2012-04-14 13:54:10 +00:00
|
|
|
//===-- X86CodeEmitter.cpp - Convert X86 code to machine code -------------===//
|
2009-06-02 17:52:33 +00:00
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file contains the pass that transforms the X86 machine instructions into
|
|
|
|
// relocatable machine code.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#define DEBUG_TYPE "x86-emitter"
|
2013-04-08 18:41:23 +00:00
|
|
|
#include "X86.h"
|
2009-06-02 17:52:33 +00:00
|
|
|
#include "X86InstrInfo.h"
|
|
|
|
#include "X86JITInfo.h"
|
2013-04-08 18:41:23 +00:00
|
|
|
#include "X86Relocations.h"
|
2009-06-02 17:52:33 +00:00
|
|
|
#include "X86Subtarget.h"
|
|
|
|
#include "X86TargetMachine.h"
|
2013-04-08 18:41:23 +00:00
|
|
|
#include "llvm/ADT/Statistic.h"
|
2009-06-02 17:52:33 +00:00
|
|
|
#include "llvm/CodeGen/JITCodeEmitter.h"
|
|
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
|
|
#include "llvm/CodeGen/Passes.h"
|
2013-04-08 18:41:23 +00:00
|
|
|
#include "llvm/IR/LLVMContext.h"
|
2009-10-14 17:57:32 +00:00
|
|
|
#include "llvm/MC/MCCodeEmitter.h"
|
|
|
|
#include "llvm/MC/MCExpr.h"
|
|
|
|
#include "llvm/MC/MCInst.h"
|
2013-04-08 18:41:23 +00:00
|
|
|
#include "llvm/PassManager.h"
|
2009-06-02 17:52:33 +00:00
|
|
|
#include "llvm/Support/Debug.h"
|
2009-10-14 17:57:32 +00:00
|
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
|
|
#include "llvm/Support/raw_ostream.h"
|
2009-06-02 17:52:33 +00:00
|
|
|
#include "llvm/Target/TargetOptions.h"
|
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
STATISTIC(NumEmitted, "Number of machine instructions emitted");
|
|
|
|
|
|
|
|
namespace {
|
2009-10-14 17:57:32 +00:00
|
|
|
template<class CodeEmitter>
|
2009-11-04 14:58:56 +00:00
|
|
|
class Emitter : public MachineFunctionPass {
|
2009-06-02 17:52:33 +00:00
|
|
|
const X86InstrInfo *II;
|
2012-12-02 13:10:19 +00:00
|
|
|
const DataLayout *TD;
|
2009-06-02 17:52:33 +00:00
|
|
|
X86TargetMachine &TM;
|
|
|
|
CodeEmitter &MCE;
|
2010-03-16 16:51:38 +00:00
|
|
|
MachineModuleInfo *MMI;
|
2009-06-02 17:52:33 +00:00
|
|
|
intptr_t PICBaseOffset;
|
|
|
|
bool Is64BitMode;
|
|
|
|
bool IsPIC;
|
|
|
|
public:
|
|
|
|
static char ID;
|
|
|
|
explicit Emitter(X86TargetMachine &tm, CodeEmitter &mce)
|
2012-08-15 19:34:23 +00:00
|
|
|
: MachineFunctionPass(ID), II(0), TD(0), TM(tm),
|
2009-06-02 17:52:33 +00:00
|
|
|
MCE(mce), PICBaseOffset(0), Is64BitMode(false),
|
|
|
|
IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
|
|
|
|
Emitter(X86TargetMachine &tm, CodeEmitter &mce,
|
2012-12-02 13:10:19 +00:00
|
|
|
const X86InstrInfo &ii, const DataLayout &td, bool is64)
|
2012-08-15 19:34:23 +00:00
|
|
|
: MachineFunctionPass(ID), II(&ii), TD(&td), TM(tm),
|
2009-06-02 17:52:33 +00:00
|
|
|
MCE(mce), PICBaseOffset(0), Is64BitMode(is64),
|
|
|
|
IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
|
|
|
|
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF);
|
|
|
|
|
|
|
|
virtual const char *getPassName() const {
|
|
|
|
return "X86 Machine Code Emitter";
|
|
|
|
}
|
|
|
|
|
2012-08-15 19:34:23 +00:00
|
|
|
void emitOpcodePrefix(uint64_t TSFlags, int MemOperand,
|
|
|
|
const MachineInstr &MI,
|
|
|
|
const MCInstrDesc *Desc) const;
|
|
|
|
|
|
|
|
void emitVEXOpcodePrefix(uint64_t TSFlags, int MemOperand,
|
|
|
|
const MachineInstr &MI,
|
|
|
|
const MCInstrDesc *Desc) const;
|
|
|
|
|
|
|
|
void emitSegmentOverridePrefix(uint64_t TSFlags,
|
|
|
|
int MemOperand,
|
|
|
|
const MachineInstr &MI) const;
|
|
|
|
|
2011-07-17 15:36:56 +00:00
|
|
|
void emitInstruction(MachineInstr &MI, const MCInstrDesc *Desc);
|
2012-08-15 19:34:23 +00:00
|
|
|
|
2009-06-02 17:52:33 +00:00
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const {
|
2009-10-14 17:57:32 +00:00
|
|
|
AU.setPreservesAll();
|
2009-06-02 17:52:33 +00:00
|
|
|
AU.addRequired<MachineModuleInfo>();
|
|
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
void emitPCRelativeBlockAddress(MachineBasicBlock *MBB);
|
2010-05-04 16:11:02 +00:00
|
|
|
void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
|
2009-06-02 17:52:33 +00:00
|
|
|
intptr_t Disp = 0, intptr_t PCAdj = 0,
|
2009-11-18 14:58:34 +00:00
|
|
|
bool Indirect = false);
|
2009-06-02 17:52:33 +00:00
|
|
|
void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
|
|
|
|
void emitConstPoolAddress(unsigned CPI, unsigned Reloc, intptr_t Disp = 0,
|
|
|
|
intptr_t PCAdj = 0);
|
|
|
|
void emitJumpTableAddress(unsigned JTI, unsigned Reloc,
|
|
|
|
intptr_t PCAdj = 0);
|
|
|
|
|
|
|
|
void emitDisplacementField(const MachineOperand *RelocOp, int DispVal,
|
2009-10-14 17:57:32 +00:00
|
|
|
intptr_t Adj = 0, bool IsPCRel = true);
|
2009-06-02 17:52:33 +00:00
|
|
|
|
|
|
|
void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
|
|
|
|
void emitRegModRMByte(unsigned RegOpcodeField);
|
|
|
|
void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
|
|
|
|
void emitConstant(uint64_t Val, unsigned Size);
|
|
|
|
|
|
|
|
void emitMemModRMByte(const MachineInstr &MI,
|
|
|
|
unsigned Op, unsigned RegOpcodeField,
|
|
|
|
intptr_t PCAdj = 0);
|
2012-12-02 13:10:19 +00:00
|
|
|
|
|
|
|
unsigned getX86RegNum(unsigned RegNo) const {
|
|
|
|
const TargetRegisterInfo *TRI = TM.getRegisterInfo();
|
|
|
|
return TRI->getEncodingValue(RegNo) & 0x7;
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned char getVEXRegisterEncoding(const MachineInstr &MI,
|
|
|
|
unsigned OpNum) const;
|
2009-06-02 17:52:33 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
template<class CodeEmitter>
|
|
|
|
char Emitter<CodeEmitter>::ID = 0;
|
2009-10-14 17:57:32 +00:00
|
|
|
} // end anonymous namespace.
|
2009-06-02 17:52:33 +00:00
|
|
|
|
|
|
|
/// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
|
2013-04-08 18:41:23 +00:00
|
|
|
/// to the specified JITCodeEmitter object.
|
2009-10-14 17:57:32 +00:00
|
|
|
FunctionPass *llvm::createX86JITCodeEmitterPass(X86TargetMachine &TM,
|
|
|
|
JITCodeEmitter &JCE) {
|
2009-06-02 17:52:33 +00:00
|
|
|
return new Emitter<JITCodeEmitter>(TM, JCE);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<class CodeEmitter>
|
|
|
|
bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
|
2010-03-16 16:51:38 +00:00
|
|
|
MMI = &getAnalysis<MachineModuleInfo>();
|
|
|
|
MCE.setModuleInfo(MMI);
|
2012-08-15 19:34:23 +00:00
|
|
|
|
2009-06-02 17:52:33 +00:00
|
|
|
II = TM.getInstrInfo();
|
2012-12-02 13:10:19 +00:00
|
|
|
TD = TM.getDataLayout();
|
2009-06-02 17:52:33 +00:00
|
|
|
Is64BitMode = TM.getSubtarget<X86Subtarget>().is64Bit();
|
|
|
|
IsPIC = TM.getRelocationModel() == Reloc::PIC_;
|
2012-08-15 19:34:23 +00:00
|
|
|
|
2009-06-02 17:52:33 +00:00
|
|
|
do {
|
2012-12-02 13:10:19 +00:00
|
|
|
DEBUG(dbgs() << "JITTing function '" << MF.getName() << "'\n");
|
2009-06-02 17:52:33 +00:00
|
|
|
MCE.startFunction(MF);
|
2012-08-15 19:34:23 +00:00
|
|
|
for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
|
2009-06-02 17:52:33 +00:00
|
|
|
MBB != E; ++MBB) {
|
|
|
|
MCE.StartMachineBasicBlock(MBB);
|
2011-02-20 12:57:14 +00:00
|
|
|
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
|
2009-06-02 17:52:33 +00:00
|
|
|
I != E; ++I) {
|
2011-07-17 15:36:56 +00:00
|
|
|
const MCInstrDesc &Desc = I->getDesc();
|
2009-06-02 17:52:33 +00:00
|
|
|
emitInstruction(*I, &Desc);
|
|
|
|
// MOVPC32r is basically a call plus a pop instruction.
|
|
|
|
if (Desc.getOpcode() == X86::MOVPC32r)
|
|
|
|
emitInstruction(*I, &II->get(X86::POP32r));
|
2010-07-13 17:19:57 +00:00
|
|
|
++NumEmitted; // Keep track of the # of mi's emitted
|
2009-06-02 17:52:33 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
} while (MCE.finishFunction(MF));
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2010-09-17 15:48:55 +00:00
|
|
|
/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
|
|
|
|
/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
|
|
|
|
/// size, and 3) use of X86-64 extended registers.
|
|
|
|
static unsigned determineREX(const MachineInstr &MI) {
|
|
|
|
unsigned REX = 0;
|
2011-07-17 15:36:56 +00:00
|
|
|
const MCInstrDesc &Desc = MI.getDesc();
|
2012-08-15 19:34:23 +00:00
|
|
|
|
2010-09-17 15:48:55 +00:00
|
|
|
// Pseudo instructions do not need REX prefix byte.
