2000-09-06 20:10:55 +00:00
|
|
|
/*-
|
2004-11-11 13:01:13 +00:00
|
|
|
* Copyright (c) 2000-2004 Taku YAMAMOTO <taku@tackymt.homeip.net>
|
2000-09-06 20:10:55 +00:00
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
2004-11-10 04:29:09 +00:00
|
|
|
* maestro.c,v 1.23.2.1 2003/10/03 18:21:38 taku Exp
|
2000-09-06 20:10:55 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Credits:
|
|
|
|
*
|
|
|
|
* Part of this code (especially in many magic numbers) was heavily inspired
|
|
|
|
* by the Linux driver originally written by
|
|
|
|
* Alan Cox <alan.cox@linux.org>, modified heavily by
|
|
|
|
* Zach Brown <zab@zabbo.net>.
|
|
|
|
*
|
|
|
|
* busdma()-ize and buffer size reduction were suggested by
|
2003-09-07 16:28:03 +00:00
|
|
|
* Cameron Grant <cg@freebsd.org>.
|
2000-09-06 20:10:55 +00:00
|
|
|
* Also he showed me the way to use busdma() suite.
|
|
|
|
*
|
|
|
|
* Internal speaker problems on NEC VersaPro's and Dell Inspiron 7500
|
|
|
|
* were looked at by
|
|
|
|
* Munehiro Matsuda <haro@tk.kubota.co.jp>,
|
|
|
|
* who brought patches based on the Linux driver with some simplification.
|
2004-11-10 04:29:09 +00:00
|
|
|
*
|
|
|
|
* Hardware volume controller was implemented by
|
|
|
|
* John Baldwin <jhb@freebsd.org>.
|
2000-09-06 20:10:55 +00:00
|
|
|
*/
|
|
|
|
|
Sound Mega-commit. Expect further cleanup until code freeze.
For a slightly thorough explaination, please refer to
[1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html .
Summary of changes includes:
1 Volume Per-Channel (vpc). Provides private / standalone volume control
unique per-stream pcm channel without touching master volume / pcm.
Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for
backwards compatibility, SOUND_MIXER_PCM through the opened dsp device
instead of /dev/mixer. Special "bypass" mode is enabled through
/dev/mixer which will automatically detect if the adjustment is made
through /dev/mixer and forward its request to this private volume
controller. Changes to this volume object will not interfere with
other channels.
Requirements:
- SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which
require specific application modifications (preferred).
- No modifications required for using bypass mode, so applications
like mplayer or xmms should work out of the box.
Kernel hints:
- hint.pcm.%d.vpc (0 = disable vpc).
Kernel sysctls:
- hw.snd.vpc_mixer_bypass (default: 1). Enable or disable /dev/mixer
bypass mode.
- hw.snd.vpc_autoreset (default: 1). By default, closing/opening
/dev/dsp will reset the volume back to 0 db gain/attenuation.
Setting this to 0 will preserve its settings across device
closing/opening.
- hw.snd.vpc_reset (default: 0). Panic/reset button to reset all
volume settings back to 0 db.
- hw.snd.vpc_0db (default: 45). 0 db relative to linear mixer value.
2 High quality fixed-point Bandlimited SINC sampling rate converter,
based on Julius O'Smith's Digital Audio Resampling -
http://ccrma.stanford.edu/~jos/resample/. It includes a filter design
script written in awk (the clumsiest joke I've ever written)
- 100% 32bit fixed-point, 64bit accumulator.
- Possibly among the fastest (if not fastest) of its kind.
- Resampling quality is tunable, either runtime or during kernel
compilation (FEEDER_RATE_PRESETS).
- Quality can be further customized during kernel compilation by
defining FEEDER_RATE_PRESETS in /etc/make.conf.
Kernel sysctls:
- hw.snd.feeder_rate_quality.
0 - Zero-order Hold (ZOH). Fastest, bad quality.
1 - Linear Interpolation (LINEAR). Slightly slower than ZOH,
better quality but still does not eliminate aliasing.
2 - (and above) - Sinc Interpolation(SINC). Best quality. SINC
quality always start from 2 and above.
Rough quality comparisons:
- http://people.freebsd.org/~ariff/z_comparison/
3 Bit-perfect mode. Bypasses all feeder/dsp effects. Pure sound will be
directly fed into the hardware.
4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can
be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf.
5 Transparent/Adaptive Virtual Channel. Now you don't have to disable
vchans in order to make digital format pass through. It also makes
vchans more dynamic by choosing a better format/rate among all the
concurrent streams, which means that dev.pcm.X.play.vchanformat/rate
becomes sort of optional.
6 Exclusive Stream, with special open() mode O_EXCL. This will "mute"
other concurrent vchan streams and only allow a single channel with
O_EXCL set to keep producing sound.
Other Changes:
* most feeder_* stuffs are compilable in userland. Let's not
speculate whether we should go all out for it (save that for
FreeBSD 16.0-RELEASE).
* kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org>
* pull out channel mixing logic out of vchan.c and create its own
feeder_mixer for world justice.
* various refactoring here and there, for good or bad.
* activation of few more OSSv4 ioctls() (see [1] above).
* opt_snd.h for possible compile time configuration:
(mostly for debugging purposes, don't try these at home)
SND_DEBUG
SND_DIAGNOSTIC
SND_FEEDER_MULTIFORMAT
SND_FEEDER_FULL_MULTIFORMAT
SND_FEEDER_RATE_HP
SND_PCM_64
SND_OLDSTEREO
Manual page updates are on the way.
Tested by: joel, Olivier SMEDTS <olivier at gid0 d org>, too many
unsung / unnamed heroes.
2009-06-07 19:12:08 +00:00
|
|
|
#ifdef HAVE_KERNEL_OPTION_HEADERS
|
|
|
|
#include "opt_snd.h"
|
|
|
|
#endif
|
|
|
|
|
2000-09-06 20:10:55 +00:00
|
|
|
#include <dev/sound/pcm/sound.h>
|
|
|
|
#include <dev/sound/pcm/ac97.h>
|
2003-08-22 07:08:17 +00:00
|
|
|
#include <dev/pci/pcireg.h>
|
|
|
|
#include <dev/pci/pcivar.h>
|
2000-09-06 20:10:55 +00:00
|
|
|
|
|
|
|
#include <dev/sound/pci/maestro_reg.h>
|
|
|
|
|
2001-08-23 11:30:52 +00:00
|
|
|
SND_DECLARE_FILE("$FreeBSD$");
|
|
|
|
|
2000-09-06 20:10:55 +00:00
|
|
|
/*
|
|
|
|
* PCI IDs of supported chips:
|
|
|
|
*
|
|
|
|
* MAESTRO-1 0x01001285
|
|
|
|
* MAESTRO-2 0x1968125d
|
|
|
|
* MAESTRO-2E 0x1978125d
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define MAESTRO_1_PCI_ID 0x01001285
|
|
|
|
#define MAESTRO_2_PCI_ID 0x1968125d
|
|
|
|
#define MAESTRO_2E_PCI_ID 0x1978125d
|
|
|
|
|
|
|
|
#define NEC_SUBID1 0x80581033 /* Taken from Linux driver */
|
|
|
|
#define NEC_SUBID2 0x803c1033 /* NEC VersaProNX VA26D */
|
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
#ifdef AGG_MAXPLAYCH
|
|
|
|
# if AGG_MAXPLAYCH > 4
|
|
|
|
# undef AGG_MAXPLAYCH
|
|
|
|
# define AGG_MAXPLAYCH 4
|
|
|
|
# endif
|
|
|
|
#else
|
2000-09-06 20:10:55 +00:00
|
|
|
# define AGG_MAXPLAYCH 4
|
|
|
|
#endif
|
|
|
|
|
2001-10-08 05:59:54 +00:00
|
|
|
#define AGG_DEFAULT_BUFSZ 0x4000 /* 0x1000, but gets underflows */
|
2000-09-06 20:10:55 +00:00
|
|
|
|
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
/* compatibility */
|
|
|
|
#if __FreeBSD_version < 500000
|
|
|
|
# define critical_enter() disable_intr()
|
|
|
|
# define critical_exit() enable_intr()
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef PCIR_BAR
|
|
|
|
#define PCIR_BAR(x) (PCIR_MAPS + (x) * 4)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
2000-09-06 20:10:55 +00:00
|
|
|
/* -----------------------------
|
|
|
|
* Data structures.
|
|
|
|
*/
|
|
|
|
struct agg_chinfo {
|
2004-11-10 04:29:09 +00:00
|
|
|
/* parent softc */
|
2000-09-06 20:10:55 +00:00
|
|
|
struct agg_info *parent;
|
2004-11-10 04:29:09 +00:00
|
|
|
|
|
|
|
/* FreeBSD newpcm related */
|
2001-03-24 23:10:29 +00:00
|
|
|
struct pcm_channel *channel;
|
|
|
|
struct snd_dbuf *buffer;
|
2004-11-10 04:29:09 +00:00
|
|
|
|
|
|
|
/* OS independent */
|
|
|
|
bus_addr_t phys; /* channel buffer physical address */
|
|
|
|
bus_addr_t base; /* channel buffer segment base */
|
|
|
|
u_int32_t blklen; /* DMA block length in WORDs */
|
|
|
|
u_int32_t buflen; /* channel buffer length in WORDs */
|
update code dealing with snd_dbuf objects to do so using a functional interface
modify chn_setblocksize() to pick a default soft-blocksize appropriate to the
sample rate and format in use. it will aim for a power of two size small
enough to generate block sizes of at most 20ms. it will also set the
hard-blocksize taking into account rate/format conversions in use.
update drivers to implement setblocksize correctly:
updated, tested: sb16, emu10k1, maestro, solo
updated, untested: ad1816, ess, mss, sb8, csa
not updated: ds1, es137x, fm801, neomagic, t4dwave, via82c686
i lack hardware to test: ad1816, csa, fm801, neomagic
others will be updated/tested in the next few days.
2000-12-23 03:16:13 +00:00
|
|
|
u_int32_t speed;
|
2004-11-10 04:29:09 +00:00
|
|
|
unsigned num : 3;
|
|
|
|
unsigned stereo : 1;
|
|
|
|
unsigned qs16 : 1; /* quantum size is 16bit */
|
|
|
|
unsigned us : 1; /* in unsigned format */
|
|
|
|
};
|
|
|
|
|
|
|
|
struct agg_rchinfo {
|
|
|
|
/* parent softc */
|
|
|
|
struct agg_info *parent;
|
|
|
|
|
|
|
|
/* FreeBSD newpcm related */
|
|
|
|
struct pcm_channel *channel;
|
|
|
|
struct snd_dbuf *buffer;
|
|
|
|
|
|
|
|
/* OS independent */
|
|
|
|
bus_addr_t phys; /* channel buffer physical address */
|
|
|
|
bus_addr_t base; /* channel buffer segment base */
|
|
|
|
u_int32_t blklen; /* DMA block length in WORDs */
|
|
|
|
u_int32_t buflen; /* channel buffer length in WORDs */
|
|
|
|
u_int32_t speed;
|
|
|
|
unsigned : 3;
|
|
|
|
unsigned stereo : 1;
|
|
|
|
bus_addr_t srcphys;
|
|
|
|
int16_t *src; /* stereo peer buffer */
|
|
|
|
int16_t *sink; /* channel buffer pointer */
|
|
|
|
volatile u_int32_t hwptr; /* ready point in 16bit sample */
|
2000-09-06 20:10:55 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
struct agg_info {
|
2004-11-10 04:29:09 +00:00
|
|
|
/* FreeBSD newbus related */
|
2000-09-06 20:10:55 +00:00
|
|
|
device_t dev;
|
2004-11-10 04:29:09 +00:00
|
|
|
|
|
|
|
/* I wonder whether bus_space_* are in common in *BSD... */
|
2000-09-06 20:10:55 +00:00
|
|
|
struct resource *reg;
|
|
|
|
int regid;
|
|
|
|
bus_space_tag_t st;
|
|
|
|
bus_space_handle_t sh;
|
|
|
|
|
|
|
|
struct resource *irq;
|
|
|
|
int irqid;
|
|
|
|
void *ih;
|
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
bus_dma_tag_t buf_dmat;
|
|
|
|
bus_dma_tag_t stat_dmat;
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
/* FreeBSD SMPng related */
|
|
|
|
struct mtx lock; /* mutual exclusion */
|
|
|
|
/* FreeBSD newpcm related */
|
2000-09-06 20:10:55 +00:00
|
|
|
struct ac97_info *codec;
|
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
/* OS independent */
|
|
|
|
u_int8_t *stat; /* status buffer pointer */
|
|
|
|
bus_addr_t phys; /* status buffer physical address */
|
|
|
|
unsigned int bufsz; /* channel buffer size in bytes */
|
|
|
|
u_int playchns;
|
|
|
|
volatile u_int active;
|
2000-09-06 20:10:55 +00:00
|
|
|
struct agg_chinfo pch[AGG_MAXPLAYCH];
|
2004-11-10 04:29:09 +00:00
|
|
|
struct agg_rchinfo rch;
|
|
|
|
volatile u_int8_t curpwr; /* current power status: D[0-3] */
|
2000-09-06 20:10:55 +00:00
|
|
|
};
|
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
|
|
|
|
/* -----------------------------
|
|
|
|
* Sysctls for debug.
|
|
|
|
*/
|
|
|
|
static unsigned int powerstate_active = PCI_POWERSTATE_D1;
|
|
|
|
#ifdef MAESTRO_AGGRESSIVE_POWERSAVE
|
|
|
|
static unsigned int powerstate_idle = PCI_POWERSTATE_D2;
|
|
|
|
#else
|
|
|
|
static unsigned int powerstate_idle = PCI_POWERSTATE_D1;
|
|
|
|
#endif
|
|
|
|
static unsigned int powerstate_init = PCI_POWERSTATE_D2;
|
|
|
|
|
2006-06-18 14:14:41 +00:00
|
|
|
/* XXX: this should move to a device specific sysctl dev.pcm.X.debug.Y via
|
|
|
|
device_get_sysctl_*() as discussed on multimedia@ in msg-id
|
|
|
|
<861wujij2q.fsf@xps.des.no> */
|
2004-11-10 04:29:09 +00:00
|
|
|
SYSCTL_NODE(_debug, OID_AUTO, maestro, CTLFLAG_RD, 0, "");
|
|
|
|
SYSCTL_UINT(_debug_maestro, OID_AUTO, powerstate_active, CTLFLAG_RW,
|
|
|
|
&powerstate_active, 0, "The Dx power state when active (0-1)");
|
|
|
|
SYSCTL_UINT(_debug_maestro, OID_AUTO, powerstate_idle, CTLFLAG_RW,
|
|
|
|
&powerstate_idle, 0, "The Dx power state when idle (0-2)");
|
|
|
|
SYSCTL_UINT(_debug_maestro, OID_AUTO, powerstate_init, CTLFLAG_RW,
|
2007-01-27 13:30:19 +00:00
|
|
|
&powerstate_init, 0,
|
|
|
|
"The Dx power state prior to the first use (0-2)");
|
2004-11-10 04:29:09 +00:00
|
|
|
|
|
|
|
|
|
|
|
/* -----------------------------
|
|
|
|
* Prototypes
|
|
|
|
*/
|
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
static void agg_sleep(struct agg_info*, const char *wmesg, int msec);
|
2004-11-10 04:29:09 +00:00
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
static __inline u_int32_t agg_rd(struct agg_info*, int, int size);
|
|
|
|
static __inline void agg_wr(struct agg_info*, int, u_int32_t data,
|
|
|
|
int size);
|
|
|
|
static int agg_rdcodec(struct agg_info*, int);
|
|
|
|
static int agg_wrcodec(struct agg_info*, int, u_int32_t);
|
2004-11-10 04:29:09 +00:00
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
static void ringbus_setdest(struct agg_info*, int, int);
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
static u_int16_t wp_rdreg(struct agg_info*, u_int16_t);
|
|
|
|
static void wp_wrreg(struct agg_info*, u_int16_t, u_int16_t);
|
|
|
|
static u_int16_t wp_rdapu(struct agg_info*, unsigned, u_int16_t);
|
|
|
|
static void wp_wrapu(struct agg_info*, unsigned, u_int16_t, u_int16_t);
|
|
|
|
static void wp_settimer(struct agg_info*, u_int);
|
|
|
|
static void wp_starttimer(struct agg_info*);
|
|
|
|
static void wp_stoptimer(struct agg_info*);
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
#if 0
|
|
|
|
static u_int16_t wc_rdreg(struct agg_info*, u_int16_t);
|
|
|
|
#endif
|
|
|
|
static void wc_wrreg(struct agg_info*, u_int16_t, u_int16_t);
|
|
|
|
#if 0
|
|
|
|
static u_int16_t wc_rdchctl(struct agg_info*, int);
|
|
|
|
#endif
|
|
|
|
static void wc_wrchctl(struct agg_info*, int, u_int16_t);
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
static void agg_stopclock(struct agg_info*, int part, int st);
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
static void agg_initcodec(struct agg_info*);
|
|
|
|
static void agg_init(struct agg_info*);
|
|
|
|
static void agg_power(struct agg_info*, int);
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
static void aggch_start_dac(struct agg_chinfo*);
|
|
|
|
static void aggch_stop_dac(struct agg_chinfo*);
|
|
|
|
static void aggch_start_adc(struct agg_rchinfo*);
|
|
|
|
static void aggch_stop_adc(struct agg_rchinfo*);
|
|
|
|
static void aggch_feed_adc_stereo(struct agg_rchinfo*);
|
|
|
|
static void aggch_feed_adc_mono(struct agg_rchinfo*);
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
#ifdef AGG_JITTER_CORRECTION
|
|
|
|
static void suppress_jitter(struct agg_chinfo*);
|
|
|
|
static void suppress_rec_jitter(struct agg_rchinfo*);
|
|
|
|
#endif
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
static void set_timer(struct agg_info*);
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
static void agg_intr(void *);
|
|
|
|
static int agg_probe(device_t);
|
|
|
|
static int agg_attach(device_t);
|
|
|
|
static int agg_detach(device_t);
|
|
|
|
static int agg_suspend(device_t);
|
|
|
|
static int agg_resume(device_t);
|
|
|
|
static int agg_shutdown(device_t);
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
static void *dma_malloc(bus_dma_tag_t, u_int32_t, bus_addr_t*);
|
2007-01-27 13:30:19 +00:00
|
|
|
static void dma_free(bus_dma_tag_t, void *);
|
2004-11-10 04:29:09 +00:00
|
|
|
|
2000-09-06 20:10:55 +00:00
|
|
|
|
|
|
|
/* -----------------------------
|
|
|
|
* Subsystems.
