An early Christmas present: add driver support for a whole bunch of
PCI fast ethernet adapters, plus man pages.
if_pn.c: Netgear FA310TX model D1, LinkSys LNE100TX, Matrox FastNIC 10/100,
various other PNIC devices
if_mx.c: NDC Communications SOHOware SFA100 (Macronix 98713A), various
other boards based on the Macronix 98713, 98713A, 98715, 98715A
and 98725 chips
if_vr.c: D-Link DFE530-TX, other boards based on the VIA Rhine and
Rhine II chips (note: the D-Link and certain other cards
that actually use a Rhine II chip still return the PCI
device ID of the Rhine I. I don't know why, and it doesn't
really matter since the driver treats both chips the same
anyway.)
if_wb.c: Trendware TE100-PCIE and various other cards based on the
Winbond W89C840F chip (the Trendware card is identical to
the sample boards Winbond sent me, so who knows how many
clones there are running around)
All drivers include support for ifmedia, BPF and hardware multicast
filtering.
Also updated GENERIC, LINT, RELNOTES.TXT, userconfig and
sysinstall device list.
I also have a driver for the ASIX AX88140A in the works.
1998-12-04 18:01:24 +00:00
|
|
|
/*
|
|
|
|
* Copyright (c) 1997, 1998
|
|
|
|
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
|
|
* must display the following acknowledgement:
|
|
|
|
* This product includes software developed by Bill Paul.
|
|
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
|
|
* may be used to endorse or promote products derived from this software
|
|
|
|
* without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
|
|
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*
|
1999-01-16 06:25:59 +00:00
|
|
|
* $Id: if_wb.c,v 1.36 1999/01/16 05:28:52 wpaul Exp $
|
An early Christmas present: add driver support for a whole bunch of
PCI fast ethernet adapters, plus man pages.
if_pn.c: Netgear FA310TX model D1, LinkSys LNE100TX, Matrox FastNIC 10/100,
various other PNIC devices
if_mx.c: NDC Communications SOHOware SFA100 (Macronix 98713A), various
other boards based on the Macronix 98713, 98713A, 98715, 98715A
and 98725 chips
if_vr.c: D-Link DFE530-TX, other boards based on the VIA Rhine and
Rhine II chips (note: the D-Link and certain other cards
that actually use a Rhine II chip still return the PCI
device ID of the Rhine I. I don't know why, and it doesn't
really matter since the driver treats both chips the same
anyway.)
if_wb.c: Trendware TE100-PCIE and various other cards based on the
Winbond W89C840F chip (the Trendware card is identical to
the sample boards Winbond sent me, so who knows how many
clones there are running around)
All drivers include support for ifmedia, BPF and hardware multicast
filtering.
Also updated GENERIC, LINT, RELNOTES.TXT, userconfig and
sysinstall device list.
I also have a driver for the ASIX AX88140A in the works.
1998-12-04 18:01:24 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Winbond fast ethernet PCI NIC driver
|
|
|
|
*
|
|
|
|
* Supports various cheap network adapters based on the Winbond W89C840F
|
|
|
|
* fast ethernet controller chip. This includes adapters manufactured by
|
|
|
|
* Winbond itself and some made by Linksys.
|
|
|
|
*
|
|
|
|
* Written by Bill Paul <wpaul@ctr.columbia.edu>
|
|
|
|
* Electrical Engineering Department
|
|
|
|
* Columbia University, New York City
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The Winbond W89C840F chip is a bus master; in some ways it resembles
|
|
|
|
* a DEC 'tulip' chip, only not as complicated. Unfortunately, it has
|
|
|
|
* one major difference which is that while the registers do many of
|
|
|
|
* the same things as a tulip adapter, the offsets are different: where
|
|
|
|
* tulip registers are typically spaced 8 bytes apart, the Winbond
|
|
|
|
* registers are spaced 4 bytes apart. The receiver filter is also
|
|
|
|
* programmed differently.
|
|
|
|
*
|
|
|
|
* Like the tulip, the Winbond chip uses small descriptors containing
|
|
|
|
* a status word, a control word and 32-bit areas that can either be used
|
|
|
|
* to point to two external data blocks, or to point to a single block
|
|
|
|
* and another descriptor in a linked list. Descriptors can be grouped
|
|
|
|
* together in blocks to form fixed length rings or can be chained
|
|
|
|
* together in linked lists. A single packet may be spread out over
|
|
|
|
* several descriptors if necessary.
|
|
|
|
*
|
|
|
|
* For the receive ring, this driver uses a linked list of descriptors,
|
|
|
|
* each pointing to a single mbuf cluster buffer, which us large enough
|
|
|
|
* to hold an entire packet. The link list is looped back to created a
|
|
|
|
* closed ring.
|
|
|
|
*
|
|
|
|
* For transmission, the driver creates a linked list of 'super descriptors'
|
|
|
|
* which each contain several individual descriptors linked toghether.
|
|
|
|
* Each 'super descriptor' contains WB_MAXFRAGS descriptors, which we
|
|
|
|
* abuse as fragment pointers. This allows us to use a buffer managment
|
|
|
|
* scheme very similar to that used in the ThunderLAN and Etherlink XL
|
|
|
|
* drivers.
|
|
|
|
*
|
|
|
|
* Autonegotiation is performed using the external PHY via the MII bus.
|
|
|
|
* The sample boards I have all use a Davicom PHY.
|
|
|
|
*
|
|
|
|
* Note: the author of the Linux driver for the Winbond chip alludes
|
|
|
|
* to some sort of flaw in the chip's design that seems to mandate some
|
|
|
|
* drastic workaround which signigicantly impairs transmit performance.
|
|
|
|
* I have no idea what he's on about: transmit performance with all
|
|
|
|
* three of my test boards seems fine.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "bpfilter.h"
|
|
|
|
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/systm.h>
|
|
|
|
#include <sys/sockio.h>
|
|
|
|
#include <sys/mbuf.h>
|
|
|
|
#include <sys/malloc.h>
|
|
|
|
#include <sys/kernel.h>
|
|
|
|
#include <sys/socket.h>
|
|
|
|
|
|
|
|
#include <net/if.h>
|
|
|
|
#include <net/if_arp.h>
|
|
|
|
#include <net/ethernet.h>
|
|
|
|
#include <net/if_dl.h>
|
|
|
|
#include <net/if_media.h>
|
|
|
|
|
|
|
|
#if NBPFILTER > 0
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include <vm/vm.h> /* for vtophys */
|
|
|
|
#include <vm/pmap.h> /* for vtophys */
|
|
|
|
#include <machine/clock.h> /* for DELAY */
|
|
|
|
#include <machine/bus_memio.h>
|
|
|
|
#include <machine/bus_pio.h>
|
|
|
|
#include <machine/bus.h>
|
|
|
|
|
|
|
|
#include <pci/pcireg.h>
|
|
|
|
#include <pci/pcivar.h>
|
|
|
|
|
|
|
|
#define WB_USEIOSPACE
|
|
|
|
|
|
|
|
/* #define WB_BACKGROUND_AUTONEG */
|
|
|
|
|
|
|
|
#include <pci/if_wbreg.h>
|
|
|
|
|
|
|
|
#ifndef lint
|
1998-12-10 02:02:30 +00:00
|
|
|
static const char rcsid[] =
|
1999-01-16 06:25:59 +00:00
|
|
|
"$Id: if_wb.c,v 1.36 1999/01/16 05:28:52 wpaul Exp $";
|
An early Christmas present: add driver support for a whole bunch of
PCI fast ethernet adapters, plus man pages.
if_pn.c: Netgear FA310TX model D1, LinkSys LNE100TX, Matrox FastNIC 10/100,
various other PNIC devices
if_mx.c: NDC Communications SOHOware SFA100 (Macronix 98713A), various
other boards based on the Macronix 98713, 98713A, 98715, 98715A
and 98725 chips
if_vr.c: D-Link DFE530-TX, other boards based on the VIA Rhine and
Rhine II chips (note: the D-Link and certain other cards
that actually use a Rhine II chip still return the PCI
device ID of the Rhine I. I don't know why, and it doesn't
really matter since the driver treats both chips the same
anyway.)
if_wb.c: Trendware TE100-PCIE and various other cards based on the
Winbond W89C840F chip (the Trendware card is identical to
the sample boards Winbond sent me, so who knows how many
clones there are running around)
All drivers include support for ifmedia, BPF and hardware multicast
filtering.
Also updated GENERIC, LINT, RELNOTES.TXT, userconfig and
sysinstall device list.
I also have a driver for the ASIX AX88140A in the works.
1998-12-04 18:01:24 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Various supported device vendors/types and their names.
|
|
|
|
*/
|
|
|
|
static struct wb_type wb_devs[] = {
|
|
|
|
{ WB_VENDORID, WB_DEVICEID_840F,
|
|
|
|
"Winbond W89C840F 10/100BaseTX" },
|
|
|
|
{ CP_VENDORID, CP_DEVICEID_RL100,
|
|
|
|
"Compex RL100-ATX 10/100baseTX" },
|
|
|
|
{ 0, 0, NULL }
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Various supported PHY vendors/types and their names. Note that
|
|
|
|
* this driver will work with pretty much any MII-compliant PHY,
|
|
|
|
* so failure to positively identify the chip is not a fatal error.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static struct wb_type wb_phys[] = {
|
|
|
|
{ TI_PHY_VENDORID, TI_PHY_10BT, "<TI ThunderLAN 10BT (internal)>" },
|
|
|
|
{ TI_PHY_VENDORID, TI_PHY_100VGPMI, "<TI TNETE211 100VG Any-LAN>" },
|
|
|
|
{ NS_PHY_VENDORID, NS_PHY_83840A, "<National Semiconductor DP83840A>"},
|
|
|
|
{ LEVEL1_PHY_VENDORID, LEVEL1_PHY_LXT970, "<Level 1 LXT970>" },
|
|
|
|
{ INTEL_PHY_VENDORID, INTEL_PHY_82555, "<Intel 82555>" },
|
|
|
|
{ SEEQ_PHY_VENDORID, SEEQ_PHY_80220, "<SEEQ 80220>" },
|
|
|
|
{ 0, 0, "<MII-compliant physical interface>" }
|
|
|
|
};
|
|
|
|
|
|
|
|
static unsigned long wb_count = 0;
|
1998-12-14 06:37:37 +00:00
|
|
|
static const char *wb_probe __P((pcici_t, pcidi_t));
|
An early Christmas present: add driver support for a whole bunch of
PCI fast ethernet adapters, plus man pages.
if_pn.c: Netgear FA310TX model D1, LinkSys LNE100TX, Matrox FastNIC 10/100,
various other PNIC devices
if_mx.c: NDC Communications SOHOware SFA100 (Macronix 98713A), various
other boards based on the Macronix 98713, 98713A, 98715, 98715A
and 98725 chips
if_vr.c: D-Link DFE530-TX, other boards based on the VIA Rhine and
Rhine II chips (note: the D-Link and certain other cards
that actually use a Rhine II chip still return the PCI
device ID of the Rhine I. I don't know why, and it doesn't
really matter since the driver treats both chips the same
anyway.)
if_wb.c: Trendware TE100-PCIE and various other cards based on the
Winbond W89C840F chip (the Trendware card is identical to
the sample boards Winbond sent me, so who knows how many
clones there are running around)
All drivers include support for ifmedia, BPF and hardware multicast
filtering.
