freebsd-nq/sys/kern/uipc_mbuf.c

1213 lines
29 KiB
C
Raw Normal View History

1994-05-24 10:09:53 +00:00
/*
* Copyright (c) 1982, 1986, 1988, 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94
1999-08-28 01:08:13 +00:00
* $FreeBSD$
1994-05-24 10:09:53 +00:00
*/
#include "opt_param.h"
1994-05-24 10:09:53 +00:00
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
1994-05-24 10:09:53 +00:00
#include <sys/mbuf.h>
#include <sys/mutex.h>
1994-05-24 10:09:53 +00:00
#include <sys/kernel.h>
#include <sys/sysctl.h>
1994-05-24 10:09:53 +00:00
#include <sys/domain.h>
#include <sys/protosw.h>
#include <vm/vm.h>
#include <vm/vm_kern.h>
#include <vm/vm_extern.h>
static void mbinit(void *);
SYSINIT(mbuf, SI_SUB_MBUF, SI_ORDER_FIRST, mbinit, NULL)
struct mbuf *mbutl;
struct mbstat mbstat;
u_long mbtypes[MT_NTYPES];
int max_linkhdr;
int max_protohdr;
int max_hdr;
int max_datalen;
int nmbclusters;
int nmbufs;
int nmbcnt;
2000-09-30 06:30:39 +00:00
u_long m_mballoc_wid = 0;
u_long m_clalloc_wid = 0;
1994-05-24 10:09:53 +00:00
2000-09-30 06:30:39 +00:00
/*
* freelist header structures...
* mbffree_lst, mclfree_lst, mcntfree_lst
*/
struct mbffree_lst mmbfree;
struct mclfree_lst mclfree;
struct mcntfree_lst mcntfree;
/*
* sysctl(8) exported objects
*/
SYSCTL_DECL(_kern_ipc);
SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RW,
&max_linkhdr, 0, "");
SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RW,
&max_protohdr, 0, "");
SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RW, &max_hdr, 0, "");
SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RW,
&max_datalen, 0, "");
SYSCTL_INT(_kern_ipc, OID_AUTO, mbuf_wait, CTLFLAG_RW,
&mbuf_wait, 0, "");
SYSCTL_STRUCT(_kern_ipc, KIPC_MBSTAT, mbstat, CTLFLAG_RD, &mbstat, mbstat, "");
SYSCTL_OPAQUE(_kern_ipc, OID_AUTO, mbtypes, CTLFLAG_RD, mbtypes,
sizeof(mbtypes), "LU", "");
SYSCTL_INT(_kern_ipc, KIPC_NMBCLUSTERS, nmbclusters, CTLFLAG_RD,
&nmbclusters, 0, "Maximum number of mbuf clusters available");
SYSCTL_INT(_kern_ipc, OID_AUTO, nmbufs, CTLFLAG_RD, &nmbufs, 0,
"Maximum number of mbufs available");
SYSCTL_INT(_kern_ipc, OID_AUTO, nmbcnt, CTLFLAG_RD, &nmbcnt, 0,
"Maximum number of ext_buf counters available");
#ifndef NMBCLUSTERS
#define NMBCLUSTERS (512 + MAXUSERS * 16)
#endif
TUNABLE_INT_DECL("kern.ipc.nmbclusters", NMBCLUSTERS, nmbclusters);
TUNABLE_INT_DECL("kern.ipc.nmbufs", NMBCLUSTERS * 4, nmbufs);
TUNABLE_INT_DECL("kern.ipc.nmbcnt", EXT_COUNTERS, nmbcnt);
static void m_reclaim(void);
2000-09-30 06:30:39 +00:00
/* Initial allocation numbers */
Replace the mbuf external reference counting code with something that should be better. The old code counted references to mbuf clusters by using the offset of the cluster from the start of memory allocated for mbufs and clusters as an index into an array of chars, which did the reference counting. If the external storage was not a cluster then reference counting had to be done by the code using that external storage. NetBSD's system of linked lists of mbufs was cosidered, but Alfred felt it would have locking issues when the kernel was made more SMP friendly. The system implimented uses a pool of unions to track external storage. The union contains an int for counting the references and a pointer for forming a free list. The reference counts are incremented and decremented atomically and so should be SMP friendly. This system can track reference counts for any sort of external storage. Access to the reference counting stuff is now through macros defined in mbuf.h, so it should be easier to make changes to the system in the future. The possibility of storing the reference count in one of the referencing mbufs was considered, but was rejected 'cos it would often leave extra mbufs allocated. Storing the reference count in the cluster was also considered, but because the external storage may not be a cluster this isn't an option. The size of the pool of reference counters is available in the stats provided by "netstat -m". PR: 19866 Submitted by: Bosko Milekic <bmilekic@dsuper.net> Reviewed by: alfred (glanced at by others on -net)
2000-08-19 08:32:59 +00:00
#define NCL_INIT 2
#define NMB_INIT 16
2000-09-30 06:30:39 +00:00
#define REF_INIT NMBCLUSTERS
2000-09-30 06:30:39 +00:00
/*
* Full mbuf subsystem initialization done here.
*
* XXX: If ever we have system specific map setups to do, then move them to
* machdep.c - for now, there is no reason for this stuff to go there.
*/
static void
mbinit(void *dummy)
1994-05-24 10:09:53 +00:00
{
2000-09-30 06:30:39 +00:00
vm_offset_t maxaddr, mb_map_size;
1994-05-24 10:09:53 +00:00
2000-09-30 06:30:39 +00:00
/*
* Setup the mb_map, allocate requested VM space.
*/
mb_map_size = nmbufs * MSIZE + nmbclusters * MCLBYTES + nmbcnt
2000-09-30 06:30:39 +00:00
* sizeof(union mext_refcnt);
mb_map_size = roundup2(mb_map_size, PAGE_SIZE);
mb_map = kmem_suballoc(kmem_map, (vm_offset_t *)&mbutl, &maxaddr,
mb_map_size);
/* XXX XXX XXX: mb_map->system_map = 1; */
Replace the mbuf external reference counting code with something that should be better. The old code counted references to mbuf clusters by using the offset of the cluster from the start of memory allocated for mbufs and clusters as an index into an array of chars, which did the reference counting. If the external storage was not a cluster then reference counting had to be done by the code using that external storage. NetBSD's system of linked lists of mbufs was cosidered, but Alfred felt it would have locking issues when the kernel was made more SMP friendly. The system implimented uses a pool of unions to track external storage. The union contains an int for counting the references and a pointer for forming a free list. The reference counts are incremented and decremented atomically and so should be SMP friendly. This system can track reference counts for any sort of external storage. Access to the reference counting stuff is now through macros defined in mbuf.h, so it should be easier to make changes to the system in the future. The possibility of storing the reference count in one of the referencing mbufs was considered, but was rejected 'cos it would often leave extra mbufs allocated. Storing the reference count in the cluster was also considered, but because the external storage may not be a cluster this isn't an option. The size of the pool of reference counters is available in the stats provided by "netstat -m". PR: 19866 Submitted by: Bosko Milekic <bmilekic@dsuper.net> Reviewed by: alfred (glanced at by others on -net)
2000-08-19 08:32:59 +00:00
2000-09-30 06:30:39 +00:00
/*
* Initialize the free list headers, and setup locks for lists.
*/
mmbfree.m_head = NULL;
mclfree.m_head = NULL;
mcntfree.m_head = NULL;
mtx_init(&mmbfree.m_mtx, "mbuf free list lock", MTX_DEF);
mtx_init(&mclfree.m_mtx, "mcluster free list lock", MTX_DEF);
mtx_init(&mcntfree.m_mtx, "m_ext counter free list lock", MTX_DEF);
/*
* Initialize mbuf subsystem (sysctl exported) statistics structure.
*/
mbstat.m_msize = MSIZE;
mbstat.m_mclbytes = MCLBYTES;
mbstat.m_minclsize = MINCLSIZE;
mbstat.m_mlen = MLEN;
mbstat.m_mhlen = MHLEN;
2000-09-30 06:30:39 +00:00
/*
* Perform some initial allocations.
