freebsd-nq/sys/kern/kern_mib.c

260 lines
10 KiB
C
Raw Normal View History

/*-
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Mike Karels at Berkeley Software Design, Inc.
*
* Quite extensively rewritten by Poul-Henning Kamp of the FreeBSD
* project, to make these variables more userfriendly.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_sysctl.c 8.4 (Berkeley) 4/14/94
1999-08-28 01:08:13 +00:00
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <sys/proc.h>
This Implements the mumbled about "Jail" feature. This is a seriously beefed up chroot kind of thing. The process is jailed along the same lines as a chroot does it, but with additional tough restrictions imposed on what the superuser can do. For all I know, it is safe to hand over the root bit inside a prison to the customer living in that prison, this is what it was developed for in fact: "real virtual servers". Each prison has an ip number associated with it, which all IP communications will be coerced to use and each prison has its own hostname. Needless to say, you need more RAM this way, but the advantage is that each customer can run their own particular version of apache and not stomp on the toes of their neighbors. It generally does what one would expect, but setting up a jail still takes a little knowledge. A few notes: I have no scripts for setting up a jail, don't ask me for them. The IP number should be an alias on one of the interfaces. mount a /proc in each jail, it will make ps more useable. /proc/<pid>/status tells the hostname of the prison for jailed processes. Quotas are only sensible if you have a mountpoint per prison. There are no privisions for stopping resource-hogging. Some "#ifdef INET" and similar may be missing (send patches!) If somebody wants to take it from here and develop it into more of a "virtual machine" they should be most welcome! Tools, comments, patches & documentation most welcome. Have fun... Sponsored by: http://www.rndassociates.com/ Run for almost a year by: http://www.servetheweb.com/
1999-04-28 11:38:52 +00:00
#include <sys/jail.h>
#include <machine/smp.h>
SYSCTL_NODE(, 0, sysctl, CTLFLAG_RW, 0,
"Sysctl internal magic");
SYSCTL_NODE(, CTL_KERN, kern, CTLFLAG_RW, 0,
"High kernel, proc, limits &c");
SYSCTL_NODE(, CTL_VM, vm, CTLFLAG_RW, 0,
"Virtual memory");
SYSCTL_NODE(, CTL_VFS, vfs, CTLFLAG_RW, 0,
"File system");
SYSCTL_NODE(, CTL_NET, net, CTLFLAG_RW, 0,
"Network, (see socket.h)");
SYSCTL_NODE(, CTL_DEBUG, debug, CTLFLAG_RW, 0,
"Debugging");
SYSCTL_NODE(_debug, OID_AUTO, sizeof, CTLFLAG_RW, 0,
"Sizeof various things");
SYSCTL_NODE(, CTL_HW, hw, CTLFLAG_RW, 0,
"hardware");
SYSCTL_NODE(, CTL_MACHDEP, machdep, CTLFLAG_RW, 0,
"machine dependent");
SYSCTL_NODE(, CTL_USER, user, CTLFLAG_RW, 0,
"user-level");
SYSCTL_NODE(, CTL_P1003_1B, p1003_1b, CTLFLAG_RW, 0,
"p1003_1b, (see p1003_1b.h)");
1999-08-27 19:47:41 +00:00
SYSCTL_NODE(, OID_AUTO, compat, CTLFLAG_RW, 0,
"Compatibility code");
SYSCTL_STRING(_kern, KERN_OSRELEASE, osrelease, CTLFLAG_RD,
osrelease, 0, "Operating system type");
SYSCTL_INT(_kern, KERN_OSREV, osrevision, CTLFLAG_RD,
0, BSD, "Operating system revision");
SYSCTL_STRING(_kern, KERN_VERSION, version, CTLFLAG_RD,
version, 0, "Kernel version");
SYSCTL_STRING(_kern, KERN_OSTYPE, ostype, CTLFLAG_RD,
ostype, 0, "Operating system type");
extern int osreldate;
SYSCTL_INT(_kern, KERN_OSRELDATE, osreldate, CTLFLAG_RD,
&osreldate, 0, "Operating system release date");
SYSCTL_INT(_kern, KERN_MAXPROC, maxproc, CTLFLAG_RD,
&maxproc, 0, "Maximum number of processes");
SYSCTL_INT(_kern, KERN_MAXPROCPERUID, maxprocperuid, CTLFLAG_RW,
&maxprocperuid, 0, "Maximum processes allowed per userid");
