
|
|
|
new = v->new_reg;
|
|
|
|
|
|
|
|
|
|
/* We can probably test that giv's reduced reg. */
|
|
|
|
|
if (validate_change (insn, &SET_SRC (x), new, 0))
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
|
|
|
|
|
replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
|
1996-09-18 05:45:16 +00:00
|
|
|
|
Require a constant for MULT_VAL, so we know it's nonzero.
|
|
|
|
|
??? Do this only if ADD_VAL is a pointer to avoid a potential
|
|
|
|
|
overflow problem. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
for (v = bl->giv; v; v = v->next_iv)
|
|
|
|
|
if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
|
|
|
|
|
&& ! v->ignore && ! v->maybe_dead && v->always_computable
|
1996-09-18 05:45:16 +00:00
|
|
|
|
&& v->mode == mode
|
|
|
|
|
&& (GET_CODE (v->add_val) == SYMBOL_REF
|
|
|
|
|
|| GET_CODE (v->add_val) == LABEL_REF
|
|
|
|
|
|| GET_CODE (v->add_val) == CONST
|
|
|
|
|
|| (GET_CODE (v->add_val) == REG
|
|
|
|
|
&& REGNO_POINTER_FLAG (REGNO (v->add_val)))))
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
|
|
|
|
if (! eliminate_p)
|
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
|
|
/* If the giv has the opposite direction of change,
|
|
|
|
|
then reverse the comparison. */
|
|
|
|
|
if (INTVAL (v->mult_val) < 0)
|
|
|
|
|
new = gen_rtx (COMPARE, VOIDmode, copy_rtx (v->add_val),
|
|
|
|
|
v->new_reg);
|
|
|
|
|
else
|
|
|
|
|
new = gen_rtx (COMPARE, VOIDmode, v->new_reg,
|
|
|
|
|
copy_rtx (v->add_val));
|
|
|
|
|
|
|
|
|
|
/* Replace biv with the giv's reduced register. */
|
|
|
|
|
update_reg_last_use (v->add_val, insn);
|
|
|
|
|
if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
|
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
|
|
/* Insn doesn't support that constant or invariant. Copy it
|
|
|
|
|
into a register (it will be a loop invariant.) */
|
|
|
|
|
tem = gen_reg_rtx (GET_MODE (v->new_reg));
|
|
|
|
|
|
|
|
|
|
emit_insn_before (gen_move_insn (tem, copy_rtx (v->add_val)),
|
|
|
|
|
where);
|
|
|
|
|
|
|
|
|
|
if (validate_change (insn, &SET_SRC (PATTERN (insn)),
|
|
|
|
|
gen_rtx (COMPARE, VOIDmode,
|
|
|
|
|
v->new_reg, tem), 0))
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case COMPARE:
|
|
|
|
|
case EQ: case NE:
|
|
|
|
|
case GT: case GE: case GTU: case GEU:
|
|
|
|
|
case LT: case LE: case LTU: case LEU:
|
|
|
|
|
/* See if either argument is the biv. */
|
|
|
|
|
if (XEXP (x, 0) == reg)
|
|
|
|
|
arg = XEXP (x, 1), arg_operand = 1;
|
|
|
|
|
else if (XEXP (x, 1) == reg)
|
|
|
|
|
arg = XEXP (x, 0), arg_operand = 0;
|
|
|
|
|
else
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
if (CONSTANT_P (arg))
|
|
|
|
|
{
|
|
|
|
|
/* First try to replace with any giv that has constant positive
|
|
|
|
|
mult_val and constant add_val. We might be able to support
|
|
|
|
|
negative mult_val, but it seems complex to do it in general. */
|
|
|
|
|
|
|
|
|
|
for (v = bl->giv; v; v = v->next_iv)
|
|
|
|
|
if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