|
|
|
|
*/
|
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
/* locking */
|
2007-01-27 13:30:19 +00:00
|
|
|
#define agg_lock(sc) snd_mtxlock(&((sc)->lock))
|
|
|
|
#define agg_unlock(sc) snd_mtxunlock(&((sc)->lock))
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
static void
|
2004-11-10 04:29:09 +00:00
|
|
|
agg_sleep(struct agg_info *sc, const char *wmesg, int msec)
|
|
|
|
{
|
|
|
|
int timo;
|
|
|
|
|
|
|
|
timo = msec * hz / 1000;
|
|
|
|
if (timo == 0)
|
|
|
|
timo = 1;
|
|
|
|
msleep(sc, &sc->lock, PWAIT, wmesg, timo);
|
2000-12-18 01:36:41 +00:00
|
|
|
}
|
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
|
|
|
|
/* I/O port */
|
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
static __inline u_int32_t
|
2004-11-10 04:29:09 +00:00
|
|
|
agg_rd(struct agg_info *sc, int regno, int size)
|
2000-09-06 20:10:55 +00:00
|
|
|
{
|
2004-11-10 04:29:09 +00:00
|
|
|
switch (size) {
|
|
|
|
case 1:
|
|
|
|
return bus_space_read_1(sc->st, sc->sh, regno);
|
|
|
|
case 2:
|
|
|
|
return bus_space_read_2(sc->st, sc->sh, regno);
|
|
|
|
case 4:
|
|
|
|
return bus_space_read_4(sc->st, sc->sh, regno);
|
|
|
|
default:
|
|
|
|
return ~(u_int32_t)0;
|
|
|
|
}
|
|
|
|
}
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
#define AGG_RD(sc, regno, size) \
|
|
|
|
bus_space_read_##size( \
|
|
|
|
((struct agg_info*)(sc))->st, \
|
|
|
|
((struct agg_info*)(sc))->sh, (regno))
|
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
static __inline void
|
2004-11-10 04:29:09 +00:00
|
|
|
agg_wr(struct agg_info *sc, int regno, u_int32_t data, int size)
|
|
|
|
{
|
|
|
|
switch (size) {
|
|
|
|
case 1:
|
|
|
|
bus_space_write_1(sc->st, sc->sh, regno, data);
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
bus_space_write_2(sc->st, sc->sh, regno, data);
|
|
|
|
break;
|
|
|
|
case 4:
|
|
|
|
bus_space_write_4(sc->st, sc->sh, regno, data);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#define AGG_WR(sc, regno, data, size) \
|
|
|
|
bus_space_write_##size( \
|
|
|
|
((struct agg_info*)(sc))->st, \
|
|
|
|
((struct agg_info*)(sc))->sh, (regno), (data))
|
|
|
|
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/* Codec/Ringbus */
|
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
static int
|
2004-11-10 04:29:09 +00:00
|
|
|
agg_codec_wait4idle(struct agg_info *ess)
|
|
|
|
{
|
|
|
|
unsigned t = 26;
|
|
|
|
|
|
|
|
while (AGG_RD(ess, PORT_CODEC_STAT, 1) & CODEC_STAT_MASK) {
|
|
|
|
if (--t == 0)
|
|
|
|
return EBUSY;
|
2000-09-06 20:10:55 +00:00
|
|
|
DELAY(2); /* 20.8us / 13 */
|
|
|
|
}
|
2004-11-10 04:29:09 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
static int
|
2004-11-10 04:29:09 +00:00
|
|
|
agg_rdcodec(struct agg_info *ess, int regno)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
/* We have to wait for a SAFE time to write addr/data */
|
|
|
|
if (agg_codec_wait4idle(ess)) {
|
|
|
|
/* Timed out. No read performed. */
|
2000-09-06 20:10:55 +00:00
|
|
|
device_printf(ess->dev, "agg_rdcodec() PROGLESS timed out.\n");
|
2004-11-10 04:29:09 +00:00
|
|
|
return -1;
|
|
|
|
}
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
AGG_WR(ess, PORT_CODEC_CMD, CODEC_CMD_READ | regno, 1);
|
|
|
|
/*DELAY(21); * AC97 cycle = 20.8usec */
|
2000-09-06 20:10:55 +00:00
|
|
|
|
|
|
|
/* Wait for data retrieve */
|
2004-11-10 04:29:09 +00:00
|
|
|
if (!agg_codec_wait4idle(ess)) {
|
|
|
|
ret = AGG_RD(ess, PORT_CODEC_REG, 2);
|
|
|
|
} else {
|
|
|
|
/* Timed out. No read performed. */
|
2000-09-06 20:10:55 +00:00
|
|
|
device_printf(ess->dev, "agg_rdcodec() RW_DONE timed out.\n");
|
2004-11-10 04:29:09 +00:00
|
|
|
ret = -1;
|
|
|
|
}
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
return ret;
|
2000-09-06 20:10:55 +00:00
|
|
|
}
|
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
static int
|
2004-11-10 04:29:09 +00:00
|
|
|
agg_wrcodec(struct agg_info *ess, int regno, u_int32_t data)
|
2000-09-06 20:10:55 +00:00
|
|
|
{
|
|
|
|
/* We have to wait for a SAFE time to write addr/data */
|
2004-11-10 04:29:09 +00:00
|
|
|
if (agg_codec_wait4idle(ess)) {
|
2000-09-06 20:10:55 +00:00
|
|
|
/* Timed out. Abort writing. */
|
|
|
|
device_printf(ess->dev, "agg_wrcodec() PROGLESS timed out.\n");
|
2000-12-18 01:36:41 +00:00
|
|
|
return -1;
|
2000-09-06 20:10:55 +00:00
|
|
|
}
|
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
AGG_WR(ess, PORT_CODEC_REG, data, 2);
|
|
|
|
AGG_WR(ess, PORT_CODEC_CMD, CODEC_CMD_WRITE | regno, 1);
|
|
|
|
|
|
|
|
/* Wait for write completion */
|
|
|
|
if (agg_codec_wait4idle(ess)) {
|
|
|
|
/* Timed out. */
|
|
|
|
device_printf(ess->dev, "agg_wrcodec() RW_DONE timed out.\n");
|
|
|
|
return -1;
|
|
|
|
}
|
2000-12-18 01:36:41 +00:00
|
|
|
|
|
|
|
return 0;
|
2000-09-06 20:10:55 +00:00
|
|
|
}
|
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
static void
|
2000-09-06 20:10:55 +00:00
|
|
|
ringbus_setdest(struct agg_info *ess, int src, int dest)
|
|
|
|
{
|
|
|
|
u_int32_t data;
|
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
data = AGG_RD(ess, PORT_RINGBUS_CTRL, 4);
|
2000-09-06 20:10:55 +00:00
|
|
|
data &= ~(0xfU << src);
|
|
|
|
data |= (0xfU & dest) << src;
|
2004-11-10 04:29:09 +00:00
|
|
|
AGG_WR(ess, PORT_RINGBUS_CTRL, data, 4);
|
2000-09-06 20:10:55 +00:00
|
|
|
}
|
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
/* -------------------------------------------------------------------- */
|
|
|
|
|
2000-09-06 20:10:55 +00:00
|
|
|
/* Wave Processor */
|
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
static u_int16_t
|
2000-09-06 20:10:55 +00:00
|
|
|
wp_rdreg(struct agg_info *ess, u_int16_t reg)
|
|
|
|
{
|
2004-11-10 04:29:09 +00:00
|
|
|
AGG_WR(ess, PORT_DSP_INDEX, reg, 2);
|
|
|
|
return AGG_RD(ess, PORT_DSP_DATA, 2);
|
2000-09-06 20:10:55 +00:00
|
|
|
}
|
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
static void
|
2000-09-06 20:10:55 +00:00
|
|
|
wp_wrreg(struct agg_info *ess, u_int16_t reg, u_int16_t data)
|
|
|
|
{
|
2004-11-10 04:29:09 +00:00
|
|
|
AGG_WR(ess, PORT_DSP_INDEX, reg, 2);
|
|
|
|
AGG_WR(ess, PORT_DSP_DATA, data, 2);
|
2000-09-06 20:10:55 +00:00
|
|
|
}
|
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
static int
|
2004-11-10 04:29:09 +00:00
|
|
|
wp_wait_data(struct agg_info *ess, u_int16_t data)
|
2000-09-06 20:10:55 +00:00
|
|
|
{
|
2004-11-10 04:29:09 +00:00
|
|
|
unsigned t = 0;
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
while (AGG_RD(ess, PORT_DSP_DATA, 2) != data) {
|
|
|
|
if (++t == 1000) {
|
|
|
|
return EAGAIN;
|
|
|
|
}
|
|
|
|
AGG_WR(ess, PORT_DSP_DATA, data, 2);
|
2000-09-06 20:10:55 +00:00
|
|
|
}
|
2004-11-10 04:29:09 +00:00
|
|
|
|
|
|
|
return 0;
|
2000-09-06 20:10:55 +00:00
|
|
|
}
|
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
static u_int16_t
|
2004-11-10 04:29:09 +00:00
|
|
|
wp_rdapu(struct agg_info *ess, unsigned ch, u_int16_t reg)
|
2000-09-06 20:10:55 +00:00
|
|
|
{
|
2004-11-10 04:29:09 +00:00
|
|
|
wp_wrreg(ess, WPREG_CRAM_PTR, reg | (ch << 4));
|
|
|
|
if (wp_wait_data(ess, reg | (ch << 4)) != 0)
|
|
|
|
device_printf(ess->dev, "wp_rdapu() indexing timed out.\n");
|
|
|
|
return wp_rdreg(ess, WPREG_DATA_PORT);
|
2000-09-06 20:10:55 +00:00
|
|
|
}
|
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
static void
|
2004-11-10 04:29:09 +00:00
|
|
|
wp_wrapu(struct agg_info *ess, unsigned ch, u_int16_t reg, u_int16_t data)
|
2000-09-06 20:10:55 +00:00
|
|
|
{
|
2004-11-10 04:29:09 +00:00
|
|
|
wp_wrreg(ess, WPREG_CRAM_PTR, reg | (ch << 4));
|
|
|
|
if (wp_wait_data(ess, reg | (ch << 4)) == 0) {
|
|
|
|
wp_wrreg(ess, WPREG_DATA_PORT, data);
|
|
|
|
if (wp_wait_data(ess, data) != 0)
|
2007-01-27 13:30:19 +00:00
|
|
|
device_printf(ess->dev,
|
|
|
|
"wp_wrapu() write timed out.\n");
|
2004-11-10 04:29:09 +00:00
|
|
|
} else {
|
|
|
|
device_printf(ess->dev, "wp_wrapu() indexing timed out.\n");
|
2000-09-06 20:10:55 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2004-11-11 13:01:13 +00:00
|
|
|
static void
|
2004-11-10 04:29:09 +00:00
|
|
|
apu_setparam(struct agg_info *ess, int apuch,
|
|
|
|
u_int32_t wpwa, u_int16_t size, int16_t pan, u_int dv)
|
2000-09-06 20:10:55 +00:00
|
|
|
{
|
2004-11-10 04:29:09 +00:00
|
|
|
wp_wrapu(ess, apuch, APUREG_WAVESPACE, (wpwa >> 8) & APU_64KPAGE_MASK);
|
|
|
|
wp_wrapu(ess, apuch, APUREG_CURPTR, wpwa);
|
|
|
|
wp_wrapu(ess, apuch, APUREG_ENDPTR, wpwa + size);
|
|
|
|
wp_wrapu(ess, apuch, APUREG_LOOPLEN, size);
|
|
|
|
wp_wrapu(ess, apuch, APUREG_ROUTING, 0);
|
|
|
|
wp_wrapu(ess, apuch, APUREG_AMPLITUDE, 0xf000);
|
|
|
|
wp_wrapu(ess, apuch, APUREG_POSITION, 0x8f00
|
|
|
|
| (APU_RADIUS_MASK & (RADIUS_CENTERCIRCLE << APU_RADIUS_SHIFT))
|
|
|
|
| (APU_PAN_MASK & ((pan + PAN_FRONT) << APU_PAN_SHIFT)));
|
|
|
|
wp_wrapu(ess, apuch, APUREG_FREQ_LOBYTE,
|
|
|
|
APU_plus6dB | ((dv & 0xff) << APU_FREQ_LOBYTE_SHIFT));
|
|
|
|
wp_wrapu(ess, apuch, APUREG_FREQ_HIWORD, dv >> 8);
|
|
|
|
}
|
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
static void
|
2004-11-10 04:29:09 +00:00
|
|
|
wp_settimer(struct agg_info *ess, u_int divide)
|
|
|
|
{
|
|
|
|
u_int prescale = 0;
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
RANGE(divide, 2, 32 << 7);
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
for (; divide > 32; divide >>= 1) {
|
2000-09-06 20:10:55 +00:00
|
|
|
prescale++;
|
2004-11-10 04:29:09 +00:00
|
|
|
divide++;
|
|
|
|
}
|
2000-09-06 20:10:55 +00:00
|
|
|
|
|
|
|
for (; prescale < 7 && divide > 2 && !(divide & 1); divide >>= 1)
|
|
|
|
prescale++;
|
|
|
|
|
|
|
|
wp_wrreg(ess, WPREG_TIMER_ENABLE, 0);
|
2004-11-10 04:29:09 +00:00
|
|
|
wp_wrreg(ess, WPREG_TIMER_FREQ, 0x9000 |
|
2000-09-06 20:10:55 +00:00
|
|
|
(prescale << WP_TIMER_FREQ_PRESCALE_SHIFT) | (divide - 1));
|
|
|
|
wp_wrreg(ess, WPREG_TIMER_ENABLE, 1);
|
|
|
|
}
|
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
static void
|
2000-09-06 20:10:55 +00:00
|
|
|
wp_starttimer(struct agg_info *ess)
|
|
|
|
{
|
2004-11-10 04:29:09 +00:00
|
|
|
AGG_WR(ess, PORT_INT_STAT, 1, 2);
|
|
|
|
AGG_WR(ess, PORT_HOSTINT_CTRL, HOSTINT_CTRL_DSOUND_INT_ENABLED
|
|
|
|
| AGG_RD(ess, PORT_HOSTINT_CTRL, 2), 2);
|
2000-09-06 20:10:55 +00:00
|
|
|
wp_wrreg(ess, WPREG_TIMER_START, 1);
|
|
|
|
}
|
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
static void
|
2000-09-06 20:10:55 +00:00
|
|
|
wp_stoptimer(struct agg_info *ess)
|
|
|
|
{
|
2004-11-10 04:29:09 +00:00
|
|
|
AGG_WR(ess, PORT_HOSTINT_CTRL, ~HOSTINT_CTRL_DSOUND_INT_ENABLED
|
|
|
|
& AGG_RD(ess, PORT_HOSTINT_CTRL, 2), 2);
|
|
|
|
AGG_WR(ess, PORT_INT_STAT, 1, 2);
|
2000-09-06 20:10:55 +00:00
|
|
|
wp_wrreg(ess, WPREG_TIMER_START, 0);
|
|
|
|
}
|
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
/* -------------------------------------------------------------------- */
|
|
|
|
|
2000-09-06 20:10:55 +00:00
|
|
|
/* WaveCache */
|
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
#if 0
|
|
|
|
static u_int16_t
|
2000-09-06 20:10:55 +00:00
|
|
|
wc_rdreg(struct agg_info *ess, u_int16_t reg)
|
|
|
|
{
|
2004-11-10 04:29:09 +00:00
|
|
|
AGG_WR(ess, PORT_WAVCACHE_INDEX, reg, 2);
|
|
|
|
return AGG_RD(ess, PORT_WAVCACHE_DATA, 2);
|
2000-09-06 20:10:55 +00:00
|
|
|
}
|
2007-01-27 13:30:19 +00:00
|
|
|
#endif
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
static void
|
2000-09-06 20:10:55 +00:00
|
|
|
wc_wrreg(struct agg_info *ess, u_int16_t reg, u_int16_t data)
|
|
|
|
{
|
2004-11-10 04:29:09 +00:00
|
|
|
AGG_WR(ess, PORT_WAVCACHE_INDEX, reg, 2);
|
|
|
|
AGG_WR(ess, PORT_WAVCACHE_DATA, data, 2);
|
2000-09-06 20:10:55 +00:00
|
|
|
}
|
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
#if 0
|
|
|
|
static u_int16_t
|
2000-09-06 20:10:55 +00:00
|
|
|
wc_rdchctl(struct agg_info *ess, int ch)
|
|
|
|
{
|
|
|
|
return wc_rdreg(ess, ch << 3);
|
|
|
|
}
|
2007-01-27 13:30:19 +00:00
|
|
|
#endif
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
static void
|
2000-09-06 20:10:55 +00:00
|
|
|
wc_wrchctl(struct agg_info *ess, int ch, u_int16_t data)
|
|
|
|
{
|
|
|
|
wc_wrreg(ess, ch << 3, data);
|
|
|
|
}
|
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
/* -------------------------------------------------------------------- */
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
/* Power management */
|
2007-01-27 13:30:19 +00:00
|
|
|
static void
|
2004-11-10 04:29:09 +00:00
|
|
|
agg_stopclock(struct agg_info *ess, int part, int st)
|
2000-09-06 20:10:55 +00:00
|
|
|
{
|
2004-11-10 04:29:09 +00:00
|
|
|
u_int32_t data;
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
data = pci_read_config(ess->dev, CONF_ACPI_STOPCLOCK, 4);
|
|
|
|
if (part < 16) {
|
|
|
|
if (st == PCI_POWERSTATE_D1)
|
|
|
|
data &= ~(1 << part);
|
|
|
|
else
|
|
|
|
data |= (1 << part);
|
|
|
|
if (st == PCI_POWERSTATE_D1 || st == PCI_POWERSTATE_D2)
|
|
|
|
data |= (0x10000 << part);
|
|
|
|
else
|
|
|
|
data &= ~(0x10000 << part);
|
|
|
|
pci_write_config(ess->dev, CONF_ACPI_STOPCLOCK, data, 4);
|
|
|
|
}
|
2000-09-06 20:10:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* -----------------------------
|
|
|
|
* Controller.
|
|
|
|
*/
|
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
static void
|
2000-09-06 20:10:55 +00:00
|
|
|
agg_initcodec(struct agg_info* ess)
|
|
|
|
{
|
|
|
|
u_int16_t data;
|
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
if (AGG_RD(ess, PORT_RINGBUS_CTRL, 4) & RINGBUS_CTRL_ACLINK_ENABLED) {
|
|
|
|
AGG_WR(ess, PORT_RINGBUS_CTRL, 0, 4);
|
2000-09-06 20:10:55 +00:00
|
|
|
DELAY(104); /* 20.8us * (4 + 1) */
|
|
|
|
}
|
|
|
|
/* XXX - 2nd codec should be looked at. */
|
2004-11-10 04:29:09 +00:00
|
|
|
AGG_WR(ess, PORT_RINGBUS_CTRL, RINGBUS_CTRL_AC97_SWRESET, 4);
|
2000-09-06 20:10:55 +00:00
|
|
|
DELAY(2);
|
2004-11-10 04:29:09 +00:00
|
|
|
AGG_WR(ess, PORT_RINGBUS_CTRL, RINGBUS_CTRL_ACLINK_ENABLED, 4);
|
|
|
|
DELAY(50);
|
|
|
|
|
|
|
|
if (agg_rdcodec(ess, 0) < 0) {
|
|
|
|
AGG_WR(ess, PORT_RINGBUS_CTRL, 0, 4);
|
2000-09-06 20:10:55 +00:00
|
|
|
DELAY(21);
|
|
|
|
|
|
|
|
/* Try cold reset. */
|
|
|
|
device_printf(ess->dev, "will perform cold reset.\n");
|
2004-11-10 04:29:09 +00:00
|
|
|
data = AGG_RD(ess, PORT_GPIO_DIR, 2);
|
2000-09-06 20:10:55 +00:00
|
|
|
if (pci_read_config(ess->dev, 0x58, 2) & 1)
|
|
|
|
data |= 0x10;
|
2004-11-10 04:29:09 +00:00
|
|
|
data |= 0x009 & ~AGG_RD(ess, PORT_GPIO_DATA, 2);
|
|
|
|
AGG_WR(ess, PORT_GPIO_MASK, 0xff6, 2);
|
|
|
|
AGG_WR(ess, PORT_GPIO_DIR, data | 0x009, 2);
|
|
|
|
AGG_WR(ess, PORT_GPIO_DATA, 0x000, 2);
|
2000-09-06 20:10:55 +00:00
|
|
|
DELAY(2);
|
2004-11-10 04:29:09 +00:00
|
|
|
AGG_WR(ess, PORT_GPIO_DATA, 0x001, 2);
|
2000-09-06 20:10:55 +00:00
|
|
|
DELAY(1);
|
2004-11-10 04:29:09 +00:00
|
|
|
AGG_WR(ess, PORT_GPIO_DATA, 0x009, 2);
|
|
|
|
agg_sleep(ess, "agginicd", 500);
|
|
|
|
AGG_WR(ess, PORT_GPIO_DIR, data, 2);
|
2000-09-06 20:10:55 +00:00
|
|
|
DELAY(84); /* 20.8us * 4 */
|
2004-11-10 04:29:09 +00:00
|
|
|
AGG_WR(ess, PORT_RINGBUS_CTRL, RINGBUS_CTRL_ACLINK_ENABLED, 4);
|
|
|
|
DELAY(50);
|
2000-09-06 20:10:55 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
agg_init(struct agg_info* ess)
|
|
|
|
{
|
|
|
|
u_int32_t data;
|
|
|
|
|
|
|
|
/* Setup PCI config registers. */
|
|
|
|
|
|
|
|
/* Disable all legacy emulations. */
|
|
|
|
data = pci_read_config(ess->dev, CONF_LEGACY, 2);
|
|
|
|
data |= LEGACY_DISABLED;
|
|
|
|
pci_write_config(ess->dev, CONF_LEGACY, data, 2);
|
|
|
|
|
|
|
|
/* Disconnect from CHI. (Makes Dell inspiron 7500 work?)
|
|
|
|
* Enable posted write.
|
|
|
|
* Prefer PCI timing rather than that of ISA.
|
|
|
|
* Don't swap L/R. */
|
|
|
|
data = pci_read_config(ess->dev, CONF_MAESTRO, 4);
|
2004-11-10 04:29:09 +00:00
|
|
|
data |= MAESTRO_PMC;
|
2000-09-06 20:10:55 +00:00
|
|
|
data |= MAESTRO_CHIBUS | MAESTRO_POSTEDWRITE | MAESTRO_DMA_PCITIMING;
|
|
|
|
data &= ~MAESTRO_SWAP_LR;
|
|
|
|
pci_write_config(ess->dev, CONF_MAESTRO, data, 4);
|
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
/* Turn off unused parts if necessary. */
|
|
|
|
/* consult CONF_MAESTRO. */
|
|
|
|
if (data & MAESTRO_SPDIF)
|
|
|
|
agg_stopclock(ess, ACPI_PART_SPDIF, PCI_POWERSTATE_D2);
|
|
|
|
else
|
|
|
|
agg_stopclock(ess, ACPI_PART_SPDIF, PCI_POWERSTATE_D1);
|
|
|
|
if (data & MAESTRO_HWVOL)
|
|
|
|
agg_stopclock(ess, ACPI_PART_HW_VOL, PCI_POWERSTATE_D3);
|
|
|
|
else
|
|
|
|
agg_stopclock(ess, ACPI_PART_HW_VOL, PCI_POWERSTATE_D1);
|
|
|
|
|
|
|
|
/* parts that never be used */
|
|
|
|
agg_stopclock(ess, ACPI_PART_978, PCI_POWERSTATE_D1);
|
|
|
|
agg_stopclock(ess, ACPI_PART_DAA, PCI_POWERSTATE_D1);
|
|
|
|
agg_stopclock(ess, ACPI_PART_GPIO, PCI_POWERSTATE_D1);
|
|
|
|
agg_stopclock(ess, ACPI_PART_SB, PCI_POWERSTATE_D1);
|
|
|
|
agg_stopclock(ess, ACPI_PART_FM, PCI_POWERSTATE_D1);
|
|
|
|
agg_stopclock(ess, ACPI_PART_MIDI, PCI_POWERSTATE_D1);
|
|
|
|
agg_stopclock(ess, ACPI_PART_GAME_PORT, PCI_POWERSTATE_D1);
|
|
|
|
|
|
|
|
/* parts that will be used only when play/recording */
|
|
|
|
agg_stopclock(ess, ACPI_PART_WP, PCI_POWERSTATE_D2);
|
|
|
|
|
|
|
|
/* parts that should always be turned on */
|
|
|
|
agg_stopclock(ess, ACPI_PART_CODEC_CLOCK, PCI_POWERSTATE_D3);
|
|
|
|
agg_stopclock(ess, ACPI_PART_GLUE, PCI_POWERSTATE_D3);
|
|
|
|
agg_stopclock(ess, ACPI_PART_PCI_IF, PCI_POWERSTATE_D3);
|
|
|
|
agg_stopclock(ess, ACPI_PART_RINGBUS, PCI_POWERSTATE_D3);
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
/* Reset direct sound. */
|
|
|
|
AGG_WR(ess, PORT_HOSTINT_CTRL, HOSTINT_CTRL_SOFT_RESET, 2);
|
|
|
|
DELAY(100);
|
|
|
|
AGG_WR(ess, PORT_HOSTINT_CTRL, 0, 2);
|
|
|
|
DELAY(100);
|
|
|
|
AGG_WR(ess, PORT_HOSTINT_CTRL, HOSTINT_CTRL_DSOUND_RESET, 2);
|
|
|
|
DELAY(100);
|
|
|
|
AGG_WR(ess, PORT_HOSTINT_CTRL, 0, 2);
|
|
|
|
DELAY(100);
|
|
|
|
|
|
|
|
/* Enable hardware volume control interruption. */
|
|
|
|
if (data & MAESTRO_HWVOL) /* XXX - why not use device flags? */
|
|
|
|
AGG_WR(ess, PORT_HOSTINT_CTRL,HOSTINT_CTRL_HWVOL_ENABLED, 2);
|
2000-09-06 20:10:55 +00:00
|
|
|
|
|
|
|
/* Setup Wave Processor. */
|
|
|
|
|
|
|
|
/* Enable WaveCache, set DMA base address. */
|
|
|
|
wp_wrreg(ess, WPREG_WAVE_ROMRAM,
|
|
|
|
WP_WAVE_VIRTUAL_ENABLED | WP_WAVE_DRAM_ENABLED);
|
2004-11-10 04:29:09 +00:00
|
|
|
wp_wrreg(ess, WPREG_CRAM_DATA, 0);
|
|
|
|
|
|
|
|
AGG_WR(ess, PORT_WAVCACHE_CTRL,
|
|
|
|
WAVCACHE_ENABLED | WAVCACHE_WTSIZE_2MB | WAVCACHE_SGC_32_47, 2);
|
2000-09-06 20:10:55 +00:00
|
|
|
|
|
|
|
for (data = WAVCACHE_PCMBAR; data < WAVCACHE_PCMBAR + 4; data++)
|
2004-11-10 04:29:09 +00:00
|
|
|
wc_wrreg(ess, data, ess->phys >> WAVCACHE_BASEADDR_SHIFT);
|
2000-09-06 20:10:55 +00:00
|
|
|
|
|
|
|
/* Setup Codec/Ringbus. */
|
|
|
|
agg_initcodec(ess);
|
2004-11-10 04:29:09 +00:00
|
|
|
AGG_WR(ess, PORT_RINGBUS_CTRL,
|
|
|
|
RINGBUS_CTRL_RINGBUS_ENABLED | RINGBUS_CTRL_ACLINK_ENABLED, 4);
|
|
|
|
|
|
|
|
wp_wrreg(ess, 0x08, 0xB004);
|
|
|
|
wp_wrreg(ess, 0x09, 0x001B);
|
|
|
|
wp_wrreg(ess, 0x0A, 0x8000);
|
|
|
|
wp_wrreg(ess, 0x0B, 0x3F37);
|
|
|
|
wp_wrreg(ess, WPREG_BASE, 0x8598); /* Parallel I/O */
|
|
|
|
wp_wrreg(ess, WPREG_BASE + 1, 0x7632);
|
2000-09-06 20:10:55 +00:00
|
|
|
ringbus_setdest(ess, RINGBUS_SRC_ADC,
|
|
|
|
RINGBUS_DEST_STEREO | RINGBUS_DEST_DSOUND_IN);
|
|
|
|
ringbus_setdest(ess, RINGBUS_SRC_DSOUND,
|
|
|
|
RINGBUS_DEST_STEREO | RINGBUS_DEST_DAC);
|
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
/* Enable S/PDIF if necessary. */
|
|
|
|
if (pci_read_config(ess->dev, CONF_MAESTRO, 4) & MAESTRO_SPDIF)
|
|
|
|
/* XXX - why not use device flags? */
|
|
|
|
AGG_WR(ess, PORT_RINGBUS_CTRL_B, RINGBUS_CTRL_SPDIF |
|
|
|
|
AGG_RD(ess, PORT_RINGBUS_CTRL_B, 1), 1);
|
|
|
|
|
2000-09-06 20:10:55 +00:00
|
|
|
/* Setup ASSP. Needed for Dell Inspiron 7500? */
|
2004-11-10 04:29:09 +00:00
|
|
|
AGG_WR(ess, PORT_ASSP_CTRL_B, 0x00, 1);
|
|
|
|
AGG_WR(ess, PORT_ASSP_CTRL_A, 0x03, 1);
|
|
|
|
AGG_WR(ess, PORT_ASSP_CTRL_C, 0x00, 1);
|
2000-09-06 20:10:55 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Setup GPIO.
