freebsd-nq/sys/pci/if_mx.c

1993 lines
46 KiB
C
Raw Normal View History

/*
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ee.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
1999-08-28 01:08:13 +00:00
* $FreeBSD$
*/
/*
* Macronix PMAC fast ethernet PCI NIC driver
*
* Written by Bill Paul <wpaul@ee.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The Macronix 98713, 98715 and 98725 chips are still more tulip clones.
* The 98713 has an internal transceiver and an MII bus for external PHYs.
* The other two chips have only the internal transceiver. All have
* support for built-in autonegotiation. Additionally, there are 98713A
* and 98715A chips which support power management. The 98725 chip
* supports power management as well.
*
* Datasheets for the Macronix parts can be obtained from www.macronix.com.
* Note however that the datasheets do not describe the TX and RX
* descriptor structures or the setup frame format(s). For this, you should
* obtain a DEC 21x4x datasheet from developer.intel.com. The Macronix
* chips look to be fairly straightforward tulip clones, except for
* the NWAY support.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/clock.h> /* for DELAY */
#include <machine/bus_pio.h>
#include <machine/bus_memio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <pci/pcireg.h>
#include <pci/pcivar.h>
#define MX_USEIOSPACE
#include <pci/if_mxreg.h>
/* "controller miibus0" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
#ifndef lint
static const char rcsid[] =
1999-08-28 01:08:13 +00:00
"$FreeBSD$";
#endif
/*
* Various supported device vendors/types and their names.
*/
static struct mx_type mx_devs[] = {
{ MX_VENDORID, MX_DEVICEID_98713,
"Macronix 98713 10/100BaseTX" },
{ MX_VENDORID, MX_DEVICEID_98713,
"Macronix 98713A 10/100BaseTX" },
{ CP_VENDORID, CP_DEVICEID_98713,
"Compex RL100-TX 10/100BaseTX" },
{ CP_VENDORID, CP_DEVICEID_98713,
"Compex RL100-TX 10/100BaseTX" },
{ MX_VENDORID, MX_DEVICEID_987x5,
"Macronix 98715/98715A 10/100BaseTX" },
{ MX_VENDORID, MX_DEVICEID_987x5,
"Macronix 98725 10/100BaseTX" },
{ PN_VENDORID, PN_DEVICEID_PNIC_II,
"LC82C115 PNIC II 10/100BaseTX" },
{ 0, 0, NULL }
};
static int mx_probe __P((device_t));
static int mx_attach __P((device_t));
static int mx_detach __P((device_t));
static struct mx_type *mx_devtype __P((device_t));
static int mx_newbuf __P((struct mx_softc *,
struct mx_chain_onefrag *,
struct mbuf *));
static int mx_encap __P((struct mx_softc *, struct mx_chain *,
struct mbuf *));
static void mx_rxeof __P((struct mx_softc *));
static void mx_rxeoc __P((struct mx_softc *));
static void mx_txeof __P((struct mx_softc *));
static void mx_txeoc __P((struct mx_softc *));
static void mx_tick __P((void *));
static void mx_intr __P((void *));
static void mx_start __P((struct ifnet *));
static int mx_ioctl __P((struct ifnet *, u_long, caddr_t));
static void mx_init __P((void *));
static void mx_stop __P((struct mx_softc *));
static void mx_watchdog __P((struct ifnet *));
static void mx_shutdown __P((device_t));
static int mx_ifmedia_upd __P((struct ifnet *));
static void mx_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
static void mx_delay __P((struct mx_softc *));
static void mx_eeprom_idle __P((struct mx_softc *));
static void mx_eeprom_putbyte __P((struct mx_softc *, int));
static void mx_eeprom_getword __P((struct mx_softc *, int, u_int16_t *));
static void mx_read_eeprom __P((struct mx_softc *, caddr_t, int,
int, int));
static void mx_mii_writebit __P((struct mx_softc *, int));
static int mx_mii_readbit __P((struct mx_softc *));
static void mx_mii_sync __P((struct mx_softc *));
static void mx_mii_send __P((struct mx_softc *, u_int32_t, int));
static int mx_mii_readreg __P((struct mx_softc *, struct mx_mii_frame *));
static int mx_mii_writereg __P((struct mx_softc *, struct mx_mii_frame *));
static int mx_miibus_readreg __P((device_t, int, int));
static int mx_miibus_writereg __P((device_t, int, int, int));
static void mx_miibus_statchg __P((device_t));
static void mx_setcfg __P((struct mx_softc *, int));
static u_int32_t mx_calchash __P((struct mx_softc *, caddr_t));
static void mx_setfilt __P((struct mx_softc *));
static void mx_reset __P((struct mx_softc *));
static int mx_list_rx_init __P((struct mx_softc *));
static int mx_list_tx_init __P((struct mx_softc *));
#ifdef MX_USEIOSPACE
#define MX_RES SYS_RES_IOPORT
#define MX_RID MX_PCI_LOIO
#else
#define MX_RES SYS_RES_MEMORY
#define MX_RID MX_PCI_LOMEM
#endif
static device_method_t mx_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, mx_probe),
DEVMETHOD(device_attach, mx_attach),
DEVMETHOD(device_detach, mx_detach),
DEVMETHOD(device_shutdown, mx_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, mx_miibus_readreg),
DEVMETHOD(miibus_writereg, mx_miibus_writereg),
DEVMETHOD(miibus_statchg, mx_miibus_statchg),
{ 0, 0 }
};
static driver_t mx_driver = {
"mx",
mx_methods,
sizeof(struct mx_softc)
};
static devclass_t mx_devclass;
DRIVER_MODULE(if_mx, pci, mx_driver, mx_devclass, 0, 0);
DRIVER_MODULE(miibus, mx, miibus_driver, miibus_devclass, 0, 0);
#define MX_SETBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) | x)
#define MX_CLRBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) & ~x)
#define SIO_SET(x) \
CSR_WRITE_4(sc, MX_SIO, \
CSR_READ_4(sc, MX_SIO) | x)
#define SIO_CLR(x) \
CSR_WRITE_4(sc, MX_SIO, \
CSR_READ_4(sc, MX_SIO) & ~x)
static void mx_delay(sc)
struct mx_softc *sc;
{
int idx;
for (idx = (300 / 33) + 1; idx > 0; idx--)
CSR_READ_4(sc, MX_BUSCTL);
}
static void mx_eeprom_idle(sc)
struct mx_softc *sc;
{
register int i;
CSR_WRITE_4(sc, MX_SIO, MX_SIO_EESEL);
mx_delay(sc);
MX_SETBIT(sc, MX_SIO, MX_SIO_ROMCTL_READ);
mx_delay(sc);
MX_SETBIT(sc, MX_SIO, MX_SIO_EE_CS);
mx_delay(sc);
MX_SETBIT(sc, MX_SIO, MX_SIO_EE_CLK);
mx_delay(sc);
for (i = 0; i < 25; i++) {
MX_CLRBIT(sc, MX_SIO, MX_SIO_EE_CLK);
mx_delay(sc);
MX_SETBIT(sc, MX_SIO, MX_SIO_EE_CLK);
mx_delay(sc);
}
MX_CLRBIT(sc, MX_SIO, MX_SIO_EE_CLK);
mx_delay(sc);
MX_CLRBIT(sc, MX_SIO, MX_SIO_EE_CS);
mx_delay(sc);
CSR_WRITE_4(sc, MX_SIO, 0x00000000);
return;
}
/*
* Send a read command and address to the EEPROM, check for ACK.