|
1996-09-18 05:45:16 +00:00
|
|
|
|
&& (GET_CODE (v->add_val) == SYMBOL_REF
|
|
|
|
|
|| GET_CODE (v->add_val) == LABEL_REF
|
|
|
|
|
|| GET_CODE (v->add_val) == CONST
|
|
|
|
|
|| (GET_CODE (v->add_val) == REG
|
|
|
|
|
&& REGNO_POINTER_FLAG (REGNO (v->add_val))))
|
1996-09-18 05:35:50 +00:00
|
|
|
|
&& ! v->ignore && ! v->maybe_dead && v->always_computable
|
|
|
|
|
&& v->mode == mode)
|
|
|
|
|
{
|
|
|
|
|
if (! eliminate_p)
|
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
|
|
/* Replace biv with the giv's reduced reg. */
|
|
|
|
|
XEXP (x, 1-arg_operand) = v->new_reg;
|
|
|
|
|
|
|
|
|
|
/* If all constants are actually constant integers and
|
|
|
|
|
the derived constant can be directly placed in the COMPARE,
|
|
|
|
|
do so. */
|
|
|
|
|
if (GET_CODE (arg) == CONST_INT
|
|
|
|
|
&& GET_CODE (v->mult_val) == CONST_INT
|
|
|
|
|
&& GET_CODE (v->add_val) == CONST_INT
|
|
|
|
|
&& validate_change (insn, &XEXP (x, arg_operand),
|
|
|
|
|
GEN_INT (INTVAL (arg)
|
|
|
|
|
* INTVAL (v->mult_val)
|
|
|
|
|
+ INTVAL (v->add_val)), 0))
|
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
|
|
/* Otherwise, load it into a register. */
|
|
|
|
|
tem = gen_reg_rtx (mode);
|
|
|
|
|
emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
|
|
|
|
|
if (validate_change (insn, &XEXP (x, arg_operand), tem, 0))
|
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
|
|
/* If that failed, put back the change we made above. */
|
|
|
|
|
XEXP (x, 1-arg_operand) = reg;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Look for giv with positive constant mult_val and nonconst add_val.
|
1996-09-18 05:45:16 +00:00
|
|
|
|
Insert insns to calculate new compare value.
|
|
|
|
|
??? Turn this off due to possible overflow. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
for (v = bl->giv; v; v = v->next_iv)
|
|
|
|
|
if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
|
|
|
|
|
&& ! v->ignore && ! v->maybe_dead && v->always_computable
|
1996-09-18 05:45:16 +00:00
|
|
|
|
&& v->mode == mode
|
|
|
|
|
&& 0)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
|
|
|
|
rtx tem;
|
|
|
|
|
|
|
|
|
|
if (! eliminate_p)
|
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
|
|
tem = gen_reg_rtx (mode);
|
|
|
|
|
|
|
|
|
|
/* Replace biv with giv's reduced register. */
|
|
|
|
|
validate_change (insn, &XEXP (x, 1 - arg_operand),
|
|
|
|
|
v->new_reg, 1);
|
|
|
|
|
|
|
|
|
|
/* Compute value to compare against. */
|
|
|
|
|
emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
|
|
|
|
|
/* Use it in this insn. */
|
|
|
|
|
validate_change (insn, &XEXP (x, arg_operand), tem, 1);
|
|
|
|
|
if (apply_change_group ())
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
|
|
|
|
|
{
|
|
|
|
|
if (invariant_p (arg) == 1)
|
|
|
|
|
{
|
|
|
|
|
/* Look for giv with constant positive mult_val and nonconst
|
1996-09-18 05:45:16 +00:00
|
|
|
|
add_val. Insert insns to compute new compare value.
