233 lines
6.8 KiB
Groff
Raw Normal View History

.\"
.\" Copyright (c) 1998, 1999 Kenneth D. Merry.
.\" All rights reserved.
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
.\" 1. Redistributions of source code must retain the above copyright
.\" notice, this list of conditions and the following disclaimer.
.\" 2. Redistributions in binary form must reproduce the above copyright
.\" notice, this list of conditions and the following disclaimer in the
.\" documentation and/or other materials provided with the distribution.
.\" 3. The name of the author may not be used to endorse or promote products
.\" derived from this software without specific prior written permission.
.\"
.\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
.\" ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
.\" SUCH DAMAGE.
.\"
1999-08-28 00:22:10 +00:00
.\" $FreeBSD$
.\"
Add asynchronous command support to the pass(4) driver, and the new camdd(8) utility. CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and completed CCBs may be retrieved via the CAMIOGET ioctl. User processes can use poll(2) or kevent(2) to get notification when I/O has completed. While the existing CAMIOCOMMAND blocking ioctl interface only supports user virtual data pointers in a CCB (generally only one per CCB), the new CAMIOQUEUE ioctl supports user virtual and physical address pointers, as well as user virtual and physical scatter/gather lists. This allows user applications to have more flexibility in their data handling operations. Kernel memory for data transferred via the queued interface is allocated from the zone allocator in MAXPHYS sized chunks, and user data is copied in and out. This is likely faster than the vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in configurations with many processors (there are more TLB shootdowns caused by the mapping/unmapping operation) but may not be as fast as running with unmapped I/O. The new memory handling model for user requests also allows applications to send CCBs with request sizes that are larger than MAXPHYS. The pass(4) driver now limits queued requests to the I/O size listed by the SIM driver in the maxio field in the Path Inquiry (XPT_PATH_INQ) CCB. There are some things things would be good to add: 1. Come up with a way to do unmapped I/O on multiple buffers. Currently the unmapped I/O interface operates on a struct bio, which includes only one address and length. It would be nice to be able to send an unmapped scatter/gather list down to busdma. This would allow eliminating the copy we currently do for data. 2. Add an ioctl to list currently outstanding CCBs in the various queues. 3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do that. 4. Test physical address support. Virtual pointers and scatter gather lists have been tested, but I have not yet tested physical addresses or scatter/gather lists. 5. Investigate multiple queue support. At the moment there is one queue of commands per pass(4) device. If multiple processes open the device, they will submit I/O into the same queue and get events for the same completions. This is probably the right model for most applications, but it is something that could be changed later on. Also, add a new utility, camdd(8) that uses the asynchronous pass(4) driver interface. This utility is intended to be a basic data transfer/copy utility, a simple benchmark utility, and an example of how to use the asynchronous pass(4) interface. It can copy data to and from pass(4) devices using any target queue depth, starting offset and blocksize for the input and ouptut devices. It currently only supports SCSI devices, but could be easily extended to support ATA devices. It can also copy data to and from regular files, block devices, tape devices, pipes, stdin, and stdout. It does not support queueing multiple commands to any of those targets, since it uses the standard read(2)/write(2)/writev(2)/readv(2) system calls. The I/O is done by two threads, one for the reader and one for the writer. The reader thread sends completed read requests to the writer thread in strictly sequential order, even if they complete out of order. That could be modified later on for random I/O patterns or slightly out of order I/O. camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from the pass(4) driver and also to send request notifications internally. For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR) per CAM CCB on the reading side, and a scatter/gather list (CAM_DATA_SG) on the writing side. In addition to testing both interfaces, this makes any potential reblocking of I/O easier. No data is copied between the reader and the writer, but rather the reader's buffers are split into multiple I/O requests or combined into a single I/O request depending on the input and output blocksize. For the file I/O path, camdd(8) also uses a single buffer (read(2), write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list (readv(2), writev(2), preadv(2), pwritev(2)) on writes. Things that would be nice to do for camdd(8) eventually: 1. Add support for I/O pattern generation. Patterns like all zeros, all ones, LBA-based patterns, random patterns, etc. Right Now you can always use /dev/zero, /dev/random, etc. 2. Add support for a "sink" mode, so we do only reads with no writes. Right now, you can use /dev/null. 3. Add support for automatic queue depth probing, so that we can figure out the right queue depth on the input and output side for maximum throughput. At the moment it defaults to 6. 4. Add support for SATA device passthrough I/O. 5. Add support for random LBAs and/or lengths on the input and output sides. 6. Track average per-I/O latency and busy time. The busy time and latency could also feed in to the automatic queue depth determination. sys/cam/scsi/scsi_pass.h: Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue and fetch asynchronous CAM CCBs respectively. Although these ioctls do not have a declared argument, they both take a union ccb pointer. If we declare a size here, the ioctl code in sys/kern/sys_generic.c will malloc and free a buffer for either the CCB or the CCB pointer (depending on how it is declared). Since we have to keep a copy of the CCB (which is fairly large) anyway, having the ioctl malloc and free a CCB for each call is wasteful. sys/cam/scsi/scsi_pass.c: Add asynchronous CCB support. Add two new ioctls, CAMIOQUEUE and CAMIOGET. CAMIOQUEUE adds a CCB to the incoming queue. The CCB is executed immediately (and moved to the active queue) if it is an immediate CCB, but otherwise it will be executed in passstart() when a CCB is available from the transport layer. When CCBs are completed (because they are immediate or passdone() if they are queued), they are put on the done queue. If we get the final close on the device before all pending I/O is complete, all active I/O is moved to the abandoned queue and we increment the peripheral reference count so that the peripheral driver instance doesn't go away before all pending I/O is done. The new passcreatezone() function is called on the first call to the CAMIOQUEUE ioctl on a given device to allocate the UMA zones for I/O requests and S/G list buffers. This may be good to move off to a taskqueue at some point. The new passmemsetup() function allocates memory and scatter/gather lists to hold the user's data, and copies in any data that needs to be written. For virtual pointers (CAM_DATA_VADDR), the kernel buffer is malloced from the new pass(4) driver malloc bucket. For virtual scatter/gather lists (CAM_DATA_SG), buffers are allocated from a new per-pass(9) UMA zone in MAXPHYS-sized chunks. Physical pointers are passed in unchanged. We have support for up to 16 scatter/gather segments (for the user and kernel S/G lists) in the default struct pass_io_req, so requests with longer S/G lists require an extra kernel malloc. The new passcopysglist() function copies a user scatter/gather list to a kernel scatter/gather list. The number of elements in each list may be different, but (obviously) the amount of data stored has to be identical. The new passmemdone() function copies data out for the CAM_DATA_VADDR and CAM_DATA_SG cases. The new passiocleanup() function restores data pointers in user CCBs and frees memory. Add new functions to support kqueue(2)/kevent(2): passreadfilt() tells kevent whether or not the done queue is empty. passkqfilter() adds a knote to our list. passreadfiltdetach() removes a knote from our list. Add a new function, passpoll(), for poll(2)/select(2) to use. Add devstat(9) support for the queued CCB path. sys/cam/ata/ata_da.c: Add support for the BIO_VLIST bio type. sys/cam/cam_ccb.h: Add a new enumeration for the xflags field in the CCB header. (This doesn't change the CCB header, just adds an enumeration to use.) sys/cam/cam_xpt.c: Add a new function, xpt_setup_ccb_flags(), that allows specifying CCB flags. sys/cam/cam_xpt.h: Add a prototype for xpt_setup_ccb_flags(). sys/cam/scsi/scsi_da.c: Add support for BIO_VLIST. sys/dev/md/md.c: Add BIO_VLIST support to md(4). sys/geom/geom_disk.c: Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size limiting code in g_disk_start() a bit. sys/kern/subr_bus_dma.c: Change _bus_dmamap_load_vlist() to take a starting offset and length. Add a new function, _bus_dmamap_load_pages(), that will load a list of physical pages starting at an offset. Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios. Allow unmapped I/O to start at an offset. sys/kern/subr_uio.c: Add two new functions, physcopyin_vlist() and physcopyout_vlist(). sys/pc98/include/bus.h: Guard kernel-only parts of the pc98 machine/bus.h header with #ifdef _KERNEL. This allows userland programs to include <machine/bus.h> to get the definition of bus_addr_t and bus_size_t. sys/sys/bio.h: Add a new bio flag, BIO_VLIST. sys/sys/uio.h: Add prototypes for physcopyin_vlist() and physcopyout_vlist(). share/man/man4/pass.4: Document the CAMIOQUEUE and CAMIOGET ioctls. usr.sbin/Makefile: Add camdd. usr.sbin/camdd/Makefile: Add a makefile for camdd(8). usr.sbin/camdd/camdd.8: Man page for camdd(8). usr.sbin/camdd/camdd.c: The new camdd(8) utility. Sponsored by: Spectra Logic MFC after: 1 week
2015-12-03 20:54:55 +00:00
.Dd March 17, 2015
.Dt PASS 4
.Os
.Sh NAME
.Nm pass
.Nd CAM application passthrough driver
.Sh SYNOPSIS
.Cd device pass
.Sh DESCRIPTION
The
.Nm
driver provides a way for userland applications to issue CAM CCBs to the
kernel.
.Pp
Since the
.Nm
driver allows direct access to the CAM subsystem, system administrators
should exercise caution when granting access to this driver.
If used
improperly, this driver can allow userland applications to crash a machine
or cause data loss.
.Pp
The
.Nm
driver attaches to every
.Tn SCSI
Add asynchronous command support to the pass(4) driver, and the new camdd(8) utility. CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and completed CCBs may be retrieved via the CAMIOGET ioctl. User processes can use poll(2) or kevent(2) to get notification when I/O has completed. While the existing CAMIOCOMMAND blocking ioctl interface only supports user virtual data pointers in a CCB (generally only one per CCB), the new CAMIOQUEUE ioctl supports user virtual and physical address pointers, as well as user virtual and physical scatter/gather lists. This allows user applications to have more flexibility in their data handling operations. Kernel memory for data transferred via the queued interface is allocated from the zone allocator in MAXPHYS sized chunks, and user data is copied in and out. This is likely faster than the vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in configurations with many processors (there are more TLB shootdowns caused by the mapping/unmapping operation) but may not be as fast as running with unmapped I/O. The new memory handling model for user requests also allows applications to send CCBs with request sizes that are larger than MAXPHYS. The pass(4) driver now limits queued requests to the I/O size listed by the SIM driver in the maxio field in the Path Inquiry (XPT_PATH_INQ) CCB. There are some things things would be good to add: 1. Come up with a way to do unmapped I/O on multiple buffers. Currently the unmapped I/O interface operates on a struct bio, which includes only one address and length. It would be nice to be able to send an unmapped scatter/gather list down to busdma. This would allow eliminating the copy we currently do for data. 2. Add an ioctl to list currently outstanding CCBs in the various queues. 3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do that. 4. Test physical address support. Virtual pointers and scatter gather lists have been tested, but I have not yet tested physical addresses or scatter/gather lists. 5. Investigate multiple queue support. At the moment there is one queue of commands per pass(4) device. If multiple processes open the device, they will submit I/O into the same queue and get events for the same completions. This is probably the right model for most applications, but it is something that could be changed later on. Also, add a new utility, camdd(8) that uses the asynchronous pass(4) driver interface. This utility is intended to be a basic data transfer/copy utility, a simple benchmark utility, and an example of how to use the asynchronous pass(4) interface. It can copy data to and from pass(4) devices using any target queue depth, starting offset and blocksize for the input and ouptut devices. It currently only supports SCSI devices, but could be easily extended to support ATA devices. It can also copy data to and from regular files, block devices, tape devices, pipes, stdin, and stdout. It does not support queueing multiple commands to any of those targets, since it uses the standard read(2)/write(2)/writev(2)/readv(2) system calls. The I/O is done by two threads, one for the reader and one for the writer. The reader thread sends completed read requests to the writer thread in strictly sequential order, even if they complete out of order. That could be modified later on for random I/O patterns or slightly out of order I/O. camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from the pass(4) driver and also to send request notifications internally. For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR) per CAM CCB on the reading side, and a scatter/gather list (CAM_DATA_SG) on the writing side. In addition to testing both interfaces, this makes any potential reblocking of I/O easier. No data is copied between the reader and the writer, but rather the reader's buffers are split into multiple I/O requests or combined into a single I/O request depending on the input and output blocksize. For the file I/O path, camdd(8) also uses a single buffer (read(2), write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list (readv(2), writev(2), preadv(2), pwritev(2)) on writes. Things that would be nice to do for camdd(8) eventually: 1. Add support for I/O pattern generation. Patterns like all zeros, all ones, LBA-based patterns, random patterns, etc. Right Now you can always use /dev/zero, /dev/random, etc. 2. Add support for a "sink" mode, so we do only reads with no writes. Right now, you can use /dev/null. 3. Add support for automatic queue depth probing, so that we can figure out the right queue depth on the input and output side for maximum throughput. At the moment it defaults to 6. 4. Add support for SATA device passthrough I/O. 5. Add support for random LBAs and/or lengths on the input and output sides. 6. Track average per-I/O latency and busy time. The busy time and latency could also feed in to the automatic queue depth determination. sys/cam/scsi/scsi_pass.h: Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue and fetch asynchronous CAM CCBs respectively. Although these ioctls do not have a declared argument, they both take a union ccb pointer. If we declare a size here, the ioctl code in sys/kern/sys_generic.c will malloc and free a buffer for either the CCB or the CCB pointer (depending on how it is declared). Since we have to keep a copy of the CCB (which is fairly large) anyway, having the ioctl malloc and free a CCB for each call is wasteful. sys/cam/scsi/scsi_pass.c: Add asynchronous CCB support. Add two new ioctls, CAMIOQUEUE and CAMIOGET. CAMIOQUEUE adds a CCB to the incoming queue. The CCB is executed immediately (and moved to the active queue) if it is an immediate CCB, but otherwise it will be executed in passstart() when a CCB is available from the transport layer. When CCBs are completed (because they are immediate or passdone() if they are queued), they are put on the done queue. If we get the final close on the device before all pending I/O is complete, all active I/O is moved to the abandoned queue and we increment the peripheral reference count so that the peripheral driver instance doesn't go away before all pending I/O is done. The new passcreatezone() function is called on the first call to the CAMIOQUEUE ioctl on a given device to allocate the UMA zones for I/O requests and S/G list buffers. This may be good to move off to a taskqueue at some point. The new passmemsetup() function allocates memory and scatter/gather lists to hold the user's data, and copies in any data that needs to be written. For virtual pointers (CAM_DATA_VADDR), the kernel buffer is malloced from the new pass(4) driver malloc bucket. For virtual scatter/gather lists (CAM_DATA_SG), buffers are allocated from a new per-pass(9) UMA zone in MAXPHYS-sized chunks. Physical pointers are passed in unchanged. We have support for up to 16 scatter/gather segments (for the user and kernel S/G lists) in the default struct pass_io_req, so requests with longer S/G lists require an extra kernel malloc. The new passcopysglist() function copies a user scatter/gather list to a kernel scatter/gather list. The number of elements in each list may be different, but (obviously) the amount of data stored has to be identical. The new passmemdone() function copies data out for the CAM_DATA_VADDR and CAM_DATA_SG cases. The new passiocleanup() function restores data pointers in user CCBs and frees memory. Add new functions to support kqueue(2)/kevent(2): passreadfilt() tells kevent whether or not the done queue is empty. passkqfilter() adds a knote to our list. passreadfiltdetach() removes a knote from our list. Add a new function, passpoll(), for poll(2)/select(2) to use. Add devstat(9) support for the queued CCB path. sys/cam/ata/ata_da.c: Add support for the BIO_VLIST bio type. sys/cam/cam_ccb.h: Add a new enumeration for the xflags field in the CCB header. (This doesn't change the CCB header, just adds an enumeration to use.) sys/cam/cam_xpt.c: Add a new function, xpt_setup_ccb_flags(), that allows specifying CCB flags. sys/cam/cam_xpt.h: Add a prototype for xpt_setup_ccb_flags(). sys/cam/scsi/scsi_da.c: Add support for BIO_VLIST. sys/dev/md/md.c: Add BIO_VLIST support to md(4). sys/geom/geom_disk.c: Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size limiting code in g_disk_start() a bit. sys/kern/subr_bus_dma.c: Change _bus_dmamap_load_vlist() to take a starting offset and length. Add a new function, _bus_dmamap_load_pages(), that will load a list of physical pages starting at an offset. Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios. Allow unmapped I/O to start at an offset. sys/kern/subr_uio.c: Add two new functions, physcopyin_vlist() and physcopyout_vlist(). sys/pc98/include/bus.h: Guard kernel-only parts of the pc98 machine/bus.h header with #ifdef _KERNEL. This allows userland programs to include <machine/bus.h> to get the definition of bus_addr_t and bus_size_t. sys/sys/bio.h: Add a new bio flag, BIO_VLIST. sys/sys/uio.h: Add prototypes for physcopyin_vlist() and physcopyout_vlist(). share/man/man4/pass.4: Document the CAMIOQUEUE and CAMIOGET ioctls. usr.sbin/Makefile: Add camdd. usr.sbin/camdd/Makefile: Add a makefile for camdd(8). usr.sbin/camdd/camdd.8: Man page for camdd(8). usr.sbin/camdd/camdd.c: The new camdd(8) utility. Sponsored by: Spectra Logic MFC after: 1 week
2015-12-03 20:54:55 +00:00
and
.Tn ATA
device found in the system.