*/
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock(&mcntfree.m_mtx);
2000-09-30 06:30:39 +00:00
if (m_alloc_ref(REF_INIT, M_DONTWAIT) == 0)
Replace the mbuf external reference counting code with something that should be better. The old code counted references to mbuf clusters by using the offset of the cluster from the start of memory allocated for mbufs and clusters as an index into an array of chars, which did the reference counting. If the external storage was not a cluster then reference counting had to be done by the code using that external storage. NetBSD's system of linked lists of mbufs was cosidered, but Alfred felt it would have locking issues when the kernel was made more SMP friendly. The system implimented uses a pool of unions to track external storage. The union contains an int for counting the references and a pointer for forming a free list. The reference counts are incremented and decremented atomically and so should be SMP friendly. This system can track reference counts for any sort of external storage. Access to the reference counting stuff is now through macros defined in mbuf.h, so it should be easier to make changes to the system in the future. The possibility of storing the reference count in one of the referencing mbufs was considered, but was rejected 'cos it would often leave extra mbufs allocated. Storing the reference count in the cluster was also considered, but because the external storage may not be a cluster this isn't an option. The size of the pool of reference counters is available in the stats provided by "netstat -m". PR: 19866 Submitted by: Bosko Milekic <bmilekic@dsuper.net> Reviewed by: alfred (glanced at by others on -net)
2000-08-19 08:32:59 +00:00
goto bad;
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock(&mcntfree.m_mtx);
2000-09-30 06:30:39 +00:00
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock(&mmbfree.m_mtx);
if (m_mballoc(NMB_INIT, M_DONTWAIT) == 0)
goto bad;
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock(&mmbfree.m_mtx);
2000-09-30 06:30:39 +00:00
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock(&mclfree.m_mtx);
1994-05-24 10:09:53 +00:00
if (m_clalloc(NCL_INIT, M_DONTWAIT) == 0)
goto bad;
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock(&mclfree.m_mtx);
2000-09-30 06:30:39 +00:00
1994-05-24 10:09:53 +00:00
return;
bad:
Replace the mbuf external reference counting code with something that should be better. The old code counted references to mbuf clusters by using the offset of the cluster from the start of memory allocated for mbufs and clusters as an index into an array of chars, which did the reference counting. If the external storage was not a cluster then reference counting had to be done by the code using that external storage. NetBSD's system of linked lists of mbufs was cosidered, but Alfred felt it would have locking issues when the kernel was made more SMP friendly. The system implimented uses a pool of unions to track external storage. The union contains an int for counting the references and a pointer for forming a free list. The reference counts are incremented and decremented atomically and so should be SMP friendly. This system can track reference counts for any sort of external storage. Access to the reference counting stuff is now through macros defined in mbuf.h, so it should be easier to make changes to the system in the future. The possibility of storing the reference count in one of the referencing mbufs was considered, but was rejected 'cos it would often leave extra mbufs allocated. Storing the reference count in the cluster was also considered, but because the external storage may not be a cluster this isn't an option. The size of the pool of reference counters is available in the stats provided by "netstat -m". PR: 19866 Submitted by: Bosko Milekic <bmilekic@dsuper.net> Reviewed by: alfred (glanced at by others on -net)
2000-08-19 08:32:59 +00:00
panic("mbinit: failed to initialize mbuf subsystem!");
}
/*
* Allocate at least nmb reference count structs and place them
* on the ref cnt free list.
2000-09-30 06:30:39 +00:00
*
* Must be called with the mcntfree lock held.
Replace the mbuf external reference counting code with something that should be better. The old code counted references to mbuf clusters by using the offset of the cluster from the start of memory allocated for mbufs and clusters as an index into an array of chars, which did the reference counting. If the external storage was not a cluster then reference counting had to be done by the code using that external storage. NetBSD's system of linked lists of mbufs was cosidered, but Alfred felt it would have locking issues when the kernel was made more SMP friendly. The system implimented uses a pool of unions to track external storage. The union contains an int for counting the references and a pointer for forming a free list. The reference counts are incremented and decremented atomically and so should be SMP friendly. This system can track reference counts for any sort of external storage. Access to the reference counting stuff is now through macros defined in mbuf.h, so it should be easier to make changes to the system in the future. The possibility of storing the reference count in one of the referencing mbufs was considered, but was rejected 'cos it would often leave extra mbufs allocated. Storing the reference count in the cluster was also considered, but because the external storage may not be a cluster this isn't an option. The size of the pool of reference counters is available in the stats provided by "netstat -m". PR: 19866 Submitted by: Bosko Milekic <bmilekic@dsuper.net> Reviewed by: alfred (glanced at by others on -net)
2000-08-19 08:32:59 +00:00
*/
int
m_alloc_ref(u_int nmb, int how)
Replace the mbuf external reference counting code with something that should be better. The old code counted references to mbuf clusters by using the offset of the cluster from the start of memory allocated for mbufs and clusters as an index into an array of chars, which did the reference counting. If the external storage was not a cluster then reference counting had to be done by the code using that external storage. NetBSD's system of linked lists of mbufs was cosidered, but Alfred felt it would have locking issues when the kernel was made more SMP friendly. The system implimented uses a pool of unions to track external storage. The union contains an int for counting the references and a pointer for forming a free list. The reference counts are incremented and decremented atomically and so should be SMP friendly. This system can track reference counts for any sort of external storage. Access to the reference counting stuff is now through macros defined in mbuf.h, so it should be easier to make changes to the system in the future. The possibility of storing the reference count in one of the referencing mbufs was considered, but was rejected 'cos it would often leave extra mbufs allocated. Storing the reference count in the cluster was also considered, but because the external storage may not be a cluster this isn't an option. The size of the pool of reference counters is available in the stats provided by "netstat -m". PR: 19866 Submitted by: Bosko Milekic <bmilekic@dsuper.net> Reviewed by: alfred (glanced at by others on -net)
2000-08-19 08:32:59 +00:00
{
caddr_t p;
u_int nbytes;
int i;
/*
* We don't cap the amount of memory that can be used
* by the reference counters, like we do for mbufs and
2000-09-30 06:30:39 +00:00
* mbuf clusters. In fact, we're absolutely sure that we
* won't ever be going over our allocated space. We keep enough
* space in mb_map to accomodate maximum values of allocatable
* external buffers including, but not limited to, clusters.
* (That's also why we won't have to have wait routines for
* counters).
*
* If we're in here, we're absolutely certain to be returning
* succesfully, as long as there is physical memory to accomodate
* us. And if there isn't, but we're willing to wait, then
* kmem_malloc() will do the only waiting needed.
Replace the mbuf external reference counting code with something that should be better. The old code counted references to mbuf clusters by using the offset of the cluster from the start of memory allocated for mbufs and clusters as an index into an array of chars, which did the reference counting. If the external storage was not a cluster then reference counting had to be done by the code using that external storage. NetBSD's system of linked lists of mbufs was cosidered, but Alfred felt it would have locking issues when the kernel was made more SMP friendly. The system implimented uses a pool of unions to track external storage. The union contains an int for counting the references and a pointer for forming a free list. The reference counts are incremented and decremented atomically and so should be SMP friendly. This system can track reference counts for any sort of external storage. Access to the reference counting stuff is now through macros defined in mbuf.h, so it should be easier to make changes to the system in the future. The possibility of storing the reference count in one of the referencing mbufs was considered, but was rejected 'cos it would often leave extra mbufs allocated. Storing the reference count in the cluster was also considered, but because the external storage may not be a cluster this isn't an option. The size of the pool of reference counters is available in the stats provided by "netstat -m". PR: 19866 Submitted by: Bosko Milekic <bmilekic@dsuper.net> Reviewed by: alfred (glanced at by others on -net)
2000-08-19 08:32:59 +00:00
*/
nbytes = round_page(nmb * sizeof(union mext_refcnt));
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock(&mcntfree.m_mtx);
if ((p = (caddr_t)kmem_malloc(mb_map, nbytes, how == M_TRYWAIT ?