|
|
|
|
* There seems to be speciality with NEC systems.
|
|
|
|
*/
|
|
|
|
switch (pci_get_subvendor(ess->dev)
|
|
|
|
| (pci_get_subdevice(ess->dev) << 16)) {
|
|
|
|
case NEC_SUBID1:
|
|
|
|
case NEC_SUBID2:
|
|
|
|
/* Matthew Braithwaite <matt@braithwaite.net> reported that
|
|
|
|
* NEC Versa LX doesn't need GPIO operation. */
|
2004-11-10 04:29:09 +00:00
|
|
|
AGG_WR(ess, PORT_GPIO_MASK, 0x9ff, 2);
|
|
|
|
AGG_WR(ess, PORT_GPIO_DIR,
|
|
|
|
AGG_RD(ess, PORT_GPIO_DIR, 2) | 0x600, 2);
|
|
|
|
AGG_WR(ess, PORT_GPIO_DATA, 0x200, 2);
|
2000-09-06 20:10:55 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
/* Deals power state transition. Must be called with softc->lock held. */
|
|
|
|
static void
|
|
|
|
agg_power(struct agg_info *ess, int status)
|
|
|
|
{
|
|
|
|
u_int8_t lastpwr;
|
|
|
|
|
|
|
|
lastpwr = ess->curpwr;
|
|
|
|
if (lastpwr == status)
|
|
|
|
return;
|
|
|
|
|
|
|
|
switch (status) {
|
|
|
|
case PCI_POWERSTATE_D0:
|
|
|
|
case PCI_POWERSTATE_D1:
|
|
|
|
switch (lastpwr) {
|
|
|
|
case PCI_POWERSTATE_D2:
|
|
|
|
pci_set_powerstate(ess->dev, status);
|
|
|
|
/* Turn on PCM-related parts. */
|
|
|
|
agg_wrcodec(ess, AC97_REG_POWER, 0);
|
|
|
|
DELAY(100);
|
|
|
|
#if 0
|
|
|
|
if ((agg_rdcodec(ess, AC97_REG_POWER) & 3) != 3)
|
2007-01-27 13:30:19 +00:00
|
|
|
device_printf(ess->dev,
|
|
|
|
"warning: codec not ready.\n");
|
2004-11-10 04:29:09 +00:00
|
|
|
#endif
|
|
|
|
AGG_WR(ess, PORT_RINGBUS_CTRL,
|
|
|
|
(AGG_RD(ess, PORT_RINGBUS_CTRL, 4)
|
|
|
|
& ~RINGBUS_CTRL_ACLINK_ENABLED)
|
|
|
|
| RINGBUS_CTRL_RINGBUS_ENABLED, 4);
|
|
|
|
DELAY(50);
|
|
|
|
AGG_WR(ess, PORT_RINGBUS_CTRL,
|
|
|
|
AGG_RD(ess, PORT_RINGBUS_CTRL, 4)
|
|
|
|
| RINGBUS_CTRL_ACLINK_ENABLED, 4);
|
|
|
|
break;
|
|
|
|
case PCI_POWERSTATE_D3:
|
|
|
|
/* Initialize. */
|
|
|
|
pci_set_powerstate(ess->dev, PCI_POWERSTATE_D0);
|
|
|
|
DELAY(100);
|
|
|
|
agg_init(ess);
|
|
|
|
/* FALLTHROUGH */
|
|
|
|
case PCI_POWERSTATE_D0:
|
|
|
|
case PCI_POWERSTATE_D1:
|
|
|
|
pci_set_powerstate(ess->dev, status);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case PCI_POWERSTATE_D2:
|
|
|
|
switch (lastpwr) {
|
|
|
|
case PCI_POWERSTATE_D3:
|
|
|
|
/* Initialize. */
|
|
|
|
pci_set_powerstate(ess->dev, PCI_POWERSTATE_D0);
|
|
|
|
DELAY(100);
|
|
|
|
agg_init(ess);
|
|
|
|
/* FALLTHROUGH */
|
|
|
|
case PCI_POWERSTATE_D0:
|
|
|
|
case PCI_POWERSTATE_D1:
|
|
|
|
/* Turn off PCM-related parts. */
|
|
|
|
AGG_WR(ess, PORT_RINGBUS_CTRL,
|
|
|
|
AGG_RD(ess, PORT_RINGBUS_CTRL, 4)
|
|
|
|
& ~RINGBUS_CTRL_RINGBUS_ENABLED, 4);
|
|
|
|
DELAY(100);
|
|
|
|
agg_wrcodec(ess, AC97_REG_POWER, 0x300);
|
|
|
|
DELAY(100);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
pci_set_powerstate(ess->dev, status);
|
|
|
|
break;
|
|
|
|
case PCI_POWERSTATE_D3:
|
|
|
|
/* Entirely power down. */
|
|
|
|
agg_wrcodec(ess, AC97_REG_POWER, 0xdf00);
|
|
|
|
DELAY(100);
|
|
|
|
AGG_WR(ess, PORT_RINGBUS_CTRL, 0, 4);
|
|
|
|
/*DELAY(1);*/
|
|
|
|
if (lastpwr != PCI_POWERSTATE_D2)
|
|
|
|
wp_stoptimer(ess);
|
|
|
|
AGG_WR(ess, PORT_HOSTINT_CTRL, 0, 2);
|
|
|
|
AGG_WR(ess, PORT_HOSTINT_STAT, 0xff, 1);
|
|
|
|
pci_set_powerstate(ess->dev, status);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
/* Invalid power state; let it ignored. */
|
|
|
|
status = lastpwr;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
ess->curpwr = status;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
|
|
|
2000-09-06 20:10:55 +00:00
|
|
|
/* Channel controller. */
|
|
|
|
|
|
|
|
static void
|
|
|
|
aggch_start_dac(struct agg_chinfo *ch)
|
|
|
|
{
|
2004-11-10 04:29:09 +00:00
|
|
|
bus_addr_t wpwa;
|
|
|
|
u_int32_t speed;
|
|
|
|
u_int16_t size, apuch, wtbar, wcreg, aputype;
|
|
|
|
u_int dv;
|
|
|
|
int pan;
|
|
|
|
|
|
|
|
speed = ch->speed;
|
|
|
|
wpwa = (ch->phys - ch->base) >> 1;
|
|
|
|
wtbar = 0xc & (wpwa >> WPWA_WTBAR_SHIFT(2));
|
|
|
|
wcreg = (ch->phys - 16) & WAVCACHE_CHCTL_ADDRTAG_MASK;
|
|
|
|
size = ch->buflen;
|
|
|
|
apuch = (ch->num << 1) | 32;
|
|
|
|
pan = PAN_RIGHT - PAN_FRONT;
|
|
|
|
|
|
|
|
if (ch->stereo) {
|
|
|
|
wcreg |= WAVCACHE_CHCTL_STEREO;
|
|
|
|
if (ch->qs16) {
|
|
|
|
aputype = APUTYPE_16BITSTEREO;
|
|
|
|
wpwa >>= 1;
|
|
|
|
size >>= 1;
|
|
|
|
pan = -pan;
|
|
|
|
} else
|
|
|
|
aputype = APUTYPE_8BITSTEREO;
|
|
|
|
} else {
|
|
|
|
pan = 0;
|
|
|
|
if (ch->qs16)
|
|
|
|
aputype = APUTYPE_16BITLINEAR;
|
|
|
|
else {
|
|
|
|
aputype = APUTYPE_8BITLINEAR;
|
|
|
|
speed >>= 1;
|
|
|
|
}
|
2000-09-06 20:10:55 +00:00
|
|
|
}
|
2004-11-10 04:29:09 +00:00
|
|
|
if (ch->us)
|
|
|
|
wcreg |= WAVCACHE_CHCTL_U8;
|
|
|
|
|
|
|
|
if (wtbar > 8)
|
|
|
|
wtbar = (wtbar >> 1) + 4;
|
2000-09-06 20:10:55 +00:00
|
|
|
|
|
|
|
dv = (((speed % 48000) << 16) + 24000) / 48000
|
|
|
|
+ ((speed / 48000) << 16);
|
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
agg_lock(ch->parent);
|
|
|
|
agg_power(ch->parent, powerstate_active);
|
|
|
|
|
|
|
|
wc_wrreg(ch->parent, WAVCACHE_WTBAR + wtbar,
|
|
|
|
ch->base >> WAVCACHE_BASEADDR_SHIFT);
|
|
|
|
wc_wrreg(ch->parent, WAVCACHE_WTBAR + wtbar + 1,
|
|
|
|
ch->base >> WAVCACHE_BASEADDR_SHIFT);
|
|
|
|
if (wtbar < 8) {
|
|
|
|
wc_wrreg(ch->parent, WAVCACHE_WTBAR + wtbar + 2,
|
|
|
|
ch->base >> WAVCACHE_BASEADDR_SHIFT);
|
|
|
|
wc_wrreg(ch->parent, WAVCACHE_WTBAR + wtbar + 3,
|
|
|
|
ch->base >> WAVCACHE_BASEADDR_SHIFT);
|
|
|
|
}
|
|
|
|
wc_wrchctl(ch->parent, apuch, wcreg);
|
|
|
|
wc_wrchctl(ch->parent, apuch + 1, wcreg);
|
|
|
|
|
|
|
|
apu_setparam(ch->parent, apuch, wpwa, size, pan, dv);
|
|
|
|
if (ch->stereo) {
|
|
|
|
if (ch->qs16)
|
|
|
|
wpwa |= (WPWA_STEREO >> 1);
|
|
|
|
apu_setparam(ch->parent, apuch + 1, wpwa, size, -pan, dv);
|
|
|
|
|
|
|
|
critical_enter();
|
|
|
|
wp_wrapu(ch->parent, apuch, APUREG_APUTYPE,
|
|
|
|
(aputype << APU_APUTYPE_SHIFT) | APU_DMA_ENABLED | 0xf);
|
2000-09-06 20:10:55 +00:00
|
|
|
wp_wrapu(ch->parent, apuch + 1, APUREG_APUTYPE,
|
2004-11-10 04:29:09 +00:00
|
|
|
(aputype << APU_APUTYPE_SHIFT) | APU_DMA_ENABLED | 0xf);
|
|
|
|
critical_exit();
|
|
|
|
} else {
|
|
|
|
wp_wrapu(ch->parent, apuch, APUREG_APUTYPE,
|
|
|
|
(aputype << APU_APUTYPE_SHIFT) | APU_DMA_ENABLED | 0xf);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* to mark that this channel is ready for intr. */
|
|
|
|
ch->parent->active |= (1 << ch->num);
|
|
|
|
|
|
|
|
set_timer(ch->parent);
|
|
|
|
wp_starttimer(ch->parent);
|
|
|
|
agg_unlock(ch->parent);
|
2000-09-06 20:10:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
aggch_stop_dac(struct agg_chinfo *ch)
|
|
|
|
{
|
2004-11-10 04:29:09 +00:00
|
|
|
agg_lock(ch->parent);
|
|
|
|
|
|
|
|
/* to mark that this channel no longer needs further intrs. */
|
|
|
|
ch->parent->active &= ~(1 << ch->num);
|
|
|
|
|
|
|
|
wp_wrapu(ch->parent, (ch->num << 1) | 32, APUREG_APUTYPE,
|
2000-09-06 20:10:55 +00:00
|
|
|
APUTYPE_INACTIVE << APU_APUTYPE_SHIFT);
|
2004-11-10 04:29:09 +00:00
|
|
|
wp_wrapu(ch->parent, (ch->num << 1) | 33, APUREG_APUTYPE,
|
2000-09-06 20:10:55 +00:00
|
|
|
APUTYPE_INACTIVE << APU_APUTYPE_SHIFT);
|
2004-11-10 04:29:09 +00:00
|
|
|
|
|
|
|
if (ch->parent->active) {
|
|
|
|
set_timer(ch->parent);
|
|
|
|
wp_starttimer(ch->parent);
|
|
|
|
} else {
|
|
|
|
wp_stoptimer(ch->parent);
|
|
|
|
agg_power(ch->parent, powerstate_idle);
|
|
|
|
}
|
|
|
|
agg_unlock(ch->parent);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
aggch_start_adc(struct agg_rchinfo *ch)
|
|
|
|
{
|
|
|
|
bus_addr_t wpwa, wpwa2;
|
|
|
|
u_int16_t wcreg, wcreg2;
|
|
|
|
u_int dv;
|
|
|
|
int pan;
|
|
|
|
|
|
|
|
/* speed > 48000 not cared */
|
|
|
|
dv = ((ch->speed << 16) + 24000) / 48000;
|
|
|
|
|
|
|
|
/* RATECONV doesn't seem to like dv == 0x10000. */
|
|
|
|
if (dv == 0x10000)
|
|
|
|
dv--;
|
|
|
|
|
|
|
|
if (ch->stereo) {
|
|
|
|
wpwa = (ch->srcphys - ch->base) >> 1;
|
|
|
|
wpwa2 = (ch->srcphys + ch->parent->bufsz/2 - ch->base) >> 1;
|
|
|
|
wcreg = (ch->srcphys - 16) & WAVCACHE_CHCTL_ADDRTAG_MASK;
|
|
|
|
wcreg2 = (ch->base - 16) & WAVCACHE_CHCTL_ADDRTAG_MASK;
|
|
|
|
pan = PAN_LEFT - PAN_FRONT;
|
|
|
|
} else {
|
|
|
|
wpwa = (ch->phys - ch->base) >> 1;
|
|
|
|
wpwa2 = (ch->srcphys - ch->base) >> 1;
|
|
|
|
wcreg = (ch->phys - 16) & WAVCACHE_CHCTL_ADDRTAG_MASK;
|
|
|
|
wcreg2 = (ch->base - 16) & WAVCACHE_CHCTL_ADDRTAG_MASK;
|
|
|
|
pan = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
agg_lock(ch->parent);
|
|
|
|
|
|
|
|
ch->hwptr = 0;
|
|
|
|
agg_power(ch->parent, powerstate_active);
|
|
|
|
|
|
|
|
/* Invalidate WaveCache. */
|
|
|
|
wc_wrchctl(ch->parent, 0, wcreg | WAVCACHE_CHCTL_STEREO);
|
|
|
|
wc_wrchctl(ch->parent, 1, wcreg | WAVCACHE_CHCTL_STEREO);
|
|
|
|
wc_wrchctl(ch->parent, 2, wcreg2 | WAVCACHE_CHCTL_STEREO);
|
|
|
|
wc_wrchctl(ch->parent, 3, wcreg2 | WAVCACHE_CHCTL_STEREO);
|
|
|
|
|
|
|
|
/* Load APU registers. */
|
|
|
|
/* APU #0 : Sample rate converter for left/center. */
|
|
|
|
apu_setparam(ch->parent, 0, WPWA_USE_SYSMEM | wpwa,
|
|
|
|
ch->buflen >> ch->stereo, 0, dv);
|
|
|
|
wp_wrapu(ch->parent, 0, APUREG_AMPLITUDE, 0);
|
|
|
|
wp_wrapu(ch->parent, 0, APUREG_ROUTING, 2 << APU_DATASRC_A_SHIFT);
|
|
|
|
|
|
|
|
/* APU #1 : Sample rate converter for right. */
|
|
|
|
apu_setparam(ch->parent, 1, WPWA_USE_SYSMEM | wpwa2,
|
|
|
|
ch->buflen >> ch->stereo, 0, dv);
|
|
|
|
wp_wrapu(ch->parent, 1, APUREG_AMPLITUDE, 0);
|
|
|
|
wp_wrapu(ch->parent, 1, APUREG_ROUTING, 3 << APU_DATASRC_A_SHIFT);
|
|
|
|
|
|
|
|
/* APU #2 : Input mixer for left. */
|
|
|
|
apu_setparam(ch->parent, 2, WPWA_USE_SYSMEM | 0,
|
|
|
|
ch->parent->bufsz >> 2, pan, 0x10000);
|
|
|
|
wp_wrapu(ch->parent, 2, APUREG_AMPLITUDE, 0);
|
|
|
|
wp_wrapu(ch->parent, 2, APUREG_EFFECT_GAIN, 0xf0);
|
|
|
|
wp_wrapu(ch->parent, 2, APUREG_ROUTING, 0x15 << APU_DATASRC_A_SHIFT);
|
|
|
|
|
|
|
|
/* APU #3 : Input mixer for right. */
|
|
|
|
apu_setparam(ch->parent, 3, WPWA_USE_SYSMEM | (ch->parent->bufsz >> 2),
|
|
|
|
ch->parent->bufsz >> 2, -pan, 0x10000);
|
|
|
|
wp_wrapu(ch->parent, 3, APUREG_AMPLITUDE, 0);
|
|
|
|
wp_wrapu(ch->parent, 3, APUREG_EFFECT_GAIN, 0xf0);
|
|
|
|
wp_wrapu(ch->parent, 3, APUREG_ROUTING, 0x14 << APU_DATASRC_A_SHIFT);
|
|
|
|
|
|
|
|
/* to mark this channel ready for intr. */
|
|
|
|
ch->parent->active |= (1 << ch->parent->playchns);
|
|
|
|
|
|
|
|
/* start adc */
|
|
|
|
critical_enter();
|
|
|
|
wp_wrapu(ch->parent, 0, APUREG_APUTYPE,
|
|
|
|
(APUTYPE_RATECONV << APU_APUTYPE_SHIFT) | APU_DMA_ENABLED | 0xf);
|
|
|
|
wp_wrapu(ch->parent, 1, APUREG_APUTYPE,
|
|
|
|
(APUTYPE_RATECONV << APU_APUTYPE_SHIFT) | APU_DMA_ENABLED | 0xf);
|
|
|
|
wp_wrapu(ch->parent, 2, APUREG_APUTYPE,
|
|
|
|
(APUTYPE_INPUTMIXER << APU_APUTYPE_SHIFT) | 0xf);
|
|
|
|
wp_wrapu(ch->parent, 3, APUREG_APUTYPE,
|
|
|
|
(APUTYPE_INPUTMIXER << APU_APUTYPE_SHIFT) | 0xf);
|
|
|
|
critical_exit();
|
|
|
|
|
|
|
|
set_timer(ch->parent);
|
|
|
|
wp_starttimer(ch->parent);
|
|
|
|
agg_unlock(ch->parent);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
aggch_stop_adc(struct agg_rchinfo *ch)
|
|
|
|
{
|
|
|
|
int apuch;
|
|
|
|
|
|
|
|
agg_lock(ch->parent);
|
|
|
|
|
|
|
|
/* to mark that this channel no longer needs further intrs. */
|
|
|
|
ch->parent->active &= ~(1 << ch->parent->playchns);
|
|
|
|
|
|
|
|
for (apuch = 0; apuch < 4; apuch++)
|
|
|
|
wp_wrapu(ch->parent, apuch, APUREG_APUTYPE,
|
|
|
|
APUTYPE_INACTIVE << APU_APUTYPE_SHIFT);
|
|
|
|
|
|
|
|
if (ch->parent->active) {
|
|
|
|
set_timer(ch->parent);
|
|
|
|
wp_starttimer(ch->parent);
|
|
|
|
} else {
|
|
|
|
wp_stoptimer(ch->parent);
|
|
|
|
agg_power(ch->parent, powerstate_idle);
|
|
|
|
}
|
|
|
|
agg_unlock(ch->parent);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Feed from L/R channel of ADC to destination with stereo interleaving.
|
|
|
|
* This function expects n not overwrapping the buffer boundary.
|
|
|
|
* Note that n is measured in sample unit.
|
|
|
|
*
|
|
|
|
* XXX - this function works in 16bit stereo format only.
|
|
|
|
*/
|
2007-01-27 13:30:19 +00:00
|
|
|
static void
|
2004-11-10 04:29:09 +00:00
|
|
|
interleave(int16_t *l, int16_t *r, int16_t *p, unsigned n)
|
|
|
|
{
|
|
|
|
int16_t *end;
|
|
|
|
|
|
|
|
for (end = l + n; l < end; ) {
|
|
|
|
*p++ = *l++;
|
|
|
|
*p++ = *r++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
aggch_feed_adc_stereo(struct agg_rchinfo *ch)
|
|
|
|
{
|
|
|
|
unsigned cur, last;
|
|
|
|
int16_t *src2;
|
|
|
|
|
|
|
|
agg_lock(ch->parent);
|
|
|
|
cur = wp_rdapu(ch->parent, 0, APUREG_CURPTR);
|
|
|
|
agg_unlock(ch->parent);
|
|
|
|
cur -= 0xffff & ((ch->srcphys - ch->base) >> 1);
|
|
|
|
last = ch->hwptr;
|
|
|
|
src2 = ch->src + ch->parent->bufsz/4;
|
|
|
|
|
|
|
|
if (cur < last) {
|
|
|
|
interleave(ch->src + last, src2 + last,
|
|
|
|
ch->sink + 2*last, ch->buflen/2 - last);
|
|
|
|
interleave(ch->src, src2,
|
|
|
|
ch->sink, cur);
|
|
|
|
} else if (cur > last)
|
|
|
|
interleave(ch->src + last, src2 + last,
|
|
|
|
ch->sink + 2*last, cur - last);
|
|
|
|
ch->hwptr = cur;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Feed from R channel of ADC and mixdown to destination L/center.