Since it attaches to every device, it provides a generic means of accessing
.Tn SCSI
Add asynchronous command support to the pass(4) driver, and the new camdd(8) utility. CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and completed CCBs may be retrieved via the CAMIOGET ioctl. User processes can use poll(2) or kevent(2) to get notification when I/O has completed. While the existing CAMIOCOMMAND blocking ioctl interface only supports user virtual data pointers in a CCB (generally only one per CCB), the new CAMIOQUEUE ioctl supports user virtual and physical address pointers, as well as user virtual and physical scatter/gather lists. This allows user applications to have more flexibility in their data handling operations. Kernel memory for data transferred via the queued interface is allocated from the zone allocator in MAXPHYS sized chunks, and user data is copied in and out. This is likely faster than the vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in configurations with many processors (there are more TLB shootdowns caused by the mapping/unmapping operation) but may not be as fast as running with unmapped I/O. The new memory handling model for user requests also allows applications to send CCBs with request sizes that are larger than MAXPHYS. The pass(4) driver now limits queued requests to the I/O size listed by the SIM driver in the maxio field in the Path Inquiry (XPT_PATH_INQ) CCB. There are some things things would be good to add: 1. Come up with a way to do unmapped I/O on multiple buffers. Currently the unmapped I/O interface operates on a struct bio, which includes only one address and length. It would be nice to be able to send an unmapped scatter/gather list down to busdma. This would allow eliminating the copy we currently do for data. 2. Add an ioctl to list currently outstanding CCBs in the various queues. 3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do that. 4. Test physical address support. Virtual pointers and scatter gather lists have been tested, but I have not yet tested physical addresses or scatter/gather lists. 5. Investigate multiple queue support. At the moment there is one queue of commands per pass(4) device. If multiple processes open the device, they will submit I/O into the same queue and get events for the same completions. This is probably the right model for most applications, but it is something that could be changed later on. Also, add a new utility, camdd(8) that uses the asynchronous pass(4) driver interface. This utility is intended to be a basic data transfer/copy utility, a simple benchmark utility, and an example of how to use the asynchronous pass(4) interface. It can copy data to and from pass(4) devices using any target queue depth, starting offset and blocksize for the input and ouptut devices. It currently only supports SCSI devices, but could be easily extended to support ATA devices. It can also copy data to and from regular files, block devices, tape devices, pipes, stdin, and stdout. It does not support queueing multiple commands to any of those targets, since it uses the standard read(2)/write(2)/writev(2)/readv(2) system calls. The I/O is done by two threads, one for the reader and one for the writer. The reader thread sends completed read requests to the writer thread in strictly sequential order, even if they complete out of order. That could be modified later on for random I/O patterns or slightly out of order I/O. camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from the pass(4) driver and also to send request notifications internally. For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR) per CAM CCB on the reading side, and a scatter/gather list (CAM_DATA_SG) on the writing side. In addition to testing both interfaces, this makes any potential reblocking of I/O easier. No data is copied between the reader and the writer, but rather the reader's buffers are split into multiple I/O requests or combined into a single I/O request depending on the input and output blocksize. For the file I/O path, camdd(8) also uses a single buffer (read(2), write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list (readv(2), writev(2), preadv(2), pwritev(2)) on writes. Things that would be nice to do for camdd(8) eventually: 1. Add support for I/O pattern generation. Patterns like all zeros, all ones, LBA-based patterns, random patterns, etc. Right Now you can always use /dev/zero, /dev/random, etc. 2. Add support for a "sink" mode, so we do only reads with no writes. Right now, you can use /dev/null. 3. Add support for automatic queue depth probing, so that we can figure out the right queue depth on the input and output side for maximum throughput. At the moment it defaults to 6. 4. Add support for SATA device passthrough I/O. 5. Add support for random LBAs and/or lengths on the input and output sides. 6. Track average per-I/O latency and busy time. The busy time and latency could also feed in to the automatic queue depth determination. sys/cam/scsi/scsi_pass.h: Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue and fetch asynchronous CAM CCBs respectively. Although these ioctls do not have a declared argument, they both take a union ccb pointer. If we declare a size here, the ioctl code in sys/kern/sys_generic.c will malloc and free a buffer for either the CCB or the CCB pointer (depending on how it is declared). Since we have to keep a copy of the CCB (which is fairly large) anyway, having the ioctl malloc and free a CCB for each call is wasteful. sys/cam/scsi/scsi_pass.c: Add asynchronous CCB support. Add two new ioctls, CAMIOQUEUE and CAMIOGET. CAMIOQUEUE adds a CCB to the incoming queue. The CCB is executed immediately (and moved to the active queue) if it is an immediate CCB, but otherwise it will be executed in passstart() when a CCB is available from the transport layer. When CCBs are completed (because they are immediate or passdone() if they are queued), they are put on the done queue. If we get the final close on the device before all pending I/O is complete, all active I/O is moved to the abandoned queue and we increment the peripheral reference count so that the peripheral driver instance doesn't go away before all pending I/O is done. The new passcreatezone() function is called on the first call to the CAMIOQUEUE ioctl on a given device to allocate the UMA zones for I/O requests and S/G list buffers. This may be good to move off to a taskqueue at some point. The new passmemsetup() function allocates memory and scatter/gather lists to hold the user's data, and copies in any data that needs to be written. For virtual pointers (CAM_DATA_VADDR), the kernel buffer is malloced from the new pass(4) driver malloc bucket. For virtual scatter/gather lists (CAM_DATA_SG), buffers are allocated from a new per-pass(9) UMA zone in MAXPHYS-sized chunks. Physical pointers are passed in unchanged. We have support for up to 16 scatter/gather segments (for the user and kernel S/G lists) in the default struct pass_io_req, so requests with longer S/G lists require an extra kernel malloc. The new passcopysglist() function copies a user scatter/gather list to a kernel scatter/gather list. The number of elements in each list may be different, but (obviously) the amount of data stored has to be identical. The new passmemdone() function copies data out for the CAM_DATA_VADDR and CAM_DATA_SG cases. The new passiocleanup() function restores data pointers in user CCBs and frees memory. Add new functions to support kqueue(2)/kevent(2): passreadfilt() tells kevent whether or not the done queue is empty. passkqfilter() adds a knote to our list. passreadfiltdetach() removes a knote from our list. Add a new function, passpoll(), for poll(2)/select(2) to use. Add devstat(9) support for the queued CCB path. sys/cam/ata/ata_da.c: Add support for the BIO_VLIST bio type. sys/cam/cam_ccb.h: Add a new enumeration for the xflags field in the CCB header. (This doesn't change the CCB header, just adds an enumeration to use.) sys/cam/cam_xpt.c: Add a new function, xpt_setup_ccb_flags(), that allows specifying CCB flags. sys/cam/cam_xpt.h: Add a prototype for xpt_setup_ccb_flags(). sys/cam/scsi/scsi_da.c: Add support for BIO_VLIST. sys/dev/md/md.c: Add BIO_VLIST support to md(4). sys/geom/geom_disk.c: Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size limiting code in g_disk_start() a bit. sys/kern/subr_bus_dma.c: Change _bus_dmamap_load_vlist() to take a starting offset and length. Add a new function, _bus_dmamap_load_pages(), that will load a list of physical pages starting at an offset. Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios. Allow unmapped I/O to start at an offset. sys/kern/subr_uio.c: Add two new functions, physcopyin_vlist() and physcopyout_vlist(). sys/pc98/include/bus.h: Guard kernel-only parts of the pc98 machine/bus.h header with #ifdef _KERNEL. This allows userland programs to include <machine/bus.h> to get the definition of bus_addr_t and bus_size_t. sys/sys/bio.h: Add a new bio flag, BIO_VLIST. sys/sys/uio.h: Add prototypes for physcopyin_vlist() and physcopyout_vlist(). share/man/man4/pass.4: Document the CAMIOQUEUE and CAMIOGET ioctls. usr.sbin/Makefile: Add camdd. usr.sbin/camdd/Makefile: Add a makefile for camdd(8). usr.sbin/camdd/camdd.8: Man page for camdd(8). usr.sbin/camdd/camdd.c: The new camdd(8) utility. Sponsored by: Spectra Logic MFC after: 1 week
2015-12-03 20:54:55 +00:00
and
.Tn ATA
devices, and allows the user to access devices which have no
"standard" peripheral driver associated with them.
.Sh KERNEL CONFIGURATION
It is only necessary to configure one
.Nm
device in the kernel;
.Nm
devices are automatically allocated as
.Tn SCSI
Add asynchronous command support to the pass(4) driver, and the new camdd(8) utility. CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and completed CCBs may be retrieved via the CAMIOGET ioctl. User processes can use poll(2) or kevent(2) to get notification when I/O has completed. While the existing CAMIOCOMMAND blocking ioctl interface only supports user virtual data pointers in a CCB (generally only one per CCB), the new CAMIOQUEUE ioctl supports user virtual and physical address pointers, as well as user virtual and physical scatter/gather lists. This allows user applications to have more flexibility in their data handling operations. Kernel memory for data transferred via the queued interface is allocated from the zone allocator in MAXPHYS sized chunks, and user data is copied in and out. This is likely faster than the vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in configurations with many processors (there are more TLB shootdowns caused by the mapping/unmapping operation) but may not be as fast as running with unmapped I/O. The new memory handling model for user requests also allows applications to send CCBs with request sizes that are larger than MAXPHYS. The pass(4) driver now limits queued requests to the I/O size listed by the SIM driver in the maxio field in the Path Inquiry (XPT_PATH_INQ) CCB. There are some things things would be good to add: 1. Come up with a way to do unmapped I/O on multiple buffers. Currently the unmapped I/O interface operates on a struct bio, which includes only one address and length. It would be nice to be able to send an unmapped scatter/gather list down to busdma. This would allow eliminating the copy we currently do for data. 2. Add an ioctl to list currently outstanding CCBs in the various queues. 3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do that. 4. Test physical address support. Virtual pointers and scatter gather lists have been tested, but I have not yet tested physical addresses or scatter/gather lists. 5. Investigate multiple queue support. At the moment there is one queue of commands per pass(4) device. If multiple processes open the device, they will submit I/O into the same queue and get events for the same completions. This is probably the right model for most applications, but it is something that could be changed later on. Also, add a new utility, camdd(8) that uses the asynchronous pass(4) driver interface. This utility is intended to be a basic data transfer/copy utility, a simple benchmark utility, and an example of how to use the asynchronous pass(4) interface. It can copy data to and from pass(4) devices using any target queue depth, starting offset and blocksize for the input and ouptut devices. It currently only supports SCSI devices, but could be easily extended to support ATA devices. It can also copy data to and from regular files, block devices, tape devices, pipes, stdin, and stdout. It does not support queueing multiple commands to any of those targets, since it uses the standard read(2)/write(2)/writev(2)/readv(2) system calls. The I/O is done by two threads, one for the reader and one for the writer. The reader thread sends completed read requests to the writer thread in strictly sequential order, even if they complete out of order. That could be modified later on for random I/O patterns or slightly out of order I/O. camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from the pass(4) driver and also to send request notifications internally. For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR) per CAM CCB on the reading side, and a scatter/gather list (CAM_DATA_SG) on the writing side. In addition to testing both interfaces, this makes any potential reblocking of I/O easier. No data is copied between the reader and the writer, but rather the reader's buffers are split into multiple I/O requests or combined into a single I/O request depending on the input and output blocksize. For the file I/O path, camdd(8) also uses a single buffer (read(2), write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list (readv(2), writev(2), preadv(2), pwritev(2)) on writes. Things that would be nice to do for camdd(8) eventually: 1. Add support for I/O pattern generation. Patterns like all zeros, all ones, LBA-based patterns, random patterns, etc. Right Now you can always use /dev/zero, /dev/random, etc. 2. Add support for a "sink" mode, so we do only reads with no writes. Right now, you can use /dev/null. 3. Add support for automatic queue depth probing, so that we can figure out the right queue depth on the input and output side for maximum throughput. At the moment it defaults to 6. 4. Add support for SATA device passthrough I/O. 5. Add support for random LBAs and/or lengths on the input and output sides. 6. Track average per-I/O latency and busy time. The busy time and latency could also feed in to the automatic queue depth determination. sys/cam/scsi/scsi_pass.h: Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue and fetch asynchronous CAM CCBs respectively. Although these ioctls do not have a declared argument, they both take a union ccb pointer. If we declare a size here, the ioctl code in sys/kern/sys_generic.c will malloc and free a buffer for either the CCB or the CCB pointer (depending on how it is declared). Since we have to keep a copy of the CCB (which is fairly large) anyway, having the ioctl malloc and free a CCB for each call is wasteful. sys/cam/scsi/scsi_pass.c: Add asynchronous CCB support. Add two new ioctls, CAMIOQUEUE and CAMIOGET. CAMIOQUEUE adds a CCB to the incoming queue. The CCB is executed immediately (and moved to the active queue) if it is an immediate CCB, but otherwise it will be executed in passstart() when a CCB is available from the transport layer. When CCBs are completed (because they are immediate or passdone() if they are queued), they are put on the done queue. If we get the final close on the device before all pending I/O is complete, all active I/O is moved to the abandoned queue and we increment the peripheral reference count so that the peripheral driver instance doesn't go away before all pending I/O is done. The new passcreatezone() function is called on the first call to the CAMIOQUEUE ioctl on a given device to allocate the UMA zones for I/O requests and S/G list buffers. This may be good to move off to a taskqueue at some point. The new passmemsetup() function allocates memory and scatter/gather lists to hold the user's data, and copies in any data that needs to be written. For virtual pointers (CAM_DATA_VADDR), the kernel buffer is malloced from the new pass(4) driver malloc bucket. For virtual scatter/gather lists (CAM_DATA_SG), buffers are allocated from a new per-pass(9) UMA zone in MAXPHYS-sized chunks. Physical pointers are passed in unchanged. We have support for up to 16 scatter/gather segments (for the user and kernel S/G lists) in the default struct pass_io_req, so requests with longer S/G lists require an extra kernel malloc. The new passcopysglist() function copies a user scatter/gather list to a kernel scatter/gather list. The number of elements in each list may be different, but (obviously) the amount of data stored has to be identical. The new passmemdone() function copies data out for the CAM_DATA_VADDR and CAM_DATA_SG cases. The new passiocleanup() function restores data pointers in user CCBs and frees memory. Add new functions to support kqueue(2)/kevent(2): passreadfilt() tells kevent whether or not the done queue is empty. passkqfilter() adds a knote to our list. passreadfiltdetach() removes a knote from our list. Add a new function, passpoll(), for poll(2)/select(2) to use. Add devstat(9) support for the queued CCB path. sys/cam/ata/ata_da.c: Add support for the BIO_VLIST bio type. sys/cam/cam_ccb.h: Add a new enumeration for the xflags field in the CCB header. (This doesn't change the CCB header, just adds an enumeration to use.) sys/cam/cam_xpt.c: Add a new function, xpt_setup_ccb_flags(), that allows specifying CCB flags. sys/cam/cam_xpt.h: Add a prototype for xpt_setup_ccb_flags(). sys/cam/scsi/scsi_da.c: Add support for BIO_VLIST. sys/dev/md/md.c: Add BIO_VLIST support to md(4). sys/geom/geom_disk.c: Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size limiting code in g_disk_start() a bit. sys/kern/subr_bus_dma.c: Change _bus_dmamap_load_vlist() to take a starting offset and length. Add a new function, _bus_dmamap_load_pages(), that will load a list of physical pages starting at an offset. Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios. Allow unmapped I/O to start at an offset. sys/kern/subr_uio.c: Add two new functions, physcopyin_vlist() and physcopyout_vlist(). sys/pc98/include/bus.h: Guard kernel-only parts of the pc98 machine/bus.h header with #ifdef _KERNEL. This allows userland programs to include <machine/bus.h> to get the definition of bus_addr_t and bus_size_t. sys/sys/bio.h: Add a new bio flag, BIO_VLIST. sys/sys/uio.h: Add prototypes for physcopyin_vlist() and physcopyout_vlist(). share/man/man4/pass.4: Document the CAMIOQUEUE and CAMIOGET ioctls. usr.sbin/Makefile: Add camdd. usr.sbin/camdd/Makefile: Add a makefile for camdd(8). usr.sbin/camdd/camdd.8: Man page for camdd(8). usr.sbin/camdd/camdd.c: The new camdd(8) utility. Sponsored by: Spectra Logic MFC after: 1 week
2015-12-03 20:54:55 +00:00
and
.Tn ATA
devices are found.