Also updated GENERIC, LINT, RELNOTES.TXT, userconfig and
sysinstall device list.
I also have a driver for the ASIX AX88140A in the works.
1998-12-04 18:01:24 +00:00
|
|
|
static void wb_attach __P((pcici_t, int));
|
|
|
|
|
|
|
|
static int wb_newbuf __P((struct wb_softc *,
|
|
|
|
struct wb_chain_onefrag *));
|
|
|
|
static int wb_encap __P((struct wb_softc *, struct wb_chain *,
|
|
|
|
struct mbuf *));
|
|
|
|
|
|
|
|
static void wb_rxeof __P((struct wb_softc *));
|
|
|
|
static void wb_rxeoc __P((struct wb_softc *));
|
|
|
|
static void wb_txeof __P((struct wb_softc *));
|
|
|
|
static void wb_txeoc __P((struct wb_softc *));
|
|
|
|
static void wb_intr __P((void *));
|
|
|
|
static void wb_start __P((struct ifnet *));
|
|
|
|
static int wb_ioctl __P((struct ifnet *, u_long, caddr_t));
|
|
|
|
static void wb_init __P((void *));
|
|
|
|
static void wb_stop __P((struct wb_softc *));
|
|
|
|
static void wb_watchdog __P((struct ifnet *));
|
|
|
|
static void wb_shutdown __P((int, void *));
|
|
|
|
static int wb_ifmedia_upd __P((struct ifnet *));
|
|
|
|
static void wb_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
|
|
|
|
|
1999-01-16 06:25:59 +00:00
|
|
|
static void wb_eeprom_putbyte __P((struct wb_softc *, int));
|
|
|
|
static void wb_eeprom_getword __P((struct wb_softc *, int, u_int16_t *));
|
An early Christmas present: add driver support for a whole bunch of
PCI fast ethernet adapters, plus man pages.
if_pn.c: Netgear FA310TX model D1, LinkSys LNE100TX, Matrox FastNIC 10/100,
various other PNIC devices
if_mx.c: NDC Communications SOHOware SFA100 (Macronix 98713A), various
other boards based on the Macronix 98713, 98713A, 98715, 98715A
and 98725 chips
if_vr.c: D-Link DFE530-TX, other boards based on the VIA Rhine and
Rhine II chips (note: the D-Link and certain other cards
that actually use a Rhine II chip still return the PCI
device ID of the Rhine I. I don't know why, and it doesn't
really matter since the driver treats both chips the same
anyway.)
if_wb.c: Trendware TE100-PCIE and various other cards based on the
Winbond W89C840F chip (the Trendware card is identical to
the sample boards Winbond sent me, so who knows how many
clones there are running around)
All drivers include support for ifmedia, BPF and hardware multicast
filtering.
Also updated GENERIC, LINT, RELNOTES.TXT, userconfig and
sysinstall device list.
I also have a driver for the ASIX AX88140A in the works.
1998-12-04 18:01:24 +00:00
|
|
|
static void wb_read_eeprom __P((struct wb_softc *, caddr_t, int,
|
|
|
|
int, int));
|
|
|
|
static void wb_mii_sync __P((struct wb_softc *));
|
|
|
|
static void wb_mii_send __P((struct wb_softc *, u_int32_t, int));
|
|
|
|
static int wb_mii_readreg __P((struct wb_softc *, struct wb_mii_frame *));
|
|
|
|
static int wb_mii_writereg __P((struct wb_softc *, struct wb_mii_frame *));
|
|
|
|
static u_int16_t wb_phy_readreg __P((struct wb_softc *, int));
|
1999-01-16 06:25:59 +00:00
|
|
|
static void wb_phy_writereg __P((struct wb_softc *, int, int));
|
An early Christmas present: add driver support for a whole bunch of
PCI fast ethernet adapters, plus man pages.
if_pn.c: Netgear FA310TX model D1, LinkSys LNE100TX, Matrox FastNIC 10/100,
various other PNIC devices
if_mx.c: NDC Communications SOHOware SFA100 (Macronix 98713A), various
other boards based on the Macronix 98713, 98713A, 98715, 98715A
and 98725 chips
if_vr.c: D-Link DFE530-TX, other boards based on the VIA Rhine and
Rhine II chips (note: the D-Link and certain other cards
that actually use a Rhine II chip still return the PCI
device ID of the Rhine I. I don't know why, and it doesn't
really matter since the driver treats both chips the same
anyway.)
if_wb.c: Trendware TE100-PCIE and various other cards based on the
Winbond W89C840F chip (the Trendware card is identical to
the sample boards Winbond sent me, so who knows how many
clones there are running around)
All drivers include support for ifmedia, BPF and hardware multicast
filtering.
Also updated GENERIC, LINT, RELNOTES.TXT, userconfig and
sysinstall device list.
I also have a driver for the ASIX AX88140A in the works.
1998-12-04 18:01:24 +00:00
|
|
|
|
|
|
|
static void wb_autoneg_xmit __P((struct wb_softc *));
|
|
|
|
static void wb_autoneg_mii __P((struct wb_softc *, int, int));
|
|
|
|
static void wb_setmode_mii __P((struct wb_softc *, int));
|
|
|
|
static void wb_getmode_mii __P((struct wb_softc *));
|
1999-01-16 06:25:59 +00:00
|
|
|
static void wb_setcfg __P((struct wb_softc *, int));
|
|
|
|
static u_int8_t wb_calchash __P((caddr_t));
|
An early Christmas present: add driver support for a whole bunch of
PCI fast ethernet adapters, plus man pages.
if_pn.c: Netgear FA310TX model D1, LinkSys LNE100TX, Matrox FastNIC 10/100,
various other PNIC devices
if_mx.c: NDC Communications SOHOware SFA100 (Macronix 98713A), various
other boards based on the Macronix 98713, 98713A, 98715, 98715A
and 98725 chips
if_vr.c: D-Link DFE530-TX, other boards based on the VIA Rhine and
Rhine II chips (note: the D-Link and certain other cards
that actually use a Rhine II chip still return the PCI
device ID of the Rhine I. I don't know why, and it doesn't
really matter since the driver treats both chips the same
anyway.)
if_wb.c: Trendware TE100-PCIE and various other cards based on the
Winbond W89C840F chip (the Trendware card is identical to
the sample boards Winbond sent me, so who knows how many
clones there are running around)
All drivers include support for ifmedia, BPF and hardware multicast
filtering.
Also updated GENERIC, LINT, RELNOTES.TXT, userconfig and
sysinstall device list.
I also have a driver for the ASIX AX88140A in the works.
1998-12-04 18:01:24 +00:00
|
|
|
static void wb_setmulti __P((struct wb_softc *));
|
|
|
|
static void wb_reset __P((struct wb_softc *));
|
|
|
|
static int wb_list_rx_init __P((struct wb_softc *));
|
|
|
|
static int wb_list_tx_init __P((struct wb_softc *));
|
|
|
|
|
|
|
|
#define WB_SETBIT(sc, reg, x) \
|
|
|
|
CSR_WRITE_4(sc, reg, \
|
|
|
|
CSR_READ_4(sc, reg) | x)
|
|
|
|
|
|
|
|
#define WB_CLRBIT(sc, reg, x) \
|
|
|
|
CSR_WRITE_4(sc, reg, \
|
|
|
|
CSR_READ_4(sc, reg) & ~x)
|
|
|
|
|
|
|
|
#define SIO_SET(x) \
|
|
|
|
CSR_WRITE_4(sc, WB_SIO, \
|
|
|
|
CSR_READ_4(sc, WB_SIO) | x)
|
|
|
|
|
|
|
|
#define SIO_CLR(x) \
|
|
|
|
CSR_WRITE_4(sc, WB_SIO, \
|
|
|
|
CSR_READ_4(sc, WB_SIO) & ~x)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Send a read command and address to the EEPROM, check for ACK.
|
|
|
|
*/
|
|
|
|
static void wb_eeprom_putbyte(sc, addr)
|
|
|
|
struct wb_softc *sc;
|
1999-01-16 06:25:59 +00:00
|
|
|
int addr;
|
An early Christmas present: add driver support for a whole bunch of
PCI fast ethernet adapters, plus man pages.
if_pn.c: Netgear FA310TX model D1, LinkSys LNE100TX, Matrox FastNIC 10/100,
various other PNIC devices
if_mx.c: NDC Communications SOHOware SFA100 (Macronix 98713A), various
other boards based on the Macronix 98713, 98713A, 98715, 98715A
and 98725 chips
if_vr.c: D-Link DFE530-TX, other boards based on the VIA Rhine and
Rhine II chips (note: the D-Link and certain other cards
that actually use a Rhine II chip still return the PCI
device ID of the Rhine I. I don't know why, and it doesn't
really matter since the driver treats both chips the same
anyway.)
if_wb.c: Trendware TE100-PCIE and various other cards based on the
Winbond W89C840F chip (the Trendware card is identical to
the sample boards Winbond sent me, so who knows how many
clones there are running around)
All drivers include support for ifmedia, BPF and hardware multicast
filtering.
Also updated GENERIC, LINT, RELNOTES.TXT, userconfig and
sysinstall device list.
I also have a driver for the ASIX AX88140A in the works.