*/
static void mx_eeprom_putbyte(sc, addr)
struct mx_softc *sc;
int addr;
{
register int d, i;
d = addr | MX_EECMD_READ;
/*
* Feed in each bit and stobe the clock.
*/
for (i = 0x400; i; i >>= 1) {
if (d & i) {
SIO_SET(MX_SIO_EE_DATAIN);
} else {
SIO_CLR(MX_SIO_EE_DATAIN);
}
mx_delay(sc);
SIO_SET(MX_SIO_EE_CLK);
mx_delay(sc);
SIO_CLR(MX_SIO_EE_CLK);
mx_delay(sc);
}
return;
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
static void mx_eeprom_getword(sc, addr, dest)
struct mx_softc *sc;
int addr;
u_int16_t *dest;
{
register int i;
u_int16_t word = 0;
/* Force EEPROM to idle state. */
mx_eeprom_idle(sc);
/* Enter EEPROM access mode. */
CSR_WRITE_4(sc, MX_SIO, MX_SIO_EESEL);
mx_delay(sc);
MX_SETBIT(sc, MX_SIO, MX_SIO_ROMCTL_READ);
mx_delay(sc);
MX_SETBIT(sc, MX_SIO, MX_SIO_EE_CS);
mx_delay(sc);
MX_SETBIT(sc, MX_SIO, MX_SIO_EE_CLK);
mx_delay(sc);
/*
* Send address of word we want to read.
*/
mx_eeprom_putbyte(sc, addr);
/*
* Start reading bits from EEPROM.
*/
for (i = 0x8000; i; i >>= 1) {
SIO_SET(MX_SIO_EE_CLK);
mx_delay(sc);
if (CSR_READ_4(sc, MX_SIO) & MX_SIO_EE_DATAOUT)
word |= i;
mx_delay(sc);
SIO_CLR(MX_SIO_EE_CLK);
mx_delay(sc);
}
/* Turn off EEPROM access mode. */
mx_eeprom_idle(sc);
*dest = word;
return;
}
/*
* Read a sequence of words from the EEPROM.
*/
static void mx_read_eeprom(sc, dest, off, cnt, swap)
struct mx_softc *sc;
caddr_t dest;
int off;
int cnt;
int swap;
{
int i;
u_int16_t word = 0, *ptr;
for (i = 0; i < cnt; i++) {
mx_eeprom_getword(sc, off + i, &word);
ptr = (u_int16_t *)(dest + (i * 2));
if (swap)
*ptr = ntohs(word);
else
*ptr = word;
}
return;
}
/*
* The following two routines are taken from the Macronix 98713
* Application Notes pp.19-21.
*/
/*
* Write a bit to the MII bus.
*/
static void mx_mii_writebit(sc, bit)
struct mx_softc *sc;
int bit;
{
if (bit)
CSR_WRITE_4(sc, MX_SIO, MX_SIO_ROMCTL_WRITE|MX_SIO_MII_DATAOUT);
else
CSR_WRITE_4(sc, MX_SIO, MX_SIO_ROMCTL_WRITE);
MX_SETBIT(sc, MX_SIO, MX_SIO_MII_CLK);
MX_CLRBIT(sc, MX_SIO, MX_SIO_MII_CLK);
return;
}
/*
* Read a bit from the MII bus.
*/
static int mx_mii_readbit(sc)
struct mx_softc *sc;
{
CSR_WRITE_4(sc, MX_SIO, MX_SIO_ROMCTL_READ|MX_SIO_MII_DIR);
CSR_READ_4(sc, MX_SIO);
MX_SETBIT(sc, MX_SIO, MX_SIO_MII_CLK);
MX_CLRBIT(sc, MX_SIO, MX_SIO_MII_CLK);
if (CSR_READ_4(sc, MX_SIO) & MX_SIO_MII_DATAIN)
return(1);
return(0);
}
/*
* Sync the PHYs by setting data bit and strobing the clock 32 times.
*/
static void mx_mii_sync(sc)
struct mx_softc *sc;
{
register int i;
CSR_WRITE_4(sc, MX_SIO, MX_SIO_ROMCTL_WRITE);
for (i = 0; i < 32; i++)
mx_mii_writebit(sc, 1);
return;
}
/*
* Clock a series of bits through the MII.
*/
static void mx_mii_send(sc, bits, cnt)
struct mx_softc *sc;
u_int32_t bits;
int cnt;
{
int i;
for (i = (0x1 << (cnt - 1)); i; i >>= 1)
mx_mii_writebit(sc, bits & i);
}
/*
* Read an PHY register through the MII.
*/
static int mx_mii_readreg(sc, frame)
struct mx_softc *sc;
struct mx_mii_frame *frame;
{
int i, ack, s;
s = splimp();
/*
* Set up frame for RX.
*/
frame->mii_stdelim = MX_MII_STARTDELIM;
frame->mii_opcode = MX_MII_READOP;
frame->mii_turnaround = 0;
frame->mii_data = 0;
/*
* Sync the PHYs.
*/
mx_mii_sync(sc);
/*
* Send command/address info.
*/
mx_mii_send(sc, frame->mii_stdelim, 2);
mx_mii_send(sc, frame->mii_opcode, 2);
mx_mii_send(sc, frame->mii_phyaddr, 5);
mx_mii_send(sc, frame->mii_regaddr, 5);
#ifdef notdef
/* Idle bit */
mx_mii_writebit(sc, 1);
mx_mii_writebit(sc, 0);
#endif
/* Check for ack */
ack = mx_mii_readbit(sc);
/*
* Now try reading data bits. If the ack failed, we still
* need to clock through 16 cycles to keep the PHY(s) in sync.