.Sh IOCTLS
Add asynchronous command support to the pass(4) driver, and the new camdd(8) utility. CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and completed CCBs may be retrieved via the CAMIOGET ioctl. User processes can use poll(2) or kevent(2) to get notification when I/O has completed. While the existing CAMIOCOMMAND blocking ioctl interface only supports user virtual data pointers in a CCB (generally only one per CCB), the new CAMIOQUEUE ioctl supports user virtual and physical address pointers, as well as user virtual and physical scatter/gather lists. This allows user applications to have more flexibility in their data handling operations. Kernel memory for data transferred via the queued interface is allocated from the zone allocator in MAXPHYS sized chunks, and user data is copied in and out. This is likely faster than the vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in configurations with many processors (there are more TLB shootdowns caused by the mapping/unmapping operation) but may not be as fast as running with unmapped I/O. The new memory handling model for user requests also allows applications to send CCBs with request sizes that are larger than MAXPHYS. The pass(4) driver now limits queued requests to the I/O size listed by the SIM driver in the maxio field in the Path Inquiry (XPT_PATH_INQ) CCB. There are some things things would be good to add: 1. Come up with a way to do unmapped I/O on multiple buffers. Currently the unmapped I/O interface operates on a struct bio, which includes only one address and length. It would be nice to be able to send an unmapped scatter/gather list down to busdma. This would allow eliminating the copy we currently do for data. 2. Add an ioctl to list currently outstanding CCBs in the various queues. 3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do that. 4. Test physical address support. Virtual pointers and scatter gather lists have been tested, but I have not yet tested physical addresses or scatter/gather lists. 5. Investigate multiple queue support. At the moment there is one queue of commands per pass(4) device. If multiple processes open the device, they will submit I/O into the same queue and get events for the same completions. This is probably the right model for most applications, but it is something that could be changed later on. Also, add a new utility, camdd(8) that uses the asynchronous pass(4) driver interface. This utility is intended to be a basic data transfer/copy utility, a simple benchmark utility, and an example of how to use the asynchronous pass(4) interface. It can copy data to and from pass(4) devices using any target queue depth, starting offset and blocksize for the input and ouptut devices. It currently only supports SCSI devices, but could be easily extended to support ATA devices. It can also copy data to and from regular files, block devices, tape devices, pipes, stdin, and stdout. It does not support queueing multiple commands to any of those targets, since it uses the standard read(2)/write(2)/writev(2)/readv(2) system calls. The I/O is done by two threads, one for the reader and one for the writer. The reader thread sends completed read requests to the writer thread in strictly sequential order, even if they complete out of order. That could be modified later on for random I/O patterns or slightly out of order I/O. camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from the pass(4) driver and also to send request notifications internally. For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR) per CAM CCB on the reading side, and a scatter/gather list (CAM_DATA_SG) on the writing side. In addition to testing both interfaces, this makes any potential reblocking of I/O easier. No data is copied between the reader and the writer, but rather the reader's buffers are split into multiple I/O requests or combined into a single I/O request depending on the input and output blocksize. For the file I/O path, camdd(8) also uses a single buffer (read(2), write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list (readv(2), writev(2), preadv(2), pwritev(2)) on writes. Things that would be nice to do for camdd(8) eventually: 1. Add support for I/O pattern generation. Patterns like all zeros, all ones, LBA-based patterns, random patterns, etc. Right Now you can always use /dev/zero, /dev/random, etc. 2. Add support for a "sink" mode, so we do only reads with no writes. Right now, you can use /dev/null. 3. Add support for automatic queue depth probing, so that we can figure out the right queue depth on the input and output side for maximum throughput. At the moment it defaults to 6. 4. Add support for SATA device passthrough I/O. 5. Add support for random LBAs and/or lengths on the input and output sides. 6. Track average per-I/O latency and busy time. The busy time and latency could also feed in to the automatic queue depth determination. sys/cam/scsi/scsi_pass.h: Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue and fetch asynchronous CAM CCBs respectively. Although these ioctls do not have a declared argument, they both take a union ccb pointer. If we declare a size here, the ioctl code in sys/kern/sys_generic.c will malloc and free a buffer for either the CCB or the CCB pointer (depending on how it is declared). Since we have to keep a copy of the CCB (which is fairly large) anyway, having the ioctl malloc and free a CCB for each call is wasteful. sys/cam/scsi/scsi_pass.c: Add asynchronous CCB support. Add two new ioctls, CAMIOQUEUE and CAMIOGET. CAMIOQUEUE adds a CCB to the incoming queue. The CCB is executed immediately (and moved to the active queue) if it is an immediate CCB, but otherwise it will be executed in passstart() when a CCB is available from the transport layer. When CCBs are completed (because they are immediate or passdone() if they are queued), they are put on the done queue. If we get the final close on the device before all pending I/O is complete, all active I/O is moved to the abandoned queue and we increment the peripheral reference count so that the peripheral driver instance doesn't go away before all pending I/O is done. The new passcreatezone() function is called on the first call to the CAMIOQUEUE ioctl on a given device to allocate the UMA zones for I/O requests and S/G list buffers. This may be good to move off to a taskqueue at some point. The new passmemsetup() function allocates memory and scatter/gather lists to hold the user's data, and copies in any data that needs to be written. For virtual pointers (CAM_DATA_VADDR), the kernel buffer is malloced from the new pass(4) driver malloc bucket. For virtual scatter/gather lists (CAM_DATA_SG), buffers are allocated from a new per-pass(9) UMA zone in MAXPHYS-sized chunks. Physical pointers are passed in unchanged. We have support for up to 16 scatter/gather segments (for the user and kernel S/G lists) in the default struct pass_io_req, so requests with longer S/G lists require an extra kernel malloc. The new passcopysglist() function copies a user scatter/gather list to a kernel scatter/gather list. The number of elements in each list may be different, but (obviously) the amount of data stored has to be identical. The new passmemdone() function copies data out for the CAM_DATA_VADDR and CAM_DATA_SG cases. The new passiocleanup() function restores data pointers in user CCBs and frees memory. Add new functions to support kqueue(2)/kevent(2): passreadfilt() tells kevent whether or not the done queue is empty. passkqfilter() adds a knote to our list. passreadfiltdetach() removes a knote from our list. Add a new function, passpoll(), for poll(2)/select(2) to use. Add devstat(9) support for the queued CCB path. sys/cam/ata/ata_da.c: Add support for the BIO_VLIST bio type. sys/cam/cam_ccb.h: Add a new enumeration for the xflags field in the CCB header. (This doesn't change the CCB header, just adds an enumeration to use.) sys/cam/cam_xpt.c: Add a new function, xpt_setup_ccb_flags(), that allows specifying CCB flags. sys/cam/cam_xpt.h: Add a prototype for xpt_setup_ccb_flags(). sys/cam/scsi/scsi_da.c: Add support for BIO_VLIST. sys/dev/md/md.c: Add BIO_VLIST support to md(4). sys/geom/geom_disk.c: Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size limiting code in g_disk_start() a bit. sys/kern/subr_bus_dma.c: Change _bus_dmamap_load_vlist() to take a starting offset and length. Add a new function, _bus_dmamap_load_pages(), that will load a list of physical pages starting at an offset. Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios. Allow unmapped I/O to start at an offset. sys/kern/subr_uio.c: Add two new functions, physcopyin_vlist() and physcopyout_vlist(). sys/pc98/include/bus.h: Guard kernel-only parts of the pc98 machine/bus.h header with #ifdef _KERNEL. This allows userland programs to include <machine/bus.h> to get the definition of bus_addr_t and bus_size_t. sys/sys/bio.h: Add a new bio flag, BIO_VLIST. sys/sys/uio.h: Add prototypes for physcopyin_vlist() and physcopyout_vlist(). share/man/man4/pass.4: Document the CAMIOQUEUE and CAMIOGET ioctls. usr.sbin/Makefile: Add camdd. usr.sbin/camdd/Makefile: Add a makefile for camdd(8). usr.sbin/camdd/camdd.8: Man page for camdd(8). usr.sbin/camdd/camdd.c: The new camdd(8) utility. Sponsored by: Spectra Logic MFC after: 1 week
2015-12-03 20:54:55 +00:00
.Bl -tag -width 5n
.It CAMIOCOMMAND union ccb *
This ioctl takes most kinds of CAM CCBs and passes them through to the CAM
transport layer for action.
Note that some CCB types are not allowed
through the passthrough device, and must be sent through the
.Xr xpt 4
device instead.
Some examples of xpt-only CCBs are XPT_SCAN_BUS,
XPT_DEV_MATCH, XPT_RESET_BUS, XPT_SCAN_LUN, XPT_ENG_INQ, and XPT_ENG_EXEC.
These CCB types have various attributes that make it illogical or
impossible to service them through the passthrough interface.
Add asynchronous command support to the pass(4) driver, and the new camdd(8) utility. CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and completed CCBs may be retrieved via the CAMIOGET ioctl. User processes can use poll(2) or kevent(2) to get notification when I/O has completed. While the existing CAMIOCOMMAND blocking ioctl interface only supports user virtual data pointers in a CCB (generally only one per CCB), the new CAMIOQUEUE ioctl supports user virtual and physical address pointers, as well as user virtual and physical scatter/gather lists. This allows user applications to have more flexibility in their data handling operations. Kernel memory for data transferred via the queued interface is allocated from the zone allocator in MAXPHYS sized chunks, and user data is copied in and out. This is likely faster than the vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in configurations with many processors (there are more TLB shootdowns caused by the mapping/unmapping operation) but may not be as fast as running with unmapped I/O. The new memory handling model for user requests also allows applications to send CCBs with request sizes that are larger than MAXPHYS. The pass(4) driver now limits queued requests to the I/O size listed by the SIM driver in the maxio field in the Path Inquiry (XPT_PATH_INQ) CCB. There are some things things would be good to add: 1. Come up with a way to do unmapped I/O on multiple buffers. Currently the unmapped I/O interface operates on a struct bio, which includes only one address and length. It would be nice to be able to send an unmapped scatter/gather list down to busdma. This would allow eliminating the copy we currently do for data. 2. Add an ioctl to list currently outstanding CCBs in the various queues. 3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do that. 4. Test physical address support. Virtual pointers and scatter gather lists have been tested, but I have not yet tested physical addresses or scatter/gather lists. 5. Investigate multiple queue support. At the moment there is one queue of commands per pass(4) device. If multiple processes open the device, they will submit I/O into the same queue and get events for the same completions. This is probably the right model for most applications, but it is something that could be changed later on. Also, add a new utility, camdd(8) that uses the asynchronous pass(4) driver interface. This utility is intended to be a basic data transfer/copy utility, a simple benchmark utility, and an example of how to use the asynchronous pass(4) interface. It can copy data to and from pass(4) devices using any target queue depth, starting offset and blocksize for the input and ouptut devices. It currently only supports SCSI devices, but could be easily extended to support ATA devices. It can also copy data to and from regular files, block devices, tape devices, pipes, stdin, and stdout. It does not support queueing multiple commands to any of those targets, since it uses the standard read(2)/write(2)/writev(2)/readv(2) system calls. The I/O is done by two threads, one for the reader and one for the writer. The reader thread sends completed read requests to the writer thread in strictly sequential order, even if they complete out of order. That could be modified later on for random I/O patterns or slightly out of order I/O. camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from the pass(4) driver and also to send request notifications internally. For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR) per CAM CCB on the reading side, and a scatter/gather list (CAM_DATA_SG) on the writing side. In addition to testing both interfaces, this makes any potential reblocking of I/O easier. No data is copied between the reader and the writer, but rather the reader's buffers are split into multiple I/O requests or combined into a single I/O request depending on the input and output blocksize. For the file I/O path, camdd(8) also uses a single buffer (read(2), write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list (readv(2), writev(2), preadv(2), pwritev(2)) on writes. Things that would be nice to do for camdd(8) eventually: 1. Add support for I/O pattern generation. Patterns like all zeros, all ones, LBA-based patterns, random patterns, etc. Right Now you can always use /dev/zero, /dev/random, etc. 2. Add support for a "sink" mode, so we do only reads with no writes. Right now, you can use /dev/null. 3. Add support for automatic queue depth probing, so that we can figure out the right queue depth on the input and output side for maximum throughput. At the moment it defaults to 6. 4. Add support for SATA device passthrough I/O. 5. Add support for random LBAs and/or lengths on the input and output sides. 6. Track average per-I/O latency and busy time. The busy time and latency could also feed in to the automatic queue depth determination. sys/cam/scsi/scsi_pass.h: Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue and fetch asynchronous CAM CCBs respectively. Although these ioctls do not have a declared argument, they both take a union ccb pointer. If we declare a size here, the ioctl code in sys/kern/sys_generic.c will malloc and free a buffer for either the CCB or the CCB pointer (depending on how it is declared). Since we have to keep a copy of the CCB (which is fairly large) anyway, having the ioctl malloc and free a CCB for each call is wasteful. sys/cam/scsi/scsi_pass.c: Add asynchronous CCB support. Add two new ioctls, CAMIOQUEUE and CAMIOGET. CAMIOQUEUE adds a CCB to the incoming queue. The CCB is executed immediately (and moved to the active queue) if it is an immediate CCB, but otherwise it will be executed in passstart() when a CCB is available from the transport layer. When CCBs are completed (because they are immediate or passdone() if they are queued), they are put on the done queue. If we get the final close on the device before all pending I/O is complete, all active I/O is moved to the abandoned queue and we increment the peripheral reference count so that the peripheral driver instance doesn't go away before all pending I/O is done. The new passcreatezone() function is called on the first call to the CAMIOQUEUE ioctl on a given device to allocate the UMA zones for I/O requests and S/G list buffers. This may be good to move off to a taskqueue at some point. The new passmemsetup() function allocates memory and scatter/gather lists to hold the user's data, and copies in any data that needs to be written. For virtual pointers (CAM_DATA_VADDR), the kernel buffer is malloced from the new pass(4) driver malloc bucket. For virtual scatter/gather lists (CAM_DATA_SG), buffers are allocated from a new per-pass(9) UMA zone in MAXPHYS-sized chunks. Physical pointers are passed in unchanged. We have support for up to 16 scatter/gather segments (for the user and kernel S/G lists) in the default struct pass_io_req, so requests with longer S/G lists require an extra kernel malloc. The new passcopysglist() function copies a user scatter/gather list to a kernel scatter/gather list. The number of elements in each list may be different, but (obviously) the amount of data stored has to be identical. The new passmemdone() function copies data out for the CAM_DATA_VADDR and CAM_DATA_SG cases. The new passiocleanup() function restores data pointers in user CCBs and frees memory. Add new functions to support kqueue(2)/kevent(2): passreadfilt() tells kevent whether or not the done queue is empty. passkqfilter() adds a knote to our list. passreadfiltdetach() removes a knote from our list. Add a new function, passpoll(), for poll(2)/select(2) to use. Add devstat(9) support for the queued CCB path. sys/cam/ata/ata_da.c: Add support for the BIO_VLIST bio type. sys/cam/cam_ccb.h: Add a new enumeration for the xflags field in the CCB header. (This doesn't change the CCB header, just adds an enumeration to use.) sys/cam/cam_xpt.c: Add a new function, xpt_setup_ccb_flags(), that allows specifying CCB flags. sys/cam/cam_xpt.h: Add a prototype for xpt_setup_ccb_flags(). sys/cam/scsi/scsi_da.c: Add support for BIO_VLIST. sys/dev/md/md.c: Add BIO_VLIST support to md(4). sys/geom/geom_disk.c: Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size limiting code in g_disk_start() a bit. sys/kern/subr_bus_dma.c: Change _bus_dmamap_load_vlist() to take a starting offset and length. Add a new function, _bus_dmamap_load_pages(), that will load a list of physical pages starting at an offset. Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios. Allow unmapped I/O to start at an offset. sys/kern/subr_uio.c: Add two new functions, physcopyin_vlist() and physcopyout_vlist(). sys/pc98/include/bus.h: Guard kernel-only parts of the pc98 machine/bus.h header with #ifdef _KERNEL. This allows userland programs to include <machine/bus.h> to get the definition of bus_addr_t and bus_size_t. sys/sys/bio.h: Add a new bio flag, BIO_VLIST. sys/sys/uio.h: Add prototypes for physcopyin_vlist() and physcopyout_vlist(). share/man/man4/pass.4: Document the CAMIOQUEUE and CAMIOGET ioctls. usr.sbin/Makefile: Add camdd. usr.sbin/camdd/Makefile: Add a makefile for camdd(8). usr.sbin/camdd/camdd.8: Man page for camdd(8). usr.sbin/camdd/camdd.c: The new camdd(8) utility. Sponsored by: Spectra Logic MFC after: 1 week
2015-12-03 20:54:55 +00:00
.It CAMGETPASSTHRU union ccb *
This ioctl takes an XPT_GDEVLIST CCB, and returns the passthrough device
corresponding to the device in question.
Although this ioctl is available through the
.Nm
driver, it is of limited use, since the caller must already know that
2005-02-15 09:27:00 +00:00
the device in question is a passthrough device if they are issuing this
ioctl.
It is probably more useful to issue this ioctl through the
.Xr xpt 4
device.
Add asynchronous command support to the pass(4) driver, and the new camdd(8) utility. CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and completed CCBs may be retrieved via the CAMIOGET ioctl. User processes can use poll(2) or kevent(2) to get notification when I/O has completed. While the existing CAMIOCOMMAND blocking ioctl interface only supports user virtual data pointers in a CCB (generally only one per CCB), the new CAMIOQUEUE ioctl supports user virtual and physical address pointers, as well as user virtual and physical scatter/gather lists. This allows user applications to have more flexibility in their data handling operations. Kernel memory for data transferred via the queued interface is allocated from the zone allocator in MAXPHYS sized chunks, and user data is copied in and out. This is likely faster than the vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in configurations with many processors (there are more TLB shootdowns caused by the mapping/unmapping operation) but may not be as fast as running with unmapped I/O. The new memory handling model for user requests also allows applications to send CCBs with request sizes that are larger than MAXPHYS. The pass(4) driver now limits queued requests to the I/O size listed by the SIM driver in the maxio field in the Path Inquiry (XPT_PATH_INQ) CCB. There are some things things would be good to add: 1. Come up with a way to do unmapped I/O on multiple buffers. Currently the unmapped I/O interface operates on a struct bio, which includes only one address and length. It would be nice to be able to send an unmapped scatter/gather list down to busdma. This would allow eliminating the copy we currently do for data. 2. Add an ioctl to list currently outstanding CCBs in the various queues. 3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do that. 4. Test physical address support. Virtual pointers and scatter gather lists have been tested, but I have not yet tested physical addresses or scatter/gather lists. 5. Investigate multiple queue support. At the moment there is one queue of commands per pass(4) device. If multiple processes open the device, they will submit I/O into the same queue and get events for the same completions. This is probably the right model for most applications, but it is something that could be changed later on. Also, add a new utility, camdd(8) that uses the asynchronous pass(4) driver interface. This utility is intended to be a basic data transfer/copy utility, a simple benchmark utility, and an example of how to use the asynchronous pass(4) interface. It can copy data to and from pass(4) devices using any target queue depth, starting offset and blocksize for the input and ouptut devices. It currently only supports SCSI devices, but could be easily extended to support ATA devices. It can also copy data to and from regular files, block devices, tape devices, pipes, stdin, and stdout. It does not support queueing multiple commands to any of those targets, since it uses the standard read(2)/write(2)/writev(2)/readv(2) system calls. The I/O is done by two threads, one for the reader and one for the writer. The reader thread sends completed read requests to the writer thread in strictly sequential order, even if they complete out of order. That could be modified later on for random I/O patterns or slightly out of order I/O. camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from the pass(4) driver and also to send request notifications internally. For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR) per CAM CCB on the reading side, and a scatter/gather list (CAM_DATA_SG) on the writing side. In addition to testing both interfaces, this makes any potential reblocking of I/O easier. No data is copied between the reader and the writer, but rather the reader's buffers are split into multiple I/O requests or combined into a single I/O request depending on the input and output blocksize. For the file I/O path, camdd(8) also uses a single buffer (read(2), write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list (readv(2), writev(2), preadv(2), pwritev(2)) on writes. Things that would be nice to do for camdd(8) eventually: 1. Add support for I/O pattern generation. Patterns like all zeros, all ones, LBA-based patterns, random patterns, etc. Right Now you can always use /dev/zero, /dev/random, etc. 2. Add support for a "sink" mode, so we do only reads with no writes. Right now, you can use /dev/null. 3. Add support for automatic queue depth probing, so that we can figure out the right queue depth on the input and output side for maximum throughput. At the moment it defaults to 6. 