|
|
|
|
* This function expects n not overwrapping the buffer boundary.
|
|
|
|
* Note that n is measured in sample unit.
|
|
|
|
*
|
|
|
|
* XXX - this function works in 16bit monoral format only.
|
|
|
|
*/
|
2007-01-27 13:30:19 +00:00
|
|
|
static void
|
2004-11-10 04:29:09 +00:00
|
|
|
mixdown(int16_t *src, int16_t *dest, unsigned n)
|
|
|
|
{
|
|
|
|
int16_t *end;
|
|
|
|
|
|
|
|
for (end = dest + n; dest < end; dest++)
|
|
|
|
*dest = (int16_t)(((int)*dest - (int)*src++) / 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
aggch_feed_adc_mono(struct agg_rchinfo *ch)
|
|
|
|
{
|
|
|
|
unsigned cur, last;
|
|
|
|
|
|
|
|
agg_lock(ch->parent);
|
|
|
|
cur = wp_rdapu(ch->parent, 0, APUREG_CURPTR);
|
|
|
|
agg_unlock(ch->parent);
|
|
|
|
cur -= 0xffff & ((ch->phys - ch->base) >> 1);
|
|
|
|
last = ch->hwptr;
|
|
|
|
|
|
|
|
if (cur < last) {
|
|
|
|
mixdown(ch->src + last, ch->sink + last, ch->buflen - last);
|
|
|
|
mixdown(ch->src, ch->sink, cur);
|
|
|
|
} else if (cur > last)
|
|
|
|
mixdown(ch->src + last, ch->sink + last, cur - last);
|
|
|
|
ch->hwptr = cur;
|
2000-09-06 20:10:55 +00:00
|
|
|
}
|
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
#ifdef AGG_JITTER_CORRECTION
|
2000-09-06 20:10:55 +00:00
|
|
|
/*
|
|
|
|
* Stereo jitter suppressor.
|
|
|
|
* Sometimes playback pointers differ in stereo-paired channels.
|
|
|
|
* Calling this routine within intr fixes the problem.
|
|
|
|
*/
|
2007-01-27 13:30:19 +00:00
|
|
|
static void
|
2000-09-06 20:10:55 +00:00
|
|
|
suppress_jitter(struct agg_chinfo *ch)
|
|
|
|
{
|
2004-11-10 04:29:09 +00:00
|
|
|
if (ch->stereo) {
|
|
|
|
int cp1, cp2, diff /*, halfsize*/ ;
|
|
|
|
|
|
|
|
/*halfsize = (ch->qs16? ch->buflen >> 2 : ch->buflen >> 1);*/
|
|
|
|
cp1 = wp_rdapu(ch->parent, (ch->num << 1) | 32, APUREG_CURPTR);
|
|
|
|
cp2 = wp_rdapu(ch->parent, (ch->num << 1) | 33, APUREG_CURPTR);
|
|
|
|
if (cp1 != cp2) {
|
|
|
|
diff = (cp1 > cp2 ? cp1 - cp2 : cp2 - cp1);
|
|
|
|
if (diff > 1 /* && diff < halfsize*/ )
|
|
|
|
AGG_WR(ch->parent, PORT_DSP_DATA, cp1, 2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
static void
|
2004-11-10 04:29:09 +00:00
|
|
|
suppress_rec_jitter(struct agg_rchinfo *ch)
|
|
|
|
{
|
|
|
|
int cp1, cp2, diff /*, halfsize*/ ;
|
|
|
|
|
|
|
|
/*halfsize = (ch->stereo? ch->buflen >> 2 : ch->buflen >> 1);*/
|
|
|
|
cp1 = (ch->stereo? ch->parent->bufsz >> 2 : ch->parent->bufsz >> 1)
|
|
|
|
+ wp_rdapu(ch->parent, 0, APUREG_CURPTR);
|
|
|
|
cp2 = wp_rdapu(ch->parent, 1, APUREG_CURPTR);
|
|
|
|
if (cp1 != cp2) {
|
|
|
|
diff = (cp1 > cp2 ? cp1 - cp2 : cp2 - cp1);
|
|
|
|
if (diff > 1 /* && diff < halfsize*/ )
|
|
|
|
AGG_WR(ch->parent, PORT_DSP_DATA, cp1, 2);
|
2000-09-06 20:10:55 +00:00
|
|
|
}
|
|
|
|
}
|
2007-01-27 13:30:19 +00:00
|
|
|
#endif
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
static u_int
|
2004-11-10 04:29:09 +00:00
|
|
|
calc_timer_div(struct agg_chinfo *ch)
|
2000-09-06 20:10:55 +00:00
|
|
|
{
|
2004-11-10 04:29:09 +00:00
|
|
|
u_int speed;
|
|
|
|
|
|
|
|
speed = ch->speed;
|
|
|
|
#ifdef INVARIANTS
|
|
|
|
if (speed == 0) {
|
|
|
|
printf("snd_maestro: pch[%d].speed == 0, which shouldn't\n",
|
|
|
|
ch->num);
|
|
|
|
speed = 1;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
return (48000 * (ch->blklen << (!ch->qs16 + !ch->stereo))
|
|
|
|
+ speed - 1) / speed;
|
|
|
|
}
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2007-01-27 13:30:19 +00:00
|
|
|
static u_int
|
2004-11-10 04:29:09 +00:00
|
|
|
calc_timer_div_rch(struct agg_rchinfo *ch)
|
|
|
|
{
|
|
|
|
u_int speed;
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
speed = ch->speed;
|
|
|
|
#ifdef INVARIANTS
|
|
|
|
if (speed == 0) {
|
|
|
|
printf("snd_maestro: rch.speed == 0, which shouldn't\n");
|
|
|
|
speed = 1;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
return (48000 * (ch->blklen << (!ch->stereo))
|
|
|
|
+ speed - 1) / speed;
|
2000-09-06 20:10:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
set_timer(struct agg_info *ess)
|
|
|
|
{
|
|
|
|
int i;
|
2004-11-10 04:29:09 +00:00
|
|
|
u_int dv = 32 << 7, newdv;
|
2000-09-06 20:10:55 +00:00
|
|
|
|
|
|
|
for (i = 0; i < ess->playchns; i++)
|
|
|
|
if ((ess->active & (1 << i)) &&
|
2004-11-10 04:29:09 +00:00
|
|
|
(dv > (newdv = calc_timer_div(ess->pch + i))))
|
|
|
|
dv = newdv;
|
|
|
|
if ((ess->active & (1 << i)) &&
|
|
|
|
(dv > (newdv = calc_timer_div_rch(&ess->rch))))
|
|
|
|
dv = newdv;
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
wp_settimer(ess, dv);
|
2000-09-06 20:10:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* -----------------------------
|
|
|
|
* Newpcm glue.
|
|
|
|
*/
|
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
/* AC97 mixer interface. */
|
|
|
|
|
|
|
|
static u_int32_t
|
|
|
|
agg_ac97_init(kobj_t obj, void *sc)
|
|
|
|
{
|
|
|
|
struct agg_info *ess = sc;
|
|
|
|
|
|
|
|
return (AGG_RD(ess, PORT_CODEC_STAT, 1) & CODEC_STAT_MASK)? 0 : 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
agg_ac97_read(kobj_t obj, void *sc, int regno)
|
|
|
|
{
|
|
|
|
struct agg_info *ess = sc;
|
|
|
|
int ret;
|
|
|
|
|
2006-01-06 10:36:55 +00:00
|
|
|
/* XXX sound locking violation: agg_lock(ess); */
|
2004-11-10 04:29:09 +00:00
|
|
|
ret = agg_rdcodec(ess, regno);
|
2006-01-06 10:36:55 +00:00
|
|
|
/* agg_unlock(ess); */
|
2004-11-10 04:29:09 +00:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
agg_ac97_write(kobj_t obj, void *sc, int regno, u_int32_t data)
|
|
|
|
{
|
|
|
|
struct agg_info *ess = sc;
|
|
|
|
int ret;
|
|
|
|
|
2006-01-06 10:36:55 +00:00
|
|
|
/* XXX sound locking violation: agg_lock(ess); */
|
2004-11-10 04:29:09 +00:00
|
|
|
ret = agg_wrcodec(ess, regno, data);
|
2006-01-06 10:36:55 +00:00
|
|
|
/* agg_unlock(ess); */
|
2004-11-10 04:29:09 +00:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static kobj_method_t agg_ac97_methods[] = {
|
|
|
|
KOBJMETHOD(ac97_init, agg_ac97_init),
|
|
|
|
KOBJMETHOD(ac97_read, agg_ac97_read),
|
|
|
|
KOBJMETHOD(ac97_write, agg_ac97_write),
|
Sound Mega-commit. Expect further cleanup until code freeze.
For a slightly thorough explaination, please refer to
[1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html .
Summary of changes includes:
1 Volume Per-Channel (vpc). Provides private / standalone volume control
unique per-stream pcm channel without touching master volume / pcm.
Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for
backwards compatibility, SOUND_MIXER_PCM through the opened dsp device
instead of /dev/mixer. Special "bypass" mode is enabled through
/dev/mixer which will automatically detect if the adjustment is made
through /dev/mixer and forward its request to this private volume
controller. Changes to this volume object will not interfere with
other channels.
Requirements:
- SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which
require specific application modifications (preferred).
- No modifications required for using bypass mode, so applications
like mplayer or xmms should work out of the box.
Kernel hints:
- hint.pcm.%d.vpc (0 = disable vpc).
Kernel sysctls:
- hw.snd.vpc_mixer_bypass (default: 1). Enable or disable /dev/mixer
bypass mode.
- hw.snd.vpc_autoreset (default: 1). By default, closing/opening
/dev/dsp will reset the volume back to 0 db gain/attenuation.
Setting this to 0 will preserve its settings across device
closing/opening.
- hw.snd.vpc_reset (default: 0). Panic/reset button to reset all
volume settings back to 0 db.
- hw.snd.vpc_0db (default: 45). 0 db relative to linear mixer value.
2 High quality fixed-point Bandlimited SINC sampling rate converter,
based on Julius O'Smith's Digital Audio Resampling -
http://ccrma.stanford.edu/~jos/resample/. It includes a filter design
script written in awk (the clumsiest joke I've ever written)
- 100% 32bit fixed-point, 64bit accumulator.
- Possibly among the fastest (if not fastest) of its kind.
- Resampling quality is tunable, either runtime or during kernel
compilation (FEEDER_RATE_PRESETS).
- Quality can be further customized during kernel compilation by
defining FEEDER_RATE_PRESETS in /etc/make.conf.
Kernel sysctls:
- hw.snd.feeder_rate_quality.
0 - Zero-order Hold (ZOH). Fastest, bad quality.
1 - Linear Interpolation (LINEAR). Slightly slower than ZOH,
better quality but still does not eliminate aliasing.
2 - (and above) - Sinc Interpolation(SINC). Best quality. SINC
quality always start from 2 and above.
Rough quality comparisons:
- http://people.freebsd.org/~ariff/z_comparison/
3 Bit-perfect mode. Bypasses all feeder/dsp effects. Pure sound will be
directly fed into the hardware.
4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can
be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf.
5 Transparent/Adaptive Virtual Channel. Now you don't have to disable
vchans in order to make digital format pass through. It also makes
vchans more dynamic by choosing a better format/rate among all the
concurrent streams, which means that dev.pcm.X.play.vchanformat/rate
becomes sort of optional.
6 Exclusive Stream, with special open() mode O_EXCL. This will "mute"
other concurrent vchan streams and only allow a single channel with
O_EXCL set to keep producing sound.
Other Changes:
* most feeder_* stuffs are compilable in userland. Let's not
speculate whether we should go all out for it (save that for
FreeBSD 16.0-RELEASE).
* kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org>
* pull out channel mixing logic out of vchan.c and create its own
feeder_mixer for world justice.
* various refactoring here and there, for good or bad.
* activation of few more OSSv4 ioctls() (see [1] above).
* opt_snd.h for possible compile time configuration:
(mostly for debugging purposes, don't try these at home)
SND_DEBUG
SND_DIAGNOSTIC
SND_FEEDER_MULTIFORMAT
SND_FEEDER_FULL_MULTIFORMAT
SND_FEEDER_RATE_HP
SND_PCM_64
SND_OLDSTEREO
Manual page updates are on the way.
Tested by: joel, Olivier SMEDTS <olivier at gid0 d org>, too many
unsung / unnamed heroes.
2009-06-07 19:12:08 +00:00
|
|
|
KOBJMETHOD_END
|
2004-11-10 04:29:09 +00:00
|
|
|
};
|
|
|
|
AC97_DECLARE(agg_ac97);
|
|
|
|
|
|
|
|
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/* Playback channel. */
|
|
|
|
|
2000-09-06 20:10:55 +00:00
|
|
|
static void *
|
2007-01-27 13:30:19 +00:00
|
|
|
aggpch_init(kobj_t obj, void *devinfo, struct snd_dbuf *b,
|
|
|
|
struct pcm_channel *c, int dir)
|
2000-09-06 20:10:55 +00:00
|
|
|
{
|
|
|
|
struct agg_info *ess = devinfo;
|
|
|
|
struct agg_chinfo *ch;
|
|
|
|
bus_addr_t physaddr;
|
update code dealing with snd_dbuf objects to do so using a functional interface
modify chn_setblocksize() to pick a default soft-blocksize appropriate to the
sample rate and format in use. it will aim for a power of two size small
enough to generate block sizes of at most 20ms. it will also set the
hard-blocksize taking into account rate/format conversions in use.
update drivers to implement setblocksize correctly:
updated, tested: sb16, emu10k1, maestro, solo
updated, untested: ad1816, ess, mss, sb8, csa
not updated: ds1, es137x, fm801, neomagic, t4dwave, via82c686
i lack hardware to test: ad1816, csa, fm801, neomagic
others will be updated/tested in the next few days.
2000-12-23 03:16:13 +00:00
|
|
|
void *p;
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
KASSERT((dir == PCMDIR_PLAY),
|
|
|
|
("aggpch_init() called for RECORDING channel!"));
|
|
|
|
ch = ess->pch + ess->playchns;
|
2000-09-06 20:10:55 +00:00
|
|
|
|
|
|
|
ch->parent = ess;
|
|
|
|
ch->channel = c;
|
|
|
|
ch->buffer = b;
|
|
|
|
ch->num = ess->playchns;
|
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
p = dma_malloc(ess->buf_dmat, ess->bufsz, &physaddr);
|
|
|
|
if (p == NULL)
|
|
|
|
return NULL;
|
|
|
|
ch->phys = physaddr;
|
|
|
|
ch->base = physaddr & ((~(bus_addr_t)0) << WAVCACHE_BASEADDR_SHIFT);
|
|
|
|
|
2001-10-08 05:59:54 +00:00
|
|
|
sndbuf_setup(b, p, ess->bufsz);
|
2004-11-10 04:29:09 +00:00
|
|
|
ch->blklen = sndbuf_getblksz(b) / 2;
|
|
|
|
ch->buflen = sndbuf_getsize(b) / 2;
|
|
|
|
ess->playchns++;
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
return ch;
|
|
|
|
}
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
static void
|
|
|
|
adjust_pchbase(struct agg_chinfo *chans, u_int n, u_int size)
|
|
|
|
{
|
|
|
|
struct agg_chinfo *pchs[AGG_MAXPLAYCH];
|
|
|
|
u_int i, j, k;
|
|
|
|
bus_addr_t base;
|
|
|
|
|
|
|
|
/* sort pchs by phys address */
|
|
|
|
for (i = 0; i < n; i++) {
|
|
|
|
for (j = 0; j < i; j++)
|
|
|
|
if (chans[i].phys < pchs[j]->phys) {
|
|
|
|
for (k = i; k > j; k--)
|
|
|
|
pchs[k] = pchs[k - 1];
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
pchs[j] = chans + i;
|
|
|
|
}
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
/* use new base register if next buffer can not be addressed
|
|
|
|
via current base. */
|
|
|
|
#define BASE_SHIFT (WPWA_WTBAR_SHIFT(2) + 2 + 1)
|
|
|
|
base = pchs[0]->base;
|
|
|
|
for (k = 1, i = 1; i < n; i++) {
|
|
|
|
if (pchs[i]->phys + size - base >= 1 << BASE_SHIFT)
|
|
|
|
/* not addressable: assign new base */
|
|
|
|
base = (pchs[i]->base -= k++ << BASE_SHIFT);
|
|
|
|
else
|
|
|
|
pchs[i]->base = base;
|
|
|
|
}
|
|
|
|
#undef BASE_SHIFT
|
|
|
|
|
|
|
|
if (bootverbose) {
|
|
|
|
printf("Total of %d bases are assigned.\n", k);
|
|
|
|
for (i = 0; i < n; i++) {
|
|
|
|
printf("ch.%d: phys 0x%llx, wpwa 0x%llx\n",
|
|
|
|
i, (long long)chans[i].phys,
|
|
|
|
(long long)(chans[i].phys -
|
|
|
|
chans[i].base) >> 1);
|
|
|
|
}
|
|
|
|
}
|
2000-09-06 20:10:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2004-11-10 04:29:09 +00:00
|
|
|
aggpch_free(kobj_t obj, void *data)
|
2000-09-06 20:10:55 +00:00
|
|
|
{
|
2004-11-10 04:29:09 +00:00
|
|
|
struct agg_chinfo *ch = data;
|
|
|
|
struct agg_info *ess = ch->parent;
|
|
|
|
|
|
|
|
/* free up buffer - called after channel stopped */
|
|
|
|
dma_free(ess->buf_dmat, sndbuf_getbuf(ch->buffer));
|
|
|
|
|
2000-09-06 20:10:55 +00:00
|
|
|
/* return 0 if ok */
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2004-11-10 04:29:09 +00:00
|
|
|
aggpch_setformat(kobj_t obj, void *data, u_int32_t format)
|
2000-09-06 20:10:55 +00:00
|
|
|
{
|
|
|
|
struct agg_chinfo *ch = data;
|
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
if (format & AFMT_BIGENDIAN || format & AFMT_U16_LE)
|
|
|
|
return EINVAL;
|
|
|
|
ch->stereo = ch->qs16 = ch->us = 0;
|
Sound Mega-commit. Expect further cleanup until code freeze.
For a slightly thorough explaination, please refer to
[1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html .
Summary of changes includes:
1 Volume Per-Channel (vpc). Provides private / standalone volume control
unique per-stream pcm channel without touching master volume / pcm.
Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for
backwards compatibility, SOUND_MIXER_PCM through the opened dsp device
instead of /dev/mixer. Special "bypass" mode is enabled through
/dev/mixer which will automatically detect if the adjustment is made
through /dev/mixer and forward its request to this private volume
controller. Changes to this volume object will not interfere with
other channels.
Requirements:
- SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which
require specific application modifications (preferred).
- No modifications required for using bypass mode, so applications
like mplayer or xmms should work out of the box.
Kernel hints:
- hint.pcm.%d.vpc (0 = disable vpc).
Kernel sysctls:
- hw.snd.vpc_mixer_bypass (default: 1). Enable or disable /dev/mixer
bypass mode.
- hw.snd.vpc_autoreset (default: 1). By default, closing/opening
/dev/dsp will reset the volume back to 0 db gain/attenuation.
Setting this to 0 will preserve its settings across device
closing/opening.
- hw.snd.vpc_reset (default: 0). Panic/reset button to reset all
volume settings back to 0 db.
- hw.snd.vpc_0db (default: 45). 0 db relative to linear mixer value.
2 High quality fixed-point Bandlimited SINC sampling rate converter,
based on Julius O'Smith's Digital Audio Resampling -
http://ccrma.stanford.edu/~jos/resample/. It includes a filter design
script written in awk (the clumsiest joke I've ever written)
- 100% 32bit fixed-point, 64bit accumulator.
- Possibly among the fastest (if not fastest) of its kind.
- Resampling quality is tunable, either runtime or during kernel
compilation (FEEDER_RATE_PRESETS).
- Quality can be further customized during kernel compilation by
defining FEEDER_RATE_PRESETS in /etc/make.conf.
Kernel sysctls:
- hw.snd.feeder_rate_quality.
0 - Zero-order Hold (ZOH). Fastest, bad quality.
1 - Linear Interpolation (LINEAR). Slightly slower than ZOH,
better quality but still does not eliminate aliasing.
2 - (and above) - Sinc Interpolation(SINC). Best quality. SINC
quality always start from 2 and above.
Rough quality comparisons:
- http://people.freebsd.org/~ariff/z_comparison/
3 Bit-perfect mode. Bypasses all feeder/dsp effects. Pure sound will be
directly fed into the hardware.
4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can
be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf.
5 Transparent/Adaptive Virtual Channel. Now you don't have to disable
vchans in order to make digital format pass through. It also makes
vchans more dynamic by choosing a better format/rate among all the
concurrent streams, which means that dev.pcm.X.play.vchanformat/rate
becomes sort of optional.
6 Exclusive Stream, with special open() mode O_EXCL. This will "mute"
other concurrent vchan streams and only allow a single channel with
O_EXCL set to keep producing sound.
Other Changes:
* most feeder_* stuffs are compilable in userland. Let's not
speculate whether we should go all out for it (save that for
FreeBSD 16.0-RELEASE).
* kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org>
* pull out channel mixing logic out of vchan.c and create its own
feeder_mixer for world justice.
* various refactoring here and there, for good or bad.
* activation of few more OSSv4 ioctls() (see [1] above).
* opt_snd.h for possible compile time configuration:
(mostly for debugging purposes, don't try these at home)
SND_DEBUG
SND_DIAGNOSTIC
SND_FEEDER_MULTIFORMAT
SND_FEEDER_FULL_MULTIFORMAT
SND_FEEDER_RATE_HP
SND_PCM_64
SND_OLDSTEREO
Manual page updates are on the way.
Tested by: joel, Olivier SMEDTS <olivier at gid0 d org>, too many
unsung / unnamed heroes.
2009-06-07 19:12:08 +00:00
|
|
|
if (AFMT_CHANNEL(format) > 1)
|
2004-11-10 04:29:09 +00:00
|
|
|
ch->stereo = 1;
|
2000-09-06 20:10:55 +00:00
|
|
|
|
|
|
|
if (format & AFMT_U8 || format & AFMT_S8) {
|
|
|
|
if (format & AFMT_U8)
|
2004-11-10 04:29:09 +00:00
|
|
|
ch->us = 1;
|
|
|
|
} else
|
|
|
|
ch->qs16 = 1;
|
2002-01-27 23:09:41 +00:00
|
|
|
return 0;
|
2000-09-06 20:10:55 +00:00
|
|
|
}
|
|
|
|
|
Sound Mega-commit. Expect further cleanup until code freeze.
