freebsd-nq/sys/geom/raid/g_raid.c

2488 lines
63 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/bio.h>
#include <sys/sbuf.h>
#include <sys/sysctl.h>
#include <sys/malloc.h>
#include <sys/eventhandler.h>
#include <vm/uma.h>
#include <geom/geom.h>
#include <sys/proc.h>
#include <sys/kthread.h>
#include <sys/sched.h>
#include <geom/raid/g_raid.h>
#include "g_raid_md_if.h"
#include "g_raid_tr_if.h"
static MALLOC_DEFINE(M_RAID, "raid_data", "GEOM_RAID Data");
SYSCTL_DECL(_kern_geom);
SYSCTL_NODE(_kern_geom, OID_AUTO, raid, CTLFLAG_RW, 0, "GEOM_RAID stuff");
u_int g_raid_aggressive_spare = 0;
TUNABLE_INT("kern.geom.raid.aggressive_spare", &g_raid_aggressive_spare);
SYSCTL_UINT(_kern_geom_raid, OID_AUTO, aggressive_spare, CTLFLAG_RW,
&g_raid_aggressive_spare, 0, "Use disks without metadata as spare");
2011-04-18 16:15:59 +00:00
u_int g_raid_debug = 0;
TUNABLE_INT("kern.geom.raid.debug", &g_raid_debug);
SYSCTL_UINT(_kern_geom_raid, OID_AUTO, debug, CTLFLAG_RW, &g_raid_debug, 0,
"Debug level");
int g_raid_read_err_thresh = 10;
TUNABLE_INT("kern.geom.raid.read_err_thresh", &g_raid_read_err_thresh);
SYSCTL_UINT(_kern_geom_raid, OID_AUTO, read_err_thresh, CTLFLAG_RW,
&g_raid_read_err_thresh, 0,
"Number of read errors equated to disk failure");
u_int g_raid_start_timeout = 30;
TUNABLE_INT("kern.geom.raid.start_timeout", &g_raid_start_timeout);
SYSCTL_UINT(_kern_geom_raid, OID_AUTO, start_timeout, CTLFLAG_RW,
&g_raid_start_timeout, 0,
"Time to wait for all array components");
static u_int g_raid_clean_time = 5;
TUNABLE_INT("kern.geom.raid.clean_time", &g_raid_clean_time);
SYSCTL_UINT(_kern_geom_raid, OID_AUTO, clean_time, CTLFLAG_RW,
&g_raid_clean_time, 0, "Mark volume as clean when idling");
static u_int g_raid_disconnect_on_failure = 1;
TUNABLE_INT("kern.geom.raid.disconnect_on_failure",
&g_raid_disconnect_on_failure);
SYSCTL_UINT(_kern_geom_raid, OID_AUTO, disconnect_on_failure, CTLFLAG_RW,
&g_raid_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
static u_int g_raid_name_format = 0;
TUNABLE_INT("kern.geom.raid.name_format", &g_raid_name_format);
SYSCTL_UINT(_kern_geom_raid, OID_AUTO, name_format, CTLFLAG_RW,
&g_raid_name_format, 0, "Providers name format.");
static u_int g_raid_idle_threshold = 1000000;
TUNABLE_INT("kern.geom.raid.idle_threshold", &g_raid_idle_threshold);
SYSCTL_UINT(_kern_geom_raid, OID_AUTO, idle_threshold, CTLFLAG_RW,
&g_raid_idle_threshold, 1000000,
"Time in microseconds to consider a volume idle.");
#define MSLEEP(rv, ident, mtx, priority, wmesg, timeout) do { \
G_RAID_DEBUG(4, "%s: Sleeping %p.", __func__, (ident)); \
rv = msleep((ident), (mtx), (priority), (wmesg), (timeout)); \
G_RAID_DEBUG(4, "%s: Woken up %p.", __func__, (ident)); \
} while (0)
LIST_HEAD(, g_raid_md_class) g_raid_md_classes =
LIST_HEAD_INITIALIZER(g_raid_md_classes);
LIST_HEAD(, g_raid_tr_class) g_raid_tr_classes =
LIST_HEAD_INITIALIZER(g_raid_tr_classes);
LIST_HEAD(, g_raid_volume) g_raid_volumes =
LIST_HEAD_INITIALIZER(g_raid_volumes);
static eventhandler_tag g_raid_pre_sync = NULL;
static int g_raid_started = 0;
static int g_raid_destroy_geom(struct gctl_req *req, struct g_class *mp,
struct g_geom *gp);
static g_taste_t g_raid_taste;
static void g_raid_init(struct g_class *mp);
static void g_raid_fini(struct g_class *mp);
struct g_class g_raid_class = {
.name = G_RAID_CLASS_NAME,
.version = G_VERSION,
.ctlreq = g_raid_ctl,
.taste = g_raid_taste,
.destroy_geom = g_raid_destroy_geom,
.init = g_raid_init,
.fini = g_raid_fini
};
static void g_raid_destroy_provider(struct g_raid_volume *vol);
static int g_raid_update_disk(struct g_raid_disk *disk, u_int event);
static int g_raid_update_subdisk(struct g_raid_subdisk *subdisk, u_int event);
static int g_raid_update_volume(struct g_raid_volume *vol, u_int event);
static int g_raid_update_node(struct g_raid_softc *sc, u_int event);
static void g_raid_dumpconf(struct sbuf *sb, const char *indent,
struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
static void g_raid_start(struct bio *bp);
static void g_raid_start_request(struct bio *bp);
static void g_raid_disk_done(struct bio *bp);
static void g_raid_poll(struct g_raid_softc *sc);
static const char *
g_raid_node_event2str(int event)
{
switch (event) {
case G_RAID_NODE_E_WAKE:
return ("WAKE");
case G_RAID_NODE_E_START:
return ("START");
default:
return ("INVALID");
}
}
const char *
g_raid_disk_state2str(int state)
{
switch (state) {
case G_RAID_DISK_S_NONE:
return ("NONE");
case G_RAID_DISK_S_OFFLINE:
return ("OFFLINE");
case G_RAID_DISK_S_FAILED:
return ("FAILED");
case G_RAID_DISK_S_STALE_FAILED:
return ("STALE_FAILED");
case G_RAID_DISK_S_SPARE:
return ("SPARE");
case G_RAID_DISK_S_STALE:
return ("STALE");
case G_RAID_DISK_S_ACTIVE:
return ("ACTIVE");
default:
return ("INVALID");
}
}
static const char *
g_raid_disk_event2str(int event)
{
switch (event) {
case G_RAID_DISK_E_DISCONNECTED:
return ("DISCONNECTED");
default:
return ("INVALID");
}
}
const char *
g_raid_subdisk_state2str(int state)
{
switch (state) {
case G_RAID_SUBDISK_S_NONE:
return ("NONE");
case G_RAID_SUBDISK_S_FAILED:
return ("FAILED");
case G_RAID_SUBDISK_S_NEW:
return ("NEW");
case G_RAID_SUBDISK_S_REBUILD:
return ("REBUILD");
case G_RAID_SUBDISK_S_UNINITIALIZED:
return ("UNINITIALIZED");
case G_RAID_SUBDISK_S_STALE:
return ("STALE");
case G_RAID_SUBDISK_S_RESYNC:
return ("RESYNC");
case G_RAID_SUBDISK_S_ACTIVE:
return ("ACTIVE");
default:
return ("INVALID");
}
}
static const char *
g_raid_subdisk_event2str(int event)
{
switch (event) {
case G_RAID_SUBDISK_E_NEW:
return ("NEW");
case G_RAID_SUBDISK_E_DISCONNECTED:
return ("DISCONNECTED");
default:
return ("INVALID");
}
}
const char *
g_raid_volume_state2str(int state)
{
switch (state) {
case G_RAID_VOLUME_S_STARTING:
return ("STARTING");
case G_RAID_VOLUME_S_BROKEN:
return ("BROKEN");
case G_RAID_VOLUME_S_DEGRADED:
return ("DEGRADED");
case G_RAID_VOLUME_S_SUBOPTIMAL:
return ("SUBOPTIMAL");
case G_RAID_VOLUME_S_OPTIMAL:
return ("OPTIMAL");
case G_RAID_VOLUME_S_UNSUPPORTED:
return ("UNSUPPORTED");
case G_RAID_VOLUME_S_STOPPED:
return ("STOPPED");
default:
return ("INVALID");
}
}
static const char *
g_raid_volume_event2str(int event)
{
switch (event) {
case G_RAID_VOLUME_E_UP:
return ("UP");
case G_RAID_VOLUME_E_DOWN:
return ("DOWN");
case G_RAID_VOLUME_E_START:
return ("START");
case G_RAID_VOLUME_E_STARTMD:
return ("STARTMD");
default:
return ("INVALID");
}
}
const char *
g_raid_volume_level2str(int level, int qual)
{
switch (level) {
case G_RAID_VOLUME_RL_RAID0:
return ("RAID0");
case G_RAID_VOLUME_RL_RAID1:
return ("RAID1");
case G_RAID_VOLUME_RL_RAID3:
if (qual == G_RAID_VOLUME_RLQ_R3P0)
return ("RAID3-P0");
if (qual == G_RAID_VOLUME_RLQ_R3PN)
return ("RAID3-PN");
return ("RAID3");
case G_RAID_VOLUME_RL_RAID4:
if (qual == G_RAID_VOLUME_RLQ_R4P0)
return ("RAID4-P0");
if (qual == G_RAID_VOLUME_RLQ_R4PN)
return ("RAID4-PN");
return ("RAID4");
case G_RAID_VOLUME_RL_RAID5:
if (qual == G_RAID_VOLUME_RLQ_R5RA)
return ("RAID5-RA");
if (qual == G_RAID_VOLUME_RLQ_R5RS)
return ("RAID5-RS");
if (qual == G_RAID_VOLUME_RLQ_R5LA)
return ("RAID5-LA");
if (qual == G_RAID_VOLUME_RLQ_R5LS)
return ("RAID5-LS");
return ("RAID5");
case G_RAID_VOLUME_RL_RAID6:
if (qual == G_RAID_VOLUME_RLQ_R6RA)
return ("RAID6-RA");
if (qual == G_RAID_VOLUME_RLQ_R6RS)
return ("RAID6-RS");
if (qual == G_RAID_VOLUME_RLQ_R6LA)
return ("RAID6-LA");
if (qual == G_RAID_VOLUME_RLQ_R6LS)
return ("RAID6-LS");
return ("RAID6");
case G_RAID_VOLUME_RL_RAIDMDF:
if (qual == G_RAID_VOLUME_RLQ_RMDFRA)
return ("RAIDMDF-RA");
if (qual == G_RAID_VOLUME_RLQ_RMDFRS)
return ("RAIDMDF-RS");
if (qual == G_RAID_VOLUME_RLQ_RMDFLA)