4. Add support for SATA device passthrough I/O. 5. Add support for random LBAs and/or lengths on the input and output sides. 6. Track average per-I/O latency and busy time. The busy time and latency could also feed in to the automatic queue depth determination. sys/cam/scsi/scsi_pass.h: Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue and fetch asynchronous CAM CCBs respectively. Although these ioctls do not have a declared argument, they both take a union ccb pointer. If we declare a size here, the ioctl code in sys/kern/sys_generic.c will malloc and free a buffer for either the CCB or the CCB pointer (depending on how it is declared). Since we have to keep a copy of the CCB (which is fairly large) anyway, having the ioctl malloc and free a CCB for each call is wasteful. sys/cam/scsi/scsi_pass.c: Add asynchronous CCB support. Add two new ioctls, CAMIOQUEUE and CAMIOGET. CAMIOQUEUE adds a CCB to the incoming queue. The CCB is executed immediately (and moved to the active queue) if it is an immediate CCB, but otherwise it will be executed in passstart() when a CCB is available from the transport layer. When CCBs are completed (because they are immediate or passdone() if they are queued), they are put on the done queue. If we get the final close on the device before all pending I/O is complete, all active I/O is moved to the abandoned queue and we increment the peripheral reference count so that the peripheral driver instance doesn't go away before all pending I/O is done. The new passcreatezone() function is called on the first call to the CAMIOQUEUE ioctl on a given device to allocate the UMA zones for I/O requests and S/G list buffers. This may be good to move off to a taskqueue at some point. The new passmemsetup() function allocates memory and scatter/gather lists to hold the user's data, and copies in any data that needs to be written. For virtual pointers (CAM_DATA_VADDR), the kernel buffer is malloced from the new pass(4) driver malloc bucket. For virtual scatter/gather lists (CAM_DATA_SG), buffers are allocated from a new per-pass(9) UMA zone in MAXPHYS-sized chunks. Physical pointers are passed in unchanged. We have support for up to 16 scatter/gather segments (for the user and kernel S/G lists) in the default struct pass_io_req, so requests with longer S/G lists require an extra kernel malloc. The new passcopysglist() function copies a user scatter/gather list to a kernel scatter/gather list. The number of elements in each list may be different, but (obviously) the amount of data stored has to be identical. The new passmemdone() function copies data out for the CAM_DATA_VADDR and CAM_DATA_SG cases. The new passiocleanup() function restores data pointers in user CCBs and frees memory. Add new functions to support kqueue(2)/kevent(2): passreadfilt() tells kevent whether or not the done queue is empty. passkqfilter() adds a knote to our list. passreadfiltdetach() removes a knote from our list. Add a new function, passpoll(), for poll(2)/select(2) to use. Add devstat(9) support for the queued CCB path. sys/cam/ata/ata_da.c: Add support for the BIO_VLIST bio type. sys/cam/cam_ccb.h: Add a new enumeration for the xflags field in the CCB header. (This doesn't change the CCB header, just adds an enumeration to use.) sys/cam/cam_xpt.c: Add a new function, xpt_setup_ccb_flags(), that allows specifying CCB flags. sys/cam/cam_xpt.h: Add a prototype for xpt_setup_ccb_flags(). sys/cam/scsi/scsi_da.c: Add support for BIO_VLIST. sys/dev/md/md.c: Add BIO_VLIST support to md(4). sys/geom/geom_disk.c: Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size limiting code in g_disk_start() a bit. sys/kern/subr_bus_dma.c: Change _bus_dmamap_load_vlist() to take a starting offset and length. Add a new function, _bus_dmamap_load_pages(), that will load a list of physical pages starting at an offset. Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios. Allow unmapped I/O to start at an offset. sys/kern/subr_uio.c: Add two new functions, physcopyin_vlist() and physcopyout_vlist(). sys/pc98/include/bus.h: Guard kernel-only parts of the pc98 machine/bus.h header with #ifdef _KERNEL. This allows userland programs to include <machine/bus.h> to get the definition of bus_addr_t and bus_size_t. sys/sys/bio.h: Add a new bio flag, BIO_VLIST. sys/sys/uio.h: Add prototypes for physcopyin_vlist() and physcopyout_vlist(). share/man/man4/pass.4: Document the CAMIOQUEUE and CAMIOGET ioctls. usr.sbin/Makefile: Add camdd. usr.sbin/camdd/Makefile: Add a makefile for camdd(8). usr.sbin/camdd/camdd.8: Man page for camdd(8). usr.sbin/camdd/camdd.c: The new camdd(8) utility. Sponsored by: Spectra Logic MFC after: 1 week
2015-12-03 20:54:55 +00:00
.It CAMIOQUEUE union ccb *
Queue a CCB to the
.Nm
Add asynchronous command support to the pass(4) driver, and the new camdd(8) utility. CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and completed CCBs may be retrieved via the CAMIOGET ioctl. User processes can use poll(2) or kevent(2) to get notification when I/O has completed. While the existing CAMIOCOMMAND blocking ioctl interface only supports user virtual data pointers in a CCB (generally only one per CCB), the new CAMIOQUEUE ioctl supports user virtual and physical address pointers, as well as user virtual and physical scatter/gather lists. This allows user applications to have more flexibility in their data handling operations. Kernel memory for data transferred via the queued interface is allocated from the zone allocator in MAXPHYS sized chunks, and user data is copied in and out. This is likely faster than the vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in configurations with many processors (there are more TLB shootdowns caused by the mapping/unmapping operation) but may not be as fast as running with unmapped I/O. The new memory handling model for user requests also allows applications to send CCBs with request sizes that are larger than MAXPHYS. The pass(4) driver now limits queued requests to the I/O size listed by the SIM driver in the maxio field in the Path Inquiry (XPT_PATH_INQ) CCB. There are some things things would be good to add: 1. Come up with a way to do unmapped I/O on multiple buffers. Currently the unmapped I/O interface operates on a struct bio, which includes only one address and length. It would be nice to be able to send an unmapped scatter/gather list down to busdma. This would allow eliminating the copy we currently do for data. 2. Add an ioctl to list currently outstanding CCBs in the various queues. 3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do that. 4. Test physical address support. Virtual pointers and scatter gather lists have been tested, but I have not yet tested physical addresses or scatter/gather lists. 5. Investigate multiple queue support. At the moment there is one queue of commands per pass(4) device. If multiple processes open the device, they will submit I/O into the same queue and get events for the same completions. This is probably the right model for most applications, but it is something that could be changed later on. Also, add a new utility, camdd(8) that uses the asynchronous pass(4) driver interface. This utility is intended to be a basic data transfer/copy utility, a simple benchmark utility, and an example of how to use the asynchronous pass(4) interface. It can copy data to and from pass(4) devices using any target queue depth, starting offset and blocksize for the input and ouptut devices. It currently only supports SCSI devices, but could be easily extended to support ATA devices. It can also copy data to and from regular files, block devices, tape devices, pipes, stdin, and stdout. It does not support queueing multiple commands to any of those targets, since it uses the standard read(2)/write(2)/writev(2)/readv(2) system calls. The I/O is done by two threads, one for the reader and one for the writer. The reader thread sends completed read requests to the writer thread in strictly sequential order, even if they complete out of order. That could be modified later on for random I/O patterns or slightly out of order I/O. camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from the pass(4) driver and also to send request notifications internally. For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR) per CAM CCB on the reading side, and a scatter/gather list (CAM_DATA_SG) on the writing side. In addition to testing both interfaces, this makes any potential reblocking of I/O easier. No data is copied between the reader and the writer, but rather the reader's buffers are split into multiple I/O requests or combined into a single I/O request depending on the input and output blocksize. For the file I/O path, camdd(8) also uses a single buffer (read(2), write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list (readv(2), writev(2), preadv(2), pwritev(2)) on writes. Things that would be nice to do for camdd(8) eventually: 1. Add support for I/O pattern generation. Patterns like all zeros, all ones, LBA-based patterns, random patterns, etc. Right Now you can always use /dev/zero, /dev/random, etc. 2. Add support for a "sink" mode, so we do only reads with no writes. Right now, you can use /dev/null. 3. Add support for automatic queue depth probing, so that we can figure out the right queue depth on the input and output side for maximum throughput. At the moment it defaults to 6. 4. Add support for SATA device passthrough I/O. 5. Add support for random LBAs and/or lengths on the input and output sides. 6. Track average per-I/O latency and busy time. The busy time and latency could also feed in to the automatic queue depth determination. sys/cam/scsi/scsi_pass.h: Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue and fetch asynchronous CAM CCBs respectively. Although these ioctls do not have a declared argument, they both take a union ccb pointer. If we declare a size here, the ioctl code in sys/kern/sys_generic.c will malloc and free a buffer for either the CCB or the CCB pointer (depending on how it is declared). Since we have to keep a copy of the CCB (which is fairly large) anyway, having the ioctl malloc and free a CCB for each call is wasteful. sys/cam/scsi/scsi_pass.c: Add asynchronous CCB support. Add two new ioctls, CAMIOQUEUE and CAMIOGET. CAMIOQUEUE adds a CCB to the incoming queue. The CCB is executed immediately (and moved to the active queue) if it is an immediate CCB, but otherwise it will be executed in passstart() when a CCB is available from the transport layer. When CCBs are completed (because they are immediate or passdone() if they are queued), they are put on the done queue. If we get the final close on the device before all pending I/O is complete, all active I/O is moved to the abandoned queue and we increment the peripheral reference count so that the peripheral driver instance doesn't go away before all pending I/O is done. The new passcreatezone() function is called on the first call to the CAMIOQUEUE ioctl on a given device to allocate the UMA zones for I/O requests and S/G list buffers. This may be good to move off to a taskqueue at some point. The new passmemsetup() function allocates memory and scatter/gather lists to hold the user's data, and copies in any data that needs to be written. For virtual pointers (CAM_DATA_VADDR), the kernel buffer is malloced from the new pass(4) driver malloc bucket. For virtual scatter/gather lists (CAM_DATA_SG), buffers are allocated from a new per-pass(9) UMA zone in MAXPHYS-sized chunks. Physical pointers are passed in unchanged. We have support for up to 16 scatter/gather segments (for the user and kernel S/G lists) in the default struct pass_io_req, so requests with longer S/G lists require an extra kernel malloc. The new passcopysglist() function copies a user scatter/gather list to a kernel scatter/gather list. The number of elements in each list may be different, but (obviously) the amount of data stored has to be identical. The new passmemdone() function copies data out for the CAM_DATA_VADDR and CAM_DATA_SG cases. The new passiocleanup() function restores data pointers in user CCBs and frees memory. Add new functions to support kqueue(2)/kevent(2): passreadfilt() tells kevent whether or not the done queue is empty. passkqfilter() adds a knote to our list. passreadfiltdetach() removes a knote from our list. Add a new function, passpoll(), for poll(2)/select(2) to use. Add devstat(9) support for the queued CCB path. sys/cam/ata/ata_da.c: Add support for the BIO_VLIST bio type. sys/cam/cam_ccb.h: Add a new enumeration for the xflags field in the CCB header. (This doesn't change the CCB header, just adds an enumeration to use.) sys/cam/cam_xpt.c: Add a new function, xpt_setup_ccb_flags(), that allows specifying CCB flags. sys/cam/cam_xpt.h: Add a prototype for xpt_setup_ccb_flags(). sys/cam/scsi/scsi_da.c: Add support for BIO_VLIST. sys/dev/md/md.c: Add BIO_VLIST support to md(4). sys/geom/geom_disk.c: Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size limiting code in g_disk_start() a bit. sys/kern/subr_bus_dma.c: Change _bus_dmamap_load_vlist() to take a starting offset and length. Add a new function, _bus_dmamap_load_pages(), that will load a list of physical pages starting at an offset. Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios. Allow unmapped I/O to start at an offset. sys/kern/subr_uio.c: Add two new functions, physcopyin_vlist() and physcopyout_vlist(). sys/pc98/include/bus.h: Guard kernel-only parts of the pc98 machine/bus.h header with #ifdef _KERNEL. This allows userland programs to include <machine/bus.h> to get the definition of bus_addr_t and bus_size_t. sys/sys/bio.h: Add a new bio flag, BIO_VLIST. sys/sys/uio.h: Add prototypes for physcopyin_vlist() and physcopyout_vlist(). share/man/man4/pass.4: Document the CAMIOQUEUE and CAMIOGET ioctls. usr.sbin/Makefile: Add camdd. usr.sbin/camdd/Makefile: Add a makefile for camdd(8). usr.sbin/camdd/camdd.8: Man page for camdd(8). usr.sbin/camdd/camdd.c: The new camdd(8) utility. Sponsored by: Spectra Logic MFC after: 1 week
2015-12-03 20:54:55 +00:00
driver to be executed asynchronously.
The caller may use
.Xr select 2 ,
.Xr poll 2
Add asynchronous command support to the pass(4) driver, and the new camdd(8) utility. CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and completed CCBs may be retrieved via the CAMIOGET ioctl. User processes can use poll(2) or kevent(2) to get notification when I/O has completed. While the existing CAMIOCOMMAND blocking ioctl interface only supports user virtual data pointers in a CCB (generally only one per CCB), the new CAMIOQUEUE ioctl supports user virtual and physical address pointers, as well as user virtual and physical scatter/gather lists. This allows user applications to have more flexibility in their data handling operations. Kernel memory for data transferred via the queued interface is allocated from the zone allocator in MAXPHYS sized chunks, and user data is copied in and out. This is likely faster than the vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in configurations with many processors (there are more TLB shootdowns caused by the mapping/unmapping operation) but may not be as fast as running with unmapped I/O. The new memory handling model for user requests also allows applications to send CCBs with request sizes that are larger than MAXPHYS. The pass(4) driver now limits queued requests to the I/O size listed by the SIM driver in the maxio field in the Path Inquiry (XPT_PATH_INQ) CCB. There are some things things would be good to add: 1. Come up with a way to do unmapped I/O on multiple buffers. Currently the unmapped I/O interface operates on a struct bio, which includes only one address and length. It would be nice to be able to send an unmapped scatter/gather list down to busdma. This would allow eliminating the copy we currently do for data. 2. Add an ioctl to list currently outstanding CCBs in the various queues. 3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do that. 4. Test physical address support. Virtual pointers and scatter gather lists have been tested, but I have not yet tested physical addresses or scatter/gather lists. 5. Investigate multiple queue support. At the moment there is one queue of commands per pass(4) device. If multiple processes open the device, they will submit I/O into the same queue and get events for the same completions. This is probably the right model for most applications, but it is something that could be changed later on. Also, add a new utility, camdd(8) that uses the asynchronous pass(4) driver interface. This utility is intended to be a basic data transfer/copy utility, a simple benchmark utility, and an example of how to use the asynchronous pass(4) interface. It can copy data to and from pass(4) devices using any target queue depth, starting offset and blocksize for the input and ouptut devices. It currently only supports SCSI devices, but could be easily extended to support ATA devices. It can also copy data to and from regular files, block devices, tape devices, pipes, stdin, and stdout. It does not support queueing multiple commands to any of those targets, since it uses the standard read(2)/write(2)/writev(2)/readv(2) system calls. The I/O is done by two threads, one for the reader and one for the writer. The reader thread sends completed read requests to the writer thread in strictly sequential order, even if they complete out of order. That could be modified later on for random I/O patterns or slightly out of order I/O. camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from the pass(4) driver and also to send request notifications internally. For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR) per CAM CCB on the reading side, and a scatter/gather list (CAM_DATA_SG) on the writing side. In addition to testing both interfaces, this makes any potential reblocking of I/O easier. No data is copied between the reader and the writer, but rather the reader's buffers are split into multiple I/O requests or combined into a single I/O request depending on the input and output blocksize. For the file I/O path, camdd(8) also uses a single buffer (read(2), write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list (readv(2), writev(2), preadv(2), pwritev(2)) on writes. Things that would be nice to do for camdd(8) eventually: 1. Add support for I/O pattern generation. Patterns like all zeros, all ones, LBA-based patterns, random patterns, etc. Right Now you can always use /dev/zero, /dev/random, etc. 2. Add support for a "sink" mode, so we do only reads with no writes. Right now, you can use /dev/null. 3. Add support for automatic queue depth probing, so that we can figure out the right queue depth on the input and output side for maximum throughput. At the moment it defaults to 6. 4. Add support for SATA device passthrough I/O. 5. Add support for random LBAs and/or lengths on the input and output sides. 6. Track average per-I/O latency and busy time. The busy time and latency could also feed in to the automatic queue depth determination. sys/cam/scsi/scsi_pass.h: Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue and fetch asynchronous CAM CCBs respectively. Although these ioctls do not have a declared argument, they both take a union ccb pointer. If we declare a size here, the ioctl code in sys/kern/sys_generic.c will malloc and free a buffer for either the CCB or the CCB pointer (depending on how it is declared). Since we have to keep a copy of the CCB (which is fairly large) anyway, having the ioctl malloc and free a CCB for each call is wasteful. sys/cam/scsi/scsi_pass.c: Add asynchronous CCB support. Add two new ioctls, CAMIOQUEUE and CAMIOGET. CAMIOQUEUE adds a CCB to the incoming queue. The CCB is executed immediately (and moved to the active queue) if it is an immediate CCB, but otherwise it will be executed in passstart() when a CCB is available from the transport layer. When CCBs are completed (because they are immediate or passdone() if they are queued), they are put on the done queue. If we get the final close on the device before all pending I/O is complete, all active I/O is moved to the abandoned queue and we increment the peripheral reference count so that the peripheral driver instance doesn't go away before all pending I/O is done. The new passcreatezone() function is called on the first call to the CAMIOQUEUE ioctl on a given device to allocate the UMA zones for I/O requests and S/G list buffers. This may be good to move off to a taskqueue at some point. The new passmemsetup() function allocates memory and scatter/gather lists to hold the user's data, and copies in any data that needs to be written. For virtual pointers (CAM_DATA_VADDR), the kernel buffer is malloced from the new pass(4) driver malloc bucket. For virtual scatter/gather lists (CAM_DATA_SG), buffers are allocated from a new per-pass(9) UMA zone in MAXPHYS-sized chunks. Physical pointers are passed in unchanged. We have support for up to 16 scatter/gather segments (for the user and kernel S/G lists) in the default struct pass_io_req, so requests with longer S/G lists require an extra kernel malloc. The new passcopysglist() function copies a user scatter/gather list to a kernel scatter/gather list. The number of elements in each list may be different, but (obviously) the amount of data stored has to be identical. The new passmemdone() function copies data out for the CAM_DATA_VADDR and CAM_DATA_SG cases. The new passiocleanup() function restores data pointers in user CCBs and frees memory. Add new functions to support kqueue(2)/kevent(2): passreadfilt() tells kevent whether or not the done queue is empty. passkqfilter() adds a knote to our list. passreadfiltdetach() removes a knote from our list. Add a new function, passpoll(), for poll(2)/select(2) to use. Add devstat(9) support for the queued CCB path. sys/cam/ata/ata_da.c: Add support for the BIO_VLIST bio type. sys/cam/cam_ccb.h: Add a new enumeration for the xflags field in the CCB header. (This doesn't change the CCB header, just adds an enumeration to use.) sys/cam/cam_xpt.c: Add a new function, xpt_setup_ccb_flags(), that allows specifying CCB flags. sys/cam/cam_xpt.h: Add a prototype for xpt_setup_ccb_flags(). sys/cam/scsi/scsi_da.c: Add support for BIO_VLIST. sys/dev/md/md.c: Add BIO_VLIST support to md(4). sys/geom/geom_disk.c: Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size limiting code in g_disk_start() a bit. sys/kern/subr_bus_dma.c: Change _bus_dmamap_load_vlist() to take a starting offset and length. Add a new function, _bus_dmamap_load_pages(), that will load a list of physical pages starting at an offset. Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios. Allow unmapped I/O to start at an offset. sys/kern/subr_uio.c: Add two new functions, physcopyin_vlist() and physcopyout_vlist(). sys/pc98/include/bus.h: Guard kernel-only parts of the pc98 machine/bus.h header with #ifdef _KERNEL. This allows userland programs to include <machine/bus.h> to get the definition of bus_addr_t and bus_size_t. sys/sys/bio.h: Add a new bio flag, BIO_VLIST. sys/sys/uio.h: Add prototypes for physcopyin_vlist() and physcopyout_vlist(). share/man/man4/pass.4: Document the CAMIOQUEUE and CAMIOGET ioctls. usr.sbin/Makefile: Add camdd. usr.sbin/camdd/Makefile: Add a makefile for camdd(8). usr.sbin/camdd/camdd.8: Man page for camdd(8). usr.sbin/camdd/camdd.c: The new camdd(8) utility. Sponsored by: Spectra Logic MFC after: 1 week
2015-12-03 20:54:55 +00:00
or
.Xr kevent 2
to receive notification when the CCB has completed.
.Pp
This ioctl takes most CAM CCBs, but some CCB types are not allowed through
the pass device, and must be sent through the
.Xr xpt 4
device instead.
Some examples of xpt-only CCBs are XPT_SCAN_BUS,
XPT_DEV_MATCH, XPT_RESET_BUS, XPT_SCAN_LUN, XPT_ENG_INQ, and XPT_ENG_EXEC.