SYSCTL_INT(_kern, KERN_ARGMAX, argmax, CTLFLAG_RD,
0, ARG_MAX, "Maximum bytes of argument to execve(2)");
SYSCTL_INT(_kern, KERN_POSIX1, posix1version, CTLFLAG_RD,
0, _KPOSIX_VERSION, "Version of POSIX attempting to comply to");
SYSCTL_INT(_kern, KERN_NGROUPS, ngroups, CTLFLAG_RD,
0, NGROUPS_MAX, "Maximum number of groups a user can belong to");
SYSCTL_INT(_kern, KERN_JOB_CONTROL, job_control, CTLFLAG_RD,
0, 1, "Whether job control is available");
#ifdef _POSIX_SAVED_IDS
SYSCTL_INT(_kern, KERN_SAVED_IDS, saved_ids, CTLFLAG_RD,
0, 1, "Whether saved set-group/user ID is available");
#else
SYSCTL_INT(_kern, KERN_SAVED_IDS, saved_ids, CTLFLAG_RD,
0, 0, "Whether saved set-group/user ID is available");
#endif
char kernelname[MAXPATHLEN] = "/kernel"; /* XXX bloat */
SYSCTL_STRING(_kern, KERN_BOOTFILE, bootfile, CTLFLAG_RW,
kernelname, sizeof kernelname, "Name of kernel file booted");
#ifdef SMP
SYSCTL_INT(_hw, HW_NCPU, ncpu, CTLFLAG_RD,
&mp_ncpus, 0, "Number of active CPUs");
#else
SYSCTL_INT(_hw, HW_NCPU, ncpu, CTLFLAG_RD,
0, 1, "Number of active CPUs");
#endif
SYSCTL_INT(_hw, HW_BYTEORDER, byteorder, CTLFLAG_RD,
0, BYTE_ORDER, "System byte order");
SYSCTL_INT(_hw, HW_PAGESIZE, pagesize, CTLFLAG_RD,
0, PAGE_SIZE, "System memory page size");
static char machine_arch[] = MACHINE_ARCH;
SYSCTL_STRING(_hw, HW_MACHINE_ARCH, machine_arch, CTLFLAG_RD,
machine_arch, 0, "System architecture");
char hostname[MAXHOSTNAMELEN];
This Implements the mumbled about "Jail" feature. This is a seriously beefed up chroot kind of thing. The process is jailed along the same lines as a chroot does it, but with additional tough restrictions imposed on what the superuser can do. For all I know, it is safe to hand over the root bit inside a prison to the customer living in that prison, this is what it was developed for in fact: "real virtual servers". Each prison has an ip number associated with it, which all IP communications will be coerced to use and each prison has its own hostname. Needless to say, you need more RAM this way, but the advantage is that each customer can run their own particular version of apache and not stomp on the toes of their neighbors. It generally does what one would expect, but setting up a jail still takes a little knowledge. A few notes: I have no scripts for setting up a jail, don't ask me for them. The IP number should be an alias on one of the interfaces. mount a /proc in each jail, it will make ps more useable. /proc/<pid>/status tells the hostname of the prison for jailed processes. Quotas are only sensible if you have a mountpoint per prison. There are no privisions for stopping resource-hogging. Some "#ifdef INET" and similar may be missing (send patches!) If somebody wants to take it from here and develop it into more of a "virtual machine" they should be most welcome! Tools, comments, patches & documentation most welcome. Have fun... Sponsored by: http://www.rndassociates.com/ Run for almost a year by: http://www.servetheweb.com/
1999-04-28 11:38:52 +00:00
static int
sysctl_hostname(SYSCTL_HANDLER_ARGS)
This Implements the mumbled about "Jail" feature. This is a seriously beefed up chroot kind of thing. The process is jailed along the same lines as a chroot does it, but with additional tough restrictions imposed on what the superuser can do. For all I know, it is safe to hand over the root bit inside a prison to the customer living in that prison, this is what it was developed for in fact: "real virtual servers". Each prison has an ip number associated with it, which all IP communications will be coerced to use and each prison has its own hostname. Needless to say, you need more