return ("RAIDMDF-LA");
if (qual == G_RAID_VOLUME_RLQ_RMDFLS)
return ("RAIDMDF-LS");
return ("RAIDMDF");
case G_RAID_VOLUME_RL_RAID1E:
if (qual == G_RAID_VOLUME_RLQ_R1EA)
return ("RAID1E-A");
if (qual == G_RAID_VOLUME_RLQ_R1EO)
return ("RAID1E-O");
return ("RAID1E");
case G_RAID_VOLUME_RL_SINGLE:
return ("SINGLE");
case G_RAID_VOLUME_RL_CONCAT:
return ("CONCAT");
case G_RAID_VOLUME_RL_RAID5E:
if (qual == G_RAID_VOLUME_RLQ_R5ERA)
return ("RAID5E-RA");
if (qual == G_RAID_VOLUME_RLQ_R5ERS)
return ("RAID5E-RS");
if (qual == G_RAID_VOLUME_RLQ_R5ELA)
return ("RAID5E-LA");
if (qual == G_RAID_VOLUME_RLQ_R5ELS)
return ("RAID5E-LS");
return ("RAID5E");
case G_RAID_VOLUME_RL_RAID5EE:
if (qual == G_RAID_VOLUME_RLQ_R5EERA)
return ("RAID5EE-RA");
if (qual == G_RAID_VOLUME_RLQ_R5EERS)
return ("RAID5EE-RS");
if (qual == G_RAID_VOLUME_RLQ_R5EELA)
return ("RAID5EE-LA");
if (qual == G_RAID_VOLUME_RLQ_R5EELS)
return ("RAID5EE-LS");
return ("RAID5EE");
case G_RAID_VOLUME_RL_RAID5R:
if (qual == G_RAID_VOLUME_RLQ_R5RRA)
return ("RAID5R-RA");
if (qual == G_RAID_VOLUME_RLQ_R5RRS)
return ("RAID5R-RS");
if (qual == G_RAID_VOLUME_RLQ_R5RLA)
return ("RAID5R-LA");
if (qual == G_RAID_VOLUME_RLQ_R5RLS)
return ("RAID5R-LS");
return ("RAID5E");
default:
return ("UNKNOWN");
}
}
int
g_raid_volume_str2level(const char *str, int *level, int *qual)
{
*level = G_RAID_VOLUME_RL_UNKNOWN;
*qual = G_RAID_VOLUME_RLQ_NONE;
if (strcasecmp(str, "RAID0") == 0)
*level = G_RAID_VOLUME_RL_RAID0;
else if (strcasecmp(str, "RAID1") == 0)
*level = G_RAID_VOLUME_RL_RAID1;
else if (strcasecmp(str, "RAID3-P0") == 0) {
*level = G_RAID_VOLUME_RL_RAID3;
*qual = G_RAID_VOLUME_RLQ_R3P0;
} else if (strcasecmp(str, "RAID3-PN") == 0 &&
strcasecmp(str, "RAID3") == 0) {
*level = G_RAID_VOLUME_RL_RAID3;
*qual = G_RAID_VOLUME_RLQ_R3P0;
} else if (strcasecmp(str, "RAID4-P0") == 0) {
*level = G_RAID_VOLUME_RL_RAID4;
*qual = G_RAID_VOLUME_RLQ_R4P0;
} else if (strcasecmp(str, "RAID4-PN") == 0 &&
strcasecmp(str, "RAID4") == 0) {
*level = G_RAID_VOLUME_RL_RAID4;
*qual = G_RAID_VOLUME_RLQ_R4P0;
} else if (strcasecmp(str, "RAID5-RA") == 0) {
*level = G_RAID_VOLUME_RL_RAID5;
*qual = G_RAID_VOLUME_RLQ_R5RA;
} else if (strcasecmp(str, "RAID5-RS") == 0) {
*level = G_RAID_VOLUME_RL_RAID5;
*qual = G_RAID_VOLUME_RLQ_R5RS;
} else if (strcasecmp(str, "RAID5") == 0 ||
strcasecmp(str, "RAID5-LA") == 0) {
*level = G_RAID_VOLUME_RL_RAID5;
*qual = G_RAID_VOLUME_RLQ_R5LA;
} else if (strcasecmp(str, "RAID5-LS") == 0) {
*level = G_RAID_VOLUME_RL_RAID5;
*qual = G_RAID_VOLUME_RLQ_R5LS;
} else if (strcasecmp(str, "RAID6-RA") == 0) {
*level = G_RAID_VOLUME_RL_RAID6;
*qual = G_RAID_VOLUME_RLQ_R6RA;
} else if (strcasecmp(str, "RAID6-RS") == 0) {
*level = G_RAID_VOLUME_RL_RAID6;
*qual = G_RAID_VOLUME_RLQ_R6RS;
} else if (strcasecmp(str, "RAID6") == 0 ||
strcasecmp(str, "RAID6-LA") == 0) {
*level = G_RAID_VOLUME_RL_RAID6;
*qual = G_RAID_VOLUME_RLQ_R6LA;
} else if (strcasecmp(str, "RAID6-LS") == 0) {
*level = G_RAID_VOLUME_RL_RAID6;
*qual = G_RAID_VOLUME_RLQ_R6LS;
} else if (strcasecmp(str, "RAIDMDF-RA") == 0) {
*level = G_RAID_VOLUME_RL_RAIDMDF;
*qual = G_RAID_VOLUME_RLQ_RMDFRA;
} else if (strcasecmp(str, "RAIDMDF-RS") == 0) {
*level = G_RAID_VOLUME_RL_RAIDMDF;
*qual = G_RAID_VOLUME_RLQ_RMDFRS;
} else if (strcasecmp(str, "RAIDMDF") == 0 ||
strcasecmp(str, "RAIDMDF-LA") == 0) {
*level = G_RAID_VOLUME_RL_RAIDMDF;
*qual = G_RAID_VOLUME_RLQ_RMDFLA;
} else if (strcasecmp(str, "RAIDMDF-LS") == 0) {
*level = G_RAID_VOLUME_RL_RAIDMDF;
*qual = G_RAID_VOLUME_RLQ_RMDFLS;
} else if (strcasecmp(str, "RAID10") == 0 ||
strcasecmp(str, "RAID1E") == 0 ||
strcasecmp(str, "RAID1E-A") == 0) {
*level = G_RAID_VOLUME_RL_RAID1E;
*qual = G_RAID_VOLUME_RLQ_R1EA;
} else if (strcasecmp(str, "RAID1E-O") == 0) {
*level = G_RAID_VOLUME_RL_RAID1E;
*qual = G_RAID_VOLUME_RLQ_R1EO;
} else if (strcasecmp(str, "SINGLE") == 0)
*level = G_RAID_VOLUME_RL_SINGLE;
else if (strcasecmp(str, "CONCAT") == 0)
*level = G_RAID_VOLUME_RL_CONCAT;
else if (strcasecmp(str, "RAID5E-RA") == 0) {
*level = G_RAID_VOLUME_RL_RAID5E;
*qual = G_RAID_VOLUME_RLQ_R5ERA;
} else if (strcasecmp(str, "RAID5E-RS") == 0) {
*level = G_RAID_VOLUME_RL_RAID5E;
*qual = G_RAID_VOLUME_RLQ_R5ERS;
} else if (strcasecmp(str, "RAID5E") == 0 ||
strcasecmp(str, "RAID5E-LA") == 0) {
*level = G_RAID_VOLUME_RL_RAID5E;
*qual = G_RAID_VOLUME_RLQ_R5ELA;
} else if (strcasecmp(str, "RAID5E-LS") == 0) {
*level = G_RAID_VOLUME_RL_RAID5E;
*qual = G_RAID_VOLUME_RLQ_R5ELS;
} else if (strcasecmp(str, "RAID5EE-RA") == 0) {
*level = G_RAID_VOLUME_RL_RAID5EE;
*qual = G_RAID_VOLUME_RLQ_R5EERA;
} else if (strcasecmp(str, "RAID5EE-RS") == 0) {
*level = G_RAID_VOLUME_RL_RAID5EE;
*qual = G_RAID_VOLUME_RLQ_R5EERS;
} else if (strcasecmp(str, "RAID5EE") == 0 ||
strcasecmp(str, "RAID5EE-LA") == 0) {
*level = G_RAID_VOLUME_RL_RAID5EE;
*qual = G_RAID_VOLUME_RLQ_R5EELA;
} else if (strcasecmp(str, "RAID5EE-LS") == 0) {
*level = G_RAID_VOLUME_RL_RAID5EE;
*qual = G_RAID_VOLUME_RLQ_R5EELS;
} else if (strcasecmp(str, "RAID5R-RA") == 0) {
*level = G_RAID_VOLUME_RL_RAID5R;
*qual = G_RAID_VOLUME_RLQ_R5RRA;
} else if (strcasecmp(str, "RAID5R-RS") == 0) {
*level = G_RAID_VOLUME_RL_RAID5R;
*qual = G_RAID_VOLUME_RLQ_R5RRS;
} else if (strcasecmp(str, "RAID5R") == 0 ||
strcasecmp(str, "RAID5R-LA") == 0) {
*level = G_RAID_VOLUME_RL_RAID5R;
*qual = G_RAID_VOLUME_RLQ_R5RLA;
} else if (strcasecmp(str, "RAID5R-LS") == 0) {
*level = G_RAID_VOLUME_RL_RAID5R;
*qual = G_RAID_VOLUME_RLQ_R5RLS;
} else
return (-1);
return (0);
}
const char *
g_raid_get_diskname(struct g_raid_disk *disk)
{
if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
return ("[unknown]");
return (disk->d_consumer->provider->name);
}
void
g_raid_report_disk_state(struct g_raid_disk *disk)
{
struct g_raid_subdisk *sd;
int len, state;
uint32_t s;
if (disk->d_consumer == NULL)
return;
if (disk->d_state == G_RAID_DISK_S_FAILED ||
disk->d_state == G_RAID_DISK_S_STALE_FAILED) {
s = G_STATE_FAILED;
} else {
state = G_RAID_SUBDISK_S_ACTIVE;
TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
if (sd->sd_state < state)
state = sd->sd_state;
}
if (state == G_RAID_SUBDISK_S_FAILED)
s = G_STATE_FAILED;
else if (state == G_RAID_SUBDISK_S_NEW ||
state == G_RAID_SUBDISK_S_REBUILD)
s = G_STATE_REBUILD;
else if (state == G_RAID_SUBDISK_S_STALE ||
state == G_RAID_SUBDISK_S_RESYNC)
s = G_STATE_RESYNC;
else
s = G_STATE_ACTIVE;
}
len = sizeof(s);
g_io_getattr("GEOM::setstate", disk->d_consumer, &len, &s);
G_RAID_DEBUG1(2, disk->d_softc, "Disk %s state reported as %d.",
g_raid_get_diskname(disk), s);
}
void
g_raid_change_disk_state(struct g_raid_disk *disk, int state)
{
G_RAID_DEBUG1(0, disk->d_softc, "Disk %s state changed from %s to %s.",
g_raid_get_diskname(disk),
g_raid_disk_state2str(disk->d_state),
g_raid_disk_state2str(state));
disk->d_state = state;
g_raid_report_disk_state(disk);
}
void
g_raid_change_subdisk_state(struct g_raid_subdisk *sd, int state)
{
G_RAID_DEBUG1(0, sd->sd_softc,
"Subdisk %s:%d-%s state changed from %s to %s.",
sd->sd_volume->v_name, sd->sd_pos,
sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]",
g_raid_subdisk_state2str(sd->sd_state),
g_raid_subdisk_state2str(state));
sd->sd_state = state;
if (sd->sd_disk)
g_raid_report_disk_state(sd->sd_disk);
}
void
g_raid_change_volume_state(struct g_raid_volume *vol, int state)
{
G_RAID_DEBUG1(0, vol->v_softc,
"Volume %s state changed from %s to %s.",
vol->v_name,
g_raid_volume_state2str(vol->v_state),
g_raid_volume_state2str(state));
vol->v_state = state;
}
/*
* --- Events handling functions ---
* Events in geom_raid are used to maintain subdisks and volumes status
* from one thread to simplify locking.