1998-12-04 18:01:24 +00:00
|
|
|
{
|
|
|
|
register int d, i;
|
|
|
|
|
|
|
|
d = addr | WB_EECMD_READ;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Feed in each bit and stobe the clock.
|
|
|
|
*/
|
|
|
|
for (i = 0x400; i; i >>= 1) {
|
|
|
|
if (d & i) {
|
|
|
|
SIO_SET(WB_SIO_EE_DATAIN);
|
|
|
|
} else {
|
|
|
|
SIO_CLR(WB_SIO_EE_DATAIN);
|
|
|
|
}
|
|
|
|
DELAY(100);
|
|
|
|
SIO_SET(WB_SIO_EE_CLK);
|
|
|
|
DELAY(150);
|
|
|
|
SIO_CLR(WB_SIO_EE_CLK);
|
|
|
|
DELAY(100);
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Read a word of data stored in the EEPROM at address 'addr.'
|
|
|
|
*/
|
|
|
|
static void wb_eeprom_getword(sc, addr, dest)
|
|
|
|
struct wb_softc *sc;
|
1999-01-16 06:25:59 +00:00
|
|
|
int addr;
|
An early Christmas present: add driver support for a whole bunch of
PCI fast ethernet adapters, plus man pages.
if_pn.c: Netgear FA310TX model D1, LinkSys LNE100TX, Matrox FastNIC 10/100,
various other PNIC devices
if_mx.c: NDC Communications SOHOware SFA100 (Macronix 98713A), various
other boards based on the Macronix 98713, 98713A, 98715, 98715A
and 98725 chips
if_vr.c: D-Link DFE530-TX, other boards based on the VIA Rhine and
Rhine II chips (note: the D-Link and certain other cards
that actually use a Rhine II chip still return the PCI
device ID of the Rhine I. I don't know why, and it doesn't
really matter since the driver treats both chips the same
anyway.)
if_wb.c: Trendware TE100-PCIE and various other cards based on the
Winbond W89C840F chip (the Trendware card is identical to
the sample boards Winbond sent me, so who knows how many
clones there are running around)
All drivers include support for ifmedia, BPF and hardware multicast
filtering.
Also updated GENERIC, LINT, RELNOTES.TXT, userconfig and
sysinstall device list.
I also have a driver for the ASIX AX88140A in the works.
1998-12-04 18:01:24 +00:00
|
|
|
u_int16_t *dest;
|
|
|
|
{
|
|
|
|
register int i;
|
|
|
|
u_int16_t word = 0;
|
|
|
|
|
|
|
|
/* Enter EEPROM access mode. */
|
|
|
|
CSR_WRITE_4(sc, WB_SIO, WB_SIO_EESEL|WB_SIO_EE_CS);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Send address of word we want to read.
|
|
|
|
*/
|
|
|
|
wb_eeprom_putbyte(sc, addr);
|
|
|
|
|
|
|
|
CSR_WRITE_4(sc, WB_SIO, WB_SIO_EESEL|WB_SIO_EE_CS);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Start reading bits from EEPROM.
|
|
|
|
*/
|
|
|
|
for (i = 0x8000; i; i >>= 1) {
|
|
|
|
SIO_SET(WB_SIO_EE_CLK);
|
|
|
|
DELAY(100);
|
|
|
|
if (CSR_READ_4(sc, WB_SIO) & WB_SIO_EE_DATAOUT)
|
|
|
|
word |= i;
|
|
|
|
SIO_CLR(WB_SIO_EE_CLK);
|
|
|
|
DELAY(100);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Turn off EEPROM access mode. */
|
|
|
|
CSR_WRITE_4(sc, WB_SIO, 0);
|
|
|
|
|
|
|
|
*dest = word;
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Read a sequence of words from the EEPROM.
|
|
|
|
*/
|
|
|
|
static void wb_read_eeprom(sc, dest, off, cnt, swap)
|
|
|
|
struct wb_softc *sc;
|
|
|
|
caddr_t dest;
|
|
|
|
int off;
|
|
|
|
int cnt;
|
|
|
|
int swap;
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
u_int16_t word = 0, *ptr;
|
|
|
|
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
|
|
wb_eeprom_getword(sc, off + i, &word);
|
|
|
|
ptr = (u_int16_t *)(dest + (i * 2));
|
|
|
|
if (swap)
|
|
|
|
*ptr = ntohs(word);
|
|
|
|
else
|
|
|
|
*ptr = word;
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Sync the PHYs by setting data bit and strobing the clock 32 times.
|
|
|
|
*/
|
|
|
|
static void wb_mii_sync(sc)
|
|
|
|
struct wb_softc *sc;
|
|
|
|
{
|
|
|
|
register int i;
|
|
|
|
|
|
|
|
SIO_SET(WB_SIO_MII_DIR|WB_SIO_MII_DATAIN);
|
|
|
|
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
|
|
SIO_SET(WB_SIO_MII_CLK);
|
|
|
|
DELAY(1);
|
|
|
|
SIO_CLR(WB_SIO_MII_CLK);
|
|
|
|
DELAY(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Clock a series of bits through the MII.
|
|
|
|
*/
|
|
|
|
static void wb_mii_send(sc, bits, cnt)
|
|
|
|
struct wb_softc *sc;
|
|
|
|
u_int32_t bits;
|
|
|
|
int cnt;
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
SIO_CLR(WB_SIO_MII_CLK);
|
|
|
|
|
|
|
|
for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
|
|
|
|
if (bits & i) {
|
|
|
|
SIO_SET(WB_SIO_MII_DATAIN);
|
|
|
|
} else {
|
|
|
|
SIO_CLR(WB_SIO_MII_DATAIN);
|
|
|
|
}
|
|
|
|
DELAY(1);
|
|
|
|
SIO_CLR(WB_SIO_MII_CLK);
|
|
|
|
DELAY(1);
|
|
|
|
SIO_SET(WB_SIO_MII_CLK);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Read an PHY register through the MII.
|
|
|
|
*/
|
|
|
|
static int wb_mii_readreg(sc, frame)
|
|
|
|
struct wb_softc *sc;
|
|
|
|
struct wb_mii_frame *frame;
|
|
|
|
|
|
|
|
{
|
|
|
|
int i, ack, s;
|
|
|
|
|
|
|
|
s = splimp();
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set up frame for RX.
|
|
|
|
*/
|
|
|
|
frame->mii_stdelim = WB_MII_STARTDELIM;
|
|
|
|
frame->mii_opcode = WB_MII_READOP;
|
|
|
|
frame->mii_turnaround = 0;
|
|
|
|
frame->mii_data = 0;
|
|
|
|
|
|
|
|
CSR_WRITE_4(sc, WB_SIO, 0);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Turn on data xmit.
|
|
|
|
*/
|
|
|
|
SIO_SET(WB_SIO_MII_DIR);
|
|
|
|
|
|
|
|
wb_mii_sync(sc);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Send command/address info.
|
|
|
|
*/
|
|
|
|
wb_mii_send(sc, frame->mii_stdelim, 2);
|
|
|
|
wb_mii_send(sc, frame->mii_opcode, 2);
|
|
|
|
wb_mii_send(sc, frame->mii_phyaddr, 5);
|
|
|
|
wb_mii_send(sc, frame->mii_regaddr, 5);
|
|
|
|
|
|
|
|
/* Idle bit */
|
|
|
|
SIO_CLR((WB_SIO_MII_CLK|WB_SIO_MII_DATAIN));
|
|
|
|
DELAY(1);
|
|
|
|
SIO_SET(WB_SIO_MII_CLK);
|
|
|
|
DELAY(1);
|
|
|
|
|
|
|
|
/* Turn off xmit. */
|
|
|
|
SIO_CLR(WB_SIO_MII_DIR);
|
|
|
|
/* Check for ack */
|
|
|
|
SIO_CLR(WB_SIO_MII_CLK);
|
|
|
|
DELAY(1);
|
|
|
|
SIO_SET(WB_SIO_MII_CLK);
|
|
|
|
DELAY(1);
|
|
|
|
ack = CSR_READ_4(sc, WB_SIO) & WB_SIO_MII_DATAOUT;
|
|
|
|
SIO_CLR(WB_SIO_MII_CLK);
|
|
|
|
DELAY(1);
|
|
|
|
SIO_SET(WB_SIO_MII_CLK);
|
|
|
|
DELAY(1);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Now try reading data bits. If the ack failed, we still
|
|
|
|
* need to clock through 16 cycles to keep the PHY(s) in sync.
|
|
|
|
*/
|
|
|
|
if (ack) {
|
|
|
|
for(i = 0; i < 16; i++) {
|
|
|
|
SIO_CLR(WB_SIO_MII_CLK);
|
|
|
|
DELAY(1);
|
|
|
|
SIO_SET(WB_SIO_MII_CLK);
|
|
|
|
DELAY(1);
|
|
|
|
}
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0x8000; i; i >>= 1) {
|
|
|
|
SIO_CLR(WB_SIO_MII_CLK);
|
|
|
|
DELAY(1);
|
|
|
|
if (!ack) {
|
|
|
|
if (CSR_READ_4(sc, WB_SIO) & WB_SIO_MII_DATAOUT)
|
|
|
|
frame->mii_data |= i;
|
|
|
|
DELAY(1);
|
|
|
|
}
|
|
|
|
SIO_SET(WB_SIO_MII_CLK);
|
|
|
|
DELAY(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
fail:
|
|
|
|
|
|
|
|
SIO_CLR(WB_SIO_MII_CLK);
|
|
|
|
DELAY(1);
|
|
|
|
SIO_SET(WB_SIO_MII_CLK);
|
|
|
|
DELAY(1);
|
|
|
|
|
|
|
|
splx(s);
|
|
|
|
|
|
|
|
if (ack)
|
|
|
|
return(1);
|
|
|
|
return(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Write to a PHY register through the MII.
|
|
|
|
*/
|
|
|
|
static int wb_mii_writereg(sc, frame)
|
|
|
|
struct wb_softc *sc;
|
|
|
|
struct wb_mii_frame *frame;
|
|
|
|
|
|
|
|
{
|
|
|
|
int s;
|
|
|
|
|
|
|
|
s = splimp();
|
|
|
|
/*
|
|
|
|
* Set up frame for TX.
|
|
|
|
*/
|
|
|
|
|
|
|
|
frame->mii_stdelim = WB_MII_STARTDELIM;
|
|
|
|
frame->mii_opcode = WB_MII_WRITEOP;
|
|
|
|
frame->mii_turnaround = WB_MII_TURNAROUND;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Turn on data output.
|
|
|
|
*/
|
|
|
|
SIO_SET(WB_SIO_MII_DIR);
|
|
|
|
|
|
|
|
wb_mii_sync(sc);
|
|
|
|
|
|
|
|
wb_mii_send(sc, frame->mii_stdelim, 2);
|
|
|
|
wb_mii_send(sc, frame->mii_opcode, 2);
|
|
|
|
wb_mii_send(sc, frame->mii_phyaddr, 5);
|
|
|
|
wb_mii_send(sc, frame->mii_regaddr, 5);
|
|
|
|
wb_mii_send(sc, frame->mii_turnaround, 2);
|
|
|
|
wb_mii_send(sc, frame->mii_data, 16);
|
|
|
|
|
|
|
|
/* Idle bit. */
|
|
|
|
SIO_SET(WB_SIO_MII_CLK);
|
|
|
|
DELAY(1);
|
|
|
|
SIO_CLR(WB_SIO_MII_CLK);
|
|
|
|
DELAY(1);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Turn off xmit.