RAM this way, but the advantage is that each customer can run their own particular version of apache and not stomp on the toes of their neighbors. It generally does what one would expect, but setting up a jail still takes a little knowledge. A few notes: I have no scripts for setting up a jail, don't ask me for them. The IP number should be an alias on one of the interfaces. mount a /proc in each jail, it will make ps more useable. /proc/<pid>/status tells the hostname of the prison for jailed processes. Quotas are only sensible if you have a mountpoint per prison. There are no privisions for stopping resource-hogging. Some "#ifdef INET" and similar may be missing (send patches!) If somebody wants to take it from here and develop it into more of a "virtual machine" they should be most welcome! Tools, comments, patches & documentation most welcome. Have fun... Sponsored by: http://www.rndassociates.com/ Run for almost a year by: http://www.servetheweb.com/
1999-04-28 11:38:52 +00:00
{
int error;
if (jailed(req->p->p_ucred)) {
if (!jail_set_hostname_allowed && req->newptr)
return(EPERM);
This Implements the mumbled about "Jail" feature. This is a seriously beefed up chroot kind of thing. The process is jailed along the same lines as a chroot does it, but with additional tough restrictions imposed on what the superuser can do. For all I know, it is safe to hand over the root bit inside a prison to the customer living in that prison, this is what it was developed for in fact: "real virtual servers". Each prison has an ip number associated with it, which all IP communications will be coerced to use and each prison has its own hostname. Needless to say, you need more RAM this way, but the advantage is that each customer can run their own particular version of apache and not stomp on the toes of their neighbors. It generally does what one would expect, but setting up a jail still takes a little knowledge. A few notes: I have no scripts for setting up a jail, don't ask me for them. The IP number should be an alias on one of the interfaces. mount a /proc in each jail, it will make ps more useable. /proc/<pid>/status tells the hostname of the prison for jailed processes. Quotas are only sensible if you have a mountpoint per prison. There are no privisions for stopping resource-hogging. Some "#ifdef INET" and similar may be missing (send patches!) If somebody wants to take it from here and develop it into more of a "virtual machine" they should be most welcome! Tools, comments, patches & documentation most welcome. Have fun... Sponsored by: http://www.rndassociates.com/ Run for almost a year by: http://www.servetheweb.com/
1999-04-28 11:38:52 +00:00
error = sysctl_handle_string(oidp,
req->p->p_ucred->cr_prison->pr_host,
sizeof req->p->p_ucred->cr_prison->pr_host, req);
} else
This Implements the mumbled about "Jail" feature. This is a seriously beefed up chroot kind of thing. The process is jailed along the same lines as a chroot does it, but with additional tough restrictions imposed on what the superuser can do. For all I know, it is safe to hand over the root bit inside a prison to the customer living in that prison, this is what it was developed for in fact: "real virtual servers". Each prison has an ip number associated with it, which all IP communications will be coerced to use and each prison has its own hostname. Needless to say, you need more RAM this way, but the advantage is that each customer can run their own particular version of apache and not stomp on the toes of their neighbors. It generally does what one would expect, but setting up a jail still takes a little knowledge. A few notes: I have