399 lines
11 KiB
C
399 lines
11 KiB
C
|
/* Licensed to the Apache Software Foundation (ASF) under one or more
|
||
|
* contributor license agreements. See the NOTICE file distributed with
|
||
|
* this work for additional information regarding copyright ownership.
|
||
|
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||
|
* (the "License"); you may not use this file except in compliance with
|
||
|
* the License. You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
#include "apr.h"
|
||
|
|
||
|
#if APR_HAVE_STDIO_H
|
||
|
#include <stdio.h>
|
||
|
#endif
|
||
|
#if APR_HAVE_STDLIB_H
|
||
|
#include <stdlib.h>
|
||
|
#endif
|
||
|
#if APR_HAVE_UNISTD_H
|
||
|
#include <unistd.h>
|
||
|
#endif
|
||
|
|
||
|
#include "apu.h"
|
||
|
#include "apr_portable.h"
|
||
|
#include "apr_thread_mutex.h"
|
||
|
#include "apr_thread_cond.h"
|
||
|
#include "apr_errno.h"
|
||
|
#include "apr_queue.h"
|
||
|
|
||
|
#if APR_HAS_THREADS
|
||
|
/*
|
||
|
* define this to get debug messages
|
||
|
*
|
||
|
#define QUEUE_DEBUG
|
||
|
*/
|
||
|
|
||
|
struct apr_queue_t {
|
||
|
void **data;
|
||
|
unsigned int nelts; /**< # elements */
|
||
|
unsigned int in; /**< next empty location */
|
||
|
unsigned int out; /**< next filled location */
|
||
|
unsigned int bounds;/**< max size of queue */
|
||
|
unsigned int full_waiters;
|
||
|
unsigned int empty_waiters;
|
||
|
apr_thread_mutex_t *one_big_mutex;
|
||
|
apr_thread_cond_t *not_empty;
|
||
|
apr_thread_cond_t *not_full;
|
||
|
int terminated;
|
||
|
};
|
||
|
|
||
|
#ifdef QUEUE_DEBUG
|
||
|
static void Q_DBG(char*msg, apr_queue_t *q) {
|
||
|
fprintf(stderr, "%ld\t#%d in %d out %d\t%s\n",
|
||
|
apr_os_thread_current(),
|
||
|
q->nelts, q->in, q->out,
|
||
|
msg
|
||
|
);
|
||
|
}
|
||
|
#else
|
||
|
#define Q_DBG(x,y)
|
||
|
#endif
|
||
|
|
||
|
/**
|
||
|
* Detects when the apr_queue_t is full. This utility function is expected
|
||
|
* to be called from within critical sections, and is not threadsafe.
|
||
|
*/
|
||
|
#define apr_queue_full(queue) ((queue)->nelts == (queue)->bounds)
|
||
|
|
||
|
/**
|
||
|
* Detects when the apr_queue_t is empty. This utility function is expected
|
||
|
* to be called from within critical sections, and is not threadsafe.
|
||
|
*/
|
||
|
#define apr_queue_empty(queue) ((queue)->nelts == 0)
|
||
|
|
||
|
/**
|
||
|
* Callback routine that is called to destroy this
|
||
|
* apr_queue_t when its pool is destroyed.
|
||
|
*/
|
||
|
static apr_status_t queue_destroy(void *data)
|
||
|
{
|
||
|
apr_queue_t *queue = data;
|
||
|
|
||
|
/* Ignore errors here, we can't do anything about them anyway. */
|
||
|
|
||
|
apr_thread_cond_destroy(queue->not_empty);
|
||
|
apr_thread_cond_destroy(queue->not_full);
|
||
|
apr_thread_mutex_destroy(queue->one_big_mutex);
|
||
|
|
||
|
return APR_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Initialize the apr_queue_t.