These CCB types have various attributes that make it illogical or
impossible to service them through the passthrough interface.
.Pp
Although the
.Dv CAMIOQUEUE
ioctl is not defined to take an argument, it does require a
pointer to a union ccb.
It is not defined to take an argument to avoid an extra malloc and copy
inside the generic
Add asynchronous command support to the pass(4) driver, and the new camdd(8) utility. CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and completed CCBs may be retrieved via the CAMIOGET ioctl. User processes can use poll(2) or kevent(2) to get notification when I/O has completed. While the existing CAMIOCOMMAND blocking ioctl interface only supports user virtual data pointers in a CCB (generally only one per CCB), the new CAMIOQUEUE ioctl supports user virtual and physical address pointers, as well as user virtual and physical scatter/gather lists. This allows user applications to have more flexibility in their data handling operations. Kernel memory for data transferred via the queued interface is allocated from the zone allocator in MAXPHYS sized chunks, and user data is copied in and out. This is likely faster than the vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in configurations with many processors (there are more TLB shootdowns caused by the mapping/unmapping operation) but may not be as fast as running with unmapped I/O. The new memory handling model for user requests also allows applications to send CCBs with request sizes that are larger than MAXPHYS. The pass(4) driver now limits queued requests to the I/O size listed by the SIM driver in the maxio field in the Path Inquiry (XPT_PATH_INQ) CCB. There are some things things would be good to add: 1. Come up with a way to do unmapped I/O on multiple buffers. Currently the unmapped I/O interface operates on a struct bio, which includes only one address and length. It would be nice to be able to send an unmapped scatter/gather list down to busdma. This would allow eliminating the copy we currently do for data. 2. Add an ioctl to list currently outstanding CCBs in the various queues. 3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do that. 4. Test physical address support. Virtual pointers and scatter gather lists have been tested, but I have not yet tested physical addresses or scatter/gather lists. 5. Investigate multiple queue support. At the moment there is one queue of commands per pass(4) device. If multiple processes open the device, they will submit I/O into the same queue and get events for the same completions. This is probably the right model for most applications, but it is something that could be changed later on. Also, add a new utility, camdd(8) that uses the asynchronous pass(4) driver interface. This utility is intended to be a basic data transfer/copy utility, a simple benchmark utility, and an example of how to use the asynchronous pass(4) interface. It can copy data to and from pass(4) devices using any target queue depth, starting offset and blocksize for the input and ouptut devices. It currently only supports SCSI devices, but could be easily extended to support ATA devices. It can also copy data to and from regular files, block devices, tape devices, pipes, stdin, and stdout. It does not support queueing multiple commands to any of those targets, since it uses the standard read(2)/write(2)/writev(2)/readv(2) system calls. The I/O is done by two threads, one for the reader and one for the writer. The reader thread sends completed read requests to the writer thread in strictly sequential order, even if they complete out of order. That could be modified later on for random I/O patterns or slightly out of order I/O. camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from the pass(4) driver and also to send request notifications internally. For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR) per CAM CCB on the reading side, and a scatter/gather list (CAM_DATA_SG) on the writing side. In addition to testing both interfaces, this makes any potential reblocking of I/O easier. No data is copied between the reader and the writer, but rather the reader's buffers are split into multiple I/O requests or combined into a single I/O request depending on the input and output blocksize. For the file I/O path, camdd(8) also uses a single buffer (read(2), write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list (readv(2), writev(2), preadv(2), pwritev(2)) on writes. Things that would be nice to do for camdd(8) eventually: 1. Add support for I/O pattern generation. Patterns like all zeros, all ones, LBA-based patterns, random patterns, etc. Right Now you can always use /dev/zero, /dev/random, etc. 2. Add support for a "sink" mode, so we do only reads with no writes. Right now, you can use /dev/null. 3. Add support for automatic queue depth probing, so that we can figure out the right queue depth on the input and output side for maximum throughput. At the moment it defaults to 6. 4. Add support for SATA device passthrough I/O. 5. Add support for random LBAs and/or lengths on the input and output sides. 6. Track average per-I/O latency and busy time. The busy time and latency could also feed in to the automatic queue depth determination. sys/cam/scsi/scsi_pass.h: Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue and fetch asynchronous CAM CCBs respectively. Although these ioctls do not have a declared argument, they both take a union ccb pointer. If we declare a size here, the ioctl code in sys/kern/sys_generic.c will malloc and free a buffer for either the CCB or the CCB pointer (depending on how it is declared). Since we have to keep a copy of the CCB (which is fairly large) anyway, having the ioctl malloc and free a CCB for each call is wasteful. sys/cam/scsi/scsi_pass.c: Add asynchronous CCB support. Add two new ioctls, CAMIOQUEUE and CAMIOGET. CAMIOQUEUE adds a CCB to the incoming queue. The CCB is executed immediately (and moved to the active queue) if it is an immediate CCB, but otherwise it will be executed in passstart() when a CCB is available from the transport layer. When CCBs are completed (because they are immediate or passdone() if they are queued), they are put on the done queue. If we get the final close on the device before all pending I/O is complete, all active I/O is moved to the abandoned queue and we increment the peripheral reference count so that the peripheral driver instance doesn't go away before all pending I/O is done. The new passcreatezone() function is called on the first call to the CAMIOQUEUE ioctl on a given device to allocate the UMA zones for I/O requests and S/G list buffers. This may be good to move off to a taskqueue at some point. The new passmemsetup() function allocates memory and scatter/gather lists to hold the user's data, and copies in any data that needs to be written. For virtual pointers (CAM_DATA_VADDR), the kernel buffer is malloced from the new pass(4) driver malloc bucket. For virtual scatter/gather lists (CAM_DATA_SG), buffers are allocated from a new per-pass(9) UMA zone in MAXPHYS-sized chunks. Physical pointers are passed in unchanged. We have support for up to 16 scatter/gather segments (for the user and kernel S/G lists) in the default struct pass_io_req, so requests with longer S/G lists require an extra kernel malloc. The new passcopysglist() function copies a user scatter/gather list to a kernel scatter/gather list. The number of elements in each list may be different, but (obviously) the amount of data stored has to be identical. The new passmemdone() function copies data out for the CAM_DATA_VADDR and CAM_DATA_SG cases. The new passiocleanup() function restores data pointers in user CCBs and frees memory. Add new functions to support kqueue(2)/kevent(2): passreadfilt() tells kevent whether or not the done queue is empty. passkqfilter() adds a knote to our list. passreadfiltdetach() removes a knote from our list. Add a new function, passpoll(), for poll(2)/select(2) to use. Add devstat(9) support for the queued CCB path. sys/cam/ata/ata_da.c: Add support for the BIO_VLIST bio type. sys/cam/cam_ccb.h: Add a new enumeration for the xflags field in the CCB header. (This doesn't change the CCB header, just adds an enumeration to use.) sys/cam/cam_xpt.c: Add a new function, xpt_setup_ccb_flags(), that allows specifying CCB flags. sys/cam/cam_xpt.h: Add a prototype for xpt_setup_ccb_flags(). sys/cam/scsi/scsi_da.c: Add support for BIO_VLIST. sys/dev/md/md.c: Add BIO_VLIST support to md(4). sys/geom/geom_disk.c: Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size limiting code in g_disk_start() a bit. sys/kern/subr_bus_dma.c: Change _bus_dmamap_load_vlist() to take a starting offset and length. Add a new function, _bus_dmamap_load_pages(), that will load a list of physical pages starting at an offset. Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios. Allow unmapped I/O to start at an offset. sys/kern/subr_uio.c: Add two new functions, physcopyin_vlist() and physcopyout_vlist(). sys/pc98/include/bus.h: Guard kernel-only parts of the pc98 machine/bus.h header with #ifdef _KERNEL. This allows userland programs to include <machine/bus.h> to get the definition of bus_addr_t and bus_size_t. sys/sys/bio.h: Add a new bio flag, BIO_VLIST. sys/sys/uio.h: Add prototypes for physcopyin_vlist() and physcopyout_vlist(). share/man/man4/pass.4: Document the CAMIOQUEUE and CAMIOGET ioctls. usr.sbin/Makefile: Add camdd. usr.sbin/camdd/Makefile: Add a makefile for camdd(8). usr.sbin/camdd/camdd.8: Man page for camdd(8). usr.sbin/camdd/camdd.c: The new camdd(8) utility. Sponsored by: Spectra Logic MFC after: 1 week
2015-12-03 20:54:55 +00:00
.Xr ioctl 2
handler.
.Pp
Add asynchronous command support to the pass(4) driver, and the new camdd(8) utility. CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and completed CCBs may be retrieved via the CAMIOGET ioctl. User processes can use poll(2) or kevent(2) to get notification when I/O has completed. While the existing CAMIOCOMMAND blocking ioctl interface only supports user virtual data pointers in a CCB (generally only one per CCB), the new CAMIOQUEUE ioctl supports user virtual and physical address pointers, as well as user virtual and physical scatter/gather lists. This allows user applications to have more flexibility in their data handling operations. Kernel memory for data transferred via the queued interface is allocated from the zone allocator in MAXPHYS sized chunks, and user data is copied in and out. This is likely faster than the vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in configurations with many processors (there are more TLB shootdowns caused by the mapping/unmapping operation) but may not be as fast as running with unmapped I/O. The new memory handling model for user requests also allows applications to send CCBs with request sizes that are larger than MAXPHYS. The pass(4) driver now limits queued requests to the I/O size listed by the SIM driver in the maxio field in the Path Inquiry (XPT_PATH_INQ) CCB. There are some things things would be good to add: 1. Come up with a way to do unmapped I/O on multiple buffers. Currently the unmapped I/O interface operates on a struct bio, which includes only one address and length. It would be nice to be able to send an unmapped scatter/gather list down to busdma. This would allow eliminating the copy we currently do for data. 2. Add an ioctl to list currently outstanding CCBs in the various queues. 3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do that. 4. Test physical address support. Virtual pointers and scatter gather lists have been tested, but I have not yet tested physical addresses or scatter/gather lists. 5. Investigate multiple queue support. At the moment there is one queue of commands per pass(4) device. If multiple processes open the device, they will submit I/O into the same queue and get events for the same completions. This is probably the right model for most applications, but it is something that could be changed later on. Also, add a new utility, camdd(8) that uses the asynchronous pass(4) driver interface. This utility is intended to be a basic data transfer/copy utility, a simple benchmark utility, and an example of how to use the asynchronous pass(4) interface. It can copy data to and from pass(4) devices using any target queue depth, starting offset and blocksize for the input and ouptut devices. It currently only supports SCSI devices, but could be easily extended to support ATA devices. It can also copy data to and from regular files, block devices, tape devices, pipes, stdin, and stdout. It does not support queueing multiple commands to any of those targets, since it uses the standard read(2)/write(2)/writev(2)/readv(2) system calls. The I/O is done by two threads, one for the reader and one for the writer. The reader thread sends completed read requests to the writer thread in strictly sequential order, even if they complete out of order. That could be modified later on for random I/O patterns or slightly out of order I/O. camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from the pass(4) driver and also to send request notifications internally. For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR) per CAM CCB on the reading side, and a scatter/gather list (CAM_DATA_SG) on the writing side. In addition to testing both interfaces, this makes any potential reblocking of I/O easier. No data is copied between the reader and the writer, but rather the reader's buffers are split into multiple I/O requests or combined into a single I/O request depending on the input and output blocksize. For the file I/O path, camdd(8) also uses a single buffer (read(2), write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list (readv(2), writev(2), preadv(2), pwritev(2)) on writes. Things that would be nice to do for camdd(8) eventually: 1. Add support for I/O pattern generation. Patterns like all zeros, all ones, LBA-based patterns, random patterns, etc. Right Now you can always use /dev/zero, /dev/random, etc. 2. Add support for a "sink" mode, so we do only reads with no writes. Right now, you can use /dev/null. 3. Add support for automatic queue depth probing, so that we can figure out the right queue depth on the input and output side for maximum throughput. At the moment it defaults to 6. 4. Add support for SATA device passthrough I/O. 5. Add support for random LBAs and/or lengths on the input and output sides. 6. Track average per-I/O latency and busy time. The busy time and latency could also feed in to the automatic queue depth determination. sys/cam/scsi/scsi_pass.h: Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue and fetch asynchronous CAM CCBs respectively. Although these ioctls do not have a declared argument, they both take a union ccb pointer. If we declare a size here, the ioctl code in sys/kern/sys_generic.c will malloc and free a buffer for either the CCB or the CCB pointer (depending on how it is declared). Since we have to keep a copy of the CCB (which is fairly large) anyway, having the ioctl malloc and free a CCB for each call is wasteful. sys/cam/scsi/scsi_pass.c: Add asynchronous CCB support. Add two new ioctls, CAMIOQUEUE and CAMIOGET. CAMIOQUEUE adds a CCB to the incoming queue. The CCB is executed immediately (and moved to the active queue) if it is an immediate CCB, but otherwise it will be executed in passstart() when a CCB is available from the transport layer. When CCBs are completed (because they are immediate or passdone() if they are queued), they are put on the done queue. If we get the final close on the device before all pending I/O is complete, all active I/O is moved to the abandoned queue and we increment the peripheral reference count so that the peripheral driver instance doesn't go away before all pending I/O is done. The new passcreatezone() function is called on the first call to the CAMIOQUEUE ioctl on a given device to allocate the UMA zones for I/O requests and S/G list buffers. This may be good to move off to a taskqueue at some point. The new passmemsetup() function allocates memory and scatter/gather lists to hold the user's data, and copies in any data that needs to be written. For virtual pointers (CAM_DATA_VADDR), the kernel buffer is malloced from the new pass(4) driver malloc bucket. For virtual scatter/gather lists (CAM_DATA_SG), buffers are allocated from a new per-pass(9) UMA zone in MAXPHYS-sized chunks. Physical pointers are passed in unchanged. We have support for up to 16 scatter/gather segments (for the user and kernel S/G lists) in the default struct pass_io_req, so requests with longer S/G lists require an extra kernel malloc. The new passcopysglist() function copies a user scatter/gather list to a kernel scatter/gather list. The number of elements in each list may be different, but (obviously) the amount of data stored has to be identical. The new passmemdone() function copies data out for the CAM_DATA_VADDR and CAM_DATA_SG cases. The new passiocleanup() function restores data pointers in user CCBs and frees memory. Add new functions to support kqueue(2)/kevent(2): passreadfilt() tells kevent whether or not the done queue is empty. passkqfilter() adds a knote to our list. passreadfiltdetach() removes a knote from our list. Add a new function, passpoll(), for poll(2)/select(2) to use. Add devstat(9) support for the queued CCB path. sys/cam/ata/ata_da.c: Add support for the BIO_VLIST bio type. sys/cam/cam_ccb.h: Add a new enumeration for the xflags field in the CCB header. (This doesn't change the CCB header, just adds an enumeration to use.) sys/cam/cam_xpt.c: Add a new function, xpt_setup_ccb_flags(), that allows specifying CCB flags. sys/cam/cam_xpt.h: Add a prototype for xpt_setup_ccb_flags(). sys/cam/scsi/scsi_da.c: Add support for BIO_VLIST. sys/dev/md/md.c: Add BIO_VLIST support to md(4). sys/geom/geom_disk.c: Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size limiting code in g_disk_start() a bit. sys/kern/subr_bus_dma.c: Change _bus_dmamap_load_vlist() to take a starting offset and length. Add a new function, _bus_dmamap_load_pages(), that will load a list of physical pages starting at an offset. Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios. Allow unmapped I/O to start at an offset. sys/kern/subr_uio.c: Add two new functions, physcopyin_vlist() and physcopyout_vlist(). sys/pc98/include/bus.h: Guard kernel-only parts of the pc98 machine/bus.h header with #ifdef _KERNEL. This allows userland programs to include <machine/bus.h> to get the definition of bus_addr_t and bus_size_t. sys/sys/bio.h: Add a new bio flag, BIO_VLIST. sys/sys/uio.h: Add prototypes for physcopyin_vlist() and physcopyout_vlist(). share/man/man4/pass.4: Document the CAMIOQUEUE and CAMIOGET ioctls. usr.sbin/Makefile: Add camdd. usr.sbin/camdd/Makefile: Add a makefile for camdd(8). usr.sbin/camdd/camdd.8: Man page for camdd(8). usr.sbin/camdd/camdd.c: The new camdd(8) utility. Sponsored by: Spectra Logic MFC after: 1 week
2015-12-03 20:54:55 +00:00
The completed CCB will be returned via the
.Dv CAMIOGET
ioctl.
An error will only be returned from the
.Dv CAMIOQUEUE
ioctl if there is an error allocating memory for the request or copying
memory from userland.
All other errors will be reported as standard CAM CCB status errors.
Since the CCB is not copied back to the user process from the pass driver
in the
.Dv CAMIOQUEUE
ioctl, the user's passed-in CCB will not be modfied.
This is the case even with immediate CCBs.
Instead, the completed CCB must be retrieved via the
.Dv CAMIOGET
ioctl and the status examined.
.Pp
Multiple CCBs may be queued via the
.Dv CAMIOQUEUE
ioctl at any given time, and they may complete in a different order than
the order that they were submitted.
The caller must take steps to identify CCBs that are queued and completed.
The
.Dv periph_priv
structure inside struct ccb_hdr is available for userland use with the
.Dv CAMIOQUEUE
and
.Dv CAMIOGET
ioctls, and will be preserved across calls.
Also, the periph_links linked list pointers inside struct ccb_hdr are
available for userland use with the
.Dv CAMIOQUEUE
and
.Dv CAMIOGET
ioctls and will be preserved across calls.
.It CAMIOGET union ccb *
Retrieve completed CAM CCBs queued via the
.Dv CAMIOQUEUE
ioctl.
