4152 lines
118 KiB
C
Raw Normal View History

/*
* Copyright (c) 2015, AVAGO Tech. All rights reserved. Author: Marian Choy
* Copyright (c) 2014, LSI Corp. All rights reserved. Author: Marian Choy
* Support: freebsdraid@avagotech.com
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer. 2. Redistributions
* in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution. 3. Neither the name of the
* <ORGANIZATION> nor the names of its contributors may be used to endorse or
* promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation are
* those of the authors and should not be interpreted as representing
* official policies,either expressed or implied, of the FreeBSD Project.
*
* Send feedback to: <megaraidfbsd@avagotech.com> Mail to: AVAGO TECHNOLOGIES 1621
* Barber Lane, Milpitas, CA 95035 ATTN: MegaRaid FreeBSD
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <dev/mrsas/mrsas.h>
#include <dev/mrsas/mrsas_ioctl.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <sys/sysctl.h>
#include <sys/types.h>
#include <sys/kthread.h>
#include <sys/taskqueue.h>
#include <sys/smp.h>
/*
* Function prototypes
*/
static d_open_t mrsas_open;
static d_close_t mrsas_close;
static d_read_t mrsas_read;
static d_write_t mrsas_write;
static d_ioctl_t mrsas_ioctl;
static d_poll_t mrsas_poll;
static struct mrsas_mgmt_info mrsas_mgmt_info;
static struct mrsas_ident *mrsas_find_ident(device_t);
static int mrsas_setup_msix(struct mrsas_softc *sc);
static int mrsas_allocate_msix(struct mrsas_softc *sc);
static void mrsas_shutdown_ctlr(struct mrsas_softc *sc, u_int32_t opcode);
static void mrsas_flush_cache(struct mrsas_softc *sc);
static void mrsas_reset_reply_desc(struct mrsas_softc *sc);
static void mrsas_ocr_thread(void *arg);
static int mrsas_get_map_info(struct mrsas_softc *sc);
static int mrsas_get_ld_map_info(struct mrsas_softc *sc);
static int mrsas_sync_map_info(struct mrsas_softc *sc);
static int mrsas_get_pd_list(struct mrsas_softc *sc);
static int mrsas_get_ld_list(struct mrsas_softc *sc);
static int mrsas_setup_irq(struct mrsas_softc *sc);
static int mrsas_alloc_mem(struct mrsas_softc *sc);
static int mrsas_init_fw(struct mrsas_softc *sc);
static int mrsas_setup_raidmap(struct mrsas_softc *sc);
static int mrsas_complete_cmd(struct mrsas_softc *sc, u_int32_t MSIxIndex);
static int mrsas_clear_intr(struct mrsas_softc *sc);
static int mrsas_get_ctrl_info(struct mrsas_softc *sc);
static void mrsas_update_ext_vd_details(struct mrsas_softc *sc);
static int
mrsas_issue_blocked_abort_cmd(struct mrsas_softc *sc,
struct mrsas_mfi_cmd *cmd_to_abort);
static struct mrsas_softc *
mrsas_get_softc_instance(struct cdev *dev,
u_long cmd, caddr_t arg);
u_int32_t mrsas_read_reg(struct mrsas_softc *sc, int offset);
u_int8_t
mrsas_build_mptmfi_passthru(struct mrsas_softc *sc,
struct mrsas_mfi_cmd *mfi_cmd);
void mrsas_complete_outstanding_ioctls(struct mrsas_softc *sc);
int mrsas_transition_to_ready(struct mrsas_softc *sc, int ocr);
int mrsas_init_adapter(struct mrsas_softc *sc);
int mrsas_alloc_mpt_cmds(struct mrsas_softc *sc);
int mrsas_alloc_ioc_cmd(struct mrsas_softc *sc);
int mrsas_alloc_ctlr_info_cmd(struct mrsas_softc *sc);
int mrsas_ioc_init(struct mrsas_softc *sc);
int mrsas_bus_scan(struct mrsas_softc *sc);
int mrsas_issue_dcmd(struct mrsas_softc *sc, struct mrsas_mfi_cmd *cmd);
int mrsas_issue_polled(struct mrsas_softc *sc, struct mrsas_mfi_cmd *cmd);
int mrsas_reset_ctrl(struct mrsas_softc *sc);
int mrsas_wait_for_outstanding(struct mrsas_softc *sc);
int
mrsas_issue_blocked_cmd(struct mrsas_softc *sc,
struct mrsas_mfi_cmd *cmd);
int
mrsas_alloc_tmp_dcmd(struct mrsas_softc *sc, struct mrsas_tmp_dcmd *tcmd,
int size);
void mrsas_release_mfi_cmd(struct mrsas_mfi_cmd *cmd);
void mrsas_wakeup(struct mrsas_softc *sc, struct mrsas_mfi_cmd *cmd);
void mrsas_complete_aen(struct mrsas_softc *sc, struct mrsas_mfi_cmd *cmd);
void mrsas_complete_abort(struct mrsas_softc *sc, struct mrsas_mfi_cmd *cmd);
void mrsas_disable_intr(struct mrsas_softc *sc);
void mrsas_enable_intr(struct mrsas_softc *sc);
void mrsas_free_ioc_cmd(struct mrsas_softc *sc);
void mrsas_free_mem(struct mrsas_softc *sc);
void mrsas_free_tmp_dcmd(struct mrsas_tmp_dcmd *tmp);
void mrsas_isr(void *arg);
void mrsas_teardown_intr(struct mrsas_softc *sc);
void mrsas_addr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error);
void mrsas_kill_hba(struct mrsas_softc *sc);
void mrsas_aen_handler(struct mrsas_softc *sc);
void
mrsas_write_reg(struct mrsas_softc *sc, int offset,
u_int32_t value);
void
mrsas_fire_cmd(struct mrsas_softc *sc, u_int32_t req_desc_lo,
u_int32_t req_desc_hi);
void mrsas_free_ctlr_info_cmd(struct mrsas_softc *sc);
void
mrsas_complete_mptmfi_passthru(struct mrsas_softc *sc,
struct mrsas_mfi_cmd *cmd, u_int8_t status);
void
mrsas_map_mpt_cmd_status(struct mrsas_mpt_cmd *cmd, u_int8_t status,
u_int8_t extStatus);
struct mrsas_mfi_cmd *mrsas_get_mfi_cmd(struct mrsas_softc *sc);
MRSAS_REQUEST_DESCRIPTOR_UNION *mrsas_build_mpt_cmd
(struct mrsas_softc *sc, struct mrsas_mfi_cmd *cmd);
extern int mrsas_cam_attach(struct mrsas_softc *sc);
extern void mrsas_cam_detach(struct mrsas_softc *sc);
extern void mrsas_cmd_done(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd);
extern void mrsas_free_frame(struct mrsas_softc *sc, struct mrsas_mfi_cmd *cmd);
extern int mrsas_alloc_mfi_cmds(struct mrsas_softc *sc);
extern void mrsas_release_mpt_cmd(struct mrsas_mpt_cmd *cmd);
extern struct mrsas_mpt_cmd *mrsas_get_mpt_cmd(struct mrsas_softc *sc);
extern int mrsas_passthru(struct mrsas_softc *sc, void *arg, u_long ioctlCmd);
extern uint8_t MR_ValidateMapInfo(struct mrsas_softc *sc);
extern u_int16_t MR_GetLDTgtId(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map);
extern MR_LD_RAID *MR_LdRaidGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map);
extern void mrsas_xpt_freeze(struct mrsas_softc *sc);
extern void mrsas_xpt_release(struct mrsas_softc *sc);
extern MRSAS_REQUEST_DESCRIPTOR_UNION *
mrsas_get_request_desc(struct mrsas_softc *sc,
u_int16_t index);
extern int mrsas_bus_scan_sim(struct mrsas_softc *sc, struct cam_sim *sim);
static int mrsas_alloc_evt_log_info_cmd(struct mrsas_softc *sc);
static void mrsas_free_evt_log_info_cmd(struct mrsas_softc *sc);
SYSCTL_NODE(_hw, OID_AUTO, mrsas, CTLFLAG_RD, 0, "MRSAS Driver Parameters");
/*
* PCI device struct and table
*
*/
typedef struct mrsas_ident {
uint16_t vendor;
uint16_t device;
uint16_t subvendor;
uint16_t subdevice;
const char *desc;
} MRSAS_CTLR_ID;
MRSAS_CTLR_ID device_table[] = {
{0x1000, MRSAS_TBOLT, 0xffff, 0xffff, "AVAGO Thunderbolt SAS Controller"},
{0x1000, MRSAS_INVADER, 0xffff, 0xffff, "AVAGO Invader SAS Controller"},
{0x1000, MRSAS_FURY, 0xffff, 0xffff, "AVAGO Fury SAS Controller"},
{0, 0, 0, 0, NULL}
};
/*
* Character device entry points
*
*/
static struct cdevsw mrsas_cdevsw = {
.d_version = D_VERSION,
.d_open = mrsas_open,
.d_close = mrsas_close,
.d_read = mrsas_read,
.d_write = mrsas_write,
.d_ioctl = mrsas_ioctl,
.d_poll = mrsas_poll,
.d_name = "mrsas",
};
MALLOC_DEFINE(M_MRSAS, "mrsasbuf", "Buffers for the MRSAS driver");
/*
* In the cdevsw routines, we find our softc by using the si_drv1 member of
* struct cdev. We set this variable to point to our softc in our attach
* routine when we create the /dev entry.
*/
int
mrsas_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
struct mrsas_softc *sc;
sc = dev->si_drv1;
return (0);
}
int
mrsas_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
struct mrsas_softc *sc;
sc = dev->si_drv1;
return (0);
}
int
mrsas_read(struct cdev *dev, struct uio *uio, int ioflag)
{
struct mrsas_softc *sc;
sc = dev->si_drv1;
return (0);
}
int
mrsas_write(struct cdev *dev, struct uio *uio, int ioflag)
{
struct mrsas_softc *sc;
sc = dev->si_drv1;
return (0);
}
/*
* Register Read/Write Functions
*
*/
void
mrsas_write_reg(struct mrsas_softc *sc, int offset,
u_int32_t value)
{
bus_space_tag_t bus_tag = sc->bus_tag;
bus_space_handle_t bus_handle = sc->bus_handle;
bus_space_write_4(bus_tag, bus_handle, offset, value);
}
u_int32_t
mrsas_read_reg(struct mrsas_softc *sc, int offset)
{
bus_space_tag_t bus_tag = sc->bus_tag;
bus_space_handle_t bus_handle = sc->bus_handle;
return ((u_int32_t)bus_space_read_4(bus_tag, bus_handle, offset));
}
/*
* Interrupt Disable/Enable/Clear Functions
*
*/
void
mrsas_disable_intr(struct mrsas_softc *sc)
{
u_int32_t mask = 0xFFFFFFFF;
u_int32_t status;
sc->mask_interrupts = 1;
mrsas_write_reg(sc, offsetof(mrsas_reg_set, outbound_intr_mask), mask);
/* Dummy read to force pci flush */
status = mrsas_read_reg(sc, offsetof(mrsas_reg_set, outbound_intr_mask));
}
void
mrsas_enable_intr(struct mrsas_softc *sc)
{
u_int32_t mask = MFI_FUSION_ENABLE_INTERRUPT_MASK;
u_int32_t status;
sc->mask_interrupts = 0;
mrsas_write_reg(sc, offsetof(mrsas_reg_set, outbound_intr_status), ~0);
status = mrsas_read_reg(sc, offsetof(mrsas_reg_set, outbound_intr_status));
mrsas_write_reg(sc, offsetof(mrsas_reg_set, outbound_intr_mask), ~mask);
status = mrsas_read_reg(sc, offsetof(mrsas_reg_set, outbound_intr_mask));
}
static int
mrsas_clear_intr(struct mrsas_softc *sc)
{
u_int32_t status, fw_status, fw_state;
/* Read received interrupt */
status = mrsas_read_reg(sc, offsetof(mrsas_reg_set, outbound_intr_status));
/*
* If FW state change interrupt is received, write to it again to
* clear
*/
if (status & MRSAS_FW_STATE_CHNG_INTERRUPT) {
fw_status = mrsas_read_reg(sc, offsetof(mrsas_reg_set,
outbound_scratch_pad));
fw_state = fw_status & MFI_STATE_MASK;
if (fw_state == MFI_STATE_FAULT) {
device_printf(sc->mrsas_dev, "FW is in FAULT state!\n");
if (sc->ocr_thread_active)
wakeup(&sc->ocr_chan);
}
mrsas_write_reg(sc, offsetof(mrsas_reg_set, outbound_intr_status), status);
mrsas_read_reg(sc, offsetof(mrsas_reg_set, outbound_intr_status));
return (1);
}
/* Not our interrupt, so just return */
if (!(status & MFI_FUSION_ENABLE_INTERRUPT_MASK))
return (0);
/* We got a reply interrupt */
return (1);
}
/*
* PCI Support Functions
*
*/
static struct mrsas_ident *
mrsas_find_ident(device_t dev)
{
struct mrsas_ident *pci_device;
for (pci_device = device_table; pci_device->vendor != 0; pci_device++) {
if ((pci_device->vendor == pci_get_vendor(dev)) &&
(pci_device->device == pci_get_device(dev)) &&
((pci_device->subvendor == pci_get_subvendor(dev)) ||
(pci_device->subvendor == 0xffff)) &&
((pci_device->subdevice == pci_get_subdevice(dev)) ||
(pci_device->subdevice == 0xffff)))
return (pci_device);
}
return (NULL);
}
static int
mrsas_probe(device_t dev)
{
static u_int8_t first_ctrl = 1;
struct mrsas_ident *id;
if ((id = mrsas_find_ident(dev)) != NULL) {
if (first_ctrl) {
printf("AVAGO MegaRAID SAS FreeBSD mrsas driver version: %s\n",
MRSAS_VERSION);
first_ctrl = 0;
}
device_set_desc(dev, id->desc);
/* between BUS_PROBE_DEFAULT and BUS_PROBE_LOW_PRIORITY */
return (-30);
}
return (ENXIO);
}
/*
* mrsas_setup_sysctl: setup sysctl values for mrsas
* input: Adapter instance soft state
*
* Setup sysctl entries for mrsas driver.
*/
static void
mrsas_setup_sysctl(struct mrsas_softc *sc)
{
struct sysctl_ctx_list *sysctl_ctx = NULL;
struct sysctl_oid *sysctl_tree = NULL;
char tmpstr[80], tmpstr2[80];
/*
* Setup the sysctl variable so the user can change the debug level
* on the fly.
*/
snprintf(tmpstr, sizeof(tmpstr), "MRSAS controller %d",
device_get_unit(sc->mrsas_dev));
snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mrsas_dev));
sysctl_ctx = device_get_sysctl_ctx(sc->mrsas_dev);
if (sysctl_ctx != NULL)
sysctl_tree = device_get_sysctl_tree(sc->mrsas_dev);
if (sysctl_tree == NULL) {
sysctl_ctx_init(&sc->sysctl_ctx);
sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
SYSCTL_STATIC_CHILDREN(_hw_mrsas), OID_AUTO, tmpstr2,
CTLFLAG_RD, 0, tmpstr);
if (sc->sysctl_tree == NULL)
return;
sysctl_ctx = &sc->sysctl_ctx;
sysctl_tree = sc->sysctl_tree;
}
SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
OID_AUTO, "disable_ocr", CTLFLAG_RW, &sc->disableOnlineCtrlReset, 0,
"Disable the use of OCR");
SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
OID_AUTO, "driver_version", CTLFLAG_RD, MRSAS_VERSION,
strlen(MRSAS_VERSION), "driver version");
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
OID_AUTO, "reset_count", CTLFLAG_RD,
&sc->reset_count, 0, "number of ocr from start of the day");
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
OID_AUTO, "fw_outstanding", CTLFLAG_RD,
&sc->fw_outstanding.val_rdonly, 0, "FW outstanding commands");
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
&sc->io_cmds_highwater, 0, "Max FW outstanding commands");
SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
OID_AUTO, "mrsas_debug", CTLFLAG_RW, &sc->mrsas_debug, 0,
"Driver debug level");
SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
OID_AUTO, "mrsas_io_timeout", CTLFLAG_RW, &sc->mrsas_io_timeout,
0, "Driver IO timeout value in mili-second.");
SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
OID_AUTO, "mrsas_fw_fault_check_delay", CTLFLAG_RW,
&sc->mrsas_fw_fault_check_delay,
0, "FW fault check thread delay in seconds. <default is 1 sec>");
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
OID_AUTO, "reset_in_progress", CTLFLAG_RD,
&sc->reset_in_progress, 0, "ocr in progress status");
}
/*
* mrsas_get_tunables: get tunable parameters.
* input: Adapter instance soft state
*
* Get tunable parameters. This will help to debug driver at boot time.
*/
static void
mrsas_get_tunables(struct mrsas_softc *sc)
{
char tmpstr[80];
/* XXX default to some debugging for now */
sc->mrsas_debug = MRSAS_FAULT;
sc->mrsas_io_timeout = MRSAS_IO_TIMEOUT;
sc->mrsas_fw_fault_check_delay = 1;
sc->reset_count = 0;
sc->reset_in_progress = 0;
/*
* Grab the global variables.
*/
TUNABLE_INT_FETCH("hw.mrsas.debug_level", &sc->mrsas_debug);
/*
* Grab the global variables.
*/
TUNABLE_INT_FETCH("hw.mrsas.lb_pending_cmds", &sc->lb_pending_cmds);
/* Grab the unit-instance variables */
snprintf(tmpstr, sizeof(tmpstr), "dev.mrsas.%d.debug_level",
device_get_unit(sc->mrsas_dev));
TUNABLE_INT_FETCH(tmpstr, &sc->mrsas_debug);
}
/*
* mrsas_alloc_evt_log_info cmd: Allocates memory to get event log information.
* Used to get sequence number at driver load time.
* input: Adapter soft state
*
* Allocates DMAable memory for the event log info internal command.
*/
int
mrsas_alloc_evt_log_info_cmd(struct mrsas_softc *sc)
{
int el_info_size;
/* Allocate get event log info command */
el_info_size = sizeof(struct mrsas_evt_log_info);
if (bus_dma_tag_create(sc->mrsas_parent_tag,
1, 0,
BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR,
NULL, NULL,
el_info_size,
1,
el_info_size,
BUS_DMA_ALLOCNOW,
NULL, NULL,
&sc->el_info_tag)) {
device_printf(sc->mrsas_dev, "Cannot allocate event log info tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->el_info_tag, (void **)&sc->el_info_mem,
BUS_DMA_NOWAIT, &sc->el_info_dmamap)) {
device_printf(sc->mrsas_dev, "Cannot allocate event log info cmd mem\n");
return (ENOMEM);
}
if (bus_dmamap_load(sc->el_info_tag, sc->el_info_dmamap,
sc->el_info_mem, el_info_size, mrsas_addr_cb,
&sc->el_info_phys_addr, BUS_DMA_NOWAIT)) {
device_printf(sc->mrsas_dev, "Cannot load event log info cmd mem\n");
return (ENOMEM);
}
memset(sc->el_info_mem, 0, el_info_size);
return (0);
}
/*
* mrsas_free_evt_info_cmd: Free memory for Event log info command
* input: Adapter soft state
*
* Deallocates memory for the event log info internal command.