*/
static void
g_raid_event_free(struct g_raid_event *ep)
{
free(ep, M_RAID);
}
int
g_raid_event_send(void *arg, int event, int flags)
{
struct g_raid_softc *sc;
struct g_raid_event *ep;
int error;
if ((flags & G_RAID_EVENT_VOLUME) != 0) {
sc = ((struct g_raid_volume *)arg)->v_softc;
} else if ((flags & G_RAID_EVENT_DISK) != 0) {
sc = ((struct g_raid_disk *)arg)->d_softc;
} else if ((flags & G_RAID_EVENT_SUBDISK) != 0) {
sc = ((struct g_raid_subdisk *)arg)->sd_softc;
} else {
sc = arg;
}
ep = malloc(sizeof(*ep), M_RAID,
sx_xlocked(&sc->sc_lock) ? M_WAITOK : M_NOWAIT);
if (ep == NULL)
return (ENOMEM);
ep->e_tgt = arg;
ep->e_event = event;
ep->e_flags = flags;
ep->e_error = 0;
G_RAID_DEBUG1(4, sc, "Sending event %p. Waking up %p.", ep, sc);
mtx_lock(&sc->sc_queue_mtx);
TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
mtx_unlock(&sc->sc_queue_mtx);
wakeup(sc);
if ((flags & G_RAID_EVENT_WAIT) == 0)
return (0);
sx_assert(&sc->sc_lock, SX_XLOCKED);
G_RAID_DEBUG1(4, sc, "Sleeping on %p.", ep);
sx_xunlock(&sc->sc_lock);
while ((ep->e_flags & G_RAID_EVENT_DONE) == 0) {
mtx_lock(&sc->sc_queue_mtx);
MSLEEP(error, ep, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:event",
hz * 5);
}
error = ep->e_error;
g_raid_event_free(ep);
sx_xlock(&sc->sc_lock);
return (error);
}
static void
g_raid_event_cancel(struct g_raid_softc *sc, void *tgt)
{
struct g_raid_event *ep, *tmpep;
sx_assert(&sc->sc_lock, SX_XLOCKED);
mtx_lock(&sc->sc_queue_mtx);
TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
if (ep->e_tgt != tgt)
continue;
TAILQ_REMOVE(&sc->sc_events, ep, e_next);
if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0)
g_raid_event_free(ep);
else {
ep->e_error = ECANCELED;
wakeup(ep);
}
}
mtx_unlock(&sc->sc_queue_mtx);
}
static int
g_raid_event_check(struct g_raid_softc *sc, void *tgt)
{
struct g_raid_event *ep;
int res = 0;
sx_assert(&sc->sc_lock, SX_XLOCKED);
mtx_lock(&sc->sc_queue_mtx);
TAILQ_FOREACH(ep, &sc->sc_events, e_next) {
if (ep->e_tgt != tgt)
continue;
res = 1;
break;
}
mtx_unlock(&sc->sc_queue_mtx);
return (res);
}
/*
* Return the number of disks in given state.
* If state is equal to -1, count all connected disks.
*/
u_int
g_raid_ndisks(struct g_raid_softc *sc, int state)
{
struct g_raid_disk *disk;
u_int n;
sx_assert(&sc->sc_lock, SX_LOCKED);
n = 0;
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_state == state || state == -1)
n++;
}
return (n);
}
/*
* Return the number of subdisks in given state.
* If state is equal to -1, count all connected disks.
*/
u_int
g_raid_nsubdisks(struct g_raid_volume *vol, int state)
{
struct g_raid_subdisk *subdisk;
struct g_raid_softc *sc;
u_int i, n ;
sc = vol->v_softc;
sx_assert(&sc->sc_lock, SX_LOCKED);
n = 0;
for (i = 0; i < vol->v_disks_count; i++) {
subdisk = &vol->v_subdisks[i];
if ((state == -1 &&
subdisk->sd_state != G_RAID_SUBDISK_S_NONE) ||
subdisk->sd_state == state)
n++;
}
return (n);
}
/*
* Return the first subdisk in given state.
* If state is equal to -1, then the first connected disks.
*/
struct g_raid_subdisk *
g_raid_get_subdisk(struct g_raid_volume *vol, int state)
{
struct g_raid_subdisk *sd;
struct g_raid_softc *sc;
u_int i;
sc = vol->v_softc;
sx_assert(&sc->sc_lock, SX_LOCKED);
for (i = 0; i < vol->v_disks_count; i++) {
sd = &vol->v_subdisks[i];
if ((state == -1 &&
sd->sd_state != G_RAID_SUBDISK_S_NONE) ||
sd->sd_state == state)
return (sd);
}
return (NULL);
}
struct g_consumer *
g_raid_open_consumer(struct g_raid_softc *sc, const char *name)
{
struct g_consumer *cp;
struct g_provider *pp;
g_topology_assert();
if (strncmp(name, "/dev/", 5) == 0)
name += 5;
pp = g_provider_by_name(name);
if (pp == NULL)
return (NULL);
cp = g_new_consumer(sc->sc_geom);
if (g_attach(cp, pp) != 0) {
g_destroy_consumer(cp);
return (NULL);
}
if (g_access(cp, 1, 1, 1) != 0) {
g_detach(cp);
g_destroy_consumer(cp);
return (NULL);
}
return (cp);
}
static u_int
g_raid_nrequests(struct g_raid_softc *sc, struct g_consumer *cp)
{
struct bio *bp;
u_int nreqs = 0;
mtx_lock(&sc->sc_queue_mtx);
TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
if (bp->bio_from == cp)
nreqs++;
}
mtx_unlock(&sc->sc_queue_mtx);
return (nreqs);
}
u_int
g_raid_nopens(struct g_raid_softc *sc)
{
struct g_raid_volume *vol;
u_int opens;
opens = 0;
TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
if (vol->v_provider_open != 0)
opens++;
}
return (opens);
}
static int
g_raid_consumer_is_busy(struct g_raid_softc *sc, struct g_consumer *cp)
{
if (cp->index > 0) {
G_RAID_DEBUG1(2, sc,
"I/O requests for %s exist, can't destroy it now.",
cp->provider->name);
return (1);
}
if (g_raid_nrequests(sc, cp) > 0) {
G_RAID_DEBUG1(2, sc,
"I/O requests for %s in queue, can't destroy it now.",
cp->provider->name);
return (1);
}
return (0);
}
static void
g_raid_destroy_consumer(void *arg, int flags __unused)
{
struct g_consumer *cp;
g_topology_assert();
cp = arg;
G_RAID_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
g_detach(cp);
g_destroy_consumer(cp);
}
void
g_raid_kill_consumer(struct g_raid_softc *sc, struct g_consumer *cp)
{
struct g_provider *pp;
int retaste_wait;
g_topology_assert_not();
g_topology_lock();
cp->private = NULL;
if (g_raid_consumer_is_busy(sc, cp))
goto out;
pp = cp->provider;
retaste_wait = 0;
if (cp->acw == 1) {
if ((pp->geom->flags & G_GEOM_WITHER) == 0)
retaste_wait = 1;
}
if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
g_access(cp, -cp->acr, -cp->acw, -cp->ace);
if (retaste_wait) {
/*
* After retaste event was send (inside g_access()), we can send
* event to detach and destroy consumer.
* A class, which has consumer to the given provider connected
* will not receive retaste event for the provider.
* This is the way how I ignore retaste events when I close
* consumers opened for write: I detach and destroy consumer
* after retaste event is sent.