For a slightly thorough explaination, please refer to
[1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html .
Summary of changes includes:
1 Volume Per-Channel (vpc). Provides private / standalone volume control
unique per-stream pcm channel without touching master volume / pcm.
Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for
backwards compatibility, SOUND_MIXER_PCM through the opened dsp device
instead of /dev/mixer. Special "bypass" mode is enabled through
/dev/mixer which will automatically detect if the adjustment is made
through /dev/mixer and forward its request to this private volume
controller. Changes to this volume object will not interfere with
other channels.
Requirements:
- SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which
require specific application modifications (preferred).
- No modifications required for using bypass mode, so applications
like mplayer or xmms should work out of the box.
Kernel hints:
- hint.pcm.%d.vpc (0 = disable vpc).
Kernel sysctls:
- hw.snd.vpc_mixer_bypass (default: 1). Enable or disable /dev/mixer
bypass mode.
- hw.snd.vpc_autoreset (default: 1). By default, closing/opening
/dev/dsp will reset the volume back to 0 db gain/attenuation.
Setting this to 0 will preserve its settings across device
closing/opening.
- hw.snd.vpc_reset (default: 0). Panic/reset button to reset all
volume settings back to 0 db.
- hw.snd.vpc_0db (default: 45). 0 db relative to linear mixer value.
2 High quality fixed-point Bandlimited SINC sampling rate converter,
based on Julius O'Smith's Digital Audio Resampling -
http://ccrma.stanford.edu/~jos/resample/. It includes a filter design
script written in awk (the clumsiest joke I've ever written)
- 100% 32bit fixed-point, 64bit accumulator.
- Possibly among the fastest (if not fastest) of its kind.
- Resampling quality is tunable, either runtime or during kernel
compilation (FEEDER_RATE_PRESETS).
- Quality can be further customized during kernel compilation by
defining FEEDER_RATE_PRESETS in /etc/make.conf.
Kernel sysctls:
- hw.snd.feeder_rate_quality.
0 - Zero-order Hold (ZOH). Fastest, bad quality.
1 - Linear Interpolation (LINEAR). Slightly slower than ZOH,
better quality but still does not eliminate aliasing.
2 - (and above) - Sinc Interpolation(SINC). Best quality. SINC
quality always start from 2 and above.
Rough quality comparisons:
- http://people.freebsd.org/~ariff/z_comparison/
3 Bit-perfect mode. Bypasses all feeder/dsp effects. Pure sound will be
directly fed into the hardware.
4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can
be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf.
5 Transparent/Adaptive Virtual Channel. Now you don't have to disable
vchans in order to make digital format pass through. It also makes
vchans more dynamic by choosing a better format/rate among all the
concurrent streams, which means that dev.pcm.X.play.vchanformat/rate
becomes sort of optional.
6 Exclusive Stream, with special open() mode O_EXCL. This will "mute"
other concurrent vchan streams and only allow a single channel with
O_EXCL set to keep producing sound.
Other Changes:
* most feeder_* stuffs are compilable in userland. Let's not
speculate whether we should go all out for it (save that for
FreeBSD 16.0-RELEASE).
* kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org>
* pull out channel mixing logic out of vchan.c and create its own
feeder_mixer for world justice.
* various refactoring here and there, for good or bad.
* activation of few more OSSv4 ioctls() (see [1] above).
* opt_snd.h for possible compile time configuration:
(mostly for debugging purposes, don't try these at home)
SND_DEBUG
SND_DIAGNOSTIC
SND_FEEDER_MULTIFORMAT
SND_FEEDER_FULL_MULTIFORMAT
SND_FEEDER_RATE_HP
SND_PCM_64
SND_OLDSTEREO
Manual page updates are on the way.
Tested by: joel, Olivier SMEDTS <olivier at gid0 d org>, too many
unsung / unnamed heroes.
2009-06-07 19:12:08 +00:00
|
|
|
static u_int32_t
|
2004-11-10 04:29:09 +00:00
|
|
|
aggpch_setspeed(kobj_t obj, void *data, u_int32_t speed)
|
2000-09-06 20:10:55 +00:00
|
|
|
{
|
Sound Mega-commit. Expect further cleanup until code freeze.
For a slightly thorough explaination, please refer to
[1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html .
Summary of changes includes:
1 Volume Per-Channel (vpc). Provides private / standalone volume control
unique per-stream pcm channel without touching master volume / pcm.
Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for
backwards compatibility, SOUND_MIXER_PCM through the opened dsp device
instead of /dev/mixer. Special "bypass" mode is enabled through
/dev/mixer which will automatically detect if the adjustment is made
through /dev/mixer and forward its request to this private volume
controller. Changes to this volume object will not interfere with
other channels.
Requirements:
- SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which
require specific application modifications (preferred).
- No modifications required for using bypass mode, so applications
like mplayer or xmms should work out of the box.
Kernel hints:
- hint.pcm.%d.vpc (0 = disable vpc).
Kernel sysctls:
- hw.snd.vpc_mixer_bypass (default: 1). Enable or disable /dev/mixer
bypass mode.
- hw.snd.vpc_autoreset (default: 1). By default, closing/opening
/dev/dsp will reset the volume back to 0 db gain/attenuation.
Setting this to 0 will preserve its settings across device
closing/opening.
- hw.snd.vpc_reset (default: 0). Panic/reset button to reset all
volume settings back to 0 db.
- hw.snd.vpc_0db (default: 45). 0 db relative to linear mixer value.
2 High quality fixed-point Bandlimited SINC sampling rate converter,
based on Julius O'Smith's Digital Audio Resampling -
http://ccrma.stanford.edu/~jos/resample/. It includes a filter design
script written in awk (the clumsiest joke I've ever written)
- 100% 32bit fixed-point, 64bit accumulator.
- Possibly among the fastest (if not fastest) of its kind.
- Resampling quality is tunable, either runtime or during kernel
compilation (FEEDER_RATE_PRESETS).
- Quality can be further customized during kernel compilation by
defining FEEDER_RATE_PRESETS in /etc/make.conf.
Kernel sysctls:
- hw.snd.feeder_rate_quality.
0 - Zero-order Hold (ZOH). Fastest, bad quality.
1 - Linear Interpolation (LINEAR). Slightly slower than ZOH,
better quality but still does not eliminate aliasing.
2 - (and above) - Sinc Interpolation(SINC). Best quality. SINC
quality always start from 2 and above.
Rough quality comparisons:
- http://people.freebsd.org/~ariff/z_comparison/
3 Bit-perfect mode. Bypasses all feeder/dsp effects. Pure sound will be
directly fed into the hardware.
4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can
be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf.
5 Transparent/Adaptive Virtual Channel. Now you don't have to disable
vchans in order to make digital format pass through. It also makes
vchans more dynamic by choosing a better format/rate among all the
concurrent streams, which means that dev.pcm.X.play.vchanformat/rate
becomes sort of optional.
6 Exclusive Stream, with special open() mode O_EXCL. This will "mute"
other concurrent vchan streams and only allow a single channel with
O_EXCL set to keep producing sound.
Other Changes:
* most feeder_* stuffs are compilable in userland. Let's not
speculate whether we should go all out for it (save that for
FreeBSD 16.0-RELEASE).
* kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org>
* pull out channel mixing logic out of vchan.c and create its own
feeder_mixer for world justice.
* various refactoring here and there, for good or bad.
* activation of few more OSSv4 ioctls() (see [1] above).
* opt_snd.h for possible compile time configuration:
(mostly for debugging purposes, don't try these at home)
SND_DEBUG
SND_DIAGNOSTIC
SND_FEEDER_MULTIFORMAT
SND_FEEDER_FULL_MULTIFORMAT
SND_FEEDER_RATE_HP
SND_PCM_64
SND_OLDSTEREO
Manual page updates are on the way.
Tested by: joel, Olivier SMEDTS <olivier at gid0 d org>, too many
unsung / unnamed heroes.
2009-06-07 19:12:08 +00:00
|
|
|
|
|
|
|
((struct agg_chinfo*)data)->speed = speed;
|
|
|
|
|
|
|
|
return (speed);
|
2000-09-06 20:10:55 +00:00
|
|
|
}
|
|
|
|
|
Sound Mega-commit. Expect further cleanup until code freeze.
For a slightly thorough explaination, please refer to
[1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html .
Summary of changes includes:
1 Volume Per-Channel (vpc). Provides private / standalone volume control
unique per-stream pcm channel without touching master volume / pcm.
Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for
backwards compatibility, SOUND_MIXER_PCM through the opened dsp device
instead of /dev/mixer. Special "bypass" mode is enabled through
/dev/mixer which will automatically detect if the adjustment is made
through /dev/mixer and forward its request to this private volume
controller. Changes to this volume object will not interfere with
other channels.
Requirements:
- SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which
require specific application modifications (preferred).
- No modifications required for using bypass mode, so applications
like mplayer or xmms should work out of the box.
Kernel hints:
- hint.pcm.%d.vpc (0 = disable vpc).
Kernel sysctls:
- hw.snd.vpc_mixer_bypass (default: 1). Enable or disable /dev/mixer
bypass mode.
- hw.snd.vpc_autoreset (default: 1). By default, closing/opening
/dev/dsp will reset the volume back to 0 db gain/attenuation.
Setting this to 0 will preserve its settings across device
closing/opening.
- hw.snd.vpc_reset (default: 0). Panic/reset button to reset all
volume settings back to 0 db.
- hw.snd.vpc_0db (default: 45). 0 db relative to linear mixer value.
2 High quality fixed-point Bandlimited SINC sampling rate converter,
based on Julius O'Smith's Digital Audio Resampling -
http://ccrma.stanford.edu/~jos/resample/. It includes a filter design
script written in awk (the clumsiest joke I've ever written)
- 100% 32bit fixed-point, 64bit accumulator.
- Possibly among the fastest (if not fastest) of its kind.
- Resampling quality is tunable, either runtime or during kernel
compilation (FEEDER_RATE_PRESETS).
- Quality can be further customized during kernel compilation by
defining FEEDER_RATE_PRESETS in /etc/make.conf.
Kernel sysctls:
- hw.snd.feeder_rate_quality.
0 - Zero-order Hold (ZOH). Fastest, bad quality.
1 - Linear Interpolation (LINEAR). Slightly slower than ZOH,
better quality but still does not eliminate aliasing.
2 - (and above) - Sinc Interpolation(SINC). Best quality. SINC
quality always start from 2 and above.
Rough quality comparisons:
- http://people.freebsd.org/~ariff/z_comparison/
3 Bit-perfect mode. Bypasses all feeder/dsp effects. Pure sound will be
directly fed into the hardware.
4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can
be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf.
5 Transparent/Adaptive Virtual Channel. Now you don't have to disable
vchans in order to make digital format pass through. It also makes
vchans more dynamic by choosing a better format/rate among all the
concurrent streams, which means that dev.pcm.X.play.vchanformat/rate
becomes sort of optional.
6 Exclusive Stream, with special open() mode O_EXCL. This will "mute"
other concurrent vchan streams and only allow a single channel with
O_EXCL set to keep producing sound.
Other Changes:
* most feeder_* stuffs are compilable in userland. Let's not
speculate whether we should go all out for it (save that for
FreeBSD 16.0-RELEASE).
* kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org>
* pull out channel mixing logic out of vchan.c and create its own
feeder_mixer for world justice.
* various refactoring here and there, for good or bad.
* activation of few more OSSv4 ioctls() (see [1] above).
* opt_snd.h for possible compile time configuration:
(mostly for debugging purposes, don't try these at home)
SND_DEBUG
SND_DIAGNOSTIC
SND_FEEDER_MULTIFORMAT
SND_FEEDER_FULL_MULTIFORMAT
SND_FEEDER_RATE_HP
SND_PCM_64
SND_OLDSTEREO
Manual page updates are on the way.
Tested by: joel, Olivier SMEDTS <olivier at gid0 d org>, too many
unsung / unnamed heroes.
2009-06-07 19:12:08 +00:00
|
|
|
static u_int32_t
|
2004-11-10 04:29:09 +00:00
|
|
|
aggpch_setblocksize(kobj_t obj, void *data, u_int32_t blocksize)
|
2000-09-06 20:10:55 +00:00
|
|
|
{
|
2004-11-10 04:29:09 +00:00
|
|
|
struct agg_chinfo *ch = data;
|
|
|
|
int blkcnt;
|
|
|
|
|
|
|
|
/* try to keep at least 20msec DMA space */
|
|
|
|
blkcnt = (ch->speed << (ch->stereo + ch->qs16)) / (50 * blocksize);
|
|
|
|
RANGE(blkcnt, 2, ch->parent->bufsz / blocksize);
|
|
|
|
|
|
|
|
if (sndbuf_getsize(ch->buffer) != blkcnt * blocksize) {
|
|
|
|
sndbuf_resize(ch->buffer, blkcnt, blocksize);
|
|
|
|
blkcnt = sndbuf_getblkcnt(ch->buffer);
|
|
|
|
blocksize = sndbuf_getblksz(ch->buffer);
|
|
|
|
} else {
|
|
|
|
sndbuf_setblkcnt(ch->buffer, blkcnt);
|
|
|
|
sndbuf_setblksz(ch->buffer, blocksize);
|
|
|
|
}
|
|
|
|
|
|
|
|
ch->blklen = blocksize / 2;
|
|
|
|
ch->buflen = blkcnt * blocksize / 2;
|
|
|
|
return blocksize;
|
2000-09-06 20:10:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2004-11-10 04:29:09 +00:00
|
|
|
aggpch_trigger(kobj_t obj, void *data, int go)
|
2000-09-06 20:10:55 +00:00
|
|
|
{
|
|
|
|
struct agg_chinfo *ch = data;
|
|
|
|
|
|
|
|
switch (go) {
|
|
|
|
case PCMTRIG_EMLDMAWR:
|
2004-11-10 04:29:09 +00:00
|
|
|
break;
|
2000-09-06 20:10:55 +00:00
|
|
|
case PCMTRIG_START:
|
2004-11-10 04:29:09 +00:00
|
|
|
aggch_start_dac(ch);
|
2000-09-06 20:10:55 +00:00
|
|
|
break;
|
|
|
|
case PCMTRIG_ABORT:
|
|
|
|
case PCMTRIG_STOP:
|
2004-11-10 04:29:09 +00:00
|
|
|
aggch_stop_dac(ch);
|
2000-09-06 20:10:55 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
Sound Mega-commit. Expect further cleanup until code freeze.
For a slightly thorough explaination, please refer to
[1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html .
Summary of changes includes:
1 Volume Per-Channel (vpc). Provides private / standalone volume control
unique per-stream pcm channel without touching master volume / pcm.
Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for
backwards compatibility, SOUND_MIXER_PCM through the opened dsp device
instead of /dev/mixer. Special "bypass" mode is enabled through
/dev/mixer which will automatically detect if the adjustment is made
through /dev/mixer and forward its request to this private volume
controller. Changes to this volume object will not interfere with
other channels.
Requirements:
- SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which
require specific application modifications (preferred).
- No modifications required for using bypass mode, so applications
like mplayer or xmms should work out of the box.
Kernel hints:
- hint.pcm.%d.vpc (0 = disable vpc).
Kernel sysctls:
- hw.snd.vpc_mixer_bypass (default: 1). Enable or disable /dev/mixer
bypass mode.
- hw.snd.vpc_autoreset (default: 1). By default, closing/opening
/dev/dsp will reset the volume back to 0 db gain/attenuation.
Setting this to 0 will preserve its settings across device
closing/opening.
- hw.snd.vpc_reset (default: 0). Panic/reset button to reset all
volume settings back to 0 db.
- hw.snd.vpc_0db (default: 45). 0 db relative to linear mixer value.
2 High quality fixed-point Bandlimited SINC sampling rate converter,
based on Julius O'Smith's Digital Audio Resampling -
http://ccrma.stanford.edu/~jos/resample/. It includes a filter design
script written in awk (the clumsiest joke I've ever written)
- 100% 32bit fixed-point, 64bit accumulator.
- Possibly among the fastest (if not fastest) of its kind.
- Resampling quality is tunable, either runtime or during kernel
compilation (FEEDER_RATE_PRESETS).
- Quality can be further customized during kernel compilation by
defining FEEDER_RATE_PRESETS in /etc/make.conf.
Kernel sysctls:
- hw.snd.feeder_rate_quality.
0 - Zero-order Hold (ZOH). Fastest, bad quality.
1 - Linear Interpolation (LINEAR). Slightly slower than ZOH,
better quality but still does not eliminate aliasing.
2 - (and above) - Sinc Interpolation(SINC). Best quality. SINC
quality always start from 2 and above.
Rough quality comparisons:
- http://people.freebsd.org/~ariff/z_comparison/
3 Bit-perfect mode. Bypasses all feeder/dsp effects. Pure sound will be
directly fed into the hardware.
4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can
be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf.
5 Transparent/Adaptive Virtual Channel. Now you don't have to disable
vchans in order to make digital format pass through. It also makes
vchans more dynamic by choosing a better format/rate among all the
concurrent streams, which means that dev.pcm.X.play.vchanformat/rate
becomes sort of optional.
6 Exclusive Stream, with special open() mode O_EXCL. This will "mute"
other concurrent vchan streams and only allow a single channel with
O_EXCL set to keep producing sound.
Other Changes:
* most feeder_* stuffs are compilable in userland. Let's not
speculate whether we should go all out for it (save that for
FreeBSD 16.0-RELEASE).
* kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org>
* pull out channel mixing logic out of vchan.c and create its own
feeder_mixer for world justice.
* various refactoring here and there, for good or bad.
* activation of few more OSSv4 ioctls() (see [1] above).
* opt_snd.h for possible compile time configuration:
(mostly for debugging purposes, don't try these at home)
SND_DEBUG
SND_DIAGNOSTIC
SND_FEEDER_MULTIFORMAT
SND_FEEDER_FULL_MULTIFORMAT
SND_FEEDER_RATE_HP
SND_PCM_64
SND_OLDSTEREO
Manual page updates are on the way.
Tested by: joel, Olivier SMEDTS <olivier at gid0 d org>, too many
unsung / unnamed heroes.
2009-06-07 19:12:08 +00:00
|
|
|
static u_int32_t
|
2004-11-10 04:29:09 +00:00
|
|
|
aggpch_getptr(kobj_t obj, void *data)
|
2000-09-06 20:10:55 +00:00
|
|
|
{
|
|
|
|
struct agg_chinfo *ch = data;
|
Sound Mega-commit. Expect further cleanup until code freeze.
For a slightly thorough explaination, please refer to
[1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html .
Summary of changes includes:
1 Volume Per-Channel (vpc). Provides private / standalone volume control
unique per-stream pcm channel without touching master volume / pcm.
Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for
backwards compatibility, SOUND_MIXER_PCM through the opened dsp device
instead of /dev/mixer. Special "bypass" mode is enabled through
/dev/mixer which will automatically detect if the adjustment is made
through /dev/mixer and forward its request to this private volume
controller. Changes to this volume object will not interfere with
other channels.
Requirements:
- SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which
require specific application modifications (preferred).
- No modifications required for using bypass mode, so applications
like mplayer or xmms should work out of the box.
Kernel hints:
- hint.pcm.%d.vpc (0 = disable vpc).
Kernel sysctls:
- hw.snd.vpc_mixer_bypass (default: 1). Enable or disable /dev/mixer
bypass mode.
- hw.snd.vpc_autoreset (default: 1). By default, closing/opening
/dev/dsp will reset the volume back to 0 db gain/attenuation.
Setting this to 0 will preserve its settings across device
closing/opening.
- hw.snd.vpc_reset (default: 0). Panic/reset button to reset all
volume settings back to 0 db.
- hw.snd.vpc_0db (default: 45). 0 db relative to linear mixer value.
2 High quality fixed-point Bandlimited SINC sampling rate converter,
based on Julius O'Smith's Digital Audio Resampling -
http://ccrma.stanford.edu/~jos/resample/. It includes a filter design
script written in awk (the clumsiest joke I've ever written)
- 100% 32bit fixed-point, 64bit accumulator.
- Possibly among the fastest (if not fastest) of its kind.
- Resampling quality is tunable, either runtime or during kernel
compilation (FEEDER_RATE_PRESETS).
- Quality can be further customized during kernel compilation by
defining FEEDER_RATE_PRESETS in /etc/make.conf.
Kernel sysctls:
- hw.snd.feeder_rate_quality.
0 - Zero-order Hold (ZOH). Fastest, bad quality.
1 - Linear Interpolation (LINEAR). Slightly slower than ZOH,
better quality but still does not eliminate aliasing.
2 - (and above) - Sinc Interpolation(SINC). Best quality. SINC
quality always start from 2 and above.
Rough quality comparisons:
- http://people.freebsd.org/~ariff/z_comparison/
3 Bit-perfect mode. Bypasses all feeder/dsp effects. Pure sound will be
directly fed into the hardware.
4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can
be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf.
5 Transparent/Adaptive Virtual Channel. Now you don't have to disable
vchans in order to make digital format pass through. It also makes
vchans more dynamic by choosing a better format/rate among all the
concurrent streams, which means that dev.pcm.X.play.vchanformat/rate
becomes sort of optional.
6 Exclusive Stream, with special open() mode O_EXCL. This will "mute"
other concurrent vchan streams and only allow a single channel with
O_EXCL set to keep producing sound.
Other Changes:
* most feeder_* stuffs are compilable in userland. Let's not
speculate whether we should go all out for it (save that for
FreeBSD 16.0-RELEASE).
* kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org>
* pull out channel mixing logic out of vchan.c and create its own
feeder_mixer for world justice.
* various refactoring here and there, for good or bad.
* activation of few more OSSv4 ioctls() (see [1] above).
* opt_snd.h for possible compile time configuration:
(mostly for debugging purposes, don't try these at home)
SND_DEBUG
SND_DIAGNOSTIC
SND_FEEDER_MULTIFORMAT
SND_FEEDER_FULL_MULTIFORMAT
SND_FEEDER_RATE_HP
SND_PCM_64
SND_OLDSTEREO
Manual page updates are on the way.
Tested by: joel, Olivier SMEDTS <olivier at gid0 d org>, too many
unsung / unnamed heroes.
2009-06-07 19:12:08 +00:00
|
|
|
u_int32_t cp;
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
agg_lock(ch->parent);
|
|
|
|
cp = wp_rdapu(ch->parent, (ch->num << 1) | 32, APUREG_CURPTR);
|
|
|
|
agg_unlock(ch->parent);
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
return ch->qs16 && ch->stereo
|
|
|
|
? (cp << 2) - ((0xffff << 2) & (ch->phys - ch->base))
|
|
|
|
: (cp << 1) - ((0xffff << 1) & (ch->phys - ch->base));
|
2000-09-06 20:10:55 +00:00
|
|
|
}
|
|
|
|
|
2001-03-24 23:10:29 +00:00
|
|
|
static struct pcmchan_caps *
|
2004-11-10 04:29:09 +00:00
|
|
|
aggpch_getcaps(kobj_t obj, void *data)
|
2000-09-06 20:10:55 +00:00
|
|
|
{
|
|
|
|
static u_int32_t playfmt[] = {
|
Sound Mega-commit. Expect further cleanup until code freeze.