*/
void
mrsas_free_evt_log_info_cmd(struct mrsas_softc *sc)
{
if (sc->el_info_phys_addr)
bus_dmamap_unload(sc->el_info_tag, sc->el_info_dmamap);
if (sc->el_info_mem != NULL)
bus_dmamem_free(sc->el_info_tag, sc->el_info_mem, sc->el_info_dmamap);
if (sc->el_info_tag != NULL)
bus_dma_tag_destroy(sc->el_info_tag);
}
/*
* mrsas_get_seq_num: Get latest event sequence number
* @sc: Adapter soft state
* @eli: Firmware event log sequence number information.
*
* Firmware maintains a log of all events in a non-volatile area.
* Driver get the sequence number using DCMD
* "MR_DCMD_CTRL_EVENT_GET_INFO" at driver load time.
*/
static int
mrsas_get_seq_num(struct mrsas_softc *sc,
struct mrsas_evt_log_info *eli)
{
struct mrsas_mfi_cmd *cmd;
struct mrsas_dcmd_frame *dcmd;
cmd = mrsas_get_mfi_cmd(sc);
if (!cmd) {
device_printf(sc->mrsas_dev, "Failed to get a free cmd\n");
return -ENOMEM;
}
dcmd = &cmd->frame->dcmd;
if (mrsas_alloc_evt_log_info_cmd(sc) != SUCCESS) {
device_printf(sc->mrsas_dev, "Cannot allocate evt log info cmd\n");
mrsas_release_mfi_cmd(cmd);
return -ENOMEM;
}
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0x0;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_READ;
dcmd->timeout = 0;
dcmd->pad_0 = 0;
dcmd->data_xfer_len = sizeof(struct mrsas_evt_log_info);
dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
dcmd->sgl.sge32[0].phys_addr = sc->el_info_phys_addr;
dcmd->sgl.sge32[0].length = sizeof(struct mrsas_evt_log_info);
mrsas_issue_blocked_cmd(sc, cmd);
/*
* Copy the data back into callers buffer
*/
memcpy(eli, sc->el_info_mem, sizeof(struct mrsas_evt_log_info));
mrsas_free_evt_log_info_cmd(sc);
mrsas_release_mfi_cmd(cmd);
return 0;
}
/*
* mrsas_register_aen: Register for asynchronous event notification
* @sc: Adapter soft state
* @seq_num: Starting sequence number
* @class_locale: Class of the event
*
* This function subscribes for events beyond the @seq_num
* and type @class_locale.
*
*/
static int
mrsas_register_aen(struct mrsas_softc *sc, u_int32_t seq_num,
u_int32_t class_locale_word)
{
int ret_val;
struct mrsas_mfi_cmd *cmd;
struct mrsas_dcmd_frame *dcmd;
union mrsas_evt_class_locale curr_aen;
union mrsas_evt_class_locale prev_aen;
/*
* If there an AEN pending already (aen_cmd), check if the
* class_locale of that pending AEN is inclusive of the new AEN
* request we currently have. If it is, then we don't have to do
* anything. In other words, whichever events the current AEN request
* is subscribing to, have already been subscribed to. If the old_cmd
* is _not_ inclusive, then we have to abort that command, form a
* class_locale that is superset of both old and current and re-issue
* to the FW
*/
curr_aen.word = class_locale_word;
if (sc->aen_cmd) {
prev_aen.word = sc->aen_cmd->frame->dcmd.mbox.w[1];
/*
* A class whose enum value is smaller is inclusive of all
* higher values. If a PROGRESS (= -1) was previously
* registered, then a new registration requests for higher
* classes need not be sent to FW. They are automatically
* included. Locale numbers don't have such hierarchy. They
* are bitmap values
*/
if ((prev_aen.members.class <= curr_aen.members.class) &&
!((prev_aen.members.locale & curr_aen.members.locale) ^
curr_aen.members.locale)) {
/*
* Previously issued event registration includes
* current request. Nothing to do.
*/
return 0;
} else {
curr_aen.members.locale |= prev_aen.members.locale;
if (prev_aen.members.class < curr_aen.members.class)
curr_aen.members.class = prev_aen.members.class;
sc->aen_cmd->abort_aen = 1;
ret_val = mrsas_issue_blocked_abort_cmd(sc,
sc->aen_cmd);
if (ret_val) {
printf("mrsas: Failed to abort "
"previous AEN command\n");
return ret_val;
}
}
}
cmd = mrsas_get_mfi_cmd(sc);
if (!cmd)
return -ENOMEM;
dcmd = &cmd->frame->dcmd;
memset(sc->evt_detail_mem, 0, sizeof(struct mrsas_evt_detail));
/*
* Prepare DCMD for aen registration
*/
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0x0;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_READ;
dcmd->timeout = 0;
dcmd->pad_0 = 0;
dcmd->data_xfer_len = sizeof(struct mrsas_evt_detail);
dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
dcmd->mbox.w[0] = seq_num;
sc->last_seq_num = seq_num;
dcmd->mbox.w[1] = curr_aen.word;
dcmd->sgl.sge32[0].phys_addr = (u_int32_t)sc->evt_detail_phys_addr;
dcmd->sgl.sge32[0].length = sizeof(struct mrsas_evt_detail);
if (sc->aen_cmd != NULL) {
mrsas_release_mfi_cmd(cmd);
return 0;
}
/*
* Store reference to the cmd used to register for AEN. When an
* application wants us to register for AEN, we have to abort this
* cmd and re-register with a new EVENT LOCALE supplied by that app
*/
sc->aen_cmd = cmd;
/*
* Issue the aen registration frame
*/
if (mrsas_issue_dcmd(sc, cmd)) {
device_printf(sc->mrsas_dev, "Cannot issue AEN DCMD command.\n");
return (1);
}
return 0;
}
/*
* mrsas_start_aen: Subscribes to AEN during driver load time
* @instance: Adapter soft state
*/
static int
mrsas_start_aen(struct mrsas_softc *sc)
{
struct mrsas_evt_log_info eli;
union mrsas_evt_class_locale class_locale;
/* Get the latest sequence number from FW */
memset(&eli, 0, sizeof(eli));
if (mrsas_get_seq_num(sc, &eli))
return -1;
/* Register AEN with FW for latest sequence number plus 1 */
class_locale.members.reserved = 0;
class_locale.members.locale = MR_EVT_LOCALE_ALL;
class_locale.members.class = MR_EVT_CLASS_DEBUG;
return mrsas_register_aen(sc, eli.newest_seq_num + 1,
class_locale.word);
}
/*
* mrsas_setup_msix: Allocate MSI-x vectors
* @sc: adapter soft state
*/
static int
mrsas_setup_msix(struct mrsas_softc *sc)
{
int i;
for (i = 0; i < sc->msix_vectors; i++) {
sc->irq_context[i].sc = sc;
sc->irq_context[i].MSIxIndex = i;
sc->irq_id[i] = i + 1;
sc->mrsas_irq[i] = bus_alloc_resource_any
(sc->mrsas_dev, SYS_RES_IRQ, &sc->irq_id[i]
,RF_ACTIVE);
if (sc->mrsas_irq[i] == NULL) {
device_printf(sc->mrsas_dev, "Can't allocate MSI-x\n");
goto irq_alloc_failed;
}
if (bus_setup_intr(sc->mrsas_dev,
sc->mrsas_irq[i],
INTR_MPSAFE | INTR_TYPE_CAM,
NULL, mrsas_isr, &sc->irq_context[i],
&sc->intr_handle[i])) {
device_printf(sc->mrsas_dev,
"Cannot set up MSI-x interrupt handler\n");
goto irq_alloc_failed;
}
}
return SUCCESS;
irq_alloc_failed:
mrsas_teardown_intr(sc);
return (FAIL);
}
/*
* mrsas_allocate_msix: Setup MSI-x vectors
* @sc: adapter soft state
*/
static int
mrsas_allocate_msix(struct mrsas_softc *sc)
{
if (pci_alloc_msix(sc->mrsas_dev, &sc->msix_vectors) == 0) {
device_printf(sc->mrsas_dev, "Using MSI-X with %d number"
" of vectors\n", sc->msix_vectors);
} else {
device_printf(sc->mrsas_dev, "MSI-x setup failed\n");
goto irq_alloc_failed;
}
return SUCCESS;
irq_alloc_failed:
mrsas_teardown_intr(sc);
return (FAIL);
}
/*
* mrsas_attach: PCI entry point
* input: pointer to device struct
*
* Performs setup of PCI and registers, initializes mutexes and linked lists,
* registers interrupts and CAM, and initializes the adapter/controller to
* its proper state.
*/
static int
mrsas_attach(device_t dev)
{
struct mrsas_softc *sc = device_get_softc(dev);
uint32_t cmd, bar, error;
struct cdev *linux_dev;
/* Look up our softc and initialize its fields. */
sc->mrsas_dev = dev;
sc->device_id = pci_get_device(dev);
mrsas_get_tunables(sc);
/*
* Set up PCI and registers
*/
cmd = pci_read_config(dev, PCIR_COMMAND, 2);
if ((cmd & PCIM_CMD_PORTEN) == 0) {
return (ENXIO);
}
/* Force the busmaster enable bit on. */
cmd |= PCIM_CMD_BUSMASTEREN;
pci_write_config(dev, PCIR_COMMAND, cmd, 2);
bar = pci_read_config(dev, MRSAS_PCI_BAR1, 4);
sc->reg_res_id = MRSAS_PCI_BAR1;/* BAR1 offset */
if ((sc->reg_res = bus_alloc_resource(dev, SYS_RES_MEMORY,
&(sc->reg_res_id), 0, ~0, 1, RF_ACTIVE))
== NULL) {
device_printf(dev, "Cannot allocate PCI registers\n");
goto attach_fail;
}
sc->bus_tag = rman_get_bustag(sc->reg_res);
sc->bus_handle = rman_get_bushandle(sc->reg_res);
/* Intialize mutexes */
mtx_init(&sc->sim_lock, "mrsas_sim_lock", NULL, MTX_DEF);
mtx_init(&sc->pci_lock, "mrsas_pci_lock", NULL, MTX_DEF);
mtx_init(&sc->io_lock, "mrsas_io_lock", NULL, MTX_DEF);
mtx_init(&sc->aen_lock, "mrsas_aen_lock", NULL, MTX_DEF);
mtx_init(&sc->ioctl_lock, "mrsas_ioctl_lock", NULL, MTX_SPIN);
mtx_init(&sc->mpt_cmd_pool_lock, "mrsas_mpt_cmd_pool_lock", NULL, MTX_DEF);
mtx_init(&sc->mfi_cmd_pool_lock, "mrsas_mfi_cmd_pool_lock", NULL, MTX_DEF);
mtx_init(&sc->raidmap_lock, "mrsas_raidmap_lock", NULL, MTX_DEF);
/*
* Intialize a counting Semaphore to take care no. of concurrent
* IOCTLs
*/
sema_init(&sc->ioctl_count_sema, MRSAS_MAX_MFI_CMDS - 5, IOCTL_SEMA_DESCRIPTION);
/* Intialize linked list */
TAILQ_INIT(&sc->mrsas_mpt_cmd_list_head);
TAILQ_INIT(&sc->mrsas_mfi_cmd_list_head);
mrsas_atomic_set(&sc->fw_outstanding, 0);
sc->io_cmds_highwater = 0;
/* Create a /dev entry for this device. */
sc->mrsas_cdev = make_dev(&mrsas_cdevsw, device_get_unit(dev), UID_ROOT,
GID_OPERATOR, (S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP), "mrsas%u",
device_get_unit(dev));
if (device_get_unit(dev) == 0)
make_dev_alias_p(MAKEDEV_CHECKNAME, &linux_dev, sc->mrsas_cdev,
"megaraid_sas_ioctl_node");
if (sc->mrsas_cdev)
sc->mrsas_cdev->si_drv1 = sc;
sc->adprecovery = MRSAS_HBA_OPERATIONAL;
sc->UnevenSpanSupport = 0;
sc->msix_enable = 0;
/* Initialize Firmware */
if (mrsas_init_fw(sc) != SUCCESS) {
goto attach_fail_fw;
}
/* Register SCSI mid-layer */
if ((mrsas_cam_attach(sc) != SUCCESS)) {
goto attach_fail_cam;
}
/* Register IRQs */
if (mrsas_setup_irq(sc) != SUCCESS) {
goto attach_fail_irq;
}
/* Enable Interrupts */
mrsas_enable_intr(sc);
error = mrsas_kproc_create(mrsas_ocr_thread, sc,
&sc->ocr_thread, 0, 0, "mrsas_ocr%d",
device_get_unit(sc->mrsas_dev));
if (error) {
printf("Error %d starting rescan thread\n", error);
goto attach_fail_irq;
}
mrsas_setup_sysctl(sc);
/* Initiate AEN (Asynchronous Event Notification) */
if (mrsas_start_aen(sc)) {
printf("Error: start aen failed\n");
goto fail_start_aen;
}
/*
* Add this controller to mrsas_mgmt_info structure so that it can be
* exported to management applications
*/
if (device_get_unit(dev) == 0)
memset(&mrsas_mgmt_info, 0, sizeof(mrsas_mgmt_info));
mrsas_mgmt_info.count++;
mrsas_mgmt_info.sc_ptr[mrsas_mgmt_info.max_index] = sc;
mrsas_mgmt_info.max_index++;
return (0);
fail_start_aen:
attach_fail_irq:
mrsas_teardown_intr(sc);
attach_fail_cam:
mrsas_cam_detach(sc);
attach_fail_fw:
/* if MSIX vector is allocated and FW Init FAILED then release MSIX */
if (sc->msix_enable == 1)
pci_release_msi(sc->mrsas_dev);
mrsas_free_mem(sc);
mtx_destroy(&sc->sim_lock);
mtx_destroy(&sc->aen_lock);
mtx_destroy(&sc->pci_lock);
mtx_destroy(&sc->io_lock);
mtx_destroy(&sc->ioctl_lock);
mtx_destroy(&sc->mpt_cmd_pool_lock);
mtx_destroy(&sc->mfi_cmd_pool_lock);
mtx_destroy(&sc->raidmap_lock);
/* Destroy the counting semaphore created for Ioctl */
sema_destroy(&sc->ioctl_count_sema);
attach_fail:
destroy_dev(sc->mrsas_cdev);
if (sc->reg_res) {
bus_release_resource(sc->mrsas_dev, SYS_RES_MEMORY,
sc->reg_res_id, sc->reg_res);
}
return (ENXIO);
}
/*
* mrsas_detach: De-allocates and teardown resources
* input: pointer to device struct
*
* This function is the entry point for device disconnect and detach.
* It performs memory de-allocations, shutdown of the controller and various
* teardown and destroy resource functions.
*/
static int
mrsas_detach(device_t dev)
{
struct mrsas_softc *sc;
int i = 0;
sc = device_get_softc(dev);
sc->remove_in_progress = 1;
/* Destroy the character device so no other IOCTL will be handled */
destroy_dev(sc->mrsas_cdev);
/*
* Take the instance off the instance array. Note that we will not
* decrement the max_index. We let this array be sparse array
*/
for (i = 0; i < mrsas_mgmt_info.max_index; i++) {
if (mrsas_mgmt_info.sc_ptr[i] == sc) {
mrsas_mgmt_info.count--;
mrsas_mgmt_info.sc_ptr[i] = NULL;
break;
}
}
if (sc->ocr_thread_active)
wakeup(&sc->ocr_chan);
while (sc->reset_in_progress) {
i++;
if (!(i % MRSAS_RESET_NOTICE_INTERVAL)) {
mrsas_dprint(sc, MRSAS_INFO,
"[%2d]waiting for ocr to be finished\n", i);
}
pause("mr_shutdown", hz);
}
i = 0;
while (sc->ocr_thread_active) {
i++;
if (!(i % MRSAS_RESET_NOTICE_INTERVAL)) {
mrsas_dprint(sc, MRSAS_INFO,
"[%2d]waiting for "
"mrsas_ocr thread to quit ocr %d\n", i,
sc->ocr_thread_active);
}
pause("mr_shutdown", hz);
}
mrsas_flush_cache(sc);
mrsas_shutdown_ctlr(sc, MR_DCMD_CTRL_SHUTDOWN);
mrsas_disable_intr(sc);
mrsas_cam_detach(sc);
mrsas_teardown_intr(sc);
mrsas_free_mem(sc);
mtx_destroy(&sc->sim_lock);
mtx_destroy(&sc->aen_lock);
mtx_destroy(&sc->pci_lock);
mtx_destroy(&sc->io_lock);
mtx_destroy(&sc->ioctl_lock);
mtx_destroy(&sc->mpt_cmd_pool_lock);
mtx_destroy(&sc->mfi_cmd_pool_lock);
mtx_destroy(&sc->raidmap_lock);
/* Wait for all the semaphores to be released */
while (sema_value(&sc->ioctl_count_sema) != (MRSAS_MAX_MFI_CMDS - 5))
pause("mr_shutdown", hz);
/* Destroy the counting semaphore created for Ioctl */
sema_destroy(&sc->ioctl_count_sema);
if (sc->reg_res) {
bus_release_resource(sc->mrsas_dev,
SYS_RES_MEMORY, sc->reg_res_id, sc->reg_res);
}
if (sc->sysctl_tree != NULL)
sysctl_ctx_free(&sc->sysctl_ctx);
return (0);
}
/*
* mrsas_free_mem: Frees allocated memory
* input: Adapter instance soft state
*
* This function is called from mrsas_detach() to free previously allocated
* memory.