|
|
|
|
if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
|
|
|
|
return 0;
|
|
|
|
if (Desc.TSFlags & X86II::REX_W)
|
|
|
|
REX |= 1 << 3;
|
2012-08-15 19:34:23 +00:00
|
|
|
|
2010-09-17 15:48:55 +00:00
|
|
|
unsigned NumOps = Desc.getNumOperands();
|
|
|
|
if (NumOps) {
|
|
|
|
bool isTwoAddr = NumOps > 1 &&
|
2012-08-15 19:34:23 +00:00
|
|
|
Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
|
|
|
|
|
2010-09-17 15:48:55 +00:00
|
|
|
// If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
|
|
|
|
unsigned i = isTwoAddr ? 1 : 0;
|
|
|
|
for (unsigned e = NumOps; i != e; ++i) {
|
|
|
|
const MachineOperand& MO = MI.getOperand(i);
|
|
|
|
if (MO.isReg()) {
|
|
|
|
unsigned Reg = MO.getReg();
|
2011-10-20 21:10:27 +00:00
|
|
|
if (X86II::isX86_64NonExtLowByteReg(Reg))
|
2010-09-17 15:48:55 +00:00
|
|
|
REX |= 0x40;
|
|
|
|
}
|
|
|
|
}
|
2012-08-15 19:34:23 +00:00
|
|
|
|
2010-09-17 15:48:55 +00:00
|
|
|
switch (Desc.TSFlags & X86II::FormMask) {
|
|
|
|
case X86II::MRMInitReg:
|
|
|
|
if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
|
|
|
|
REX |= (1 << 0) | (1 << 2);
|
|
|
|
break;
|
|
|
|
case X86II::MRMSrcReg: {
|
|
|
|
if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
|
|
|
|
REX |= 1 << 2;
|
|
|
|
i = isTwoAddr ? 2 : 1;
|
|
|
|
for (unsigned e = NumOps; i != e; ++i) {
|
|
|
|
const MachineOperand& MO = MI.getOperand(i);
|
|
|
|
if (X86InstrInfo::isX86_64ExtendedReg(MO))
|
|
|
|
REX |= 1 << 0;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case X86II::MRMSrcMem: {
|
|
|
|
if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
|
|
|
|
REX |= 1 << 2;
|
|
|
|
unsigned Bit = 0;
|
|
|
|
i = isTwoAddr ? 2 : 1;
|
|
|
|
for (; i != NumOps; ++i) {
|
|
|
|
const MachineOperand& MO = MI.getOperand(i);
|
|
|
|
if (MO.isReg()) {
|
|
|
|
if (X86InstrInfo::isX86_64ExtendedReg(MO))
|
|
|
|
REX |= 1 << Bit;
|
|
|
|
Bit++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case X86II::MRM0m: case X86II::MRM1m:
|
|
|
|
case X86II::MRM2m: case X86II::MRM3m:
|
|
|
|
case X86II::MRM4m: case X86II::MRM5m:
|
|
|
|
case X86II::MRM6m: case X86II::MRM7m:
|
|
|
|
case X86II::MRMDestMem: {
|
|
|
|
unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
|
|
|
|
i = isTwoAddr ? 1 : 0;
|
|
|
|
if (NumOps > e && X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e)))
|
|
|
|
REX |= 1 << 2;
|
|
|
|
unsigned Bit = 0;
|
|
|
|
for (; i != e; ++i) {
|
|
|
|
const MachineOperand& MO = MI.getOperand(i);
|
|
|
|
if (MO.isReg()) {
|
|
|
|
if (X86InstrInfo::isX86_64ExtendedReg(MO))
|
|
|
|
REX |= 1 << Bit;
|
|
|
|
Bit++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default: {
|
|
|
|
if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
|
|
|
|
REX |= 1 << 0;
|
|
|
|
i = isTwoAddr ? 2 : 1;
|
|
|
|
for (unsigned e = NumOps; i != e; ++i) {
|
|
|
|
const MachineOperand& MO = MI.getOperand(i);
|
|
|
|
if (X86InstrInfo::isX86_64ExtendedReg(MO))
|
|
|
|
REX |= 1 << 2;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return REX;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2009-06-02 17:52:33 +00:00
|
|
|
/// emitPCRelativeBlockAddress - This method keeps track of the information
|
|
|
|
/// necessary to resolve the address of this block later and emits a dummy
|
|
|
|
/// value.
|
|
|
|
///
|
|
|
|
template<class CodeEmitter>
|
|
|
|
void Emitter<CodeEmitter>::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) {
|
|
|
|
// Remember where this reference was and where it is to so we can
|
|
|
|
// deal with it later.
|
|
|
|
MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
|
|
|
|
X86::reloc_pcrel_word, MBB));
|
|
|
|
MCE.emitWordLE(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// emitGlobalAddress - Emit the specified address to the code stream assuming
|
|
|
|
/// this is part of a "take the address of a global" instruction.
|
|
|
|
///
|
|
|
|
template<class CodeEmitter>
|
2010-05-04 16:11:02 +00:00
|
|
|
void Emitter<CodeEmitter>::emitGlobalAddress(const GlobalValue *GV,
|
|
|
|
unsigned Reloc,
|
2009-06-02 17:52:33 +00:00
|
|
|
intptr_t Disp /* = 0 */,
|
|
|
|
intptr_t PCAdj /* = 0 */,
|
|
|
|
bool Indirect /* = false */) {
|
2009-10-14 17:57:32 +00:00
|
|
|
intptr_t RelocCST = Disp;
|
2009-06-02 17:52:33 +00:00
|
|
|
if (Reloc == X86::reloc_picrel_word)
|
|
|
|
RelocCST = PICBaseOffset;
|
|
|
|
else if (Reloc == X86::reloc_pcrel_word)
|
|
|
|
RelocCST = PCAdj;
|
|
|
|
MachineRelocation MR = Indirect
|
|
|
|
? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
|
2010-05-04 16:11:02 +00:00
|
|
|
const_cast<GlobalValue *>(GV),
|
|
|
|
RelocCST, false)
|
2009-06-02 17:52:33 +00:00
|
|
|
: MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
|
2010-05-04 16:11:02 +00:00
|
|
|
const_cast<GlobalValue *>(GV), RelocCST, false);
|
2009-06-02 17:52:33 +00:00
|
|
|
MCE.addRelocation(MR);
|
|
|
|
// The relocated value will be added to the displacement
|
|
|
|
if (Reloc == X86::reloc_absolute_dword)
|
|
|
|
MCE.emitDWordLE(Disp);
|
|
|
|
else
|
|
|
|
MCE.emitWordLE((int32_t)Disp);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
|
|
|
|
/// be emitted to the current location in the function, and allow it to be PC
|
|
|
|
/// relative.
|
|
|
|
template<class CodeEmitter>
|
|
|
|
void Emitter<CodeEmitter>::emitExternalSymbolAddress(const char *ES,
|
|
|
|
unsigned Reloc) {
|
|
|
|
intptr_t RelocCST = (Reloc == X86::reloc_picrel_word) ? PICBaseOffset : 0;
|
2010-02-16 09:30:23 +00:00
|
|
|
|
|
|
|
// X86 never needs stubs because instruction selection will always pick
|
|
|
|
// an instruction sequence that is large enough to hold any address
|
|
|
|
// to a symbol.
|
|
|
|
// (see X86ISelLowering.cpp, near 2039: X86TargetLowering::LowerCall)
|
|
|
|
bool NeedStub = false;
|
2009-06-02 17:52:33 +00:00
|
|
|
MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
|
2010-02-16 09:30:23 +00:00
|
|
|
Reloc, ES, RelocCST,
|
|
|
|
0, NeedStub));
|
2009-06-02 17:52:33 +00:00
|
|
|
if (Reloc == X86::reloc_absolute_dword)
|
|
|
|
MCE.emitDWordLE(0);
|
|
|
|
else
|
|
|
|
MCE.emitWordLE(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// emitConstPoolAddress - Arrange for the address of an constant pool
|
|
|
|
/// to be emitted to the current location in the function, and allow it to be PC
|
|
|
|
/// relative.
|
|
|
|
template<class CodeEmitter>
|
|
|
|
void Emitter<CodeEmitter>::emitConstPoolAddress(unsigned CPI, unsigned Reloc,
|
|
|
|
intptr_t Disp /* = 0 */,
|
|
|
|
intptr_t PCAdj /* = 0 */) {
|
|
|
|
intptr_t RelocCST = 0;
|
|
|
|
if (Reloc == X86::reloc_picrel_word)
|
|
|
|
RelocCST = PICBaseOffset;
|
|
|
|
else if (Reloc == X86::reloc_pcrel_word)
|
|
|
|
RelocCST = PCAdj;
|
|
|
|
MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
|
|
|
|
Reloc, CPI, RelocCST));
|
|
|
|
// The relocated value will be added to the displacement
|
|
|
|
if (Reloc == X86::reloc_absolute_dword)
|
|
|
|
MCE.emitDWordLE(Disp);
|
|
|
|
else
|
|
|
|
MCE.emitWordLE((int32_t)Disp);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// emitJumpTableAddress - Arrange for the address of a jump table to
|
|
|
|
/// be emitted to the current location in the function, and allow it to be PC
|
|
|
|
/// relative.
|
|
|
|
template<class CodeEmitter>
|
|
|
|
void Emitter<CodeEmitter>::emitJumpTableAddress(unsigned JTI, unsigned Reloc,
|
|
|
|
intptr_t PCAdj /* = 0 */) {
|
|
|
|
intptr_t RelocCST = 0;
|
|
|
|
if (Reloc == X86::reloc_picrel_word)
|
|
|
|
RelocCST = PICBaseOffset;
|
|
|
|
else if (Reloc == X86::reloc_pcrel_word)
|
|
|
|
RelocCST = PCAdj;
|
|
|
|
MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
|
|
|
|
Reloc, JTI, RelocCST));
|
|
|
|
// The relocated value will be added to the displacement
|
|
|
|
if (Reloc == X86::reloc_absolute_dword)
|
|
|
|
MCE.emitDWordLE(0);
|
|
|
|
else
|
|
|
|
MCE.emitWordLE(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
|
|
|
|
unsigned RM) {
|
|
|
|
assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
|
|
|
|
return RM | (RegOpcode << 3) | (Mod << 6);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<class CodeEmitter>
|
|
|
|
void Emitter<CodeEmitter>::emitRegModRMByte(unsigned ModRMReg,
|
|
|
|
unsigned RegOpcodeFld){
|
2012-12-02 13:10:19 +00:00
|
|
|
MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
|
2009-06-02 17:52:33 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
template<class CodeEmitter>
|
|
|
|
void Emitter<CodeEmitter>::emitRegModRMByte(unsigned RegOpcodeFld) {
|
|
|
|
MCE.emitByte(ModRMByte(3, RegOpcodeFld, 0));
|
|
|
|
}
|
|
|
|
|
|
|
|
template<class CodeEmitter>
|
2012-08-15 19:34:23 +00:00
|
|
|
void Emitter<CodeEmitter>::emitSIBByte(unsigned SS,
|
2009-06-02 17:52:33 +00:00
|
|
|
unsigned Index,
|
|
|
|
unsigned Base) {
|
|
|
|
// SIB byte is in the same format as the ModRMByte...
|
|
|
|
MCE.emitByte(ModRMByte(SS, Index, Base));
|
|
|
|
}
|
|
|
|
|
|
|
|
template<class CodeEmitter>
|
|
|
|
void Emitter<CodeEmitter>::emitConstant(uint64_t Val, unsigned Size) {
|
|
|
|
// Output the constant in little endian byte order...