*/
g_post_event(g_raid_destroy_consumer, cp, M_WAITOK, NULL);
goto out;
}
G_RAID_DEBUG(1, "Consumer %s destroyed.", pp->name);
g_detach(cp);
g_destroy_consumer(cp);
out:
g_topology_unlock();
}
static void
g_raid_orphan(struct g_consumer *cp)
{
struct g_raid_disk *disk;
g_topology_assert();
disk = cp->private;
if (disk == NULL)
return;
g_raid_event_send(disk, G_RAID_DISK_E_DISCONNECTED,
G_RAID_EVENT_DISK);
}
static int
g_raid_clean(struct g_raid_volume *vol, int acw)
{
struct g_raid_softc *sc;
int timeout;
sc = vol->v_softc;
g_topology_assert_not();
sx_assert(&sc->sc_lock, SX_XLOCKED);
// if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
// return (0);
if (!vol->v_dirty)
return (0);
if (vol->v_writes > 0)
return (0);
if (acw > 0 || (acw == -1 &&
vol->v_provider != NULL && vol->v_provider->acw > 0)) {
timeout = g_raid_clean_time - (time_uptime - vol->v_last_write);
if (timeout > 0)
return (timeout);
}
vol->v_dirty = 0;
G_RAID_DEBUG1(1, sc, "Volume %s marked as clean.",
vol->v_name);
g_raid_write_metadata(sc, vol, NULL, NULL);
return (0);
}
static void
g_raid_dirty(struct g_raid_volume *vol)
{
struct g_raid_softc *sc;
sc = vol->v_softc;
g_topology_assert_not();
sx_assert(&sc->sc_lock, SX_XLOCKED);
// if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
// return;
vol->v_dirty = 1;
G_RAID_DEBUG1(1, sc, "Volume %s marked as dirty.",
vol->v_name);
g_raid_write_metadata(sc, vol, NULL, NULL);
}
void
g_raid_tr_flush_common(struct g_raid_tr_object *tr, struct bio *bp)
{
struct g_raid_softc *sc;
struct g_raid_volume *vol;
struct g_raid_subdisk *sd;
struct bio_queue_head queue;
struct bio *cbp;
int i;
vol = tr->tro_volume;
sc = vol->v_softc;
/*
* Allocate all bios before sending any request, so we can return
* ENOMEM in nice and clean way.
*/
bioq_init(&queue);
for (i = 0; i < vol->v_disks_count; i++) {
sd = &vol->v_subdisks[i];
if (sd->sd_state == G_RAID_SUBDISK_S_NONE ||
sd->sd_state == G_RAID_SUBDISK_S_FAILED)
continue;
cbp = g_clone_bio(bp);
if (cbp == NULL)
goto failure;
cbp->bio_caller1 = sd;
bioq_insert_tail(&queue, cbp);
}
for (cbp = bioq_first(&queue); cbp != NULL;
cbp = bioq_first(&queue)) {
bioq_remove(&queue, cbp);
sd = cbp->bio_caller1;
cbp->bio_caller1 = NULL;
g_raid_subdisk_iostart(sd, cbp);
}
return;
failure:
for (cbp = bioq_first(&queue); cbp != NULL;
cbp = bioq_first(&queue)) {
bioq_remove(&queue, cbp);
g_destroy_bio(cbp);
}
if (bp->bio_error == 0)
bp->bio_error = ENOMEM;
g_raid_iodone(bp, bp->bio_error);
}
static void
g_raid_tr_kerneldump_common_done(struct bio *bp)
{
bp->bio_flags |= BIO_DONE;
}
int
g_raid_tr_kerneldump_common(struct g_raid_tr_object *tr,
void *virtual, vm_offset_t physical, off_t offset, size_t length)
{
struct g_raid_softc *sc;
struct g_raid_volume *vol;
struct bio bp;
vol = tr->tro_volume;
sc = vol->v_softc;
bzero(&bp, sizeof(bp));
bp.bio_cmd = BIO_WRITE;
bp.bio_done = g_raid_tr_kerneldump_common_done;
bp.bio_attribute = NULL;
bp.bio_offset = offset;
bp.bio_length = length;
bp.bio_data = virtual;
bp.bio_to = vol->v_provider;
g_raid_start(&bp);
while (!(bp.bio_flags & BIO_DONE)) {
G_RAID_DEBUG1(4, sc, "Poll...");
g_raid_poll(sc);
DELAY(10);
}
return (bp.bio_error != 0 ? EIO : 0);
}
static int
g_raid_dump(void *arg,
void *virtual, vm_offset_t physical, off_t offset, size_t length)
{
struct g_raid_volume *vol;
int error;
vol = (struct g_raid_volume *)arg;
G_RAID_DEBUG1(3, vol->v_softc, "Dumping at off %llu len %llu.",
(long long unsigned)offset, (long long unsigned)length);
error = G_RAID_TR_KERNELDUMP(vol->v_tr,
virtual, physical, offset, length);
return (error);
}
static void
g_raid_kerneldump(struct g_raid_softc *sc, struct bio *bp)
{
struct g_kerneldump *gkd;
struct g_provider *pp;
struct g_raid_volume *vol;
gkd = (struct g_kerneldump*)bp->bio_data;
pp = bp->bio_to;
vol = pp->private;
g_trace(G_T_TOPOLOGY, "g_raid_kerneldump(%s, %jd, %jd)",
pp->name, (intmax_t)gkd->offset, (intmax_t)gkd->length);
gkd->di.dumper = g_raid_dump;
gkd->di.priv = vol;
gkd->di.blocksize = vol->v_sectorsize;
gkd->di.maxiosize = DFLTPHYS;
gkd->di.mediaoffset = gkd->offset;
if ((gkd->offset + gkd->length) > vol->v_mediasize)
gkd->length = vol->v_mediasize - gkd->offset;
gkd->di.mediasize = gkd->length;
g_io_deliver(bp, 0);
}
static void
g_raid_start(struct bio *bp)
{
struct g_raid_softc *sc;
sc = bp->bio_to->geom->softc;
/*
* If sc == NULL or there are no valid disks, provider's error
* should be set and g_raid_start() should not be called at all.
*/
// KASSERT(sc != NULL && sc->sc_state == G_RAID_VOLUME_S_RUNNING,
// ("Provider's error should be set (error=%d)(mirror=%s).",
// bp->bio_to->error, bp->bio_to->name));
G_RAID_LOGREQ(3, bp, "Request received.");
switch (bp->bio_cmd) {
case BIO_READ:
case BIO_WRITE:
case BIO_DELETE:
case BIO_FLUSH:
break;
case BIO_GETATTR:
if (!strcmp(bp->bio_attribute, "GEOM::kerneldump"))
g_raid_kerneldump(sc, bp);
else
g_io_deliver(bp, EOPNOTSUPP);
return;
default:
g_io_deliver(bp, EOPNOTSUPP);
return;
}
mtx_lock(&sc->sc_queue_mtx);
bioq_disksort(&sc->sc_queue, bp);
mtx_unlock(&sc->sc_queue_mtx);
if (!dumping) {
G_RAID_DEBUG1(4, sc, "Waking up %p.", sc);
wakeup(sc);
}
}
static int
g_raid_bio_overlaps(const struct bio *bp, off_t lstart, off_t len)
{
/*
* 5 cases:
* (1) bp entirely below NO
* (2) bp entirely above NO
* (3) bp start below, but end in range YES
* (4) bp entirely within YES
* (5) bp starts within, ends above YES
*
* lock range 10-19 (offset 10 length 10)
* (1) 1-5: first if kicks it out
* (2) 30-35: second if kicks it out
* (3) 5-15: passes both ifs
* (4) 12-14: passes both ifs
* (5) 19-20: passes both
*/
off_t lend = lstart + len - 1;
off_t bstart = bp->bio_offset;
off_t bend = bp->bio_offset + bp->bio_length - 1;
if (bend < lstart)
return (0);
if (lend < bstart)
return (0);
return (1);
}
static int
g_raid_is_in_locked_range(struct g_raid_volume *vol, const struct bio *bp)
{
struct g_raid_lock *lp;
sx_assert(&vol->v_softc->sc_lock, SX_LOCKED);
LIST_FOREACH(lp, &vol->v_locks, l_next) {
if (g_raid_bio_overlaps(bp, lp->l_offset, lp->l_length))
return (1);
}
return (0);
}
static void
g_raid_start_request(struct bio *bp)
{
struct g_raid_softc *sc;
struct g_raid_volume *vol;
sc = bp->bio_to->geom->softc;
sx_assert(&sc->sc_lock, SX_LOCKED);
vol = bp->bio_to->private;
/*
* Check to see if this item is in a locked range. If so,
* queue it to our locked queue and return. We'll requeue
* it when the range is unlocked. Internal I/O for the
* rebuild/rescan/recovery process is excluded from this
* check so we can actually do the recovery.
*/
if (!(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL) &&
g_raid_is_in_locked_range(vol, bp)) {
G_RAID_LOGREQ(3, bp, "Defer request.");
bioq_insert_tail(&vol->v_locked, bp);
return;
}
/*
* If we're actually going to do the write/delete, then
* update the idle stats for the volume.
*/
if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
if (!vol->v_dirty)
g_raid_dirty(vol);
vol->v_writes++;
}
/*
* Put request onto inflight queue, so we can check if new
* synchronization requests don't collide with it. Then tell
* the transformation layer to start the I/O.