An error will only be returned from the
.Dv CAMIOGET
ioctl if the
.Nm
Add asynchronous command support to the pass(4) driver, and the new camdd(8) utility. CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and completed CCBs may be retrieved via the CAMIOGET ioctl. User processes can use poll(2) or kevent(2) to get notification when I/O has completed. While the existing CAMIOCOMMAND blocking ioctl interface only supports user virtual data pointers in a CCB (generally only one per CCB), the new CAMIOQUEUE ioctl supports user virtual and physical address pointers, as well as user virtual and physical scatter/gather lists. This allows user applications to have more flexibility in their data handling operations. Kernel memory for data transferred via the queued interface is allocated from the zone allocator in MAXPHYS sized chunks, and user data is copied in and out. This is likely faster than the vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in configurations with many processors (there are more TLB shootdowns caused by the mapping/unmapping operation) but may not be as fast as running with unmapped I/O. The new memory handling model for user requests also allows applications to send CCBs with request sizes that are larger than MAXPHYS. The pass(4) driver now limits queued requests to the I/O size listed by the SIM driver in the maxio field in the Path Inquiry (XPT_PATH_INQ) CCB. There are some things things would be good to add: 1. Come up with a way to do unmapped I/O on multiple buffers. Currently the unmapped I/O interface operates on a struct bio, which includes only one address and length. It would be nice to be able to send an unmapped scatter/gather list down to busdma. This would allow eliminating the copy we currently do for data. 2. Add an ioctl to list currently outstanding CCBs in the various queues. 3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do that. 4. Test physical address support. Virtual pointers and scatter gather lists have been tested, but I have not yet tested physical addresses or scatter/gather lists. 5. Investigate multiple queue support. At the moment there is one queue of commands per pass(4) device. If multiple processes open the device, they will submit I/O into the same queue and get events for the same completions. This is probably the right model for most applications, but it is something that could be changed later on. Also, add a new utility, camdd(8) that uses the asynchronous pass(4) driver interface. This utility is intended to be a basic data transfer/copy utility, a simple benchmark utility, and an example of how to use the asynchronous pass(4) interface. It can copy data to and from pass(4) devices using any target queue depth, starting offset and blocksize for the input and ouptut devices. It currently only supports SCSI devices, but could be easily extended to support ATA devices. It can also copy data to and from regular files, block devices, tape devices, pipes, stdin, and stdout. It does not support queueing multiple commands to any of those targets, since it uses the standard read(2)/write(2)/writev(2)/readv(2) system calls. The I/O is done by two threads, one for the reader and one for the writer. The reader thread sends completed read requests to the writer thread in strictly sequential order, even if they complete out of order. That could be modified later on for random I/O patterns or slightly out of order I/O. camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from the pass(4) driver and also to send request notifications internally. For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR) per CAM CCB on the reading side, and a scatter/gather list (CAM_DATA_SG) on the writing side. In addition to testing both interfaces, this makes any potential reblocking of I/O easier. No data is copied between the reader and the writer, but rather the reader's buffers are split into multiple I/O requests or combined into a single I/O request depending on the input and output blocksize. For the file I/O path, camdd(8) also uses a single buffer (read(2), write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list (readv(2), writev(2), preadv(2), pwritev(2)) on writes. Things that would be nice to do for camdd(8) eventually: 1. Add support for I/O pattern generation. Patterns like all zeros, all ones, LBA-based patterns, random patterns, etc. Right Now you can always use /dev/zero, /dev/random, etc. 2. Add support for a "sink" mode, so we do only reads with no writes. Right now, you can use /dev/null. 3. Add support for automatic queue depth probing, so that we can figure out the right queue depth on the input and output side for maximum throughput. At the moment it defaults to 6. 4. Add support for SATA device passthrough I/O. 5. Add support for random LBAs and/or lengths on the input and output sides. 6. Track average per-I/O latency and busy time. The busy time and latency could also feed in to the automatic queue depth determination. sys/cam/scsi/scsi_pass.h: Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue and fetch asynchronous CAM CCBs respectively. Although these ioctls do not have a declared argument, they both take a union ccb pointer. If we declare a size here, the ioctl code in sys/kern/sys_generic.c will malloc and free a buffer for either the CCB or the CCB pointer (depending on how it is declared). Since we have to keep a copy of the CCB (which is fairly large) anyway, having the ioctl malloc and free a CCB for each call is wasteful. sys/cam/scsi/scsi_pass.c: Add asynchronous CCB support. Add two new ioctls, CAMIOQUEUE and CAMIOGET. CAMIOQUEUE adds a CCB to the incoming queue. The CCB is executed immediately (and moved to the active queue) if it is an immediate CCB, but otherwise it will be executed in passstart() when a CCB is available from the transport layer. When CCBs are completed (because they are immediate or passdone() if they are queued), they are put on the done queue. If we get the final close on the device before all pending I/O is complete, all active I/O is moved to the abandoned queue and we increment the peripheral reference count so that the peripheral driver instance doesn't go away before all pending I/O is done. The new passcreatezone() function is called on the first call to the CAMIOQUEUE ioctl on a given device to allocate the UMA zones for I/O requests and S/G list buffers. This may be good to move off to a taskqueue at some point. The new passmemsetup() function allocates memory and scatter/gather lists to hold the user's data, and copies in any data that needs to be written. For virtual pointers (CAM_DATA_VADDR), the kernel buffer is malloced from the new pass(4) driver malloc bucket. For virtual scatter/gather lists (CAM_DATA_SG), buffers are allocated from a new per-pass(9) UMA zone in MAXPHYS-sized chunks. Physical pointers are passed in unchanged. We have support for up to 16 scatter/gather segments (for the user and kernel S/G lists) in the default struct pass_io_req, so requests with longer S/G lists require an extra kernel malloc. The new passcopysglist() function copies a user scatter/gather list to a kernel scatter/gather list. The number of elements in each list may be different, but (obviously) the amount of data stored has to be identical. The new passmemdone() function copies data out for the CAM_DATA_VADDR and CAM_DATA_SG cases. The new passiocleanup() function restores data pointers in user CCBs and frees memory. Add new functions to support kqueue(2)/kevent(2): passreadfilt() tells kevent whether or not the done queue is empty. passkqfilter() adds a knote to our list. passreadfiltdetach() removes a knote from our list. Add a new function, passpoll(), for poll(2)/select(2) to use. Add devstat(9) support for the queued CCB path. sys/cam/ata/ata_da.c: Add support for the BIO_VLIST bio type. sys/cam/cam_ccb.h: Add a new enumeration for the xflags field in the CCB header. (This doesn't change the CCB header, just adds an enumeration to use.) sys/cam/cam_xpt.c: Add a new function, xpt_setup_ccb_flags(), that allows specifying CCB flags. sys/cam/cam_xpt.h: Add a prototype for xpt_setup_ccb_flags(). sys/cam/scsi/scsi_da.c: Add support for BIO_VLIST. sys/dev/md/md.c: Add BIO_VLIST support to md(4). sys/geom/geom_disk.c: Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size limiting code in g_disk_start() a bit. sys/kern/subr_bus_dma.c: Change _bus_dmamap_load_vlist() to take a starting offset and length. Add a new function, _bus_dmamap_load_pages(), that will load a list of physical pages starting at an offset. Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios. Allow unmapped I/O to start at an offset. sys/kern/subr_uio.c: Add two new functions, physcopyin_vlist() and physcopyout_vlist(). sys/pc98/include/bus.h: Guard kernel-only parts of the pc98 machine/bus.h header with #ifdef _KERNEL. This allows userland programs to include <machine/bus.h> to get the definition of bus_addr_t and bus_size_t. sys/sys/bio.h: Add a new bio flag, BIO_VLIST. sys/sys/uio.h: Add prototypes for physcopyin_vlist() and physcopyout_vlist(). share/man/man4/pass.4: Document the CAMIOQUEUE and CAMIOGET ioctls. usr.sbin/Makefile: Add camdd. usr.sbin/camdd/Makefile: Add a makefile for camdd(8). usr.sbin/camdd/camdd.8: Man page for camdd(8). usr.sbin/camdd/camdd.c: The new camdd(8) utility. Sponsored by: Spectra Logic MFC after: 1 week
2015-12-03 20:54:55 +00:00
driver fails to copy data to the user process or if there are no completed
CCBs available to retrieve.
If no CCBs are available to retrieve,
errno will be set to
Add asynchronous command support to the pass(4) driver, and the new camdd(8) utility. CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and completed CCBs may be retrieved via the CAMIOGET ioctl. User processes can use poll(2) or kevent(2) to get notification when I/O has completed. While the existing CAMIOCOMMAND blocking ioctl interface only supports user virtual data pointers in a CCB (generally only one per CCB), the new CAMIOQUEUE ioctl supports user virtual and physical address pointers, as well as user virtual and physical scatter/gather lists. This allows user applications to have more flexibility in their data handling operations. Kernel memory for data transferred via the queued interface is allocated from the zone allocator in MAXPHYS sized chunks, and user data is copied in and out. This is likely faster than the vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in configurations with many processors (there are more TLB shootdowns caused by the mapping/unmapping operation) but may not be as fast as running with unmapped I/O. The new memory handling model for user requests also allows applications to send CCBs with request sizes that are larger than MAXPHYS. The pass(4) driver now limits queued requests to the I/O size listed by the SIM driver in the maxio field in the Path Inquiry (XPT_PATH_INQ) CCB. There are some things things would be good to add: 1. Come up with a way to do unmapped I/O on multiple buffers. Currently the unmapped I/O interface operates on a struct bio, which includes only one address and length. It would be nice to be able to send an unmapped scatter/gather list down to busdma. This would allow eliminating the copy we currently do for data. 2. Add an ioctl to list currently outstanding CCBs in the various queues. 3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do that. 4. Test physical address support. Virtual pointers and scatter gather lists have been tested, but I have not yet tested physical addresses or scatter/gather lists. 5. Investigate multiple queue support. At the moment there is one queue of commands per pass(4) device. If multiple processes open the device, they will submit I/O into the same queue and get events for the same completions. This is probably the right model for most applications, but it is something that could be changed later on. Also, add a new utility, camdd(8) that uses the asynchronous pass(4) driver interface. This utility is intended to be a basic data transfer/copy utility, a simple benchmark utility, and an example of how to use the asynchronous pass(4) interface. It can copy data to and from pass(4) devices using any target queue depth, starting offset and blocksize for the input and ouptut devices. It currently only supports SCSI devices, but could be easily extended to support ATA devices. It can also copy data to and from regular files, block devices, tape devices, pipes, stdin, and stdout. It does not support queueing multiple commands to any of those targets, since it uses the standard read(2)/write(2)/writev(2)/readv(2) system calls. The I/O is done by two threads, one for the reader and one for the writer. The reader thread sends completed read requests to the writer thread in strictly sequential order, even if they complete out of order. That could be modified later on for random I/O patterns or slightly out of order I/O. camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from the pass(4) driver and also to send request notifications internally. For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR) per CAM CCB on the reading side, and a scatter/gather list (CAM_DATA_SG) on the writing side. In addition to testing both interfaces, this makes any potential reblocking of I/O easier. No data is copied between the reader and the writer, but rather the reader's buffers are split into multiple I/O requests or combined into a single I/O request depending on the input and output blocksize. For the file I/O path, camdd(8) also uses a single buffer (read(2), write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list (readv(2), writev(2), preadv(2), pwritev(2)) on writes. Things that would be nice to do for camdd(8) eventually: 1. Add support for I/O pattern generation. Patterns like all zeros, all ones, LBA-based patterns, random patterns, etc. Right Now you can always use /dev/zero, /dev/random, etc. 2. Add support for a "sink" mode, so we do only reads with no writes. Right now, you can use /dev/null. 3. Add support for automatic queue depth probing, so that we can figure out the right queue depth on the input and output side for maximum throughput. At the moment it defaults to 6. 4. Add support for SATA device passthrough I/O. 5. Add support for random LBAs and/or lengths on the input and output sides. 6. Track average per-I/O latency and busy time. The busy time and latency could also feed in to the automatic queue depth determination. sys/cam/scsi/scsi_pass.h: Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue and fetch asynchronous CAM CCBs respectively. Although these ioctls do not have a declared argument, they both take a union ccb pointer. If we declare a size here, the ioctl code in sys/kern/sys_generic.c will malloc and free a buffer for either the CCB or the CCB pointer (depending on how it is declared). Since we have to keep a copy of the CCB (which is fairly large) anyway, having the ioctl malloc and free a CCB for each call is wasteful. sys/cam/scsi/scsi_pass.c: Add asynchronous CCB support. Add two new ioctls, CAMIOQUEUE and CAMIOGET. CAMIOQUEUE adds a CCB to the incoming queue. The CCB is executed immediately (and moved to the active queue) if it is an immediate CCB, but otherwise it will be executed in passstart() when a CCB is available from the transport layer. When CCBs are completed (because they are immediate or passdone() if they are queued), they are put on the done queue. If we get the final close on the device before all pending I/O is complete, all active I/O is moved to the abandoned queue and we increment the peripheral reference count so that the peripheral driver instance doesn't go away before all pending I/O is done. The new passcreatezone() function is called on the first call to the CAMIOQUEUE ioctl on a given device to allocate the UMA zones for I/O requests and S/G list buffers. This may be good to move off to a taskqueue at some point. The new passmemsetup() function allocates memory and scatter/gather lists to hold the user's data, and copies in any data that needs to be written. For virtual pointers (CAM_DATA_VADDR), the kernel buffer is malloced from the new pass(4) driver malloc bucket. For virtual scatter/gather lists (CAM_DATA_SG), buffers are allocated from a new per-pass(9) UMA zone in MAXPHYS-sized chunks. Physical pointers are passed in unchanged. We have support for up to 16 scatter/gather segments (for the user and kernel S/G lists) in the default struct pass_io_req, so requests with longer S/G lists require an extra kernel malloc. The new passcopysglist() function copies a user scatter/gather list to a kernel scatter/gather list. The number of elements in each list may be different, but (obviously) the amount of data stored has to be identical. The new passmemdone() function copies data out for the CAM_DATA_VADDR and CAM_DATA_SG cases. The new passiocleanup() function restores data pointers in user CCBs and frees memory. Add new functions to support kqueue(2)/kevent(2): passreadfilt() tells kevent whether or not the done queue is empty. passkqfilter() adds a knote to our list. passreadfiltdetach() removes a knote from our list. Add a new function, passpoll(), for poll(2)/select(2) to use. Add devstat(9) support for the queued CCB path. sys/cam/ata/ata_da.c: Add support for the BIO_VLIST bio type. sys/cam/cam_ccb.h: Add a new enumeration for the xflags field in the CCB header. (This doesn't change the CCB header, just adds an enumeration to use.) sys/cam/cam_xpt.c: Add a new function, xpt_setup_ccb_flags(), that allows specifying CCB flags. sys/cam/cam_xpt.h: Add a prototype for xpt_setup_ccb_flags(). sys/cam/scsi/scsi_da.c: Add support for BIO_VLIST. sys/dev/md/md.c: Add BIO_VLIST support to md(4). sys/geom/geom_disk.c: Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size limiting code in g_disk_start() a bit. sys/kern/subr_bus_dma.c: Change _bus_dmamap_load_vlist() to take a starting offset and length. Add a new function, _bus_dmamap_load_pages(), that will load a list of physical pages starting at an offset. Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios. Allow unmapped I/O to start at an offset. sys/kern/subr_uio.c: Add two new functions, physcopyin_vlist() and physcopyout_vlist(). sys/pc98/include/bus.h: Guard kernel-only parts of the pc98 machine/bus.h header with #ifdef _KERNEL. This allows userland programs to include <machine/bus.h> to get the definition of bus_addr_t and bus_size_t. sys/sys/bio.h: Add a new bio flag, BIO_VLIST. sys/sys/uio.h: Add prototypes for physcopyin_vlist() and physcopyout_vlist(). share/man/man4/pass.4: Document the CAMIOQUEUE and CAMIOGET ioctls. usr.sbin/Makefile: Add camdd. usr.sbin/camdd/Makefile: Add a makefile for camdd(8). usr.sbin/camdd/camdd.8: Man page for camdd(8). usr.sbin/camdd/camdd.c: The new camdd(8) utility. Sponsored by: Spectra Logic MFC after: 1 week
2015-12-03 20:54:55 +00:00
.Dv ENOENT .
.Pp
All other errors will be reported as standard CAM CCB status errors.
.Pp
Although the
.Dv CAMIOGET
ioctl is not defined to take an argument, it does require a
pointer to a union ccb.