|
|
|
|
for (unsigned i = 0; i != Size; ++i) {
|
|
|
|
MCE.emitByte(Val & 255);
|
|
|
|
Val >>= 8;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-08-15 19:34:23 +00:00
|
|
|
/// isDisp8 - Return true if this signed displacement fits in a 8-bit
|
|
|
|
/// sign-extended field.
|
2009-06-02 17:52:33 +00:00
|
|
|
static bool isDisp8(int Value) {
|
|
|
|
return Value == (signed char)Value;
|
|
|
|
}
|
|
|
|
|
2009-10-14 17:57:32 +00:00
|
|
|
static bool gvNeedsNonLazyPtr(const MachineOperand &GVOp,
|
|
|
|
const TargetMachine &TM) {
|
|
|
|
// For Darwin-64, simulate the linktime GOT by using the same non-lazy-pointer
|
2009-06-02 17:52:33 +00:00
|
|
|
// mechanism as 32-bit mode.
|
2012-08-15 19:34:23 +00:00
|
|
|
if (TM.getSubtarget<X86Subtarget>().is64Bit() &&
|
2009-10-14 17:57:32 +00:00
|
|
|
!TM.getSubtarget<X86Subtarget>().isTargetDarwin())
|
|
|
|
return false;
|
2012-08-15 19:34:23 +00:00
|
|
|
|
2009-10-14 17:57:32 +00:00
|
|
|
// Return true if this is a reference to a stub containing the address of the
|
|
|
|
// global, not the global itself.
|
|
|
|
return isGlobalStubReference(GVOp.getTargetFlags());
|
2009-06-02 17:52:33 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
template<class CodeEmitter>
|
|
|
|
void Emitter<CodeEmitter>::emitDisplacementField(const MachineOperand *RelocOp,
|
2009-10-14 17:57:32 +00:00
|
|
|
int DispVal,
|
|
|
|
intptr_t Adj /* = 0 */,
|
|
|
|
bool IsPCRel /* = true */) {
|
2009-06-02 17:52:33 +00:00
|
|
|
// If this is a simple integer displacement that doesn't require a relocation,
|
|
|
|
// emit it now.
|
|
|
|
if (!RelocOp) {
|
|
|
|
emitConstant(DispVal, 4);
|
|
|
|
return;
|
|
|
|
}
|
2009-10-14 17:57:32 +00:00
|
|
|
|
2009-06-02 17:52:33 +00:00
|
|
|
// Otherwise, this is something that requires a relocation. Emit it as such
|
|
|
|
// now.
|
2009-10-14 17:57:32 +00:00
|
|
|
unsigned RelocType = Is64BitMode ?
|
|
|
|
(IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
|
|
|
|
: (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
|
2009-06-02 17:52:33 +00:00
|
|
|
if (RelocOp->isGlobal()) {
|
|
|
|
// In 64-bit static small code model, we could potentially emit absolute.
|
2009-10-14 17:57:32 +00:00
|
|
|
// But it's probably not beneficial. If the MCE supports using RIP directly
|
2012-08-15 19:34:23 +00:00
|
|
|
// do it, otherwise fallback to absolute (this is determined by IsPCRel).
|
2009-06-02 17:52:33 +00:00
|
|
|
// 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative
|
|
|
|
// 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute
|
2009-10-14 17:57:32 +00:00
|
|
|
bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM);
|
|
|
|
emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(),
|
2009-11-18 14:58:34 +00:00
|
|
|
Adj, Indirect);
|
2009-10-14 17:57:32 +00:00
|
|
|
} else if (RelocOp->isSymbol()) {
|
|
|
|
emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType);
|
2009-06-02 17:52:33 +00:00
|
|
|
} else if (RelocOp->isCPI()) {
|
2009-10-14 17:57:32 +00:00
|
|
|
emitConstPoolAddress(RelocOp->getIndex(), RelocType,
|
|
|
|
RelocOp->getOffset(), Adj);
|
2009-06-02 17:52:33 +00:00
|
|
|
} else {
|
2009-10-14 17:57:32 +00:00
|
|
|
assert(RelocOp->isJTI() && "Unexpected machine operand!");
|
|
|
|
emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj);
|
2009-06-02 17:52:33 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template<class CodeEmitter>
|
|
|
|
void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
|
2009-10-14 17:57:32 +00:00
|
|
|
unsigned Op,unsigned RegOpcodeField,
|
|
|
|
intptr_t PCAdj) {
|
2009-06-02 17:52:33 +00:00
|
|
|
const MachineOperand &Op3 = MI.getOperand(Op+3);
|
|
|
|
int DispVal = 0;
|
|
|
|
const MachineOperand *DispForReloc = 0;
|
2012-08-15 19:34:23 +00:00
|
|
|
|
2009-06-02 17:52:33 +00:00
|
|
|
// Figure out what sort of displacement we have to handle here.
|
|
|
|
if (Op3.isGlobal()) {
|
|
|
|
DispForReloc = &Op3;
|
2009-10-14 17:57:32 +00:00
|
|
|
} else if (Op3.isSymbol()) {
|
|
|
|
DispForReloc = &Op3;
|
2009-06-02 17:52:33 +00:00
|
|
|
} else if (Op3.isCPI()) {
|
2009-10-14 17:57:32 +00:00
|
|
|
if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
|
2009-06-02 17:52:33 +00:00
|
|
|
DispForReloc = &Op3;
|
|
|
|
} else {
|
|
|
|
DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex());
|
|
|
|
DispVal += Op3.getOffset();
|
|
|
|
}
|
|
|
|
} else if (Op3.isJTI()) {
|
2009-10-14 17:57:32 +00:00
|
|
|
if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
|
2009-06-02 17:52:33 +00:00
|
|
|
DispForReloc = &Op3;
|
|
|
|
} else {
|
|
|
|
DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex());
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
DispVal = Op3.getImm();
|
|
|
|
}
|
|
|
|
|
|
|
|
const MachineOperand &Base = MI.getOperand(Op);
|
|
|
|
const MachineOperand &Scale = MI.getOperand(Op+1);
|
|
|
|
const MachineOperand &IndexReg = MI.getOperand(Op+2);
|
|
|
|
|
|
|
|
unsigned BaseReg = Base.getReg();
|
2012-08-15 19:34:23 +00:00
|
|
|
|
2010-05-04 16:11:02 +00:00
|
|
|
// Handle %rip relative addressing.
|
|
|
|
if (BaseReg == X86::RIP ||
|
|
|
|
(Is64BitMode && DispForReloc)) { // [disp32+RIP] in X86-64 mode
|
|
|
|
assert(IndexReg.getReg() == 0 && Is64BitMode &&
|
|
|
|
"Invalid rip-relative address");
|
|
|
|
MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
|
|
|
|
emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
|
|
|
|
return;
|
|
|
|
}
|
2009-06-02 17:52:33 +00:00
|
|
|
|
2009-10-14 17:57:32 +00:00
|
|
|
// Indicate that the displacement will use an pcrel or absolute reference
|
|
|
|
// by default. MCEs able to resolve addresses on-the-fly use pcrel by default
|
|
|
|
// while others, unless explicit asked to use RIP, use absolute references.
|
|
|
|
bool IsPCRel = MCE.earlyResolveAddresses() ? true : false;
|
|
|
|
|
2009-06-02 17:52:33 +00:00
|
|
|
// Is a SIB byte needed?
|
2012-08-15 19:34:23 +00:00
|
|
|
// If no BaseReg, issue a RIP relative instruction only if the MCE can
|
2009-10-14 17:57:32 +00:00
|
|
|
// resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
|
|
|
|
// 2-7) and absolute references.
|
2010-02-16 09:30:23 +00:00
|
|
|
unsigned BaseRegNo = -1U;
|
|
|
|
if (BaseReg != 0 && BaseReg != X86::RIP)
|
2012-12-02 13:10:19 +00:00
|
|
|
BaseRegNo = getX86RegNum(BaseReg);
|
2010-02-16 09:30:23 +00:00
|
|
|
|
|
|
|
if (// The SIB byte must be used if there is an index register.
|
2012-08-15 19:34:23 +00:00
|
|
|
IndexReg.getReg() == 0 &&
|
2010-02-16 09:30:23 +00:00
|
|
|
// The SIB byte must be used if the base is ESP/RSP/R12, all of which
|
|
|
|
// encode to an R/M value of 4, which indicates that a SIB byte is
|
|
|
|
// present.
|
|
|
|
BaseRegNo != N86::ESP &&
|
|
|
|
// If there is no base register and we're in 64-bit mode, we need a SIB
|
|
|
|
// byte to emit an addr that is just 'disp32' (the non-RIP relative form).
|
|
|
|
(!Is64BitMode || BaseReg != 0)) {
|
|
|
|
if (BaseReg == 0 || // [disp32] in X86-32 mode
|
|
|
|
BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
|
2009-06-02 17:52:33 +00:00
|
|
|
MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
|
2009-10-14 17:57:32 +00:00
|
|
|
emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
|
2010-02-16 09:30:23 +00:00
|
|
|
return;
|
2009-06-02 17:52:33 +00:00
|
|
|
}
|
2012-08-15 19:34:23 +00:00
|
|
|
|
2010-02-16 09:30:23 +00:00
|
|
|
// If the base is not EBP/ESP and there is no displacement, use simple
|
|
|
|
// indirect register encoding, this handles addresses like [EAX]. The
|
|
|
|
// encoding for [EBP] with no displacement means [disp32] so we handle it
|
|
|
|
// by emitting a displacement of 0 below.
|
|
|
|
if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
|
|
|
|
MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
|
|
|
|
return;
|
2009-06-02 17:52:33 +00:00
|
|
|
}
|
2012-08-15 19:34:23 +00:00
|
|
|
|
2010-02-16 09:30:23 +00:00
|
|
|
// Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
|
|
|
|
if (!DispForReloc && isDisp8(DispVal)) {
|
|
|
|
MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
|
2009-06-02 17:52:33 +00:00
|
|
|
emitConstant(DispVal, 1);
|
2010-02-16 09:30:23 +00:00
|
|
|
return;
|
2009-06-02 17:52:33 +00:00
|
|
|
}
|
2012-08-15 19:34:23 +00:00
|
|
|
|
2010-02-16 09:30:23 +00:00
|
|
|
// Otherwise, emit the most general non-SIB encoding: [REG+disp32]
|
|
|
|
MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
|
|
|
|
emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
|
|
|
|
return;
|
|
|
|
}
|
2012-08-15 19:34:23 +00:00
|
|
|
|
2010-02-16 09:30:23 +00:00
|
|
|
// Otherwise we need a SIB byte, so start by outputting the ModR/M byte first.
|
|
|
|
assert(IndexReg.getReg() != X86::ESP &&
|
|
|
|
IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
|
|
|
|
|
|
|
|
bool ForceDisp32 = false;
|
|
|
|
bool ForceDisp8 = false;
|
|
|
|
if (BaseReg == 0) {
|
|
|
|
// If there is no base register, we emit the special case SIB byte with
|
|
|
|
// MOD=0, BASE=4, to JUST get the index, scale, and displacement.
|
|
|
|
MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
|
|
|
|
ForceDisp32 = true;
|
|
|
|
} else if (DispForReloc) {
|
|
|
|
// Emit the normal disp32 encoding.