*/
bioq_insert_tail(&vol->v_inflight, bp);
G_RAID_LOGREQ(4, bp, "Request started");
G_RAID_TR_IOSTART(vol->v_tr, bp);
}
static void
g_raid_finish_with_locked_ranges(struct g_raid_volume *vol, struct bio *bp)
{
off_t off, len;
struct bio *nbp;
struct g_raid_lock *lp;
vol->v_pending_lock = 0;
LIST_FOREACH(lp, &vol->v_locks, l_next) {
if (lp->l_pending) {
off = lp->l_offset;
len = lp->l_length;
lp->l_pending = 0;
TAILQ_FOREACH(nbp, &vol->v_inflight.queue, bio_queue) {
if (g_raid_bio_overlaps(nbp, off, len))
lp->l_pending++;
}
if (lp->l_pending) {
vol->v_pending_lock = 1;
G_RAID_DEBUG1(4, vol->v_softc,
"Deferred lock(%jd, %jd) has %d pending",
(intmax_t)off, (intmax_t)(off + len),
lp->l_pending);
continue;
}
G_RAID_DEBUG1(4, vol->v_softc,
"Deferred lock of %jd to %jd completed",
(intmax_t)off, (intmax_t)(off + len));
G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
}
}
}
void
g_raid_iodone(struct bio *bp, int error)
{
struct g_raid_softc *sc;
struct g_raid_volume *vol;
sc = bp->bio_to->geom->softc;
sx_assert(&sc->sc_lock, SX_LOCKED);
vol = bp->bio_to->private;
G_RAID_LOGREQ(3, bp, "Request done: %d.", error);
/* Update stats if we done write/delete. */
if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
vol->v_writes--;
vol->v_last_write = time_uptime;
}
bioq_remove(&vol->v_inflight, bp);
if (vol->v_pending_lock && g_raid_is_in_locked_range(vol, bp))
g_raid_finish_with_locked_ranges(vol, bp);
getmicrouptime(&vol->v_last_done);
g_io_deliver(bp, error);
}
int
g_raid_lock_range(struct g_raid_volume *vol, off_t off, off_t len,
struct bio *ignore, void *argp)
{
struct g_raid_softc *sc;
struct g_raid_lock *lp;
struct bio *bp;
sc = vol->v_softc;
lp = malloc(sizeof(*lp), M_RAID, M_WAITOK | M_ZERO);
LIST_INSERT_HEAD(&vol->v_locks, lp, l_next);
lp->l_offset = off;
lp->l_length = len;
lp->l_callback_arg = argp;
lp->l_pending = 0;
TAILQ_FOREACH(bp, &vol->v_inflight.queue, bio_queue) {
if (bp != ignore && g_raid_bio_overlaps(bp, off, len))
lp->l_pending++;
}
/*
* If there are any writes that are pending, we return EBUSY. All
* callers will have to wait until all pending writes clear.
*/
if (lp->l_pending > 0) {
vol->v_pending_lock = 1;
G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd deferred %d pend",
(intmax_t)off, (intmax_t)(off+len), lp->l_pending);
return (EBUSY);
}
G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd",
(intmax_t)off, (intmax_t)(off+len));
G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
return (0);
}
int
g_raid_unlock_range(struct g_raid_volume *vol, off_t off, off_t len)
{
struct g_raid_lock *lp;
struct g_raid_softc *sc;
struct bio *bp;
sc = vol->v_softc;
LIST_FOREACH(lp, &vol->v_locks, l_next) {
if (lp->l_offset == off && lp->l_length == len) {
LIST_REMOVE(lp, l_next);
/* XXX
* Right now we just put them all back on the queue
* and hope for the best. We hope this because any
* locked ranges will go right back on this list
* when the worker thread runs.
* XXX
*/
G_RAID_DEBUG1(4, sc, "Unlocked %jd to %jd",
(intmax_t)lp->l_offset,
(intmax_t)(lp->l_offset+lp->l_length));
mtx_lock(&sc->sc_queue_mtx);
while ((bp = bioq_takefirst(&vol->v_locked)) != NULL)
bioq_disksort(&sc->sc_queue, bp);
mtx_unlock(&sc->sc_queue_mtx);
free(lp, M_RAID);
return (0);
}
}
return (EINVAL);
}
void
g_raid_subdisk_iostart(struct g_raid_subdisk *sd, struct bio *bp)
{
struct g_consumer *cp;
struct g_raid_disk *disk, *tdisk;
bp->bio_caller1 = sd;
/*
* Make sure that the disk is present. Generally it is a task of
* transformation layers to not send requests to absent disks, but
* it is better to be safe and report situation then sorry.
*/
if (sd->sd_disk == NULL) {
G_RAID_LOGREQ(0, bp, "Warning! I/O request to an absent disk!");
nodisk:
bp->bio_from = NULL;
bp->bio_to = NULL;
bp->bio_error = ENXIO;
g_raid_disk_done(bp);
return;
}
disk = sd->sd_disk;
if (disk->d_state != G_RAID_DISK_S_ACTIVE &&
disk->d_state != G_RAID_DISK_S_FAILED) {
G_RAID_LOGREQ(0, bp, "Warning! I/O request to a disk in a "
"wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
goto nodisk;
}
cp = disk->d_consumer;
bp->bio_from = cp;
bp->bio_to = cp->provider;
cp->index++;
/* Update average disks load. */
TAILQ_FOREACH(tdisk, &sd->sd_softc->sc_disks, d_next) {
if (tdisk->d_consumer == NULL)
tdisk->d_load = 0;
else
tdisk->d_load = (tdisk->d_consumer->index *
G_RAID_SUBDISK_LOAD_SCALE + tdisk->d_load * 7) / 8;
}
disk->d_last_offset = bp->bio_offset + bp->bio_length;
if (dumping) {
G_RAID_LOGREQ(3, bp, "Sending dumping request.");
if (bp->bio_cmd == BIO_WRITE) {
bp->bio_error = g_raid_subdisk_kerneldump(sd,
bp->bio_data, 0, bp->bio_offset, bp->bio_length);
} else
bp->bio_error = EOPNOTSUPP;
g_raid_disk_done(bp);
} else {
bp->bio_done = g_raid_disk_done;
bp->bio_offset += sd->sd_offset;
G_RAID_LOGREQ(3, bp, "Sending request.");
g_io_request(bp, cp);
}
}
int
g_raid_subdisk_kerneldump(struct g_raid_subdisk *sd,
void *virtual, vm_offset_t physical, off_t offset, size_t length)
{
if (sd->sd_disk == NULL)
return (ENXIO);
if (sd->sd_disk->d_kd.di.dumper == NULL)
return (EOPNOTSUPP);
return (dump_write(&sd->sd_disk->d_kd.di,
virtual, physical,
sd->sd_disk->d_kd.di.mediaoffset + sd->sd_offset + offset,
length));
}
static void
g_raid_disk_done(struct bio *bp)
{
struct g_raid_softc *sc;
struct g_raid_subdisk *sd;
sd = bp->bio_caller1;
sc = sd->sd_softc;
mtx_lock(&sc->sc_queue_mtx);
bioq_disksort(&sc->sc_queue, bp);
mtx_unlock(&sc->sc_queue_mtx);
if (!dumping)
wakeup(sc);
}
static void
g_raid_disk_done_request(struct bio *bp)
{
struct g_raid_softc *sc;
struct g_raid_disk *disk;
struct g_raid_subdisk *sd;
struct g_raid_volume *vol;
g_topology_assert_not();
G_RAID_LOGREQ(3, bp, "Disk request done: %d.", bp->bio_error);
sd = bp->bio_caller1;
sc = sd->sd_softc;
vol = sd->sd_volume;
if (bp->bio_from != NULL) {
bp->bio_from->index--;
disk = bp->bio_from->private;
if (disk == NULL)
g_raid_kill_consumer(sc, bp->bio_from);
}
bp->bio_offset -= sd->sd_offset;
G_RAID_TR_IODONE(vol->v_tr, sd, bp);
}
static void
g_raid_handle_event(struct g_raid_softc *sc, struct g_raid_event *ep)
{
if ((ep->e_flags & G_RAID_EVENT_VOLUME) != 0)
ep->e_error = g_raid_update_volume(ep->e_tgt, ep->e_event);
else if ((ep->e_flags & G_RAID_EVENT_DISK) != 0)
ep->e_error = g_raid_update_disk(ep->e_tgt, ep->e_event);
else if ((ep->e_flags & G_RAID_EVENT_SUBDISK) != 0)
ep->e_error = g_raid_update_subdisk(ep->e_tgt, ep->e_event);
else
ep->e_error = g_raid_update_node(ep->e_tgt, ep->e_event);
if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) {
KASSERT(ep->e_error == 0,
("Error cannot be handled."));
g_raid_event_free(ep);
} else {
ep->e_flags |= G_RAID_EVENT_DONE;
G_RAID_DEBUG1(4, sc, "Waking up %p.", ep);
mtx_lock(&sc->sc_queue_mtx);
wakeup(ep);
mtx_unlock(&sc->sc_queue_mtx);
}
}
/*
* Worker thread.
*/
static void
g_raid_worker(void *arg)
{
struct g_raid_softc *sc;
struct g_raid_event *ep;
struct g_raid_volume *vol;
struct bio *bp;
struct timeval now, t;
int timeout, rv;
sc = arg;
thread_lock(curthread);
sched_prio(curthread, PRIBIO);
thread_unlock(curthread);
sx_xlock(&sc->sc_lock);
for (;;) {
mtx_lock(&sc->sc_queue_mtx);
/*
* First take a look at events.
* This is important to handle events before any I/O requests.
*/
bp = NULL;
vol = NULL;
rv = 0;
ep = TAILQ_FIRST(&sc->sc_events);
if (ep != NULL)
TAILQ_REMOVE(&sc->sc_events, ep, e_next);
else if ((bp = bioq_takefirst(&sc->sc_queue)) != NULL)
;
else {
getmicrouptime(&now);
t = now;
TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
if (bioq_first(&vol->v_inflight) == NULL &&
vol->v_tr &&
timevalcmp(&vol->v_last_done, &t, < ))
t = vol->v_last_done;
}
timevalsub(&t, &now);
timeout = g_raid_idle_threshold +
t.tv_sec * 1000000 + t.tv_usec;
if (timeout > 0) {
/*
* Two steps to avoid overflows at HZ=1000
* and idle timeouts > 2.1s. Some rounding
* errors can occur, but they are < 1tick,
* which is deemed to be close enough for
* this purpose.