*/
if (ack) {
for(i = 0; i < 16; i++) {
mx_mii_readbit(sc);
}
goto fail;
}
for (i = 0x8000; i; i >>= 1) {
if (!ack) {
if (mx_mii_readbit(sc))
frame->mii_data |= i;
}
}
fail:
mx_mii_writebit(sc, 0);
mx_mii_writebit(sc, 0);
splx(s);
if (ack)
return(1);
return(0);
}
/*
* Write to a PHY register through the MII.
*/
static int mx_mii_writereg(sc, frame)
struct mx_softc *sc;
struct mx_mii_frame *frame;
{
int s;
s = splimp();
/*
* Set up frame for TX.
*/
frame->mii_stdelim = MX_MII_STARTDELIM;
frame->mii_opcode = MX_MII_WRITEOP;
frame->mii_turnaround = MX_MII_TURNAROUND;
/*
* Sync the PHYs.
*/
mx_mii_sync(sc);
mx_mii_send(sc, frame->mii_stdelim, 2);
mx_mii_send(sc, frame->mii_opcode, 2);
mx_mii_send(sc, frame->mii_phyaddr, 5);
mx_mii_send(sc, frame->mii_regaddr, 5);
mx_mii_send(sc, frame->mii_turnaround, 2);
mx_mii_send(sc, frame->mii_data, 16);
/* Idle bit. */
mx_mii_writebit(sc, 0);
mx_mii_writebit(sc, 0);
splx(s);
return(0);
}
static int mx_miibus_readreg(dev, phy, reg)
device_t dev;
int phy, reg;
{
struct mx_softc *sc;
struct mx_mii_frame frame;
sc = device_get_softc(dev);
bzero((char *)&frame, sizeof(frame));
if (sc->mx_type != MX_TYPE_98713) {
if (phy == (MII_NPHY - 1)) {
switch(reg) {
case MII_BMSR:
/*
* Fake something to make the probe
* code think there's a PHY here.
*/
return(BMSR_MEDIAMASK);
break;
case MII_PHYIDR1:
return(MX_VENDORID);
break;
case MII_PHYIDR2:
return(MX_DEVICEID_987x5);
break;
default:
return(0);
break;
}
}
}
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
MX_CLRBIT(sc, MX_NETCFG, MX_NETCFG_PORTSEL);
mx_mii_readreg(sc, &frame);
MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_PORTSEL);
return(frame.mii_data);
}
static int mx_miibus_writereg(dev, phy, reg, data)
device_t dev;
int phy, reg, data;
{
struct mx_mii_frame frame;
struct mx_softc *sc;
sc = device_get_softc(dev);
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
frame.mii_data = data;
MX_CLRBIT(sc, MX_NETCFG, MX_NETCFG_PORTSEL);
mx_mii_writereg(sc, &frame);
MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_PORTSEL);
return(0);
}
static void mx_miibus_statchg(dev)
device_t dev;
{
struct mx_softc *sc;
struct mii_data *mii;
sc = device_get_softc(dev);
mii = device_get_softc(sc->mx_miibus);
mx_setcfg(sc, mii->mii_media_active);
return;
}
#define MX_POLY 0xEDB88320
#define MX_BITS 9
#define MX_BITS_PNIC_II 7
static u_int32_t mx_calchash(sc, addr)
struct mx_softc *sc;
caddr_t addr;
{
u_int32_t idx, bit, data, crc;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (idx = 0; idx < 6; idx++) {
for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
crc = (crc >> 1) ^ (((crc ^ data) & 1) ? MX_POLY : 0);
}
/* The hash table on the PNIC II is only 128 bits wide. */
if (sc->mx_info->mx_vid == PN_VENDORID)
return (crc & ((1 << MX_BITS_PNIC_II) - 1));
return (crc & ((1 << MX_BITS) - 1));
}
/*
* Programming the receiver filter on the tulip/PMAC is gross. You
* have to construct a special setup frame and download it to the
* chip via the transmit DMA engine. This routine is also somewhat
* gross, as the setup frame is sent synchronously rather than putting
* on the transmit queue. The transmitter has to be stopped, then we
* can download the frame and wait for the 'owned' bit to clear.
*
* We always program the chip using 'hash perfect' mode, i.e. one perfect
* address (our node address) and a 512-bit hash filter for multicast
* frames. We also sneak the broadcast address into the hash filter since
* we need that too.
*/
void mx_setfilt(sc)
struct mx_softc *sc;
{
struct mx_desc *sframe;
u_int32_t h, *sp;
struct ifmultiaddr *ifma;
struct ifnet *ifp;
int i;
ifp = &sc->arpcom.ac_if;
MX_CLRBIT(sc, MX_NETCFG, MX_NETCFG_TX_ON);
MX_SETBIT(sc, MX_ISR, MX_ISR_TX_IDLE);
sframe = &sc->mx_cdata.mx_sframe;
sp = (u_int32_t *)&sc->mx_cdata.mx_sbuf;
bzero((char *)sp, MX_SFRAME_LEN);
sframe->mx_next = vtophys(&sc->mx_ldata->mx_tx_list[0]);
sframe->mx_data = vtophys(&sc->mx_cdata.mx_sbuf);
sframe->mx_ctl = MX_SFRAME_LEN | MX_TXCTL_TLINK |
MX_TXCTL_SETUP | MX_FILTER_HASHPERF;
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC)
MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_RX_PROMISC);
else
MX_CLRBIT(sc, MX_NETCFG, MX_NETCFG_RX_PROMISC);
if (ifp->if_flags & IFF_ALLMULTI)
MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_RX_ALLMULTI);
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
ifma = ifma->ifma_link.le_next) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = mx_calchash(sc,
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
sp[h >> 4] |= 1 << (h & 0xF);
}
if (ifp->if_flags & IFF_BROADCAST) {
h = mx_calchash(sc, (caddr_t)&etherbroadcastaddr);
sp[h >> 4] |= 1 << (h & 0xF);
}
sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
CSR_WRITE_4(sc, MX_TXADDR, vtophys(sframe));
MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_TX_ON);
sframe->mx_status = MX_TXSTAT_OWN;
CSR_WRITE_4(sc, MX_TXSTART, 0xFFFFFFFF);
/*
* Wait for chip to clear the 'own' bit.
*/
for (i = 0; i < MX_TIMEOUT; i++) {
DELAY(10);
if (sframe->mx_status != MX_TXSTAT_OWN)
break;
}
if (i == MX_TIMEOUT)
printf("mx%d: failed to send setup frame\n", sc->mx_unit);
MX_SETBIT(sc, MX_ISR, MX_ISR_TX_NOBUF|MX_ISR_TX_IDLE);
return;
}
/*
* In order to fiddle with the
* 'full-duplex' and '100Mbps' bits in the netconfig register, we
* first have to put the transmit and/or receive logic in the idle state.