|
|
|
|
MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
|
|
|
|
ForceDisp32 = true;
|
2010-05-04 16:11:02 +00:00
|
|
|
} else if (DispVal == 0 && BaseRegNo != N86::EBP) {
|
2010-02-16 09:30:23 +00:00
|
|
|
// Emit no displacement ModR/M byte
|
|
|
|
MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
|
|
|
|
} else if (isDisp8(DispVal)) {
|
|
|
|
// Emit the disp8 encoding...
|
|
|
|
MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
|
|
|
|
ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
|
|
|
|
} else {
|
|
|
|
// Emit the normal disp32 encoding...
|
|
|
|
MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Calculate what the SS field value should be...
|
2011-10-20 21:10:27 +00:00
|
|
|
static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
|
2010-02-16 09:30:23 +00:00
|
|
|
unsigned SS = SSTable[Scale.getImm()];
|
|
|
|
|
|
|
|
if (BaseReg == 0) {
|
2012-08-15 19:34:23 +00:00
|
|
|
// Handle the SIB byte for the case where there is no base, see Intel
|
2010-02-16 09:30:23 +00:00
|
|
|
// Manual 2A, table 2-7. The displacement has already been output.
|
|
|
|
unsigned IndexRegNo;
|
|
|
|
if (IndexReg.getReg())
|
2012-12-02 13:10:19 +00:00
|
|
|
IndexRegNo = getX86RegNum(IndexReg.getReg());
|
2010-02-16 09:30:23 +00:00
|
|
|
else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
|
|
|
|
IndexRegNo = 4;
|
|
|
|
emitSIBByte(SS, IndexRegNo, 5);
|
|
|
|
} else {
|
2012-12-02 13:10:19 +00:00
|
|
|
unsigned BaseRegNo = getX86RegNum(BaseReg);
|
2010-02-16 09:30:23 +00:00
|
|
|
unsigned IndexRegNo;
|
|
|
|
if (IndexReg.getReg())
|
2012-12-02 13:10:19 +00:00
|
|
|
IndexRegNo = getX86RegNum(IndexReg.getReg());
|
2010-02-16 09:30:23 +00:00
|
|
|
else
|
|
|
|
IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
|
|
|
|
emitSIBByte(SS, IndexRegNo, BaseRegNo);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Do we need to output a displacement?
|
|
|
|
if (ForceDisp8) {
|
|
|
|
emitConstant(DispVal, 1);
|
|
|
|
} else if (DispVal != 0 || ForceDisp32) {
|
|
|
|
emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
|
2009-06-02 17:52:33 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2011-12-09 18:27:22 +00:00
|
|
|
static const MCInstrDesc *UpdateOp(MachineInstr &MI, const X86InstrInfo *II,
|
|
|
|
unsigned Opcode) {
|
|
|
|
const MCInstrDesc *Desc = &II->get(Opcode);
|
|
|
|
MI.setDesc(*Desc);
|
|
|
|
return Desc;
|
|
|
|
}
|
|
|
|
|
2012-08-15 19:34:23 +00:00
|
|
|
/// Is16BitMemOperand - Return true if the specified instruction has
|
|
|
|
/// a 16-bit memory operand. Op specifies the operand # of the memoperand.
|
|
|
|
static bool Is16BitMemOperand(const MachineInstr &MI, unsigned Op) {
|
|
|
|
const MachineOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
|
|
|
|
const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
|
|
|
|
|
|
|
|
if ((BaseReg.getReg() != 0 &&
|
|
|
|
X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
|
|
|
|
(IndexReg.getReg() != 0 &&
|
|
|
|
X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
|
|
|
|
return true;
|
|
|
|
return false;
|
|
|
|
}
|
2009-10-14 17:57:32 +00:00
|
|
|
|
2012-08-15 19:34:23 +00:00
|
|
|
/// Is32BitMemOperand - Return true if the specified instruction has
|
|
|
|
/// a 32-bit memory operand. Op specifies the operand # of the memoperand.
|
|
|
|
static bool Is32BitMemOperand(const MachineInstr &MI, unsigned Op) {
|
|
|
|
const MachineOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
|
|
|
|
const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
|
|
|
|
|
|
|
|
if ((BaseReg.getReg() != 0 &&
|
|
|
|
X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
|
|
|
|
(IndexReg.getReg() != 0 &&
|
|
|
|
X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
|
|
|
|
return true;
|
|
|
|
return false;
|
|
|
|
}
|
2009-06-02 17:52:33 +00:00
|
|
|
|
2012-08-15 19:34:23 +00:00
|
|
|
/// Is64BitMemOperand - Return true if the specified instruction has
|
|
|
|
/// a 64-bit memory operand. Op specifies the operand # of the memoperand.
|
|
|
|
#ifndef NDEBUG
|
|
|
|
static bool Is64BitMemOperand(const MachineInstr &MI, unsigned Op) {
|
|
|
|
const MachineOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
|
|
|
|
const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
|
|
|
|
|
|
|
|
if ((BaseReg.getReg() != 0 &&
|
|
|
|
X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
|
|
|
|
(IndexReg.getReg() != 0 &&
|
|
|
|
X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
|
|
|
|
return true;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
#endif
|
2009-06-02 17:52:33 +00:00
|
|
|
|
2012-08-15 19:34:23 +00:00
|
|
|
template<class CodeEmitter>
|
|
|
|
void Emitter<CodeEmitter>::emitOpcodePrefix(uint64_t TSFlags,
|
|
|
|
int MemOperand,
|
|
|
|
const MachineInstr &MI,
|
|
|
|
const MCInstrDesc *Desc) const {
|
2009-06-02 17:52:33 +00:00
|
|
|
// Emit the lock opcode prefix as needed.
|
2009-10-14 17:57:32 +00:00
|
|
|
if (Desc->TSFlags & X86II::LOCK)
|
|
|
|
MCE.emitByte(0xF0);
|
2009-06-02 17:52:33 +00:00
|
|
|
|
|
|
|
// Emit segment override opcode prefix as needed.
|
2012-08-15 19:34:23 +00:00
|
|
|
emitSegmentOverridePrefix(TSFlags, MemOperand, MI);
|
2009-06-02 17:52:33 +00:00
|
|
|
|
|
|
|
// Emit the repeat opcode prefix as needed.
|
2009-10-14 17:57:32 +00:00
|
|
|
if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP)
|
|
|
|
MCE.emitByte(0xF3);
|
2009-06-02 17:52:33 +00:00
|
|
|
|
|
|
|
// Emit the address size opcode prefix as needed.
|
2012-08-15 19:34:23 +00:00
|
|
|
bool need_address_override;
|
|
|
|
if (TSFlags & X86II::AdSize) {
|
|
|
|
need_address_override = true;
|
|
|
|
} else if (MemOperand == -1) {
|
|
|
|
need_address_override = false;
|
|
|
|
} else if (Is64BitMode) {
|
|
|
|
assert(!Is16BitMemOperand(MI, MemOperand));
|
|
|
|
need_address_override = Is32BitMemOperand(MI, MemOperand);
|
|
|
|
} else {
|
|
|
|
assert(!Is64BitMemOperand(MI, MemOperand));
|
|
|
|
need_address_override = Is16BitMemOperand(MI, MemOperand);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (need_address_override)
|
2009-10-14 17:57:32 +00:00
|
|
|
MCE.emitByte(0x67);
|
2009-06-02 17:52:33 +00:00
|
|
|
|
2012-08-15 19:34:23 +00:00
|
|
|
// Emit the operand size opcode prefix as needed.
|
|
|
|
if (TSFlags & X86II::OpSize)
|
|
|
|
MCE.emitByte(0x66);
|
|
|
|
|
2009-06-02 17:52:33 +00:00
|
|
|
bool Need0FPrefix = false;
|
|
|
|
switch (Desc->TSFlags & X86II::Op0Mask) {
|
2012-08-15 19:34:23 +00:00
|
|
|
case X86II::TB: // Two-byte opcode prefix
|
|
|
|
case X86II::T8: // 0F 38
|
|
|
|
case X86II::TA: // 0F 3A
|
|
|
|
case X86II::A6: // 0F A6
|
|
|
|
case X86II::A7: // 0F A7
|
|
|
|
Need0FPrefix = true;
|
|
|
|
break;
|
|
|
|
case X86II::REP: break; // already handled.
|
|
|
|
case X86II::T8XS: // F3 0F 38
|
|
|
|
case X86II::XS: // F3 0F
|
|
|
|
MCE.emitByte(0xF3);
|
|
|
|
Need0FPrefix = true;
|
|
|
|
break;
|
|
|
|
case X86II::T8XD: // F2 0F 38
|
|
|
|
case X86II::TAXD: // F2 0F 3A
|
|
|
|
case X86II::XD: // F2 0F
|
|
|
|
MCE.emitByte(0xF2);
|
|
|
|
Need0FPrefix = true;
|
|
|
|
break;
|
|
|
|
case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
|
|
|
|
case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
|
|
|
|
MCE.emitByte(0xD8+
|
|
|
|
(((Desc->TSFlags & X86II::Op0Mask)-X86II::D8)
|
|
|
|
>> X86II::Op0Shift));
|
|
|
|
break; // Two-byte opcode prefix
|
|
|
|
default: llvm_unreachable("Invalid prefix!");
|
|
|
|
case 0: break; // No prefix!
|
2009-06-02 17:52:33 +00:00
|
|
|
}
|
|
|
|
|
2009-10-14 17:57:32 +00:00
|
|
|
// Handle REX prefix.
|
2009-06-02 17:52:33 +00:00
|
|
|
if (Is64BitMode) {
|
2010-09-17 15:48:55 +00:00
|
|
|
if (unsigned REX = determineREX(MI))
|
2009-06-02 17:52:33 +00:00
|
|
|
MCE.emitByte(0x40 | REX);
|
|
|
|
}
|
|
|
|
|
|
|
|
// 0x0F escape code must be emitted just before the opcode.
|
|
|
|
if (Need0FPrefix)
|
|
|
|
MCE.emitByte(0x0F);
|
|
|
|
|
|
|
|
switch (Desc->TSFlags & X86II::Op0Mask) {
|
2012-08-15 19:34:23 +00:00
|
|
|
case X86II::T8XD: // F2 0F 38
|
|
|
|
case X86II::T8XS: // F3 0F 38
|
|
|
|
case X86II::T8: // 0F 38
|
|
|
|
MCE.emitByte(0x38);
|
|
|
|
break;
|
|
|
|
case X86II::TAXD: // F2 0F 38
|
|
|
|
case X86II::TA: // 0F 3A
|
|
|
|
MCE.emitByte(0x3A);
|
|
|
|
break;
|
|
|
|
case X86II::A6: // 0F A6
|
|
|
|
MCE.emitByte(0xA6);
|
|
|
|
break;
|
|
|
|
case X86II::A7: // 0F A7
|
|
|
|
MCE.emitByte(0xA7);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
|
|
|
|
// 0-7 and the difference between the 2 groups is given by the REX prefix.
|
|
|
|
// In the VEX prefix, registers are seen sequencially from 0-15 and encoded
|
|
|
|
// in 1's complement form, example:
|
|
|
|
//
|
|
|
|
// ModRM field => XMM9 => 1
|
|
|
|
// VEX.VVVV => XMM9 => ~9
|
|
|
|
//
|
|
|
|
// See table 4-35 of Intel AVX Programming Reference for details.