*/
int micpertic = 1000000 / hz;
timeout = (timeout + micpertic - 1) / micpertic;
sx_xunlock(&sc->sc_lock);
MSLEEP(rv, sc, &sc->sc_queue_mtx,
PRIBIO | PDROP, "-", timeout);
sx_xlock(&sc->sc_lock);
goto process;
} else
rv = EWOULDBLOCK;
}
mtx_unlock(&sc->sc_queue_mtx);
process:
if (ep != NULL) {
g_raid_handle_event(sc, ep);
} else if (bp != NULL) {
if (bp->bio_to != NULL &&
bp->bio_to->geom == sc->sc_geom)
g_raid_start_request(bp);
else
g_raid_disk_done_request(bp);
} else if (rv == EWOULDBLOCK) {
TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
if (vol->v_writes == 0 && vol->v_dirty)
g_raid_clean(vol, -1);
if (bioq_first(&vol->v_inflight) == NULL &&
vol->v_tr) {
t.tv_sec = g_raid_idle_threshold / 1000000;
t.tv_usec = g_raid_idle_threshold % 1000000;
timevaladd(&t, &vol->v_last_done);
getmicrouptime(&now);
if (timevalcmp(&t, &now, <= )) {
G_RAID_TR_IDLE(vol->v_tr);
vol->v_last_done = now;
}
}
}
}
if (sc->sc_stopping == G_RAID_DESTROY_HARD)
g_raid_destroy_node(sc, 1); /* May not return. */
}
}
static void
g_raid_poll(struct g_raid_softc *sc)
{
struct g_raid_event *ep;
struct bio *bp;
sx_xlock(&sc->sc_lock);
mtx_lock(&sc->sc_queue_mtx);
/*
* First take a look at events.
* This is important to handle events before any I/O requests.
*/
ep = TAILQ_FIRST(&sc->sc_events);
if (ep != NULL) {
TAILQ_REMOVE(&sc->sc_events, ep, e_next);
mtx_unlock(&sc->sc_queue_mtx);
g_raid_handle_event(sc, ep);
goto out;
}
bp = bioq_takefirst(&sc->sc_queue);
if (bp != NULL) {
mtx_unlock(&sc->sc_queue_mtx);
if (bp->bio_from == NULL ||
bp->bio_from->geom != sc->sc_geom)
g_raid_start_request(bp);
else
g_raid_disk_done_request(bp);
}
out:
sx_xunlock(&sc->sc_lock);
}
static void
g_raid_launch_provider(struct g_raid_volume *vol)
{
struct g_raid_disk *disk;
struct g_raid_softc *sc;
struct g_provider *pp;
char name[G_RAID_MAX_VOLUMENAME];
off_t off;
sc = vol->v_softc;
sx_assert(&sc->sc_lock, SX_LOCKED);
g_topology_lock();
/* Try to name provider with volume name. */
snprintf(name, sizeof(name), "raid/%s", vol->v_name);
if (g_raid_name_format == 0 || vol->v_name[0] == 0 ||
g_provider_by_name(name) != NULL) {
/* Otherwise use sequential volume number. */
snprintf(name, sizeof(name), "raid/r%d", vol->v_global_id);
}
pp = g_new_providerf(sc->sc_geom, "%s", name);
pp->private = vol;
pp->mediasize = vol->v_mediasize;
pp->sectorsize = vol->v_sectorsize;
pp->stripesize = 0;
pp->stripeoffset = 0;
if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 ||
vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE ||
vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) {
if ((disk = vol->v_subdisks[0].sd_disk) != NULL &&
disk->d_consumer != NULL &&
disk->d_consumer->provider != NULL) {
pp->stripesize = disk->d_consumer->provider->stripesize;
off = disk->d_consumer->provider->stripeoffset;
pp->stripeoffset = off + vol->v_subdisks[0].sd_offset;
if (off > 0)
pp->stripeoffset %= off;
}
if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) {
pp->stripesize *= (vol->v_disks_count - 1);
pp->stripeoffset *= (vol->v_disks_count - 1);
}
} else
pp->stripesize = vol->v_strip_size;
vol->v_provider = pp;
g_error_provider(pp, 0);
g_topology_unlock();
G_RAID_DEBUG1(0, sc, "Provider %s for volume %s created.",
pp->name, vol->v_name);
}
static void
g_raid_destroy_provider(struct g_raid_volume *vol)
{
struct g_raid_softc *sc;
struct g_provider *pp;
struct bio *bp, *tmp;
g_topology_assert_not();
sc = vol->v_softc;
pp = vol->v_provider;
KASSERT(pp != NULL, ("NULL provider (volume=%s).", vol->v_name));
g_topology_lock();
g_error_provider(pp, ENXIO);
mtx_lock(&sc->sc_queue_mtx);
TAILQ_FOREACH_SAFE(bp, &sc->sc_queue.queue, bio_queue, tmp) {
if (bp->bio_to != pp)
continue;
bioq_remove(&sc->sc_queue, bp);
g_io_deliver(bp, ENXIO);
}
mtx_unlock(&sc->sc_queue_mtx);
G_RAID_DEBUG1(0, sc, "Provider %s for volume %s destroyed.",
pp->name, vol->v_name);
g_wither_provider(pp, ENXIO);
g_topology_unlock();
vol->v_provider = NULL;
}
/*
* Update device state.
*/
static int
g_raid_update_volume(struct g_raid_volume *vol, u_int event)
{
struct g_raid_softc *sc;
sc = vol->v_softc;
sx_assert(&sc->sc_lock, SX_XLOCKED);
G_RAID_DEBUG1(2, sc, "Event %s for volume %s.",
g_raid_volume_event2str(event),
vol->v_name);
switch (event) {
case G_RAID_VOLUME_E_DOWN:
if (vol->v_provider != NULL)
g_raid_destroy_provider(vol);
break;
case G_RAID_VOLUME_E_UP:
if (vol->v_provider == NULL)
g_raid_launch_provider(vol);
break;
case G_RAID_VOLUME_E_START:
if (vol->v_tr)
G_RAID_TR_START(vol->v_tr);
return (0);
default:
if (sc->sc_md)
G_RAID_MD_VOLUME_EVENT(sc->sc_md, vol, event);
return (0);
}
/* Manage root mount release. */
if (vol->v_starting) {
vol->v_starting = 0;
G_RAID_DEBUG1(1, sc, "root_mount_rel %p", vol->v_rootmount);
root_mount_rel(vol->v_rootmount);
vol->v_rootmount = NULL;
}
if (vol->v_stopping && vol->v_provider_open == 0)
g_raid_destroy_volume(vol);
return (0);
}
/*
* Update subdisk state.
*/
static int
g_raid_update_subdisk(struct g_raid_subdisk *sd, u_int event)
{
struct g_raid_softc *sc;
struct g_raid_volume *vol;
sc = sd->sd_softc;
vol = sd->sd_volume;
sx_assert(&sc->sc_lock, SX_XLOCKED);
G_RAID_DEBUG1(2, sc, "Event %s for subdisk %s:%d-%s.",
g_raid_subdisk_event2str(event),
vol->v_name, sd->sd_pos,
sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
if (vol->v_tr)
G_RAID_TR_EVENT(vol->v_tr, sd, event);
return (0);
}
/*
* Update disk state.
*/
static int
g_raid_update_disk(struct g_raid_disk *disk, u_int event)
{
struct g_raid_softc *sc;
sc = disk->d_softc;
sx_assert(&sc->sc_lock, SX_XLOCKED);
G_RAID_DEBUG1(2, sc, "Event %s for disk %s.",
g_raid_disk_event2str(event),
g_raid_get_diskname(disk));
if (sc->sc_md)
G_RAID_MD_EVENT(sc->sc_md, disk, event);
return (0);
}
/*
* Node event.
*/
static int
g_raid_update_node(struct g_raid_softc *sc, u_int event)
{
sx_assert(&sc->sc_lock, SX_XLOCKED);
G_RAID_DEBUG1(2, sc, "Event %s for the array.",
g_raid_node_event2str(event));
if (event == G_RAID_NODE_E_WAKE)
return (0);
if (sc->sc_md)
G_RAID_MD_EVENT(sc->sc_md, NULL, event);
return (0);
}
static int
g_raid_access(struct g_provider *pp, int acr, int acw, int ace)
{
struct g_raid_volume *vol;
struct g_raid_softc *sc;
int dcw, opens, error = 0;
g_topology_assert();
sc = pp->geom->softc;
vol = pp->private;
KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
KASSERT(vol != NULL, ("NULL volume (provider=%s).", pp->name));
G_RAID_DEBUG1(2, sc, "Access request for %s: r%dw%de%d.", pp->name,
acr, acw, ace);
dcw = pp->acw + acw;
g_topology_unlock();
sx_xlock(&sc->sc_lock);
/* Deny new opens while dying. */
if (sc->sc_stopping != 0 && (acr > 0 || acw > 0 || ace > 0)) {
error = ENXIO;
goto out;
}
if (dcw == 0 && vol->v_dirty)
g_raid_clean(vol, dcw);
vol->v_provider_open += acr + acw + ace;
/* Handle delayed node destruction. */
if (sc->sc_stopping == G_RAID_DESTROY_DELAYED &&
vol->v_provider_open == 0) {
/* Count open volumes. */
opens = g_raid_nopens(sc);
if (opens == 0) {
sc->sc_stopping = G_RAID_DESTROY_HARD;
/* Wake up worker to make it selfdestruct. */
g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
}
}
/* Handle open volume destruction. */
if (vol->v_stopping && vol->v_provider_open == 0)
g_raid_destroy_volume(vol);
out:
sx_xunlock(&sc->sc_lock);
g_topology_lock();
return (error);
}
struct g_raid_softc *
g_raid_create_node(struct g_class *mp,
const char *name, struct g_raid_md_object *md)
{
struct g_raid_softc *sc;
struct g_geom *gp;
int error;
g_topology_assert();
G_RAID_DEBUG(1, "Creating array %s.", name);
gp = g_new_geomf(mp, "%s", name);
sc = malloc(sizeof(*sc), M_RAID, M_WAITOK | M_ZERO);
gp->start = g_raid_start;
gp->orphan = g_raid_orphan;
gp->access = g_raid_access;
gp->dumpconf = g_raid_dumpconf;
sc->sc_md = md;
sc->sc_geom = gp;
sc->sc_flags = 0;
TAILQ_INIT(&sc->sc_volumes);
TAILQ_INIT(&sc->sc_disks);
2012-04-29 19:40:50 +00:00
sx_init(&sc->sc_lock, "graid:lock");
mtx_init(&sc->sc_queue_mtx, "graid:queue", NULL, MTX_DEF);