For a slightly thorough explaination, please refer to
[1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html .
Summary of changes includes:
1 Volume Per-Channel (vpc). Provides private / standalone volume control
unique per-stream pcm channel without touching master volume / pcm.
Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for
backwards compatibility, SOUND_MIXER_PCM through the opened dsp device
instead of /dev/mixer. Special "bypass" mode is enabled through
/dev/mixer which will automatically detect if the adjustment is made
through /dev/mixer and forward its request to this private volume
controller. Changes to this volume object will not interfere with
other channels.
Requirements:
- SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which
require specific application modifications (preferred).
- No modifications required for using bypass mode, so applications
like mplayer or xmms should work out of the box.
Kernel hints:
- hint.pcm.%d.vpc (0 = disable vpc).
Kernel sysctls:
- hw.snd.vpc_mixer_bypass (default: 1). Enable or disable /dev/mixer
bypass mode.
- hw.snd.vpc_autoreset (default: 1). By default, closing/opening
/dev/dsp will reset the volume back to 0 db gain/attenuation.
Setting this to 0 will preserve its settings across device
closing/opening.
- hw.snd.vpc_reset (default: 0). Panic/reset button to reset all
volume settings back to 0 db.
- hw.snd.vpc_0db (default: 45). 0 db relative to linear mixer value.
2 High quality fixed-point Bandlimited SINC sampling rate converter,
based on Julius O'Smith's Digital Audio Resampling -
http://ccrma.stanford.edu/~jos/resample/. It includes a filter design
script written in awk (the clumsiest joke I've ever written)
- 100% 32bit fixed-point, 64bit accumulator.
- Possibly among the fastest (if not fastest) of its kind.
- Resampling quality is tunable, either runtime or during kernel
compilation (FEEDER_RATE_PRESETS).
- Quality can be further customized during kernel compilation by
defining FEEDER_RATE_PRESETS in /etc/make.conf.
Kernel sysctls:
- hw.snd.feeder_rate_quality.
0 - Zero-order Hold (ZOH). Fastest, bad quality.
1 - Linear Interpolation (LINEAR). Slightly slower than ZOH,
better quality but still does not eliminate aliasing.
2 - (and above) - Sinc Interpolation(SINC). Best quality. SINC
quality always start from 2 and above.
Rough quality comparisons:
- http://people.freebsd.org/~ariff/z_comparison/
3 Bit-perfect mode. Bypasses all feeder/dsp effects. Pure sound will be
directly fed into the hardware.
4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can
be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf.
5 Transparent/Adaptive Virtual Channel. Now you don't have to disable
vchans in order to make digital format pass through. It also makes
vchans more dynamic by choosing a better format/rate among all the
concurrent streams, which means that dev.pcm.X.play.vchanformat/rate
becomes sort of optional.
6 Exclusive Stream, with special open() mode O_EXCL. This will "mute"
other concurrent vchan streams and only allow a single channel with
O_EXCL set to keep producing sound.
Other Changes:
* most feeder_* stuffs are compilable in userland. Let's not
speculate whether we should go all out for it (save that for
FreeBSD 16.0-RELEASE).
* kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org>
* pull out channel mixing logic out of vchan.c and create its own
feeder_mixer for world justice.
* various refactoring here and there, for good or bad.
* activation of few more OSSv4 ioctls() (see [1] above).
* opt_snd.h for possible compile time configuration:
(mostly for debugging purposes, don't try these at home)
SND_DEBUG
SND_DIAGNOSTIC
SND_FEEDER_MULTIFORMAT
SND_FEEDER_FULL_MULTIFORMAT
SND_FEEDER_RATE_HP
SND_PCM_64
SND_OLDSTEREO
Manual page updates are on the way.
Tested by: joel, Olivier SMEDTS <olivier at gid0 d org>, too many
unsung / unnamed heroes.
2009-06-07 19:12:08 +00:00
|
|
|
SND_FORMAT(AFMT_U8, 1, 0),
|
|
|
|
SND_FORMAT(AFMT_U8, 2, 0),
|
|
|
|
SND_FORMAT(AFMT_S8, 1, 0),
|
|
|
|
SND_FORMAT(AFMT_S8, 2, 0),
|
|
|
|
SND_FORMAT(AFMT_S16_LE, 1, 0),
|
|
|
|
SND_FORMAT(AFMT_S16_LE, 2, 0),
|
2000-09-06 20:10:55 +00:00
|
|
|
0
|
|
|
|
};
|
2006-01-11 23:22:57 +00:00
|
|
|
static struct pcmchan_caps playcaps = {8000, 48000, playfmt, 0};
|
2004-11-10 04:29:09 +00:00
|
|
|
|
|
|
|
return &playcaps;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static kobj_method_t aggpch_methods[] = {
|
|
|
|
KOBJMETHOD(channel_init, aggpch_init),
|
|
|
|
KOBJMETHOD(channel_free, aggpch_free),
|
|
|
|
KOBJMETHOD(channel_setformat, aggpch_setformat),
|
|
|
|
KOBJMETHOD(channel_setspeed, aggpch_setspeed),
|
|
|
|
KOBJMETHOD(channel_setblocksize, aggpch_setblocksize),
|
|
|
|
KOBJMETHOD(channel_trigger, aggpch_trigger),
|
|
|
|
KOBJMETHOD(channel_getptr, aggpch_getptr),
|
|
|
|
KOBJMETHOD(channel_getcaps, aggpch_getcaps),
|
Sound Mega-commit. Expect further cleanup until code freeze.
For a slightly thorough explaination, please refer to
[1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html .
Summary of changes includes:
1 Volume Per-Channel (vpc). Provides private / standalone volume control
unique per-stream pcm channel without touching master volume / pcm.
Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for
backwards compatibility, SOUND_MIXER_PCM through the opened dsp device
instead of /dev/mixer. Special "bypass" mode is enabled through
/dev/mixer which will automatically detect if the adjustment is made
through /dev/mixer and forward its request to this private volume
controller. Changes to this volume object will not interfere with
other channels.
Requirements:
- SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which
require specific application modifications (preferred).
- No modifications required for using bypass mode, so applications
like mplayer or xmms should work out of the box.
Kernel hints:
- hint.pcm.%d.vpc (0 = disable vpc).
Kernel sysctls:
- hw.snd.vpc_mixer_bypass (default: 1). Enable or disable /dev/mixer
bypass mode.
- hw.snd.vpc_autoreset (default: 1). By default, closing/opening
/dev/dsp will reset the volume back to 0 db gain/attenuation.
Setting this to 0 will preserve its settings across device
closing/opening.
- hw.snd.vpc_reset (default: 0). Panic/reset button to reset all
volume settings back to 0 db.
- hw.snd.vpc_0db (default: 45). 0 db relative to linear mixer value.
2 High quality fixed-point Bandlimited SINC sampling rate converter,
based on Julius O'Smith's Digital Audio Resampling -
http://ccrma.stanford.edu/~jos/resample/. It includes a filter design
script written in awk (the clumsiest joke I've ever written)
- 100% 32bit fixed-point, 64bit accumulator.
- Possibly among the fastest (if not fastest) of its kind.
- Resampling quality is tunable, either runtime or during kernel
compilation (FEEDER_RATE_PRESETS).
- Quality can be further customized during kernel compilation by
defining FEEDER_RATE_PRESETS in /etc/make.conf.
Kernel sysctls:
- hw.snd.feeder_rate_quality.
0 - Zero-order Hold (ZOH). Fastest, bad quality.
1 - Linear Interpolation (LINEAR). Slightly slower than ZOH,
better quality but still does not eliminate aliasing.
2 - (and above) - Sinc Interpolation(SINC). Best quality. SINC
quality always start from 2 and above.
Rough quality comparisons:
- http://people.freebsd.org/~ariff/z_comparison/
3 Bit-perfect mode. Bypasses all feeder/dsp effects. Pure sound will be
directly fed into the hardware.
4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can
be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf.
5 Transparent/Adaptive Virtual Channel. Now you don't have to disable
vchans in order to make digital format pass through. It also makes
vchans more dynamic by choosing a better format/rate among all the
concurrent streams, which means that dev.pcm.X.play.vchanformat/rate
becomes sort of optional.
6 Exclusive Stream, with special open() mode O_EXCL. This will "mute"
other concurrent vchan streams and only allow a single channel with
O_EXCL set to keep producing sound.
Other Changes:
* most feeder_* stuffs are compilable in userland. Let's not
speculate whether we should go all out for it (save that for
FreeBSD 16.0-RELEASE).
* kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org>
* pull out channel mixing logic out of vchan.c and create its own
feeder_mixer for world justice.
* various refactoring here and there, for good or bad.
* activation of few more OSSv4 ioctls() (see [1] above).
* opt_snd.h for possible compile time configuration:
(mostly for debugging purposes, don't try these at home)
SND_DEBUG
SND_DIAGNOSTIC
SND_FEEDER_MULTIFORMAT
SND_FEEDER_FULL_MULTIFORMAT
SND_FEEDER_RATE_HP
SND_PCM_64
SND_OLDSTEREO
Manual page updates are on the way.
Tested by: joel, Olivier SMEDTS <olivier at gid0 d org>, too many
unsung / unnamed heroes.
2009-06-07 19:12:08 +00:00
|
|
|
KOBJMETHOD_END
|
2004-11-10 04:29:09 +00:00
|
|
|
};
|
|
|
|
CHANNEL_DECLARE(aggpch);
|
|
|
|
|
|
|
|
|
|
|
|
/* -------------------------------------------------------------------- */
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
/* Recording channel. */
|
|
|
|
|
|
|
|
static void *
|
2007-01-27 13:30:19 +00:00
|
|
|
aggrch_init(kobj_t obj, void *devinfo, struct snd_dbuf *b,
|
|
|
|
struct pcm_channel *c, int dir)
|
2004-11-10 04:29:09 +00:00
|
|
|
{
|
|
|
|
struct agg_info *ess = devinfo;
|
|
|
|
struct agg_rchinfo *ch;
|
|
|
|
u_int8_t *p;
|
|
|
|
|
|
|
|
KASSERT((dir == PCMDIR_REC),
|
|
|
|
("aggrch_init() called for PLAYBACK channel!"));
|
|
|
|
ch = &ess->rch;
|
|
|
|
|
|
|
|
ch->parent = ess;
|
|
|
|
ch->channel = c;
|
|
|
|
ch->buffer = b;
|
|
|
|
|
|
|
|
/* Uses the bottom-half of the status buffer. */
|
|
|
|
p = ess->stat + ess->bufsz;
|
|
|
|
ch->phys = ess->phys + ess->bufsz;
|
|
|
|
ch->base = ess->phys;
|
|
|
|
ch->src = (int16_t *)(p + ess->bufsz);
|
|
|
|
ch->srcphys = ch->phys + ess->bufsz;
|
|
|
|
ch->sink = (int16_t *)p;
|
|
|
|
|
|
|
|
sndbuf_setup(b, p, ess->bufsz);
|
|
|
|
ch->blklen = sndbuf_getblksz(b) / 2;
|
|
|
|
ch->buflen = sndbuf_getsize(b) / 2;
|
|
|
|
|
|
|
|
return ch;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
aggrch_setformat(kobj_t obj, void *data, u_int32_t format)
|
|
|
|
{
|
|
|
|
struct agg_rchinfo *ch = data;
|
|
|
|
|
|
|
|
if (!(format & AFMT_S16_LE))
|
|
|
|
return EINVAL;
|
Sound Mega-commit. Expect further cleanup until code freeze.
For a slightly thorough explaination, please refer to
[1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html .
Summary of changes includes:
1 Volume Per-Channel (vpc). Provides private / standalone volume control
unique per-stream pcm channel without touching master volume / pcm.
Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for
backwards compatibility, SOUND_MIXER_PCM through the opened dsp device
instead of /dev/mixer. Special "bypass" mode is enabled through
/dev/mixer which will automatically detect if the adjustment is made
through /dev/mixer and forward its request to this private volume
controller. Changes to this volume object will not interfere with
other channels.
Requirements:
- SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which
require specific application modifications (preferred).
- No modifications required for using bypass mode, so applications
like mplayer or xmms should work out of the box.
Kernel hints:
- hint.pcm.%d.vpc (0 = disable vpc).
Kernel sysctls:
- hw.snd.vpc_mixer_bypass (default: 1). Enable or disable /dev/mixer
bypass mode.
- hw.snd.vpc_autoreset (default: 1). By default, closing/opening
/dev/dsp will reset the volume back to 0 db gain/attenuation.
Setting this to 0 will preserve its settings across device
closing/opening.
- hw.snd.vpc_reset (default: 0). Panic/reset button to reset all
volume settings back to 0 db.
- hw.snd.vpc_0db (default: 45). 0 db relative to linear mixer value.
2 High quality fixed-point Bandlimited SINC sampling rate converter,
based on Julius O'Smith's Digital Audio Resampling -
http://ccrma.stanford.edu/~jos/resample/. It includes a filter design
script written in awk (the clumsiest joke I've ever written)
- 100% 32bit fixed-point, 64bit accumulator.
- Possibly among the fastest (if not fastest) of its kind.
- Resampling quality is tunable, either runtime or during kernel
compilation (FEEDER_RATE_PRESETS).
- Quality can be further customized during kernel compilation by
defining FEEDER_RATE_PRESETS in /etc/make.conf.
Kernel sysctls:
- hw.snd.feeder_rate_quality.
0 - Zero-order Hold (ZOH). Fastest, bad quality.
1 - Linear Interpolation (LINEAR). Slightly slower than ZOH,
better quality but still does not eliminate aliasing.
2 - (and above) - Sinc Interpolation(SINC). Best quality. SINC
quality always start from 2 and above.
Rough quality comparisons:
- http://people.freebsd.org/~ariff/z_comparison/
3 Bit-perfect mode. Bypasses all feeder/dsp effects. Pure sound will be
directly fed into the hardware.
4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can
be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf.
5 Transparent/Adaptive Virtual Channel. Now you don't have to disable
vchans in order to make digital format pass through. It also makes
vchans more dynamic by choosing a better format/rate among all the
concurrent streams, which means that dev.pcm.X.play.vchanformat/rate
becomes sort of optional.
6 Exclusive Stream, with special open() mode O_EXCL. This will "mute"
other concurrent vchan streams and only allow a single channel with
O_EXCL set to keep producing sound.
Other Changes:
* most feeder_* stuffs are compilable in userland. Let's not
speculate whether we should go all out for it (save that for
FreeBSD 16.0-RELEASE).
* kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org>
* pull out channel mixing logic out of vchan.c and create its own
feeder_mixer for world justice.
* various refactoring here and there, for good or bad.
* activation of few more OSSv4 ioctls() (see [1] above).
* opt_snd.h for possible compile time configuration:
(mostly for debugging purposes, don't try these at home)
SND_DEBUG
SND_DIAGNOSTIC
SND_FEEDER_MULTIFORMAT
SND_FEEDER_FULL_MULTIFORMAT
SND_FEEDER_RATE_HP
SND_PCM_64
SND_OLDSTEREO
Manual page updates are on the way.
Tested by: joel, Olivier SMEDTS <olivier at gid0 d org>, too many
unsung / unnamed heroes.
2009-06-07 19:12:08 +00:00
|
|
|
if (AFMT_CHANNEL(format) > 1)
|
2004-11-10 04:29:09 +00:00
|
|
|
ch->stereo = 1;
|
|
|
|
else
|
|
|
|
ch->stereo = 0;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
Sound Mega-commit. Expect further cleanup until code freeze.
For a slightly thorough explaination, please refer to
[1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html .
Summary of changes includes:
1 Volume Per-Channel (vpc). Provides private / standalone volume control
unique per-stream pcm channel without touching master volume / pcm.
Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for
backwards compatibility, SOUND_MIXER_PCM through the opened dsp device
instead of /dev/mixer. Special "bypass" mode is enabled through
/dev/mixer which will automatically detect if the adjustment is made
through /dev/mixer and forward its request to this private volume
controller. Changes to this volume object will not interfere with
other channels.
Requirements:
- SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which
require specific application modifications (preferred).
- No modifications required for using bypass mode, so applications
like mplayer or xmms should work out of the box.
Kernel hints:
- hint.pcm.%d.vpc (0 = disable vpc).
Kernel sysctls:
- hw.snd.vpc_mixer_bypass (default: 1). Enable or disable /dev/mixer
bypass mode.
- hw.snd.vpc_autoreset (default: 1). By default, closing/opening
/dev/dsp will reset the volume back to 0 db gain/attenuation.
Setting this to 0 will preserve its settings across device
closing/opening.
- hw.snd.vpc_reset (default: 0). Panic/reset button to reset all
volume settings back to 0 db.
- hw.snd.vpc_0db (default: 45). 0 db relative to linear mixer value.
2 High quality fixed-point Bandlimited SINC sampling rate converter,
based on Julius O'Smith's Digital Audio Resampling -
http://ccrma.stanford.edu/~jos/resample/. It includes a filter design
script written in awk (the clumsiest joke I've ever written)
- 100% 32bit fixed-point, 64bit accumulator.
- Possibly among the fastest (if not fastest) of its kind.
- Resampling quality is tunable, either runtime or during kernel
compilation (FEEDER_RATE_PRESETS).
- Quality can be further customized during kernel compilation by
defining FEEDER_RATE_PRESETS in /etc/make.conf.
Kernel sysctls:
- hw.snd.feeder_rate_quality.
0 - Zero-order Hold (ZOH). Fastest, bad quality.
1 - Linear Interpolation (LINEAR). Slightly slower than ZOH,
better quality but still does not eliminate aliasing.
2 - (and above) - Sinc Interpolation(SINC). Best quality. SINC
quality always start from 2 and above.
Rough quality comparisons:
- http://people.freebsd.org/~ariff/z_comparison/
3 Bit-perfect mode. Bypasses all feeder/dsp effects. Pure sound will be
directly fed into the hardware.
4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can
be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf.
5 Transparent/Adaptive Virtual Channel. Now you don't have to disable
vchans in order to make digital format pass through. It also makes
vchans more dynamic by choosing a better format/rate among all the
concurrent streams, which means that dev.pcm.X.play.vchanformat/rate
becomes sort of optional.
6 Exclusive Stream, with special open() mode O_EXCL. This will "mute"
other concurrent vchan streams and only allow a single channel with
O_EXCL set to keep producing sound.
Other Changes:
* most feeder_* stuffs are compilable in userland. Let's not
speculate whether we should go all out for it (save that for
FreeBSD 16.0-RELEASE).
* kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org>
* pull out channel mixing logic out of vchan.c and create its own
feeder_mixer for world justice.
* various refactoring here and there, for good or bad.
* activation of few more OSSv4 ioctls() (see [1] above).
* opt_snd.h for possible compile time configuration:
(mostly for debugging purposes, don't try these at home)
SND_DEBUG
SND_DIAGNOSTIC
SND_FEEDER_MULTIFORMAT
SND_FEEDER_FULL_MULTIFORMAT
SND_FEEDER_RATE_HP
SND_PCM_64
SND_OLDSTEREO
Manual page updates are on the way.
Tested by: joel, Olivier SMEDTS <olivier at gid0 d org>, too many
unsung / unnamed heroes.
2009-06-07 19:12:08 +00:00
|
|
|
static u_int32_t
|
2004-11-10 04:29:09 +00:00
|
|
|
aggrch_setspeed(kobj_t obj, void *data, u_int32_t speed)
|
|
|
|
{
|
Sound Mega-commit. Expect further cleanup until code freeze.
For a slightly thorough explaination, please refer to
[1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html .
Summary of changes includes:
1 Volume Per-Channel (vpc). Provides private / standalone volume control
unique per-stream pcm channel without touching master volume / pcm.
Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for
backwards compatibility, SOUND_MIXER_PCM through the opened dsp device
instead of /dev/mixer. Special "bypass" mode is enabled through
/dev/mixer which will automatically detect if the adjustment is made
through /dev/mixer and forward its request to this private volume
controller. Changes to this volume object will not interfere with
other channels.
Requirements:
- SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which
require specific application modifications (preferred).
- No modifications required for using bypass mode, so applications
like mplayer or xmms should work out of the box.
Kernel hints:
- hint.pcm.%d.vpc (0 = disable vpc).
Kernel sysctls:
- hw.snd.vpc_mixer_bypass (default: 1). Enable or disable /dev/mixer
bypass mode.
- hw.snd.vpc_autoreset (default: 1). By default, closing/opening
/dev/dsp will reset the volume back to 0 db gain/attenuation.
Setting this to 0 will preserve its settings across device
closing/opening.
- hw.snd.vpc_reset (default: 0). Panic/reset button to reset all
volume settings back to 0 db.
- hw.snd.vpc_0db (default: 45). 0 db relative to linear mixer value.
2 High quality fixed-point Bandlimited SINC sampling rate converter,
based on Julius O'Smith's Digital Audio Resampling -
http://ccrma.stanford.edu/~jos/resample/. It includes a filter design
script written in awk (the clumsiest joke I've ever written)
- 100% 32bit fixed-point, 64bit accumulator.
- Possibly among the fastest (if not fastest) of its kind.
- Resampling quality is tunable, either runtime or during kernel
compilation (FEEDER_RATE_PRESETS).
- Quality can be further customized during kernel compilation by
defining FEEDER_RATE_PRESETS in /etc/make.conf.
Kernel sysctls:
- hw.snd.feeder_rate_quality.
0 - Zero-order Hold (ZOH). Fastest, bad quality.
1 - Linear Interpolation (LINEAR). Slightly slower than ZOH,
better quality but still does not eliminate aliasing.
2 - (and above) - Sinc Interpolation(SINC). Best quality. SINC
quality always start from 2 and above.
Rough quality comparisons:
- http://people.freebsd.org/~ariff/z_comparison/
3 Bit-perfect mode. Bypasses all feeder/dsp effects. Pure sound will be
directly fed into the hardware.
4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can
be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf.
5 Transparent/Adaptive Virtual Channel. Now you don't have to disable
vchans in order to make digital format pass through. It also makes
vchans more dynamic by choosing a better format/rate among all the
concurrent streams, which means that dev.pcm.X.play.vchanformat/rate
becomes sort of optional.
6 Exclusive Stream, with special open() mode O_EXCL. This will "mute"
other concurrent vchan streams and only allow a single channel with
O_EXCL set to keep producing sound.
Other Changes:
* most feeder_* stuffs are compilable in userland. Let's not
speculate whether we should go all out for it (save that for
FreeBSD 16.0-RELEASE).
* kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org>
* pull out channel mixing logic out of vchan.c and create its own
feeder_mixer for world justice.
* various refactoring here and there, for good or bad.
* activation of few more OSSv4 ioctls() (see [1] above).
* opt_snd.h for possible compile time configuration:
(mostly for debugging purposes, don't try these at home)
SND_DEBUG
SND_DIAGNOSTIC
SND_FEEDER_MULTIFORMAT
SND_FEEDER_FULL_MULTIFORMAT
SND_FEEDER_RATE_HP
SND_PCM_64
SND_OLDSTEREO
Manual page updates are on the way.