|
|
|
|
|
??? Turn this off due to possible overflow. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
for (v = bl->giv; v; v = v->next_iv)
|
|
|
|
|
if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
|
|
|
|
|
&& ! v->ignore && ! v->maybe_dead && v->always_computable
|
1996-09-18 05:45:16 +00:00
|
|
|
|
&& v->mode == mode
|
|
|
|
|
&& 0)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
|
|
|
|
rtx tem;
|
|
|
|
|
|
|
|
|
|
if (! eliminate_p)
|
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
|
|
tem = gen_reg_rtx (mode);
|
|
|
|
|
|
|
|
|
|
/* Replace biv with giv's reduced register. */
|
|
|
|
|
validate_change (insn, &XEXP (x, 1 - arg_operand),
|
|
|
|
|
v->new_reg, 1);
|
|
|
|
|
|
|
|
|
|
/* Compute value to compare against. */
|
|
|
|
|
emit_iv_add_mult (arg, v->mult_val, v->add_val,
|
|
|
|
|
tem, where);
|
|
|
|
|
validate_change (insn, &XEXP (x, arg_operand), tem, 1);
|
|
|
|
|
if (apply_change_group ())
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* This code has problems. Basically, you can't know when
|
|
|
|
|
seeing if we will eliminate BL, whether a particular giv
|
|
|
|
|
of ARG will be reduced. If it isn't going to be reduced,
|
|
|
|
|
we can't eliminate BL. We can try forcing it to be reduced,
|
|
|
|
|
but that can generate poor code.
|
|
|
|
|
|
|
|
|
|
The problem is that the benefit of reducing TV, below should
|
|
|
|
|
be increased if BL can actually be eliminated, but this means
|
|
|
|
|
we might have to do a topological sort of the order in which
|
|
|
|
|
we try to process biv. It doesn't seem worthwhile to do
|
|
|
|
|
this sort of thing now. */
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
/* Otherwise the reg compared with had better be a biv. */
|
|
|
|
|
if (GET_CODE (arg) != REG
|
|
|
|
|
|| reg_iv_type[REGNO (arg)] != BASIC_INDUCT)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* Look for a pair of givs, one for each biv,
|
|
|
|
|
with identical coefficients. */
|
|
|
|
|
for (v = bl->giv; v; v = v->next_iv)
|
|
|
|
|
{
|
|
|
|
|
struct induction *tv;
|
|
|
|
|
|
|
|
|
|
if (v->ignore || v->maybe_dead || v->mode != mode)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
for (tv = reg_biv_class[REGNO (arg)]->giv; tv; tv = tv->next_iv)
|
|
|
|
|
if (! tv->ignore && ! tv->maybe_dead
|
|
|
|
|
&& rtx_equal_p (tv->mult_val, v->mult_val)
|
|
|
|
|
&& rtx_equal_p (tv->add_val, v->add_val)
|
|
|
|
|
&& tv->mode == mode)
|
|
|
|
|
{
|
|
|
|
|
if (! eliminate_p)
|
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
|
|
/* Replace biv with its giv's reduced reg. */
|
|
|
|
|
XEXP (x, 1-arg_operand) = v->new_reg;
|
|
|
|
|
/* Replace other operand with the other giv's
|
|
|
|
|
reduced reg. */
|
|
|
|
|
XEXP (x, arg_operand) = tv->new_reg;
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If we get here, the biv can't be eliminated. */
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
case MEM:
|
|
|
|
|
/* If this address is a DEST_ADDR giv, it doesn't matter if the
|
|
|
|
|
biv is used in it, since it will be replaced. */
|
|
|
|
|
for (v = bl->giv; v; v = v->next_iv)
|
|
|
|
|
if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
|
|
|
|
|
return 1;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* See if any subexpression fails elimination. */
|
|
|
|
|
fmt = GET_RTX_FORMAT (code);
|
|
|
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
|
|
|
|
{
|
|
|
|
|
switch (fmt[i])
|
|
|
|
|
{
|
|
|
|
|
case 'e':
|
|
|
|
|
if (! maybe_eliminate_biv_1 (XEXP (x, i), insn, bl,
|
|
|
|
|
eliminate_p, where))
|
|
|
|
|