M_WAITOK : M_NOWAIT)) == NULL) {
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock(&mcntfree.m_mtx);
Replace the mbuf external reference counting code with something that should be better. The old code counted references to mbuf clusters by using the offset of the cluster from the start of memory allocated for mbufs and clusters as an index into an array of chars, which did the reference counting. If the external storage was not a cluster then reference counting had to be done by the code using that external storage. NetBSD's system of linked lists of mbufs was cosidered, but Alfred felt it would have locking issues when the kernel was made more SMP friendly. The system implimented uses a pool of unions to track external storage. The union contains an int for counting the references and a pointer for forming a free list. The reference counts are incremented and decremented atomically and so should be SMP friendly. This system can track reference counts for any sort of external storage. Access to the reference counting stuff is now through macros defined in mbuf.h, so it should be easier to make changes to the system in the future. The possibility of storing the reference count in one of the referencing mbufs was considered, but was rejected 'cos it would often leave extra mbufs allocated. Storing the reference count in the cluster was also considered, but because the external storage may not be a cluster this isn't an option. The size of the pool of reference counters is available in the stats provided by "netstat -m". PR: 19866 Submitted by: Bosko Milekic <bmilekic@dsuper.net> Reviewed by: alfred (glanced at by others on -net)
2000-08-19 08:32:59 +00:00
return (0);
2000-09-30 06:30:39 +00:00
}
Replace the mbuf external reference counting code with something that should be better. The old code counted references to mbuf clusters by using the offset of the cluster from the start of memory allocated for mbufs and clusters as an index into an array of chars, which did the reference counting. If the external storage was not a cluster then reference counting had to be done by the code using that external storage. NetBSD's system of linked lists of mbufs was cosidered, but Alfred felt it would have locking issues when the kernel was made more SMP friendly. The system implimented uses a pool of unions to track external storage. The union contains an int for counting the references and a pointer for forming a free list. The reference counts are incremented and decremented atomically and so should be SMP friendly. This system can track reference counts for any sort of external storage. Access to the reference counting stuff is now through macros defined in mbuf.h, so it should be easier to make changes to the system in the future. The possibility of storing the reference count in one of the referencing mbufs was considered, but was rejected 'cos it would often leave extra mbufs allocated. Storing the reference count in the cluster was also considered, but because the external storage may not be a cluster this isn't an option. The size of the pool of reference counters is available in the stats provided by "netstat -m". PR: 19866 Submitted by: Bosko Milekic <bmilekic@dsuper.net> Reviewed by: alfred (glanced at by others on -net)
2000-08-19 08:32:59 +00:00
nmb = nbytes / sizeof(union mext_refcnt);
2000-09-30 06:30:39 +00:00
/*
* We don't let go of the mutex in order to avoid a race.
* It is up to the caller to let go of the mutex.
*/
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock(&mcntfree.m_mtx);
Replace the mbuf external reference counting code with something that should be better. The old code counted references to mbuf clusters by using the offset of the cluster from the start of memory allocated for mbufs and clusters as an index into an array of chars, which did the reference counting. If the external storage was not a cluster then reference counting had to be done by the code using that external storage. NetBSD's system of linked lists of mbufs was cosidered, but Alfred felt it would have locking issues when the kernel was made more SMP friendly. The system implimented uses a pool of unions to track external storage. The union contains an int for counting the references and a pointer for forming a free list. The reference counts are incremented and decremented atomically and so should be SMP friendly. This system can track reference counts for any sort of external storage. Access to the reference counting stuff is now through macros defined in mbuf.h, so it should be easier to make changes to the system in the future. The possibility of storing the reference count in one of the referencing mbufs was considered, but was rejected 'cos it would often leave extra mbufs allocated. Storing the reference count in the cluster was also considered, but because the external storage may not be a cluster this isn't an option. The size of the pool of reference counters is available in the stats provided by "netstat -m". PR: 19866 Submitted by: Bosko Milekic <bmilekic@dsuper.net> Reviewed by: alfred (glanced at by others on -net)
2000-08-19 08:32:59 +00:00
for (i = 0; i < nmb; i++) {
2000-09-30 06:30:39 +00:00
((union mext_refcnt *)p)->next_ref = mcntfree.m_head;
mcntfree.m_head = (union mext_refcnt *)p;
Replace the mbuf external reference counting code with something that should be better. The old code counted references to mbuf clusters by using the offset of the cluster from the start of memory allocated for mbufs and clusters as an index into an array of chars, which did the reference counting. If the external storage was not a cluster then reference counting had to be done by the code using that external storage. NetBSD's system of linked lists of mbufs was cosidered, but Alfred felt it would have locking issues when the kernel was made more SMP friendly. The system implimented uses a pool of unions to track external storage. The union contains an int for counting the references and a pointer for forming a free list. The reference counts are incremented and decremented atomically and so should be SMP friendly. This system can track reference counts for any sort of external storage. Access to the reference counting stuff is now through macros defined in mbuf.h, so it should be easier to make changes to the system in the future. The possibility of storing the reference count in one of the referencing mbufs was considered, but was rejected 'cos it would often leave extra mbufs allocated. Storing the reference count in the cluster was also considered, but because the external storage may not be a cluster this isn't an option. The size of the pool of reference counters is available in the stats provided by "netstat -m". PR: 19866 Submitted by: Bosko Milekic <bmilekic@dsuper.net> Reviewed by: alfred (glanced at by others on -net)
2000-08-19 08:32:59 +00:00
p += sizeof(union mext_refcnt);
mbstat.m_refree++;
}
mbstat.m_refcnt += nmb;
return (1);
1994-05-24 10:09:53 +00:00
}
/*
* Allocate at least nmb mbufs and place on mbuf free list.
2000-09-30 06:30:39 +00:00
*
* Must be called with the mmbfree lock held.
*/
int
m_mballoc(int nmb, int how)
{
caddr_t p;
int i;
int nbytes;
/*
2000-09-30 06:30:39 +00:00
* If we've hit the mbuf limit, stop allocating from mb_map.
* Also, once we run out of map space, it will be impossible to
* get any more (nothing is ever freed back to the map).
*/
2000-09-30 06:30:39 +00:00
if (mb_map_full || ((nmb + mbstat.m_mbufs) > nmbufs)) {
/*
* Needs to be atomic as we may be incrementing it
* while holding another mutex, like mclfree. In other
* words, m_drops is not reserved solely for mbufs,
* but is also available for clusters.
*/
atomic_add_long(&mbstat.m_drops, 1);
return (0);
2000-09-30 06:30:39 +00:00
}
nbytes = round_page(nmb * MSIZE);
2000-09-30 06:30:39 +00:00
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock(&mmbfree.m_mtx);
p = (caddr_t)kmem_malloc(mb_map, nbytes, M_NOWAIT);
if (p == NULL && how == M_TRYWAIT) {
2000-09-30 06:30:39 +00:00
atomic_add_long(&mbstat.m_wait, 1);
p = (caddr_t)kmem_malloc(mb_map, nbytes, M_WAITOK);
}
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock(&mmbfree.m_mtx);
/*
2000-09-30 06:30:39 +00:00
* Either the map is now full, or `how' is M_DONTWAIT and there
* are no pages left.
*/
if (p == NULL)
return (0);
nmb = nbytes / MSIZE;
2000-09-30 06:30:39 +00:00
/*
* We don't let go of the mutex in order to avoid a race.
* It is up to the caller to let go of the mutex when done
* with grabbing the mbuf from the free list.