|
|
|
|
*/
|
|
|
|
SIO_CLR(WB_SIO_MII_DIR);
|
|
|
|
|
|
|
|
splx(s);
|
|
|
|
|
|
|
|
return(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static u_int16_t wb_phy_readreg(sc, reg)
|
|
|
|
struct wb_softc *sc;
|
|
|
|
int reg;
|
|
|
|
{
|
|
|
|
struct wb_mii_frame frame;
|
|
|
|
|
|
|
|
bzero((char *)&frame, sizeof(frame));
|
|
|
|
|
|
|
|
frame.mii_phyaddr = sc->wb_phy_addr;
|
|
|
|
frame.mii_regaddr = reg;
|
|
|
|
wb_mii_readreg(sc, &frame);
|
|
|
|
|
|
|
|
return(frame.mii_data);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void wb_phy_writereg(sc, reg, data)
|
|
|
|
struct wb_softc *sc;
|
1999-01-16 06:25:59 +00:00
|
|
|
int reg;
|
|
|
|
int data;
|
An early Christmas present: add driver support for a whole bunch of
PCI fast ethernet adapters, plus man pages.
if_pn.c: Netgear FA310TX model D1, LinkSys LNE100TX, Matrox FastNIC 10/100,
various other PNIC devices
if_mx.c: NDC Communications SOHOware SFA100 (Macronix 98713A), various
other boards based on the Macronix 98713, 98713A, 98715, 98715A
and 98725 chips
if_vr.c: D-Link DFE530-TX, other boards based on the VIA Rhine and
Rhine II chips (note: the D-Link and certain other cards
that actually use a Rhine II chip still return the PCI
device ID of the Rhine I. I don't know why, and it doesn't
really matter since the driver treats both chips the same
anyway.)
if_wb.c: Trendware TE100-PCIE and various other cards based on the
Winbond W89C840F chip (the Trendware card is identical to
the sample boards Winbond sent me, so who knows how many
clones there are running around)
All drivers include support for ifmedia, BPF and hardware multicast
filtering.
Also updated GENERIC, LINT, RELNOTES.TXT, userconfig and
sysinstall device list.
I also have a driver for the ASIX AX88140A in the works.
1998-12-04 18:01:24 +00:00
|
|
|
{
|
|
|
|
struct wb_mii_frame frame;
|
|
|
|
|
|
|
|
bzero((char *)&frame, sizeof(frame));
|
|
|
|
|
|
|
|
frame.mii_phyaddr = sc->wb_phy_addr;
|
|
|
|
frame.mii_regaddr = reg;
|
|
|
|
frame.mii_data = data;
|
|
|
|
|
|
|
|
wb_mii_writereg(sc, &frame);
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
static u_int8_t wb_calchash(addr)
|
1999-01-16 06:25:59 +00:00
|
|
|
caddr_t addr;
|
An early Christmas present: add driver support for a whole bunch of
PCI fast ethernet adapters, plus man pages.
if_pn.c: Netgear FA310TX model D1, LinkSys LNE100TX, Matrox FastNIC 10/100,
various other PNIC devices
if_mx.c: NDC Communications SOHOware SFA100 (Macronix 98713A), various
other boards based on the Macronix 98713, 98713A, 98715, 98715A
and 98725 chips
if_vr.c: D-Link DFE530-TX, other boards based on the VIA Rhine and
Rhine II chips (note: the D-Link and certain other cards
that actually use a Rhine II chip still return the PCI
device ID of the Rhine I. I don't know why, and it doesn't
really matter since the driver treats both chips the same
anyway.)
if_wb.c: Trendware TE100-PCIE and various other cards based on the
Winbond W89C840F chip (the Trendware card is identical to
the sample boards Winbond sent me, so who knows how many
clones there are running around)
All drivers include support for ifmedia, BPF and hardware multicast
filtering.
Also updated GENERIC, LINT, RELNOTES.TXT, userconfig and
sysinstall device list.
I also have a driver for the ASIX AX88140A in the works.
1998-12-04 18:01:24 +00:00
|
|
|
{
|
|
|
|
u_int32_t crc, carry;
|
|
|
|
int i, j;
|
|
|
|
u_int8_t c;
|
|
|
|
|
|
|
|
/* Compute CRC for the address value. */
|
|
|
|
crc = 0xFFFFFFFF; /* initial value */
|
|
|
|
|
|
|
|
for (i = 0; i < 6; i++) {
|
|
|
|
c = *(addr + i);
|
|
|
|
for (j = 0; j < 8; j++) {
|
|
|
|
carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
|
|
|
|
crc <<= 1;
|
|
|
|
c >>= 1;
|
|
|
|
if (carry)
|
|
|
|
crc = (crc ^ 0x04c11db6) | carry;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* return the filter bit position
|
|
|
|
* Note: I arrived at the following nonsense
|
|
|
|
* through experimentation. It's not the usual way to
|
|
|
|
* generate the bit position but it's the only thing
|
|
|
|
* I could come up with that works.
|
|
|
|
*/
|
|
|
|
return(~(crc >> 26) & 0x0000003F);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Program the 64-bit multicast hash filter.
|
|
|
|
*/
|
|
|
|
static void wb_setmulti(sc)
|
|
|
|
struct wb_softc *sc;
|
|
|
|
{
|
|
|
|
struct ifnet *ifp;
|
|
|
|
int h = 0;
|
|
|
|
u_int32_t hashes[2] = { 0, 0 };
|
|
|
|
struct ifmultiaddr *ifma;
|
|
|
|
u_int32_t rxfilt;
|
|
|
|
int mcnt = 0;
|
|
|
|
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
|
|
|
|
rxfilt = CSR_READ_4(sc, WB_NETCFG);
|
|
|
|
|
|
|
|
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
|
|
|
|
rxfilt |= WB_NETCFG_RX_MULTI;
|
|
|
|
CSR_WRITE_4(sc, WB_NETCFG, rxfilt);
|
|
|
|
CSR_WRITE_4(sc, WB_MAR0, 0xFFFFFFFF);
|
|
|
|
CSR_WRITE_4(sc, WB_MAR1, 0xFFFFFFFF);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* first, zot all the existing hash bits */
|
|
|
|
CSR_WRITE_4(sc, WB_MAR0, 0);
|
|
|
|
CSR_WRITE_4(sc, WB_MAR1, 0);
|
|
|
|
|
|
|
|
/* now program new ones */
|
|
|
|
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
|
|
|
|
ifma = ifma->ifma_link.le_next) {
|
|
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
|
|
continue;
|
|
|
|
h = wb_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
|
|
|
|
if (h < 32)
|
|
|
|
hashes[0] |= (1 << h);
|
|
|
|
else
|
|
|
|
hashes[1] |= (1 << (h - 32));
|
|
|
|
mcnt++;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (mcnt)
|
|
|
|
rxfilt |= WB_NETCFG_RX_MULTI;
|
|
|
|
else
|
|
|
|
rxfilt &= ~WB_NETCFG_RX_MULTI;
|
|
|
|
|
|
|
|
CSR_WRITE_4(sc, WB_MAR0, hashes[0]);
|
|
|
|
CSR_WRITE_4(sc, WB_MAR1, hashes[1]);
|
|
|
|
CSR_WRITE_4(sc, WB_NETCFG, rxfilt);
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initiate an autonegotiation session.
|
|
|
|
*/
|
|
|
|
static void wb_autoneg_xmit(sc)
|
|
|
|
struct wb_softc *sc;
|
|
|
|
{
|
|
|
|
u_int16_t phy_sts;
|
|
|
|
|
|
|
|
wb_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
|
|
|
|
DELAY(500);
|
|
|
|
while(wb_phy_readreg(sc, PHY_BMCR)
|
|
|
|
& PHY_BMCR_RESET);
|
|
|
|
|
|
|
|
phy_sts = wb_phy_readreg(sc, PHY_BMCR);
|
|
|
|
phy_sts |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR;
|
|
|
|
wb_phy_writereg(sc, PHY_BMCR, phy_sts);
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Invoke autonegotiation on a PHY.
|
|
|
|
*/
|
|
|
|
static void wb_autoneg_mii(sc, flag, verbose)
|
|
|
|
struct wb_softc *sc;
|
|
|
|
int flag;
|
|
|
|
int verbose;
|
|
|
|
{
|
|
|
|
u_int16_t phy_sts = 0, media, advert, ability;
|
|
|
|
struct ifnet *ifp;
|
|
|
|
struct ifmedia *ifm;
|
|
|
|
|
|
|
|
ifm = &sc->ifmedia;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
|
|
|
|
ifm->ifm_media = IFM_ETHER | IFM_AUTO;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The 100baseT4 PHY on the 3c905-T4 has the 'autoneg supported'
|
|
|
|
* bit cleared in the status register, but has the 'autoneg enabled'
|
|
|
|
* bit set in the control register. This is a contradiction, and
|
|
|
|
* I'm not sure how to handle it. If you want to force an attempt
|
|
|
|
* to autoneg for 100baseT4 PHYs, #define FORCE_AUTONEG_TFOUR
|
|
|
|
* and see what happens.
|
|
|
|
*/
|
|
|
|
#ifndef FORCE_AUTONEG_TFOUR
|
|
|
|
/*
|
|
|
|
* First, see if autoneg is supported. If not, there's
|
|
|
|
* no point in continuing.
|
|
|
|
*/
|
|
|
|
phy_sts = wb_phy_readreg(sc, PHY_BMSR);
|
|
|
|
if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
|
|
|
|
if (verbose)
|
|
|
|
printf("wb%d: autonegotiation not supported\n",
|
|
|
|
sc->wb_unit);
|
|
|
|
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
switch (flag) {
|
|
|
|
case WB_FLAG_FORCEDELAY:
|
|
|
|
/*
|
|
|
|
* XXX Never use this option anywhere but in the probe
|
|
|
|
* routine: making the kernel stop dead in its tracks
|
|
|
|
* for three whole seconds after we've gone multi-user
|
|
|
|
* is really bad manners.
|
|
|
|
*/
|
|
|
|
wb_autoneg_xmit(sc);
|
|
|
|
DELAY(5000000);
|
|
|
|
break;
|
|
|
|
case WB_FLAG_SCHEDDELAY:
|
|
|
|
/*
|
|
|
|
* Wait for the transmitter to go idle before starting
|
|
|
|
* an autoneg session, otherwise wb_start() may clobber
|
|
|
|
* our timeout, and we don't want to allow transmission
|
|
|
|
* during an autoneg session since that can screw it up.