return 0;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'E':
|
|
|
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
|
|
|
|
if (! maybe_eliminate_biv_1 (XVECEXP (x, i, j), insn, bl,
|
|
|
|
|
eliminate_p, where))
|
|
|
|
|
return 0;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return nonzero if the last use of REG
|
|
|
|
|
is in an insn following INSN in the same basic block. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
last_use_this_basic_block (reg, insn)
|
|
|
|
|
rtx reg;
|
|
|
|
|
rtx insn;
|
|
|
|
|
{
|
|
|
|
|
rtx n;
|
|
|
|
|
for (n = insn;
|
|
|
|
|
n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
|
|
|
|
|
n = NEXT_INSN (n))
|
|
|
|
|
{
|
|
|
|
|
if (regno_last_uid[REGNO (reg)] == INSN_UID (n))
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Called via `note_stores' to record the initial value of a biv. Here we
|
|
|
|
|
just record the location of the set and process it later. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
record_initial (dest, set)
|
|
|
|
|
rtx dest;
|
|
|
|
|
rtx set;
|
|
|
|
|
{
|
|
|
|
|
struct iv_class *bl;
|
|
|
|
|
|
|
|
|
|
if (GET_CODE (dest) != REG
|
|
|
|
|
|| REGNO (dest) >= max_reg_before_loop
|
|
|
|
|
|| reg_iv_type[REGNO (dest)] != BASIC_INDUCT)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
bl = reg_biv_class[REGNO (dest)];
|
|
|
|
|
|
|
|
|
|
/* If this is the first set found, record it. */
|
|
|
|
|
if (bl->init_insn == 0)
|
|
|
|
|
{
|
|
|
|
|
bl->init_insn = note_insn;
|
|
|
|
|
bl->init_set = set;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If any of the registers in X are "old" and currently have a last use earlier
|
|
|
|
|
than INSN, update them to have a last use of INSN. Their actual last use
|
|
|
|
|
will be the previous insn but it will not have a valid uid_luid so we can't
|
|
|
|
|
use it. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
update_reg_last_use (x, insn)
|
|
|
|
|
rtx x;
|
|
|
|
|
rtx insn;
|
|
|
|
|
{
|
|
|
|
|
/* Check for the case where INSN does not have a valid luid. In this case,
|
|
|
|
|
there is no need to modify the regno_last_uid, as this can only happen
|
|
|
|
|
when code is inserted after the loop_end to set a pseudo's final value,
|
|
|
|
|
and hence this insn will never be the last use of x. */
|
|
|
|
|
if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
|
|
|
|
|
&& INSN_UID (insn) < max_uid_for_loop
|
|
|
|
|
&& uid_luid[regno_last_uid[REGNO (x)]] < uid_luid[INSN_UID (insn)])
|
|
|
|
|
regno_last_uid[REGNO (x)] = INSN_UID (insn);
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
register int i, j;
|
|
|
|
|
register char *fmt = GET_RTX_FORMAT (GET_CODE (x));
|
|
|
|
|
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
|
|
|
|
|
{
|
|
|
|
|
if (fmt[i] == 'e')
|
|
|
|
|
update_reg_last_use (XEXP (x, i), insn);
|
|
|
|
|
else if (fmt[i] == 'E')
|
|
|
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
|
|
|
|
update_reg_last_use (XVECEXP (x, i, j), insn);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Given a jump insn JUMP, return the condition that will cause it to branch
|
|
|
|
|
to its JUMP_LABEL. If the condition cannot be understood, or is an
|
|
|
|
|
inequality floating-point comparison which needs to be reversed, 0 will
|
|
|
|
|
be returned.
|
|
|
|
|
|
|
|
|
|
If EARLIEST is non-zero, it is a pointer to a place where the earliest
|
|
|
|
|
insn used in locating the condition was found. If a replacement test
|
|
|
|
|
of the condition is desired, it should be placed in front of that
|
|
|
|
|
insn and we will be sure that the inputs are still valid.