|
||
|
*/
|
||
|
APU_DECLARE(apr_status_t) apr_queue_create(apr_queue_t **q,
|
||
|
unsigned int queue_capacity,
|
||
|
apr_pool_t *a)
|
||
|
{
|
||
|
apr_status_t rv;
|
||
|
apr_queue_t *queue;
|
||
|
queue = apr_palloc(a, sizeof(apr_queue_t));
|
||
|
*q = queue;
|
||
|
|
||
|
/* nested doesn't work ;( */
|
||
|
rv = apr_thread_mutex_create(&queue->one_big_mutex,
|
||
|
APR_THREAD_MUTEX_UNNESTED,
|
||
|
a);
|
||
|
if (rv != APR_SUCCESS) {
|
||
|
return rv;
|
||
|
}
|
||
|
|
||
|
rv = apr_thread_cond_create(&queue->not_empty, a);
|
||
|
if (rv != APR_SUCCESS) {
|
||
|
return rv;
|
||
|
}
|
||
|
|
||
|
rv = apr_thread_cond_create(&queue->not_full, a);
|
||
|
if (rv != APR_SUCCESS) {
|
||
|
return rv;
|
||
|
}
|
||
|
|
||
|
/* Set all the data in the queue to NULL */
|
||
|
queue->data = apr_pcalloc(a, queue_capacity * sizeof(void*));
|
||
|
queue->bounds = queue_capacity;
|
||
|
queue->nelts = 0;
|
||
|
queue->in = 0;
|
||
|
queue->out = 0;
|
||
|
queue->terminated = 0;
|
||
|
queue->full_waiters = 0;
|
||
|
queue->empty_waiters = 0;
|
||
|
|
||
|
apr_pool_cleanup_register(a, queue, queue_destroy, apr_pool_cleanup_null);
|
||
|
|
||
|
return APR_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Push new data onto the queue. Blocks if the queue is full. Once
|
||
|
* the push operation has completed, it signals other threads waiting
|
||
|
* in apr_queue_pop() that they may continue consuming sockets.
|
||
|
*/
|
||
|
APU_DECLARE(apr_status_t) apr_queue_push(apr_queue_t *queue, void *data)
|
||
|
{
|
||
|
apr_status_t rv;
|
||
|
|
||
|
if (queue->terminated) {
|
||
|
return APR_EOF; /* no more elements ever again */
|
||
|
}
|
||
|
|
||
|
rv = apr_thread_mutex_lock(queue->one_big_mutex);
|
||
|
if (rv != APR_SUCCESS) {
|
||
|
return rv;
|
||
|
}
|
||
|
|
||
|
if (apr_queue_full(queue)) {
|
||
|
if (!queue->terminated) {
|
||
|
queue->full_waiters++;
|
||
|
rv = apr_thread_cond_wait(queue->not_full, queue->one_big_mutex);
|
||
|
queue->full_waiters--;
|
||
|
if (rv != APR_SUCCESS) {
|
||
|
apr_thread_mutex_unlock(queue->one_big_mutex);
|
||
|
return rv;
|
||
|
}
|
||
|
}
|
||
|
/* If we wake up and it's still empty, then we were interrupted */
|
||
|
if (apr_queue_full(queue)) {
|
||
|
Q_DBG("queue full (intr)", queue);
|
||
|
rv = apr_thread_mutex_unlock(queue->one_big_mutex);
|
||
|
if (rv != APR_SUCCESS) {
|
||
|
return rv;
|
||
|
}
|
||
|
if (queue->terminated) {
|
||
|
return APR_EOF; /* no more elements ever again */
|
||
|
}
|
||
|
else {
|
||
|
return APR_EINTR;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
queue->data[queue->in] = data;
|
||
|
queue->in++;
|
||
|
if (queue->in >= queue->bounds)
|
||
|
queue->in -= queue->bounds;
|
||
|
queue->nelts++;
|
||
|
|
||
|
if (queue->empty_waiters) {
|
||
|
Q_DBG("sig !empty", queue);
|
||
|
rv = apr_thread_cond_signal(queue->not_empty);
|
||
|
if (rv != APR_SUCCESS) {
|
||
|
apr_thread_mutex_unlock(queue->one_big_mutex);
|
||
|
return rv;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
rv = apr_thread_mutex_unlock(queue->one_big_mutex);
|
||
|
return rv;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Push new data onto the queue. If the queue is full, return APR_EAGAIN. If
|
||
|
* the push operation completes successfully, it signals other threads
|
||
|
* waiting in apr_queue_pop() that they may continue consuming sockets.