|
|
|
|
*/
|
|
|
|
if (sc->wb_cdata.wb_tx_head != NULL) {
|
|
|
|
sc->wb_want_auto = 1;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
wb_autoneg_xmit(sc);
|
|
|
|
ifp->if_timer = 5;
|
|
|
|
sc->wb_autoneg = 1;
|
|
|
|
sc->wb_want_auto = 0;
|
|
|
|
return;
|
|
|
|
break;
|
|
|
|
case WB_FLAG_DELAYTIMEO:
|
|
|
|
ifp->if_timer = 0;
|
|
|
|
sc->wb_autoneg = 0;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
printf("wb%d: invalid autoneg flag: %d\n", sc->wb_unit, flag);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (wb_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
|
|
|
|
if (verbose)
|
|
|
|
printf("wb%d: autoneg complete, ", sc->wb_unit);
|
|
|
|
phy_sts = wb_phy_readreg(sc, PHY_BMSR);
|
|
|
|
} else {
|
|
|
|
if (verbose)
|
|
|
|
printf("wb%d: autoneg not complete, ", sc->wb_unit);
|
|
|
|
}
|
|
|
|
|
|
|
|
media = wb_phy_readreg(sc, PHY_BMCR);
|
|
|
|
|
|
|
|
/* Link is good. Report modes and set duplex mode. */
|
|
|
|
if (wb_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
|
|
|
|
if (verbose)
|
|
|
|
printf("link status good ");
|
|
|
|
advert = wb_phy_readreg(sc, PHY_ANAR);
|
|
|
|
ability = wb_phy_readreg(sc, PHY_LPAR);
|
|
|
|
|
|
|
|
if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
|
|
|
|
ifm->ifm_media = IFM_ETHER|IFM_100_T4;
|
|
|
|
media |= PHY_BMCR_SPEEDSEL;
|
|
|
|
media &= ~PHY_BMCR_DUPLEX;
|
|
|
|
printf("(100baseT4)\n");
|
|
|
|
} else if (advert & PHY_ANAR_100BTXFULL &&
|
|
|
|
ability & PHY_ANAR_100BTXFULL) {
|
|
|
|
ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
|
|
|
|
media |= PHY_BMCR_SPEEDSEL;
|
|
|
|
media |= PHY_BMCR_DUPLEX;
|
|
|
|
printf("(full-duplex, 100Mbps)\n");
|
|
|
|
} else if (advert & PHY_ANAR_100BTXHALF &&
|
|
|
|
ability & PHY_ANAR_100BTXHALF) {
|
|
|
|
ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
|
|
|
|
media |= PHY_BMCR_SPEEDSEL;
|
|
|
|
media &= ~PHY_BMCR_DUPLEX;
|
|
|
|
printf("(half-duplex, 100Mbps)\n");
|
|
|
|
} else if (advert & PHY_ANAR_10BTFULL &&
|
|
|
|
ability & PHY_ANAR_10BTFULL) {
|
|
|
|
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
|
|
|
|
media &= ~PHY_BMCR_SPEEDSEL;
|
|
|
|
media |= PHY_BMCR_DUPLEX;
|
|
|
|
printf("(full-duplex, 10Mbps)\n");
|
|
|
|
} else /* if (advert & PHY_ANAR_10BTHALF &&
|
|
|
|
ability & PHY_ANAR_10BTHALF) */ {
|
|
|
|
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
|
|
|
|
media &= ~PHY_BMCR_SPEEDSEL;
|
|
|
|
media &= ~PHY_BMCR_DUPLEX;
|
|
|
|
printf("(half-duplex, 10Mbps)\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
media &= ~PHY_BMCR_AUTONEGENBL;
|
|
|
|
|
|
|
|
/* Set ASIC's duplex mode to match the PHY. */
|
|
|
|
wb_setcfg(sc, media);
|
|
|
|
wb_phy_writereg(sc, PHY_BMCR, media);
|
|
|
|
} else {
|
|
|
|
if (verbose)
|
|
|
|
printf("no carrier\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
wb_init(sc);
|
|
|
|
|
|
|
|
if (sc->wb_tx_pend) {
|
|
|
|
sc->wb_autoneg = 0;
|
|
|
|
sc->wb_tx_pend = 0;
|
|
|
|
wb_start(ifp);
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void wb_getmode_mii(sc)
|
|
|
|
struct wb_softc *sc;
|
|
|
|
{
|
|
|
|
u_int16_t bmsr;
|
|
|
|
struct ifnet *ifp;
|
|
|
|
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
|
|
|
|
bmsr = wb_phy_readreg(sc, PHY_BMSR);
|
|
|
|
if (bootverbose)
|
|
|
|
printf("wb%d: PHY status word: %x\n", sc->wb_unit, bmsr);
|
|
|
|
|
|
|
|
/* fallback */
|
|
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
|
|
|
|
|
|
|
|
if (bmsr & PHY_BMSR_10BTHALF) {
|
|
|
|
if (bootverbose)
|
|
|
|
printf("wb%d: 10Mbps half-duplex mode supported\n",
|
|
|
|
sc->wb_unit);
|
|
|
|
ifmedia_add(&sc->ifmedia,
|
|
|
|
IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
|
|
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (bmsr & PHY_BMSR_10BTFULL) {
|
|
|
|
if (bootverbose)
|
|
|
|
printf("wb%d: 10Mbps full-duplex mode supported\n",
|
|
|
|
sc->wb_unit);
|
|
|
|
ifmedia_add(&sc->ifmedia,
|
|
|
|
IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
|
|
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (bmsr & PHY_BMSR_100BTXHALF) {
|
|
|
|
if (bootverbose)
|
|
|
|
printf("wb%d: 100Mbps half-duplex mode supported\n",
|
|
|
|
sc->wb_unit);
|
|
|
|
ifp->if_baudrate = 100000000;
|
|
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
|
|
|
|
ifmedia_add(&sc->ifmedia,
|
|
|
|
IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL);
|
|
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (bmsr & PHY_BMSR_100BTXFULL) {
|
|
|
|
if (bootverbose)
|
|
|
|
printf("wb%d: 100Mbps full-duplex mode supported\n",
|
|
|
|
sc->wb_unit);
|
|
|
|
ifp->if_baudrate = 100000000;
|
|
|
|
ifmedia_add(&sc->ifmedia,
|
|
|
|
IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
|
|
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Some also support 100BaseT4. */
|
|
|
|
if (bmsr & PHY_BMSR_100BT4) {
|
|
|
|
if (bootverbose)
|
|
|
|
printf("wb%d: 100baseT4 mode supported\n", sc->wb_unit);
|
|
|
|
ifp->if_baudrate = 100000000;
|
|
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_T4, 0, NULL);
|
|
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_T4;
|
|
|
|
#ifdef FORCE_AUTONEG_TFOUR
|
|
|
|
if (bootverbose)
|
|
|
|
printf("wb%d: forcing on autoneg support for BT4\n",
|
|
|
|
sc->wb_unit);
|
|
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0 NULL):
|
|
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
if (bmsr & PHY_BMSR_CANAUTONEG) {
|
|
|
|
if (bootverbose)
|
|
|
|
printf("wb%d: autoneg supported\n", sc->wb_unit);
|
|
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
|
|
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set speed and duplex mode.
|
|
|
|
*/
|
|
|
|
static void wb_setmode_mii(sc, media)
|
|
|
|
struct wb_softc *sc;
|
|
|
|
int media;
|
|
|
|
{
|
|
|
|
u_int16_t bmcr;
|
|
|
|
struct ifnet *ifp;
|
|
|
|
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If an autoneg session is in progress, stop it.
|
|
|
|
*/
|
|
|
|
if (sc->wb_autoneg) {
|
|
|
|
printf("wb%d: canceling autoneg session\n", sc->wb_unit);
|
|
|
|
ifp->if_timer = sc->wb_autoneg = sc->wb_want_auto = 0;
|
|
|
|
bmcr = wb_phy_readreg(sc, PHY_BMCR);
|
|
|
|
bmcr &= ~PHY_BMCR_AUTONEGENBL;
|
|
|
|
wb_phy_writereg(sc, PHY_BMCR, bmcr);
|
|
|
|
}
|
|
|
|
|
|
|
|
printf("wb%d: selecting MII, ", sc->wb_unit);
|
|
|
|
|
|
|
|
bmcr = wb_phy_readreg(sc, PHY_BMCR);
|
|
|
|
|
|
|
|
bmcr &= ~(PHY_BMCR_AUTONEGENBL|PHY_BMCR_SPEEDSEL|
|
|
|
|
PHY_BMCR_DUPLEX|PHY_BMCR_LOOPBK);
|
|
|
|
|
|
|
|
if (IFM_SUBTYPE(media) == IFM_100_T4) {
|
|
|
|
printf("100Mbps/T4, half-duplex\n");
|
|
|
|
bmcr |= PHY_BMCR_SPEEDSEL;
|
|
|
|
bmcr &= ~PHY_BMCR_DUPLEX;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (IFM_SUBTYPE(media) == IFM_100_TX) {
|
|
|
|
printf("100Mbps, ");
|
|
|
|
bmcr |= PHY_BMCR_SPEEDSEL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (IFM_SUBTYPE(media) == IFM_10_T) {
|
|
|
|
printf("10Mbps, ");
|
|
|
|
bmcr &= ~PHY_BMCR_SPEEDSEL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((media & IFM_GMASK) == IFM_FDX) {
|
|
|
|
printf("full duplex\n");
|
|
|
|
bmcr |= PHY_BMCR_DUPLEX;
|
|
|
|
} else {
|
|
|
|
printf("half duplex\n");
|
|
|
|
bmcr &= ~PHY_BMCR_DUPLEX;
|
|
|
|
}
|
|
|
|
|
|
|
|
wb_setcfg(sc, bmcr);
|
|
|
|
wb_phy_writereg(sc, PHY_BMCR, bmcr);
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The Winbond manual states that in order to fiddle with the
|
|
|
|
* 'full-duplex' and '100Mbps' bits in the netconfig register, we
|
|
|
|
* first have to put the transmit and/or receive logic in the idle state.
|
|
|
|
*/
|
|
|
|
static void wb_setcfg(sc, bmcr)
|
|
|
|
struct wb_softc *sc;
|
1999-01-16 06:25:59 +00:00
|
|
|
int bmcr;
|
An early Christmas present: add driver support for a whole bunch of
PCI fast ethernet adapters, plus man pages.
if_pn.c: Netgear FA310TX model D1, LinkSys LNE100TX, Matrox FastNIC 10/100,
various other PNIC devices
if_mx.c: NDC Communications SOHOware SFA100 (Macronix 98713A), various
other boards based on the Macronix 98713, 98713A, 98715, 98715A
and 98725 chips
if_vr.c: D-Link DFE530-TX, other boards based on the VIA Rhine and
Rhine II chips (note: the D-Link and certain other cards
that actually use a Rhine II chip still return the PCI
device ID of the Rhine I. I don't know why, and it doesn't
really matter since the driver treats both chips the same
anyway.)
if_wb.c: Trendware TE100-PCIE and various other cards based on the
Winbond W89C840F chip (the Trendware card is identical to
the sample boards Winbond sent me, so who knows how many
clones there are running around)
All drivers include support for ifmedia, BPF and hardware multicast
filtering.