*/
void
mrsas_free_mem(struct mrsas_softc *sc)
{
int i;
u_int32_t max_cmd;
struct mrsas_mfi_cmd *mfi_cmd;
struct mrsas_mpt_cmd *mpt_cmd;
/*
* Free RAID map memory
*/
for (i = 0; i < 2; i++) {
if (sc->raidmap_phys_addr[i])
bus_dmamap_unload(sc->raidmap_tag[i], sc->raidmap_dmamap[i]);
if (sc->raidmap_mem[i] != NULL)
bus_dmamem_free(sc->raidmap_tag[i], sc->raidmap_mem[i], sc->raidmap_dmamap[i]);
if (sc->raidmap_tag[i] != NULL)
bus_dma_tag_destroy(sc->raidmap_tag[i]);
if (sc->ld_drv_map[i] != NULL)
free(sc->ld_drv_map[i], M_MRSAS);
}
/*
* Free version buffer memroy
*/
if (sc->verbuf_phys_addr)
bus_dmamap_unload(sc->verbuf_tag, sc->verbuf_dmamap);
if (sc->verbuf_mem != NULL)
bus_dmamem_free(sc->verbuf_tag, sc->verbuf_mem, sc->verbuf_dmamap);
if (sc->verbuf_tag != NULL)
bus_dma_tag_destroy(sc->verbuf_tag);
/*
* Free sense buffer memory
*/
if (sc->sense_phys_addr)
bus_dmamap_unload(sc->sense_tag, sc->sense_dmamap);
if (sc->sense_mem != NULL)
bus_dmamem_free(sc->sense_tag, sc->sense_mem, sc->sense_dmamap);
if (sc->sense_tag != NULL)
bus_dma_tag_destroy(sc->sense_tag);
/*
* Free chain frame memory
*/
if (sc->chain_frame_phys_addr)
bus_dmamap_unload(sc->chain_frame_tag, sc->chain_frame_dmamap);
if (sc->chain_frame_mem != NULL)
bus_dmamem_free(sc->chain_frame_tag, sc->chain_frame_mem, sc->chain_frame_dmamap);
if (sc->chain_frame_tag != NULL)
bus_dma_tag_destroy(sc->chain_frame_tag);
/*
* Free IO Request memory
*/
if (sc->io_request_phys_addr)
bus_dmamap_unload(sc->io_request_tag, sc->io_request_dmamap);
if (sc->io_request_mem != NULL)
bus_dmamem_free(sc->io_request_tag, sc->io_request_mem, sc->io_request_dmamap);
if (sc->io_request_tag != NULL)
bus_dma_tag_destroy(sc->io_request_tag);
/*
* Free Reply Descriptor memory
*/
if (sc->reply_desc_phys_addr)
bus_dmamap_unload(sc->reply_desc_tag, sc->reply_desc_dmamap);
if (sc->reply_desc_mem != NULL)
bus_dmamem_free(sc->reply_desc_tag, sc->reply_desc_mem, sc->reply_desc_dmamap);
if (sc->reply_desc_tag != NULL)
bus_dma_tag_destroy(sc->reply_desc_tag);
/*
* Free event detail memory
*/
if (sc->evt_detail_phys_addr)
bus_dmamap_unload(sc->evt_detail_tag, sc->evt_detail_dmamap);
if (sc->evt_detail_mem != NULL)
bus_dmamem_free(sc->evt_detail_tag, sc->evt_detail_mem, sc->evt_detail_dmamap);
if (sc->evt_detail_tag != NULL)
bus_dma_tag_destroy(sc->evt_detail_tag);
/*
* Free MFI frames
*/
if (sc->mfi_cmd_list) {
for (i = 0; i < MRSAS_MAX_MFI_CMDS; i++) {
mfi_cmd = sc->mfi_cmd_list[i];
mrsas_free_frame(sc, mfi_cmd);
}
}
if (sc->mficmd_frame_tag != NULL)
bus_dma_tag_destroy(sc->mficmd_frame_tag);
/*
* Free MPT internal command list
*/
max_cmd = sc->max_fw_cmds;
if (sc->mpt_cmd_list) {
for (i = 0; i < max_cmd; i++) {
mpt_cmd = sc->mpt_cmd_list[i];
bus_dmamap_destroy(sc->data_tag, mpt_cmd->data_dmamap);
free(sc->mpt_cmd_list[i], M_MRSAS);
}
free(sc->mpt_cmd_list, M_MRSAS);
sc->mpt_cmd_list = NULL;
}
/*
* Free MFI internal command list
*/
if (sc->mfi_cmd_list) {
for (i = 0; i < MRSAS_MAX_MFI_CMDS; i++) {
free(sc->mfi_cmd_list[i], M_MRSAS);
}
free(sc->mfi_cmd_list, M_MRSAS);
sc->mfi_cmd_list = NULL;
}
/*
* Free request descriptor memory
*/
free(sc->req_desc, M_MRSAS);
sc->req_desc = NULL;
/*
* Destroy parent tag
*/
if (sc->mrsas_parent_tag != NULL)
bus_dma_tag_destroy(sc->mrsas_parent_tag);
/*
* Free ctrl_info memory
*/
if (sc->ctrl_info != NULL)
free(sc->ctrl_info, M_MRSAS);
}
/*
* mrsas_teardown_intr: Teardown interrupt
* input: Adapter instance soft state
*
* This function is called from mrsas_detach() to teardown and release bus
* interrupt resourse.
*/
void
mrsas_teardown_intr(struct mrsas_softc *sc)
{
int i;
if (!sc->msix_enable) {
if (sc->intr_handle[0])
bus_teardown_intr(sc->mrsas_dev, sc->mrsas_irq[0], sc->intr_handle[0]);
if (sc->mrsas_irq[0] != NULL)
bus_release_resource(sc->mrsas_dev, SYS_RES_IRQ,
sc->irq_id[0], sc->mrsas_irq[0]);
sc->intr_handle[0] = NULL;
} else {
for (i = 0; i < sc->msix_vectors; i++) {
if (sc->intr_handle[i])
bus_teardown_intr(sc->mrsas_dev, sc->mrsas_irq[i],
sc->intr_handle[i]);
if (sc->mrsas_irq[i] != NULL)
bus_release_resource(sc->mrsas_dev, SYS_RES_IRQ,
sc->irq_id[i], sc->mrsas_irq[i]);
sc->intr_handle[i] = NULL;
}
pci_release_msi(sc->mrsas_dev);
}
}
/*
* mrsas_suspend: Suspend entry point
* input: Device struct pointer
*
* This function is the entry point for system suspend from the OS.
*/
static int
mrsas_suspend(device_t dev)
{
struct mrsas_softc *sc;
sc = device_get_softc(dev);
return (0);
}
/*
* mrsas_resume: Resume entry point
* input: Device struct pointer
*
* This function is the entry point for system resume from the OS.
*/
static int
mrsas_resume(device_t dev)
{
struct mrsas_softc *sc;
sc = device_get_softc(dev);
return (0);
}
/**
* mrsas_get_softc_instance: Find softc instance based on cmd type
*
* This function will return softc instance based on cmd type.
* In some case, application fire ioctl on required management instance and
* do not provide host_no. Use cdev->si_drv1 to get softc instance for those
* case, else get the softc instance from host_no provided by application in
* user data.
*/
static struct mrsas_softc *
mrsas_get_softc_instance(struct cdev *dev, u_long cmd, caddr_t arg)
{
struct mrsas_softc *sc = NULL;
struct mrsas_iocpacket *user_ioc = (struct mrsas_iocpacket *)arg;
if (cmd == MRSAS_IOC_GET_PCI_INFO) {
sc = dev->si_drv1;
} else {
/*
* get the Host number & the softc from data sent by the
* Application
*/
sc = mrsas_mgmt_info.sc_ptr[user_ioc->host_no];
if ((user_ioc->host_no >= mrsas_mgmt_info.max_index) || (sc == NULL)) {
if (sc == NULL)
mrsas_dprint(sc, MRSAS_FAULT,
"There is no Controller number %d .\n", user_ioc->host_no);
else
mrsas_dprint(sc, MRSAS_FAULT,
"Invalid Controller number %d .\n", user_ioc->host_no);
}
}
return sc;
}
/*
* mrsas_ioctl: IOCtl commands entry point.
*
* This function is the entry point for IOCtls from the OS. It calls the
* appropriate function for processing depending on the command received.
*/
static int
mrsas_ioctl(struct cdev *dev, u_long cmd, caddr_t arg, int flag,
struct thread *td)
{
struct mrsas_softc *sc;
int ret = 0, i = 0;
MRSAS_DRV_PCI_INFORMATION *pciDrvInfo;
sc = mrsas_get_softc_instance(dev, cmd, arg);
if (!sc)
return ENOENT;
if (sc->remove_in_progress) {
mrsas_dprint(sc, MRSAS_INFO,
"Driver remove or shutdown called.\n");
return ENOENT;
}
mtx_lock_spin(&sc->ioctl_lock);
if (!sc->reset_in_progress) {
mtx_unlock_spin(&sc->ioctl_lock);
goto do_ioctl;
}
mtx_unlock_spin(&sc->ioctl_lock);
while (sc->reset_in_progress) {
i++;
if (!(i % MRSAS_RESET_NOTICE_INTERVAL)) {
mrsas_dprint(sc, MRSAS_INFO,
"[%2d]waiting for "
"OCR to be finished %d\n", i,
sc->ocr_thread_active);
}
pause("mr_ioctl", hz);
}
do_ioctl:
switch (cmd) {
case MRSAS_IOC_FIRMWARE_PASS_THROUGH64:
#ifdef COMPAT_FREEBSD32
case MRSAS_IOC_FIRMWARE_PASS_THROUGH32:
#endif
/*
* Decrement the Ioctl counting Semaphore before getting an
* mfi command
*/
sema_wait(&sc->ioctl_count_sema);
ret = mrsas_passthru(sc, (void *)arg, cmd);
/* Increment the Ioctl counting semaphore value */
sema_post(&sc->ioctl_count_sema);
break;
case MRSAS_IOC_SCAN_BUS:
ret = mrsas_bus_scan(sc);
break;
case MRSAS_IOC_GET_PCI_INFO:
pciDrvInfo = (MRSAS_DRV_PCI_INFORMATION *) arg;
memset(pciDrvInfo, 0, sizeof(MRSAS_DRV_PCI_INFORMATION));
pciDrvInfo->busNumber = pci_get_bus(sc->mrsas_dev);
pciDrvInfo->deviceNumber = pci_get_slot(sc->mrsas_dev);
pciDrvInfo->functionNumber = pci_get_function(sc->mrsas_dev);
pciDrvInfo->domainID = pci_get_domain(sc->mrsas_dev);
mrsas_dprint(sc, MRSAS_INFO, "pci bus no: %d,"
"pci device no: %d, pci function no: %d,"
"pci domain ID: %d\n",
pciDrvInfo->busNumber, pciDrvInfo->deviceNumber,
pciDrvInfo->functionNumber, pciDrvInfo->domainID);
ret = 0;
break;
default:
mrsas_dprint(sc, MRSAS_TRACE, "IOCTL command 0x%lx is not handled\n", cmd);
ret = ENOENT;
}
return (ret);
}
/*
* mrsas_poll: poll entry point for mrsas driver fd
*
* This function is the entry point for poll from the OS. It waits for some AEN
* events to be triggered from the controller and notifies back.
*/
static int
mrsas_poll(struct cdev *dev, int poll_events, struct thread *td)
{
struct mrsas_softc *sc;
int revents = 0;
sc = dev->si_drv1;
if (poll_events & (POLLIN | POLLRDNORM)) {
if (sc->mrsas_aen_triggered) {
revents |= poll_events & (POLLIN | POLLRDNORM);
}
}
if (revents == 0) {
if (poll_events & (POLLIN | POLLRDNORM)) {
mtx_lock(&sc->aen_lock);
sc->mrsas_poll_waiting = 1;
selrecord(td, &sc->mrsas_select);
mtx_unlock(&sc->aen_lock);
}
}
return revents;
}
/*
* mrsas_setup_irq: Set up interrupt
* input: Adapter instance soft state
*
* This function sets up interrupts as a bus resource, with flags indicating
* resource permitting contemporaneous sharing and for resource to activate
* atomically.
*/
static int
mrsas_setup_irq(struct mrsas_softc *sc)
{
if (sc->msix_enable && (mrsas_setup_msix(sc) == SUCCESS))
device_printf(sc->mrsas_dev, "MSI-x interrupts setup success\n");
else {
device_printf(sc->mrsas_dev, "Fall back to legacy interrupt\n");
sc->irq_context[0].sc = sc;
sc->irq_context[0].MSIxIndex = 0;
sc->irq_id[0] = 0;
sc->mrsas_irq[0] = bus_alloc_resource_any(sc->mrsas_dev,
SYS_RES_IRQ, &sc->irq_id[0], RF_SHAREABLE | RF_ACTIVE);
if (sc->mrsas_irq[0] == NULL) {
device_printf(sc->mrsas_dev, "Cannot allocate legcay"
"interrupt\n");
return (FAIL);
}
if (bus_setup_intr(sc->mrsas_dev, sc->mrsas_irq[0],
INTR_MPSAFE | INTR_TYPE_CAM, NULL, mrsas_isr,
&sc->irq_context[0], &sc->intr_handle[0])) {
device_printf(sc->mrsas_dev, "Cannot set up legacy"
"interrupt\n");
return (FAIL);
}
}
return (0);
}
/*
* mrsas_isr: ISR entry point
* input: argument pointer
*
* This function is the interrupt service routine entry point. There are two
* types of interrupts, state change interrupt and response interrupt. If an
* interrupt is not ours, we just return.
*/
void
mrsas_isr(void *arg)
{
struct mrsas_irq_context *irq_context = (struct mrsas_irq_context *)arg;
struct mrsas_softc *sc = irq_context->sc;
int status = 0;
if (sc->mask_interrupts)
return;
if (!sc->msix_vectors) {
status = mrsas_clear_intr(sc);
if (!status)
return;
}
/* If we are resetting, bail */
if (mrsas_test_bit(MRSAS_FUSION_IN_RESET, &sc->reset_flags)) {
printf(" Entered into ISR when OCR is going active. \n");
mrsas_clear_intr(sc);
return;
}
/* Process for reply request and clear response interrupt */
if (mrsas_complete_cmd(sc, irq_context->MSIxIndex) != SUCCESS)
mrsas_clear_intr(sc);
return;
}
/*
* mrsas_complete_cmd: Process reply request
* input: Adapter instance soft state
*
* This function is called from mrsas_isr() to process reply request and clear
* response interrupt. Processing of the reply request entails walking
* through the reply descriptor array for the command request pended from
* Firmware. We look at the Function field to determine the command type and
* perform the appropriate action. Before we return, we clear the response
* interrupt.
*/
static int
mrsas_complete_cmd(struct mrsas_softc *sc, u_int32_t MSIxIndex)
{
Mpi2ReplyDescriptorsUnion_t *desc;
MPI2_SCSI_IO_SUCCESS_REPLY_DESCRIPTOR *reply_desc;
MRSAS_RAID_SCSI_IO_REQUEST *scsi_io_req;
struct mrsas_mpt_cmd *cmd_mpt;
struct mrsas_mfi_cmd *cmd_mfi;
u_int8_t reply_descript_type;
u_int16_t smid, num_completed;
u_int8_t status, extStatus;
union desc_value desc_val;
PLD_LOAD_BALANCE_INFO lbinfo;
u_int32_t device_id;
int threshold_reply_count = 0;
/* If we have a hardware error, not need to continue */
if (sc->adprecovery == MRSAS_HW_CRITICAL_ERROR)
return (DONE);
desc = sc->reply_desc_mem;
desc += ((MSIxIndex * sc->reply_alloc_sz) / sizeof(MPI2_REPLY_DESCRIPTORS_UNION))
+ sc->last_reply_idx[MSIxIndex];
reply_desc = (MPI2_SCSI_IO_SUCCESS_REPLY_DESCRIPTOR *) desc;
desc_val.word = desc->Words;
num_completed = 0;
reply_descript_type = reply_desc->ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
/* Find our reply descriptor for the command and process */
while ((desc_val.u.low != 0xFFFFFFFF) && (desc_val.u.high != 0xFFFFFFFF)) {
smid = reply_desc->SMID;
cmd_mpt = sc->mpt_cmd_list[smid - 1];
scsi_io_req = (MRSAS_RAID_SCSI_IO_REQUEST *) cmd_mpt->io_request;
status = scsi_io_req->RaidContext.status;
extStatus = scsi_io_req->RaidContext.exStatus;
switch (scsi_io_req->Function) {
case MPI2_FUNCTION_SCSI_IO_REQUEST: /* Fast Path IO. */
device_id = cmd_mpt->ccb_ptr->ccb_h.target_id;
lbinfo = &sc->load_balance_info[device_id];
if (cmd_mpt->load_balance == MRSAS_LOAD_BALANCE_FLAG) {
mrsas_atomic_dec(&lbinfo->scsi_pending_cmds[cmd_mpt->pd_r1_lb]);
cmd_mpt->load_balance &= ~MRSAS_LOAD_BALANCE_FLAG;
}
/* Fall thru and complete IO */
case MRSAS_MPI2_FUNCTION_LD_IO_REQUEST:
mrsas_map_mpt_cmd_status(cmd_mpt, status, extStatus);
mrsas_cmd_done(sc, cmd_mpt);
scsi_io_req->RaidContext.status = 0;
scsi_io_req->RaidContext.exStatus = 0;
mrsas_atomic_dec(&sc->fw_outstanding);
break;
case MRSAS_MPI2_FUNCTION_PASSTHRU_IO_REQUEST: /* MFI command */
cmd_mfi = sc->mfi_cmd_list[cmd_mpt->sync_cmd_idx];
mrsas_complete_mptmfi_passthru(sc, cmd_mfi, status);
cmd_mpt->flags = 0;
mrsas_release_mpt_cmd(cmd_mpt);
break;
}
sc->last_reply_idx[MSIxIndex]++;
if (sc->last_reply_idx[MSIxIndex] >= sc->reply_q_depth)
sc->last_reply_idx[MSIxIndex] = 0;
desc->Words = ~((uint64_t)0x00); /* set it back to all
* 0xFFFFFFFFs */
num_completed++;
threshold_reply_count++;
/* Get the next reply descriptor */
if (!sc->last_reply_idx[MSIxIndex]) {
desc = sc->reply_desc_mem;
desc += ((MSIxIndex * sc->reply_alloc_sz) / sizeof(MPI2_REPLY_DESCRIPTORS_UNION));
} else
desc++;
reply_desc = (MPI2_SCSI_IO_SUCCESS_REPLY_DESCRIPTOR *) desc;
desc_val.word = desc->Words;
reply_descript_type = reply_desc->ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
if (reply_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
break;
/*
* Write to reply post index after completing threshold reply
* count and still there are more replies in reply queue
* pending to be completed.
*/
if (threshold_reply_count >= THRESHOLD_REPLY_COUNT) {
if (sc->msix_enable) {
if ((sc->device_id == MRSAS_INVADER) ||
(sc->device_id == MRSAS_FURY))
mrsas_write_reg(sc, sc->msix_reg_offset[MSIxIndex / 8],
((MSIxIndex & 0x7) << 24) |
sc->last_reply_idx[MSIxIndex]);
else
mrsas_write_reg(sc, sc->msix_reg_offset[0], (MSIxIndex << 24) |
sc->last_reply_idx[MSIxIndex]);
} else
mrsas_write_reg(sc, offsetof(mrsas_reg_set,
reply_post_host_index), sc->last_reply_idx[0]);
threshold_reply_count = 0;
}
}
/* No match, just return */
if (num_completed == 0)
return (DONE);
/* Clear response interrupt */
if (sc->msix_enable) {
if ((sc->device_id == MRSAS_INVADER) ||
(sc->device_id == MRSAS_FURY)) {
mrsas_write_reg(sc, sc->msix_reg_offset[MSIxIndex / 8],
((MSIxIndex & 0x7) << 24) |
sc->last_reply_idx[MSIxIndex]);
} else
mrsas_write_reg(sc, sc->msix_reg_offset[0], (MSIxIndex << 24) |
sc->last_reply_idx[MSIxIndex]);
} else
mrsas_write_reg(sc, offsetof(mrsas_reg_set,
reply_post_host_index), sc->last_reply_idx[0]);
return (0);
}
/*
* mrsas_map_mpt_cmd_status: Allocate DMAable memory.