|
2012-12-02 13:10:19 +00:00
|
|
|
template<class CodeEmitter>
|
|
|
|
unsigned char
|
|
|
|
Emitter<CodeEmitter>::getVEXRegisterEncoding(const MachineInstr &MI,
|
|
|
|
unsigned OpNum) const {
|
2012-08-15 19:34:23 +00:00
|
|
|
unsigned SrcReg = MI.getOperand(OpNum).getReg();
|
2012-12-02 13:10:19 +00:00
|
|
|
unsigned SrcRegNum = getX86RegNum(MI.getOperand(OpNum).getReg());
|
2012-08-15 19:34:23 +00:00
|
|
|
if (X86II::isX86_64ExtendedReg(SrcReg))
|
|
|
|
SrcRegNum |= 8;
|
|
|
|
|
|
|
|
// The registers represented through VEX_VVVV should
|
|
|
|
// be encoded in 1's complement form.
|
|
|
|
return (~SrcRegNum) & 0xf;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
|
|
|
|
template<class CodeEmitter>
|
|
|
|
void Emitter<CodeEmitter>::emitSegmentOverridePrefix(uint64_t TSFlags,
|
|
|
|
int MemOperand,
|
|
|
|
const MachineInstr &MI) const {
|
|
|
|
switch (TSFlags & X86II::SegOvrMask) {
|
|
|
|
default: llvm_unreachable("Invalid segment!");
|
|
|
|
case 0:
|
|
|
|
// No segment override, check for explicit one on memory operand.
|
|
|
|
if (MemOperand != -1) { // If the instruction has a memory operand.
|
|
|
|
switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
|
|
|
|
default: llvm_unreachable("Unknown segment register!");
|
|
|
|
case 0: break;
|
|
|
|
case X86::CS: MCE.emitByte(0x2E); break;
|
|
|
|
case X86::SS: MCE.emitByte(0x36); break;
|
|
|
|
case X86::DS: MCE.emitByte(0x3E); break;
|
|
|
|
case X86::ES: MCE.emitByte(0x26); break;
|
|
|
|
case X86::FS: MCE.emitByte(0x64); break;
|
|
|
|
case X86::GS: MCE.emitByte(0x65); break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case X86II::FS:
|
|
|
|
MCE.emitByte(0x64);
|
|
|
|
break;
|
|
|
|
case X86II::GS:
|
|
|
|
MCE.emitByte(0x65);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template<class CodeEmitter>
|
|
|
|
void Emitter<CodeEmitter>::emitVEXOpcodePrefix(uint64_t TSFlags,
|
|
|
|
int MemOperand,
|
|
|
|
const MachineInstr &MI,
|
|
|
|
const MCInstrDesc *Desc) const {
|
|
|
|
bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
|
|
|
|
bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
|
2013-04-08 18:41:23 +00:00
|
|
|
bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
|
2012-08-15 19:34:23 +00:00
|
|
|
|
|
|
|
// VEX_R: opcode externsion equivalent to REX.R in
|
|
|
|
// 1's complement (inverted) form
|
|
|
|
//
|
|
|
|
// 1: Same as REX_R=0 (must be 1 in 32-bit mode)
|
|
|
|
// 0: Same as REX_R=1 (64 bit mode only)
|
|
|
|
//
|
|
|
|
unsigned char VEX_R = 0x1;
|
|
|
|
|
|
|
|
// VEX_X: equivalent to REX.X, only used when a
|
|
|
|
// register is used for index in SIB Byte.
|
|
|
|
//
|
|
|
|
// 1: Same as REX.X=0 (must be 1 in 32-bit mode)
|
|
|
|
// 0: Same as REX.X=1 (64-bit mode only)
|
|
|
|
unsigned char VEX_X = 0x1;
|
|
|
|
|
|
|
|
// VEX_B:
|
|
|
|
//
|
|
|
|
// 1: Same as REX_B=0 (ignored in 32-bit mode)
|
|
|
|
// 0: Same as REX_B=1 (64 bit mode only)
|
|
|
|
//
|
|
|
|
unsigned char VEX_B = 0x1;
|
|
|
|
|
|
|
|
// VEX_W: opcode specific (use like REX.W, or used for
|
|
|
|
// opcode extension, or ignored, depending on the opcode byte)
|
|
|
|
unsigned char VEX_W = 0;
|
|
|
|
|
|
|
|
// XOP: Use XOP prefix byte 0x8f instead of VEX.
|
|
|
|
unsigned char XOP = 0;
|
|
|
|
|
|
|
|
// VEX_5M (VEX m-mmmmm field):
|
|
|
|
//
|
|
|
|
// 0b00000: Reserved for future use
|
|
|
|
// 0b00001: implied 0F leading opcode
|
|
|
|
// 0b00010: implied 0F 38 leading opcode bytes
|
|
|
|
// 0b00011: implied 0F 3A leading opcode bytes
|
|
|
|
// 0b00100-0b11111: Reserved for future use
|
|
|
|
// 0b01000: XOP map select - 08h instructions with imm byte
|
|
|
|
// 0b10001: XOP map select - 09h instructions with no imm byte
|
|
|
|
unsigned char VEX_5M = 0x1;
|
|
|
|
|
|
|
|
// VEX_4V (VEX vvvv field): a register specifier
|
|
|
|
// (in 1's complement form) or 1111 if unused.
|
|
|
|
unsigned char VEX_4V = 0xf;
|
|
|
|
|
|
|
|
// VEX_L (Vector Length):
|
|
|
|
//
|
|
|
|
// 0: scalar or 128-bit vector
|
|
|
|
// 1: 256-bit vector
|
|
|
|
//
|
|
|
|
unsigned char VEX_L = 0;
|
|
|
|
|
|
|
|
// VEX_PP: opcode extension providing equivalent
|
|
|
|
// functionality of a SIMD prefix
|
|
|
|
//
|
|
|
|
// 0b00: None
|
|
|
|
// 0b01: 66
|
|
|
|
// 0b10: F3
|
|
|
|
// 0b11: F2
|
|
|
|
//
|
|
|
|
unsigned char VEX_PP = 0;
|
|
|
|
|
|
|
|
// Encode the operand size opcode prefix as needed.
|
|
|
|
if (TSFlags & X86II::OpSize)
|
|
|
|
VEX_PP = 0x01;
|
|
|
|
|
|
|
|
if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
|
|
|
|
VEX_W = 1;
|
|
|
|
|
|
|
|
if ((TSFlags >> X86II::VEXShift) & X86II::XOP)
|
|
|
|
XOP = 1;
|
|
|
|
|
|
|
|
if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
|
|
|
|
VEX_L = 1;
|
|
|
|
|
|
|
|
switch (TSFlags & X86II::Op0Mask) {
|
|
|
|
default: llvm_unreachable("Invalid prefix!");
|
|
|
|
case X86II::T8: // 0F 38
|
|
|
|
VEX_5M = 0x2;
|
|
|
|
break;
|
|
|
|
case X86II::TA: // 0F 3A
|
|
|
|
VEX_5M = 0x3;
|
|
|
|
break;
|
|
|
|
case X86II::T8XS: // F3 0F 38
|
|
|
|
VEX_PP = 0x2;
|
|
|
|
VEX_5M = 0x2;
|
|
|
|
break;
|
|
|
|
case X86II::T8XD: // F2 0F 38
|
|
|
|
VEX_PP = 0x3;
|
|
|
|
VEX_5M = 0x2;
|
|
|
|
break;
|
|
|
|
case X86II::TAXD: // F2 0F 3A
|
|
|
|
VEX_PP = 0x3;
|
|
|
|
VEX_5M = 0x3;
|
|
|
|
break;
|
|
|
|
case X86II::XS: // F3 0F
|
|
|
|
VEX_PP = 0x2;
|
|
|
|
break;
|
|
|
|
case X86II::XD: // F2 0F
|
|
|
|
VEX_PP = 0x3;
|
|
|
|
break;
|
|
|
|
case X86II::XOP8:
|
|
|
|
VEX_5M = 0x8;
|
|
|
|
break;
|
|
|
|
case X86II::XOP9:
|
|
|
|
VEX_5M = 0x9;
|
|
|
|
break;
|
|
|
|
case X86II::A6: // Bypass: Not used by VEX
|
|
|
|
case X86II::A7: // Bypass: Not used by VEX
|
|
|
|
case X86II::TB: // Bypass: Not used by VEX
|
|
|
|
case 0:
|
|
|
|
break; // No prefix!
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Classify VEX_B, VEX_4V, VEX_R, VEX_X
|
|
|
|
unsigned NumOps = Desc->getNumOperands();
|
|
|
|
unsigned CurOp = 0;
|
|
|
|
if (NumOps > 1 && Desc->getOperandConstraint(1, MCOI::TIED_TO) == 0)
|
|
|
|
++CurOp;
|
|
|
|
else if (NumOps > 3 && Desc->getOperandConstraint(2, MCOI::TIED_TO) == 0) {
|
|
|
|
assert(Desc->getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1);
|
|
|
|
// Special case for GATHER with 2 TIED_TO operands
|
|
|
|
// Skip the first 2 operands: dst, mask_wb
|
|
|
|
CurOp += 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (TSFlags & X86II::FormMask) {
|
|
|
|
case X86II::MRMInitReg:
|
|
|
|
// Duplicate register.