Tested by: joel, Olivier SMEDTS <olivier at gid0 d org>, too many
unsung / unnamed heroes.
2009-06-07 19:12:08 +00:00
|
|
|
|
|
|
|
((struct agg_rchinfo*)data)->speed = speed;
|
|
|
|
|
|
|
|
return (speed);
|
2004-11-10 04:29:09 +00:00
|
|
|
}
|
|
|
|
|
Sound Mega-commit. Expect further cleanup until code freeze.
For a slightly thorough explaination, please refer to
[1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html .
Summary of changes includes:
1 Volume Per-Channel (vpc). Provides private / standalone volume control
unique per-stream pcm channel without touching master volume / pcm.
Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for
backwards compatibility, SOUND_MIXER_PCM through the opened dsp device
instead of /dev/mixer. Special "bypass" mode is enabled through
/dev/mixer which will automatically detect if the adjustment is made
through /dev/mixer and forward its request to this private volume
controller. Changes to this volume object will not interfere with
other channels.
Requirements:
- SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which
require specific application modifications (preferred).
- No modifications required for using bypass mode, so applications
like mplayer or xmms should work out of the box.
Kernel hints:
- hint.pcm.%d.vpc (0 = disable vpc).
Kernel sysctls:
- hw.snd.vpc_mixer_bypass (default: 1). Enable or disable /dev/mixer
bypass mode.
- hw.snd.vpc_autoreset (default: 1). By default, closing/opening
/dev/dsp will reset the volume back to 0 db gain/attenuation.
Setting this to 0 will preserve its settings across device
closing/opening.
- hw.snd.vpc_reset (default: 0). Panic/reset button to reset all
volume settings back to 0 db.
- hw.snd.vpc_0db (default: 45). 0 db relative to linear mixer value.
2 High quality fixed-point Bandlimited SINC sampling rate converter,
based on Julius O'Smith's Digital Audio Resampling -
http://ccrma.stanford.edu/~jos/resample/. It includes a filter design
script written in awk (the clumsiest joke I've ever written)
- 100% 32bit fixed-point, 64bit accumulator.
- Possibly among the fastest (if not fastest) of its kind.
- Resampling quality is tunable, either runtime or during kernel
compilation (FEEDER_RATE_PRESETS).
- Quality can be further customized during kernel compilation by
defining FEEDER_RATE_PRESETS in /etc/make.conf.
Kernel sysctls:
- hw.snd.feeder_rate_quality.
0 - Zero-order Hold (ZOH). Fastest, bad quality.
1 - Linear Interpolation (LINEAR). Slightly slower than ZOH,
better quality but still does not eliminate aliasing.
2 - (and above) - Sinc Interpolation(SINC). Best quality. SINC
quality always start from 2 and above.
Rough quality comparisons:
- http://people.freebsd.org/~ariff/z_comparison/
3 Bit-perfect mode. Bypasses all feeder/dsp effects. Pure sound will be
directly fed into the hardware.
4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can
be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf.
5 Transparent/Adaptive Virtual Channel. Now you don't have to disable
vchans in order to make digital format pass through. It also makes
vchans more dynamic by choosing a better format/rate among all the
concurrent streams, which means that dev.pcm.X.play.vchanformat/rate
becomes sort of optional.
6 Exclusive Stream, with special open() mode O_EXCL. This will "mute"
other concurrent vchan streams and only allow a single channel with
O_EXCL set to keep producing sound.
Other Changes:
* most feeder_* stuffs are compilable in userland. Let's not
speculate whether we should go all out for it (save that for
FreeBSD 16.0-RELEASE).
* kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org>
* pull out channel mixing logic out of vchan.c and create its own
feeder_mixer for world justice.
* various refactoring here and there, for good or bad.
* activation of few more OSSv4 ioctls() (see [1] above).
* opt_snd.h for possible compile time configuration:
(mostly for debugging purposes, don't try these at home)
SND_DEBUG
SND_DIAGNOSTIC
SND_FEEDER_MULTIFORMAT
SND_FEEDER_FULL_MULTIFORMAT
SND_FEEDER_RATE_HP
SND_PCM_64
SND_OLDSTEREO
Manual page updates are on the way.
Tested by: joel, Olivier SMEDTS <olivier at gid0 d org>, too many
unsung / unnamed heroes.
2009-06-07 19:12:08 +00:00
|
|
|
static u_int32_t
|
2004-11-10 04:29:09 +00:00
|
|
|
aggrch_setblocksize(kobj_t obj, void *data, u_int32_t blocksize)
|
|
|
|
{
|
|
|
|
struct agg_rchinfo *ch = data;
|
|
|
|
int blkcnt;
|
|
|
|
|
|
|
|
/* try to keep at least 20msec DMA space */
|
|
|
|
blkcnt = (ch->speed << ch->stereo) / (25 * blocksize);
|
|
|
|
RANGE(blkcnt, 2, ch->parent->bufsz / blocksize);
|
|
|
|
|
|
|
|
if (sndbuf_getsize(ch->buffer) != blkcnt * blocksize) {
|
|
|
|
sndbuf_resize(ch->buffer, blkcnt, blocksize);
|
|
|
|
blkcnt = sndbuf_getblkcnt(ch->buffer);
|
|
|
|
blocksize = sndbuf_getblksz(ch->buffer);
|
|
|
|
} else {
|
|
|
|
sndbuf_setblkcnt(ch->buffer, blkcnt);
|
|
|
|
sndbuf_setblksz(ch->buffer, blocksize);
|
|
|
|
}
|
|
|
|
|
|
|
|
ch->blklen = blocksize / 2;
|
|
|
|
ch->buflen = blkcnt * blocksize / 2;
|
|
|
|
return blocksize;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
aggrch_trigger(kobj_t obj, void *sc, int go)
|
|
|
|
{
|
|
|
|
struct agg_rchinfo *ch = sc;
|
|
|
|
|
|
|
|
switch (go) {
|
|
|
|
case PCMTRIG_EMLDMARD:
|
|
|
|
if (ch->stereo)
|
|
|
|
aggch_feed_adc_stereo(ch);
|
|
|
|
else
|
|
|
|
aggch_feed_adc_mono(ch);
|
|
|
|
break;
|
|
|
|
case PCMTRIG_START:
|
|
|
|
aggch_start_adc(ch);
|
|
|
|
break;
|
|
|
|
case PCMTRIG_ABORT:
|
|
|
|
case PCMTRIG_STOP:
|
|
|
|
aggch_stop_adc(ch);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
Sound Mega-commit. Expect further cleanup until code freeze.
For a slightly thorough explaination, please refer to
[1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html .
Summary of changes includes:
1 Volume Per-Channel (vpc). Provides private / standalone volume control
unique per-stream pcm channel without touching master volume / pcm.
Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for
backwards compatibility, SOUND_MIXER_PCM through the opened dsp device
instead of /dev/mixer. Special "bypass" mode is enabled through
/dev/mixer which will automatically detect if the adjustment is made
through /dev/mixer and forward its request to this private volume
controller. Changes to this volume object will not interfere with
other channels.
Requirements:
- SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which
require specific application modifications (preferred).
- No modifications required for using bypass mode, so applications
like mplayer or xmms should work out of the box.
Kernel hints:
- hint.pcm.%d.vpc (0 = disable vpc).
Kernel sysctls:
- hw.snd.vpc_mixer_bypass (default: 1). Enable or disable /dev/mixer
bypass mode.
- hw.snd.vpc_autoreset (default: 1). By default, closing/opening
/dev/dsp will reset the volume back to 0 db gain/attenuation.
Setting this to 0 will preserve its settings across device
closing/opening.
- hw.snd.vpc_reset (default: 0). Panic/reset button to reset all
volume settings back to 0 db.
- hw.snd.vpc_0db (default: 45). 0 db relative to linear mixer value.
2 High quality fixed-point Bandlimited SINC sampling rate converter,
based on Julius O'Smith's Digital Audio Resampling -
http://ccrma.stanford.edu/~jos/resample/. It includes a filter design
script written in awk (the clumsiest joke I've ever written)
- 100% 32bit fixed-point, 64bit accumulator.
- Possibly among the fastest (if not fastest) of its kind.
- Resampling quality is tunable, either runtime or during kernel
compilation (FEEDER_RATE_PRESETS).
- Quality can be further customized during kernel compilation by
defining FEEDER_RATE_PRESETS in /etc/make.conf.
Kernel sysctls:
- hw.snd.feeder_rate_quality.
0 - Zero-order Hold (ZOH). Fastest, bad quality.
1 - Linear Interpolation (LINEAR). Slightly slower than ZOH,
better quality but still does not eliminate aliasing.
2 - (and above) - Sinc Interpolation(SINC). Best quality. SINC
quality always start from 2 and above.
Rough quality comparisons:
- http://people.freebsd.org/~ariff/z_comparison/
3 Bit-perfect mode. Bypasses all feeder/dsp effects. Pure sound will be
directly fed into the hardware.
4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can
be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf.
5 Transparent/Adaptive Virtual Channel. Now you don't have to disable
vchans in order to make digital format pass through. It also makes
vchans more dynamic by choosing a better format/rate among all the
concurrent streams, which means that dev.pcm.X.play.vchanformat/rate
becomes sort of optional.
6 Exclusive Stream, with special open() mode O_EXCL. This will "mute"
other concurrent vchan streams and only allow a single channel with
O_EXCL set to keep producing sound.
Other Changes:
* most feeder_* stuffs are compilable in userland. Let's not
speculate whether we should go all out for it (save that for
FreeBSD 16.0-RELEASE).
* kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org>
* pull out channel mixing logic out of vchan.c and create its own
feeder_mixer for world justice.
* various refactoring here and there, for good or bad.
* activation of few more OSSv4 ioctls() (see [1] above).
* opt_snd.h for possible compile time configuration:
(mostly for debugging purposes, don't try these at home)
SND_DEBUG
SND_DIAGNOSTIC
SND_FEEDER_MULTIFORMAT
SND_FEEDER_FULL_MULTIFORMAT
SND_FEEDER_RATE_HP
SND_PCM_64
SND_OLDSTEREO
Manual page updates are on the way.
Tested by: joel, Olivier SMEDTS <olivier at gid0 d org>, too many
unsung / unnamed heroes.
2009-06-07 19:12:08 +00:00
|
|
|
static u_int32_t
|
2004-11-10 04:29:09 +00:00
|
|
|
aggrch_getptr(kobj_t obj, void *sc)
|
|
|
|
{
|
|
|
|
struct agg_rchinfo *ch = sc;
|
|
|
|
|
|
|
|
return ch->stereo? ch->hwptr << 2 : ch->hwptr << 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct pcmchan_caps *
|
|
|
|
aggrch_getcaps(kobj_t obj, void *sc)
|
|
|
|
{
|
2000-09-06 20:10:55 +00:00
|
|
|
static u_int32_t recfmt[] = {
|
Sound Mega-commit. Expect further cleanup until code freeze.
For a slightly thorough explaination, please refer to
[1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html .
Summary of changes includes:
1 Volume Per-Channel (vpc). Provides private / standalone volume control
unique per-stream pcm channel without touching master volume / pcm.
Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for
backwards compatibility, SOUND_MIXER_PCM through the opened dsp device
instead of /dev/mixer. Special "bypass" mode is enabled through
/dev/mixer which will automatically detect if the adjustment is made
through /dev/mixer and forward its request to this private volume
controller. Changes to this volume object will not interfere with
other channels.
Requirements:
- SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which
require specific application modifications (preferred).
- No modifications required for using bypass mode, so applications
like mplayer or xmms should work out of the box.
Kernel hints:
- hint.pcm.%d.vpc (0 = disable vpc).
Kernel sysctls:
- hw.snd.vpc_mixer_bypass (default: 1). Enable or disable /dev/mixer
bypass mode.
- hw.snd.vpc_autoreset (default: 1). By default, closing/opening
/dev/dsp will reset the volume back to 0 db gain/attenuation.
Setting this to 0 will preserve its settings across device
closing/opening.
- hw.snd.vpc_reset (default: 0). Panic/reset button to reset all
volume settings back to 0 db.
- hw.snd.vpc_0db (default: 45). 0 db relative to linear mixer value.
2 High quality fixed-point Bandlimited SINC sampling rate converter,
based on Julius O'Smith's Digital Audio Resampling -
http://ccrma.stanford.edu/~jos/resample/. It includes a filter design
script written in awk (the clumsiest joke I've ever written)
- 100% 32bit fixed-point, 64bit accumulator.
- Possibly among the fastest (if not fastest) of its kind.
- Resampling quality is tunable, either runtime or during kernel
compilation (FEEDER_RATE_PRESETS).
- Quality can be further customized during kernel compilation by
defining FEEDER_RATE_PRESETS in /etc/make.conf.
Kernel sysctls:
- hw.snd.feeder_rate_quality.
0 - Zero-order Hold (ZOH). Fastest, bad quality.
1 - Linear Interpolation (LINEAR). Slightly slower than ZOH,
better quality but still does not eliminate aliasing.
2 - (and above) - Sinc Interpolation(SINC). Best quality. SINC
quality always start from 2 and above.
Rough quality comparisons:
- http://people.freebsd.org/~ariff/z_comparison/
3 Bit-perfect mode. Bypasses all feeder/dsp effects. Pure sound will be
directly fed into the hardware.
4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can
be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf.
5 Transparent/Adaptive Virtual Channel. Now you don't have to disable
vchans in order to make digital format pass through. It also makes
vchans more dynamic by choosing a better format/rate among all the
concurrent streams, which means that dev.pcm.X.play.vchanformat/rate
becomes sort of optional.
6 Exclusive Stream, with special open() mode O_EXCL. This will "mute"
other concurrent vchan streams and only allow a single channel with
O_EXCL set to keep producing sound.
Other Changes:
* most feeder_* stuffs are compilable in userland. Let's not
speculate whether we should go all out for it (save that for
FreeBSD 16.0-RELEASE).
* kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org>
* pull out channel mixing logic out of vchan.c and create its own
feeder_mixer for world justice.
* various refactoring here and there, for good or bad.
* activation of few more OSSv4 ioctls() (see [1] above).
* opt_snd.h for possible compile time configuration:
(mostly for debugging purposes, don't try these at home)
SND_DEBUG
SND_DIAGNOSTIC
SND_FEEDER_MULTIFORMAT
SND_FEEDER_FULL_MULTIFORMAT
SND_FEEDER_RATE_HP
SND_PCM_64
SND_OLDSTEREO
Manual page updates are on the way.
Tested by: joel, Olivier SMEDTS <olivier at gid0 d org>, too many
unsung / unnamed heroes.
2009-06-07 19:12:08 +00:00
|
|
|
SND_FORMAT(AFMT_S16_LE, 1, 0),
|
|
|
|
SND_FORMAT(AFMT_S16_LE, 2, 0),
|
2000-09-06 20:10:55 +00:00
|
|
|
0
|
|
|
|
};
|
2004-11-10 04:29:09 +00:00
|
|
|
static struct pcmchan_caps reccaps = {8000, 48000, recfmt, 0};
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
return &reccaps;
|
2000-09-06 20:10:55 +00:00
|
|
|
}
|
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
static kobj_method_t aggrch_methods[] = {
|
|
|
|
KOBJMETHOD(channel_init, aggrch_init),
|
|
|
|
/* channel_free: no-op */
|
|
|
|
KOBJMETHOD(channel_setformat, aggrch_setformat),
|
|
|
|
KOBJMETHOD(channel_setspeed, aggrch_setspeed),
|
|
|
|
KOBJMETHOD(channel_setblocksize, aggrch_setblocksize),
|
|
|
|
KOBJMETHOD(channel_trigger, aggrch_trigger),
|
|
|
|
KOBJMETHOD(channel_getptr, aggrch_getptr),
|
|
|
|
KOBJMETHOD(channel_getcaps, aggrch_getcaps),
|
Sound Mega-commit. Expect further cleanup until code freeze.
For a slightly thorough explaination, please refer to
[1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html .
Summary of changes includes:
1 Volume Per-Channel (vpc). Provides private / standalone volume control
unique per-stream pcm channel without touching master volume / pcm.
Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for
backwards compatibility, SOUND_MIXER_PCM through the opened dsp device
instead of /dev/mixer. Special "bypass" mode is enabled through
/dev/mixer which will automatically detect if the adjustment is made
through /dev/mixer and forward its request to this private volume
controller. Changes to this volume object will not interfere with
other channels.
Requirements:
- SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which
require specific application modifications (preferred).
- No modifications required for using bypass mode, so applications
like mplayer or xmms should work out of the box.
Kernel hints:
- hint.pcm.%d.vpc (0 = disable vpc).
Kernel sysctls:
- hw.snd.vpc_mixer_bypass (default: 1). Enable or disable /dev/mixer
bypass mode.
- hw.snd.vpc_autoreset (default: 1). By default, closing/opening
/dev/dsp will reset the volume back to 0 db gain/attenuation.
Setting this to 0 will preserve its settings across device
closing/opening.
- hw.snd.vpc_reset (default: 0). Panic/reset button to reset all
volume settings back to 0 db.
- hw.snd.vpc_0db (default: 45). 0 db relative to linear mixer value.
2 High quality fixed-point Bandlimited SINC sampling rate converter,
based on Julius O'Smith's Digital Audio Resampling -
http://ccrma.stanford.edu/~jos/resample/. It includes a filter design
script written in awk (the clumsiest joke I've ever written)
- 100% 32bit fixed-point, 64bit accumulator.
- Possibly among the fastest (if not fastest) of its kind.
- Resampling quality is tunable, either runtime or during kernel
compilation (FEEDER_RATE_PRESETS).
- Quality can be further customized during kernel compilation by
defining FEEDER_RATE_PRESETS in /etc/make.conf.
Kernel sysctls:
- hw.snd.feeder_rate_quality.
0 - Zero-order Hold (ZOH). Fastest, bad quality.
1 - Linear Interpolation (LINEAR). Slightly slower than ZOH,
better quality but still does not eliminate aliasing.
2 - (and above) - Sinc Interpolation(SINC). Best quality. SINC
quality always start from 2 and above.
Rough quality comparisons:
- http://people.freebsd.org/~ariff/z_comparison/
3 Bit-perfect mode. Bypasses all feeder/dsp effects. Pure sound will be
directly fed into the hardware.
4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can
be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf.
5 Transparent/Adaptive Virtual Channel. Now you don't have to disable
vchans in order to make digital format pass through. It also makes
vchans more dynamic by choosing a better format/rate among all the
concurrent streams, which means that dev.pcm.X.play.vchanformat/rate
becomes sort of optional.
6 Exclusive Stream, with special open() mode O_EXCL. This will "mute"
other concurrent vchan streams and only allow a single channel with
O_EXCL set to keep producing sound.
Other Changes:
* most feeder_* stuffs are compilable in userland. Let's not
speculate whether we should go all out for it (save that for
FreeBSD 16.0-RELEASE).
* kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org>
* pull out channel mixing logic out of vchan.c and create its own
feeder_mixer for world justice.
* various refactoring here and there, for good or bad.
* activation of few more OSSv4 ioctls() (see [1] above).
* opt_snd.h for possible compile time configuration:
(mostly for debugging purposes, don't try these at home)
SND_DEBUG
SND_DIAGNOSTIC
SND_FEEDER_MULTIFORMAT
SND_FEEDER_FULL_MULTIFORMAT
SND_FEEDER_RATE_HP
SND_PCM_64
SND_OLDSTEREO
Manual page updates are on the way.
Tested by: joel, Olivier SMEDTS <olivier at gid0 d org>, too many
unsung / unnamed heroes.