Also updated GENERIC, LINT, RELNOTES.TXT, userconfig and
sysinstall device list.
I also have a driver for the ASIX AX88140A in the works.
1998-12-04 18:01:24 +00:00
|
|
|
{
|
|
|
|
int i, restart = 0;
|
|
|
|
|
|
|
|
if (CSR_READ_4(sc, WB_NETCFG) & (WB_NETCFG_TX_ON|WB_NETCFG_RX_ON)) {
|
|
|
|
restart = 1;
|
|
|
|
WB_CLRBIT(sc, WB_NETCFG, (WB_NETCFG_TX_ON|WB_NETCFG_RX_ON));
|
|
|
|
|
|
|
|
for (i = 0; i < WB_TIMEOUT; i++) {
|
|
|
|
DELAY(10);
|
|
|
|
if ((CSR_READ_4(sc, WB_ISR) & WB_ISR_TX_IDLE) &&
|
|
|
|
(CSR_READ_4(sc, WB_ISR) & WB_ISR_RX_IDLE))
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (i == WB_TIMEOUT)
|
|
|
|
printf("wb%d: failed to force tx and "
|
|
|
|
"rx to idle state\n", sc->wb_unit);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (bmcr & PHY_BMCR_SPEEDSEL)
|
|
|
|
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_100MBPS);
|
|
|
|
else
|
|
|
|
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_100MBPS);
|
|
|
|
|
|
|
|
if (bmcr & PHY_BMCR_DUPLEX)
|
|
|
|
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_FULLDUPLEX);
|
|
|
|
else
|
|
|
|
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_FULLDUPLEX);
|
|
|
|
|
|
|
|
if (restart)
|
|
|
|
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON|WB_NETCFG_RX_ON);
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void wb_reset(sc)
|
|
|
|
struct wb_softc *sc;
|
|
|
|
{
|
|
|
|
register int i;
|
|
|
|
|
|
|
|
WB_SETBIT(sc, WB_BUSCTL, WB_BUSCTL_RESET);
|
|
|
|
|
|
|
|
for (i = 0; i < WB_TIMEOUT; i++) {
|
|
|
|
DELAY(10);
|
|
|
|
if (!(CSR_READ_4(sc, WB_BUSCTL) & WB_BUSCTL_RESET))
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (i == WB_TIMEOUT)
|
|
|
|
printf("wb%d: reset never completed!\n", sc->wb_unit);
|
|
|
|
|
|
|
|
/* Wait a little while for the chip to get its brains in order. */
|
|
|
|
DELAY(1000);
|
|
|
|
|
|
|
|
/* Reset the damn PHY too. */
|
|
|
|
if (sc->wb_pinfo != NULL)
|
|
|
|
wb_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Probe for a Winbond chip. Check the PCI vendor and device
|
|
|
|
* IDs against our list and return a device name if we find a match.
|
|
|
|
*/
|
1998-12-14 06:37:37 +00:00
|
|
|
static const char *
|
An early Christmas present: add driver support for a whole bunch of
PCI fast ethernet adapters, plus man pages.
if_pn.c: Netgear FA310TX model D1, LinkSys LNE100TX, Matrox FastNIC 10/100,
various other PNIC devices
if_mx.c: NDC Communications SOHOware SFA100 (Macronix 98713A), various
other boards based on the Macronix 98713, 98713A, 98715, 98715A
and 98725 chips
if_vr.c: D-Link DFE530-TX, other boards based on the VIA Rhine and
Rhine II chips (note: the D-Link and certain other cards
that actually use a Rhine II chip still return the PCI
device ID of the Rhine I. I don't know why, and it doesn't
really matter since the driver treats both chips the same
anyway.)
if_wb.c: Trendware TE100-PCIE and various other cards based on the
Winbond W89C840F chip (the Trendware card is identical to
the sample boards Winbond sent me, so who knows how many
clones there are running around)
All drivers include support for ifmedia, BPF and hardware multicast
filtering.
Also updated GENERIC, LINT, RELNOTES.TXT, userconfig and
sysinstall device list.
I also have a driver for the ASIX AX88140A in the works.
1998-12-04 18:01:24 +00:00
|
|
|
wb_probe(config_id, device_id)
|
|
|
|
pcici_t config_id;
|
|
|
|
pcidi_t device_id;
|
|
|
|
{
|
|
|
|
struct wb_type *t;
|
|
|
|
|
|
|
|
t = wb_devs;
|
|
|
|
|
|
|
|
while(t->wb_name != NULL) {
|
|
|
|
if ((device_id & 0xFFFF) == t->wb_vid &&
|
|
|
|
((device_id >> 16) & 0xFFFF) == t->wb_did) {
|
|
|
|
return(t->wb_name);
|
|
|
|
}
|
|
|
|
t++;
|
|
|
|
}
|
|
|
|
|
|
|
|
return(NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Attach the interface. Allocate softc structures, do ifmedia
|
|
|
|
* setup and ethernet/BPF attach.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
wb_attach(config_id, unit)
|
|
|
|
pcici_t config_id;
|
|
|
|
int unit;
|
|
|
|
{
|
|
|
|
int s, i;
|
|
|
|
#ifndef WB_USEIOSPACE
|
|
|
|
vm_offset_t pbase, vbase;
|
|
|
|
#endif
|
|
|
|
u_char eaddr[ETHER_ADDR_LEN];
|
|
|
|
u_int32_t command;
|
|
|
|
struct wb_softc *sc;
|
|
|
|
struct ifnet *ifp;
|
|
|
|
int media = IFM_ETHER|IFM_100_TX|IFM_FDX;
|
|
|
|
unsigned int round;
|
|
|
|
caddr_t roundptr;
|
|
|
|
struct wb_type *p;
|
|
|
|
u_int16_t phy_vid, phy_did, phy_sts;
|
|
|
|
|
|
|
|
s = splimp();
|
|
|
|
|
|
|
|
sc = malloc(sizeof(struct wb_softc), M_DEVBUF, M_NOWAIT);
|
|
|
|
if (sc == NULL) {
|
|
|
|
printf("wb%d: no memory for softc struct!\n", unit);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
bzero(sc, sizeof(struct wb_softc));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Handle power management nonsense.
|
|
|
|
*/
|
|
|
|
|
|
|
|
command = pci_conf_read(config_id, WB_PCI_CAPID) & 0x000000FF;
|
|
|
|
if (command == 0x01) {
|
|
|
|
|
|
|
|
command = pci_conf_read(config_id, WB_PCI_PWRMGMTCTRL);
|
|
|
|
if (command & WB_PSTATE_MASK) {
|
|
|
|
u_int32_t iobase, membase, irq;
|
|
|
|
|
|
|
|
/* Save important PCI config data. */
|
|
|
|
iobase = pci_conf_read(config_id, WB_PCI_LOIO);
|
|
|
|
membase = pci_conf_read(config_id, WB_PCI_LOMEM);
|
|
|
|
irq = pci_conf_read(config_id, WB_PCI_INTLINE);
|
|
|
|
|
|
|
|
/* Reset the power state. */
|
|
|
|
printf("wb%d: chip is in D%d power mode "
|
|
|
|
"-- setting to D0\n", unit, command & WB_PSTATE_MASK);
|
|
|
|
command &= 0xFFFFFFFC;
|
|
|
|
pci_conf_write(config_id, WB_PCI_PWRMGMTCTRL, command);
|
|
|
|
|
|
|
|
/* Restore PCI config data. */
|
|
|
|
pci_conf_write(config_id, WB_PCI_LOIO, iobase);
|
|
|
|
pci_conf_write(config_id, WB_PCI_LOMEM, membase);
|
|
|
|
pci_conf_write(config_id, WB_PCI_INTLINE, irq);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Map control/status registers.
|
|
|
|
*/
|
|
|
|
command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
|
|
|
|
command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
|
|
|
|
pci_conf_write(config_id, PCI_COMMAND_STATUS_REG, command);
|
|
|
|
command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
|
|
|
|
|
|
|
|
#ifdef WB_USEIOSPACE
|
|
|
|
if (!(command & PCIM_CMD_PORTEN)) {
|
|
|
|
printf("wb%d: failed to enable I/O ports!\n", unit);
|
|
|
|
free(sc, M_DEVBUF);
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!pci_map_port(config_id, WB_PCI_LOIO,
|
|
|
|
(u_int16_t *)&(sc->wb_bhandle))) {
|
|
|
|
printf ("wb%d: couldn't map ports\n", unit);
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
sc->wb_btag = I386_BUS_SPACE_IO;
|
|
|
|
#else
|
|
|
|
if (!(command & PCIM_CMD_MEMEN)) {
|
|
|
|
printf("wb%d: failed to enable memory mapping!\n", unit);
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!pci_map_mem(config_id, WB_PCI_LOMEM, &vbase, &pbase)) {
|
|
|
|
printf ("wb%d: couldn't map memory\n", unit);
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
sc->csr = (volatile caddr_t)vbase;
|
|
|
|
sc->wb_btag = I386_BUS_SPACE_MEM;
|
|
|
|
sc->wb_bhandle = vbase;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Allocate interrupt */
|
|
|
|
if (!pci_map_int(config_id, wb_intr, sc, &net_imask)) {
|
|
|
|
printf("wb%d: couldn't map interrupt\n", unit);
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Reset the adapter. */
|
|
|
|
wb_reset(sc);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Get station address from the EEPROM.
|
|
|
|
*/
|
|
|
|
wb_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 0);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A Winbond chip was detected. Inform the world.