It is not defined to take an argument to avoid an extra malloc and copy
inside the generic
Add asynchronous command support to the pass(4) driver, and the new camdd(8) utility. CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and completed CCBs may be retrieved via the CAMIOGET ioctl. User processes can use poll(2) or kevent(2) to get notification when I/O has completed. While the existing CAMIOCOMMAND blocking ioctl interface only supports user virtual data pointers in a CCB (generally only one per CCB), the new CAMIOQUEUE ioctl supports user virtual and physical address pointers, as well as user virtual and physical scatter/gather lists. This allows user applications to have more flexibility in their data handling operations. Kernel memory for data transferred via the queued interface is allocated from the zone allocator in MAXPHYS sized chunks, and user data is copied in and out. This is likely faster than the vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in configurations with many processors (there are more TLB shootdowns caused by the mapping/unmapping operation) but may not be as fast as running with unmapped I/O. The new memory handling model for user requests also allows applications to send CCBs with request sizes that are larger than MAXPHYS. The pass(4) driver now limits queued requests to the I/O size listed by the SIM driver in the maxio field in the Path Inquiry (XPT_PATH_INQ) CCB. There are some things things would be good to add: 1. Come up with a way to do unmapped I/O on multiple buffers. Currently the unmapped I/O interface operates on a struct bio, which includes only one address and length. It would be nice to be able to send an unmapped scatter/gather list down to busdma. This would allow eliminating the copy we currently do for data. 2. Add an ioctl to list currently outstanding CCBs in the various queues. 3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do that. 4. Test physical address support. Virtual pointers and scatter gather lists have been tested, but I have not yet tested physical addresses or scatter/gather lists. 5. Investigate multiple queue support. At the moment there is one queue of commands per pass(4) device. If multiple processes open the device, they will submit I/O into the same queue and get events for the same completions. This is probably the right model for most applications, but it is something that could be changed later on. Also, add a new utility, camdd(8) that uses the asynchronous pass(4) driver interface. This utility is intended to be a basic data transfer/copy utility, a simple benchmark utility, and an example of how to use the asynchronous pass(4) interface. It can copy data to and from pass(4) devices using any target queue depth, starting offset and blocksize for the input and ouptut devices. It currently only supports SCSI devices, but could be easily extended to support ATA devices. It can also copy data to and from regular files, block devices, tape devices, pipes, stdin, and stdout. It does not support queueing multiple commands to any of those targets, since it uses the standard read(2)/write(2)/writev(2)/readv(2) system calls. The I/O is done by two threads, one for the reader and one for the writer. The reader thread sends completed read requests to the writer thread in strictly sequential order, even if they complete out of order. That could be modified later on for random I/O patterns or slightly out of order I/O. camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from the pass(4) driver and also to send request notifications internally. For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR) per CAM CCB on the reading side, and a scatter/gather list (CAM_DATA_SG) on the writing side. In addition to testing both interfaces, this makes any potential reblocking of I/O easier. No data is copied between the reader and the writer, but rather the reader's buffers are split into multiple I/O requests or combined into a single I/O request depending on the input and output blocksize. For the file I/O path, camdd(8) also uses a single buffer (read(2), write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list (readv(2), writev(2), preadv(2), pwritev(2)) on writes. Things that would be nice to do for camdd(8) eventually: 1. Add support for I/O pattern generation. Patterns like all zeros, all ones, LBA-based patterns, random patterns, etc. Right Now you can always use /dev/zero, /dev/random, etc. 2. Add support for a "sink" mode, so we do only reads with no writes. Right now, you can use /dev/null. 3. Add support for automatic queue depth probing, so that we can figure out the right queue depth on the input and output side for maximum throughput. At the moment it defaults to 6. 4. Add support for SATA device passthrough I/O. 5. Add support for random LBAs and/or lengths on the input and output sides. 6. Track average per-I/O latency and busy time. The busy time and latency could also feed in to the automatic queue depth determination. sys/cam/scsi/scsi_pass.h: Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue and fetch asynchronous CAM CCBs respectively. Although these ioctls do not have a declared argument, they both take a union ccb pointer. If we declare a size here, the ioctl code in sys/kern/sys_generic.c will malloc and free a buffer for either the CCB or the CCB pointer (depending on how it is declared). Since we have to keep a copy of the CCB (which is fairly large) anyway, having the ioctl malloc and free a CCB for each call is wasteful. sys/cam/scsi/scsi_pass.c: Add asynchronous CCB support. Add two new ioctls, CAMIOQUEUE and CAMIOGET. CAMIOQUEUE adds a CCB to the incoming queue. The CCB is executed immediately (and moved to the active queue) if it is an immediate CCB, but otherwise it will be executed in passstart() when a CCB is available from the transport layer. When CCBs are completed (because they are immediate or passdone() if they are queued), they are put on the done queue. If we get the final close on the device before all pending I/O is complete, all active I/O is moved to the abandoned queue and we increment the peripheral reference count so that the peripheral driver instance doesn't go away before all pending I/O is done. The new passcreatezone() function is called on the first call to the CAMIOQUEUE ioctl on a given device to allocate the UMA zones for I/O requests and S/G list buffers. This may be good to move off to a taskqueue at some point. The new passmemsetup() function allocates memory and scatter/gather lists to hold the user's data, and copies in any data that needs to be written. For virtual pointers (CAM_DATA_VADDR), the kernel buffer is malloced from the new pass(4) driver malloc bucket. For virtual scatter/gather lists (CAM_DATA_SG), buffers are allocated from a new per-pass(9) UMA zone in MAXPHYS-sized chunks. Physical pointers are passed in unchanged. We have support for up to 16 scatter/gather segments (for the user and kernel S/G lists) in the default struct pass_io_req, so requests with longer S/G lists require an extra kernel malloc. The new passcopysglist() function copies a user scatter/gather list to a kernel scatter/gather list. The number of elements in each list may be different, but (obviously) the amount of data stored has to be identical. The new passmemdone() function copies data out for the CAM_DATA_VADDR and CAM_DATA_SG cases. The new passiocleanup() function restores data pointers in user CCBs and frees memory. Add new functions to support kqueue(2)/kevent(2): passreadfilt() tells kevent whether or not the done queue is empty. passkqfilter() adds a knote to our list. passreadfiltdetach() removes a knote from our list. Add a new function, passpoll(), for poll(2)/select(2) to use. Add devstat(9) support for the queued CCB path. sys/cam/ata/ata_da.c: Add support for the BIO_VLIST bio type. sys/cam/cam_ccb.h: Add a new enumeration for the xflags field in the CCB header. (This doesn't change the CCB header, just adds an enumeration to use.) sys/cam/cam_xpt.c: Add a new function, xpt_setup_ccb_flags(), that allows specifying CCB flags. sys/cam/cam_xpt.h: Add a prototype for xpt_setup_ccb_flags(). sys/cam/scsi/scsi_da.c: Add support for BIO_VLIST. sys/dev/md/md.c: Add BIO_VLIST support to md(4). sys/geom/geom_disk.c: Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size limiting code in g_disk_start() a bit. sys/kern/subr_bus_dma.c: Change _bus_dmamap_load_vlist() to take a starting offset and length. Add a new function, _bus_dmamap_load_pages(), that will load a list of physical pages starting at an offset. Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios. Allow unmapped I/O to start at an offset. sys/kern/subr_uio.c: Add two new functions, physcopyin_vlist() and physcopyout_vlist(). sys/pc98/include/bus.h: Guard kernel-only parts of the pc98 machine/bus.h header with #ifdef _KERNEL. This allows userland programs to include <machine/bus.h> to get the definition of bus_addr_t and bus_size_t. sys/sys/bio.h: Add a new bio flag, BIO_VLIST. sys/sys/uio.h: Add prototypes for physcopyin_vlist() and physcopyout_vlist(). share/man/man4/pass.4: Document the CAMIOQUEUE and CAMIOGET ioctls. usr.sbin/Makefile: Add camdd. usr.sbin/camdd/Makefile: Add a makefile for camdd(8). usr.sbin/camdd/camdd.8: Man page for camdd(8). usr.sbin/camdd/camdd.c: The new camdd(8) utility. Sponsored by: Spectra Logic MFC after: 1 week
2015-12-03 20:54:55 +00:00
.Xr ioctl 2
handler.
.Pp
The pass driver will report via
.Xr select 2 ,
.Xr poll 2
Add asynchronous command support to the pass(4) driver, and the new camdd(8) utility. CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and completed CCBs may be retrieved via the CAMIOGET ioctl. User processes can use poll(2) or kevent(2) to get notification when I/O has completed. While the existing CAMIOCOMMAND blocking ioctl interface only supports user virtual data pointers in a CCB (generally only one per CCB), the new CAMIOQUEUE ioctl supports user virtual and physical address pointers, as well as user virtual and physical scatter/gather lists. This allows user applications to have more flexibility in their data handling operations. Kernel memory for data transferred via the queued interface is allocated from the zone allocator in MAXPHYS sized chunks, and user data is copied in and out. This is likely faster than the vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in configurations with many processors (there are more TLB shootdowns caused by the mapping/unmapping operation) but may not be as fast as running with unmapped I/O. The new memory handling model for user requests also allows applications to send CCBs with request sizes that are larger than MAXPHYS. The pass(4) driver now limits queued requests to the I/O size listed by the SIM driver in the maxio field in the Path Inquiry (XPT_PATH_INQ) CCB. There are some things things would be good to add: 1. Come up with a way to do unmapped I/O on multiple buffers. Currently the unmapped I/O interface operates on a struct bio, which includes only one address and length. It would be nice to be able to send an unmapped scatter/gather list down to busdma. This would allow eliminating the copy we currently do for data. 2. Add an ioctl to list currently outstanding CCBs in the various queues. 3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do that. 4. Test physical address support. Virtual pointers and scatter gather lists have been tested, but I have not yet tested physical addresses or scatter/gather lists. 5. Investigate multiple queue support. At the moment there is one queue of commands per pass(4) device. If multiple processes open the device, they will submit I/O into the same queue and get events for the same completions. This is probably the right model for most applications, but it is something that could be changed later on. Also, add a new utility, camdd(8) that uses the asynchronous pass(4) driver interface. This utility is intended to be a basic data transfer/copy utility, a simple benchmark utility, and an example of how to use the asynchronous pass(4) interface. It can copy data to and from pass(4) devices using any target queue depth, starting offset and blocksize for the input and ouptut devices. It currently only supports SCSI devices, but could be easily extended to support ATA devices. It can also copy data to and from regular files, block devices, tape devices, pipes, stdin, and stdout. It does not support queueing multiple commands to any of those targets, since it uses the standard read(2)/write(2)/writev(2)/readv(2) system calls. The I/O is done by two threads, one for the reader and one for the writer. The reader thread sends completed read requests to the writer thread in strictly sequential order, even if they complete out of order. That could be modified later on for random I/O patterns or slightly out of order I/O. camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from the pass(4) driver and also to send request notifications internally. For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR) per CAM CCB on the reading side, and a scatter/gather list (CAM_DATA_SG) on the writing side. In addition to testing both interfaces, this makes any potential reblocking of I/O easier. No data is copied between the reader and the writer, but rather the reader's buffers are split into multiple I/O requests or combined into a single I/O request depending on the input and output blocksize. For the file I/O path, camdd(8) also uses a single buffer (read(2), write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list (readv(2), writev(2), preadv(2), pwritev(2)) on writes. Things that would be nice to do for camdd(8) eventually: 1. Add support for I/O pattern generation. Patterns like all zeros, all ones, LBA-based patterns, random patterns, etc. Right Now you can always use /dev/zero, /dev/random, etc. 2. Add support for a "sink" mode, so we do only reads with no writes. Right now, you can use /dev/null. 3. Add support for automatic queue depth probing, so that we can figure out the right queue depth on the input and output side for maximum throughput. At the moment it defaults to 6. 4. Add support for SATA device passthrough I/O. 5. Add support for random LBAs and/or lengths on the input and output sides. 6. Track average per-I/O latency and busy time. The busy time and latency could also feed in to the automatic queue depth determination. sys/cam/scsi/scsi_pass.h: Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue and fetch asynchronous CAM CCBs respectively. Although these ioctls do not have a declared argument, they both take a union ccb pointer. If we declare a size here, the ioctl code in sys/kern/sys_generic.c will malloc and free a buffer for either the CCB or the CCB pointer (depending on how it is declared). Since we have to keep a copy of the CCB (which is fairly large) anyway, having the ioctl malloc and free a CCB for each call is wasteful. sys/cam/scsi/scsi_pass.c: Add asynchronous CCB support. Add two new ioctls, CAMIOQUEUE and CAMIOGET. CAMIOQUEUE adds a CCB to the incoming queue. The CCB is executed immediately (and moved to the active queue) if it is an immediate CCB, but otherwise it will be executed in passstart() when a CCB is available from the transport layer. When CCBs are completed (because they are immediate or passdone() if they are queued), they are put on the done queue. If we get the final close on the device before all pending I/O is complete, all active I/O is moved to the abandoned queue and we increment the peripheral reference count so that the peripheral driver instance doesn't go away before all pending I/O is done. The new passcreatezone() function is called on the first call to the CAMIOQUEUE ioctl on a given device to allocate the UMA zones for I/O requests and S/G list buffers. This may be good to move off to a taskqueue at some point. The new passmemsetup() function allocates memory and scatter/gather lists to hold the user's data, and copies in any data that needs to be written. For virtual pointers (CAM_DATA_VADDR), the kernel buffer is malloced from the new pass(4) driver malloc bucket. For virtual scatter/gather lists (CAM_DATA_SG), buffers are allocated from a new per-pass(9) UMA zone in MAXPHYS-sized chunks. Physical pointers are passed in unchanged. We have support for up to 16 scatter/gather segments (for the user and kernel S/G lists) in the default struct pass_io_req, so requests with longer S/G lists require an extra kernel malloc. The new passcopysglist() function copies a user scatter/gather list to a kernel scatter/gather list. The number of elements in each list may be different, but (obviously) the amount of data stored has to be identical. The new passmemdone() function copies data out for the CAM_DATA_VADDR and CAM_DATA_SG cases. The new passiocleanup() function restores data pointers in user CCBs and frees memory. Add new functions to support kqueue(2)/kevent(2): passreadfilt() tells kevent whether or not the done queue is empty. passkqfilter() adds a knote to our list. passreadfiltdetach() removes a knote from our list. Add a new function, passpoll(), for poll(2)/select(2) to use. Add devstat(9) support for the queued CCB path. sys/cam/ata/ata_da.c: Add support for the BIO_VLIST bio type. sys/cam/cam_ccb.h: Add a new enumeration for the xflags field in the CCB header. (This doesn't change the CCB header, just adds an enumeration to use.) sys/cam/cam_xpt.c: Add a new function, xpt_setup_ccb_flags(), that allows specifying CCB flags. sys/cam/cam_xpt.h: Add a prototype for xpt_setup_ccb_flags(). sys/cam/scsi/scsi_da.c: Add support for BIO_VLIST. sys/dev/md/md.c: Add BIO_VLIST support to md(4). sys/geom/geom_disk.c: Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size limiting code in g_disk_start() a bit. sys/kern/subr_bus_dma.c: Change _bus_dmamap_load_vlist() to take a starting offset and length. Add a new function, _bus_dmamap_load_pages(), that will load a list of physical pages starting at an offset. Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios. Allow unmapped I/O to start at an offset. sys/kern/subr_uio.c: Add two new functions, physcopyin_vlist() and physcopyout_vlist(). sys/pc98/include/bus.h: Guard kernel-only parts of the pc98 machine/bus.h header with #ifdef _KERNEL. This allows userland programs to include <machine/bus.h> to get the definition of bus_addr_t and bus_size_t. sys/sys/bio.h: Add a new bio flag, BIO_VLIST. sys/sys/uio.h: Add prototypes for physcopyin_vlist() and physcopyout_vlist(). share/man/man4/pass.4: Document the CAMIOQUEUE and CAMIOGET ioctls. usr.sbin/Makefile: Add camdd. usr.sbin/camdd/Makefile: Add a makefile for camdd(8). usr.sbin/camdd/camdd.8: Man page for camdd(8). usr.sbin/camdd/camdd.c: The new camdd(8) utility. Sponsored by: Spectra Logic MFC after: 1 week
2015-12-03 20:54:55 +00:00
or
.Xr kevent 2
when a CCB has completed.
One CCB may be retrieved per
.Dv CAMIOGET
call.
CCBs may be returned in an order different than the order they were
submitted.
So the caller should use the
.Dv periph_priv
area inside the CCB header to store pointers to identifying information.
.El
.Sh FILES
2000-12-29 09:18:45 +00:00
.Bl -tag -width /dev/passn -compact
.It Pa /dev/pass Ns Ar n
Character device nodes for the
.Nm
driver.
There should be one of these for each device accessed through the
CAM subsystem.
.El
.Sh DIAGNOSTICS
None.
.Sh SEE ALSO
Add asynchronous command support to the pass(4) driver, and the new camdd(8) utility. CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and completed CCBs may be retrieved via the CAMIOGET ioctl. User processes can use poll(2) or kevent(2) to get notification when I/O has completed. While the existing CAMIOCOMMAND blocking ioctl interface only supports user virtual data pointers in a CCB (generally only one per CCB), the new CAMIOQUEUE ioctl supports user virtual and physical address pointers, as well as user virtual and physical scatter/gather lists. This allows user applications to have more flexibility in their data handling operations. Kernel memory for data transferred via the queued interface is allocated from the zone allocator in MAXPHYS sized chunks, and user data is copied in and out. This is likely faster than the vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in configurations with many processors (there are more TLB shootdowns caused by the mapping/unmapping operation) but may not be as fast as running with unmapped I/O. The new memory handling model for user requests also allows applications to send CCBs with request sizes that are larger than MAXPHYS. The pass(4) driver now limits queued requests to the I/O size listed by the SIM driver in the maxio field in the Path Inquiry (XPT_PATH_INQ) CCB. There are some things things would be good to add: 1. Come up with a way to do unmapped I/O on multiple buffers. Currently the unmapped I/O interface operates on a struct bio, which includes only one address and length. It would be nice to be able to send an unmapped scatter/gather list down to busdma. This would allow eliminating the copy we currently do for data. 2. Add an ioctl to list currently outstanding CCBs in the various queues. 3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do that. 4. Test physical address support. Virtual pointers and scatter gather lists have been tested, but I have not yet tested physical addresses or scatter/gather lists. 5. Investigate multiple queue support. At the moment there is one queue of commands per pass(4) device. If multiple processes open the device, they will submit I/O into the same queue and get events for the same completions. This is probably the right model for most applications, but it is something that could be changed later on. Also, add a new utility, camdd(8) that uses the asynchronous pass(4) driver interface. This utility is intended to be a basic data transfer/copy utility, a simple benchmark utility, and an example of how to use the asynchronous pass(4) interface. It can copy data to and from pass(4) devices using any target queue depth, starting offset and blocksize for the input and ouptut devices. It currently only supports SCSI devices, but could be easily extended to support ATA devices. It can also copy data to and from regular files, block devices, tape devices, pipes, stdin, and stdout. It does not support queueing multiple commands to any of those targets, since it uses the standard read(2)/write(2)/writev(2)/readv(2) system calls. The I/O is done by two threads, one for the reader and one for the writer. The reader thread sends completed read requests to the writer thread in strictly sequential order, even if they complete out of order. That could be modified later on for random I/O patterns or slightly out of order I/O. camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from the pass(4) driver and also to send request notifications internally. For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR) per CAM CCB on the reading side, and a scatter/gather list (CAM_DATA_SG) on the writing side. In addition to testing both interfaces, this makes any potential reblocking of I/O easier. No data is copied between the reader and the writer, but rather the reader's buffers are split into multiple I/O requests or combined into a single I/O request depending on the input and output blocksize. For the file I/O path, camdd(8) also uses a single buffer (read(2), write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list (readv(2), writev(2), preadv(2), pwritev(2)) on writes. Things that would be nice to do for camdd(8) eventually: 1. Add support for I/O pattern generation. Patterns like all zeros, all ones, LBA-based patterns, random patterns, etc. Right Now you can always use /dev/zero, /dev/random, etc. 2. Add support for a "sink" mode, so we do only reads with no writes. Right now, you can use /dev/null. 3. Add support for automatic queue depth probing, so that we can figure out the right queue depth on the input and output side for maximum throughput. At the moment it defaults to 6. 