no scripts for setting up a jail, don't ask me for them. The IP number should be an alias on one of the interfaces. mount a /proc in each jail, it will make ps more useable. /proc/<pid>/status tells the hostname of the prison for jailed processes. Quotas are only sensible if you have a mountpoint per prison. There are no privisions for stopping resource-hogging. Some "#ifdef INET" and similar may be missing (send patches!) If somebody wants to take it from here and develop it into more of a "virtual machine" they should be most welcome! Tools, comments, patches & documentation most welcome. Have fun... Sponsored by: http://www.rndassociates.com/ Run for almost a year by: http://www.servetheweb.com/
1999-04-28 11:38:52 +00:00
error = sysctl_handle_string(oidp,
hostname, sizeof hostname, req);
return (error);
}
SYSCTL_PROC(_kern, KERN_HOSTNAME, hostname,
CTLTYPE_STRING|CTLFLAG_RW|CTLFLAG_PRISON,
0, 0, sysctl_hostname, "A", "Hostname");
int securelevel = -1;
static int
sysctl_kern_securelvl(SYSCTL_HANDLER_ARGS)
{
int error, level;
level = securelevel;
error = sysctl_handle_int(oidp, &level, 0, req);
if (error || !req->newptr)
return (error);
if (level < securelevel)
return (EPERM);
securelevel = level;
return (error);
}
SYSCTL_PROC(_kern, KERN_SECURELVL, securelevel, CTLTYPE_INT|CTLFLAG_RW,
0, 0, sysctl_kern_securelvl, "I", "Current secure level");
char domainname[MAXHOSTNAMELEN];
SYSCTL_STRING(_kern, KERN_NISDOMAINNAME, domainname, CTLFLAG_RW,
&domainname, sizeof(domainname), "Name of the current YP/NIS domain");
long hostid;
/* Some trouble here, if sizeof (int) != sizeof (long) */
SYSCTL_INT(_kern, KERN_HOSTID, hostid, CTLFLAG_RW, &hostid, 0, "Host ID");
/*
* This is really cheating. These actually live in the libc, something
* which I'm not quite sure is a good idea anyway, but in order for
* getnext and friends to actually work, we define dummies here.
*/
SYSCTL_STRING(_user, USER_CS_PATH, cs_path, CTLFLAG_RD,
"", 0, "PATH that finds all the standard utilities");
SYSCTL_INT(_user, USER_BC_BASE_MAX, bc_base_max, CTLFLAG_RD,
0, 0, "Max ibase/obase values in bc(1)");
SYSCTL_INT(_user, USER_BC_DIM_MAX, bc_dim_max, CTLFLAG_RD,
0, 0, "Max array size in bc(1)");
SYSCTL_INT(_user, USER_BC_SCALE_MAX, bc_scale_max, CTLFLAG_RD,
0, 0, "Max scale value in bc(1)");
SYSCTL_INT(_user, USER_BC_STRING_MAX, bc_string_max, CTLFLAG_RD,
0, 0, "Max string length in bc(1)");
SYSCTL_INT(_user, USER_COLL_WEIGHTS_MAX, coll_weights_max, CTLFLAG_RD,
0, 0, "Maximum number of weights assigned to an LC_COLLATE locale entry");
1996-09-28 15:53:30 +00:00
SYSCTL_INT(_user, USER_EXPR_NEST_MAX, expr_nest_max, CTLFLAG_RD, 0, 0, "");
SYSCTL_INT(_user, USER_LINE_MAX, line_max, CTLFLAG_RD,
0, 0, "Max length (bytes) of a text-processing utility's input line");
SYSCTL_INT(_user, USER_RE_DUP_MAX, re_dup_max, CTLFLAG_RD,
0, 0, "Maximum number of repeats of a regexp permitted");
SYSCTL_INT(_user, USER_POSIX2_VERSION, posix2_version, CTLFLAG_RD,
0, 0,
"The version of POSIX 1003.2 with which the system attempts to comply");
SYSCTL_INT(_user, USER_POSIX2_C_BIND, posix2_c_bind, CTLFLAG_RD,
0, 0, "Whether C development supports the C bindings option");
SYSCTL_INT(_user, USER_POSIX2_C_DEV, posix2_c_dev, CTLFLAG_RD,
0, 0, "Whether system supports the C development utilities option");
SYSCTL_INT(_user, USER_POSIX2_CHAR_TERM, posix2_char_term, CTLFLAG_RD,
0, 0, "");
SYSCTL_INT(_user, USER_POSIX2_FORT_DEV, posix2_fort_dev, CTLFLAG_RD,
0, 0, "Whether system supports FORTRAN development utilities");
SYSCTL_INT(_user, USER_POSIX2_FORT_RUN, posix2_fort_run, CTLFLAG_RD,
0, 0, "Whether system supports FORTRAN runtime utilities");