*/
static void mx_setcfg(sc, media)
struct mx_softc *sc;
int media;
{
int i, restart = 0;
if (CSR_READ_4(sc, MX_NETCFG) & (MX_NETCFG_TX_ON|MX_NETCFG_RX_ON)) {
restart = 1;
MX_CLRBIT(sc, MX_NETCFG, (MX_NETCFG_TX_ON|MX_NETCFG_RX_ON));
for (i = 0; i < MX_TIMEOUT; i++) {
DELAY(10);
if (CSR_READ_4(sc, MX_ISR) & MX_ISR_TX_IDLE)
break;
}
if (i == MX_TIMEOUT)
printf("mx%d: failed to force tx and "
"rx to idle state\n", sc->mx_unit);
}
if (IFM_SUBTYPE(media) == IFM_100_TX) {
MX_CLRBIT(sc, MX_NETCFG, MX_NETCFG_SPEEDSEL);
MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_HEARTBEAT);
if (sc->mx_type == MX_TYPE_98713) {
MX_SETBIT(sc, MX_WATCHDOG, MX_WDOG_JABBERDIS);
MX_CLRBIT(sc, MX_NETCFG, (MX_NETCFG_PCS|
MX_NETCFG_PORTSEL|MX_NETCFG_SCRAMBLER));
MX_SETBIT(sc, MX_NETCFG, (MX_NETCFG_PCS|
MX_NETCFG_SCRAMBLER));
} else {
MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_PORTSEL|
MX_NETCFG_PCS|MX_NETCFG_SCRAMBLER);
}
}
if (IFM_SUBTYPE(media) == IFM_10_T) {
MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_SPEEDSEL);
MX_CLRBIT(sc, MX_NETCFG, MX_NETCFG_HEARTBEAT);
if (sc->mx_type == MX_TYPE_98713) {
MX_SETBIT(sc, MX_WATCHDOG, MX_WDOG_JABBERDIS);
MX_CLRBIT(sc, MX_NETCFG, (MX_NETCFG_PCS|
MX_NETCFG_PORTSEL|MX_NETCFG_SCRAMBLER));
MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_PCS);
} else {
MX_CLRBIT(sc, MX_NETCFG, MX_NETCFG_PORTSEL);
MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_PCS);
}
}
if ((media & IFM_GMASK) == IFM_FDX) {
MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_FULLDUPLEX);
} else {
MX_CLRBIT(sc, MX_NETCFG, MX_NETCFG_FULLDUPLEX);
}
if (restart)
MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_TX_ON|MX_NETCFG_RX_ON);
return;
}
static void mx_reset(sc)
struct mx_softc *sc;
{
register int i;
MX_SETBIT(sc, MX_BUSCTL, MX_BUSCTL_RESET);
for (i = 0; i < MX_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_4(sc, MX_BUSCTL) & MX_BUSCTL_RESET))
break;
}
if (i == MX_TIMEOUT)
printf("mx%d: reset never completed!\n", sc->mx_unit);
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
return;
}
static struct mx_type *mx_devtype(dev)
device_t dev;
{
struct mx_type *t;
u_int32_t rev;
t = mx_devs;
while(t->mx_name != NULL) {
if ((pci_get_vendor(dev) == t->mx_vid) &&
(pci_get_device(dev) == t->mx_did)) {
/* Check the PCI revision */
rev = pci_read_config(dev, MX_PCI_REVID, 4) & 0xFF;
if (t->mx_did == MX_DEVICEID_98713 &&
rev >= MX_REVISION_98713A)
t++;
if (t->mx_did == CP_DEVICEID_98713 &&
rev >= MX_REVISION_98713A)
t++;
if (t->mx_did == MX_DEVICEID_987x5 &&
rev >= MX_REVISION_98725)
t++;
return(t);
}
t++;
}
return(NULL);
}
/*
* Probe for a Macronix PMAC chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
* We do a little bit of extra work to identify the exact type of
* chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
* but different revision IDs. The same is true for 98715/98715A
* chips and the 98725. This doesn't affect a whole lot, but it
* lets us tell the user exactly what type of device they have
* in the probe output.
*/
int mx_probe(dev)
device_t dev;
{
struct mx_type *t;
t = mx_devtype(dev);
if (t != NULL) {
device_set_desc(dev, t->mx_name);
return(0);
}
return(ENXIO);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
int mx_attach(dev)
device_t dev;
{
int s, i;
u_char eaddr[ETHER_ADDR_LEN];
u_int32_t command;
struct mx_softc *sc;
struct ifnet *ifp;
unsigned int round;
caddr_t roundptr;
u_int16_t mac_offset = 0;
u_int32_t revision, pci_id;
int unit, error = 0, rid;
s = splimp();
sc = device_get_softc(dev);
unit = device_get_unit(dev);
bzero(sc, sizeof(struct mx_softc));
/*
* Handle power management nonsense.
*/
command = pci_read_config(dev, MX_PCI_CAPID, 4) & 0x000000FF;
if (command == 0x01) {
command = pci_read_config(dev, MX_PCI_PWRMGMTCTRL, 4);
if (command & MX_PSTATE_MASK) {
u_int32_t iobase, membase, irq;
/* Save important PCI config data. */
iobase = pci_read_config(dev, MX_PCI_LOIO, 4);
membase = pci_read_config(dev, MX_PCI_LOMEM, 4);
irq = pci_read_config(dev, MX_PCI_INTLINE, 4);
/* Reset the power state. */
printf("mx%d: chip is in D%d power mode "
"-- setting to D0\n", unit, command & MX_PSTATE_MASK);
command &= 0xFFFFFFFC;
pci_write_config(dev, MX_PCI_PWRMGMTCTRL, command, 4);
/* Restore PCI config data. */
pci_write_config(dev, MX_PCI_LOIO, iobase, 4);
pci_write_config(dev, MX_PCI_LOMEM, membase, 4);
pci_write_config(dev, MX_PCI_INTLINE, irq, 4);
}
}
/*
* Map control/status registers.