|
|
|
|
if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
|
|
|
|
VEX_R = 0x0;
|
|
|
|
|
|
|
|
if (HasVEX_4V)
|
|
|
|
VEX_4V = getVEXRegisterEncoding(MI, CurOp);
|
|
|
|
if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
|
|
|
|
VEX_B = 0x0;
|
|
|
|
if (HasVEX_4VOp3)
|
|
|
|
VEX_4V = getVEXRegisterEncoding(MI, CurOp);
|
|
|
|
break;
|
|
|
|
case X86II::MRMDestMem: {
|
|
|
|
// MRMDestMem instructions forms:
|
|
|
|
// MemAddr, src1(ModR/M)
|
|
|
|
// MemAddr, src1(VEX_4V), src2(ModR/M)
|
|
|
|
// MemAddr, src1(ModR/M), imm8
|
|
|
|
//
|
|
|
|
if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrBaseReg).getReg()))
|
|
|
|
VEX_B = 0x0;
|
|
|
|
if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrIndexReg).getReg()))
|
|
|
|
VEX_X = 0x0;
|
|
|
|
|
|
|
|
CurOp = X86::AddrNumOperands;
|
|
|
|
if (HasVEX_4V)
|
|
|
|
VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
|
|
|
|
|
|
|
|
const MachineOperand &MO = MI.getOperand(CurOp);
|
|
|
|
if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
|
|
|
|
VEX_R = 0x0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case X86II::MRMSrcMem:
|
|
|
|
// MRMSrcMem instructions forms:
|
|
|
|
// src1(ModR/M), MemAddr
|
|
|
|
// src1(ModR/M), src2(VEX_4V), MemAddr
|
|
|
|
// src1(ModR/M), MemAddr, imm8
|
|
|
|
// src1(ModR/M), MemAddr, src2(VEX_I8IMM)
|
|
|
|
//
|
|
|
|
// FMA4:
|
|
|
|
// dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
|
|
|
|
// dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
|
|
|
|
if (X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
|
|
|
|
VEX_R = 0x0;
|
|
|
|
|
|
|
|
if (HasVEX_4V)
|
|
|
|
VEX_4V = getVEXRegisterEncoding(MI, 1);
|
|
|
|
|
|
|
|
if (X86II::isX86_64ExtendedReg(
|
|
|
|
MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
|
|
|
|
VEX_B = 0x0;
|
|
|
|
if (X86II::isX86_64ExtendedReg(
|
|
|
|
MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
|
|
|
|
VEX_X = 0x0;
|
|
|
|
|
|
|
|
if (HasVEX_4VOp3)
|
|
|
|
VEX_4V = getVEXRegisterEncoding(MI, X86::AddrNumOperands+1);
|
|
|
|
break;
|
|
|
|
case X86II::MRM0m: case X86II::MRM1m:
|
|
|
|
case X86II::MRM2m: case X86II::MRM3m:
|
|
|
|
case X86II::MRM4m: case X86II::MRM5m:
|
|
|
|
case X86II::MRM6m: case X86II::MRM7m: {
|
|
|
|
// MRM[0-9]m instructions forms:
|
|
|
|
// MemAddr
|
|
|
|
// src1(VEX_4V), MemAddr
|
|
|
|
if (HasVEX_4V)
|
|
|
|
VEX_4V = getVEXRegisterEncoding(MI, 0);
|
|
|
|
|
|
|
|
if (X86II::isX86_64ExtendedReg(
|
|
|
|
MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
|
|
|
|
VEX_B = 0x0;
|
|
|
|
if (X86II::isX86_64ExtendedReg(
|
|
|
|
MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
|
|
|
|
VEX_X = 0x0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case X86II::MRMSrcReg:
|
|
|
|
// MRMSrcReg instructions forms:
|
|
|
|
// dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
|
|
|
|
// dst(ModR/M), src1(ModR/M)
|
|
|
|
// dst(ModR/M), src1(ModR/M), imm8
|
|
|
|
//
|
|
|
|
if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
|
|
|
|
VEX_R = 0x0;
|
|
|
|
CurOp++;
|
|
|
|
|
|
|
|
if (HasVEX_4V)
|
|
|
|
VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
|
2013-04-08 18:41:23 +00:00
|
|
|
|
|
|
|
if (HasMemOp4) // Skip second register source (encoded in I8IMM)
|
|
|
|
CurOp++;
|
|
|
|
|
2012-08-15 19:34:23 +00:00
|
|
|
if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
|
|
|
|
VEX_B = 0x0;
|
|
|
|
CurOp++;
|
|
|
|
if (HasVEX_4VOp3)
|
|
|
|
VEX_4V = getVEXRegisterEncoding(MI, CurOp);
|
|
|
|
break;
|
|
|
|
case X86II::MRMDestReg:
|
|
|
|
// MRMDestReg instructions forms:
|
|
|
|
// dst(ModR/M), src(ModR/M)
|
|
|
|
// dst(ModR/M), src(ModR/M), imm8
|
2013-04-08 18:41:23 +00:00
|
|
|
// dst(ModR/M), src1(VEX_4V), src2(ModR/M)
|
|
|
|
if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
|
2012-08-15 19:34:23 +00:00
|
|
|
VEX_B = 0x0;
|
2013-04-08 18:41:23 +00:00
|
|
|
CurOp++;
|
|
|
|
|
|
|
|
if (HasVEX_4V)
|
|
|
|
VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
|
|
|
|
|
|
|
|
if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
|
2012-08-15 19:34:23 +00:00
|
|
|
VEX_R = 0x0;
|
|
|
|
break;
|
|
|
|
case X86II::MRM0r: case X86II::MRM1r:
|
|
|
|
case X86II::MRM2r: case X86II::MRM3r:
|
|
|
|
case X86II::MRM4r: case X86II::MRM5r:
|
|
|
|
case X86II::MRM6r: case X86II::MRM7r:
|
|
|
|
// MRM0r-MRM7r instructions forms:
|
|
|
|
// dst(VEX_4V), src(ModR/M), imm8
|
|
|
|
VEX_4V = getVEXRegisterEncoding(MI, 0);
|
|
|
|
if (X86II::isX86_64ExtendedReg(MI.getOperand(1).getReg()))
|
|
|
|
VEX_B = 0x0;
|
|
|
|
break;
|
|
|
|
default: // RawFrm
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Emit segment override opcode prefix as needed.
|
|
|
|
emitSegmentOverridePrefix(TSFlags, MemOperand, MI);
|
|
|
|
|
|
|
|
// VEX opcode prefix can have 2 or 3 bytes
|
|
|
|
//
|
|
|
|
// 3 bytes:
|
|
|
|
// +-----+ +--------------+ +-------------------+
|
|
|
|
// | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
|
|
|
|
// +-----+ +--------------+ +-------------------+
|
|
|
|
// 2 bytes:
|
|
|
|
// +-----+ +-------------------+
|
|
|
|
// | C5h | | R | vvvv | L | pp |
|
|
|
|
// +-----+ +-------------------+
|
|
|
|
//
|
|
|
|
unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
|
|
|
|
|
|
|
|
if (VEX_B && VEX_X && !VEX_W && !XOP && (VEX_5M == 1)) { // 2 byte VEX prefix
|
|
|
|
MCE.emitByte(0xC5);
|
|
|
|
MCE.emitByte(LastByte | (VEX_R << 7));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// 3 byte VEX prefix
|
|
|
|
MCE.emitByte(XOP ? 0x8F : 0xC4);
|
|
|
|
MCE.emitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M);
|
|
|
|
MCE.emitByte(LastByte | (VEX_W << 7));
|
|
|
|
}
|
|
|
|
|
|
|
|
template<class CodeEmitter>
|
|
|
|
void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
|
|
|
|
const MCInstrDesc *Desc) {
|
|
|
|
DEBUG(dbgs() << MI);
|
|
|
|
|
|
|
|
// If this is a pseudo instruction, lower it.
|
|
|
|
switch (Desc->getOpcode()) {
|
|
|
|
case X86::ADD16rr_DB: Desc = UpdateOp(MI, II, X86::OR16rr); break;
|
|
|
|
case X86::ADD32rr_DB: Desc = UpdateOp(MI, II, X86::OR32rr); break;
|
|
|
|
case X86::ADD64rr_DB: Desc = UpdateOp(MI, II, X86::OR64rr); break;
|
|
|
|
case X86::ADD16ri_DB: Desc = UpdateOp(MI, II, X86::OR16ri); break;
|
|
|
|
case X86::ADD32ri_DB: Desc = UpdateOp(MI, II, X86::OR32ri); break;
|
|
|
|
case X86::ADD64ri32_DB: Desc = UpdateOp(MI, II, X86::OR64ri32); break;
|
|
|
|
case X86::ADD16ri8_DB: Desc = UpdateOp(MI, II, X86::OR16ri8); break;
|
|
|
|
case X86::ADD32ri8_DB: Desc = UpdateOp(MI, II, X86::OR32ri8); break;
|
|
|
|
case X86::ADD64ri8_DB: Desc = UpdateOp(MI, II, X86::OR64ri8); break;
|
|
|
|
case X86::ACQUIRE_MOV8rm: Desc = UpdateOp(MI, II, X86::MOV8rm); break;
|
|
|
|
case X86::ACQUIRE_MOV16rm: Desc = UpdateOp(MI, II, X86::MOV16rm); break;
|
|
|
|
case X86::ACQUIRE_MOV32rm: Desc = UpdateOp(MI, II, X86::MOV32rm); break;
|
|
|
|
case X86::ACQUIRE_MOV64rm: Desc = UpdateOp(MI, II, X86::MOV64rm); break;
|
|
|
|
case X86::RELEASE_MOV8mr: Desc = UpdateOp(MI, II, X86::MOV8mr); break;
|
|
|
|
case X86::RELEASE_MOV16mr: Desc = UpdateOp(MI, II, X86::MOV16mr); break;
|
|
|
|
case X86::RELEASE_MOV32mr: Desc = UpdateOp(MI, II, X86::MOV32mr); break;
|
|
|
|
case X86::RELEASE_MOV64mr: Desc = UpdateOp(MI, II, X86::MOV64mr); break;
|
2009-06-02 17:52:33 +00:00
|
|
|
}
|
|
|
|
|
2012-08-15 19:34:23 +00:00
|
|
|
|
|
|
|
MCE.processDebugLoc(MI.getDebugLoc(), true);
|
|
|
|
|
|
|
|
unsigned Opcode = Desc->Opcode;
|
|
|
|
|
2009-06-02 17:52:33 +00:00
|
|
|
// If this is a two-address instruction, skip one of the register operands.
|
|
|
|
unsigned NumOps = Desc->getNumOperands();
|
|
|
|
unsigned CurOp = 0;
|
2012-08-15 19:34:23 +00:00
|
|
|
if (NumOps > 1 && Desc->getOperandConstraint(1, MCOI::TIED_TO) == 0)
|
2009-06-02 17:52:33 +00:00
|
|
|
++CurOp;
|
2012-08-15 19:34:23 +00:00
|
|
|
else if (NumOps > 3 && Desc->getOperandConstraint(2, MCOI::TIED_TO) == 0) {
|
|
|
|
assert(Desc->getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1);
|
|
|
|
// Special case for GATHER with 2 TIED_TO operands
|
|
|
|
// Skip the first 2 operands: dst, mask_wb
|
|
|
|
CurOp += 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t TSFlags = Desc->TSFlags;
|
|
|
|
|
|
|
|
// Is this instruction encoded using the AVX VEX prefix?
|
|
|
|
bool HasVEXPrefix = (TSFlags >> X86II::VEXShift) & X86II::VEX;
|
|
|
|
// It uses the VEX.VVVV field?
|
|
|
|
bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
|
|
|
|
bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
|
|
|
|
bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
|
|
|
|
const unsigned MemOp4_I8IMMOperand = 2;
|
|
|
|
|
|
|
|
// Determine where the memory operand starts, if present.
|
|
|
|
int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
|
|
|
|
if (MemoryOperand != -1) MemoryOperand += CurOp;
|
|
|
|
|
|
|
|
if (!HasVEXPrefix)
|
|
|
|
emitOpcodePrefix(TSFlags, MemoryOperand, MI, Desc);
|
|
|
|
else
|
|
|
|
emitVEXOpcodePrefix(TSFlags, MemoryOperand, MI, Desc);
|
2009-06-02 17:52:33 +00:00
|
|
|
|
2010-02-16 09:30:23 +00:00
|
|
|
unsigned char BaseOpcode = X86II::getBaseOpcodeFor(Desc->TSFlags);
|
2012-08-15 19:34:23 +00:00
|
|
|
switch (TSFlags & X86II::FormMask) {
|
2009-10-14 17:57:32 +00:00
|
|
|
default:
|
|
|
|
llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
|
2009-06-02 17:52:33 +00:00
|
|
|
case X86II::Pseudo:
|
|
|
|
// Remember the current PC offset, this is the PIC relocation
|
|
|
|
// base address.