SYSCTL_INT(_user, USER_POSIX2_LOCALEDEF, posix2_localedef, CTLFLAG_RD,
0, 0, "Whether system supports creation of locales");
SYSCTL_INT(_user, USER_POSIX2_SW_DEV, posix2_sw_dev, CTLFLAG_RD,
0, 0, "Whether system supports software development utilities");
SYSCTL_INT(_user, USER_POSIX2_UPE, posix2_upe, CTLFLAG_RD,
0, 0, "Whether system supports the user portability utilities");
SYSCTL_INT(_user, USER_STREAM_MAX, stream_max, CTLFLAG_RD,
0, 0, "Min Maximum number of streams a process may have open at one time");
SYSCTL_INT(_user, USER_TZNAME_MAX, tzname_max, CTLFLAG_RD,
0, 0, "Min Maximum number of types supported for timezone names");
#include <sys/vnode.h>
SYSCTL_INT(_debug_sizeof, OID_AUTO, vnode, CTLFLAG_RD,
0, sizeof(struct vnode), "sizeof(struct vnode)");
SYSCTL_INT(_debug_sizeof, OID_AUTO, proc, CTLFLAG_RD,
0, sizeof(struct proc), "sizeof(struct proc)");
1999-07-20 07:19:32 +00:00
#include <sys/conf.h>
1999-07-20 07:19:32 +00:00
SYSCTL_INT(_debug_sizeof, OID_AUTO, specinfo, CTLFLAG_RD,
0, sizeof(struct specinfo), "sizeof(struct specinfo)");
#include <sys/bio.h>
#include <sys/buf.h>
SYSCTL_INT(_debug_sizeof, OID_AUTO, bio, CTLFLAG_RD,
0, sizeof(struct bio), "sizeof(struct bio)");
SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD,
0, sizeof(struct buf), "sizeof(struct buf)");
Implement a unified run queue and adjust priority levels accordingly. - All processes go into the same array of queues, with different scheduling classes using different portions of the array. This allows user processes to have their priorities propogated up into interrupt thread range if need be. - I chose 64 run queues as an arbitrary number that is greater than 32. We used to have 4 separate arrays of 32 queues each, so this may not be optimal. The new run queue code was written with this in mind; changing the number of run queues only requires changing constants in runq.h and adjusting the priority levels. - The new run queue code takes the run queue as a parameter. This is intended to be used to create per-cpu run queues. Implement wrappers for compatibility with the old interface which pass in the global run queue structure. - Group the priority level, user priority, native priority (before propogation) and the scheduling class into a struct priority. - Change any hard coded priority levels that I found to use symbolic constants (TTIPRI and TTOPRI). - Remove the curpriority global variable and use that of curproc. This was used to detect when a process' priority had lowered and it should yield. We now effectively yield on every interrupt. - Activate propogate_priority(). It should now have the desired effect without needing to also propogate the scheduling class. - Temporarily comment out the call to vm_page_zero_idle() in the idle loop. It interfered with propogate_priority() because the idle process needed to do a non-blocking acquire of Giant and then other processes would try to propogate their priority onto it. The idle process should not do anything except idle. vm_page_zero_idle() will return in the form of an idle priority kernel thread which is woken up at apprioriate times by the vm system. - Update struct kinfo_proc to the new priority interface. Deliberately change its size by adjusting the spare fields. It remained the same size, but the layout has changed, so userland processes that use it would parse the data incorrectly. The size constraint should really be changed to an arbitrary version number. Also add a debug.sizeof sysctl node for struct kinfo_proc.
2001-02-12 00:20:08 +00:00
#include <sys/user.h>
SYSCTL_INT(_debug_sizeof, OID_AUTO, kinfo_proc, CTLFLAG_RD,
0, sizeof(struct kinfo_proc), "sizeof(struct kinfo_proc)");