*/
for (i = 0; i < nmb; i++) {
2000-09-30 06:30:39 +00:00
((struct mbuf *)p)->m_next = mmbfree.m_head;
mmbfree.m_head = (struct mbuf *)p;
p += MSIZE;
}
mbstat.m_mbufs += nmb;
mbtypes[MT_FREE] += nmb;
return (1);
}
/*
* Once the mb_map has been exhausted and if the call to the allocation macros
* (or, in some cases, functions) is with M_TRYWAIT, then it is necessary to
* rely solely on reclaimed mbufs.
2000-09-30 06:30:39 +00:00
*
* Here we request for the protocols to free up some resources and, if we
* still cannot get anything, then we wait for an mbuf to be freed for a
* designated (mbuf_wait) time.
2000-09-30 06:30:39 +00:00
*
In m_mballoc_wait(), drop the mmbfree mutex lock prior to calling m_reclaim() and re-acquire it when m_reclaim() returns. This means that we now call the drain routines without holding the mutex lock and recursing into it. This was done for mainly two reasons: (i) Avoid the long recursion; long recursions are typically bad and this is the case here because we block all other code from freeing mbufs if they need to. Doing that is kind of counter-productive, since we're really hoping that someone will free. (ii) More importantly, avoid a potential lock order reversal. Right now, not all the locks have been added to our networking code; but without this change, we're introducing the possibility for deadlock. Consider for example ip_drain(). We will likely eventually introduce a lock for ipq there, and so ip_freef() will be called with ipq lock held. But, ip_freef() calls m_freem() which in turn acquires the mmbfree lock. Since we were previously calling ip_drain() with mmbfree held, our lock order would be: mmbfree->ipq->mmbfree. Some other code may very well lock ipq first and then call ip_freef(). This would result in the regular lock order, ipq->mmbfree. Clearly, we have deadlock if one thread acquires the ipq lock and sits waiting for mmbfree while another thread calling m_reclaim() acquires mmbfree and sits waiting for the ipq lock. Also, make sure to add a comment above m_reclaim()'s definition briefly explaining this. Also document this above the call to m_reclaim() in m_mballoc_wait(). Suggested and reviewed by: alfred
2001-01-09 23:58:56 +00:00
* Must be called with the mmbfree mutex held.
*/
struct mbuf *
2000-09-30 06:30:39 +00:00
m_mballoc_wait(void)
{
2000-09-30 06:30:39 +00:00
struct mbuf *p = NULL;
/*
2000-09-30 06:30:39 +00:00
* See if we can drain some resources out of the protocols.
In m_mballoc_wait(), drop the mmbfree mutex lock prior to calling m_reclaim() and re-acquire it when m_reclaim() returns. This means that we now call the drain routines without holding the mutex lock and recursing into it. This was done for mainly two reasons: (i) Avoid the long recursion; long recursions are typically bad and this is the case here because we block all other code from freeing mbufs if they need to. Doing that is kind of counter-productive, since we're really hoping that someone will free. (ii) More importantly, avoid a potential lock order reversal. Right now, not all the locks have been added to our networking code; but without this change, we're introducing the possibility for deadlock. Consider for example ip_drain(). We will likely eventually introduce a lock for ipq there, and so ip_freef() will be called with ipq lock held. But, ip_freef() calls m_freem() which in turn acquires the mmbfree lock. Since we were previously calling ip_drain() with mmbfree held, our lock order would be: mmbfree->ipq->mmbfree. Some other code may very well lock ipq first and then call ip_freef(). This would result in the regular lock order, ipq->mmbfree. Clearly, we have deadlock if one thread acquires the ipq lock and sits waiting for mmbfree while another thread calling m_reclaim() acquires mmbfree and sits waiting for the ipq lock. Also, make sure to add a comment above m_reclaim()'s definition briefly explaining this. Also document this above the call to m_reclaim() in m_mballoc_wait(). Suggested and reviewed by: alfred
2001-01-09 23:58:56 +00:00
* We drop the mmbfree mutex to avoid recursing into it in some of
* the drain routines. Clearly, we're faced with a race here because
* once something is freed during the drain, it may be grabbed right
* from under us by some other thread. But we accept this possibility
* in order to avoid a potentially large lock recursion and, more
* importantly, to avoid a potential lock order reversal which may
* result in deadlock (See comment above m_reclaim()).
*/
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock(&mmbfree.m_mtx);
2000-09-30 06:30:39 +00:00
m_reclaim();
In m_mballoc_wait(), drop the mmbfree mutex lock prior to calling m_reclaim() and re-acquire it when m_reclaim() returns. This means that we now call the drain routines without holding the mutex lock and recursing into it. This was done for mainly two reasons: (i) Avoid the long recursion; long recursions are typically bad and this is the case here because we block all other code from freeing mbufs if they need to. Doing that is kind of counter-productive, since we're really hoping that someone will free. (ii) More importantly, avoid a potential lock order reversal. Right now, not all the locks have been added to our networking code; but without this change, we're introducing the possibility for deadlock. Consider for example ip_drain(). We will likely eventually introduce a lock for ipq there, and so ip_freef() will be called with ipq lock held. But, ip_freef() calls m_freem() which in turn acquires the mmbfree lock. Since we were previously calling ip_drain() with mmbfree held, our lock order would be: mmbfree->ipq->mmbfree. Some other code may very well lock ipq first and then call ip_freef(). This would result in the regular lock order, ipq->mmbfree. Clearly, we have deadlock if one thread acquires the ipq lock and sits waiting for mmbfree while another thread calling m_reclaim() acquires mmbfree and sits waiting for the ipq lock. Also, make sure to add a comment above m_reclaim()'s definition briefly explaining this. Also document this above the call to m_reclaim() in m_mballoc_wait(). Suggested and reviewed by: alfred
2001-01-09 23:58:56 +00:00
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock(&mmbfree.m_mtx);
2000-09-30 06:30:39 +00:00
_MGET(p, M_DONTWAIT);
2000-09-30 06:30:39 +00:00
if (p == NULL) {
m_mballoc_wid++;
msleep(&m_mballoc_wid, &mmbfree.m_mtx, PVM, "mballc",
mbuf_wait);
m_mballoc_wid--;
2000-09-30 06:30:39 +00:00
/*
* Try again (one last time).
*
* We retry to fetch _even_ if the sleep timed out. This
* is left this way, purposely, in the [unlikely] case
* that an mbuf was freed but the sleep was not awoken
* in time.
*
* If the sleep didn't time out (i.e. we got woken up) then
* we have the lock so we just grab an mbuf, hopefully.
*/
_MGET(p, M_DONTWAIT);
}
2000-09-30 06:30:39 +00:00
/* If we waited and got something... */
if (p != NULL) {
atomic_add_long(&mbstat.m_wait, 1);
if (mmbfree.m_head != NULL)
MBWAKEUP(m_mballoc_wid);
} else
atomic_add_long(&mbstat.m_drops, 1);
2000-09-30 06:30:39 +00:00
return (p);
}
1994-05-24 10:09:53 +00:00
/*
* Allocate some number of mbuf clusters
* and place on cluster free list.
2000-09-30 06:30:39 +00:00
*
* Must be called with the mclfree lock held.
1994-05-24 10:09:53 +00:00
*/
int
m_clalloc(int ncl, int how)
1994-05-24 10:09:53 +00:00
{
caddr_t p;
int i;
1994-05-24 10:09:53 +00:00
int npg;
/*
2000-09-30 06:30:39 +00:00
* If the map is now full (nothing will ever be freed to it).
* If we've hit the mcluster number limit, stop allocating from
2000-09-30 06:30:39 +00:00
* mb_map.
*/
2000-09-30 06:30:39 +00:00
if (mb_map_full || ((ncl + mbstat.m_clusters) > nmbclusters)) {
atomic_add_long(&mbstat.m_drops, 1);
return (0);
}
npg = ncl;
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock(&mclfree.m_mtx);
p = (caddr_t)kmem_malloc(mb_map, ctob(npg),
how == M_TRYWAIT ? M_WAITOK : M_NOWAIT);
ncl = ncl * PAGE_SIZE / MCLBYTES;
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock(&mclfree.m_mtx);
2000-09-30 06:30:39 +00:00
/*
2000-09-30 06:30:39 +00:00
* Either the map is now full, or `how' is M_DONTWAIT and there
* are no pages left.