4. Add support for SATA device passthrough I/O. 5. Add support for random LBAs and/or lengths on the input and output sides. 6. Track average per-I/O latency and busy time. The busy time and latency could also feed in to the automatic queue depth determination. sys/cam/scsi/scsi_pass.h: Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue and fetch asynchronous CAM CCBs respectively. Although these ioctls do not have a declared argument, they both take a union ccb pointer. If we declare a size here, the ioctl code in sys/kern/sys_generic.c will malloc and free a buffer for either the CCB or the CCB pointer (depending on how it is declared). Since we have to keep a copy of the CCB (which is fairly large) anyway, having the ioctl malloc and free a CCB for each call is wasteful. sys/cam/scsi/scsi_pass.c: Add asynchronous CCB support. Add two new ioctls, CAMIOQUEUE and CAMIOGET. CAMIOQUEUE adds a CCB to the incoming queue. The CCB is executed immediately (and moved to the active queue) if it is an immediate CCB, but otherwise it will be executed in passstart() when a CCB is available from the transport layer. When CCBs are completed (because they are immediate or passdone() if they are queued), they are put on the done queue. If we get the final close on the device before all pending I/O is complete, all active I/O is moved to the abandoned queue and we increment the peripheral reference count so that the peripheral driver instance doesn't go away before all pending I/O is done. The new passcreatezone() function is called on the first call to the CAMIOQUEUE ioctl on a given device to allocate the UMA zones for I/O requests and S/G list buffers. This may be good to move off to a taskqueue at some point. The new passmemsetup() function allocates memory and scatter/gather lists to hold the user's data, and copies in any data that needs to be written. For virtual pointers (CAM_DATA_VADDR), the kernel buffer is malloced from the new pass(4) driver malloc bucket. For virtual scatter/gather lists (CAM_DATA_SG), buffers are allocated from a new per-pass(9) UMA zone in MAXPHYS-sized chunks. Physical pointers are passed in unchanged. We have support for up to 16 scatter/gather segments (for the user and kernel S/G lists) in the default struct pass_io_req, so requests with longer S/G lists require an extra kernel malloc. The new passcopysglist() function copies a user scatter/gather list to a kernel scatter/gather list. The number of elements in each list may be different, but (obviously) the amount of data stored has to be identical. The new passmemdone() function copies data out for the CAM_DATA_VADDR and CAM_DATA_SG cases. The new passiocleanup() function restores data pointers in user CCBs and frees memory. Add new functions to support kqueue(2)/kevent(2): passreadfilt() tells kevent whether or not the done queue is empty. passkqfilter() adds a knote to our list. passreadfiltdetach() removes a knote from our list. Add a new function, passpoll(), for poll(2)/select(2) to use. Add devstat(9) support for the queued CCB path. sys/cam/ata/ata_da.c: Add support for the BIO_VLIST bio type. sys/cam/cam_ccb.h: Add a new enumeration for the xflags field in the CCB header. (This doesn't change the CCB header, just adds an enumeration to use.) sys/cam/cam_xpt.c: Add a new function, xpt_setup_ccb_flags(), that allows specifying CCB flags. sys/cam/cam_xpt.h: Add a prototype for xpt_setup_ccb_flags(). sys/cam/scsi/scsi_da.c: Add support for BIO_VLIST. sys/dev/md/md.c: Add BIO_VLIST support to md(4). sys/geom/geom_disk.c: Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size limiting code in g_disk_start() a bit. sys/kern/subr_bus_dma.c: Change _bus_dmamap_load_vlist() to take a starting offset and length. Add a new function, _bus_dmamap_load_pages(), that will load a list of physical pages starting at an offset. Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios. Allow unmapped I/O to start at an offset. sys/kern/subr_uio.c: Add two new functions, physcopyin_vlist() and physcopyout_vlist(). sys/pc98/include/bus.h: Guard kernel-only parts of the pc98 machine/bus.h header with #ifdef _KERNEL. This allows userland programs to include <machine/bus.h> to get the definition of bus_addr_t and bus_size_t. sys/sys/bio.h: Add a new bio flag, BIO_VLIST. sys/sys/uio.h: Add prototypes for physcopyin_vlist() and physcopyout_vlist(). share/man/man4/pass.4: Document the CAMIOQUEUE and CAMIOGET ioctls. usr.sbin/Makefile: Add camdd. usr.sbin/camdd/Makefile: Add a makefile for camdd(8). usr.sbin/camdd/camdd.8: Man page for camdd(8). usr.sbin/camdd/camdd.c: The new camdd(8) utility. Sponsored by: Spectra Logic MFC after: 1 week
2015-12-03 20:54:55 +00:00
.Xr kqueue 2 ,
.Xr poll 2 ,
.Xr select 2 ,
.Xr cam 3 ,
.Xr cam_cdbparse 3 ,
.Xr cam 4 ,
Add asynchronous command support to the pass(4) driver, and the new camdd(8) utility. CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and completed CCBs may be retrieved via the CAMIOGET ioctl. User processes can use poll(2) or kevent(2) to get notification when I/O has completed. While the existing CAMIOCOMMAND blocking ioctl interface only supports user virtual data pointers in a CCB (generally only one per CCB), the new CAMIOQUEUE ioctl supports user virtual and physical address pointers, as well as user virtual and physical scatter/gather lists. This allows user applications to have more flexibility in their data handling operations. Kernel memory for data transferred via the queued interface is allocated from the zone allocator in MAXPHYS sized chunks, and user data is copied in and out. This is likely faster than the vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in configurations with many processors (there are more TLB shootdowns caused by the mapping/unmapping operation) but may not be as fast as running with unmapped I/O. The new memory handling model for user requests also allows applications to send CCBs with request sizes that are larger than MAXPHYS. The pass(4) driver now limits queued requests to the I/O size listed by the SIM driver in the maxio field in the Path Inquiry (XPT_PATH_INQ) CCB. There are some things things would be good to add: 1. Come up with a way to do unmapped I/O on multiple buffers. Currently the unmapped I/O interface operates on a struct bio, which includes only one address and length. It would be nice to be able to send an unmapped scatter/gather list down to busdma. This would allow eliminating the copy we currently do for data. 2. Add an ioctl to list currently outstanding CCBs in the various queues. 3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do that. 4. Test physical address support. Virtual pointers and scatter gather lists have been tested, but I have not yet tested physical addresses or scatter/gather lists. 5. Investigate multiple queue support. At the moment there is one queue of commands per pass(4) device. If multiple processes open the device, they will submit I/O into the same queue and get events for the same completions. This is probably the right model for most applications, but it is something that could be changed later on. Also, add a new utility, camdd(8) that uses the asynchronous pass(4) driver interface. This utility is intended to be a basic data transfer/copy utility, a simple benchmark utility, and an example of how to use the asynchronous pass(4) interface. It can copy data to and from pass(4) devices using any target queue depth, starting offset and blocksize for the input and ouptut devices. It currently only supports SCSI devices, but could be easily extended to support ATA devices. It can also copy data to and from regular files, block devices, tape devices, pipes, stdin, and stdout. It does not support queueing multiple commands to any of those targets, since it uses the standard read(2)/write(2)/writev(2)/readv(2) system calls. The I/O is done by two threads, one for the reader and one for the writer. The reader thread sends completed read requests to the writer thread in strictly sequential order, even if they complete out of order. That could be modified later on for random I/O patterns or slightly out of order I/O. camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from the pass(4) driver and also to send request notifications internally. For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR) per CAM CCB on the reading side, and a scatter/gather list (CAM_DATA_SG) on the writing side. In addition to testing both interfaces, this makes any potential reblocking of I/O easier. No data is copied between the reader and the writer, but rather the reader's buffers are split into multiple I/O requests or combined into a single I/O request depending on the input and output blocksize. For the file I/O path, camdd(8) also uses a single buffer (read(2), write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list (readv(2), writev(2), preadv(2), pwritev(2)) on writes. Things that would be nice to do for camdd(8) eventually: 1. Add support for I/O pattern generation. Patterns like all zeros, all ones, LBA-based patterns, random patterns, etc. Right Now you can always use /dev/zero, /dev/random, etc. 2. Add support for a "sink" mode, so we do only reads with no writes. Right now, you can use /dev/null. 3. Add support for automatic queue depth probing, so that we can figure out the right queue depth on the input and output side for maximum throughput. At the moment it defaults to 6. 4. Add support for SATA device passthrough I/O. 5. Add support for random LBAs and/or lengths on the input and output sides. 6. Track average per-I/O latency and busy time. The busy time and latency could also feed in to the automatic queue depth determination. sys/cam/scsi/scsi_pass.h: Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue and fetch asynchronous CAM CCBs respectively. Although these ioctls do not have a declared argument, they both take a union ccb pointer. If we declare a size here, the ioctl code in sys/kern/sys_generic.c will malloc and free a buffer for either the CCB or the CCB pointer (depending on how it is declared). Since we have to keep a copy of the CCB (which is fairly large) anyway, having the ioctl malloc and free a CCB for each call is wasteful. sys/cam/scsi/scsi_pass.c: Add asynchronous CCB support. Add two new ioctls, CAMIOQUEUE and CAMIOGET. CAMIOQUEUE adds a CCB to the incoming queue. The CCB is executed immediately (and moved to the active queue) if it is an immediate CCB, but otherwise it will be executed in passstart() when a CCB is available from the transport layer. When CCBs are completed (because they are immediate or passdone() if they are queued), they are put on the done queue. If we get the final close on the device before all pending I/O is complete, all active I/O is moved to the abandoned queue and we increment the peripheral reference count so that the peripheral driver instance doesn't go away before all pending I/O is done. The new passcreatezone() function is called on the first call to the CAMIOQUEUE ioctl on a given device to allocate the UMA zones for I/O requests and S/G list buffers. This may be good to move off to a taskqueue at some point. The new passmemsetup() function allocates memory and scatter/gather lists to hold the user's data, and copies in any data that needs to be written. For virtual pointers (CAM_DATA_VADDR), the kernel buffer is malloced from the new pass(4) driver malloc bucket. For virtual scatter/gather lists (CAM_DATA_SG), buffers are allocated from a new per-pass(9) UMA zone in MAXPHYS-sized chunks. Physical pointers are passed in unchanged. We have support for up to 16 scatter/gather segments (for the user and kernel S/G lists) in the default struct pass_io_req, so requests with longer S/G lists require an extra kernel malloc. The new passcopysglist() function copies a user scatter/gather list to a kernel scatter/gather list. The number of elements in each list may be different, but (obviously) the amount of data stored has to be identical. The new passmemdone() function copies data out for the CAM_DATA_VADDR and CAM_DATA_SG cases. The new passiocleanup() function restores data pointers in user CCBs and frees memory. Add new functions to support kqueue(2)/kevent(2): passreadfilt() tells kevent whether or not the done queue is empty. passkqfilter() adds a knote to our list. passreadfiltdetach() removes a knote from our list. Add a new function, passpoll(), for poll(2)/select(2) to use. Add devstat(9) support for the queued CCB path. sys/cam/ata/ata_da.c: Add support for the BIO_VLIST bio type. sys/cam/cam_ccb.h: Add a new enumeration for the xflags field in the CCB header. (This doesn't change the CCB header, just adds an enumeration to use.) sys/cam/cam_xpt.c: Add a new function, xpt_setup_ccb_flags(), that allows specifying CCB flags. sys/cam/cam_xpt.h: Add a prototype for xpt_setup_ccb_flags(). sys/cam/scsi/scsi_da.c: Add support for BIO_VLIST. sys/dev/md/md.c: Add BIO_VLIST support to md(4). sys/geom/geom_disk.c: Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size limiting code in g_disk_start() a bit. sys/kern/subr_bus_dma.c: Change _bus_dmamap_load_vlist() to take a starting offset and length. Add a new function, _bus_dmamap_load_pages(), that will load a list of physical pages starting at an offset. Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios. Allow unmapped I/O to start at an offset. sys/kern/subr_uio.c: Add two new functions, physcopyin_vlist() and physcopyout_vlist(). sys/pc98/include/bus.h: Guard kernel-only parts of the pc98 machine/bus.h header with #ifdef _KERNEL. This allows userland programs to include <machine/bus.h> to get the definition of bus_addr_t and bus_size_t. sys/sys/bio.h: Add a new bio flag, BIO_VLIST. sys/sys/uio.h: Add prototypes for physcopyin_vlist() and physcopyout_vlist(). share/man/man4/pass.4: Document the CAMIOQUEUE and CAMIOGET ioctls. usr.sbin/Makefile: Add camdd. usr.sbin/camdd/Makefile: Add a makefile for camdd(8). usr.sbin/camdd/camdd.8: Man page for camdd(8). usr.sbin/camdd/camdd.c: The new camdd(8) utility. Sponsored by: Spectra Logic MFC after: 1 week
2015-12-03 20:54:55 +00:00
.Xr cd 4 ,
.Xr ctl 4 ,
.Xr da 4 ,
.Xr sa 4 ,
.Xr xpt 4 ,
Add asynchronous command support to the pass(4) driver, and the new camdd(8) utility. CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and completed CCBs may be retrieved via the CAMIOGET ioctl. User processes can use poll(2) or kevent(2) to get notification when I/O has completed. While the existing CAMIOCOMMAND blocking ioctl interface only supports user virtual data pointers in a CCB (generally only one per CCB), the new CAMIOQUEUE ioctl supports user virtual and physical address pointers, as well as user virtual and physical scatter/gather lists. This allows user applications to have more flexibility in their data handling operations. Kernel memory for data transferred via the queued interface is allocated from the zone allocator in MAXPHYS sized chunks, and user data is copied in and out. This is likely faster than the vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in configurations with many processors (there are more TLB shootdowns caused by the mapping/unmapping operation) but may not be as fast as running with unmapped I/O. The new memory handling model for user requests also allows applications to send CCBs with request sizes that are larger than MAXPHYS. The pass(4) driver now limits queued requests to the I/O size listed by the SIM driver in the maxio field in the Path Inquiry (XPT_PATH_INQ) CCB. There are some things things would be good to add: 1. Come up with a way to do unmapped I/O on multiple buffers. Currently the unmapped I/O interface operates on a struct bio, which includes only one address and length. It would be nice to be able to send an unmapped scatter/gather list down to busdma. This would allow eliminating the copy we currently do for data. 2. Add an ioctl to list currently outstanding CCBs in the various queues. 3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do that. 4. Test physical address support. Virtual pointers and scatter gather lists have been tested, but I have not yet tested physical addresses or scatter/gather lists. 5. Investigate multiple queue support. At the moment there is one queue of commands per pass(4) device. If multiple processes open the device, they will submit I/O into the same queue and get events for the same completions. This is probably the right model for most applications, but it is something that could be changed later on. Also, add a new utility, camdd(8) that uses the asynchronous pass(4) driver interface. This utility is intended to be a basic data transfer/copy utility, a simple benchmark utility, and an example of how to use the asynchronous pass(4) interface. It can copy data to and from pass(4) devices using any target queue depth, starting offset and blocksize for the input and ouptut devices. It currently only supports SCSI devices, but could be easily extended to support ATA devices. It can also copy data to and from regular files, block devices, tape devices, pipes, stdin, and stdout. It does not support queueing multiple commands to any of those targets, since it uses the standard read(2)/write(2)/writev(2)/readv(2) system calls. The I/O is done by two threads, one for the reader and one for the writer. The reader thread sends completed read requests to the writer thread in strictly sequential order, even if they complete out of order. That could be modified later on for random I/O patterns or slightly out of order I/O. camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from the pass(4) driver and also to send request notifications internally. For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR) per CAM CCB on the reading side, and a scatter/gather list (CAM_DATA_SG) on the writing side. In addition to testing both interfaces, this makes any potential reblocking of I/O easier. No data is copied between the reader and the writer, but rather the reader's buffers are split into multiple I/O requests or combined into a single I/O request depending on the input and output blocksize. For the file I/O path, camdd(8) also uses a single buffer (read(2), write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list (readv(2), writev(2), preadv(2), pwritev(2)) on writes. Things that would be nice to do for camdd(8) eventually: 1. Add support for I/O pattern generation. Patterns like all zeros, all ones, LBA-based patterns, random patterns, etc. Right Now you can always use /dev/zero, /dev/random, etc. 2. Add support for a "sink" mode, so we do only reads with no writes. Right now, you can use /dev/null. 3. Add support for automatic queue depth probing, so that we can figure out the right queue depth on the input and output side for maximum throughput. At the moment it defaults to 6. 4. Add support for SATA device passthrough I/O. 5. Add support for random LBAs and/or lengths on the input and output sides. 6. Track average per-I/O latency and busy time. The busy time and latency could also feed in to the automatic queue depth determination. sys/cam/scsi/scsi_pass.h: Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue and fetch asynchronous CAM CCBs respectively. Although these ioctls do not have a declared argument, they both take a union ccb pointer. If we declare a size here, the ioctl code in sys/kern/sys_generic.c will malloc and free a buffer for either the CCB or the CCB pointer (depending on how it is declared). Since we have to keep a copy of the CCB (which is fairly large) anyway, having the ioctl malloc and free a CCB for each call is wasteful. sys/cam/scsi/scsi_pass.c: Add asynchronous CCB support. Add two new ioctls, CAMIOQUEUE and CAMIOGET. CAMIOQUEUE adds a CCB to the incoming queue. The CCB is executed immediately (and moved to the active queue) if it is an immediate CCB, but otherwise it will be executed in passstart() when a CCB is available from the transport layer. When CCBs are completed (because they are immediate or passdone() if they are queued), they are put on the done queue. If we get the final close on the device before all pending I/O is complete, all active I/O is moved to the abandoned queue and we increment the peripheral reference count so that the peripheral driver instance doesn't go away before all pending I/O is done. The new passcreatezone() function is called on the first call to the CAMIOQUEUE ioctl on a given device to allocate the UMA zones for I/O requests and S/G list buffers. This may be good to move off to a taskqueue at some point. The new passmemsetup() function allocates memory and scatter/gather lists to hold the user's data, and copies in any data that needs to be written. For virtual pointers (CAM_DATA_VADDR), the kernel buffer is malloced from the new pass(4) driver malloc bucket. For virtual scatter/gather lists (CAM_DATA_SG), buffers are allocated from a new per-pass(9) UMA zone in MAXPHYS-sized chunks. Physical pointers are passed in unchanged. We have support for up to 16 scatter/gather segments (for the user and kernel S/G lists) in the default struct pass_io_req, so requests with longer S/G lists require an extra kernel malloc. The new passcopysglist() function copies a user scatter/gather list to a kernel scatter/gather list. The number of elements in each list may be different, but (obviously) the amount of data stored has to be identical. The new passmemdone() function copies data out for the CAM_DATA_VADDR and CAM_DATA_SG cases. The new passiocleanup() function restores data pointers in user CCBs and frees memory. Add new functions to support kqueue(2)/kevent(2): passreadfilt() tells kevent whether or not the done queue is empty. passkqfilter() adds a knote to our list. passreadfiltdetach() removes a knote from our list. Add a new function, passpoll(), for poll(2)/select(2) to use. Add devstat(9) support for the queued CCB path. sys/cam/ata/ata_da.c: Add support for the BIO_VLIST bio type. sys/cam/cam_ccb.h: Add a new enumeration for the xflags field in the CCB header. (This doesn't change the CCB header, just adds an enumeration to use.) sys/cam/cam_xpt.c: Add a new function, xpt_setup_ccb_flags(), that allows specifying CCB flags. sys/cam/cam_xpt.h: Add a prototype for xpt_setup_ccb_flags(). sys/cam/scsi/scsi_da.c: Add support for BIO_VLIST. sys/dev/md/md.c: Add BIO_VLIST support to md(4). sys/geom/geom_disk.c: Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size limiting code in g_disk_start() a bit. sys/kern/subr_bus_dma.c: Change _bus_dmamap_load_vlist() to take a starting offset and length. Add a new function, _bus_dmamap_load_pages(), that will load a list of physical pages starting at an offset. Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios. Allow unmapped I/O to start at an offset. sys/kern/subr_uio.c: Add two new functions, physcopyin_vlist() and physcopyout_vlist(). sys/pc98/include/bus.h: Guard kernel-only parts of the pc98 machine/bus.h header with #ifdef _KERNEL. This allows userland programs to include <machine/bus.h> to get the definition of bus_addr_t and bus_size_t. sys/sys/bio.h: Add a new bio flag, BIO_VLIST. sys/sys/uio.h: Add prototypes for physcopyin_vlist() and physcopyout_vlist(). share/man/man4/pass.4: Document the CAMIOQUEUE and CAMIOGET ioctls. usr.sbin/Makefile: Add camdd. usr.sbin/camdd/Makefile: Add a makefile for camdd(8). usr.sbin/camdd/camdd.8: Man page for camdd(8). usr.sbin/camdd/camdd.c: The new camdd(8) utility. Sponsored by: Spectra Logic MFC after: 1 week
2015-12-03 20:54:55 +00:00
.Xr camcontrol 8 ,
.Xr camdd 8
.Sh HISTORY
The CAM passthrough driver first appeared in
.Fx 3.0 .
.Sh AUTHORS
.An Kenneth Merry Aq Mt ken@FreeBSD.org