* input: Adapter instance soft state
*
* This function is called from mrsas_complete_cmd(), for LD IO and FastPath IO.
* It checks the command status and maps the appropriate CAM status for the
* CCB.
*/
void
mrsas_map_mpt_cmd_status(struct mrsas_mpt_cmd *cmd, u_int8_t status, u_int8_t extStatus)
{
struct mrsas_softc *sc = cmd->sc;
u_int8_t *sense_data;
switch (status) {
case MFI_STAT_OK:
cmd->ccb_ptr->ccb_h.status = CAM_REQ_CMP;
break;
case MFI_STAT_SCSI_IO_FAILED:
case MFI_STAT_SCSI_DONE_WITH_ERROR:
cmd->ccb_ptr->ccb_h.status = CAM_SCSI_STATUS_ERROR;
sense_data = (u_int8_t *)&cmd->ccb_ptr->csio.sense_data;
if (sense_data) {
/* For now just copy 18 bytes back */
memcpy(sense_data, cmd->sense, 18);
cmd->ccb_ptr->csio.sense_len = 18;
cmd->ccb_ptr->ccb_h.status |= CAM_AUTOSNS_VALID;
}
break;
case MFI_STAT_LD_OFFLINE:
case MFI_STAT_DEVICE_NOT_FOUND:
if (cmd->ccb_ptr->ccb_h.target_lun)
cmd->ccb_ptr->ccb_h.status |= CAM_LUN_INVALID;
else
cmd->ccb_ptr->ccb_h.status |= CAM_DEV_NOT_THERE;
break;
case MFI_STAT_CONFIG_SEQ_MISMATCH:
cmd->ccb_ptr->ccb_h.status |= CAM_REQUEUE_REQ;
break;
default:
device_printf(sc->mrsas_dev, "FW cmd complete status %x\n", status);
cmd->ccb_ptr->ccb_h.status = CAM_REQ_CMP_ERR;
cmd->ccb_ptr->csio.scsi_status = status;
}
return;
}
/*
* mrsas_alloc_mem: Allocate DMAable memory
* input: Adapter instance soft state
*
* This function creates the parent DMA tag and allocates DMAable memory. DMA
* tag describes constraints of DMA mapping. Memory allocated is mapped into
* Kernel virtual address. Callback argument is physical memory address.
*/
static int
mrsas_alloc_mem(struct mrsas_softc *sc)
{
u_int32_t verbuf_size, io_req_size, reply_desc_size, sense_size,
chain_frame_size, evt_detail_size, count;
/*
* Allocate parent DMA tag
*/
if (bus_dma_tag_create(NULL, /* parent */
1, /* alignment */
0, /* boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MRSAS_MAX_IO_SIZE, /* maxsize */
MRSAS_MAX_SGL, /* nsegments */
MRSAS_MAX_IO_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->mrsas_parent_tag /* tag */
)) {
device_printf(sc->mrsas_dev, "Cannot allocate parent DMA tag\n");
return (ENOMEM);
}
/*
* Allocate for version buffer
*/
verbuf_size = MRSAS_MAX_NAME_LENGTH * (sizeof(bus_addr_t));
if (bus_dma_tag_create(sc->mrsas_parent_tag,
1, 0,
BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR,
NULL, NULL,
verbuf_size,
1,
verbuf_size,
BUS_DMA_ALLOCNOW,
NULL, NULL,
&sc->verbuf_tag)) {
device_printf(sc->mrsas_dev, "Cannot allocate verbuf DMA tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->verbuf_tag, (void **)&sc->verbuf_mem,
BUS_DMA_NOWAIT, &sc->verbuf_dmamap)) {
device_printf(sc->mrsas_dev, "Cannot allocate verbuf memory\n");
return (ENOMEM);
}
bzero(sc->verbuf_mem, verbuf_size);
if (bus_dmamap_load(sc->verbuf_tag, sc->verbuf_dmamap, sc->verbuf_mem,
verbuf_size, mrsas_addr_cb, &sc->verbuf_phys_addr,
BUS_DMA_NOWAIT)) {
device_printf(sc->mrsas_dev, "Cannot load verbuf DMA map\n");
return (ENOMEM);
}
/*
* Allocate IO Request Frames
*/
io_req_size = sc->io_frames_alloc_sz;
if (bus_dma_tag_create(sc->mrsas_parent_tag,
16, 0,
BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR,
NULL, NULL,
io_req_size,
1,
io_req_size,
BUS_DMA_ALLOCNOW,
NULL, NULL,
&sc->io_request_tag)) {
device_printf(sc->mrsas_dev, "Cannot create IO request tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->io_request_tag, (void **)&sc->io_request_mem,
BUS_DMA_NOWAIT, &sc->io_request_dmamap)) {
device_printf(sc->mrsas_dev, "Cannot alloc IO request memory\n");
return (ENOMEM);
}
bzero(sc->io_request_mem, io_req_size);
if (bus_dmamap_load(sc->io_request_tag, sc->io_request_dmamap,
sc->io_request_mem, io_req_size, mrsas_addr_cb,
&sc->io_request_phys_addr, BUS_DMA_NOWAIT)) {
device_printf(sc->mrsas_dev, "Cannot load IO request memory\n");
return (ENOMEM);
}
/*
* Allocate Chain Frames
*/
chain_frame_size = sc->chain_frames_alloc_sz;
if (bus_dma_tag_create(sc->mrsas_parent_tag,
4, 0,
BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR,
NULL, NULL,
chain_frame_size,
1,
chain_frame_size,
BUS_DMA_ALLOCNOW,
NULL, NULL,
&sc->chain_frame_tag)) {
device_printf(sc->mrsas_dev, "Cannot create chain frame tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->chain_frame_tag, (void **)&sc->chain_frame_mem,
BUS_DMA_NOWAIT, &sc->chain_frame_dmamap)) {
device_printf(sc->mrsas_dev, "Cannot alloc chain frame memory\n");
return (ENOMEM);
}
bzero(sc->chain_frame_mem, chain_frame_size);
if (bus_dmamap_load(sc->chain_frame_tag, sc->chain_frame_dmamap,
sc->chain_frame_mem, chain_frame_size, mrsas_addr_cb,
&sc->chain_frame_phys_addr, BUS_DMA_NOWAIT)) {
device_printf(sc->mrsas_dev, "Cannot load chain frame memory\n");
return (ENOMEM);
}
count = sc->msix_vectors > 0 ? sc->msix_vectors : 1;
/*
* Allocate Reply Descriptor Array
*/
reply_desc_size = sc->reply_alloc_sz * count;
if (bus_dma_tag_create(sc->mrsas_parent_tag,
16, 0,
BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR,
NULL, NULL,
reply_desc_size,
1,
reply_desc_size,
BUS_DMA_ALLOCNOW,
NULL, NULL,
&sc->reply_desc_tag)) {
device_printf(sc->mrsas_dev, "Cannot create reply descriptor tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->reply_desc_tag, (void **)&sc->reply_desc_mem,
BUS_DMA_NOWAIT, &sc->reply_desc_dmamap)) {
device_printf(sc->mrsas_dev, "Cannot alloc reply descriptor memory\n");
return (ENOMEM);
}
if (bus_dmamap_load(sc->reply_desc_tag, sc->reply_desc_dmamap,
sc->reply_desc_mem, reply_desc_size, mrsas_addr_cb,
&sc->reply_desc_phys_addr, BUS_DMA_NOWAIT)) {
device_printf(sc->mrsas_dev, "Cannot load reply descriptor memory\n");
return (ENOMEM);
}
/*
* Allocate Sense Buffer Array. Keep in lower 4GB
*/
sense_size = sc->max_fw_cmds * MRSAS_SENSE_LEN;
if (bus_dma_tag_create(sc->mrsas_parent_tag,
64, 0,
BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR,
NULL, NULL,
sense_size,
1,
sense_size,
BUS_DMA_ALLOCNOW,
NULL, NULL,
&sc->sense_tag)) {
device_printf(sc->mrsas_dev, "Cannot allocate sense buf tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->sense_tag, (void **)&sc->sense_mem,
BUS_DMA_NOWAIT, &sc->sense_dmamap)) {
device_printf(sc->mrsas_dev, "Cannot allocate sense buf memory\n");
return (ENOMEM);
}
if (bus_dmamap_load(sc->sense_tag, sc->sense_dmamap,
sc->sense_mem, sense_size, mrsas_addr_cb, &sc->sense_phys_addr,
BUS_DMA_NOWAIT)) {
device_printf(sc->mrsas_dev, "Cannot load sense buf memory\n");
return (ENOMEM);
}
/*
* Allocate for Event detail structure
*/
evt_detail_size = sizeof(struct mrsas_evt_detail);
if (bus_dma_tag_create(sc->mrsas_parent_tag,
1, 0,
BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR,
NULL, NULL,
evt_detail_size,
1,
evt_detail_size,
BUS_DMA_ALLOCNOW,
NULL, NULL,
&sc->evt_detail_tag)) {
device_printf(sc->mrsas_dev, "Cannot create Event detail tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->evt_detail_tag, (void **)&sc->evt_detail_mem,
BUS_DMA_NOWAIT, &sc->evt_detail_dmamap)) {
device_printf(sc->mrsas_dev, "Cannot alloc Event detail buffer memory\n");
return (ENOMEM);
}
bzero(sc->evt_detail_mem, evt_detail_size);
if (bus_dmamap_load(sc->evt_detail_tag, sc->evt_detail_dmamap,
sc->evt_detail_mem, evt_detail_size, mrsas_addr_cb,
&sc->evt_detail_phys_addr, BUS_DMA_NOWAIT)) {
device_printf(sc->mrsas_dev, "Cannot load Event detail buffer memory\n");
return (ENOMEM);
}
/*
* Create a dma tag for data buffers; size will be the maximum
* possible I/O size (280kB).
*/
if (bus_dma_tag_create(sc->mrsas_parent_tag,
1,
0,
BUS_SPACE_MAXADDR,
BUS_SPACE_MAXADDR,
NULL, NULL,
MRSAS_MAX_IO_SIZE,
MRSAS_MAX_SGL,
MRSAS_MAX_IO_SIZE,
BUS_DMA_ALLOCNOW,
busdma_lock_mutex,
&sc->io_lock,
&sc->data_tag)) {
device_printf(sc->mrsas_dev, "Cannot create data dma tag\n");
return (ENOMEM);
}
return (0);
}
/*
* mrsas_addr_cb: Callback function of bus_dmamap_load()
* input: callback argument, machine dependent type
* that describes DMA segments, number of segments, error code
*
* This function is for the driver to receive mapping information resultant of
* the bus_dmamap_load(). The information is actually not being used, but the
* address is saved anyway.
*/
void
mrsas_addr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
bus_addr_t *addr;
addr = arg;
*addr = segs[0].ds_addr;
}
/*
* mrsas_setup_raidmap: Set up RAID map.
* input: Adapter instance soft state
*
* Allocate DMA memory for the RAID maps and perform setup.
*/
static int
mrsas_setup_raidmap(struct mrsas_softc *sc)
{
int i;
for (i = 0; i < 2; i++) {
sc->ld_drv_map[i] =
(void *)malloc(sc->drv_map_sz, M_MRSAS, M_NOWAIT);
/* Do Error handling */
if (!sc->ld_drv_map[i]) {
device_printf(sc->mrsas_dev, "Could not allocate memory for local map");
if (i == 1)
free(sc->ld_drv_map[0], M_MRSAS);
/* ABORT driver initialization */
goto ABORT;
}
}
for (int i = 0; i < 2; i++) {
if (bus_dma_tag_create(sc->mrsas_parent_tag,
4, 0,
BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR,
NULL, NULL,
sc->max_map_sz,
1,
sc->max_map_sz,
BUS_DMA_ALLOCNOW,
NULL, NULL,
&sc->raidmap_tag[i])) {
device_printf(sc->mrsas_dev,
"Cannot allocate raid map tag.\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->raidmap_tag[i],
(void **)&sc->raidmap_mem[i],
BUS_DMA_NOWAIT, &sc->raidmap_dmamap[i])) {
device_printf(sc->mrsas_dev,
"Cannot allocate raidmap memory.\n");
return (ENOMEM);
}
bzero(sc->raidmap_mem[i], sc->max_map_sz);
if (bus_dmamap_load(sc->raidmap_tag[i], sc->raidmap_dmamap[i],
sc->raidmap_mem[i], sc->max_map_sz,
mrsas_addr_cb, &sc->raidmap_phys_addr[i],
BUS_DMA_NOWAIT)) {
device_printf(sc->mrsas_dev, "Cannot load raidmap memory.\n");
return (ENOMEM);
}
if (!sc->raidmap_mem[i]) {
device_printf(sc->mrsas_dev,
"Cannot allocate memory for raid map.\n");
return (ENOMEM);
}
}
if (!mrsas_get_map_info(sc))
mrsas_sync_map_info(sc);
return (0);
ABORT:
return (1);
}
/*
* mrsas_init_fw: Initialize Firmware
* input: Adapter soft state
*
* Calls transition_to_ready() to make sure Firmware is in operational state and
* calls mrsas_init_adapter() to send IOC_INIT command to Firmware. It
* issues internal commands to get the controller info after the IOC_INIT
* command response is received by Firmware. Note: code relating to
* get_pdlist, get_ld_list and max_sectors are currently not being used, it
* is left here as placeholder.
*/
static int
mrsas_init_fw(struct mrsas_softc *sc)
{
int ret, loop, ocr = 0;
u_int32_t max_sectors_1;
u_int32_t max_sectors_2;
u_int32_t tmp_sectors;
u_int32_t scratch_pad_2;
int msix_enable = 0;
int fw_msix_count = 0;
/* Make sure Firmware is ready */
ret = mrsas_transition_to_ready(sc, ocr);
if (ret != SUCCESS) {
return (ret);
}
/* MSI-x index 0- reply post host index register */
sc->msix_reg_offset[0] = MPI2_REPLY_POST_HOST_INDEX_OFFSET;
/* Check if MSI-X is supported while in ready state */
msix_enable = (mrsas_read_reg(sc, offsetof(mrsas_reg_set, outbound_scratch_pad)) & 0x4000000) >> 0x1a;
if (msix_enable) {
scratch_pad_2 = mrsas_read_reg(sc, offsetof(mrsas_reg_set,
outbound_scratch_pad_2));
/* Check max MSI-X vectors */
if (sc->device_id == MRSAS_TBOLT) {
sc->msix_vectors = (scratch_pad_2
& MR_MAX_REPLY_QUEUES_OFFSET) + 1;
fw_msix_count = sc->msix_vectors;
} else {
/* Invader/Fury supports 96 MSI-X vectors */
sc->msix_vectors = ((scratch_pad_2
& MR_MAX_REPLY_QUEUES_EXT_OFFSET)
>> MR_MAX_REPLY_QUEUES_EXT_OFFSET_SHIFT) + 1;
fw_msix_count = sc->msix_vectors;
for (loop = 1; loop < MR_MAX_MSIX_REG_ARRAY;
loop++) {
sc->msix_reg_offset[loop] =
MPI2_SUP_REPLY_POST_HOST_INDEX_OFFSET +
(loop * 0x10);
}
}
/* Don't bother allocating more MSI-X vectors than cpus */
sc->msix_vectors = min(sc->msix_vectors,
mp_ncpus);
/* Allocate MSI-x vectors */
if (mrsas_allocate_msix(sc) == SUCCESS)
sc->msix_enable = 1;
else
sc->msix_enable = 0;
device_printf(sc->mrsas_dev, "FW supports <%d> MSIX vector,"
"Online CPU %d Current MSIX <%d>\n",
fw_msix_count, mp_ncpus, sc->msix_vectors);
}
if (mrsas_init_adapter(sc) != SUCCESS) {
device_printf(sc->mrsas_dev, "Adapter initialize Fail.\n");
return (1);
}
/* Allocate internal commands for pass-thru */
if (mrsas_alloc_mfi_cmds(sc) != SUCCESS) {
device_printf(sc->mrsas_dev, "Allocate MFI cmd failed.\n");
return (1);
}
sc->ctrl_info = malloc(sizeof(struct mrsas_ctrl_info), M_MRSAS, M_NOWAIT);
if (!sc->ctrl_info) {
device_printf(sc->mrsas_dev, "Malloc for ctrl_info failed.\n");
return (1);
}
/*
* Get the controller info from FW, so that the MAX VD support
* availability can be decided.
*/
if (mrsas_get_ctrl_info(sc)) {
device_printf(sc->mrsas_dev, "Unable to get FW ctrl_info.\n");
return (1);
}
sc->secure_jbod_support =
(u_int8_t)sc->ctrl_info->adapterOperations3.supportSecurityonJBOD;
if (sc->secure_jbod_support)
device_printf(sc->mrsas_dev, "FW supports SED \n");
if (mrsas_setup_raidmap(sc) != SUCCESS) {
device_printf(sc->mrsas_dev, "Set up RAID map failed.\n");
return (1);
}
/* For pass-thru, get PD/LD list and controller info */
memset(sc->pd_list, 0,
MRSAS_MAX_PD * sizeof(struct mrsas_pd_list));
mrsas_get_pd_list(sc);
memset(sc->ld_ids, 0xff, MRSAS_MAX_LD_IDS);
mrsas_get_ld_list(sc);
/*
* Compute the max allowed sectors per IO: The controller info has
* two limits on max sectors. Driver should use the minimum of these
* two.
*
* 1 << stripe_sz_ops.min = max sectors per strip
*
* Note that older firmwares ( < FW ver 30) didn't report information to
* calculate max_sectors_1. So the number ended up as zero always.
*/
tmp_sectors = 0;
max_sectors_1 = (1 << sc->ctrl_info->stripe_sz_ops.min) *
sc->ctrl_info->max_strips_per_io;
max_sectors_2 = sc->ctrl_info->max_request_size;
tmp_sectors = min(max_sectors_1, max_sectors_2);
sc->max_sectors_per_req = sc->max_num_sge * MRSAS_PAGE_SIZE / 512;
if (tmp_sectors && (sc->max_sectors_per_req > tmp_sectors))
sc->max_sectors_per_req = tmp_sectors;
sc->disableOnlineCtrlReset =
sc->ctrl_info->properties.OnOffProperties.disableOnlineCtrlReset;
sc->UnevenSpanSupport =
sc->ctrl_info->adapterOperations2.supportUnevenSpans;
if (sc->UnevenSpanSupport) {
device_printf(sc->mrsas_dev, "FW supports: UnevenSpanSupport=%x\n\n",
sc->UnevenSpanSupport);
if (MR_ValidateMapInfo(sc))
sc->fast_path_io = 1;
else
sc->fast_path_io = 0;
}
return (0);
}
/*
* mrsas_init_adapter: Initializes the adapter/controller
* input: Adapter soft state
*
* Prepares for the issuing of the IOC Init cmd to FW for initializing the
* ROC/controller. The FW register is read to determined the number of
* commands that is supported. All memory allocations for IO is based on
* max_cmd. Appropriate calculations are performed in this function.