*/
if (p == NULL) {
2000-09-30 06:30:39 +00:00
atomic_add_long(&mbstat.m_drops, 1);
1994-05-24 10:09:53 +00:00
return (0);
}
2000-09-30 06:30:39 +00:00
/*
* We don't let go of the mutex in order to avoid a race.
*/
1994-05-24 10:09:53 +00:00
for (i = 0; i < ncl; i++) {
2000-09-30 06:30:39 +00:00
((union mcluster *)p)->mcl_next = mclfree.m_head;
mclfree.m_head = (union mcluster *)p;
1994-05-24 10:09:53 +00:00
p += MCLBYTES;
mbstat.m_clfree++;
}
mbstat.m_clusters += ncl;
return (1);
}
/*
* Once the mb_map submap has been exhausted and the allocation is called with
* M_TRYWAIT, we rely on the mclfree list. If nothing is free, we will
* sleep for a designated amount of time (mbuf_wait) or until we're woken up
* due to sudden mcluster availability.
2000-09-30 06:30:39 +00:00
*
* Must be called with the mclfree lock held.
*/
caddr_t
m_clalloc_wait(void)
{
2000-09-30 06:30:39 +00:00
caddr_t p = NULL;
m_clalloc_wid++;
msleep(&m_clalloc_wid, &mclfree.m_mtx, PVM, "mclalc", mbuf_wait);
m_clalloc_wid--;
/*
2000-09-30 06:30:39 +00:00
* Now that we (think) that we've got something, try again.
*/
Replace the mbuf external reference counting code with something that should be better. The old code counted references to mbuf clusters by using the offset of the cluster from the start of memory allocated for mbufs and clusters as an index into an array of chars, which did the reference counting. If the external storage was not a cluster then reference counting had to be done by the code using that external storage. NetBSD's system of linked lists of mbufs was cosidered, but Alfred felt it would have locking issues when the kernel was made more SMP friendly. The system implimented uses a pool of unions to track external storage. The union contains an int for counting the references and a pointer for forming a free list. The reference counts are incremented and decremented atomically and so should be SMP friendly. This system can track reference counts for any sort of external storage. Access to the reference counting stuff is now through macros defined in mbuf.h, so it should be easier to make changes to the system in the future. The possibility of storing the reference count in one of the referencing mbufs was considered, but was rejected 'cos it would often leave extra mbufs allocated. Storing the reference count in the cluster was also considered, but because the external storage may not be a cluster this isn't an option. The size of the pool of reference counters is available in the stats provided by "netstat -m". PR: 19866 Submitted by: Bosko Milekic <bmilekic@dsuper.net> Reviewed by: alfred (glanced at by others on -net)
2000-08-19 08:32:59 +00:00
_MCLALLOC(p, M_DONTWAIT);
2000-09-30 06:30:39 +00:00
/* If we waited and got something ... */
if (p != NULL) {
atomic_add_long(&mbstat.m_wait, 1);
if (mclfree.m_head != NULL)
MBWAKEUP(m_clalloc_wid);
} else
atomic_add_long(&mbstat.m_drops, 1);
return (p);
}
1994-05-24 10:09:53 +00:00
/*
2000-09-30 06:30:39 +00:00
* m_reclaim: drain protocols in hopes to free up some resources...
*
In m_mballoc_wait(), drop the mmbfree mutex lock prior to calling m_reclaim() and re-acquire it when m_reclaim() returns. This means that we now call the drain routines without holding the mutex lock and recursing into it. This was done for mainly two reasons: (i) Avoid the long recursion; long recursions are typically bad and this is the case here because we block all other code from freeing mbufs if they need to. Doing that is kind of counter-productive, since we're really hoping that someone will free. (ii) More importantly, avoid a potential lock order reversal. Right now, not all the locks have been added to our networking code; but without this change, we're introducing the possibility for deadlock. Consider for example ip_drain(). We will likely eventually introduce a lock for ipq there, and so ip_freef() will be called with ipq lock held. But, ip_freef() calls m_freem() which in turn acquires the mmbfree lock. Since we were previously calling ip_drain() with mmbfree held, our lock order would be: mmbfree->ipq->mmbfree. Some other code may very well lock ipq first and then call ip_freef(). This would result in the regular lock order, ipq->mmbfree. Clearly, we have deadlock if one thread acquires the ipq lock and sits waiting for mmbfree while another thread calling m_reclaim() acquires mmbfree and sits waiting for the ipq lock. Also, make sure to add a comment above m_reclaim()'s definition briefly explaining this. Also document this above the call to m_reclaim() in m_mballoc_wait(). Suggested and reviewed by: alfred
2001-01-09 23:58:56 +00:00
* XXX: No locks should be held going in here. The drain routines have
* to presently acquire some locks which raises the possibility of lock
* order violation if we're holding any mutex if that mutex is acquired in
* reverse order relative to one of the locks in the drain routines.
1994-05-24 10:09:53 +00:00
*/
static void
m_reclaim(void)
1994-05-24 10:09:53 +00:00
{
struct domain *dp;
struct protosw *pr;
1994-05-24 10:09:53 +00:00
#ifdef WITNESS
KASSERT(witness_list(CURPROC) == 0,
("m_reclaim called with locks held"));
#endif
1994-05-24 10:09:53 +00:00
for (dp = domains; dp; dp = dp->dom_next)
for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++)
if (pr->pr_drain)
(*pr->pr_drain)();
mbstat.m_drain++;
}
/*
* Space allocation routines.
* Some of these are also available as macros
1994-05-24 10:09:53 +00:00
* for critical paths.
*/
struct mbuf *
m_get(int how, int type)
1994-05-24 10:09:53 +00:00
{
struct mbuf *m;
1994-05-24 10:09:53 +00:00
MGET(m, how, type);
1994-05-24 10:09:53 +00:00
return (m);
}
struct mbuf *
m_gethdr(int how, int type)
1994-05-24 10:09:53 +00:00
{
struct mbuf *m;
1994-05-24 10:09:53 +00:00
MGETHDR(m, how, type);
1994-05-24 10:09:53 +00:00
return (m);
}
struct mbuf *
m_getclr(int how, int type)
1994-05-24 10:09:53 +00:00
{
struct mbuf *m;
1994-05-24 10:09:53 +00:00
MGET(m, how, type);
if (m == NULL)
return (NULL);
1994-05-24 10:09:53 +00:00
bzero(mtod(m, caddr_t), MLEN);
return (m);
}
struct mbuf *
m_free(struct mbuf *m)
1994-05-24 10:09:53 +00:00
{
struct mbuf *n;
1994-05-24 10:09:53 +00:00
MFREE(m, n);
return (n);
}
/*
* struct mbuf *
* m_getm(m, len, how, type)
*
* This will allocate len-worth of mbufs and/or mbuf clusters (whatever fits
* best) and return a pointer to the top of the allocated chain. If m is
* non-null, then we assume that it is a single mbuf or an mbuf chain to
* which we want len bytes worth of mbufs and/or clusters attached, and so
* if we succeed in allocating it, we will just return a pointer to m.
*
* If we happen to fail at any point during the allocation, we will free
* up everything we have already allocated and return NULL.