|
||
|
*/
|
||
|
APU_DECLARE(apr_status_t) apr_queue_trypush(apr_queue_t *queue, void *data)
|
||
|
{
|
||
|
apr_status_t rv;
|
||
|
|
||
|
if (queue->terminated) {
|
||
|
return APR_EOF; /* no more elements ever again */
|
||
|
}
|
||
|
|
||
|
rv = apr_thread_mutex_lock(queue->one_big_mutex);
|
||
|
if (rv != APR_SUCCESS) {
|
||
|
return rv;
|
||
|
}
|
||
|
|
||
|
if (apr_queue_full(queue)) {
|
||
|
rv = apr_thread_mutex_unlock(queue->one_big_mutex);
|
||
|
return APR_EAGAIN;
|
||
|
}
|
||
|
|
||
|
queue->data[queue->in] = data;
|
||
|
queue->in++;
|
||
|
if (queue->in >= queue->bounds)
|
||
|
queue->in -= queue->bounds;
|
||
|
queue->nelts++;
|
||
|
|
||
|
if (queue->empty_waiters) {
|
||
|
Q_DBG("sig !empty", queue);
|
||
|
rv = apr_thread_cond_signal(queue->not_empty);
|
||
|
if (rv != APR_SUCCESS) {
|
||
|
apr_thread_mutex_unlock(queue->one_big_mutex);
|
||
|
return rv;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
rv = apr_thread_mutex_unlock(queue->one_big_mutex);
|
||
|
return rv;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* not thread safe
|
||
|
*/
|
||
|
APU_DECLARE(unsigned int) apr_queue_size(apr_queue_t *queue) {
|
||
|
return queue->nelts;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Retrieves the next item from the queue. If there are no
|
||
|
* items available, it will block until one becomes available.
|
||
|
* Once retrieved, the item is placed into the address specified by
|
||
|
* 'data'.
|
||
|
*/
|
||
|
APU_DECLARE(apr_status_t) apr_queue_pop(apr_queue_t *queue, void **data)
|
||
|
{
|
||
|
apr_status_t rv;
|
||
|
|
||
|
if (queue->terminated) {
|
||
|
return APR_EOF; /* no more elements ever again */
|
||
|
}
|
||
|
|
||
|
rv = apr_thread_mutex_lock(queue->one_big_mutex);
|
||
|
if (rv != APR_SUCCESS) {
|
||
|
return rv;
|
||
|
}
|
||
|
|
||
|
/* Keep waiting until we wake up and find that the queue is not empty. */
|
||
|
if (apr_queue_empty(queue)) {
|
||
|
if (!queue->terminated) {
|
||
|
queue->empty_waiters++;
|
||
|
rv = apr_thread_cond_wait(queue->not_empty, queue->one_big_mutex);
|
||
|
queue->empty_waiters--;
|
||
|
if (rv != APR_SUCCESS) {
|
||
|
apr_thread_mutex_unlock(queue->one_big_mutex);
|
||
|
return rv;
|
||
|
}
|
||
|
}
|
||
|
/* If we wake up and it's still empty, then we were interrupted */
|
||
|
if (apr_queue_empty(queue)) {
|
||
|
Q_DBG("queue empty (intr)", queue);
|
||
|
rv = apr_thread_mutex_unlock(queue->one_big_mutex);
|
||
|
if (rv != APR_SUCCESS) {
|
||
|
return rv;
|
||
|
}
|
||
|
if (queue->terminated) {
|
||
|
return APR_EOF; /* no more elements ever again */
|
||
|
}
|
||
|
else {
|
||
|
return APR_EINTR;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
*data = queue->data[queue->out];
|
||
|
queue->nelts--;
|
||
|
|
||
|
queue->out++;
|
||
|
if (queue->out >= queue->bounds)
|
||
|
queue->out -= queue->bounds;
|
||
|
if (queue->full_waiters) {
|
||
|
Q_DBG("signal !full", queue);
|
||
|
rv = apr_thread_cond_signal(queue->not_full);
|
||
|
if (rv != APR_SUCCESS) {
|
||
|
apr_thread_mutex_unlock(queue->one_big_mutex);
|
||
|
return rv;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
rv = apr_thread_mutex_unlock(queue->one_big_mutex);
|
||
|
return rv;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Retrieves the next item from the queue. If there are no
|
||
|
* items available, return APR_EAGAIN. Once retrieved,
|
||
|
* the item is placed into the address specified by 'data'.