|
|
|
|
*/
|
|
|
|
printf("wb%d: Ethernet address: %6D\n", unit, eaddr, ":");
|
|
|
|
|
|
|
|
sc->wb_unit = unit;
|
|
|
|
bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
|
|
|
|
|
|
|
|
sc->wb_ldata_ptr = malloc(sizeof(struct wb_list_data) + 8,
|
|
|
|
M_DEVBUF, M_NOWAIT);
|
|
|
|
if (sc->wb_ldata_ptr == NULL) {
|
|
|
|
free(sc, M_DEVBUF);
|
|
|
|
printf("wb%d: no memory for list buffers!\n", unit);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
sc->wb_ldata = (struct wb_list_data *)sc->wb_ldata_ptr;
|
|
|
|
round = (unsigned int)sc->wb_ldata_ptr & 0xF;
|
|
|
|
roundptr = sc->wb_ldata_ptr;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
|
|
if (round % 8) {
|
|
|
|
round++;
|
|
|
|
roundptr++;
|
|
|
|
} else
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
sc->wb_ldata = (struct wb_list_data *)roundptr;
|
|
|
|
bzero(sc->wb_ldata, sizeof(struct wb_list_data));
|
|
|
|
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
ifp->if_softc = sc;
|
|
|
|
ifp->if_unit = unit;
|
|
|
|
ifp->if_name = "wb";
|
|
|
|
ifp->if_mtu = ETHERMTU;
|
|
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
|
|
ifp->if_ioctl = wb_ioctl;
|
|
|
|
ifp->if_output = ether_output;
|
|
|
|
ifp->if_start = wb_start;
|
|
|
|
ifp->if_watchdog = wb_watchdog;
|
|
|
|
ifp->if_init = wb_init;
|
|
|
|
ifp->if_baudrate = 10000000;
|
|
|
|
|
|
|
|
if (bootverbose)
|
|
|
|
printf("wb%d: probing for a PHY\n", sc->wb_unit);
|
|
|
|
for (i = WB_PHYADDR_MIN; i < WB_PHYADDR_MAX + 1; i++) {
|
|
|
|
if (bootverbose)
|
|
|
|
printf("wb%d: checking address: %d\n",
|
|
|
|
sc->wb_unit, i);
|
|
|
|
sc->wb_phy_addr = i;
|
|
|
|
wb_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
|
|
|
|
DELAY(500);
|
|
|
|
while(wb_phy_readreg(sc, PHY_BMCR)
|
|
|
|
& PHY_BMCR_RESET);
|
|
|
|
if ((phy_sts = wb_phy_readreg(sc, PHY_BMSR)))
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (phy_sts) {
|
|
|
|
phy_vid = wb_phy_readreg(sc, PHY_VENID);
|
|
|
|
phy_did = wb_phy_readreg(sc, PHY_DEVID);
|
|
|
|
if (bootverbose)
|
|
|
|
printf("wb%d: found PHY at address %d, ",
|
|
|
|
sc->wb_unit, sc->wb_phy_addr);
|
|
|
|
if (bootverbose)
|
|
|
|
printf("vendor id: %x device id: %x\n",
|
|
|
|
phy_vid, phy_did);
|
|
|
|
p = wb_phys;
|
|
|
|
while(p->wb_vid) {
|
|
|
|
if (phy_vid == p->wb_vid &&
|
|
|
|
(phy_did | 0x000F) == p->wb_did) {
|
|
|
|
sc->wb_pinfo = p;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
p++;
|
|
|
|
}
|
|
|
|
if (sc->wb_pinfo == NULL)
|
|
|
|
sc->wb_pinfo = &wb_phys[PHY_UNKNOWN];
|
|
|
|
if (bootverbose)
|
|
|
|
printf("wb%d: PHY type: %s\n",
|
|
|
|
sc->wb_unit, sc->wb_pinfo->wb_name);
|
|
|
|
} else {
|
|
|
|
printf("wb%d: MII without any phy!\n", sc->wb_unit);
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Do ifmedia setup.
|
|
|
|
*/
|
|
|
|
ifmedia_init(&sc->ifmedia, 0, wb_ifmedia_upd, wb_ifmedia_sts);
|
|
|
|
|
|
|
|
wb_getmode_mii(sc);
|
|
|
|
wb_autoneg_mii(sc, WB_FLAG_FORCEDELAY, 1);
|
|
|
|
media = sc->ifmedia.ifm_media;
|
|
|
|
wb_stop(sc);
|
|
|
|
|
|
|
|
ifmedia_set(&sc->ifmedia, media);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Call MI attach routines.
|
|
|
|
*/
|
|
|
|
if_attach(ifp);
|
|
|
|
ether_ifattach(ifp);
|
|
|
|
|
|
|
|
#if NBPFILTER > 0
|
|
|
|
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
|
|
|
|
#endif
|
|
|
|
at_shutdown(wb_shutdown, sc, SHUTDOWN_POST_SYNC);
|
|
|
|
|
|
|
|
fail:
|
|
|
|
splx(s);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialize the transmit descriptors.
|
|
|
|
*/
|
|
|
|
static int wb_list_tx_init(sc)
|
|
|
|
struct wb_softc *sc;
|
|
|
|
{
|
|
|
|
struct wb_chain_data *cd;
|
|
|
|
struct wb_list_data *ld;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
cd = &sc->wb_cdata;
|
|
|
|
ld = sc->wb_ldata;
|
|
|
|
|
|
|
|
for (i = 0; i < WB_TX_LIST_CNT; i++) {
|
|
|
|
cd->wb_tx_chain[i].wb_ptr = &ld->wb_tx_list[i];
|
|
|
|
if (i == (WB_TX_LIST_CNT - 1)) {
|
|
|
|
cd->wb_tx_chain[i].wb_nextdesc =
|
|
|
|
&cd->wb_tx_chain[0];
|
|
|
|
} else {
|
|
|
|
cd->wb_tx_chain[i].wb_nextdesc =
|
|
|
|
&cd->wb_tx_chain[i + 1];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cd->wb_tx_free = &cd->wb_tx_chain[0];
|
|
|
|
cd->wb_tx_tail = cd->wb_tx_head = NULL;
|
|
|
|
|
|
|
|
return(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialize the RX descriptors and allocate mbufs for them. Note that
|
|
|
|
* we arrange the descriptors in a closed ring, so that the last descriptor
|
|
|
|
* points back to the first.
|
|
|
|
*/
|
|
|
|
static int wb_list_rx_init(sc)
|
|
|
|
struct wb_softc *sc;
|
|
|
|
{
|
|
|
|
struct wb_chain_data *cd;
|
|
|
|
struct wb_list_data *ld;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
cd = &sc->wb_cdata;
|
|
|
|
ld = sc->wb_ldata;
|
|
|
|
|
|
|
|
for (i = 0; i < WB_RX_LIST_CNT; i++) {
|
|
|
|
cd->wb_rx_chain[i].wb_ptr =
|
|
|
|
(struct wb_desc *)&ld->wb_rx_list[i];
|
|
|
|
if (wb_newbuf(sc, &cd->wb_rx_chain[i]) == ENOBUFS)
|
|
|
|
return(ENOBUFS);
|
|
|
|
if (i == (WB_RX_LIST_CNT - 1)) {
|
|
|
|
cd->wb_rx_chain[i].wb_nextdesc = &cd->wb_rx_chain[0];
|
|
|
|
ld->wb_rx_list[i].wb_next =
|
|
|
|
vtophys(&ld->wb_rx_list[0]);
|
|
|
|
} else {
|
|
|
|
cd->wb_rx_chain[i].wb_nextdesc =
|
|
|
|
&cd->wb_rx_chain[i + 1];
|
|
|
|
ld->wb_rx_list[i].wb_next =
|
|
|
|
vtophys(&ld->wb_rx_list[i + 1]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cd->wb_rx_head = &cd->wb_rx_chain[0];
|
|
|
|
|
|
|
|
return(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialize an RX descriptor and attach an MBUF cluster.
|
|
|
|
*/
|
|
|
|
static int wb_newbuf(sc, c)
|
|
|
|
struct wb_softc *sc;
|
|
|
|
struct wb_chain_onefrag *c;
|
|
|
|
{
|
|
|
|
struct mbuf *m_new = NULL;
|
|
|
|
|
|
|
|
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
|
|
|
|
if (m_new == NULL) {
|
|
|
|
printf("wb%d: no memory for rx list -- packet dropped!\n",
|
|
|
|
sc->wb_unit);
|
|
|
|
return(ENOBUFS);
|
|
|
|
}
|
|
|
|
|
|
|
|
MCLGET(m_new, M_DONTWAIT);
|
|
|
|
if (!(m_new->m_flags & M_EXT)) {
|
|
|
|
printf("wb%d: no memory for rx list -- packet dropped!\n",
|
|
|
|
sc->wb_unit);
|
|
|
|
m_freem(m_new);
|
|
|
|
return(ENOBUFS);
|
|
|
|
}
|
|
|
|
|
|
|
|
c->wb_mbuf = m_new;
|
|
|
|
c->wb_ptr->wb_data = vtophys(mtod(m_new, caddr_t));
|
|
|
|
c->wb_ptr->wb_ctl = WB_RXCTL_RLINK | (MCLBYTES - 1);
|
|
|
|
c->wb_ptr->wb_status = WB_RXSTAT;
|
|
|
|
|
|
|
|
return(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A frame has been uploaded: pass the resulting mbuf chain up to
|
|
|
|
* the higher level protocols.
|
|
|
|
*/
|
|
|
|
static void wb_rxeof(sc)
|
|
|
|
struct wb_softc *sc;
|
|
|
|
{
|
|
|
|
struct ether_header *eh;
|
|
|
|
struct mbuf *m;
|
|
|
|
struct ifnet *ifp;
|
|
|
|
struct wb_chain_onefrag *cur_rx;
|
|
|
|
int total_len = 0;
|
|
|
|
u_int32_t rxstat;
|
|
|
|
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
|
|
|
|
while(!((rxstat = sc->wb_cdata.wb_rx_head->wb_ptr->wb_status) &
|
|
|
|
WB_RXSTAT_OWN)) {
|
|
|
|
cur_rx = sc->wb_cdata.wb_rx_head;
|
|
|
|
sc->wb_cdata.wb_rx_head = cur_rx->wb_nextdesc;
|
|
|
|
|
1999-01-16 06:25:59 +00:00
|
|
|
if ((rxstat & WB_RXSTAT_MIIERR)
|
An early Christmas present: add driver support for a whole bunch of
PCI fast ethernet adapters, plus man pages.
if_pn.c: Netgear FA310TX model D1, LinkSys LNE100TX, Matrox FastNIC 10/100,
various other PNIC devices
if_mx.c: NDC Communications SOHOware SFA100 (Macronix 98713A), various
other boards based on the Macronix 98713, 98713A, 98715, 98715A
and 98725 chips
if_vr.c: D-Link DFE530-TX, other boards based on the VIA Rhine and
Rhine II chips (note: the D-Link and certain other cards
that actually use a Rhine II chip still return the PCI
device ID of the Rhine I. I don't know why, and it doesn't
really matter since the driver treats both chips the same
anyway.)
if_wb.c: Trendware TE100-PCIE and various other cards based on the
Winbond W89C840F chip (the Trendware card is identical to
the sample boards Winbond sent me, so who knows how many
clones there are running around)
All drivers include support for ifmedia, BPF and hardware multicast
filtering.