*/
command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
pci_write_config(dev, PCI_COMMAND_STATUS_REG, command, 4);
command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
#ifdef MX_USEIOSPACE
if (!(command & PCIM_CMD_PORTEN)) {
printf("mx%d: failed to enable I/O ports!\n", unit);
error = ENXIO;
goto fail;
}
#else
if (!(command & PCIM_CMD_MEMEN)) {
printf("mx%d: failed to enable memory mapping!\n", unit);
error = ENXIO;
goto fail;
}
#endif
rid = MX_RID;
sc->mx_res = bus_alloc_resource(dev, MX_RES, &rid,
0, ~0, 1, RF_ACTIVE);
if (sc->mx_res == NULL) {
printf("mx%d: couldn't map ports/memory\n", unit);
error = ENXIO;
goto fail;
}
sc->mx_btag = rman_get_bustag(sc->mx_res);
sc->mx_bhandle = rman_get_bushandle(sc->mx_res);
/* Allocate interrupt */
rid = 0;
sc->mx_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
RF_SHAREABLE | RF_ACTIVE);
if (sc->mx_irq == NULL) {
printf("mx%d: couldn't map interrupt\n", unit);
bus_release_resource(dev, MX_RES, MX_RID, sc->mx_res);
error = ENXIO;
goto fail;
}
error = bus_setup_intr(dev, sc->mx_irq, INTR_TYPE_NET,
mx_intr, sc, &sc->mx_intrhand);
if (error) {
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->mx_irq);
bus_release_resource(dev, MX_RES, MX_RID, sc->mx_res);
printf("mx%d: couldn't set up irq\n", unit);
goto fail;
}
/* Need this info to decide on a chip type. */
revision = pci_read_config(dev, MX_PCI_REVID, 4) & 0x000000FF;
pci_id = (pci_read_config(dev,MX_PCI_VENDOR_ID, 4) >> 16) & 0x0000FFFF;
if (pci_id == MX_DEVICEID_98713 && revision < MX_REVISION_98713A)
sc->mx_type = MX_TYPE_98713;
else if (pci_id == CP_DEVICEID_98713 && revision < MX_REVISION_98713A)
sc->mx_type = MX_TYPE_98713;
else if (pci_id == MX_DEVICEID_98713 && revision >= MX_REVISION_98713A)
sc->mx_type = MX_TYPE_98713A;
else
sc->mx_type = MX_TYPE_987x5;
/* Save the cache line size. */
sc->mx_cachesize = pci_read_config(dev, MX_PCI_CACHELEN, 4) & 0xFF;
/* Save the device info; the PNIC II requires special handling. */
pci_id = pci_read_config(dev,MX_PCI_VENDOR_ID, 4);
sc->mx_info = mx_devtype(dev);
/* Reset the adapter. */
mx_reset(sc);
/*
* Get station address from the EEPROM.
*/
mx_read_eeprom(sc, (caddr_t)&mac_offset,
(MX_EE_NODEADDR_OFFSET / 2), 1, 0);
mx_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
/*
* A PMAC chip was detected. Inform the world.
*/
printf("mx%d: Ethernet address: %6D\n", unit, eaddr, ":");
sc->mx_unit = unit;
bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
sc->mx_ldata_ptr = malloc(sizeof(struct mx_list_data) + 8,
M_DEVBUF, M_NOWAIT);
if (sc->mx_ldata_ptr == NULL) {
printf("mx%d: no memory for list buffers!\n", unit);
bus_teardown_intr(dev, sc->mx_irq, sc->mx_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->mx_irq);
bus_release_resource(dev, MX_RES, MX_RID, sc->mx_res);
error = ENXIO;
goto fail;
}
sc->mx_ldata = (struct mx_list_data *)sc->mx_ldata_ptr;
round = (uintptr_t)sc->mx_ldata_ptr & 0xF;
roundptr = sc->mx_ldata_ptr;
for (i = 0; i < 8; i++) {
if (round % 8) {
round++;
roundptr++;
}
break;
}
sc->mx_ldata = (struct mx_list_data *)roundptr;
bzero(sc->mx_ldata, sizeof(struct mx_list_data));
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_unit = unit;
ifp->if_name = "mx";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = mx_ioctl;
ifp->if_output = ether_output;
ifp->if_start = mx_start;
ifp->if_watchdog = mx_watchdog;
ifp->if_init = mx_init;
ifp->if_baudrate = 10000000;
ifp->if_snd.ifq_maxlen = MX_TX_LIST_CNT - 1;
/*
* Do ifmedia setup.
*/
if (mii_phy_probe(dev, &sc->mx_miibus,
mx_ifmedia_upd, mx_ifmedia_sts)) {
printf("mx%d: MII without any PHY!\n", sc->mx_unit);
bus_teardown_intr(dev, sc->mx_irq, sc->mx_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->mx_irq);
bus_release_resource(dev, MX_RES, MX_RID, sc->mx_res);
error = ENXIO;
goto fail;
}
/*
* Call MI attach routines.
*/
if_attach(ifp);
ether_ifattach(ifp);
callout_handle_init(&sc->mx_stat_ch);
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
fail:
splx(s);
return(error);
}
static int mx_detach(dev)
device_t dev;
{
struct mx_softc *sc;
struct ifnet *ifp;
int s;
s = splimp();
sc = device_get_softc(dev);
ifp = &sc->arpcom.ac_if;
mx_stop(sc);
if_detach(ifp);
bus_generic_detach(dev);
device_delete_child(dev, sc->mx_miibus);
bus_teardown_intr(dev, sc->mx_irq, sc->mx_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->mx_irq);
bus_release_resource(dev, MX_RES, MX_RID, sc->mx_res);
free(sc->mx_ldata_ptr, M_DEVBUF);
splx(s);
return(0);
}
/*
* Initialize the transmit descriptors.
*/
static int mx_list_tx_init(sc)
struct mx_softc *sc;
{
struct mx_chain_data *cd;
struct mx_list_data *ld;
int i;
cd = &sc->mx_cdata;
ld = sc->mx_ldata;
for (i = 0; i < MX_TX_LIST_CNT; i++) {
cd->mx_tx_chain[i].mx_ptr = &ld->mx_tx_list[i];
if (i == (MX_TX_LIST_CNT - 1))
cd->mx_tx_chain[i].mx_nextdesc =
&cd->mx_tx_chain[0];
else
cd->mx_tx_chain[i].mx_nextdesc =
&cd->mx_tx_chain[i + 1];
}
cd->mx_tx_free = &cd->mx_tx_chain[0];
cd->mx_tx_tail = cd->mx_tx_head = NULL;
return(0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
static int mx_list_rx_init(sc)
struct mx_softc *sc;
{
struct mx_chain_data *cd;
struct mx_list_data *ld;
int i;
cd = &sc->mx_cdata;
ld = sc->mx_ldata;
for (i = 0; i < MX_RX_LIST_CNT; i++) {
cd->mx_rx_chain[i].mx_ptr =
(struct mx_desc *)&ld->mx_rx_list[i];
if (mx_newbuf(sc, &cd->mx_rx_chain[i], NULL) == ENOBUFS)
return(ENOBUFS);
if (i == (MX_RX_LIST_CNT - 1)) {
cd->mx_rx_chain[i].mx_nextdesc =
&cd->mx_rx_chain[0];
ld->mx_rx_list[i].mx_next =
vtophys(&ld->mx_rx_list[0]);
} else {
cd->mx_rx_chain[i].mx_nextdesc =
&cd->mx_rx_chain[i + 1];
ld->mx_rx_list[i].mx_next =
vtophys(&ld->mx_rx_list[i + 1]);
}
}
cd->mx_rx_head = &cd->mx_rx_chain[0];
return(0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
* Note: the length fields are only 11 bits wide, which means the
* largest size we can specify is 2047. This is important because
* MCLBYTES is 2048, so we have to subtract one otherwise we'll
* overflow the field and make a mess.