*/
int
mrsas_init_adapter(struct mrsas_softc *sc)
{
uint32_t status;
u_int32_t max_cmd;
int ret;
int i = 0;
/* Read FW status register */
status = mrsas_read_reg(sc, offsetof(mrsas_reg_set, outbound_scratch_pad));
/* Get operational params from status register */
sc->max_fw_cmds = status & MRSAS_FWSTATE_MAXCMD_MASK;
/* Decrement the max supported by 1, to correlate with FW */
sc->max_fw_cmds = sc->max_fw_cmds - 1;
max_cmd = sc->max_fw_cmds;
/* Determine allocation size of command frames */
sc->reply_q_depth = ((max_cmd + 1 + 15) / 16 * 16) * 2;
sc->request_alloc_sz = sizeof(MRSAS_REQUEST_DESCRIPTOR_UNION) * max_cmd;
sc->reply_alloc_sz = sizeof(MPI2_REPLY_DESCRIPTORS_UNION) * (sc->reply_q_depth);
sc->io_frames_alloc_sz = MRSAS_MPI2_RAID_DEFAULT_IO_FRAME_SIZE + (MRSAS_MPI2_RAID_DEFAULT_IO_FRAME_SIZE * (max_cmd + 1));
sc->chain_frames_alloc_sz = 1024 * max_cmd;
sc->max_sge_in_main_msg = (MRSAS_MPI2_RAID_DEFAULT_IO_FRAME_SIZE -
offsetof(MRSAS_RAID_SCSI_IO_REQUEST, SGL)) / 16;
sc->max_sge_in_chain = MRSAS_MAX_SZ_CHAIN_FRAME / sizeof(MPI2_SGE_IO_UNION);
sc->max_num_sge = sc->max_sge_in_main_msg + sc->max_sge_in_chain - 2;
/* Used for pass thru MFI frame (DCMD) */
sc->chain_offset_mfi_pthru = offsetof(MRSAS_RAID_SCSI_IO_REQUEST, SGL) / 16;
sc->chain_offset_io_request = (MRSAS_MPI2_RAID_DEFAULT_IO_FRAME_SIZE -
sizeof(MPI2_SGE_IO_UNION)) / 16;
int count = sc->msix_vectors > 0 ? sc->msix_vectors : 1;
for (i = 0; i < count; i++)
sc->last_reply_idx[i] = 0;
ret = mrsas_alloc_mem(sc);
if (ret != SUCCESS)
return (ret);
ret = mrsas_alloc_mpt_cmds(sc);
if (ret != SUCCESS)
return (ret);
ret = mrsas_ioc_init(sc);
if (ret != SUCCESS)
return (ret);
return (0);
}
/*
* mrsas_alloc_ioc_cmd: Allocates memory for IOC Init command
* input: Adapter soft state
*
* Allocates for the IOC Init cmd to FW to initialize the ROC/controller.
*/
int
mrsas_alloc_ioc_cmd(struct mrsas_softc *sc)
{
int ioc_init_size;
/* Allocate IOC INIT command */
ioc_init_size = 1024 + sizeof(MPI2_IOC_INIT_REQUEST);
if (bus_dma_tag_create(sc->mrsas_parent_tag,
1, 0,
BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR,
NULL, NULL,
ioc_init_size,
1,
ioc_init_size,
BUS_DMA_ALLOCNOW,
NULL, NULL,
&sc->ioc_init_tag)) {
device_printf(sc->mrsas_dev, "Cannot allocate ioc init tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->ioc_init_tag, (void **)&sc->ioc_init_mem,
BUS_DMA_NOWAIT, &sc->ioc_init_dmamap)) {
device_printf(sc->mrsas_dev, "Cannot allocate ioc init cmd mem\n");
return (ENOMEM);
}
bzero(sc->ioc_init_mem, ioc_init_size);
if (bus_dmamap_load(sc->ioc_init_tag, sc->ioc_init_dmamap,
sc->ioc_init_mem, ioc_init_size, mrsas_addr_cb,
&sc->ioc_init_phys_mem, BUS_DMA_NOWAIT)) {
device_printf(sc->mrsas_dev, "Cannot load ioc init cmd mem\n");
return (ENOMEM);
}
return (0);
}
/*
* mrsas_free_ioc_cmd: Allocates memory for IOC Init command
* input: Adapter soft state
*
* Deallocates memory of the IOC Init cmd.
*/
void
mrsas_free_ioc_cmd(struct mrsas_softc *sc)
{
if (sc->ioc_init_phys_mem)
bus_dmamap_unload(sc->ioc_init_tag, sc->ioc_init_dmamap);
if (sc->ioc_init_mem != NULL)
bus_dmamem_free(sc->ioc_init_tag, sc->ioc_init_mem, sc->ioc_init_dmamap);
if (sc->ioc_init_tag != NULL)
bus_dma_tag_destroy(sc->ioc_init_tag);
}
/*
* mrsas_ioc_init: Sends IOC Init command to FW
* input: Adapter soft state
*
* Issues the IOC Init cmd to FW to initialize the ROC/controller.
*/
int
mrsas_ioc_init(struct mrsas_softc *sc)
{
struct mrsas_init_frame *init_frame;
pMpi2IOCInitRequest_t IOCInitMsg;
MRSAS_REQUEST_DESCRIPTOR_UNION req_desc;
u_int8_t max_wait = MRSAS_IOC_INIT_WAIT_TIME;
bus_addr_t phys_addr;
int i, retcode = 0;
/* Allocate memory for the IOC INIT command */
if (mrsas_alloc_ioc_cmd(sc)) {
device_printf(sc->mrsas_dev, "Cannot allocate IOC command.\n");
return (1);
}
IOCInitMsg = (pMpi2IOCInitRequest_t)(((char *)sc->ioc_init_mem) + 1024);
IOCInitMsg->Function = MPI2_FUNCTION_IOC_INIT;
IOCInitMsg->WhoInit = MPI2_WHOINIT_HOST_DRIVER;
IOCInitMsg->MsgVersion = MPI2_VERSION;
IOCInitMsg->HeaderVersion = MPI2_HEADER_VERSION;
IOCInitMsg->SystemRequestFrameSize = MRSAS_MPI2_RAID_DEFAULT_IO_FRAME_SIZE / 4;
IOCInitMsg->ReplyDescriptorPostQueueDepth = sc->reply_q_depth;
IOCInitMsg->ReplyDescriptorPostQueueAddress = sc->reply_desc_phys_addr;
IOCInitMsg->SystemRequestFrameBaseAddress = sc->io_request_phys_addr;
IOCInitMsg->HostMSIxVectors = (sc->msix_vectors > 0 ? sc->msix_vectors : 0);
init_frame = (struct mrsas_init_frame *)sc->ioc_init_mem;
init_frame->cmd = MFI_CMD_INIT;
init_frame->cmd_status = 0xFF;
init_frame->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
/* driver support Extended MSIX */
if ((sc->device_id == MRSAS_INVADER) ||
(sc->device_id == MRSAS_FURY)) {
init_frame->driver_operations.
mfi_capabilities.support_additional_msix = 1;
}
if (sc->verbuf_mem) {
snprintf((char *)sc->verbuf_mem, strlen(MRSAS_VERSION) + 2, "%s\n",
MRSAS_VERSION);
init_frame->driver_ver_lo = (bus_addr_t)sc->verbuf_phys_addr;
init_frame->driver_ver_hi = 0;
}
init_frame->driver_operations.mfi_capabilities.support_ndrive_r1_lb = 1;
init_frame->driver_operations.mfi_capabilities.support_max_255lds = 1;
init_frame->driver_operations.mfi_capabilities.security_protocol_cmds_fw = 1;
phys_addr = (bus_addr_t)sc->ioc_init_phys_mem + 1024;
init_frame->queue_info_new_phys_addr_lo = phys_addr;
init_frame->data_xfer_len = sizeof(Mpi2IOCInitRequest_t);
req_desc.addr.Words = (bus_addr_t)sc->ioc_init_phys_mem;
req_desc.MFAIo.RequestFlags =
(MRSAS_REQ_DESCRIPT_FLAGS_MFA << MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
mrsas_disable_intr(sc);
mrsas_dprint(sc, MRSAS_OCR, "Issuing IOC INIT command to FW.\n");
mrsas_fire_cmd(sc, req_desc.addr.u.low, req_desc.addr.u.high);
/*
* Poll response timer to wait for Firmware response. While this
* timer with the DELAY call could block CPU, the time interval for
* this is only 1 millisecond.
*/
if (init_frame->cmd_status == 0xFF) {
for (i = 0; i < (max_wait * 1000); i++) {
if (init_frame->cmd_status == 0xFF)
DELAY(1000);
else
break;
}
}
if (init_frame->cmd_status == 0)
mrsas_dprint(sc, MRSAS_OCR,
"IOC INIT response received from FW.\n");
else {
if (init_frame->cmd_status == 0xFF)
device_printf(sc->mrsas_dev, "IOC Init timed out after %d seconds.\n", max_wait);
else
device_printf(sc->mrsas_dev, "IOC Init failed, status = 0x%x\n", init_frame->cmd_status);
retcode = 1;
}
mrsas_free_ioc_cmd(sc);
return (retcode);
}
/*
* mrsas_alloc_mpt_cmds: Allocates the command packets
* input: Adapter instance soft state
*
* This function allocates the internal commands for IOs. Each command that is
* issued to FW is wrapped in a local data structure called mrsas_mpt_cmd. An
* array is allocated with mrsas_mpt_cmd context. The free commands are
* maintained in a linked list (cmd pool). SMID value range is from 1 to
* max_fw_cmds.
*/
int
mrsas_alloc_mpt_cmds(struct mrsas_softc *sc)
{
int i, j;
u_int32_t max_cmd, count;
struct mrsas_mpt_cmd *cmd;
pMpi2ReplyDescriptorsUnion_t reply_desc;
u_int32_t offset, chain_offset, sense_offset;
bus_addr_t io_req_base_phys, chain_frame_base_phys, sense_base_phys;
u_int8_t *io_req_base, *chain_frame_base, *sense_base;
max_cmd = sc->max_fw_cmds;
sc->req_desc = malloc(sc->request_alloc_sz, M_MRSAS, M_NOWAIT);
if (!sc->req_desc) {
device_printf(sc->mrsas_dev, "Out of memory, cannot alloc req desc\n");
return (ENOMEM);
}
memset(sc->req_desc, 0, sc->request_alloc_sz);
/*
* sc->mpt_cmd_list is an array of struct mrsas_mpt_cmd pointers.
* Allocate the dynamic array first and then allocate individual
* commands.
*/
sc->mpt_cmd_list = malloc(sizeof(struct mrsas_mpt_cmd *) * max_cmd, M_MRSAS, M_NOWAIT);
if (!sc->mpt_cmd_list) {
device_printf(sc->mrsas_dev, "Cannot alloc memory for mpt_cmd_list.\n");
return (ENOMEM);
}
memset(sc->mpt_cmd_list, 0, sizeof(struct mrsas_mpt_cmd *) * max_cmd);
for (i = 0; i < max_cmd; i++) {
sc->mpt_cmd_list[i] = malloc(sizeof(struct mrsas_mpt_cmd),
M_MRSAS, M_NOWAIT);
if (!sc->mpt_cmd_list[i]) {
for (j = 0; j < i; j++)
free(sc->mpt_cmd_list[j], M_MRSAS);
free(sc->mpt_cmd_list, M_MRSAS);
sc->mpt_cmd_list = NULL;
return (ENOMEM);
}
}
io_req_base = (u_int8_t *)sc->io_request_mem + MRSAS_MPI2_RAID_DEFAULT_IO_FRAME_SIZE;
io_req_base_phys = (bus_addr_t)sc->io_request_phys_addr + MRSAS_MPI2_RAID_DEFAULT_IO_FRAME_SIZE;
chain_frame_base = (u_int8_t *)sc->chain_frame_mem;
chain_frame_base_phys = (bus_addr_t)sc->chain_frame_phys_addr;
sense_base = (u_int8_t *)sc->sense_mem;
sense_base_phys = (bus_addr_t)sc->sense_phys_addr;
for (i = 0; i < max_cmd; i++) {
cmd = sc->mpt_cmd_list[i];
offset = MRSAS_MPI2_RAID_DEFAULT_IO_FRAME_SIZE * i;
chain_offset = 1024 * i;
sense_offset = MRSAS_SENSE_LEN * i;
memset(cmd, 0, sizeof(struct mrsas_mpt_cmd));
cmd->index = i + 1;
cmd->ccb_ptr = NULL;
callout_init(&cmd->cm_callout, 0);
cmd->sync_cmd_idx = (u_int32_t)MRSAS_ULONG_MAX;
cmd->sc = sc;
cmd->io_request = (MRSAS_RAID_SCSI_IO_REQUEST *) (io_req_base + offset);
memset(cmd->io_request, 0, sizeof(MRSAS_RAID_SCSI_IO_REQUEST));
cmd->io_request_phys_addr = io_req_base_phys + offset;
cmd->chain_frame = (MPI2_SGE_IO_UNION *) (chain_frame_base + chain_offset);
cmd->chain_frame_phys_addr = chain_frame_base_phys + chain_offset;
cmd->sense = sense_base + sense_offset;
cmd->sense_phys_addr = sense_base_phys + sense_offset;
if (bus_dmamap_create(sc->data_tag, 0, &cmd->data_dmamap)) {
return (FAIL);
}
TAILQ_INSERT_TAIL(&(sc->mrsas_mpt_cmd_list_head), cmd, next);
}
/* Initialize reply descriptor array to 0xFFFFFFFF */
reply_desc = sc->reply_desc_mem;
count = sc->msix_vectors > 0 ? sc->msix_vectors : 1;
for (i = 0; i < sc->reply_q_depth * count; i++, reply_desc++) {
reply_desc->Words = MRSAS_ULONG_MAX;
}
return (0);
}
/*
* mrsas_fire_cmd: Sends command to FW
* input: Adapter softstate
* request descriptor address low
* request descriptor address high
*
* This functions fires the command to Firmware by writing to the
* inbound_low_queue_port and inbound_high_queue_port.
*/
void
mrsas_fire_cmd(struct mrsas_softc *sc, u_int32_t req_desc_lo,
u_int32_t req_desc_hi)
{
mtx_lock(&sc->pci_lock);
mrsas_write_reg(sc, offsetof(mrsas_reg_set, inbound_low_queue_port),
req_desc_lo);
mrsas_write_reg(sc, offsetof(mrsas_reg_set, inbound_high_queue_port),
req_desc_hi);
mtx_unlock(&sc->pci_lock);
}
/*
* mrsas_transition_to_ready: Move FW to Ready state input:
* Adapter instance soft state
*
* During the initialization, FW passes can potentially be in any one of several
* possible states. If the FW in operational, waiting-for-handshake states,
* driver must take steps to bring it to ready state. Otherwise, it has to
* wait for the ready state.
*/
int
mrsas_transition_to_ready(struct mrsas_softc *sc, int ocr)
{
int i;
u_int8_t max_wait;
u_int32_t val, fw_state;
u_int32_t cur_state;
u_int32_t abs_state, curr_abs_state;
val = mrsas_read_reg(sc, offsetof(mrsas_reg_set, outbound_scratch_pad));
fw_state = val & MFI_STATE_MASK;
max_wait = MRSAS_RESET_WAIT_TIME;
if (fw_state != MFI_STATE_READY)
device_printf(sc->mrsas_dev, "Waiting for FW to come to ready state\n");
while (fw_state != MFI_STATE_READY) {
abs_state = mrsas_read_reg(sc, offsetof(mrsas_reg_set, outbound_scratch_pad));
switch (fw_state) {
case MFI_STATE_FAULT:
device_printf(sc->mrsas_dev, "FW is in FAULT state!!\n");
if (ocr) {
cur_state = MFI_STATE_FAULT;
break;
} else
return -ENODEV;
case MFI_STATE_WAIT_HANDSHAKE:
/* Set the CLR bit in inbound doorbell */
mrsas_write_reg(sc, offsetof(mrsas_reg_set, doorbell),
MFI_INIT_CLEAR_HANDSHAKE | MFI_INIT_HOTPLUG);
cur_state = MFI_STATE_WAIT_HANDSHAKE;
break;
case MFI_STATE_BOOT_MESSAGE_PENDING:
mrsas_write_reg(sc, offsetof(mrsas_reg_set, doorbell),
MFI_INIT_HOTPLUG);
cur_state = MFI_STATE_BOOT_MESSAGE_PENDING;
break;
case MFI_STATE_OPERATIONAL:
/*
* Bring it to READY state; assuming max wait 10
* secs
*/
mrsas_disable_intr(sc);
mrsas_write_reg(sc, offsetof(mrsas_reg_set, doorbell), MFI_RESET_FLAGS);
for (i = 0; i < max_wait * 1000; i++) {
if (mrsas_read_reg(sc, offsetof(mrsas_reg_set, doorbell)) & 1)
DELAY(1000);
else
break;
}
cur_state = MFI_STATE_OPERATIONAL;
break;
case MFI_STATE_UNDEFINED:
/*
* This state should not last for more than 2
* seconds
*/
cur_state = MFI_STATE_UNDEFINED;
break;
case MFI_STATE_BB_INIT:
cur_state = MFI_STATE_BB_INIT;
break;
case MFI_STATE_FW_INIT:
cur_state = MFI_STATE_FW_INIT;
break;
case MFI_STATE_FW_INIT_2:
cur_state = MFI_STATE_FW_INIT_2;
break;
case MFI_STATE_DEVICE_SCAN:
cur_state = MFI_STATE_DEVICE_SCAN;
break;
case MFI_STATE_FLUSH_CACHE:
cur_state = MFI_STATE_FLUSH_CACHE;
break;
default:
device_printf(sc->mrsas_dev, "Unknown state 0x%x\n", fw_state);
return -ENODEV;
}
/*
* The cur_state should not last for more than max_wait secs
*/
for (i = 0; i < (max_wait * 1000); i++) {
fw_state = (mrsas_read_reg(sc, offsetof(mrsas_reg_set,
outbound_scratch_pad)) & MFI_STATE_MASK);
curr_abs_state = mrsas_read_reg(sc, offsetof(mrsas_reg_set,
outbound_scratch_pad));
if (abs_state == curr_abs_state)
DELAY(1000);
else
break;
}
/*
* Return error if fw_state hasn't changed after max_wait
*/
if (curr_abs_state == abs_state) {
device_printf(sc->mrsas_dev, "FW state [%d] hasn't changed "
"in %d secs\n", fw_state, max_wait);
return -ENODEV;
}
}
mrsas_dprint(sc, MRSAS_OCR, "FW now in Ready state\n");
return 0;
}
/*
* mrsas_get_mfi_cmd: Get a cmd from free command pool
* input: Adapter soft state
*
* This function removes an MFI command from the command list.