*
*/
struct mbuf *
m_getm(struct mbuf *m, int len, int how, int type)
{
struct mbuf *top, *tail, *mp, *mtail = NULL;
KASSERT(len >= 0, ("len is < 0 in m_getm"));
MGET(mp, how, type);
if (mp == NULL)
return (NULL);
else if (len > MINCLSIZE) {
MCLGET(mp, how);
if ((mp->m_flags & M_EXT) == 0) {
m_free(mp);
return (NULL);
}
}
mp->m_len = 0;
len -= M_TRAILINGSPACE(mp);
if (m != NULL)
for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next);
else
m = mp;
top = tail = mp;
while (len > 0) {
MGET(mp, how, type);
if (mp == NULL)
goto failed;
tail->m_next = mp;
tail = mp;
if (len > MINCLSIZE) {
MCLGET(mp, how);
if ((mp->m_flags & M_EXT) == 0)
goto failed;
}
mp->m_len = 0;
len -= M_TRAILINGSPACE(mp);
}
if (mtail != NULL)
mtail->m_next = top;
return (m);
failed:
m_freem(top);
return (NULL);
}
1994-05-24 10:09:53 +00:00
void
m_freem(struct mbuf *m)
1994-05-24 10:09:53 +00:00
{
struct mbuf *n;
1994-05-24 10:09:53 +00:00
if (m == NULL)
return;
do {
/*
* we do need to check non-first mbuf, since some of existing
* code does not call M_PREPEND properly.
* (example: call to bpf_mtap from drivers)
*/
if ((m->m_flags & M_PKTHDR) != 0 && m->m_pkthdr.aux) {
m_freem(m->m_pkthdr.aux);
m->m_pkthdr.aux = NULL;
}
1994-05-24 10:09:53 +00:00
MFREE(m, n);
m = n;
} while (m);
1994-05-24 10:09:53 +00:00
}
/*
* Lesser-used path for M_PREPEND:
* allocate new mbuf to prepend to chain,
* copy junk along.
*/
struct mbuf *
m_prepend(struct mbuf *m, int len, int how)
1994-05-24 10:09:53 +00:00
{
struct mbuf *mn;
MGET(mn, how, m->m_type);
if (mn == NULL) {
1994-05-24 10:09:53 +00:00
m_freem(m);
return (NULL);
1994-05-24 10:09:53 +00:00
}
if (m->m_flags & M_PKTHDR) {
M_COPY_PKTHDR(mn, m);
m->m_flags &= ~M_PKTHDR;
}
mn->m_next = m;
m = mn;
if (len < MHLEN)
MH_ALIGN(m, len);
m->m_len = len;
return (m);
}
/*
* Make a copy of an mbuf chain starting "off0" bytes from the beginning,
* continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf.
* The wait parameter is a choice of M_TRYWAIT/M_DONTWAIT from caller.
* Note that the copy is read-only, because clusters are not copied,
* only their reference counts are incremented.
1994-05-24 10:09:53 +00:00
*/
#define MCFail (mbstat.m_mcfail)
1994-05-24 10:09:53 +00:00
struct mbuf *
m_copym(struct mbuf *m, int off0, int len, int wait)
1994-05-24 10:09:53 +00:00
{
struct mbuf *n, **np;
int off = off0;
1994-05-24 10:09:53 +00:00
struct mbuf *top;
int copyhdr = 0;
KASSERT(off >= 0, ("m_copym, negative off %d", off));
KASSERT(len >= 0, ("m_copym, negative len %d", len));
1994-05-24 10:09:53 +00:00
if (off == 0 && m->m_flags & M_PKTHDR)
copyhdr = 1;
while (off > 0) {
KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
1994-05-24 10:09:53 +00:00
if (off < m->m_len)
break;
off -= m->m_len;
m = m->m_next;
}
np = &top;
top = 0;
while (len > 0) {
if (m == NULL) {
KASSERT(len == M_COPYALL,
("m_copym, length > size of mbuf chain"));
1994-05-24 10:09:53 +00:00
break;
}
MGET(n, wait, m->m_type);
*np = n;
if (n == NULL)
1994-05-24 10:09:53 +00:00
goto nospace;
if (copyhdr) {
M_COPY_PKTHDR(n, m);
if (len == M_COPYALL)
n->m_pkthdr.len -= off0;
else
n->m_pkthdr.len = len;
copyhdr = 0;
}
n->m_len = min(len, m->m_len - off);
if (m->m_flags & M_EXT) {
n->m_data = m->m_data + off;
n->m_ext = m->m_ext;
n->m_flags |= M_EXT;
Replace the mbuf external reference counting code with something that should be better. The old code counted references to mbuf clusters by using the offset of the cluster from the start of memory allocated for mbufs and clusters as an index into an array of chars, which did the reference counting. If the external storage was not a cluster then reference counting had to be done by the code using that external storage. NetBSD's system of linked lists of mbufs was cosidered, but Alfred felt it would have locking issues when the kernel was made more SMP friendly. The system implimented uses a pool of unions to track external storage. The union contains an int for counting the references and a pointer for forming a free list. The reference counts are incremented and decremented atomically and so should be SMP friendly. This system can track reference counts for any sort of external storage. Access to the reference counting stuff is now through macros defined in mbuf.h, so it should be easier to make changes to the system in the future. The possibility of storing the reference count in one of the referencing mbufs was considered, but was rejected 'cos it would often leave extra mbufs allocated. Storing the reference count in the cluster was also considered, but because the external storage may not be a cluster this isn't an option. The size of the pool of reference counters is available in the stats provided by "netstat -m". PR: 19866 Submitted by: Bosko Milekic <bmilekic@dsuper.net> Reviewed by: alfred (glanced at by others on -net)
2000-08-19 08:32:59 +00:00
MEXT_ADD_REF(m);
1994-05-24 10:09:53 +00:00
} else
bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
(unsigned)n->m_len);
if (len != M_COPYALL)
len -= n->m_len;
off = 0;
m = m->m_next;
np = &n->m_next;
}
if (top == NULL)
2000-09-30 06:30:39 +00:00
atomic_add_long(&MCFail, 1);
1994-05-24 10:09:53 +00:00
return (top);
nospace:
m_freem(top);
2000-09-30 06:30:39 +00:00
atomic_add_long(&MCFail, 1);
return (NULL);
1994-05-24 10:09:53 +00:00
}
/*
* Copy an entire packet, including header (which must be present).
* An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
* Note that the copy is read-only, because clusters are not copied,
* only their reference counts are incremented.
* Preserve alignment of the first mbuf so if the creator has left
* some room at the beginning (e.g. for inserting protocol headers)
* the copies still have the room available.
*/
struct mbuf *
m_copypacket(struct mbuf *m, int how)
{
struct mbuf *top, *n, *o;
MGET(n, how, m->m_type);
top = n;
if (n == NULL)
goto nospace;
M_COPY_PKTHDR(n, m);
n->m_len = m->m_len;
if (m->m_flags & M_EXT) {
n->m_data = m->m_data;
n->m_ext = m->m_ext;
n->m_flags |= M_EXT;
Replace the mbuf external reference counting code with something that should be better. The old code counted references to mbuf clusters by using the offset of the cluster from the start of memory allocated for mbufs and clusters as an index into an array of chars, which did the reference counting. If the external storage was not a cluster then reference counting had to be done by the code using that external storage. NetBSD's system of linked lists of mbufs was cosidered, but Alfred felt it would have locking issues when the kernel was made more SMP friendly. The system implimented uses a pool of unions to track external storage. The union contains an int for counting the references and a pointer for forming a free list. The reference counts are incremented and decremented atomically and so should be SMP friendly. This system can track reference counts for any sort of external storage. Access to the reference counting stuff is now through macros defined in mbuf.h, so it should be easier to make changes to the system in the future. The possibility of storing the reference count in one of the referencing mbufs was considered, but was rejected 'cos it would often leave extra mbufs allocated. Storing the reference count in the cluster was also considered, but because the external storage may not be a cluster this isn't an option. The size of the pool of reference counters is available in the stats provided by "netstat -m". PR: 19866 Submitted by: Bosko Milekic <bmilekic@dsuper.net> Reviewed by: alfred (glanced at by others on -net)
2000-08-19 08:32:59 +00:00
MEXT_ADD_REF(m);
} else {
n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
}
m = m->m_next;
while (m) {
MGET(o, how, m->m_type);
if (o == NULL)
goto nospace;
n->m_next = o;
n = n->m_next;
n->m_len = m->m_len;
if (m->m_flags & M_EXT) {
n->m_data = m->m_data;
n->m_ext = m->m_ext;
n->m_flags |= M_EXT;
Replace the mbuf external reference counting code with something that should be better. The old code counted references to mbuf clusters by using the offset of the cluster from the start of memory allocated for mbufs and clusters as an index into an array of chars, which did the reference counting. If the external storage was not a cluster then reference counting had to be done by the code using that external storage. NetBSD's system of linked lists of mbufs was cosidered, but Alfred felt it would have locking issues when the kernel was made more SMP friendly. The system implimented uses a pool of unions to track external storage. The union contains an int for counting the references and a pointer for forming a free list. The reference counts are incremented and decremented atomically and so should be SMP friendly. This system can track reference counts for any sort of external storage. Access to the reference counting stuff is now through macros defined in mbuf.h, so it should be easier to make changes to the system in the future. The possibility of storing the reference count in one of the referencing mbufs was considered, but was rejected 'cos it would often leave extra mbufs allocated. Storing the reference count in the cluster was also considered, but because the external storage may not be a cluster this isn't an option. The size of the pool of reference counters is available in the stats provided by "netstat -m". PR: 19866 Submitted by: Bosko Milekic <bmilekic@dsuper.net> Reviewed by: alfred (glanced at by others on -net)
2000-08-19 08:32:59 +00:00
MEXT_ADD_REF(m);
} else {
bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
}
m = m->m_next;
}
return top;
nospace:
m_freem(top);
2000-09-30 06:30:39 +00:00
atomic_add_long(&MCFail, 1);
return (NULL);
}
1994-05-24 10:09:53 +00:00
/*
* Copy data from an mbuf chain starting "off" bytes from the beginning,
* continuing for "len" bytes, into the indicated buffer.