|
|
|
|
|
|
|
|
|
|
The condition will be returned in a canonical form to simplify testing by
|
|
|
|
|
callers. Specifically:
|
|
|
|
|
|
|
|
|
|
(1) The code will always be a comparison operation (EQ, NE, GT, etc.).
|
|
|
|
|
(2) Both operands will be machine operands; (cc0) will have been replaced.
|
|
|
|
|
(3) If an operand is a constant, it will be the second operand.
|
|
|
|
|
(4) (LE x const) will be replaced with (LT x <const+1>) and similarly
|
|
|
|
|
for GE, GEU, and LEU. */
|
|
|
|
|
|
|
|
|
|
rtx
|
|
|
|
|
get_condition (jump, earliest)
|
|
|
|
|
rtx jump;
|
|
|
|
|
rtx *earliest;
|
|
|
|
|
{
|
|
|
|
|
enum rtx_code code;
|
|
|
|
|
rtx prev = jump;
|
|
|
|
|
rtx set;
|
|
|
|
|
rtx tem;
|
|
|
|
|
rtx op0, op1;
|
|
|
|
|
int reverse_code = 0;
|
|
|
|
|
int did_reverse_condition = 0;
|
|
|
|
|
|
|
|
|
|
/* If this is not a standard conditional jump, we can't parse it. */
|
|
|
|
|
if (GET_CODE (jump) != JUMP_INSN
|
|
|
|
|
|| ! condjump_p (jump) || simplejump_p (jump))
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
code = GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 0));
|
|
|
|
|
op0 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 0);
|
|
|
|
|
op1 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 1);
|
|
|
|
|
|
|
|
|
|
if (earliest)
|
|
|
|
|
*earliest = jump;
|
|
|
|
|
|
|
|
|
|
/* If this branches to JUMP_LABEL when the condition is false, reverse
|
|
|
|
|
the condition. */
|
|
|
|
|
if (GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 2)) == LABEL_REF
|
|
|
|
|
&& XEXP (XEXP (SET_SRC (PATTERN (jump)), 2), 0) == JUMP_LABEL (jump))
|
|
|
|
|
code = reverse_condition (code), did_reverse_condition ^= 1;
|
|
|
|
|
|
|
|
|
|
/* If we are comparing a register with zero, see if the register is set
|
|
|
|
|
in the previous insn to a COMPARE or a comparison operation. Perform
|
|
|
|
|
the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
|
|
|
|
|
in cse.c */
|
|
|
|
|
|
|
|
|
|
while (GET_RTX_CLASS (code) == '<' && op1 == CONST0_RTX (GET_MODE (op0)))
|
|
|
|
|
{
|
|
|
|
|
/* Set non-zero when we find something of interest. */
|
|
|
|
|
rtx x = 0;
|
|
|
|
|
|
|
|
|
|
#ifdef HAVE_cc0
|
|
|
|
|
/* If comparison with cc0, import actual comparison from compare
|
|
|
|
|
insn. */
|
|
|
|
|
if (op0 == cc0_rtx)
|
|
|
|
|
{
|
|
|
|
|
if ((prev = prev_nonnote_insn (prev)) == 0
|
|
|
|
|
|| GET_CODE (prev) != INSN
|
|
|
|
|
|| (set = single_set (prev)) == 0
|
|
|
|
|
|| SET_DEST (set) != cc0_rtx)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
op0 = SET_SRC (set);
|
|
|
|
|
op1 = CONST0_RTX (GET_MODE (op0));
|
|
|
|
|
if (earliest)
|
|
|
|
|
*earliest = prev;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* If this is a COMPARE, pick up the two things being compared. */
|
|
|
|
|
if (GET_CODE (op0) == COMPARE)
|
|
|
|
|
{
|
|
|
|
|
op1 = XEXP (op0, 1);
|
|
|
|
|
op0 = XEXP (op0, 0);