*/
static int mx_newbuf(sc, c, m)
struct mx_softc *sc;
struct mx_chain_onefrag *c;
struct mbuf *m;
{
struct mbuf *m_new = NULL;
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("mx%d: no memory for rx list "
"-- packet dropped!\n", sc->mx_unit);
return(ENOBUFS);
}
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
printf("mx%d: no memory for rx list "
"-- packet dropped!\n", sc->mx_unit);
m_freem(m_new);
return(ENOBUFS);
}
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_new->m_data = m_new->m_ext.ext_buf;
}
m_adj(m_new, sizeof(u_int64_t));
c->mx_mbuf = m_new;
c->mx_ptr->mx_status = MX_RXSTAT;
c->mx_ptr->mx_data = vtophys(mtod(m_new, caddr_t));
c->mx_ptr->mx_ctl = MX_RXCTL_RLINK | (MCLBYTES - 1);
return(0);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static void mx_rxeof(sc)
struct mx_softc *sc;
{
struct ether_header *eh;
struct mbuf *m;
struct ifnet *ifp;
struct mx_chain_onefrag *cur_rx;
int total_len = 0;
u_int32_t rxstat;
ifp = &sc->arpcom.ac_if;
while(!((rxstat = sc->mx_cdata.mx_rx_head->mx_ptr->mx_status) &
MX_RXSTAT_OWN)) {
struct mbuf *m0 = NULL;
cur_rx = sc->mx_cdata.mx_rx_head;
sc->mx_cdata.mx_rx_head = cur_rx->mx_nextdesc;
m = cur_rx->mx_mbuf;
/*
* If an error occurs, update stats, clear the
* status word and leave the mbuf cluster in place:
* it should simply get re-used next time this descriptor
* comes up in the ring.
*/
if (rxstat & MX_RXSTAT_RXERR) {
ifp->if_ierrors++;
if (rxstat & MX_RXSTAT_COLLSEEN)
ifp->if_collisions++;
mx_newbuf(sc, cur_rx, m);
continue;
}
/* No errors; receive the packet. */
total_len = MX_RXBYTES(cur_rx->mx_ptr->mx_status);
/*
* XXX The Macronix chips includes the CRC with every
* received frame, and there's no way to turn this
* behavior off (at least, I can't find anything in
* the manual that explains how to do it) so we have
* to trim off the CRC manually.
*/
total_len -= ETHER_CRC_LEN;
m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
total_len + ETHER_ALIGN, 0, ifp, NULL);
mx_newbuf(sc, cur_rx, m);
if (m0 == NULL) {
ifp->if_ierrors++;
continue;
}
m_adj(m0, ETHER_ALIGN);
m = m0;
ifp->if_ipackets++;
eh = mtod(m, struct ether_header *);
/*
* Handle BPF listeners. Let the BPF user see the packet, but
* don't pass it up to the ether_input() layer unless it's
* a broadcast packet, multicast packet, matches our ethernet
* address or the interface is in promiscuous mode.
*/
if (ifp->if_bpf) {
bpf_mtap(ifp, m);
if (ifp->if_flags & IFF_PROMISC &&
(bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
ETHER_ADDR_LEN) &&
(eh->ether_dhost[0] & 1) == 0)) {
m_freem(m);
continue;
}
}
/* Remove header from mbuf and pass it on. */
m_adj(m, sizeof(struct ether_header));
ether_input(ifp, eh, m);
}
return;
}
void mx_rxeoc(sc)
struct mx_softc *sc;
{
mx_rxeof(sc);
MX_CLRBIT(sc, MX_NETCFG, MX_NETCFG_RX_ON);
CSR_WRITE_4(sc, MX_RXADDR, vtophys(sc->mx_cdata.mx_rx_head->mx_ptr));
MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_RX_ON);
CSR_WRITE_4(sc, MX_RXSTART, 0xFFFFFFFF);
return;
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void mx_txeof(sc)
struct mx_softc *sc;
{
struct mx_chain *cur_tx;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
/* Clear the timeout timer. */
ifp->if_timer = 0;
if (sc->mx_cdata.mx_tx_head == NULL)
return;
/*
* Go through our tx list and free mbufs for those
* frames that have been transmitted.
*/
while(sc->mx_cdata.mx_tx_head->mx_mbuf != NULL) {
u_int32_t txstat;
cur_tx = sc->mx_cdata.mx_tx_head;
txstat = MX_TXSTATUS(cur_tx);
if (txstat & MX_TXSTAT_OWN)
break;
if (txstat & MX_TXSTAT_ERRSUM) {
ifp->if_oerrors++;
if (txstat & MX_TXSTAT_EXCESSCOLL)
ifp->if_collisions++;
if (txstat & MX_TXSTAT_LATECOLL)
ifp->if_collisions++;
}
ifp->if_collisions += (txstat & MX_TXSTAT_COLLCNT) >> 3;
ifp->if_opackets++;
m_freem(cur_tx->mx_mbuf);
cur_tx->mx_mbuf = NULL;
if (sc->mx_cdata.mx_tx_head == sc->mx_cdata.mx_tx_tail) {
sc->mx_cdata.mx_tx_head = NULL;
sc->mx_cdata.mx_tx_tail = NULL;
break;
}
sc->mx_cdata.mx_tx_head = cur_tx->mx_nextdesc;
}
return;
}
/*
* TX 'end of channel' interrupt handler.