*/
struct mrsas_mfi_cmd *
mrsas_get_mfi_cmd(struct mrsas_softc *sc)
{
struct mrsas_mfi_cmd *cmd = NULL;
mtx_lock(&sc->mfi_cmd_pool_lock);
if (!TAILQ_EMPTY(&sc->mrsas_mfi_cmd_list_head)) {
cmd = TAILQ_FIRST(&sc->mrsas_mfi_cmd_list_head);
TAILQ_REMOVE(&sc->mrsas_mfi_cmd_list_head, cmd, next);
}
mtx_unlock(&sc->mfi_cmd_pool_lock);
return cmd;
}
/*
* mrsas_ocr_thread: Thread to handle OCR/Kill Adapter.
* input: Adapter Context.
*
* This function will check FW status register and flag do_timeout_reset flag.
* It will do OCR/Kill adapter if FW is in fault state or IO timed out has
* trigger reset.
*/
static void
mrsas_ocr_thread(void *arg)
{
struct mrsas_softc *sc;
u_int32_t fw_status, fw_state;
sc = (struct mrsas_softc *)arg;
mrsas_dprint(sc, MRSAS_TRACE, "%s\n", __func__);
sc->ocr_thread_active = 1;
mtx_lock(&sc->sim_lock);
for (;;) {
/* Sleep for 1 second and check the queue status */
msleep(&sc->ocr_chan, &sc->sim_lock, PRIBIO,
"mrsas_ocr", sc->mrsas_fw_fault_check_delay * hz);
if (sc->remove_in_progress) {
mrsas_dprint(sc, MRSAS_OCR,
"Exit due to shutdown from %s\n", __func__);
break;
}
fw_status = mrsas_read_reg(sc,
offsetof(mrsas_reg_set, outbound_scratch_pad));
fw_state = fw_status & MFI_STATE_MASK;
if (fw_state == MFI_STATE_FAULT || sc->do_timedout_reset) {
device_printf(sc->mrsas_dev, "OCR started due to %s!\n",
sc->do_timedout_reset ? "IO Timeout" :
"FW fault detected");
mtx_lock_spin(&sc->ioctl_lock);
sc->reset_in_progress = 1;
sc->reset_count++;
mtx_unlock_spin(&sc->ioctl_lock);
mrsas_xpt_freeze(sc);
mrsas_reset_ctrl(sc);
mrsas_xpt_release(sc);
sc->reset_in_progress = 0;
sc->do_timedout_reset = 0;
}
}
mtx_unlock(&sc->sim_lock);
sc->ocr_thread_active = 0;
mrsas_kproc_exit(0);
}
/*
* mrsas_reset_reply_desc: Reset Reply descriptor as part of OCR.
* input: Adapter Context.
*
* This function will clear reply descriptor so that post OCR driver and FW will
* lost old history.
*/
void
mrsas_reset_reply_desc(struct mrsas_softc *sc)
{
int i, count;
pMpi2ReplyDescriptorsUnion_t reply_desc;
count = sc->msix_vectors > 0 ? sc->msix_vectors : 1;
for (i = 0; i < count; i++)
sc->last_reply_idx[i] = 0;
reply_desc = sc->reply_desc_mem;
for (i = 0; i < sc->reply_q_depth; i++, reply_desc++) {
reply_desc->Words = MRSAS_ULONG_MAX;
}
}
/*
* mrsas_reset_ctrl: Core function to OCR/Kill adapter.
* input: Adapter Context.
*
* This function will run from thread context so that it can sleep. 1. Do not
* handle OCR if FW is in HW critical error. 2. Wait for outstanding command
* to complete for 180 seconds. 3. If #2 does not find any outstanding
* command Controller is in working state, so skip OCR. Otherwise, do
* OCR/kill Adapter based on flag disableOnlineCtrlReset. 4. Start of the
* OCR, return all SCSI command back to CAM layer which has ccb_ptr. 5. Post
* OCR, Re-fire Managment command and move Controller to Operation state.
*/
int
mrsas_reset_ctrl(struct mrsas_softc *sc)
{
int retval = SUCCESS, i, j, retry = 0;
u_int32_t host_diag, abs_state, status_reg, reset_adapter;
union ccb *ccb;
struct mrsas_mfi_cmd *mfi_cmd;
struct mrsas_mpt_cmd *mpt_cmd;
MRSAS_REQUEST_DESCRIPTOR_UNION *req_desc;
if (sc->adprecovery == MRSAS_HW_CRITICAL_ERROR) {
device_printf(sc->mrsas_dev,
"mrsas: Hardware critical error, returning FAIL.\n");
return FAIL;
}
mrsas_set_bit(MRSAS_FUSION_IN_RESET, &sc->reset_flags);
sc->adprecovery = MRSAS_ADPRESET_SM_INFAULT;
mrsas_disable_intr(sc);
DELAY(1000 * 1000);
/* First try waiting for commands to complete */
if (mrsas_wait_for_outstanding(sc)) {
mrsas_dprint(sc, MRSAS_OCR,
"resetting adapter from %s.\n",
__func__);
/* Now return commands back to the CAM layer */
mtx_unlock(&sc->sim_lock);
for (i = 0; i < sc->max_fw_cmds; i++) {
mpt_cmd = sc->mpt_cmd_list[i];
if (mpt_cmd->ccb_ptr) {
ccb = (union ccb *)(mpt_cmd->ccb_ptr);
ccb->ccb_h.status = CAM_SCSI_BUS_RESET;
mrsas_cmd_done(sc, mpt_cmd);
mrsas_atomic_dec(&sc->fw_outstanding);
}
}
mtx_lock(&sc->sim_lock);
status_reg = mrsas_read_reg(sc, offsetof(mrsas_reg_set,
outbound_scratch_pad));
abs_state = status_reg & MFI_STATE_MASK;
reset_adapter = status_reg & MFI_RESET_ADAPTER;
if (sc->disableOnlineCtrlReset ||
(abs_state == MFI_STATE_FAULT && !reset_adapter)) {
/* Reset not supported, kill adapter */
mrsas_dprint(sc, MRSAS_OCR, "Reset not supported, killing adapter.\n");
mrsas_kill_hba(sc);
retval = FAIL;
goto out;
}
/* Now try to reset the chip */
for (i = 0; i < MRSAS_FUSION_MAX_RESET_TRIES; i++) {
mrsas_write_reg(sc, offsetof(mrsas_reg_set, fusion_seq_offset),
MPI2_WRSEQ_FLUSH_KEY_VALUE);
mrsas_write_reg(sc, offsetof(mrsas_reg_set, fusion_seq_offset),
MPI2_WRSEQ_1ST_KEY_VALUE);
mrsas_write_reg(sc, offsetof(mrsas_reg_set, fusion_seq_offset),
MPI2_WRSEQ_2ND_KEY_VALUE);
mrsas_write_reg(sc, offsetof(mrsas_reg_set, fusion_seq_offset),
MPI2_WRSEQ_3RD_KEY_VALUE);
mrsas_write_reg(sc, offsetof(mrsas_reg_set, fusion_seq_offset),
MPI2_WRSEQ_4TH_KEY_VALUE);
mrsas_write_reg(sc, offsetof(mrsas_reg_set, fusion_seq_offset),
MPI2_WRSEQ_5TH_KEY_VALUE);
mrsas_write_reg(sc, offsetof(mrsas_reg_set, fusion_seq_offset),
MPI2_WRSEQ_6TH_KEY_VALUE);
/* Check that the diag write enable (DRWE) bit is on */
host_diag = mrsas_read_reg(sc, offsetof(mrsas_reg_set,
fusion_host_diag));
retry = 0;
while (!(host_diag & HOST_DIAG_WRITE_ENABLE)) {
DELAY(100 * 1000);
host_diag = mrsas_read_reg(sc, offsetof(mrsas_reg_set,
fusion_host_diag));
if (retry++ == 100) {
mrsas_dprint(sc, MRSAS_OCR,
"Host diag unlock failed!\n");
break;
}
}
if (!(host_diag & HOST_DIAG_WRITE_ENABLE))
continue;
/* Send chip reset command */
mrsas_write_reg(sc, offsetof(mrsas_reg_set, fusion_host_diag),
host_diag | HOST_DIAG_RESET_ADAPTER);
DELAY(3000 * 1000);
/* Make sure reset adapter bit is cleared */
host_diag = mrsas_read_reg(sc, offsetof(mrsas_reg_set,
fusion_host_diag));
retry = 0;
while (host_diag & HOST_DIAG_RESET_ADAPTER) {
DELAY(100 * 1000);
host_diag = mrsas_read_reg(sc, offsetof(mrsas_reg_set,
fusion_host_diag));
if (retry++ == 1000) {
mrsas_dprint(sc, MRSAS_OCR,
"Diag reset adapter never cleared!\n");
break;
}
}
if (host_diag & HOST_DIAG_RESET_ADAPTER)
continue;
abs_state = mrsas_read_reg(sc, offsetof(mrsas_reg_set,
outbound_scratch_pad)) & MFI_STATE_MASK;
retry = 0;
while ((abs_state <= MFI_STATE_FW_INIT) && (retry++ < 1000)) {
DELAY(100 * 1000);
abs_state = mrsas_read_reg(sc, offsetof(mrsas_reg_set,
outbound_scratch_pad)) & MFI_STATE_MASK;
}
if (abs_state <= MFI_STATE_FW_INIT) {
mrsas_dprint(sc, MRSAS_OCR, "firmware state < MFI_STATE_FW_INIT,"
" state = 0x%x\n", abs_state);
continue;
}
/* Wait for FW to become ready */
if (mrsas_transition_to_ready(sc, 1)) {
mrsas_dprint(sc, MRSAS_OCR,
"mrsas: Failed to transition controller to ready.\n");
continue;
}
mrsas_reset_reply_desc(sc);
if (mrsas_ioc_init(sc)) {
mrsas_dprint(sc, MRSAS_OCR, "mrsas_ioc_init() failed!\n");
continue;
}
/* Re-fire management commands */
for (j = 0; j < sc->max_fw_cmds; j++) {
mpt_cmd = sc->mpt_cmd_list[j];
if (mpt_cmd->sync_cmd_idx != (u_int32_t)MRSAS_ULONG_MAX) {
mfi_cmd = sc->mfi_cmd_list[mpt_cmd->sync_cmd_idx];
if (mfi_cmd->frame->dcmd.opcode ==
MR_DCMD_LD_MAP_GET_INFO) {
mrsas_release_mfi_cmd(mfi_cmd);
mrsas_release_mpt_cmd(mpt_cmd);
} else {
req_desc = mrsas_get_request_desc(sc,
mfi_cmd->cmd_id.context.smid - 1);
mrsas_dprint(sc, MRSAS_OCR,
"Re-fire command DCMD opcode 0x%x index %d\n ",
mfi_cmd->frame->dcmd.opcode, j);
if (!req_desc)
device_printf(sc->mrsas_dev,
"Cannot build MPT cmd.\n");
else
mrsas_fire_cmd(sc, req_desc->addr.u.low,
req_desc->addr.u.high);
}
}
}
/* Reset load balance info */
memset(sc->load_balance_info, 0,
sizeof(LD_LOAD_BALANCE_INFO) * MAX_LOGICAL_DRIVES_EXT);
if (mrsas_get_ctrl_info(sc)) {
mrsas_kill_hba(sc);
retval = FAIL;
goto out;
}
if (!mrsas_get_map_info(sc))
mrsas_sync_map_info(sc);
mrsas_clear_bit(MRSAS_FUSION_IN_RESET, &sc->reset_flags);
mrsas_enable_intr(sc);
sc->adprecovery = MRSAS_HBA_OPERATIONAL;
/* Adapter reset completed successfully */
device_printf(sc->mrsas_dev, "Reset successful\n");
retval = SUCCESS;
goto out;
}
/* Reset failed, kill the adapter */
device_printf(sc->mrsas_dev, "Reset failed, killing adapter.\n");
mrsas_kill_hba(sc);
retval = FAIL;
} else {
mrsas_clear_bit(MRSAS_FUSION_IN_RESET, &sc->reset_flags);
mrsas_enable_intr(sc);
sc->adprecovery = MRSAS_HBA_OPERATIONAL;
}
out:
mrsas_clear_bit(MRSAS_FUSION_IN_RESET, &sc->reset_flags);
mrsas_dprint(sc, MRSAS_OCR,
"Reset Exit with %d.\n", retval);
return retval;
}
/*
* mrsas_kill_hba: Kill HBA when OCR is not supported
* input: Adapter Context.
*
* This function will kill HBA when OCR is not supported.
*/
void
mrsas_kill_hba(struct mrsas_softc *sc)
{
sc->adprecovery = MRSAS_HW_CRITICAL_ERROR;
pause("mrsas_kill_hba", 1000);
mrsas_dprint(sc, MRSAS_OCR, "%s\n", __func__);
mrsas_write_reg(sc, offsetof(mrsas_reg_set, doorbell),
MFI_STOP_ADP);
/* Flush */
mrsas_read_reg(sc, offsetof(mrsas_reg_set, doorbell));
mrsas_complete_outstanding_ioctls(sc);
}
/**
* mrsas_complete_outstanding_ioctls Complete pending IOCTLS after kill_hba
* input: Controller softc
*
* Returns void
*/
void
mrsas_complete_outstanding_ioctls(struct mrsas_softc *sc)
{
int i;
struct mrsas_mpt_cmd *cmd_mpt;
struct mrsas_mfi_cmd *cmd_mfi;
u_int32_t count, MSIxIndex;
count = sc->msix_vectors > 0 ? sc->msix_vectors : 1;
for (i = 0; i < sc->max_fw_cmds; i++) {
cmd_mpt = sc->mpt_cmd_list[i];
if (cmd_mpt->sync_cmd_idx != (u_int32_t)MRSAS_ULONG_MAX) {
cmd_mfi = sc->mfi_cmd_list[cmd_mpt->sync_cmd_idx];
if (cmd_mfi->sync_cmd && cmd_mfi->frame->hdr.cmd != MFI_CMD_ABORT) {
for (MSIxIndex = 0; MSIxIndex < count; MSIxIndex++)
mrsas_complete_mptmfi_passthru(sc, cmd_mfi,
cmd_mpt->io_request->RaidContext.status);
}
}
}
}
/*
* mrsas_wait_for_outstanding: Wait for outstanding commands
* input: Adapter Context.
*
* This function will wait for 180 seconds for outstanding commands to be
* completed.
*/
int
mrsas_wait_for_outstanding(struct mrsas_softc *sc)
{
int i, outstanding, retval = 0;
u_int32_t fw_state, count, MSIxIndex;
for (i = 0; i < MRSAS_RESET_WAIT_TIME; i++) {
if (sc->remove_in_progress) {
mrsas_dprint(sc, MRSAS_OCR,
"Driver remove or shutdown called.\n");
retval = 1;
goto out;
}
/* Check if firmware is in fault state */
fw_state = mrsas_read_reg(sc, offsetof(mrsas_reg_set,
outbound_scratch_pad)) & MFI_STATE_MASK;
if (fw_state == MFI_STATE_FAULT) {
mrsas_dprint(sc, MRSAS_OCR,
"Found FW in FAULT state, will reset adapter.\n");
retval = 1;
goto out;
}
outstanding = mrsas_atomic_read(&sc->fw_outstanding);
if (!outstanding)
goto out;
if (!(i % MRSAS_RESET_NOTICE_INTERVAL)) {
mrsas_dprint(sc, MRSAS_OCR, "[%2d]waiting for %d "
"commands to complete\n", i, outstanding);
count = sc->msix_vectors > 0 ? sc->msix_vectors : 1;
for (MSIxIndex = 0; MSIxIndex < count; MSIxIndex++)
mrsas_complete_cmd(sc, MSIxIndex);
}
DELAY(1000 * 1000);
}
if (mrsas_atomic_read(&sc->fw_outstanding)) {
mrsas_dprint(sc, MRSAS_OCR,
" pending commands remain after waiting,"
" will reset adapter.\n");
retval = 1;
}
out:
return retval;
}
/*
* mrsas_release_mfi_cmd: Return a cmd to free command pool
* input: Command packet for return to free cmd pool
*
* This function returns the MFI command to the command list.
*/
void
mrsas_release_mfi_cmd(struct mrsas_mfi_cmd *cmd)
{
struct mrsas_softc *sc = cmd->sc;
mtx_lock(&sc->mfi_cmd_pool_lock);
cmd->ccb_ptr = NULL;
cmd->cmd_id.frame_count = 0;
TAILQ_INSERT_TAIL(&(sc->mrsas_mfi_cmd_list_head), cmd, next);
mtx_unlock(&sc->mfi_cmd_pool_lock);
return;
}
/*
* mrsas_get_controller_info: Returns FW's controller structure
* input: Adapter soft state
* Controller information structure
*
* Issues an internal command (DCMD) to get the FW's controller structure. This
* information is mainly used to find out the maximum IO transfer per command
* supported by the FW.