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
else if (GET_CODE (op0) != REG)
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
/* Go back to the previous insn. Stop if it is not an INSN. We also
|
|
|
|
|
stop if it isn't a single set or if it has a REG_INC note because
|
|
|
|
|
we don't want to bother dealing with it. */
|
|
|
|
|
|
|
|
|
|
if ((prev = prev_nonnote_insn (prev)) == 0
|
|
|
|
|
|| GET_CODE (prev) != INSN
|
|
|
|
|
|| FIND_REG_INC_NOTE (prev, 0)
|
|
|
|
|
|| (set = single_set (prev)) == 0)
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
/* If this is setting OP0, get what it sets it to if it looks
|
|
|
|
|
relevant. */
|
|
|
|
|
if (SET_DEST (set) == op0)
|
|
|
|
|
{
|
|
|
|
|
enum machine_mode inner_mode = GET_MODE (SET_SRC (set));
|
|
|
|
|
|
|
|
|
|
if ((GET_CODE (SET_SRC (set)) == COMPARE
|
|
|
|
|
|| (((code == NE
|
|
|
|
|
|| (code == LT
|
|
|
|
|
&& GET_MODE_CLASS (inner_mode) == MODE_INT
|
|
|
|
|
&& (GET_MODE_BITSIZE (inner_mode)
|
|
|
|
|
<= HOST_BITS_PER_WIDE_INT)
|
|
|
|
|
&& (STORE_FLAG_VALUE
|
|
|
|
|
& ((HOST_WIDE_INT) 1
|
|
|
|
|
<< (GET_MODE_BITSIZE (inner_mode) - 1))))
|
|
|
|
|
#ifdef FLOAT_STORE_FLAG_VALUE
|
|
|
|
|
|| (code == LT
|
|
|
|
|
&& GET_MODE_CLASS (inner_mode) == MODE_FLOAT
|
|
|
|
|
&& FLOAT_STORE_FLAG_VALUE < 0)
|
|
|
|
|
#endif
|
|
|
|
|
))
|
|
|
|
|
&& GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')))
|
|
|
|
|
x = SET_SRC (set);
|
|
|
|
|
else if (((code == EQ
|
|
|
|
|
|| (code == GE
|
|
|
|
|
&& (GET_MODE_BITSIZE (inner_mode)
|
|
|
|
|
<= HOST_BITS_PER_WIDE_INT)
|
|
|
|
|
&& GET_MODE_CLASS (inner_mode) == MODE_INT
|
|
|
|
|
&& (STORE_FLAG_VALUE
|
|
|
|
|
& ((HOST_WIDE_INT) 1
|
|
|
|
|
<< (GET_MODE_BITSIZE (inner_mode) - 1))))
|
|
|
|
|
#ifdef FLOAT_STORE_FLAG_VALUE
|
|
|
|
|
|| (code == GE
|
|
|
|
|
&& GET_MODE_CLASS (inner_mode) == MODE_FLOAT
|
|
|
|
|
&& FLOAT_STORE_FLAG_VALUE < 0)
|
|
|
|
|
#endif
|
|
|
|
|
))
|
|
|
|
|
&& GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')
|
|
|
|
|
{
|
|
|
|
|
/* We might have reversed a LT to get a GE here. But this wasn't
|
|
|
|
|
actually the comparison of data, so we don't flag that we
|
|
|
|
|
have had to reverse the condition. */
|
|
|
|
|
did_reverse_condition ^= 1;
|
|
|
|
|
reverse_code = 1;
|
|
|
|
|
x = SET_SRC (set);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
else if (reg_set_p (op0, prev))
|
|
|
|
|
/* If this sets OP0, but not directly, we have to give up. */
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
if (x)
|
|
|
|
|
{
|
|
|
|
|
if (GET_RTX_CLASS (GET_CODE (x)) == '<')
|
|
|
|
|
code = GET_CODE (x);
|
|
|
|
|
if (reverse_code)
|
|
|
|
|
{
|
|
|
|
|
code = reverse_condition (code);
|
|
|
|
|
did_reverse_condition ^= 1;
|
|
|
|
|
reverse_code = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
op0 = XEXP (x, 0), op1 = XEXP (x, 1);
|
|
|
|
|
if (earliest)
|
|
|
|
|