TAILQ_INIT(&sc->sc_events);
bioq_init(&sc->sc_queue);
gp->softc = sc;
error = kproc_create(g_raid_worker, sc, &sc->sc_worker, 0, 0,
"g_raid %s", name);
if (error != 0) {
G_RAID_DEBUG(0, "Cannot create kernel thread for %s.", name);
mtx_destroy(&sc->sc_queue_mtx);
sx_destroy(&sc->sc_lock);
g_destroy_geom(sc->sc_geom);
free(sc, M_RAID);
return (NULL);
}
G_RAID_DEBUG1(0, sc, "Array %s created.", name);
return (sc);
}
struct g_raid_volume *
g_raid_create_volume(struct g_raid_softc *sc, const char *name, int id)
{
struct g_raid_volume *vol, *vol1;
int i;
G_RAID_DEBUG1(1, sc, "Creating volume %s.", name);
vol = malloc(sizeof(*vol), M_RAID, M_WAITOK | M_ZERO);
vol->v_softc = sc;
strlcpy(vol->v_name, name, G_RAID_MAX_VOLUMENAME);
vol->v_state = G_RAID_VOLUME_S_STARTING;
vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN;
vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_UNKNOWN;
bioq_init(&vol->v_inflight);
bioq_init(&vol->v_locked);
LIST_INIT(&vol->v_locks);
for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
vol->v_subdisks[i].sd_softc = sc;
vol->v_subdisks[i].sd_volume = vol;
vol->v_subdisks[i].sd_pos = i;
vol->v_subdisks[i].sd_state = G_RAID_DISK_S_NONE;
}
/* Find free ID for this volume. */
g_topology_lock();
vol1 = vol;
if (id >= 0) {
LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
if (vol1->v_global_id == id)
break;
}
}
if (vol1 != NULL) {
for (id = 0; ; id++) {
LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
if (vol1->v_global_id == id)
break;
}
if (vol1 == NULL)
break;
}
}
vol->v_global_id = id;
LIST_INSERT_HEAD(&g_raid_volumes, vol, v_global_next);
g_topology_unlock();
/* Delay root mounting. */
vol->v_rootmount = root_mount_hold("GRAID");
G_RAID_DEBUG1(1, sc, "root_mount_hold %p", vol->v_rootmount);
vol->v_starting = 1;
TAILQ_INSERT_TAIL(&sc->sc_volumes, vol, v_next);
return (vol);
}
struct g_raid_disk *
g_raid_create_disk(struct g_raid_softc *sc)
{
struct g_raid_disk *disk;
G_RAID_DEBUG1(1, sc, "Creating disk.");
disk = malloc(sizeof(*disk), M_RAID, M_WAITOK | M_ZERO);
disk->d_softc = sc;
disk->d_state = G_RAID_DISK_S_NONE;
TAILQ_INIT(&disk->d_subdisks);
TAILQ_INSERT_TAIL(&sc->sc_disks, disk, d_next);
return (disk);
}
int g_raid_start_volume(struct g_raid_volume *vol)
{
struct g_raid_tr_class *class;
struct g_raid_tr_object *obj;
int status;
G_RAID_DEBUG1(2, vol->v_softc, "Starting volume %s.", vol->v_name);
LIST_FOREACH(class, &g_raid_tr_classes, trc_list) {
G_RAID_DEBUG1(2, vol->v_softc,
"Tasting volume %s for %s transformation.",
vol->v_name, class->name);
obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
M_WAITOK);
obj->tro_class = class;
obj->tro_volume = vol;
status = G_RAID_TR_TASTE(obj, vol);
if (status != G_RAID_TR_TASTE_FAIL)
break;
kobj_delete((kobj_t)obj, M_RAID);
}
if (class == NULL) {
G_RAID_DEBUG1(0, vol->v_softc,
"No transformation module found for %s.",
vol->v_name);
vol->v_tr = NULL;
g_raid_change_volume_state(vol, G_RAID_VOLUME_S_UNSUPPORTED);
g_raid_event_send(vol, G_RAID_VOLUME_E_DOWN,
G_RAID_EVENT_VOLUME);
return (-1);
}
G_RAID_DEBUG1(2, vol->v_softc,
"Transformation module %s chosen for %s.",
class->name, vol->v_name);
vol->v_tr = obj;
return (0);
}
int
g_raid_destroy_node(struct g_raid_softc *sc, int worker)
{
struct g_raid_volume *vol, *tmpv;
struct g_raid_disk *disk, *tmpd;
int error = 0;
sc->sc_stopping = G_RAID_DESTROY_HARD;
TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tmpv) {
if (g_raid_destroy_volume(vol))
error = EBUSY;
}
if (error)
return (error);
TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tmpd) {
if (g_raid_destroy_disk(disk))
error = EBUSY;
}
if (error)
return (error);
if (sc->sc_md) {
G_RAID_MD_FREE(sc->sc_md);
kobj_delete((kobj_t)sc->sc_md, M_RAID);
sc->sc_md = NULL;
}
if (sc->sc_geom != NULL) {
G_RAID_DEBUG1(0, sc, "Array %s destroyed.", sc->sc_name);
g_topology_lock();
sc->sc_geom->softc = NULL;
g_wither_geom(sc->sc_geom, ENXIO);
g_topology_unlock();
sc->sc_geom = NULL;
} else
G_RAID_DEBUG(1, "Array destroyed.");
if (worker) {
g_raid_event_cancel(sc, sc);
mtx_destroy(&sc->sc_queue_mtx);
sx_xunlock(&sc->sc_lock);
sx_destroy(&sc->sc_lock);
wakeup(&sc->sc_stopping);
free(sc, M_RAID);
curthread->td_pflags &= ~TDP_GEOM;
G_RAID_DEBUG(1, "Thread exiting.");
kproc_exit(0);
} else {
/* Wake up worker to make it selfdestruct. */
g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
}
return (0);
}
int
g_raid_destroy_volume(struct g_raid_volume *vol)
{
struct g_raid_softc *sc;
struct g_raid_disk *disk;
int i;
sc = vol->v_softc;
G_RAID_DEBUG1(2, sc, "Destroying volume %s.", vol->v_name);
vol->v_stopping = 1;
if (vol->v_state != G_RAID_VOLUME_S_STOPPED) {
if (vol->v_tr) {
G_RAID_TR_STOP(vol->v_tr);
return (EBUSY);
} else
vol->v_state = G_RAID_VOLUME_S_STOPPED;
}
if (g_raid_event_check(sc, vol) != 0)
return (EBUSY);
if (vol->v_provider != NULL)
return (EBUSY);
if (vol->v_provider_open != 0)
return (EBUSY);
if (vol->v_tr) {
G_RAID_TR_FREE(vol->v_tr);
kobj_delete((kobj_t)vol->v_tr, M_RAID);
vol->v_tr = NULL;
}
if (vol->v_rootmount)
root_mount_rel(vol->v_rootmount);
g_topology_lock();
LIST_REMOVE(vol, v_global_next);
g_topology_unlock();
TAILQ_REMOVE(&sc->sc_volumes, vol, v_next);
for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
g_raid_event_cancel(sc, &vol->v_subdisks[i]);
disk = vol->v_subdisks[i].sd_disk;
if (disk == NULL)
continue;
TAILQ_REMOVE(&disk->d_subdisks, &vol->v_subdisks[i], sd_next);
}
G_RAID_DEBUG1(2, sc, "Volume %s destroyed.", vol->v_name);
if (sc->sc_md)
G_RAID_MD_FREE_VOLUME(sc->sc_md, vol);
g_raid_event_cancel(sc, vol);
free(vol, M_RAID);
if (sc->sc_stopping == G_RAID_DESTROY_HARD) {
/* Wake up worker to let it selfdestruct. */
g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
}
return (0);
}
int
g_raid_destroy_disk(struct g_raid_disk *disk)
{
struct g_raid_softc *sc;
struct g_raid_subdisk *sd, *tmp;
sc = disk->d_softc;
G_RAID_DEBUG1(2, sc, "Destroying disk.");
if (disk->d_consumer) {
g_raid_kill_consumer(sc, disk->d_consumer);
disk->d_consumer = NULL;
}
TAILQ_FOREACH_SAFE(sd, &disk->d_subdisks, sd_next, tmp) {
g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE);
g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
G_RAID_EVENT_SUBDISK);
TAILQ_REMOVE(&disk->d_subdisks, sd, sd_next);
sd->sd_disk = NULL;
}
TAILQ_REMOVE(&sc->sc_disks, disk, d_next);
if (sc->sc_md)
G_RAID_MD_FREE_DISK(sc->sc_md, disk);
g_raid_event_cancel(sc, disk);
free(disk, M_RAID);
return (0);
}
int
g_raid_destroy(struct g_raid_softc *sc, int how)
{
int opens;
g_topology_assert_not();
if (sc == NULL)
return (ENXIO);
sx_assert(&sc->sc_lock, SX_XLOCKED);
/* Count open volumes. */
opens = g_raid_nopens(sc);
/* React on some opened volumes. */
if (opens > 0) {
switch (how) {
case G_RAID_DESTROY_SOFT:
G_RAID_DEBUG1(1, sc,
"%d volumes are still open.",
opens);
return (EBUSY);
case G_RAID_DESTROY_DELAYED:
G_RAID_DEBUG1(1, sc,
"Array will be destroyed on last close.");
sc->sc_stopping = G_RAID_DESTROY_DELAYED;
return (EBUSY);
case G_RAID_DESTROY_HARD:
G_RAID_DEBUG1(1, sc,
"%d volumes are still open.",
opens);
}
}
/* Mark node for destruction. */
sc->sc_stopping = G_RAID_DESTROY_HARD;
/* Wake up worker to let it selfdestruct. */
g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
/* Sleep until node destroyed. */
sx_sleep(&sc->sc_stopping, &sc->sc_lock,
PRIBIO | PDROP, "r:destroy", 0);
return (0);
}
static void
g_raid_taste_orphan(struct g_consumer *cp)
{
KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
cp->provider->name));
}
static struct g_geom *
g_raid_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
{
struct g_consumer *cp;
struct g_geom *gp, *geom;
struct g_raid_md_class *class;
struct g_raid_md_object *obj;
int status;
g_topology_assert();
g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
G_RAID_DEBUG(2, "Tasting provider %s.", pp->name);
gp = g_new_geomf(mp, "mirror:taste");
/*
* This orphan function should be never called.