*/
static int
mrsas_get_ctrl_info(struct mrsas_softc *sc)
{
int retcode = 0;
struct mrsas_mfi_cmd *cmd;
struct mrsas_dcmd_frame *dcmd;
cmd = mrsas_get_mfi_cmd(sc);
if (!cmd) {
device_printf(sc->mrsas_dev, "Failed to get a free cmd\n");
return -ENOMEM;
}
dcmd = &cmd->frame->dcmd;
if (mrsas_alloc_ctlr_info_cmd(sc) != SUCCESS) {
device_printf(sc->mrsas_dev, "Cannot allocate get ctlr info cmd\n");
mrsas_release_mfi_cmd(cmd);
return -ENOMEM;
}
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0xFF;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_READ;
dcmd->timeout = 0;
dcmd->pad_0 = 0;
dcmd->data_xfer_len = sizeof(struct mrsas_ctrl_info);
dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
dcmd->sgl.sge32[0].phys_addr = sc->ctlr_info_phys_addr;
dcmd->sgl.sge32[0].length = sizeof(struct mrsas_ctrl_info);
if (!mrsas_issue_polled(sc, cmd))
memcpy(sc->ctrl_info, sc->ctlr_info_mem, sizeof(struct mrsas_ctrl_info));
else
retcode = 1;
mrsas_update_ext_vd_details(sc);
mrsas_free_ctlr_info_cmd(sc);
mrsas_release_mfi_cmd(cmd);
return (retcode);
}
/*
* mrsas_update_ext_vd_details : Update details w.r.t Extended VD
* input:
* sc - Controller's softc
*/
static void
mrsas_update_ext_vd_details(struct mrsas_softc *sc)
{
sc->max256vdSupport =
sc->ctrl_info->adapterOperations3.supportMaxExtLDs;
/* Below is additional check to address future FW enhancement */
if (sc->ctrl_info->max_lds > 64)
sc->max256vdSupport = 1;
sc->drv_supported_vd_count = MRSAS_MAX_LD_CHANNELS
* MRSAS_MAX_DEV_PER_CHANNEL;
sc->drv_supported_pd_count = MRSAS_MAX_PD_CHANNELS
* MRSAS_MAX_DEV_PER_CHANNEL;
if (sc->max256vdSupport) {
sc->fw_supported_vd_count = MAX_LOGICAL_DRIVES_EXT;
sc->fw_supported_pd_count = MAX_PHYSICAL_DEVICES;
} else {
sc->fw_supported_vd_count = MAX_LOGICAL_DRIVES;
sc->fw_supported_pd_count = MAX_PHYSICAL_DEVICES;
}
sc->old_map_sz = sizeof(MR_FW_RAID_MAP) +
(sizeof(MR_LD_SPAN_MAP) *
(sc->fw_supported_vd_count - 1));
sc->new_map_sz = sizeof(MR_FW_RAID_MAP_EXT);
sc->drv_map_sz = sizeof(MR_DRV_RAID_MAP) +
(sizeof(MR_LD_SPAN_MAP) *
(sc->drv_supported_vd_count - 1));
sc->max_map_sz = max(sc->old_map_sz, sc->new_map_sz);
if (sc->max256vdSupport)
sc->current_map_sz = sc->new_map_sz;
else
sc->current_map_sz = sc->old_map_sz;
}
/*
* mrsas_alloc_ctlr_info_cmd: Allocates memory for controller info command
* input: Adapter soft state
*
* Allocates DMAable memory for the controller info internal command.
*/
int
mrsas_alloc_ctlr_info_cmd(struct mrsas_softc *sc)
{
int ctlr_info_size;
/* Allocate get controller info command */
ctlr_info_size = sizeof(struct mrsas_ctrl_info);
if (bus_dma_tag_create(sc->mrsas_parent_tag,
1, 0,
BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR,
NULL, NULL,
ctlr_info_size,
1,
ctlr_info_size,
BUS_DMA_ALLOCNOW,
NULL, NULL,
&sc->ctlr_info_tag)) {
device_printf(sc->mrsas_dev, "Cannot allocate ctlr info tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->ctlr_info_tag, (void **)&sc->ctlr_info_mem,
BUS_DMA_NOWAIT, &sc->ctlr_info_dmamap)) {
device_printf(sc->mrsas_dev, "Cannot allocate ctlr info cmd mem\n");
return (ENOMEM);
}
if (bus_dmamap_load(sc->ctlr_info_tag, sc->ctlr_info_dmamap,
sc->ctlr_info_mem, ctlr_info_size, mrsas_addr_cb,
&sc->ctlr_info_phys_addr, BUS_DMA_NOWAIT)) {
device_printf(sc->mrsas_dev, "Cannot load ctlr info cmd mem\n");
return (ENOMEM);
}
memset(sc->ctlr_info_mem, 0, ctlr_info_size);
return (0);
}
/*
* mrsas_free_ctlr_info_cmd: Free memory for controller info command
* input: Adapter soft state
*
* Deallocates memory of the get controller info cmd.
*/
void
mrsas_free_ctlr_info_cmd(struct mrsas_softc *sc)
{
if (sc->ctlr_info_phys_addr)
bus_dmamap_unload(sc->ctlr_info_tag, sc->ctlr_info_dmamap);
if (sc->ctlr_info_mem != NULL)
bus_dmamem_free(sc->ctlr_info_tag, sc->ctlr_info_mem, sc->ctlr_info_dmamap);
if (sc->ctlr_info_tag != NULL)
bus_dma_tag_destroy(sc->ctlr_info_tag);
}
/*
* mrsas_issue_polled: Issues a polling command
* inputs: Adapter soft state
* Command packet to be issued
*
* This function is for posting of internal commands to Firmware. MFI requires
* the cmd_status to be set to 0xFF before posting. The maximun wait time of
* the poll response timer is 180 seconds.
*/
int
mrsas_issue_polled(struct mrsas_softc *sc, struct mrsas_mfi_cmd *cmd)
{
struct mrsas_header *frame_hdr = &cmd->frame->hdr;
u_int8_t max_wait = MRSAS_INTERNAL_CMD_WAIT_TIME;
int i, retcode = 0;
frame_hdr->cmd_status = 0xFF;
frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
/* Issue the frame using inbound queue port */
if (mrsas_issue_dcmd(sc, cmd)) {
device_printf(sc->mrsas_dev, "Cannot issue DCMD internal command.\n");
return (1);
}
/*
* Poll response timer to wait for Firmware response. While this
* timer with the DELAY call could block CPU, the time interval for
* this is only 1 millisecond.
*/
if (frame_hdr->cmd_status == 0xFF) {
for (i = 0; i < (max_wait * 1000); i++) {
if (frame_hdr->cmd_status == 0xFF)
DELAY(1000);
else
break;
}
}
if (frame_hdr->cmd_status != 0) {
if (frame_hdr->cmd_status == 0xFF)
device_printf(sc->mrsas_dev, "DCMD timed out after %d seconds.\n", max_wait);
else
device_printf(sc->mrsas_dev, "DCMD failed, status = 0x%x\n", frame_hdr->cmd_status);
retcode = 1;
}
return (retcode);
}
/*
* mrsas_issue_dcmd: Issues a MFI Pass thru cmd
* input: Adapter soft state mfi cmd pointer
*
* This function is called by mrsas_issued_blocked_cmd() and
* mrsas_issued_polled(), to build the MPT command and then fire the command
* to Firmware.
*/
int
mrsas_issue_dcmd(struct mrsas_softc *sc, struct mrsas_mfi_cmd *cmd)
{
MRSAS_REQUEST_DESCRIPTOR_UNION *req_desc;
req_desc = mrsas_build_mpt_cmd(sc, cmd);
if (!req_desc) {
device_printf(sc->mrsas_dev, "Cannot build MPT cmd.\n");
return (1);
}
mrsas_fire_cmd(sc, req_desc->addr.u.low, req_desc->addr.u.high);
return (0);
}
/*
* mrsas_build_mpt_cmd: Calls helper function to build Passthru cmd
* input: Adapter soft state mfi cmd to build
*
* This function is called by mrsas_issue_cmd() to build the MPT-MFI passthru
* command and prepares the MPT command to send to Firmware.
*/
MRSAS_REQUEST_DESCRIPTOR_UNION *
mrsas_build_mpt_cmd(struct mrsas_softc *sc, struct mrsas_mfi_cmd *cmd)
{
MRSAS_REQUEST_DESCRIPTOR_UNION *req_desc;
u_int16_t index;
if (mrsas_build_mptmfi_passthru(sc, cmd)) {
device_printf(sc->mrsas_dev, "Cannot build MPT-MFI passthru cmd.\n");
return NULL;
}
index = cmd->cmd_id.context.smid;
req_desc = mrsas_get_request_desc(sc, index - 1);
if (!req_desc)
return NULL;
req_desc->addr.Words = 0;
req_desc->SCSIIO.RequestFlags = (MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO << MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
req_desc->SCSIIO.SMID = index;
return (req_desc);
}
/*
* mrsas_build_mptmfi_passthru: Builds a MPT MFI Passthru command
* input: Adapter soft state mfi cmd pointer
*
* The MPT command and the io_request are setup as a passthru command. The SGE
* chain address is set to frame_phys_addr of the MFI command.
*/
u_int8_t
mrsas_build_mptmfi_passthru(struct mrsas_softc *sc, struct mrsas_mfi_cmd *mfi_cmd)
{
MPI25_IEEE_SGE_CHAIN64 *mpi25_ieee_chain;
PTR_MRSAS_RAID_SCSI_IO_REQUEST io_req;
struct mrsas_mpt_cmd *mpt_cmd;
struct mrsas_header *frame_hdr = &mfi_cmd->frame->hdr;
mpt_cmd = mrsas_get_mpt_cmd(sc);
if (!mpt_cmd)
return (1);
/* Save the smid. To be used for returning the cmd */
mfi_cmd->cmd_id.context.smid = mpt_cmd->index;
mpt_cmd->sync_cmd_idx = mfi_cmd->index;
/*
* For cmds where the flag is set, store the flag and check on
* completion. For cmds with this flag, don't call
* mrsas_complete_cmd.
*/
if (frame_hdr->flags & MFI_FRAME_DONT_POST_IN_REPLY_QUEUE)
mpt_cmd->flags = MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
io_req = mpt_cmd->io_request;
if ((sc->device_id == MRSAS_INVADER) || (sc->device_id == MRSAS_FURY)) {
pMpi25IeeeSgeChain64_t sgl_ptr_end = (pMpi25IeeeSgeChain64_t)&io_req->SGL;
sgl_ptr_end += sc->max_sge_in_main_msg - 1;
sgl_ptr_end->Flags = 0;
}
mpi25_ieee_chain = (MPI25_IEEE_SGE_CHAIN64 *) & io_req->SGL.IeeeChain;
io_req->Function = MRSAS_MPI2_FUNCTION_PASSTHRU_IO_REQUEST;
io_req->SGLOffset0 = offsetof(MRSAS_RAID_SCSI_IO_REQUEST, SGL) / 4;
io_req->ChainOffset = sc->chain_offset_mfi_pthru;
mpi25_ieee_chain->Address = mfi_cmd->frame_phys_addr;
mpi25_ieee_chain->Flags = IEEE_SGE_FLAGS_CHAIN_ELEMENT |
MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR;
mpi25_ieee_chain->Length = MRSAS_MAX_SZ_CHAIN_FRAME;
return (0);
}
/*
* mrsas_issue_blocked_cmd: Synchronous wrapper around regular FW cmds
* input: Adapter soft state Command to be issued
*
* This function waits on an event for the command to be returned from the ISR.
* Max wait time is MRSAS_INTERNAL_CMD_WAIT_TIME secs. Used for issuing
* internal and ioctl commands.
*/
int
mrsas_issue_blocked_cmd(struct mrsas_softc *sc, struct mrsas_mfi_cmd *cmd)
{
u_int8_t max_wait = MRSAS_INTERNAL_CMD_WAIT_TIME;
unsigned long total_time = 0;
int retcode = 0;
/* Initialize cmd_status */
cmd->cmd_status = ECONNREFUSED;
/* Build MPT-MFI command for issue to FW */
if (mrsas_issue_dcmd(sc, cmd)) {
device_printf(sc->mrsas_dev, "Cannot issue DCMD internal command.\n");
return (1);
}
sc->chan = (void *)&cmd;
while (1) {
if (cmd->cmd_status == ECONNREFUSED) {
tsleep((void *)&sc->chan, 0, "mrsas_sleep", hz);
} else
break;
total_time++;
if (total_time >= max_wait) {
device_printf(sc->mrsas_dev,
"Internal command timed out after %d seconds.\n", max_wait);
retcode = 1;
break;
}
}
return (retcode);
}
/*
* mrsas_complete_mptmfi_passthru: Completes a command
* input: @sc: Adapter soft state
* @cmd: Command to be completed
* @status: cmd completion status
*
* This function is called from mrsas_complete_cmd() after an interrupt is
* received from Firmware, and io_request->Function is
* MRSAS_MPI2_FUNCTION_PASSTHRU_IO_REQUEST.
*/
void
mrsas_complete_mptmfi_passthru(struct mrsas_softc *sc, struct mrsas_mfi_cmd *cmd,
u_int8_t status)
{
struct mrsas_header *hdr = &cmd->frame->hdr;
u_int8_t cmd_status = cmd->frame->hdr.cmd_status;
/* Reset the retry counter for future re-tries */
cmd->retry_for_fw_reset = 0;
if (cmd->ccb_ptr)
cmd->ccb_ptr = NULL;
switch (hdr->cmd) {
case MFI_CMD_INVALID:
device_printf(sc->mrsas_dev, "MFI_CMD_INVALID command.\n");
break;
case MFI_CMD_PD_SCSI_IO:
case MFI_CMD_LD_SCSI_IO:
/*
* MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
* issued either through an IO path or an IOCTL path. If it
* was via IOCTL, we will send it to internal completion.
*/
if (cmd->sync_cmd) {
cmd->sync_cmd = 0;
mrsas_wakeup(sc, cmd);
break;
}
case MFI_CMD_SMP:
case MFI_CMD_STP:
case MFI_CMD_DCMD:
/* Check for LD map update */
if ((cmd->frame->dcmd.opcode == MR_DCMD_LD_MAP_GET_INFO) &&
(cmd->frame->dcmd.mbox.b[1] == 1)) {
sc->fast_path_io = 0;
mtx_lock(&sc->raidmap_lock);
if (cmd_status != 0) {
if (cmd_status != MFI_STAT_NOT_FOUND)
device_printf(sc->mrsas_dev, "map sync failed, status=%x\n", cmd_status);
else {
mrsas_release_mfi_cmd(cmd);
mtx_unlock(&sc->raidmap_lock);
break;
}
} else
sc->map_id++;
mrsas_release_mfi_cmd(cmd);
if (MR_ValidateMapInfo(sc))
sc->fast_path_io = 0;
else
sc->fast_path_io = 1;
mrsas_sync_map_info(sc);
mtx_unlock(&sc->raidmap_lock);
break;
}
if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_GET_INFO ||
cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_GET) {
sc->mrsas_aen_triggered = 0;
}
/* See if got an event notification */
if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
mrsas_complete_aen(sc, cmd);
else
mrsas_wakeup(sc, cmd);
break;
case MFI_CMD_ABORT:
/* Command issued to abort another cmd return */
mrsas_complete_abort(sc, cmd);
break;
default:
device_printf(sc->mrsas_dev, "Unknown command completed! [0x%X]\n", hdr->cmd);
break;
}
}
/*
* mrsas_wakeup: Completes an internal command
* input: Adapter soft state
* Command to be completed
*
* In mrsas_issue_blocked_cmd(), after a command is issued to Firmware, a wait
* timer is started. This function is called from
* mrsas_complete_mptmfi_passthru() as it completes the command, to wake up
* from the command wait.
*/
void
mrsas_wakeup(struct mrsas_softc *sc, struct mrsas_mfi_cmd *cmd)
{
cmd->cmd_status = cmd->frame->io.cmd_status;
if (cmd->cmd_status == ECONNREFUSED)
cmd->cmd_status = 0;
sc->chan = (void *)&cmd;
wakeup_one((void *)&sc->chan);
return;
}
/*
* mrsas_shutdown_ctlr: Instructs FW to shutdown the controller input:
* Adapter soft state Shutdown/Hibernate
*
* This function issues a DCMD internal command to Firmware to initiate shutdown
* of the controller.
*/
static void
mrsas_shutdown_ctlr(struct mrsas_softc *sc, u_int32_t opcode)
{
struct mrsas_mfi_cmd *cmd;
struct mrsas_dcmd_frame *dcmd;
if (sc->adprecovery == MRSAS_HW_CRITICAL_ERROR)
return;
cmd = mrsas_get_mfi_cmd(sc);
if (!cmd) {
device_printf(sc->mrsas_dev, "Cannot allocate for shutdown cmd.\n");
return;
}
if (sc->aen_cmd)
mrsas_issue_blocked_abort_cmd(sc, sc->aen_cmd);
if (sc->map_update_cmd)
mrsas_issue_blocked_abort_cmd(sc, sc->map_update_cmd);
dcmd = &cmd->frame->dcmd;
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0x0;
dcmd->sge_count = 0;
dcmd->flags = MFI_FRAME_DIR_NONE;
dcmd->timeout = 0;
dcmd->pad_0 = 0;
dcmd->data_xfer_len = 0;
dcmd->opcode = opcode;
device_printf(sc->mrsas_dev, "Preparing to shut down controller.\n");
mrsas_issue_blocked_cmd(sc, cmd);
mrsas_release_mfi_cmd(cmd);
return;
}
/*
* mrsas_flush_cache: Requests FW to flush all its caches input:
* Adapter soft state
*
* This function is issues a DCMD internal command to Firmware to initiate
* flushing of all caches.
*/
static void
mrsas_flush_cache(struct mrsas_softc *sc)
{
struct mrsas_mfi_cmd *cmd;
struct mrsas_dcmd_frame *dcmd;
if (sc->adprecovery == MRSAS_HW_CRITICAL_ERROR)
return;
cmd = mrsas_get_mfi_cmd(sc);
if (!cmd) {
device_printf(sc->mrsas_dev, "Cannot allocate for flush cache cmd.\n");
return;
}
dcmd = &cmd->frame->dcmd;
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0x0;
dcmd->sge_count = 0;
dcmd->flags = MFI_FRAME_DIR_NONE;
dcmd->timeout = 0;
dcmd->pad_0 = 0;
dcmd->data_xfer_len = 0;
dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
mrsas_issue_blocked_cmd(sc, cmd);
mrsas_release_mfi_cmd(cmd);
return;
}
/*
* mrsas_get_map_info: Load and validate RAID map input:
* Adapter instance soft state
*
* This function calls mrsas_get_ld_map_info() and MR_ValidateMapInfo() to load
* and validate RAID map. It returns 0 if successful, 1 other- wise.
*/
static int
mrsas_get_map_info(struct mrsas_softc *sc)
{
uint8_t retcode = 0;
sc->fast_path_io = 0;
if (!mrsas_get_ld_map_info(sc)) {
retcode = MR_ValidateMapInfo(sc);
if (retcode == 0) {
sc->fast_path_io = 1;
return 0;
}
}
return 1;
}
/*
* mrsas_get_ld_map_info: Get FW's ld_map structure input:
* Adapter instance soft state
*
* Issues an internal command (DCMD) to get the FW's controller PD list
* structure.
*/
static int
mrsas_get_ld_map_info(struct mrsas_softc *sc)
{
int retcode = 0;
struct mrsas_mfi_cmd *cmd;
struct mrsas_dcmd_frame *dcmd;
void *map;
bus_addr_t map_phys_addr = 0;
cmd = mrsas_get_mfi_cmd(sc);
if (!cmd) {
device_printf(sc->mrsas_dev,
"Cannot alloc for ld map info cmd.\n");
return 1;
}
dcmd = &cmd->frame->dcmd;
map = (void *)sc->raidmap_mem[(sc->map_id & 1)];
map_phys_addr = sc->raidmap_phys_addr[(sc->map_id & 1)];
if (!map) {
device_printf(sc->mrsas_dev,
"Failed to alloc mem for ld map info.\n");
mrsas_release_mfi_cmd(cmd);
return (ENOMEM);
}
memset(map, 0, sizeof(sc->max_map_sz));
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0xFF;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_READ;
dcmd->timeout = 0;
dcmd->pad_0 = 0;
dcmd->data_xfer_len = sc->current_map_sz;
dcmd->opcode = MR_DCMD_LD_MAP_GET_INFO;
dcmd->sgl.sge32[0].phys_addr = map_phys_addr;
dcmd->sgl.sge32[0].length = sc->current_map_sz;
if (!mrsas_issue_polled(sc, cmd))
retcode = 0;
else {
device_printf(sc->mrsas_dev,
"Fail to send get LD map info cmd.\n");
retcode = 1;
}
mrsas_release_mfi_cmd(cmd);
return (retcode);
}
/*
* mrsas_sync_map_info: Get FW's ld_map structure input:
* Adapter instance soft state
*
* Issues an internal command (DCMD) to get the FW's controller PD list
* structure.