*/
static void mx_txeoc(sc)
struct mx_softc *sc;
{
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
if (sc->mx_cdata.mx_tx_head == NULL) {
ifp->if_flags &= ~IFF_OACTIVE;
sc->mx_cdata.mx_tx_tail = NULL;
}
return;
}
static void mx_tick(xsc)
void *xsc;
{
struct mx_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
int s;
s = splimp();
sc = xsc;
ifp = &sc->arpcom.ac_if;
mii = device_get_softc(sc->mx_miibus);
mii_tick(mii);
if (!sc->mx_link) {
mii_pollstat(mii);
if (mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
sc->mx_link++;
if (ifp->if_snd.ifq_head != NULL)
mx_start(ifp);
}
}
sc->mx_stat_ch = timeout(mx_tick, sc, hz);
splx(s);
return;
}
static void mx_intr(arg)
void *arg;
{
struct mx_softc *sc;
struct ifnet *ifp;
u_int32_t status;
sc = arg;
ifp = &sc->arpcom.ac_if;
/* Supress unwanted interrupts */
if (!(ifp->if_flags & IFF_UP)) {
mx_stop(sc);
return;
}
/* Disable interrupts. */
CSR_WRITE_4(sc, MX_IMR, 0x00000000);
for (;;) {
status = CSR_READ_4(sc, MX_ISR);
if (status)
CSR_WRITE_4(sc, MX_ISR, status);
if ((status & MX_INTRS) == 0)
break;
if (status & MX_ISR_TX_OK)
mx_txeof(sc);
if (status & MX_ISR_TX_NOBUF)
mx_txeoc(sc);
if (status & MX_ISR_TX_IDLE) {
mx_txeof(sc);
if (sc->mx_cdata.mx_tx_head != NULL) {
MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_TX_ON);
CSR_WRITE_4(sc, MX_TXSTART, 0xFFFFFFFF);
}
}
if (status & MX_ISR_TX_UNDERRUN) {
u_int32_t cfg;
cfg = CSR_READ_4(sc, MX_NETCFG);
if ((cfg & MX_NETCFG_TX_THRESH) == MX_TXTHRESH_160BYTES)
MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_STORENFWD);
else
CSR_WRITE_4(sc, MX_NETCFG, cfg + 0x4000);
}
if (status & MX_ISR_RX_OK)
mx_rxeof(sc);
if ((status & MX_ISR_RX_WATDOGTIMEO)
|| (status & MX_ISR_RX_NOBUF))
mx_rxeoc(sc);
if (status & MX_ISR_BUS_ERR) {
mx_reset(sc);
mx_init(sc);
}
}
/* Re-enable interrupts. */
CSR_WRITE_4(sc, MX_IMR, MX_INTRS);
if (ifp->if_snd.ifq_head != NULL) {
mx_start(ifp);
}
return;
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int mx_encap(sc, c, m_head)
struct mx_softc *sc;
struct mx_chain *c;
struct mbuf *m_head;
{
int frag = 0;
struct mx_desc *f = NULL;
int total_len;
struct mbuf *m;
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
m = m_head;
total_len = 0;
for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
if (m->m_len != 0) {
if (frag == MX_MAXFRAGS)
break;
total_len += m->m_len;
f = &c->mx_ptr->mx_frag[frag];
f->mx_ctl = MX_TXCTL_TLINK | m->m_len;
if (frag == 0) {
f->mx_status = 0;
f->mx_ctl |= MX_TXCTL_FIRSTFRAG;
} else
f->mx_status = MX_TXSTAT_OWN;
f->mx_next = vtophys(&c->mx_ptr->mx_frag[frag + 1]);
f->mx_data = vtophys(mtod(m, vm_offset_t));
frag++;
}
}
/*
* Handle special case: we ran out of fragments,
* but we have more mbufs left in the chain. Copy the
* data into an mbuf cluster. Note that we don't
* bother clearing the values in the other fragment
* pointers/counters; it wouldn't gain us anything,
* and would waste cycles.
*/
if (m != NULL) {
struct mbuf *m_new = NULL;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("mx%d: no memory for tx list", sc->mx_unit);
return(1);
}
if (m_head->m_pkthdr.len > MHLEN) {
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
printf("mx%d: no memory for tx list",
sc->mx_unit);
return(1);
}
}
m_copydata(m_head, 0, m_head->m_pkthdr.len,
mtod(m_new, caddr_t));
m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
m_freem(m_head);
m_head = m_new;
f = &c->mx_ptr->mx_frag[0];
f->mx_status = 0;
f->mx_data = vtophys(mtod(m_new, caddr_t));
f->mx_ctl = total_len = m_new->m_len;
f->mx_ctl |= MX_TXCTL_TLINK|MX_TXCTL_FIRSTFRAG;
frag = 1;
}
if (total_len < MX_MIN_FRAMELEN) {
f = &c->mx_ptr->mx_frag[frag];
f->mx_ctl = MX_MIN_FRAMELEN - total_len;
f->mx_data = vtophys(&sc->mx_cdata.mx_pad);
f->mx_ctl |= MX_TXCTL_TLINK;
f->mx_status = MX_TXSTAT_OWN;
frag++;
}
c->mx_mbuf = m_head;
c->mx_lastdesc = frag - 1;
MX_TXCTL(c) |= MX_TXCTL_LASTFRAG|MX_TXCTL_FINT;
MX_TXNEXT(c) = vtophys(&c->mx_nextdesc->mx_ptr->mx_frag[0]);
return(0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit lists. We also save a
* copy of the pointers since the transmit list fragment pointers are
* physical addresses.
*/
static void mx_start(ifp)
struct ifnet *ifp;
{
struct mx_softc *sc;
struct mbuf *m_head = NULL;
struct mx_chain *cur_tx = NULL, *start_tx;
sc = ifp->if_softc;
if (!sc->mx_link)
return;
if (ifp->if_flags & IFF_OACTIVE)
return;
/*
* Check for an available queue slot. If there are none,
* punt.
*/
if (sc->mx_cdata.mx_tx_free->mx_mbuf != NULL) {
ifp->if_flags |= IFF_OACTIVE;
return;
}
start_tx = sc->mx_cdata.mx_tx_free;
while(sc->mx_cdata.mx_tx_free->mx_mbuf == NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/* Pick a descriptor off the free list. */
cur_tx = sc->mx_cdata.mx_tx_free;
sc->mx_cdata.mx_tx_free = cur_tx->mx_nextdesc;
/* Pack the data into the descriptor. */
mx_encap(sc, cur_tx, m_head);
if (cur_tx != start_tx)
MX_TXOWN(cur_tx) = MX_TXSTAT_OWN;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp, cur_tx->mx_mbuf);
MX_TXOWN(cur_tx) = MX_TXSTAT_OWN;
CSR_WRITE_4(sc, MX_TXSTART, 0xFFFFFFFF);
}
/*
* If there are no frames queued, bail.
*/
if (cur_tx == NULL)
return;
sc->mx_cdata.mx_tx_tail = cur_tx;
if (sc->mx_cdata.mx_tx_head == NULL)
sc->mx_cdata.mx_tx_head = start_tx;
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
return;
}
static void mx_init(xsc)
void *xsc;
{
struct mx_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
struct mii_data *mii;
int s;
s = splimp();
mii = device_get_softc(sc->mx_miibus);
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
mx_stop(sc);
mx_reset(sc);
/*
* Set cache alignment and burst length.