2009-06-07 19:12:08 +00:00
|
|
|
KOBJMETHOD_END
|
2000-12-18 01:36:41 +00:00
|
|
|
};
|
2004-11-10 04:29:09 +00:00
|
|
|
CHANNEL_DECLARE(aggrch);
|
|
|
|
|
2000-09-06 20:10:55 +00:00
|
|
|
|
|
|
|
/* -----------------------------
|
|
|
|
* Bus space.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static void
|
|
|
|
agg_intr(void *sc)
|
|
|
|
{
|
|
|
|
struct agg_info* ess = sc;
|
2004-11-10 04:29:09 +00:00
|
|
|
register u_int8_t status;
|
2000-09-06 20:10:55 +00:00
|
|
|
int i;
|
2004-11-10 04:29:09 +00:00
|
|
|
u_int m;
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
status = AGG_RD(ess, PORT_HOSTINT_STAT, 1);
|
2000-09-06 20:10:55 +00:00
|
|
|
if (!status)
|
|
|
|
return;
|
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
/* Acknowledge intr. */
|
|
|
|
AGG_WR(ess, PORT_HOSTINT_STAT, status, 1);
|
|
|
|
|
|
|
|
if (status & HOSTINT_STAT_DSOUND) {
|
|
|
|
#ifdef AGG_JITTER_CORRECTION
|
|
|
|
agg_lock(ess);
|
|
|
|
#endif
|
|
|
|
if (ess->curpwr <= PCI_POWERSTATE_D1) {
|
|
|
|
AGG_WR(ess, PORT_INT_STAT, 1, 2);
|
|
|
|
#ifdef AGG_JITTER_CORRECTION
|
|
|
|
for (i = 0, m = 1; i < ess->playchns; i++, m <<= 1) {
|
|
|
|
if (ess->active & m)
|
|
|
|
suppress_jitter(ess->pch + i);
|
|
|
|
}
|
|
|
|
if (ess->active & m)
|
|
|
|
suppress_rec_jitter(&ess->rch);
|
|
|
|
agg_unlock(ess);
|
|
|
|
#endif
|
|
|
|
for (i = 0, m = 1; i < ess->playchns; i++, m <<= 1) {
|
|
|
|
if (ess->active & m) {
|
|
|
|
if (ess->curpwr <= PCI_POWERSTATE_D1)
|
|
|
|
chn_intr(ess->pch[i].channel);
|
|
|
|
else {
|
|
|
|
m = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ((ess->active & m)
|
|
|
|
&& ess->curpwr <= PCI_POWERSTATE_D1)
|
|
|
|
chn_intr(ess->rch.channel);
|
|
|
|
}
|
|
|
|
#ifdef AGG_JITTER_CORRECTION
|
|
|
|
else
|
|
|
|
agg_unlock(ess);
|
|
|
|
#endif
|
|
|
|
}
|
2001-01-03 01:32:57 +00:00
|
|
|
|
2000-09-06 20:10:55 +00:00
|
|
|
if (status & HOSTINT_STAT_HWVOL) {
|
2004-11-10 04:29:09 +00:00
|
|
|
register u_int8_t event;
|
|
|
|
|
|
|
|
agg_lock(ess);
|
|
|
|
event = AGG_RD(ess, PORT_HWVOL_MASTER, 1);
|
|
|
|
AGG_WR(ess, PORT_HWVOL_MASTER, HWVOL_NOP, 1);
|
|
|
|
agg_unlock(ess);
|
2001-01-03 01:32:57 +00:00
|
|
|
|
|
|
|
switch (event) {
|
|
|
|
case HWVOL_UP:
|
2001-01-11 23:26:38 +00:00
|
|
|
mixer_hwvol_step(ess->dev, 1, 1);
|
2001-01-03 01:32:57 +00:00
|
|
|
break;
|
|
|
|
case HWVOL_DOWN:
|
2001-01-11 23:26:38 +00:00
|
|
|
mixer_hwvol_step(ess->dev, -1, -1);
|
2001-01-03 01:32:57 +00:00
|
|
|
break;
|
|
|
|
case HWVOL_NOP:
|
|
|
|
break;
|
|
|
|
default:
|
2004-11-10 04:29:09 +00:00
|
|
|
if (event & HWVOL_MUTE) {
|
|
|
|
mixer_hwvol_mute(ess->dev);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
device_printf(ess->dev,
|
|
|
|
"%s: unknown HWVOL event 0x%x\n",
|
|
|
|
device_get_nameunit(ess->dev), event);
|
2000-09-06 20:10:55 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
setmap(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
|
|
{
|
|
|
|
bus_addr_t *phys = arg;
|
|
|
|
|
|
|
|
*phys = error? 0 : segs->ds_addr;
|
|
|
|
|
|
|
|
if (bootverbose) {
|
|
|
|
printf("setmap (%lx, %lx), nseg=%d, error=%d\n",
|
|
|
|
(unsigned long)segs->ds_addr, (unsigned long)segs->ds_len,
|
|
|
|
nseg, error);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void *
|
2004-11-10 04:29:09 +00:00
|
|
|
dma_malloc(bus_dma_tag_t dmat, u_int32_t sz, bus_addr_t *phys)
|
2000-09-06 20:10:55 +00:00
|
|
|
{
|
|
|
|
void *buf;
|
|
|
|
bus_dmamap_t map;
|
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
if (bus_dmamem_alloc(dmat, &buf, BUS_DMA_NOWAIT, &map))
|
2000-09-06 20:10:55 +00:00
|
|
|
return NULL;
|
2004-11-10 04:29:09 +00:00
|
|
|
if (bus_dmamap_load(dmat, map, buf, sz, setmap, phys, 0)
|
|
|
|
|| !*phys || map) {
|
|
|
|
bus_dmamem_free(dmat, buf, map);
|
2000-09-06 20:10:55 +00:00
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
return buf;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2004-11-10 04:29:09 +00:00
|
|
|
dma_free(bus_dma_tag_t dmat, void *buf)
|
2000-09-06 20:10:55 +00:00
|
|
|
{
|
2004-11-10 04:29:09 +00:00
|
|
|
bus_dmamem_free(dmat, buf, NULL);
|
2000-09-06 20:10:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
agg_probe(device_t dev)
|
|
|
|
{
|
|
|
|
char *s = NULL;
|
|
|
|
|
|
|
|
switch (pci_get_devid(dev)) {
|
|
|
|
case MAESTRO_1_PCI_ID:
|
|
|
|
s = "ESS Technology Maestro-1";
|
|
|
|
break;
|
|
|
|
|
|
|
|
case MAESTRO_2_PCI_ID:
|
|
|
|
s = "ESS Technology Maestro-2";
|
|
|
|
break;
|
|
|
|
|
|
|
|
case MAESTRO_2E_PCI_ID:
|
|
|
|
s = "ESS Technology Maestro-2E";
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (s != NULL && pci_get_class(dev) == PCIC_MULTIMEDIA) {
|
|
|
|
device_set_desc(dev, s);
|
2005-03-01 08:58:06 +00:00
|
|
|
return BUS_PROBE_DEFAULT;
|
2000-09-06 20:10:55 +00:00
|
|
|
}
|
|
|
|
return ENXIO;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
agg_attach(device_t dev)
|
|
|
|
{
|
|
|
|
struct agg_info *ess = NULL;
|
|
|
|
u_int32_t data;
|
2003-09-02 17:30:40 +00:00
|
|
|
int regid = PCIR_BAR(0);
|
2000-09-06 20:10:55 +00:00
|
|
|
struct resource *reg = NULL;
|
|
|
|
struct ac97_info *codec = NULL;
|
|
|
|
int irqid = 0;
|
|
|
|
struct resource *irq = NULL;
|
|
|
|
void *ih = NULL;
|
|
|
|
char status[SND_STATUSLEN];
|
2007-12-14 02:16:26 +00:00
|
|
|
int dacn, ret = 0;
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2007-06-17 06:10:43 +00:00
|
|
|
ess = malloc(sizeof(*ess), M_DEVBUF, M_WAITOK | M_ZERO);
|
2000-09-06 20:10:55 +00:00
|
|
|
ess->dev = dev;
|
|
|
|
|
Fix severe out-of-bound mtx "type" pointer, causing WITNESS refcount
confusions and panic provided that the following conditions are met:
1) WITNESS is enabled (watch/trace).
2) Using modules, instead of statically linked (Not a strict
requirement, but easier to reproduce this way).
3) 2 or more modules share the same mtx type ("sound softc").
- They might share the same name (strcmp() == 0), but it always
point to different address.
4) Repetitive kldunload/load on any module that shares the same mtx
type (Not a strict requirement, but easier to reproduce this way).
Consider module A and module B:
- From enroll() - subr_witness.c:
* Load module A. Everything seems fine right now.
wA-w_refcount == 1 ; wA-w_name = "sound softc"
* Load module B.
* w->w_name == description will always fail.
("sound softc" from A and B point to different address).
* wA->w_refcount > 0 && strcmp(description, wA->w_name) == 0
* enroll() will return wA instead of returning (possibly unique)
wB.
wA->w_refcount++ , == 2.
* Unload module A, mtx_destroy(), wA->w_name become invalid,
but wA->w_refcount-- become 1 instead of 0. wA will not be
removed from witness list.
* Some other places call mtx_init(), iterating witness list,
found wA, failed on wA->w_name == description
* wA->w_refcount > 0 && strcmp(description, wA->w_name)
* Panic on strcmp() since wA->w_name no longer point to valid
address.
Note that this could happened in other places as well, not just sound
(eg. consider lots of drivers that share simmilar MTX_NETWORK_LOCK).
Solutions (for sound case):
1) Provide unique mtx type string for each mutex creation (chosen)
or
2) Put "sound softc" global variable somewhere and use it.
2007-03-15 16:41:27 +00:00
|
|
|
mtx_init(&ess->lock, device_get_desc(dev), "snd_maestro softc",
|
2004-11-10 04:29:09 +00:00
|
|
|
MTX_DEF | MTX_RECURSE);
|
|
|
|
if (!mtx_initialized(&ess->lock)) {
|
|
|
|
device_printf(dev, "failed to create a mutex.\n");
|
|
|
|
ret = ENOMEM;
|
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
|
2007-12-14 02:16:26 +00:00
|
|
|
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
|
|
|
|
"dac", &dacn) == 0) {
|
|
|
|
if (dacn < 1)
|
|
|
|
dacn = 1;
|
|
|
|
else if (dacn > AGG_MAXPLAYCH)
|
|
|
|
dacn = AGG_MAXPLAYCH;
|
|
|
|
} else
|
|
|
|
dacn = AGG_MAXPLAYCH;
|
|
|
|
|
2001-10-08 05:59:54 +00:00
|
|
|
ess->bufsz = pcm_getbuffersize(dev, 4096, AGG_DEFAULT_BUFSZ, 65536);
|
2007-02-23 13:47:34 +00:00
|
|
|
if (bus_dma_tag_create(/*parent*/ bus_get_dma_tag(dev),
|
2004-11-10 04:29:09 +00:00
|
|
|
/*align */ 4, 1 << (16+1),
|
|
|
|
/*limit */ MAESTRO_MAXADDR, BUS_SPACE_MAXADDR,
|
|
|
|
/*filter*/ NULL, NULL,
|
|
|
|
/*size */ ess->bufsz, 1, 0x3ffff,
|
|
|
|
/*flags */ 0,
|
|
|
|
#if __FreeBSD_version >= 501102
|
|
|
|
/*lock */ busdma_lock_mutex, &Giant,
|
|
|
|
#endif
|
|
|
|
&ess->buf_dmat) != 0) {
|
|
|
|
device_printf(dev, "unable to create dma tag\n");
|
|
|
|
ret = ENOMEM;
|
|
|
|
goto bad;
|
|
|
|
}
|
2001-10-08 05:59:54 +00:00
|
|
|
|
2007-02-23 13:47:34 +00:00
|
|
|
if (bus_dma_tag_create(/*parent*/ bus_get_dma_tag(dev),
|
2004-11-10 04:29:09 +00:00
|
|
|
/*align */ 1 << WAVCACHE_BASEADDR_SHIFT,
|
|
|
|
1 << (16+1),
|
|
|
|
/*limit */ MAESTRO_MAXADDR, BUS_SPACE_MAXADDR,
|
|
|
|
/*filter*/ NULL, NULL,
|
|
|
|
/*size */ 3*ess->bufsz, 1, 0x3ffff,
|
|
|
|
/*flags */ 0,
|
|
|
|
#if __FreeBSD_version >= 501102
|
|
|
|
/*lock */ busdma_lock_mutex, &Giant,
|
|
|
|
#endif
|
|
|
|
&ess->stat_dmat) != 0) {
|
2000-09-06 20:10:55 +00:00
|
|
|
device_printf(dev, "unable to create dma tag\n");
|
2004-11-10 04:29:09 +00:00
|
|
|
ret = ENOMEM;
|
2000-09-06 20:10:55 +00:00
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
/* Allocate the room for brain-damaging status buffer. */
|
|
|
|
ess->stat = dma_malloc(ess->stat_dmat, 3*ess->bufsz, &ess->phys);
|
2000-09-06 20:10:55 +00:00
|
|
|
if (ess->stat == NULL) {
|
2004-11-10 04:29:09 +00:00
|
|
|
device_printf(dev, "cannot allocate status buffer\n");
|
|
|
|
ret = ENOMEM;
|
2000-09-06 20:10:55 +00:00
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
if (bootverbose)
|
2004-11-10 04:29:09 +00:00
|
|
|
device_printf(dev, "Maestro status/record buffer: %#llx\n",
|
|
|
|
(long long)ess->phys);
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
/* State D0-uninitialized. */
|
|
|
|
ess->curpwr = PCI_POWERSTATE_D3;
|
|
|
|
pci_set_powerstate(dev, PCI_POWERSTATE_D0);
|
2000-09-06 20:10:55 +00:00
|
|
|
|
|
|
|
data = pci_read_config(dev, PCIR_COMMAND, 2);
|
|
|
|
data |= (PCIM_CMD_PORTEN|PCIM_CMD_BUSMASTEREN);
|
|
|
|
pci_write_config(dev, PCIR_COMMAND, data, 2);
|
|
|
|
data = pci_read_config(dev, PCIR_COMMAND, 2);
|
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
/* Allocate resources. */
|
|
|
|
if (data & PCIM_CMD_PORTEN)
|
2005-02-01 07:43:34 +00:00
|
|
|
reg = bus_alloc_resource_any(dev, SYS_RES_IOPORT, ®id,
|
|
|
|
RF_ACTIVE);
|
2004-11-10 04:29:09 +00:00
|
|
|
if (reg != NULL) {
|
|
|
|
ess->reg = reg;
|
|
|
|
ess->regid = regid;
|
|
|
|
ess->st = rman_get_bustag(reg);
|
|
|
|
ess->sh = rman_get_bushandle(reg);
|
|
|
|
} else {
|
2000-09-06 20:10:55 +00:00
|
|
|
device_printf(dev, "unable to map register space\n");
|
2004-11-10 04:29:09 +00:00
|
|
|
ret = ENXIO;
|
|
|
|
goto bad;
|
|
|
|
}
|
2005-02-01 07:43:34 +00:00
|
|
|
irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &irqid,
|
|
|
|
RF_ACTIVE | RF_SHAREABLE);
|
2004-11-10 04:29:09 +00:00
|
|
|
if (irq != NULL) {
|
|
|
|
ess->irq = irq;
|
|
|
|
ess->irqid = irqid;
|
|
|
|
} else {
|
|
|
|
device_printf(dev, "unable to map interrupt\n");
|
|
|
|
ret = ENXIO;
|
2000-09-06 20:10:55 +00:00
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
/* Setup resources. */
|
|
|
|
if (snd_setup_intr(dev, irq, INTR_MPSAFE, agg_intr, ess, &ih)) {
|
|
|
|
device_printf(dev, "unable to setup interrupt\n");
|
|
|
|
ret = ENXIO;
|
|
|
|
goto bad;
|
|
|
|
} else
|
|
|
|
ess->ih = ih;
|
|
|
|
|
|
|
|
/* Transition from D0-uninitialized to D0. */
|
|
|
|
agg_lock(ess);
|
|
|
|
agg_power(ess, PCI_POWERSTATE_D0);
|
|
|
|
if (agg_rdcodec(ess, 0) == 0x80) {
|
|
|
|
/* XXX - TODO: PT101 */
|
2006-01-06 10:36:55 +00:00
|
|
|
agg_unlock(ess);
|
2000-09-06 20:10:55 +00:00
|
|
|
device_printf(dev, "PT101 codec detected!\n");
|
2004-11-10 04:29:09 +00:00
|
|
|
ret = ENXIO;
|
2000-09-06 20:10:55 +00:00
|
|
|
goto bad;
|
|
|
|
}
|
2006-01-06 10:36:55 +00:00
|
|
|
agg_unlock(ess);
|
2000-12-18 01:36:41 +00:00
|
|
|
codec = AC97_CREATE(dev, ess, agg_ac97);
|
2004-11-10 04:29:09 +00:00
|
|
|
if (codec == NULL) {
|
|
|
|
device_printf(dev, "failed to create AC97 codec softc!\n");
|
|
|
|
ret = ENOMEM;
|
2000-09-06 20:10:55 +00:00
|
|
|
goto bad;
|
2004-11-10 04:29:09 +00:00
|
|
|
}
|
|
|
|
if (mixer_init(dev, ac97_getmixerclass(), codec) == -1) {
|
|
|
|
device_printf(dev, "mixer initialization failed!\n");
|
|
|
|
ret = ENXIO;
|
2000-09-06 20:10:55 +00:00
|
|
|
goto bad;
|
|
|
|
}
|
2004-11-10 04:29:09 +00:00
|
|
|
ess->codec = codec;
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2007-12-14 02:16:26 +00:00
|
|
|
ret = pcm_register(dev, ess, dacn, 1);
|
2004-11-10 04:29:09 +00:00
|
|
|
if (ret)
|
2000-09-06 20:10:55 +00:00
|
|
|
goto bad;
|
|
|
|
|
2001-01-11 23:26:38 +00:00
|
|
|
mixer_hwvol_init(dev);
|
2006-01-06 10:36:55 +00:00
|
|
|
agg_lock(ess);
|
2004-11-10 04:29:09 +00:00
|
|
|
agg_power(ess, powerstate_init);
|
2006-01-06 10:36:55 +00:00
|
|
|
agg_unlock(ess);
|
2007-12-14 02:16:26 +00:00
|
|
|
for (data = 0; data < dacn; data++)
|
2004-11-10 04:29:09 +00:00
|
|
|
pcm_addchan(dev, PCMDIR_PLAY, &aggpch_class, ess);
|
2000-12-18 01:36:41 +00:00
|
|
|
pcm_addchan(dev, PCMDIR_REC, &aggrch_class, ess);
|
2004-11-10 04:29:09 +00:00
|
|
|
adjust_pchbase(ess->pch, ess->playchns, ess->bufsz);
|
|
|
|
|
|
|
|
snprintf(status, SND_STATUSLEN,
|
|
|
|
"port 0x%lx-0x%lx irq %ld at device %d.%d on pci%d",
|
|
|
|
rman_get_start(reg), rman_get_end(reg), rman_get_start(irq),
|
|
|
|
pci_get_slot(dev), pci_get_function(dev), pci_get_bus(dev));
|
2000-09-06 20:10:55 +00:00
|
|
|
pcm_setstatus(dev, status);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
bad:
|
2000-09-09 19:21:04 +00:00
|
|
|
if (codec != NULL)
|
|
|
|
ac97_destroy(codec);
|
2000-09-06 20:10:55 +00:00
|
|
|
if (ih != NULL)
|
|
|
|
bus_teardown_intr(dev, irq, ih);
|
|
|
|
if (irq != NULL)
|
|
|
|
bus_release_resource(dev, SYS_RES_IRQ, irqid, irq);
|
|
|
|
if (reg != NULL)
|
|
|
|
bus_release_resource(dev, SYS_RES_IOPORT, regid, reg);
|
2006-01-21 11:50:56 +00:00
|
|
|
if (ess != NULL) {
|
|
|
|
if (ess->stat != NULL)
|
|
|
|
dma_free(ess->stat_dmat, ess->stat);
|
|
|
|
if (ess->stat_dmat != NULL)
|
|
|
|
bus_dma_tag_destroy(ess->stat_dmat);
|
|
|
|
if (ess->buf_dmat != NULL)
|
|
|
|
bus_dma_tag_destroy(ess->buf_dmat);
|
|
|
|
if (mtx_initialized(&ess->lock))
|
|
|
|
mtx_destroy(&ess->lock);
|
2000-09-06 20:10:55 +00:00
|
|
|
free(ess, M_DEVBUF);
|
2006-01-21 11:50:56 +00:00
|
|
|
}
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
return ret;
|
2000-09-06 20:10:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
agg_detach(device_t dev)
|
|
|
|
{
|
|
|
|
struct agg_info *ess = pcm_getdevinfo(dev);
|
|
|
|
int r;
|
2004-11-10 04:29:09 +00:00
|
|
|
u_int16_t icr;
|
|
|
|
|
|
|
|
icr = AGG_RD(ess, PORT_HOSTINT_CTRL, 2);
|
|
|
|
AGG_WR(ess, PORT_HOSTINT_CTRL, 0, 2);
|
|
|
|
|
|
|
|
agg_lock(ess);
|
|
|
|
if (ess->active) {
|
|
|
|
AGG_WR(ess, PORT_HOSTINT_CTRL, icr, 2);
|
|
|
|
agg_unlock(ess);
|
|
|
|
return EBUSY;
|
|
|
|
}
|
|
|
|
agg_unlock(ess);
|
2000-09-06 20:10:55 +00:00
|
|
|
|
|
|
|
r = pcm_unregister(dev);
|
2004-11-10 04:29:09 +00:00
|
|
|
if (r) {
|
|
|
|
AGG_WR(ess, PORT_HOSTINT_CTRL, icr, 2);
|
2000-09-06 20:10:55 +00:00
|
|
|
return r;
|
2004-11-10 04:29:09 +00:00
|
|
|
}
|
2000-09-06 20:10:55 +00:00
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
agg_lock(ess);
|
|
|
|
agg_power(ess, PCI_POWERSTATE_D3);
|
2006-01-06 10:36:55 +00:00
|
|
|
agg_unlock(ess);
|
2000-09-06 20:10:55 +00:00
|
|
|
|
|
|
|
bus_teardown_intr(dev, ess->irq, ess->ih);
|
|
|
|
bus_release_resource(dev, SYS_RES_IRQ, ess->irqid, ess->irq);
|
|
|
|
bus_release_resource(dev, SYS_RES_IOPORT, ess->regid, ess->reg);
|
2004-11-10 04:29:09 +00:00
|
|
|
dma_free(ess->stat_dmat, ess->stat);
|
|
|
|
bus_dma_tag_destroy(ess->stat_dmat);
|
|
|
|
bus_dma_tag_destroy(ess->buf_dmat);
|
|
|
|
mtx_destroy(&ess->lock);
|
2000-09-06 20:10:55 +00:00
|
|
|
free(ess, M_DEVBUF);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
agg_suspend(device_t dev)
|
|
|
|
{
|
|
|
|
struct agg_info *ess = pcm_getdevinfo(dev);
|
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
AGG_WR(ess, PORT_HOSTINT_CTRL, 0, 2);
|
|
|
|
agg_lock(ess);
|
|
|
|
agg_power(ess, PCI_POWERSTATE_D3);
|
|
|
|
agg_unlock(ess);
|
2000-09-06 20:10:55 +00:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
agg_resume(device_t dev)
|
|
|
|
{
|
2004-11-10 04:29:09 +00:00
|
|
|
int i;
|
2000-09-06 20:10:55 +00:00
|
|
|
struct agg_info *ess = pcm_getdevinfo(dev);
|
|
|
|
|
|
|
|
for (i = 0; i < ess->playchns; i++)
|
|
|
|
if (ess->active & (1 << i))
|
|
|
|
aggch_start_dac(ess->pch + i);
|
|
|
|
if (ess->active & (1 << i))
|
|
|
|
aggch_start_adc(&ess->rch);
|
2004-11-10 04:29:09 +00:00
|
|
|
|
|
|
|
agg_lock(ess);
|
|
|
|
if (!ess->active)
|
|
|
|
agg_power(ess, powerstate_init);
|
|
|
|
agg_unlock(ess);
|
|
|
|
|
|
|
|
if (mixer_reinit(dev)) {
|
|
|
|
device_printf(dev, "unable to reinitialize the mixer\n");
|
|
|
|
return ENXIO;
|
2000-09-06 20:10:55 +00:00
|
|
|
}
|
2004-11-10 04:29:09 +00:00
|
|
|
|
2000-09-06 20:10:55 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
agg_shutdown(device_t dev)
|
|
|
|
{
|
|
|
|
struct agg_info *ess = pcm_getdevinfo(dev);
|
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
agg_lock(ess);
|
|
|
|
agg_power(ess, PCI_POWERSTATE_D3);
|
|
|
|
agg_unlock(ess);
|
2000-09-06 20:10:55 +00:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static device_method_t agg_methods[] = {
|
|
|
|
DEVMETHOD(device_probe, agg_probe),
|
|
|
|
DEVMETHOD(device_attach, agg_attach),
|
|
|
|
DEVMETHOD(device_detach, agg_detach),
|
|
|
|
DEVMETHOD(device_suspend, agg_suspend),
|
|
|
|
DEVMETHOD(device_resume, agg_resume),
|
|
|
|
DEVMETHOD(device_shutdown, agg_shutdown),
|
|
|
|
|
|
|
|
{ 0, 0 }
|
|
|
|
};
|
|
|
|
|
|
|
|
static driver_t agg_driver = {
|
|
|
|
"pcm",
|
|
|
|
agg_methods,
|
2001-08-23 11:30:52 +00:00
|
|
|
PCM_SOFTC_SIZE,
|
2000-09-06 20:10:55 +00:00
|
|
|
};
|
|
|
|
|
2004-11-10 04:29:09 +00:00
|
|
|
/*static devclass_t pcm_devclass;*/
|
|
|
|
|
2000-09-06 20:10:55 +00:00
|
|
|
DRIVER_MODULE(snd_maestro, pci, agg_driver, pcm_devclass, 0, 0);
|
2004-07-16 04:00:08 +00:00
|
|
|
MODULE_DEPEND(snd_maestro, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
|
2000-09-06 20:10:55 +00:00
|
|
|
MODULE_VERSION(snd_maestro, 1);
|