|
||
|
*/
|
||
|
APU_DECLARE(apr_status_t) apr_queue_trypop(apr_queue_t *queue, void **data)
|
||
|
{
|
||
|
apr_status_t rv;
|
||
|
|
||
|
if (queue->terminated) {
|
||
|
return APR_EOF; /* no more elements ever again */
|
||
|
}
|
||
|
|
||
|
rv = apr_thread_mutex_lock(queue->one_big_mutex);
|
||
|
if (rv != APR_SUCCESS) {
|
||
|
return rv;
|
||
|
}
|
||
|
|
||
|
if (apr_queue_empty(queue)) {
|
||
|
rv = apr_thread_mutex_unlock(queue->one_big_mutex);
|
||
|
return APR_EAGAIN;
|
||
|
}
|
||
|
|
||
|
*data = queue->data[queue->out];
|
||
|
queue->nelts--;
|
||
|
|
||
|
queue->out++;
|
||
|
if (queue->out >= queue->bounds)
|
||
|
queue->out -= queue->bounds;
|
||
|
if (queue->full_waiters) {
|
||
|
Q_DBG("signal !full", queue);
|
||
|
rv = apr_thread_cond_signal(queue->not_full);
|
||
|
if (rv != APR_SUCCESS) {
|
||
|
apr_thread_mutex_unlock(queue->one_big_mutex);
|
||
|
return rv;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
rv = apr_thread_mutex_unlock(queue->one_big_mutex);
|
||
|
return rv;
|
||
|
}
|
||
|
|
||
|
APU_DECLARE(apr_status_t) apr_queue_interrupt_all(apr_queue_t *queue)
|
||
|
{
|
||
|
apr_status_t rv;
|
||
|
Q_DBG("intr all", queue);
|
||
|
if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) {
|
||
|
return rv;
|
||
|
}
|
||
|
apr_thread_cond_broadcast(queue->not_empty);
|
||
|
apr_thread_cond_broadcast(queue->not_full);
|
||
|
|
||
|
if ((rv = apr_thread_mutex_unlock(queue->one_big_mutex)) != APR_SUCCESS) {
|
||
|
return rv;
|
||
|
}
|
||
|
|
||
|
return APR_SUCCESS;
|
||
|
}
|
||
|
|
||
|
APU_DECLARE(apr_status_t) apr_queue_term(apr_queue_t *queue)
|
||
|
{
|
||
|
apr_status_t rv;
|
||
|
|
||
|
if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) {
|
||
|
return rv;
|
||
|
}
|
||
|
|
||
|
/* we must hold one_big_mutex when setting this... otherwise,
|
||
|
* we could end up setting it and waking everybody up just after a
|
||
|
* would-be popper checks it but right before they block
|
||
|
*/
|
||
|
queue->terminated = 1;
|
||
|
if ((rv = apr_thread_mutex_unlock(queue->one_big_mutex)) != APR_SUCCESS) {
|
||
|
return rv;
|
||
|
}
|
||
|
return apr_queue_interrupt_all(queue);
|
||
|
}
|
||
|
|
||
|
#endif /* APR_HAS_THREADS */
|