|
|
|
|
switch (Opcode) {
|
2012-08-15 19:34:23 +00:00
|
|
|
default:
|
2010-09-17 15:48:55 +00:00
|
|
|
llvm_unreachable("pseudo instructions should be removed before code"
|
2009-10-14 17:57:32 +00:00
|
|
|
" emission");
|
2010-09-17 15:48:55 +00:00
|
|
|
// Do nothing for Int_MemBarrier - it's just a comment. Add a debug
|
|
|
|
// to make it slightly easier to see.
|
|
|
|
case X86::Int_MemBarrier:
|
|
|
|
DEBUG(dbgs() << "#MEMBARRIER\n");
|
|
|
|
break;
|
2012-08-15 19:34:23 +00:00
|
|
|
|
2010-02-16 09:30:23 +00:00
|
|
|
case TargetOpcode::INLINEASM:
|
2009-06-02 17:52:33 +00:00
|
|
|
// We allow inline assembler nodes with empty bodies - they can
|
|
|
|
// implicitly define registers, which is ok for JIT.
|
2009-10-14 17:57:32 +00:00
|
|
|
if (MI.getOperand(0).getSymbolName()[0])
|
2010-05-04 16:11:02 +00:00
|
|
|
report_fatal_error("JIT does not support inline asm!");
|
2009-06-02 17:52:33 +00:00
|
|
|
break;
|
2010-09-17 15:48:55 +00:00
|
|
|
case TargetOpcode::PROLOG_LABEL:
|
2010-02-16 09:30:23 +00:00
|
|
|
case TargetOpcode::GC_LABEL:
|
2010-03-16 16:51:38 +00:00
|
|
|
case TargetOpcode::EH_LABEL:
|
|
|
|
MCE.emitLabel(MI.getOperand(0).getMCSymbol());
|
2009-06-02 17:52:33 +00:00
|
|
|
break;
|
2012-08-15 19:34:23 +00:00
|
|
|
|
2010-02-16 09:30:23 +00:00
|
|
|
case TargetOpcode::IMPLICIT_DEF:
|
|
|
|
case TargetOpcode::KILL:
|
2009-06-02 17:52:33 +00:00
|
|
|
break;
|
|
|
|
case X86::MOVPC32r: {
|
|
|
|
// This emits the "call" portion of this pseudo instruction.
|
|
|
|
MCE.emitByte(BaseOpcode);
|
2010-02-16 09:30:23 +00:00
|
|
|
emitConstant(0, X86II::getSizeOfImm(Desc->TSFlags));
|
2009-06-02 17:52:33 +00:00
|
|
|
// Remember PIC base.
|
|
|
|
PICBaseOffset = (intptr_t) MCE.getCurrentPCOffset();
|
|
|
|
X86JITInfo *JTI = TM.getJITInfo();
|
|
|
|
JTI->setPICBase(MCE.getCurrentPCValue());
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
CurOp = NumOps;
|
|
|
|
break;
|
2009-10-14 17:57:32 +00:00
|
|
|
case X86II::RawFrm: {
|
2009-06-02 17:52:33 +00:00
|
|
|
MCE.emitByte(BaseOpcode);
|
|
|
|
|
2009-10-14 17:57:32 +00:00
|
|
|
if (CurOp == NumOps)
|
|
|
|
break;
|
2012-08-15 19:34:23 +00:00
|
|
|
|
2009-10-14 17:57:32 +00:00
|
|
|
const MachineOperand &MO = MI.getOperand(CurOp++);
|
|
|
|
|
2010-01-15 15:37:28 +00:00
|
|
|
DEBUG(dbgs() << "RawFrm CurOp " << CurOp << "\n");
|
|
|
|
DEBUG(dbgs() << "isMBB " << MO.isMBB() << "\n");
|
|
|
|
DEBUG(dbgs() << "isGlobal " << MO.isGlobal() << "\n");
|
|
|
|
DEBUG(dbgs() << "isSymbol " << MO.isSymbol() << "\n");
|
|
|
|
DEBUG(dbgs() << "isImm " << MO.isImm() << "\n");
|
2009-10-14 17:57:32 +00:00
|
|
|
|
|
|
|
if (MO.isMBB()) {
|
|
|
|
emitPCRelativeBlockAddress(MO.getMBB());
|
|
|
|
break;
|
2009-06-02 17:52:33 +00:00
|
|
|
}
|
2012-08-15 19:34:23 +00:00
|
|
|
|
2009-10-14 17:57:32 +00:00
|
|
|
if (MO.isGlobal()) {
|
|
|
|
emitGlobalAddress(MO.getGlobal(), X86::reloc_pcrel_word,
|
2009-11-18 14:58:34 +00:00
|
|
|
MO.getOffset(), 0);
|
2009-10-14 17:57:32 +00:00
|
|
|
break;
|
|
|
|
}
|
2012-08-15 19:34:23 +00:00
|
|
|
|
2009-10-14 17:57:32 +00:00
|
|
|
if (MO.isSymbol()) {
|
|
|
|
emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word);
|
|
|
|
break;
|
|
|
|
}
|
2010-02-16 09:30:23 +00:00
|
|
|
|
|
|
|
// FIXME: Only used by hackish MCCodeEmitter, remove when dead.
|
|
|
|
if (MO.isJTI()) {
|
|
|
|
emitJumpTableAddress(MO.getIndex(), X86::reloc_pcrel_word);
|
|
|
|
break;
|
|
|
|
}
|
2012-08-15 19:34:23 +00:00
|
|
|
|
2009-10-14 17:57:32 +00:00
|
|
|
assert(MO.isImm() && "Unknown RawFrm operand!");
|
2012-04-14 13:54:10 +00:00
|
|
|
if (Opcode == X86::CALLpcrel32 || Opcode == X86::CALL64pcrel32) {
|
2009-10-14 17:57:32 +00:00
|
|
|
// Fix up immediate operand for pc relative calls.
|
|
|
|
intptr_t Imm = (intptr_t)MO.getImm();
|
|
|
|
Imm = Imm - MCE.getCurrentPCValue() - 4;
|
2010-02-16 09:30:23 +00:00
|
|
|
emitConstant(Imm, X86II::getSizeOfImm(Desc->TSFlags));
|
2009-10-14 17:57:32 +00:00
|
|
|
} else
|
2010-02-16 09:30:23 +00:00
|
|
|
emitConstant(MO.getImm(), X86II::getSizeOfImm(Desc->TSFlags));
|
2009-06-02 17:52:33 +00:00
|
|
|
break;
|
2009-10-14 17:57:32 +00:00
|
|
|
}
|
2012-08-15 19:34:23 +00:00
|
|
|
|
2009-10-14 17:57:32 +00:00
|
|
|
case X86II::AddRegFrm: {
|
2011-10-20 21:10:27 +00:00
|
|
|
MCE.emitByte(BaseOpcode +
|
2012-12-02 13:10:19 +00:00
|
|
|
getX86RegNum(MI.getOperand(CurOp++).getReg()));
|
2012-08-15 19:34:23 +00:00
|
|
|
|
2009-10-14 17:57:32 +00:00
|
|
|
if (CurOp == NumOps)
|
|
|
|
break;
|
2012-08-15 19:34:23 +00:00
|
|
|
|
2009-10-14 17:57:32 +00:00
|
|
|
const MachineOperand &MO1 = MI.getOperand(CurOp++);
|
2010-02-16 09:30:23 +00:00
|
|
|
unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
|
2009-10-14 17:57:32 +00:00
|
|
|
if (MO1.isImm()) {
|
|
|
|
emitConstant(MO1.getImm(), Size);
|
|
|
|
break;
|
2009-06-02 17:52:33 +00:00
|
|
|
}
|
2012-08-15 19:34:23 +00:00
|
|
|
|
2009-10-14 17:57:32 +00:00
|
|
|
unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
|
|
|
|
: (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
|
|
|
|
if (Opcode == X86::MOV64ri64i32)
|
|
|
|
rt = X86::reloc_absolute_word; // FIXME: add X86II flag?
|
|
|
|
// This should not occur on Darwin for relocatable objects.
|
|
|
|
if (Opcode == X86::MOV64ri)
|
|
|
|
rt = X86::reloc_absolute_dword; // FIXME: add X86II flag?
|
|
|
|
if (MO1.isGlobal()) {
|
|
|
|
bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
|
|
|
|
emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
|
2009-11-18 14:58:34 +00:00
|
|
|
Indirect);
|
2009-10-14 17:57:32 +00:00
|
|
|
} else if (MO1.isSymbol())
|
|
|
|
emitExternalSymbolAddress(MO1.getSymbolName(), rt);
|
|
|
|
else if (MO1.isCPI())
|
|
|
|
emitConstPoolAddress(MO1.getIndex(), rt);
|
|
|
|
else if (MO1.isJTI())
|
|
|
|
emitJumpTableAddress(MO1.getIndex(), rt);
|
2009-06-02 17:52:33 +00:00
|
|
|
break;
|
2009-10-14 17:57:32 +00:00
|
|
|
}
|
2009-06-02 17:52:33 +00:00
|
|
|
|
|
|
|
case X86II::MRMDestReg: {
|
|
|
|
MCE.emitByte(BaseOpcode);
|
2013-04-08 18:41:23 +00:00
|
|
|
|
|
|
|
unsigned SrcRegNum = CurOp+1;
|
|
|
|
if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
|
|
|
|
SrcRegNum++;
|
|
|
|
|
2009-06-02 17:52:33 +00:00
|
|
|
emitRegModRMByte(MI.getOperand(CurOp).getReg(),
|
2013-04-08 18:41:23 +00:00
|
|
|
getX86RegNum(MI.getOperand(SrcRegNum).getReg()));
|
|
|
|
CurOp = SrcRegNum + 1;
|
2009-06-02 17:52:33 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
case X86II::MRMDestMem: {
|
|
|
|
MCE.emitByte(BaseOpcode);
|
2012-08-15 19:34:23 +00:00
|
|
|
|
|
|
|
unsigned SrcRegNum = CurOp + X86::AddrNumOperands;
|
|
|
|
if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
|
|
|
|
SrcRegNum++;
|
2009-06-02 17:52:33 +00:00
|
|
|
emitMemModRMByte(MI, CurOp,
|
2012-12-02 13:10:19 +00:00
|
|
|
getX86RegNum(MI.getOperand(SrcRegNum).getReg()));
|
2012-08-15 19:34:23 +00:00
|
|
|
CurOp = SrcRegNum + 1;
|
2009-06-02 17:52:33 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2012-08-15 19:34:23 +00:00
|
|
|
case X86II::MRMSrcReg: {
|
2009-06-02 17:52:33 +00:00
|
|
|
MCE.emitByte(BaseOpcode);
|
2012-08-15 19:34:23 +00:00
|
|
|
|
|
|
|
unsigned SrcRegNum = CurOp+1;
|
|
|
|
if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
|
|
|
|
++SrcRegNum;
|
|
|
|
|
|
|
|
if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
|
|
|
|
++SrcRegNum;
|
|
|
|
|
|
|
|
emitRegModRMByte(MI.getOperand(SrcRegNum).getReg(),
|
2012-12-02 13:10:19 +00:00
|
|
|
getX86RegNum(MI.getOperand(CurOp).getReg()));
|
2012-08-15 19:34:23 +00:00
|
|
|
// 2 operands skipped with HasMemOp4, compensate accordingly
|
|
|
|
CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
|
|
|
|
if (HasVEX_4VOp3)
|
|
|
|
++CurOp;
|
2009-06-02 17:52:33 +00:00
|
|
|
break;
|
2012-08-15 19:34:23 +00:00
|
|
|
}
|
2009-06-02 17:52:33 +00:00
|
|
|
case X86II::MRMSrcMem: {
|
2010-07-13 17:19:57 +00:00
|
|
|
int AddrOperands = X86::AddrNumOperands;
|
2012-08-15 19:34:23 +00:00
|
|
|
unsigned FirstMemOp = CurOp+1;
|
|
|
|
if (HasVEX_4V) {
|
|
|
|
++AddrOperands;
|
|
|
|
++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
|
|
|
|
}
|
|
|
|
if (HasMemOp4) // Skip second register source (encoded in I8IMM)
|
|
|
|
++FirstMemOp;
|
|
|
|
|
|
|
|
MCE.emitByte(BaseOpcode);
|
2009-06-02 17:52:33 +00:00
|
|
|
|
|
|
|
intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ?