*earliest = prev;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If constant is first, put it last. */
|
|
|
|
|
if (CONSTANT_P (op0))
|
|
|
|
|
code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
|
|
|
|
|
|
|
|
|
|
/* If OP0 is the result of a comparison, we weren't able to find what
|
|
|
|
|
was really being compared, so fail. */
|
|
|
|
|
if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* Canonicalize any ordered comparison with integers involving equality
|
|
|
|
|
if we can do computations in the relevant mode and we do not
|
|
|
|
|
overflow. */
|
|
|
|
|
|
|
|
|
|
if (GET_CODE (op1) == CONST_INT
|
|
|
|
|
&& GET_MODE (op0) != VOIDmode
|
|
|
|
|
&& GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
|
|
|
|
|
{
|
|
|
|
|
HOST_WIDE_INT const_val = INTVAL (op1);
|
|
|
|
|
unsigned HOST_WIDE_INT uconst_val = const_val;
|
|
|
|
|
unsigned HOST_WIDE_INT max_val
|
|
|
|
|
= (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
|
|
|
|
|
|
|
|
|
|
switch (code)
|
|
|
|
|
{
|
|
|
|
|
case LE:
|
|
|
|
|
if (const_val != max_val >> 1)
|
|
|
|
|
code = LT, op1 = GEN_INT (const_val + 1);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case GE:
|
|
|
|
|
if (const_val
|
|
|
|
|
!= (((HOST_WIDE_INT) 1
|
|
|
|
|
<< (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
|
|
|
|
|
code = GT, op1 = GEN_INT (const_val - 1);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case LEU:
|
|
|
|
|
if (uconst_val != max_val)
|
|
|
|
|
code = LTU, op1 = GEN_INT (uconst_val + 1);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case GEU:
|
|
|
|
|
if (uconst_val != 0)
|
|
|
|
|
code = GTU, op1 = GEN_INT (uconst_val - 1);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If this was floating-point and we reversed anything other than an
|
|
|
|
|
EQ or NE, return zero. */
|
|
|
|
|
if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
|
|
|
|
|
&& did_reverse_condition && code != NE && code != EQ
|
|
|
|
|
&& ! flag_fast_math
|
|
|
|
|
&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
#ifdef HAVE_cc0
|
|
|
|
|
/* Never return CC0; return zero instead. */
|
|
|
|
|
if (op0 == cc0_rtx)
|
|
|
|
|
return 0;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
return gen_rtx (code, VOIDmode, op0, op1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Similar to above routine, except that we also put an invariant last
|
|
|
|
|
unless both operands are invariants. */
|
|
|
|
|
|
|
|
|
|
rtx
|
|
|
|
|
get_condition_for_loop (x)
|
|
|
|
|
rtx x;
|
|
|
|
|
{
|
|
|
|
|
rtx comparison = get_condition (x, NULL_PTR);
|
|
|
|
|
|
|
|
|
|
if (comparison == 0
|
|
|
|
|
|| ! invariant_p (XEXP (comparison, 0))
|
|
|
|
|
|| invariant_p (XEXP (comparison, 1)))
|
|
|
|
|
return comparison;
|
|
|
|
|
|
|
|
|
|
return gen_rtx (swap_condition (GET_CODE (comparison)), VOIDmode,
|
|
|
|
|
XEXP (comparison, 1), XEXP (comparison, 0));
|
|
|
|
|
}
|