*/
CSR_WRITE_4(sc, MX_BUSCTL, MX_BUSCTL_MUSTBEONE|MX_BUSCTL_ARBITRATION);
MX_SETBIT(sc, MX_BUSCTL, MX_BURSTLEN_16LONG);
switch(sc->mx_cachesize) {
case 32:
MX_SETBIT(sc, MX_BUSCTL, MX_CACHEALIGN_32LONG);
break;
case 16:
MX_SETBIT(sc, MX_BUSCTL, MX_CACHEALIGN_16LONG);
break;
case 8:
MX_SETBIT(sc, MX_BUSCTL, MX_CACHEALIGN_8LONG);
break;
case 0:
default:
MX_SETBIT(sc, MX_BUSCTL, MX_CACHEALIGN_NONE);
break;
}
MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_NO_RXCRC);
MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_STORENFWD);
MX_CLRBIT(sc, MX_NETCFG, MX_NETCFG_TX_BACKOFF);
/*
* The app notes for the 98713 and 98715A say that
* in order to have the chips operate properly, a magic
* number must be written to CSR16. Macronix does not
* document the meaning of these bits so there's no way
* to know exactly what they mean. The 98713 has a magic
* number all its own; the rest all use a different one.
*/
MX_CLRBIT(sc, MX_MAGICPACKET, 0xFFFF0000);
if (sc->mx_type == MX_TYPE_98713)
MX_SETBIT(sc, MX_MAGICPACKET, MX_MAGIC_98713);
else
MX_SETBIT(sc, MX_MAGICPACKET, MX_MAGIC_98715);
#ifdef notdef
if (sc->mx_type == MX_TYPE_98713) {
MX_CLRBIT(sc, MX_NETCFG, (MX_NETCFG_PCS|
MX_NETCFG_PORTSEL|MX_NETCFG_SCRAMBLER));
MX_SETBIT(sc, MX_NETCFG, (MX_NETCFG_PCS|
MX_NETCFG_PORTSEL|MX_NETCFG_SCRAMBLER));
}
#endif
MX_CLRBIT(sc, MX_NETCFG, MX_NETCFG_TX_THRESH);
/*MX_CLRBIT(sc, MX_NETCFG, MX_NETCFG_SPEEDSEL);*/
if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_10_T)
MX_SETBIT(sc, MX_NETCFG, MX_TXTHRESH_160BYTES);
else
MX_SETBIT(sc, MX_NETCFG, MX_TXTHRESH_72BYTES);
/* Init circular RX list. */
if (mx_list_rx_init(sc) == ENOBUFS) {
printf("mx%d: initialization failed: no "
"memory for rx buffers\n", sc->mx_unit);
mx_stop(sc);
(void)splx(s);
return;
}
/*
* Init tx descriptors.
*/
mx_list_tx_init(sc);
/*
* Load the address of the RX list.
*/
CSR_WRITE_4(sc, MX_RXADDR, vtophys(sc->mx_cdata.mx_rx_head->mx_ptr));
/*
* Load the RX/multicast filter.
*/
mx_setfilt(sc);
mii_mediachg(mii);
/*
* Enable interrupts.
*/
CSR_WRITE_4(sc, MX_IMR, MX_INTRS);
CSR_WRITE_4(sc, MX_ISR, 0xFFFFFFFF);
/* Enable receiver and transmitter. */
MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_TX_ON|MX_NETCFG_RX_ON);
CSR_WRITE_4(sc, MX_RXSTART, 0xFFFFFFFF);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
(void)splx(s);
sc->mx_stat_ch = timeout(mx_tick, sc, hz);
return;
}
/*
* Set media options.
*/
static int mx_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct mx_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->mx_miibus);
mii_mediachg(mii);
sc->mx_link = 0;
return(0);
}
/*
* Report current media status.
*/
static void mx_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct mx_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->mx_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
return;
}
static int mx_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct mx_softc *sc = ifp->if_softc;
struct mii_data *mii;
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
s = splimp();
switch(command) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->mx_if_flags & IFF_PROMISC)) {
MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_RX_PROMISC);
} else if (ifp->if_flags & IFF_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->mx_if_flags & IFF_PROMISC) {
MX_CLRBIT(sc, MX_NETCFG, MX_NETCFG_RX_PROMISC);
} else
mx_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
mx_stop(sc);
}
sc->mx_if_flags = ifp->if_flags;
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
mx_init(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->mx_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
default:
error = EINVAL;
break;
}
(void)splx(s);
return(error);
}
static void mx_watchdog(ifp)
struct ifnet *ifp;
{
struct mx_softc *sc;
sc = ifp->if_softc;
ifp->if_oerrors++;
printf("mx%d: watchdog timeout\n", sc->mx_unit);
mx_stop(sc);
mx_reset(sc);
mx_init(sc);
if (ifp->if_snd.ifq_head != NULL)
mx_start(ifp);
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void mx_stop(sc)
struct mx_softc *sc;
{
register int i;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
untimeout(mx_tick, sc, sc->mx_stat_ch);
MX_CLRBIT(sc, MX_NETCFG, (MX_NETCFG_RX_ON|MX_NETCFG_TX_ON));
CSR_WRITE_4(sc, MX_IMR, 0x00000000);
CSR_WRITE_4(sc, MX_TXADDR, 0x00000000);
CSR_WRITE_4(sc, MX_RXADDR, 0x00000000);
sc->mx_link = 0;
/*
* Free data in the RX lists.
*/
for (i = 0; i < MX_RX_LIST_CNT; i++) {
if (sc->mx_cdata.mx_rx_chain[i].mx_mbuf != NULL) {
m_freem(sc->mx_cdata.mx_rx_chain[i].mx_mbuf);
sc->mx_cdata.mx_rx_chain[i].mx_mbuf = NULL;
}
}
bzero((char *)&sc->mx_ldata->mx_rx_list,
sizeof(sc->mx_ldata->mx_rx_list));
/*
* Free the TX list buffers.
*/
for (i = 0; i < MX_TX_LIST_CNT; i++) {
if (sc->mx_cdata.mx_tx_chain[i].mx_mbuf != NULL) {
m_freem(sc->mx_cdata.mx_tx_chain[i].mx_mbuf);
sc->mx_cdata.mx_tx_chain[i].mx_mbuf = NULL;
}
}
bzero((char *)&sc->mx_ldata->mx_tx_list,
sizeof(sc->mx_ldata->mx_tx_list));
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void mx_shutdown(dev)
device_t dev;
{
struct mx_softc *sc;
sc = device_get_softc(dev);
mx_stop(sc);
return;
}