|
2010-02-16 09:30:23 +00:00
|
|
|
X86II::getSizeOfImm(Desc->TSFlags) : 0;
|
2012-08-15 19:34:23 +00:00
|
|
|
emitMemModRMByte(MI, FirstMemOp,
|
2012-12-02 13:10:19 +00:00
|
|
|
getX86RegNum(MI.getOperand(CurOp).getReg()),PCAdj);
|
2009-06-02 17:52:33 +00:00
|
|
|
CurOp += AddrOperands + 1;
|
2012-08-15 19:34:23 +00:00
|
|
|
if (HasVEX_4VOp3)
|
|
|
|
++CurOp;
|
2009-06-02 17:52:33 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case X86II::MRM0r: case X86II::MRM1r:
|
|
|
|
case X86II::MRM2r: case X86II::MRM3r:
|
|
|
|
case X86II::MRM4r: case X86II::MRM5r:
|
|
|
|
case X86II::MRM6r: case X86II::MRM7r: {
|
2012-08-15 19:34:23 +00:00
|
|
|
if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
|
|
|
|
++CurOp;
|
2009-06-02 17:52:33 +00:00
|
|
|
MCE.emitByte(BaseOpcode);
|
2010-02-16 09:30:23 +00:00
|
|
|
emitRegModRMByte(MI.getOperand(CurOp++).getReg(),
|
|
|
|
(Desc->TSFlags & X86II::FormMask)-X86II::MRM0r);
|
2009-06-02 17:52:33 +00:00
|
|
|
|
2009-10-14 17:57:32 +00:00
|
|
|
if (CurOp == NumOps)
|
|
|
|
break;
|
2012-08-15 19:34:23 +00:00
|
|
|
|
2009-10-14 17:57:32 +00:00
|
|
|
const MachineOperand &MO1 = MI.getOperand(CurOp++);
|
2010-02-16 09:30:23 +00:00
|
|
|
unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
|
2009-10-14 17:57:32 +00:00
|
|
|
if (MO1.isImm()) {
|
|
|
|
emitConstant(MO1.getImm(), Size);
|
|
|
|
break;
|
2009-06-02 17:52:33 +00:00
|
|
|
}
|
2012-08-15 19:34:23 +00:00
|
|
|
|
2009-10-14 17:57:32 +00:00
|
|
|
unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
|
|
|
|
: (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
|
|
|
|
if (Opcode == X86::MOV64ri32)
|
|
|
|
rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
|
|
|
|
if (MO1.isGlobal()) {
|
|
|
|
bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
|
|
|
|
emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
|
2009-11-18 14:58:34 +00:00
|
|
|
Indirect);
|
2009-10-14 17:57:32 +00:00
|
|
|
} else if (MO1.isSymbol())
|
|
|
|
emitExternalSymbolAddress(MO1.getSymbolName(), rt);
|
|
|
|
else if (MO1.isCPI())
|
|
|
|
emitConstPoolAddress(MO1.getIndex(), rt);
|
|
|
|
else if (MO1.isJTI())
|
|
|
|
emitJumpTableAddress(MO1.getIndex(), rt);
|
2009-06-02 17:52:33 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case X86II::MRM0m: case X86II::MRM1m:
|
|
|
|
case X86II::MRM2m: case X86II::MRM3m:
|
|
|
|
case X86II::MRM4m: case X86II::MRM5m:
|
|
|
|
case X86II::MRM6m: case X86II::MRM7m: {
|
2012-08-15 19:34:23 +00:00
|
|
|
if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
|
|
|
|
++CurOp;
|
2010-07-13 17:19:57 +00:00
|
|
|
intptr_t PCAdj = (CurOp + X86::AddrNumOperands != NumOps) ?
|
2012-08-15 19:34:23 +00:00
|
|
|
(MI.getOperand(CurOp+X86::AddrNumOperands).isImm() ?
|
2010-02-16 09:30:23 +00:00
|
|
|
X86II::getSizeOfImm(Desc->TSFlags) : 4) : 0;
|
2009-06-02 17:52:33 +00:00
|
|
|
|
|
|
|
MCE.emitByte(BaseOpcode);
|
|
|
|
emitMemModRMByte(MI, CurOp, (Desc->TSFlags & X86II::FormMask)-X86II::MRM0m,
|
|
|
|
PCAdj);
|
2010-07-13 17:19:57 +00:00
|
|
|
CurOp += X86::AddrNumOperands;
|
2009-06-02 17:52:33 +00:00
|
|
|
|
2009-10-14 17:57:32 +00:00
|
|
|
if (CurOp == NumOps)
|
|
|
|
break;
|
2012-08-15 19:34:23 +00:00
|
|
|
|
2009-10-14 17:57:32 +00:00
|
|
|
const MachineOperand &MO = MI.getOperand(CurOp++);
|
2010-02-16 09:30:23 +00:00
|
|
|
unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
|
2009-10-14 17:57:32 +00:00
|
|
|
if (MO.isImm()) {
|
|
|
|
emitConstant(MO.getImm(), Size);
|
|
|
|
break;
|
2009-06-02 17:52:33 +00:00
|
|
|
}
|
2012-08-15 19:34:23 +00:00
|
|
|
|
2009-10-14 17:57:32 +00:00
|
|
|
unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
|
|
|
|
: (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
|
|
|
|
if (Opcode == X86::MOV64mi32)
|
|
|
|
rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
|
|
|
|
if (MO.isGlobal()) {
|
|
|
|
bool Indirect = gvNeedsNonLazyPtr(MO, TM);
|
|
|
|
emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0,
|
2009-11-18 14:58:34 +00:00
|
|
|
Indirect);
|
2009-10-14 17:57:32 +00:00
|
|
|
} else if (MO.isSymbol())
|
|
|
|
emitExternalSymbolAddress(MO.getSymbolName(), rt);
|
|
|
|
else if (MO.isCPI())
|
|
|
|
emitConstPoolAddress(MO.getIndex(), rt);
|
|
|
|
else if (MO.isJTI())
|
|
|
|
emitJumpTableAddress(MO.getIndex(), rt);
|
2009-06-02 17:52:33 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case X86II::MRMInitReg:
|
|
|
|
MCE.emitByte(BaseOpcode);
|
|
|
|
// Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
|
|
|
|
emitRegModRMByte(MI.getOperand(CurOp).getReg(),
|
2012-12-02 13:10:19 +00:00
|
|
|
getX86RegNum(MI.getOperand(CurOp).getReg()));
|
2009-06-02 17:52:33 +00:00
|
|
|
++CurOp;
|
|
|
|
break;
|
2012-08-15 19:34:23 +00:00
|
|
|
|
2010-02-16 09:30:23 +00:00
|
|
|
case X86II::MRM_C1:
|
|
|
|
MCE.emitByte(BaseOpcode);
|
|
|
|
MCE.emitByte(0xC1);
|
|
|
|
break;
|
|
|
|
case X86II::MRM_C8:
|
|
|
|
MCE.emitByte(BaseOpcode);
|
|
|
|
MCE.emitByte(0xC8);
|
|
|
|
break;
|
|
|
|
case X86II::MRM_C9:
|
|
|
|
MCE.emitByte(BaseOpcode);
|
|
|
|
MCE.emitByte(0xC9);
|
|
|
|
break;
|
2013-06-10 20:36:52 +00:00
|
|
|
case X86II::MRM_CA:
|
|
|
|
MCE.emitByte(BaseOpcode);
|
|
|
|
MCE.emitByte(0xCA);
|
|
|
|
break;
|
|
|
|
case X86II::MRM_CB:
|
|
|
|
MCE.emitByte(BaseOpcode);
|
|
|
|
MCE.emitByte(0xCB);
|
|
|
|
break;
|
2010-02-16 09:30:23 +00:00
|
|
|
case X86II::MRM_E8:
|
|
|
|
MCE.emitByte(BaseOpcode);
|
|
|
|
MCE.emitByte(0xE8);
|
|
|
|
break;
|
|
|
|
case X86II::MRM_F0:
|
|
|
|
MCE.emitByte(BaseOpcode);
|
|
|
|
MCE.emitByte(0xF0);
|
|
|
|
break;
|
2009-06-02 17:52:33 +00:00
|
|
|
}
|
|
|
|
|
2012-08-15 19:34:23 +00:00
|
|
|
while (CurOp != NumOps && NumOps - CurOp <= 2) {
|
|
|
|
// The last source register of a 4 operand instruction in AVX is encoded
|
|
|
|
// in bits[7:4] of a immediate byte.
|
|
|
|
if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
|
|
|
|
const MachineOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
|
|
|
|
: CurOp);
|
|
|
|
++CurOp;
|
2012-12-02 13:10:19 +00:00
|
|
|
unsigned RegNum = getX86RegNum(MO.getReg()) << 4;
|
2012-08-15 19:34:23 +00:00
|
|
|
if (X86II::isX86_64ExtendedReg(MO.getReg()))
|
|
|
|
RegNum |= 1 << 7;
|
|
|
|
// If there is an additional 5th operand it must be an immediate, which
|
|
|
|
// is encoded in bits[3:0]
|
|
|
|
if (CurOp != NumOps) {
|
|
|
|
const MachineOperand &MIMM = MI.getOperand(CurOp++);
|
|
|
|
if (MIMM.isImm()) {
|
|
|
|
unsigned Val = MIMM.getImm();
|
|
|
|
assert(Val < 16 && "Immediate operand value out of range");
|
|
|
|
RegNum |= Val;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
emitConstant(RegNum, 1);
|
|
|
|
} else {
|
|
|
|
emitConstant(MI.getOperand(CurOp++).getImm(),
|
|
|
|
X86II::getSizeOfImm(Desc->TSFlags));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-04-14 13:54:10 +00:00
|
|
|
if (!MI.isVariadic() && CurOp != NumOps) {
|
2009-10-14 17:57:32 +00:00
|
|
|
#ifndef NDEBUG
|
2010-01-15 15:37:28 +00:00
|
|
|
dbgs() << "Cannot encode all operands of: " << MI << "\n";
|
2009-10-14 17:57:32 +00:00
|
|
|
#endif
|
|
|
|
llvm_unreachable(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
MCE.processDebugLoc(MI.getDebugLoc(), false);
|
|
|
|
}
|