*/
gp->orphan = g_raid_taste_orphan;
cp = g_new_consumer(gp);
g_attach(cp, pp);
geom = NULL;
LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
G_RAID_DEBUG(2, "Tasting provider %s for %s metadata.",
pp->name, class->name);
obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
M_WAITOK);
obj->mdo_class = class;
status = G_RAID_MD_TASTE(obj, mp, cp, &geom);
if (status != G_RAID_MD_TASTE_NEW)
kobj_delete((kobj_t)obj, M_RAID);
if (status != G_RAID_MD_TASTE_FAIL)
break;
}
g_detach(cp);
g_destroy_consumer(cp);
g_destroy_geom(gp);
G_RAID_DEBUG(2, "Tasting provider %s done.", pp->name);
return (geom);
}
int
g_raid_create_node_format(const char *format, struct g_geom **gp)
{
struct g_raid_md_class *class;
struct g_raid_md_object *obj;
int status;
G_RAID_DEBUG(2, "Creating array for %s metadata.", format);
LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
if (strcasecmp(class->name, format) == 0)
break;
}
if (class == NULL) {
G_RAID_DEBUG(1, "No support for %s metadata.", format);
return (G_RAID_MD_TASTE_FAIL);
}
obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
M_WAITOK);
obj->mdo_class = class;
status = G_RAID_MD_CREATE(obj, &g_raid_class, gp);
if (status != G_RAID_MD_TASTE_NEW)
kobj_delete((kobj_t)obj, M_RAID);
return (status);
}
static int
g_raid_destroy_geom(struct gctl_req *req __unused,
struct g_class *mp __unused, struct g_geom *gp)
{
struct g_raid_softc *sc;
int error;
g_topology_unlock();
sc = gp->softc;
sx_xlock(&sc->sc_lock);
g_cancel_event(sc);
error = g_raid_destroy(gp->softc, G_RAID_DESTROY_SOFT);
if (error != 0)
sx_xunlock(&sc->sc_lock);
g_topology_lock();
return (error);
}
void g_raid_write_metadata(struct g_raid_softc *sc, struct g_raid_volume *vol,
struct g_raid_subdisk *sd, struct g_raid_disk *disk)
{
if (sc->sc_stopping == G_RAID_DESTROY_HARD)
return;
if (sc->sc_md)
G_RAID_MD_WRITE(sc->sc_md, vol, sd, disk);
}
void g_raid_fail_disk(struct g_raid_softc *sc,
struct g_raid_subdisk *sd, struct g_raid_disk *disk)
{
if (disk == NULL)
disk = sd->sd_disk;
if (disk == NULL) {
G_RAID_DEBUG1(0, sc, "Warning! Fail request to an absent disk!");
return;
}
if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
G_RAID_DEBUG1(0, sc, "Warning! Fail request to a disk in a "
"wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
return;
}
if (sc->sc_md)
G_RAID_MD_FAIL_DISK(sc->sc_md, sd, disk);
}
static void
g_raid_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
struct g_consumer *cp, struct g_provider *pp)
{
struct g_raid_softc *sc;
struct g_raid_volume *vol;
struct g_raid_subdisk *sd;
struct g_raid_disk *disk;
int i, s;
g_topology_assert();
sc = gp->softc;
if (sc == NULL)
return;
if (pp != NULL) {
vol = pp->private;
g_topology_unlock();
sx_xlock(&sc->sc_lock);
sbuf_printf(sb, "%s<Label>%s</Label>\n", indent,
vol->v_name);
sbuf_printf(sb, "%s<RAIDLevel>%s</RAIDLevel>\n", indent,
g_raid_volume_level2str(vol->v_raid_level,
vol->v_raid_level_qualifier));
sbuf_printf(sb,
"%s<Transformation>%s</Transformation>\n", indent,
vol->v_tr ? vol->v_tr->tro_class->name : "NONE");
sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
vol->v_disks_count);
sbuf_printf(sb, "%s<Strip>%u</Strip>\n", indent,
vol->v_strip_size);
sbuf_printf(sb, "%s<State>%s</State>\n", indent,
g_raid_volume_state2str(vol->v_state));
sbuf_printf(sb, "%s<Dirty>%s</Dirty>\n", indent,
vol->v_dirty ? "Yes" : "No");
sbuf_printf(sb, "%s<Subdisks>", indent);
for (i = 0; i < vol->v_disks_count; i++) {
sd = &vol->v_subdisks[i];
if (sd->sd_disk != NULL &&
sd->sd_disk->d_consumer != NULL) {
sbuf_printf(sb, "%s ",
g_raid_get_diskname(sd->sd_disk));
} else {
sbuf_printf(sb, "NONE ");
}
sbuf_printf(sb, "(%s",
g_raid_subdisk_state2str(sd->sd_state));
if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
sbuf_printf(sb, " %d%%",
(int)(sd->sd_rebuild_pos * 100 /
sd->sd_size));
}
sbuf_printf(sb, ")");
if (i + 1 < vol->v_disks_count)
sbuf_printf(sb, ", ");
}
sbuf_printf(sb, "</Subdisks>\n");
sx_xunlock(&sc->sc_lock);
g_topology_lock();
} else if (cp != NULL) {
disk = cp->private;
if (disk == NULL)
return;
g_topology_unlock();
sx_xlock(&sc->sc_lock);
sbuf_printf(sb, "%s<State>%s", indent,
g_raid_disk_state2str(disk->d_state));
if (!TAILQ_EMPTY(&disk->d_subdisks)) {
sbuf_printf(sb, " (");
TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
sbuf_printf(sb, "%s",
g_raid_subdisk_state2str(sd->sd_state));
if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
sbuf_printf(sb, " %d%%",
(int)(sd->sd_rebuild_pos * 100 /
sd->sd_size));
}
if (TAILQ_NEXT(sd, sd_next))
sbuf_printf(sb, ", ");
}
sbuf_printf(sb, ")");
}
sbuf_printf(sb, "</State>\n");
sbuf_printf(sb, "%s<Subdisks>", indent);
TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
sbuf_printf(sb, "r%d(%s):%d@%ju",
sd->sd_volume->v_global_id,
sd->sd_volume->v_name,
sd->sd_pos, sd->sd_offset);
if (TAILQ_NEXT(sd, sd_next))
sbuf_printf(sb, ", ");
}
sbuf_printf(sb, "</Subdisks>\n");
sbuf_printf(sb, "%s<ReadErrors>%d</ReadErrors>\n", indent,
disk->d_read_errs);
sx_xunlock(&sc->sc_lock);
g_topology_lock();
} else {
g_topology_unlock();
sx_xlock(&sc->sc_lock);
if (sc->sc_md) {
sbuf_printf(sb, "%s<Metadata>%s</Metadata>\n", indent,
sc->sc_md->mdo_class->name);
}
if (!TAILQ_EMPTY(&sc->sc_volumes)) {
s = 0xff;
TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
if (vol->v_state < s)
s = vol->v_state;
}
sbuf_printf(sb, "%s<State>%s</State>\n", indent,
g_raid_volume_state2str(s));
}
sx_xunlock(&sc->sc_lock);
g_topology_lock();
}
}
static void
g_raid_shutdown_pre_sync(void *arg, int howto)
{
struct g_class *mp;
struct g_geom *gp, *gp2;
struct g_raid_softc *sc;
int error;
mp = arg;
DROP_GIANT();
g_topology_lock();
LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
if ((sc = gp->softc) == NULL)
continue;
g_topology_unlock();
sx_xlock(&sc->sc_lock);
g_cancel_event(sc);
error = g_raid_destroy(sc, G_RAID_DESTROY_DELAYED);
if (error != 0)
sx_xunlock(&sc->sc_lock);
g_topology_lock();
}
g_topology_unlock();
PICKUP_GIANT();
}
static void
g_raid_init(struct g_class *mp)
{
g_raid_pre_sync = EVENTHANDLER_REGISTER(shutdown_pre_sync,
g_raid_shutdown_pre_sync, mp, SHUTDOWN_PRI_FIRST);
if (g_raid_pre_sync == NULL)
G_RAID_DEBUG(0, "Warning! Cannot register shutdown event.");
g_raid_started = 1;
}
static void
g_raid_fini(struct g_class *mp)
{
if (g_raid_pre_sync != NULL)
EVENTHANDLER_DEREGISTER(shutdown_pre_sync, g_raid_pre_sync);
g_raid_started = 0;
}
int
g_raid_md_modevent(module_t mod, int type, void *arg)
{
struct g_raid_md_class *class, *c, *nc;
int error;
error = 0;
class = arg;
switch (type) {
case MOD_LOAD:
c = LIST_FIRST(&g_raid_md_classes);
if (c == NULL || c->mdc_priority > class->mdc_priority)
LIST_INSERT_HEAD(&g_raid_md_classes, class, mdc_list);
else {
while ((nc = LIST_NEXT(c, mdc_list)) != NULL &&
nc->mdc_priority < class->mdc_priority)
c = nc;
LIST_INSERT_AFTER(c, class, mdc_list);
}
if (g_raid_started)
g_retaste(&g_raid_class);
break;
case MOD_UNLOAD:
LIST_REMOVE(class, mdc_list);
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
int
g_raid_tr_modevent(module_t mod, int type, void *arg)
{
struct g_raid_tr_class *class, *c, *nc;
int error;
error = 0;
class = arg;
switch (type) {
case MOD_LOAD:
c = LIST_FIRST(&g_raid_tr_classes);
if (c == NULL || c->trc_priority > class->trc_priority)
LIST_INSERT_HEAD(&g_raid_tr_classes, class, trc_list);
else {
while ((nc = LIST_NEXT(c, trc_list)) != NULL &&
nc->trc_priority < class->trc_priority)
c = nc;
LIST_INSERT_AFTER(c, class, trc_list);
}
break;
case MOD_UNLOAD:
LIST_REMOVE(class, trc_list);
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
/*
* Use local implementation of DECLARE_GEOM_CLASS(g_raid_class, g_raid)
* to reduce module priority, allowing submodules to register them first.
*/
static moduledata_t g_raid_mod = {
"g_raid",
g_modevent,
&g_raid_class
};
DECLARE_MODULE(g_raid, g_raid_mod, SI_SUB_DRIVERS, SI_ORDER_THIRD);
MODULE_VERSION(geom_raid, 0);