*/
void
m_copydata(struct mbuf *m, int off, int len, caddr_t cp)
1994-05-24 10:09:53 +00:00
{
unsigned count;
1994-05-24 10:09:53 +00:00
KASSERT(off >= 0, ("m_copydata, negative off %d", off));
KASSERT(len >= 0, ("m_copydata, negative len %d", len));
1994-05-24 10:09:53 +00:00
while (off > 0) {
KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
1994-05-24 10:09:53 +00:00
if (off < m->m_len)
break;
off -= m->m_len;
m = m->m_next;
}
while (len > 0) {
KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
1994-05-24 10:09:53 +00:00
count = min(m->m_len - off, len);
bcopy(mtod(m, caddr_t) + off, cp, count);
len -= count;
cp += count;
off = 0;
m = m->m_next;
}
}
/*
* Copy a packet header mbuf chain into a completely new chain, including
* copying any mbuf clusters. Use this instead of m_copypacket() when
* you need a writable copy of an mbuf chain.
*/
struct mbuf *
m_dup(struct mbuf *m, int how)
{
struct mbuf **p, *top = NULL;
int remain, moff, nsize;
/* Sanity check */
if (m == NULL)
return (NULL);
KASSERT((m->m_flags & M_PKTHDR) != 0, ("%s: !PKTHDR", __FUNCTION__));
/* While there's more data, get a new mbuf, tack it on, and fill it */
remain = m->m_pkthdr.len;
moff = 0;
p = &top;
while (remain > 0 || top == NULL) { /* allow m->m_pkthdr.len == 0 */
struct mbuf *n;
/* Get the next new mbuf */
MGET(n, how, m->m_type);
if (n == NULL)
goto nospace;
if (top == NULL) { /* first one, must be PKTHDR */
M_COPY_PKTHDR(n, m);
nsize = MHLEN;
} else /* not the first one */
nsize = MLEN;
if (remain >= MINCLSIZE) {
MCLGET(n, how);
if ((n->m_flags & M_EXT) == 0) {
(void)m_free(n);
goto nospace;
}
nsize = MCLBYTES;
}
n->m_len = 0;
/* Link it into the new chain */
*p = n;
p = &n->m_next;
/* Copy data from original mbuf(s) into new mbuf */
while (n->m_len < nsize && m != NULL) {
int chunk = min(nsize - n->m_len, m->m_len - moff);
bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
moff += chunk;
n->m_len += chunk;
remain -= chunk;
if (moff == m->m_len) {
m = m->m_next;
moff = 0;
}
}
/* Check correct total mbuf length */
KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
("%s: bogus m_pkthdr.len", __FUNCTION__));
}
return (top);
nospace:
m_freem(top);
2000-09-30 06:30:39 +00:00
atomic_add_long(&MCFail, 1);
return (NULL);
}
1994-05-24 10:09:53 +00:00
/*
* Concatenate mbuf chain n to m.
* Both chains must be of the same type (e.g. MT_DATA).
* Any m_pkthdr is not updated.
*/
void
m_cat(struct mbuf *m, struct mbuf *n)
1994-05-24 10:09:53 +00:00
{
while (m->m_next)
m = m->m_next;
while (n) {
if (m->m_flags & M_EXT ||
m->m_data + m->m_len + n->m_len >= &m->m_dat[MLEN]) {
/* just join the two chains */
m->m_next = n;
return;
}
/* splat the data from one into the other */
bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
(u_int)n->m_len);
m->m_len += n->m_len;
n = m_free(n);
}
}
void
m_adj(struct mbuf *mp, int req_len)
1994-05-24 10:09:53 +00:00
{
int len = req_len;
struct mbuf *m;
int count;
1994-05-24 10:09:53 +00:00
if ((m = mp) == NULL)
return;
if (len >= 0) {
/*
* Trim from head.
*/
while (m != NULL && len > 0) {
if (m->m_len <= len) {
len -= m->m_len;
m->m_len = 0;
m = m->m_next;
} else {
m->m_len -= len;
m->m_data += len;
len = 0;
}
}
m = mp;
if (mp->m_flags & M_PKTHDR)
m->m_pkthdr.len -= (req_len - len);
} else {
/*
* Trim from tail. Scan the mbuf chain,
* calculating its length and finding the last mbuf.
* If the adjustment only affects this mbuf, then just
* adjust and return. Otherwise, rescan and truncate
* after the remaining size.
*/
len = -len;
count = 0;
for (;;) {
count += m->m_len;
if (m->m_next == (struct mbuf *)0)
break;
m = m->m_next;
}
if (m->m_len >= len) {
m->m_len -= len;
if (mp->m_flags & M_PKTHDR)
mp->m_pkthdr.len -= len;
return;
}
count -= len;
if (count < 0)
count = 0;
/*
* Correct length for chain is "count".
* Find the mbuf with last data, adjust its length,
* and toss data from remaining mbufs on chain.
*/
m = mp;
if (m->m_flags & M_PKTHDR)
m->m_pkthdr.len = count;
for (; m; m = m->m_next) {
if (m->m_len >= count) {
m->m_len = count;
break;
}
count -= m->m_len;
}
while (m->m_next)
(m = m->m_next) ->m_len = 0;
1994-05-24 10:09:53 +00:00
}
}
/*
* Rearange an mbuf chain so that len bytes are contiguous
* and in the data area of an mbuf (so that mtod and dtom
* will work for a structure of size len). Returns the resulting
* mbuf chain on success, frees it and returns null on failure.
* If there is room, it will add up to max_protohdr-len extra bytes to the
* contiguous region in an attempt to avoid being called next time.
*/
#define MPFail (mbstat.m_mpfail)
1994-05-24 10:09:53 +00:00
struct mbuf *
m_pullup(struct mbuf *n, int len)
1994-05-24 10:09:53 +00:00
{
struct mbuf *m;
int count;
1994-05-24 10:09:53 +00:00
int space;
/*
* If first mbuf has no cluster, and has room for len bytes
* without shifting current data, pullup into it,
* otherwise allocate a new mbuf to prepend to the chain.