*/
static int
mrsas_sync_map_info(struct mrsas_softc *sc)
{
int retcode = 0, i;
struct mrsas_mfi_cmd *cmd;
struct mrsas_dcmd_frame *dcmd;
uint32_t size_sync_info, num_lds;
MR_LD_TARGET_SYNC *target_map = NULL;
MR_DRV_RAID_MAP_ALL *map;
MR_LD_RAID *raid;
MR_LD_TARGET_SYNC *ld_sync;
bus_addr_t map_phys_addr = 0;
cmd = mrsas_get_mfi_cmd(sc);
if (!cmd) {
device_printf(sc->mrsas_dev,
"Cannot alloc for sync map info cmd\n");
return 1;
}
map = sc->ld_drv_map[sc->map_id & 1];
num_lds = map->raidMap.ldCount;
dcmd = &cmd->frame->dcmd;
size_sync_info = sizeof(MR_LD_TARGET_SYNC) * num_lds;
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
target_map = (MR_LD_TARGET_SYNC *) sc->raidmap_mem[(sc->map_id - 1) & 1];
memset(target_map, 0, sc->max_map_sz);
map_phys_addr = sc->raidmap_phys_addr[(sc->map_id - 1) & 1];
ld_sync = (MR_LD_TARGET_SYNC *) target_map;
for (i = 0; i < num_lds; i++, ld_sync++) {
raid = MR_LdRaidGet(i, map);
ld_sync->targetId = MR_GetLDTgtId(i, map);
ld_sync->seqNum = raid->seqNum;
}
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0xFF;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_WRITE;
dcmd->timeout = 0;
dcmd->pad_0 = 0;
dcmd->data_xfer_len = sc->current_map_sz;
dcmd->mbox.b[0] = num_lds;
dcmd->mbox.b[1] = MRSAS_DCMD_MBOX_PEND_FLAG;
dcmd->opcode = MR_DCMD_LD_MAP_GET_INFO;
dcmd->sgl.sge32[0].phys_addr = map_phys_addr;
dcmd->sgl.sge32[0].length = sc->current_map_sz;
sc->map_update_cmd = cmd;
if (mrsas_issue_dcmd(sc, cmd)) {
device_printf(sc->mrsas_dev,
"Fail to send sync map info command.\n");
return (1);
}
return (retcode);
}
/*
* mrsas_get_pd_list: Returns FW's PD list structure input:
* Adapter soft state
*
* Issues an internal command (DCMD) to get the FW's controller PD list
* structure. This information is mainly used to find out about system
* supported by Firmware.
*/
static int
mrsas_get_pd_list(struct mrsas_softc *sc)
{
int retcode = 0, pd_index = 0, pd_count = 0, pd_list_size;
struct mrsas_mfi_cmd *cmd;
struct mrsas_dcmd_frame *dcmd;
struct MR_PD_LIST *pd_list_mem;
struct MR_PD_ADDRESS *pd_addr;
bus_addr_t pd_list_phys_addr = 0;
struct mrsas_tmp_dcmd *tcmd;
cmd = mrsas_get_mfi_cmd(sc);
if (!cmd) {
device_printf(sc->mrsas_dev,
"Cannot alloc for get PD list cmd\n");
return 1;
}
dcmd = &cmd->frame->dcmd;
tcmd = malloc(sizeof(struct mrsas_tmp_dcmd), M_MRSAS, M_NOWAIT);
pd_list_size = MRSAS_MAX_PD * sizeof(struct MR_PD_LIST);
if (mrsas_alloc_tmp_dcmd(sc, tcmd, pd_list_size) != SUCCESS) {
device_printf(sc->mrsas_dev,
"Cannot alloc dmamap for get PD list cmd\n");
mrsas_release_mfi_cmd(cmd);
return (ENOMEM);
} else {
pd_list_mem = tcmd->tmp_dcmd_mem;
pd_list_phys_addr = tcmd->tmp_dcmd_phys_addr;
}
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->mbox.b[0] = MR_PD_QUERY_TYPE_EXPOSED_TO_HOST;
dcmd->mbox.b[1] = 0;
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0xFF;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_READ;
dcmd->timeout = 0;
dcmd->pad_0 = 0;
dcmd->data_xfer_len = MRSAS_MAX_PD * sizeof(struct MR_PD_LIST);
dcmd->opcode = MR_DCMD_PD_LIST_QUERY;
dcmd->sgl.sge32[0].phys_addr = pd_list_phys_addr;
dcmd->sgl.sge32[0].length = MRSAS_MAX_PD * sizeof(struct MR_PD_LIST);
if (!mrsas_issue_polled(sc, cmd))
retcode = 0;
else
retcode = 1;
/* Get the instance PD list */
pd_count = MRSAS_MAX_PD;
pd_addr = pd_list_mem->addr;
if (retcode == 0 && pd_list_mem->count < pd_count) {
memset(sc->local_pd_list, 0,
MRSAS_MAX_PD * sizeof(struct mrsas_pd_list));
for (pd_index = 0; pd_index < pd_list_mem->count; pd_index++) {
sc->local_pd_list[pd_addr->deviceId].tid = pd_addr->deviceId;
sc->local_pd_list[pd_addr->deviceId].driveType =
pd_addr->scsiDevType;
sc->local_pd_list[pd_addr->deviceId].driveState =
MR_PD_STATE_SYSTEM;
pd_addr++;
}
}
/*
* Use mutext/spinlock if pd_list component size increase more than
* 32 bit.
*/
memcpy(sc->pd_list, sc->local_pd_list, sizeof(sc->local_pd_list));
mrsas_free_tmp_dcmd(tcmd);
mrsas_release_mfi_cmd(cmd);
free(tcmd, M_MRSAS);
return (retcode);
}
/*
* mrsas_get_ld_list: Returns FW's LD list structure input:
* Adapter soft state
*
* Issues an internal command (DCMD) to get the FW's controller PD list
* structure. This information is mainly used to find out about supported by
* the FW.
*/
static int
mrsas_get_ld_list(struct mrsas_softc *sc)
{
int ld_list_size, retcode = 0, ld_index = 0, ids = 0;
struct mrsas_mfi_cmd *cmd;
struct mrsas_dcmd_frame *dcmd;
struct MR_LD_LIST *ld_list_mem;
bus_addr_t ld_list_phys_addr = 0;
struct mrsas_tmp_dcmd *tcmd;
cmd = mrsas_get_mfi_cmd(sc);
if (!cmd) {
device_printf(sc->mrsas_dev,
"Cannot alloc for get LD list cmd\n");
return 1;
}
dcmd = &cmd->frame->dcmd;
tcmd = malloc(sizeof(struct mrsas_tmp_dcmd), M_MRSAS, M_NOWAIT);
ld_list_size = sizeof(struct MR_LD_LIST);
if (mrsas_alloc_tmp_dcmd(sc, tcmd, ld_list_size) != SUCCESS) {
device_printf(sc->mrsas_dev,
"Cannot alloc dmamap for get LD list cmd\n");
mrsas_release_mfi_cmd(cmd);
return (ENOMEM);
} else {
ld_list_mem = tcmd->tmp_dcmd_mem;
ld_list_phys_addr = tcmd->tmp_dcmd_phys_addr;
}
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
if (sc->max256vdSupport)
dcmd->mbox.b[0] = 1;
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0xFF;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_READ;
dcmd->timeout = 0;
dcmd->data_xfer_len = sizeof(struct MR_LD_LIST);
dcmd->opcode = MR_DCMD_LD_GET_LIST;
dcmd->sgl.sge32[0].phys_addr = ld_list_phys_addr;
dcmd->sgl.sge32[0].length = sizeof(struct MR_LD_LIST);
dcmd->pad_0 = 0;
if (!mrsas_issue_polled(sc, cmd))
retcode = 0;
else
retcode = 1;
#if VD_EXT_DEBUG
printf("Number of LDs %d\n", ld_list_mem->ldCount);
#endif
/* Get the instance LD list */
if ((retcode == 0) &&
(ld_list_mem->ldCount <= sc->fw_supported_vd_count)) {
sc->CurLdCount = ld_list_mem->ldCount;
memset(sc->ld_ids, 0xff, MAX_LOGICAL_DRIVES_EXT);
for (ld_index = 0; ld_index < ld_list_mem->ldCount; ld_index++) {
if (ld_list_mem->ldList[ld_index].state != 0) {
ids = ld_list_mem->ldList[ld_index].ref.ld_context.targetId;
sc->ld_ids[ids] = ld_list_mem->ldList[ld_index].ref.ld_context.targetId;
}
}
}
mrsas_free_tmp_dcmd(tcmd);
mrsas_release_mfi_cmd(cmd);
free(tcmd, M_MRSAS);
return (retcode);
}
/*
* mrsas_alloc_tmp_dcmd: Allocates memory for temporary command input:
* Adapter soft state Temp command Size of alloction
*
* Allocates DMAable memory for a temporary internal command. The allocated
* memory is initialized to all zeros upon successful loading of the dma
* mapped memory.
*/
int
mrsas_alloc_tmp_dcmd(struct mrsas_softc *sc,
struct mrsas_tmp_dcmd *tcmd, int size)
{
if (bus_dma_tag_create(sc->mrsas_parent_tag,
1, 0,
BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR,
NULL, NULL,
size,
1,
size,
BUS_DMA_ALLOCNOW,
NULL, NULL,
&tcmd->tmp_dcmd_tag)) {
device_printf(sc->mrsas_dev, "Cannot allocate tmp dcmd tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(tcmd->tmp_dcmd_tag, (void **)&tcmd->tmp_dcmd_mem,
BUS_DMA_NOWAIT, &tcmd->tmp_dcmd_dmamap)) {
device_printf(sc->mrsas_dev, "Cannot allocate tmp dcmd mem\n");
return (ENOMEM);
}
if (bus_dmamap_load(tcmd->tmp_dcmd_tag, tcmd->tmp_dcmd_dmamap,
tcmd->tmp_dcmd_mem, size, mrsas_addr_cb,
&tcmd->tmp_dcmd_phys_addr, BUS_DMA_NOWAIT)) {
device_printf(sc->mrsas_dev, "Cannot load tmp dcmd mem\n");
return (ENOMEM);
}
memset(tcmd->tmp_dcmd_mem, 0, size);
return (0);
}
/*
* mrsas_free_tmp_dcmd: Free memory for temporary command input:
* temporary dcmd pointer
*
* Deallocates memory of the temporary command for use in the construction of
* the internal DCMD.
*/
void
mrsas_free_tmp_dcmd(struct mrsas_tmp_dcmd *tmp)
{
if (tmp->tmp_dcmd_phys_addr)
bus_dmamap_unload(tmp->tmp_dcmd_tag, tmp->tmp_dcmd_dmamap);
if (tmp->tmp_dcmd_mem != NULL)
bus_dmamem_free(tmp->tmp_dcmd_tag, tmp->tmp_dcmd_mem, tmp->tmp_dcmd_dmamap);
if (tmp->tmp_dcmd_tag != NULL)
bus_dma_tag_destroy(tmp->tmp_dcmd_tag);
}
/*
* mrsas_issue_blocked_abort_cmd: Aborts previously issued cmd input:
* Adapter soft state Previously issued cmd to be aborted
*
* This function is used to abort previously issued commands, such as AEN and
* RAID map sync map commands. The abort command is sent as a DCMD internal
* command and subsequently the driver will wait for a return status. The
* max wait time is MRSAS_INTERNAL_CMD_WAIT_TIME seconds.
*/
static int
mrsas_issue_blocked_abort_cmd(struct mrsas_softc *sc,
struct mrsas_mfi_cmd *cmd_to_abort)
{
struct mrsas_mfi_cmd *cmd;
struct mrsas_abort_frame *abort_fr;
u_int8_t retcode = 0;
unsigned long total_time = 0;
u_int8_t max_wait = MRSAS_INTERNAL_CMD_WAIT_TIME;
cmd = mrsas_get_mfi_cmd(sc);
if (!cmd) {
device_printf(sc->mrsas_dev, "Cannot alloc for abort cmd\n");
return (1);
}
abort_fr = &cmd->frame->abort;
/* Prepare and issue the abort frame */
abort_fr->cmd = MFI_CMD_ABORT;
abort_fr->cmd_status = 0xFF;
abort_fr->flags = 0;
abort_fr->abort_context = cmd_to_abort->index;
abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
abort_fr->abort_mfi_phys_addr_hi = 0;
cmd->sync_cmd = 1;
cmd->cmd_status = 0xFF;
if (mrsas_issue_dcmd(sc, cmd)) {
device_printf(sc->mrsas_dev, "Fail to send abort command.\n");
return (1);
}
/* Wait for this cmd to complete */
sc->chan = (void *)&cmd;
while (1) {
if (cmd->cmd_status == 0xFF) {
tsleep((void *)&sc->chan, 0, "mrsas_sleep", hz);
} else
break;
total_time++;
if (total_time >= max_wait) {
device_printf(sc->mrsas_dev, "Abort cmd timed out after %d sec.\n", max_wait);
retcode = 1;
break;
}
}
cmd->sync_cmd = 0;
mrsas_release_mfi_cmd(cmd);
return (retcode);
}
/*
* mrsas_complete_abort: Completes aborting a command input:
* Adapter soft state Cmd that was issued to abort another cmd
*
* The mrsas_issue_blocked_abort_cmd() function waits for the command status to
* change after sending the command. This function is called from
* mrsas_complete_mptmfi_passthru() to wake up the sleep thread associated.
*/
void
mrsas_complete_abort(struct mrsas_softc *sc, struct mrsas_mfi_cmd *cmd)
{
if (cmd->sync_cmd) {
cmd->sync_cmd = 0;
cmd->cmd_status = 0;
sc->chan = (void *)&cmd;
wakeup_one((void *)&sc->chan);
}
return;
}
/*
* mrsas_aen_handler: AEN processing callback function from thread context
* input: Adapter soft state
*
* Asynchronous event handler
*/
void
mrsas_aen_handler(struct mrsas_softc *sc)
{
union mrsas_evt_class_locale class_locale;
int doscan = 0;
u_int32_t seq_num;
int error;
if (!sc) {
device_printf(sc->mrsas_dev, "invalid instance!\n");
return;
}
if (sc->evt_detail_mem) {
switch (sc->evt_detail_mem->code) {
case MR_EVT_PD_INSERTED:
mrsas_get_pd_list(sc);
mrsas_bus_scan_sim(sc, sc->sim_1);
doscan = 0;
break;
case MR_EVT_PD_REMOVED:
mrsas_get_pd_list(sc);
mrsas_bus_scan_sim(sc, sc->sim_1);
doscan = 0;
break;
case MR_EVT_LD_OFFLINE:
case MR_EVT_CFG_CLEARED:
case MR_EVT_LD_DELETED:
mrsas_bus_scan_sim(sc, sc->sim_0);
doscan = 0;
break;
case MR_EVT_LD_CREATED:
mrsas_get_ld_list(sc);
mrsas_bus_scan_sim(sc, sc->sim_0);
doscan = 0;
break;
case MR_EVT_CTRL_HOST_BUS_SCAN_REQUESTED:
case MR_EVT_FOREIGN_CFG_IMPORTED:
case MR_EVT_LD_STATE_CHANGE:
doscan = 1;
break;
default:
doscan = 0;
break;
}
} else {
device_printf(sc->mrsas_dev, "invalid evt_detail\n");
return;
}
if (doscan) {
mrsas_get_pd_list(sc);
mrsas_dprint(sc, MRSAS_AEN, "scanning ...sim 1\n");
mrsas_bus_scan_sim(sc, sc->sim_1);
mrsas_get_ld_list(sc);
mrsas_dprint(sc, MRSAS_AEN, "scanning ...sim 0\n");
mrsas_bus_scan_sim(sc, sc->sim_0);
}
seq_num = sc->evt_detail_mem->seq_num + 1;
/* Register AEN with FW for latest sequence number plus 1 */
class_locale.members.reserved = 0;
class_locale.members.locale = MR_EVT_LOCALE_ALL;
class_locale.members.class = MR_EVT_CLASS_DEBUG;
if (sc->aen_cmd != NULL)
return;
mtx_lock(&sc->aen_lock);
error = mrsas_register_aen(sc, seq_num,
class_locale.word);
mtx_unlock(&sc->aen_lock);
if (error)
device_printf(sc->mrsas_dev, "register aen failed error %x\n", error);
}
/*
* mrsas_complete_aen: Completes AEN command
* input: Adapter soft state
* Cmd that was issued to abort another cmd
*
* This function will be called from ISR and will continue event processing from
* thread context by enqueuing task in ev_tq (callback function
* "mrsas_aen_handler").
*/
void
mrsas_complete_aen(struct mrsas_softc *sc, struct mrsas_mfi_cmd *cmd)
{
/*
* Don't signal app if it is just an aborted previously registered
* aen
*/
if ((!cmd->abort_aen) && (sc->remove_in_progress == 0)) {
sc->mrsas_aen_triggered = 1;
mtx_lock(&sc->aen_lock);
if (sc->mrsas_poll_waiting) {
sc->mrsas_poll_waiting = 0;
selwakeup(&sc->mrsas_select);
}
mtx_unlock(&sc->aen_lock);
} else
cmd->abort_aen = 0;
sc->aen_cmd = NULL;
mrsas_release_mfi_cmd(cmd);
if (!sc->remove_in_progress)
taskqueue_enqueue(sc->ev_tq, &sc->ev_task);
return;
}
static device_method_t mrsas_methods[] = {
DEVMETHOD(device_probe, mrsas_probe),
DEVMETHOD(device_attach, mrsas_attach),
DEVMETHOD(device_detach, mrsas_detach),
DEVMETHOD(device_suspend, mrsas_suspend),
DEVMETHOD(device_resume, mrsas_resume),
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
{0, 0}
};
static driver_t mrsas_driver = {
"mrsas",
mrsas_methods,
sizeof(struct mrsas_softc)
};
static devclass_t mrsas_devclass;
DRIVER_MODULE(mrsas, pci, mrsas_driver, mrsas_devclass, 0, 0);
MODULE_DEPEND(mrsas, cam, 1, 1, 1);