*/
if ((n->m_flags & M_EXT) == 0 &&
n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
if (n->m_len >= len)
return (n);
m = n;
n = n->m_next;
len -= m->m_len;
} else {
if (len > MHLEN)
goto bad;
MGET(m, M_DONTWAIT, n->m_type);
if (m == NULL)
1994-05-24 10:09:53 +00:00
goto bad;
m->m_len = 0;
if (n->m_flags & M_PKTHDR) {
M_COPY_PKTHDR(m, n);
n->m_flags &= ~M_PKTHDR;
}
}
space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
do {
count = min(min(max(len, max_protohdr), space), n->m_len);
bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
(unsigned)count);
len -= count;
m->m_len += count;
n->m_len -= count;
space -= count;
if (n->m_len)
n->m_data += count;
else
n = m_free(n);
} while (len > 0 && n);
if (len > 0) {
(void) m_free(m);
goto bad;
}
m->m_next = n;
return (m);
bad:
m_freem(n);
2000-09-30 06:30:39 +00:00
atomic_add_long(&MPFail, 1);
return (NULL);
1994-05-24 10:09:53 +00:00
}
/*
* Partition an mbuf chain in two pieces, returning the tail --
* all but the first len0 bytes. In case of failure, it returns NULL and
* attempts to restore the chain to its original state.
*/
struct mbuf *
m_split(struct mbuf *m0, int len0, int wait)
1994-05-24 10:09:53 +00:00
{
struct mbuf *m, *n;
1994-05-24 10:09:53 +00:00
unsigned len = len0, remain;
for (m = m0; m && len > m->m_len; m = m->m_next)
len -= m->m_len;
if (m == NULL)
return (NULL);
1994-05-24 10:09:53 +00:00
remain = m->m_len - len;
if (m0->m_flags & M_PKTHDR) {
MGETHDR(n, wait, m0->m_type);
if (n == NULL)
return (NULL);
1994-05-24 10:09:53 +00:00
n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
n->m_pkthdr.len = m0->m_pkthdr.len - len0;
m0->m_pkthdr.len = len0;
if (m->m_flags & M_EXT)
goto extpacket;
if (remain > MHLEN) {
/* m can't be the lead packet */
MH_ALIGN(n, 0);
n->m_next = m_split(m, len, wait);
if (n->m_next == NULL) {
1994-05-24 10:09:53 +00:00
(void) m_free(n);
return (NULL);
1994-05-24 10:09:53 +00:00
} else
return (n);
} else
MH_ALIGN(n, remain);
} else if (remain == 0) {
n = m->m_next;
m->m_next = NULL;
1994-05-24 10:09:53 +00:00
return (n);
} else {
MGET(n, wait, m->m_type);
if (n == NULL)
return (NULL);
1994-05-24 10:09:53 +00:00
M_ALIGN(n, remain);
}
extpacket:
if (m->m_flags & M_EXT) {
n->m_flags |= M_EXT;
n->m_ext = m->m_ext;
Replace the mbuf external reference counting code with something that should be better. The old code counted references to mbuf clusters by using the offset of the cluster from the start of memory allocated for mbufs and clusters as an index into an array of chars, which did the reference counting. If the external storage was not a cluster then reference counting had to be done by the code using that external storage. NetBSD's system of linked lists of mbufs was cosidered, but Alfred felt it would have locking issues when the kernel was made more SMP friendly. The system implimented uses a pool of unions to track external storage. The union contains an int for counting the references and a pointer for forming a free list. The reference counts are incremented and decremented atomically and so should be SMP friendly. This system can track reference counts for any sort of external storage. Access to the reference counting stuff is now through macros defined in mbuf.h, so it should be easier to make changes to the system in the future. The possibility of storing the reference count in one of the referencing mbufs was considered, but was rejected 'cos it would often leave extra mbufs allocated. Storing the reference count in the cluster was also considered, but because the external storage may not be a cluster this isn't an option. The size of the pool of reference counters is available in the stats provided by "netstat -m". PR: 19866 Submitted by: Bosko Milekic <bmilekic@dsuper.net> Reviewed by: alfred (glanced at by others on -net)
2000-08-19 08:32:59 +00:00
MEXT_ADD_REF(m);
1994-05-24 10:09:53 +00:00
m->m_ext.ext_size = 0; /* For Accounting XXXXXX danger */
n->m_data = m->m_data + len;
} else {
bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
}
n->m_len = remain;
m->m_len = len;
n->m_next = m->m_next;
m->m_next = NULL;
1994-05-24 10:09:53 +00:00
return (n);
}
/*
* Routine to copy from device local memory into mbufs.
*/
struct mbuf *
m_devget(char *buf, int totlen, int off0, struct ifnet *ifp,
void (*copy)(char *from, caddr_t to, u_int len))
1994-05-24 10:09:53 +00:00
{
struct mbuf *m;
1994-05-24 10:09:53 +00:00
struct mbuf *top = 0, **mp = &top;
int off = off0, len;
char *cp;
1994-05-24 10:09:53 +00:00
char *epkt;
cp = buf;
epkt = cp + totlen;
if (off) {
cp += off + 2 * sizeof(u_short);
totlen -= 2 * sizeof(u_short);
}
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return (NULL);
1994-05-24 10:09:53 +00:00
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = totlen;
m->m_len = MHLEN;
while (totlen > 0) {
if (top) {
MGET(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
1994-05-24 10:09:53 +00:00
m_freem(top);
return (NULL);
1994-05-24 10:09:53 +00:00
}
m->m_len = MLEN;
}
len = min(totlen, epkt - cp);
if (len >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if (m->m_flags & M_EXT)
m->m_len = len = min(len, MCLBYTES);
else
len = m->m_len;
} else {
/*
* Place initial small packet/header at end of mbuf.
*/
if (len < m->m_len) {
if (top == NULL && len +
max_linkhdr <= m->m_len)
1994-05-24 10:09:53 +00:00
m->m_data += max_linkhdr;
m->m_len = len;
} else
len = m->m_len;
}
if (copy)
copy(cp, mtod(m, caddr_t), (unsigned)len);
else
bcopy(cp, mtod(m, caddr_t), (unsigned)len);
cp += len;
*mp = m;
mp = &m->m_next;
totlen -= len;
if (cp == epkt)
cp = buf;
}
return (top);
}
1994-10-04 06:50:01 +00:00
/*
* Copy data from a buffer back into the indicated mbuf chain,
* starting "off" bytes from the beginning, extending the mbuf
* chain if necessary.
*/
void
m_copyback(struct mbuf *m0, int off, int len, caddr_t cp)
1994-10-04 06:50:01 +00:00
{
int mlen;
struct mbuf *m = m0, *n;
1994-10-04 06:50:01 +00:00
int totlen = 0;
if (m0 == NULL)
1994-10-04 06:50:01 +00:00
return;
while (off > (mlen = m->m_len)) {
off -= mlen;
totlen += mlen;
if (m->m_next == NULL) {
1994-10-04 06:50:01 +00:00
n = m_getclr(M_DONTWAIT, m->m_type);
if (n == NULL)
1994-10-04 06:50:01 +00:00
goto out;
n->m_len = min(MLEN, len + off);
m->m_next = n;
}
m = m->m_next;
}
while (len > 0) {
mlen = min (m->m_len - off, len);
bcopy(cp, off + mtod(m, caddr_t), (unsigned)mlen);
cp += mlen;
len -= mlen;
mlen += off;
off = 0;
totlen += mlen;
if (len == 0)
break;
if (m->m_next == NULL) {
1994-10-04 06:50:01 +00:00
n = m_get(M_DONTWAIT, m->m_type);
if (n == NULL)
1994-10-04 06:50:01 +00:00
break;
n->m_len = min(MLEN, len);
m->m_next = n;
}
m = m->m_next;
}
out: if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
m->m_pkthdr.len = totlen;
}
void
m_print(const struct mbuf *m)
{
int len;
const struct mbuf *m2;
len = m->m_pkthdr.len;
m2 = m;
while (len) {
printf("%p %*D\n", m2, m2->m_len, (u_char *)m2->m_data, "-");
len -= m2->m_len;
m2 = m2->m_next;
}
return;
}