Also updated GENERIC, LINT, RELNOTES.TXT, userconfig and
sysinstall device list.
I also have a driver for the ASIX AX88140A in the works.
1998-12-04 18:01:24 +00:00
|
|
|
|| WB_RXBYTES(cur_rx->wb_ptr->wb_status) == 0) {
|
|
|
|
ifp->if_ierrors++;
|
|
|
|
wb_reset(sc);
|
|
|
|
printf("wb%x: receiver babbling: possible chip "
|
|
|
|
"bug, forcing reset\n", sc->wb_unit);
|
|
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
|
|
ifp->if_timer = 2;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
1999-01-16 06:25:59 +00:00
|
|
|
if (rxstat & WB_RXSTAT_RXERR) {
|
|
|
|
ifp->if_ierrors++;
|
|
|
|
cur_rx->wb_ptr->wb_ctl =
|
|
|
|
WB_RXCTL_RLINK | (MCLBYTES - 1);
|
|
|
|
cur_rx->wb_ptr->wb_status = WB_RXSTAT;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
An early Christmas present: add driver support for a whole bunch of
PCI fast ethernet adapters, plus man pages.
if_pn.c: Netgear FA310TX model D1, LinkSys LNE100TX, Matrox FastNIC 10/100,
various other PNIC devices
if_mx.c: NDC Communications SOHOware SFA100 (Macronix 98713A), various
other boards based on the Macronix 98713, 98713A, 98715, 98715A
and 98725 chips
if_vr.c: D-Link DFE530-TX, other boards based on the VIA Rhine and
Rhine II chips (note: the D-Link and certain other cards
that actually use a Rhine II chip still return the PCI
device ID of the Rhine I. I don't know why, and it doesn't
really matter since the driver treats both chips the same
anyway.)
if_wb.c: Trendware TE100-PCIE and various other cards based on the
Winbond W89C840F chip (the Trendware card is identical to
the sample boards Winbond sent me, so who knows how many
clones there are running around)
All drivers include support for ifmedia, BPF and hardware multicast
filtering.
Also updated GENERIC, LINT, RELNOTES.TXT, userconfig and
sysinstall device list.
I also have a driver for the ASIX AX88140A in the works.
1998-12-04 18:01:24 +00:00
|
|
|
/* No errors; receive the packet. */
|
|
|
|
total_len = WB_RXBYTES(cur_rx->wb_ptr->wb_status);
|
|
|
|
|
1998-12-19 04:19:44 +00:00
|
|
|
/*
|
|
|
|
* XXX The Winbond chip includes the CRC with every
|
|
|
|
* received frame, and there's no way to turn this
|
|
|
|
* behavior off (at least, I can't find anything in
|
|
|
|
* the manual that explains how to do it) so we have
|
|
|
|
* to trim off the CRC manually.
|
|
|
|
*/
|
|
|
|
total_len -= ETHER_CRC_LEN;
|
|
|
|
|
1999-01-16 06:25:59 +00:00
|
|
|
if (total_len < MINCLSIZE) {
|
|
|
|
m = m_devget(mtod(cur_rx->wb_mbuf, char *),
|
|
|
|
total_len, 0, ifp, NULL);
|
|
|
|
cur_rx->wb_ptr->wb_ctl =
|
|
|
|
WB_RXCTL_RLINK | (MCLBYTES - 1);
|
|
|
|
cur_rx->wb_ptr->wb_status = WB_RXSTAT;
|
|
|
|
if (m == NULL) {
|
|
|
|
ifp->if_ierrors++;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
m = cur_rx->wb_mbuf;
|
An early Christmas present: add driver support for a whole bunch of
PCI fast ethernet adapters, plus man pages.
if_pn.c: Netgear FA310TX model D1, LinkSys LNE100TX, Matrox FastNIC 10/100,
various other PNIC devices
if_mx.c: NDC Communications SOHOware SFA100 (Macronix 98713A), various
other boards based on the Macronix 98713, 98713A, 98715, 98715A
and 98725 chips
if_vr.c: D-Link DFE530-TX, other boards based on the VIA Rhine and
Rhine II chips (note: the D-Link and certain other cards
that actually use a Rhine II chip still return the PCI
device ID of the Rhine I. I don't know why, and it doesn't
really matter since the driver treats both chips the same
anyway.)
if_wb.c: Trendware TE100-PCIE and various other cards based on the
Winbond W89C840F chip (the Trendware card is identical to
the sample boards Winbond sent me, so who knows how many
clones there are running around)
All drivers include support for ifmedia, BPF and hardware multicast
filtering.
Also updated GENERIC, LINT, RELNOTES.TXT, userconfig and
sysinstall device list.
I also have a driver for the ASIX AX88140A in the works.
1998-12-04 18:01:24 +00:00
|
|
|
/*
|
|
|
|
* Try to conjure up a new mbuf cluster. If that
|
|
|
|
* fails, it means we have an out of memory condition and
|
|
|
|
* should leave the buffer in place and continue. This will
|
|
|
|
* result in a lost packet, but there's little else we
|
|
|
|
* can do in this situation.
|
|
|
|
*/
|
1999-01-16 06:25:59 +00:00
|
|
|
if (wb_newbuf(sc, cur_rx) == ENOBUFS) {
|
|
|
|
ifp->if_ierrors++;
|
|
|
|
cur_rx->wb_ptr->wb_ctl =
|
An early Christmas present: add driver support for a whole bunch of
PCI fast ethernet adapters, plus man pages.
if_pn.c: Netgear FA310TX model D1, LinkSys LNE100TX, Matrox FastNIC 10/100,
various other PNIC devices
if_mx.c: NDC Communications SOHOware SFA100 (Macronix 98713A), various
other boards based on the Macronix 98713, 98713A, 98715, 98715A
and 98725 chips
if_vr.c: D-Link DFE530-TX, other boards based on the VIA Rhine and
Rhine II chips (note: the D-Link and certain other cards
that actually use a Rhine II chip still return the PCI
device ID of the Rhine I. I don't know why, and it doesn't
really matter since the driver treats both chips the same
anyway.)
if_wb.c: Trendware TE100-PCIE and various other cards based on the
Winbond W89C840F chip (the Trendware card is identical to
the sample boards Winbond sent me, so who knows how many
clones there are running around)
All drivers include support for ifmedia, BPF and hardware multicast
filtering.
Also updated GENERIC, LINT, RELNOTES.TXT, userconfig and
sysinstall device list.
I also have a driver for the ASIX AX88140A in the works.
1998-12-04 18:01:24 +00:00
|
|
|
WB_RXCTL_RLINK | (MCLBYTES - 1);
|
1999-01-16 06:25:59 +00:00
|
|
|
cur_rx->wb_ptr->wb_status = WB_RXSTAT;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
m->m_pkthdr.rcvif = ifp;
|
|
|
|
m->m_pkthdr.len = m->m_len = total_len;
|
An early Christmas present: add driver support for a whole bunch of
PCI fast ethernet adapters, plus man pages.
if_pn.c: Netgear FA310TX model D1, LinkSys LNE100TX, Matrox FastNIC 10/100,
various other PNIC devices
if_mx.c: NDC Communications SOHOware SFA100 (Macronix 98713A), various
other boards based on the Macronix 98713, 98713A, 98715, 98715A
and 98725 chips
if_vr.c: D-Link DFE530-TX, other boards based on the VIA Rhine and
Rhine II chips (note: the D-Link and certain other cards
that actually use a Rhine II chip still return the PCI
device ID of the Rhine I. I don't know why, and it doesn't
really matter since the driver treats both chips the same
anyway.)
if_wb.c: Trendware TE100-PCIE and various other cards based on the
Winbond W89C840F chip (the Trendware card is identical to
the sample boards Winbond sent me, so who knows how many
clones there are running around)
All drivers include support for ifmedia, BPF and hardware multicast
filtering.
Also updated GENERIC, LINT, RELNOTES.TXT, userconfig and
sysinstall device list.
I also have a driver for the ASIX AX88140A in the works.
1998-12-04 18:01:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
ifp->if_ipackets++;
|
|
|
|
eh = mtod(m, struct ether_header *);
|
|
|
|
|
|
|
|
#if NBPFILTER > 0
|
|
|
|
/*
|
|
|
|
* Handle BPF listeners. Let the BPF user see the packet, but
|
|
|
|
* don't pass it up to the ether_input() layer unless it's
|
|
|
|
* a broadcast packet, multicast packet, matches our ethernet
|
|
|
|
* address or the interface is in promiscuous mode.
|
|
|
|
*/
|
|
|
|
if (ifp->if_bpf) {
|
|
|
|
bpf_mtap(ifp, m);
|
|
|
|
if (ifp->if_flags & IFF_PROMISC &&
|
|
|
|
(bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
|
|
|
|
ETHER_ADDR_LEN) &&
|
|
|
|
(eh->ether_dhost[0] & 1) == 0)) {
|
|
|
|
m_freem(m);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
/* Remove header from mbuf and pass it on. */
|
|
|
|
m_adj(m, sizeof(struct ether_header));
|
|
|
|
ether_input(ifp, eh, m);
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
void wb_rxeoc(sc)
|
|
|
|
struct wb_softc *sc;
|
|
|
|
{
|
|
|
|
wb_rxeof(sc);
|
|
|
|
|
|
|
|
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
|
|
|
|
CSR_WRITE_4(sc, WB_RXADDR, vtophys(&sc->wb_ldata->wb_rx_list[0]));
|
|
|
|
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
|
|
|
|
if (CSR_READ_4(sc, WB_ISR) & WB_RXSTATE_SUSPEND)
|
|
|
|
CSR_WRITE_4(sc, WB_RXSTART, 0xFFFFFFFF);
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A frame was downloaded to the chip. It's safe for us to clean up
|
|
|
|
* the list buffers.
|
|
|
|
*/
|
|
|
|
static void wb_txeof(sc)
|
|
|
|
struct wb_softc *sc;
|
|
|
|
{
|
|
|
|
struct wb_chain *cur_tx;
|
|
|
|
struct ifnet *ifp;
|
|
|
|
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
|
|
|
|
/* Clear the timeout timer. */
|
|
|
|
ifp->if_timer = 0;
|
|
|
|
|
|
|
|
if (sc->wb_cdata.wb_tx_head == NULL)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Go through our tx list and free mbufs for those
|
|
|
|
* frames that have been transmitted.
|
|
|
|
*/
|
|
|
|
while(sc->wb_cdata.wb_tx_head->wb_mbuf != NULL) {
|
|
|
|
u_int32_t txstat;
|
|
|
|
|
|
|
|
cur_tx = sc->wb_cdata.wb_tx_head;
|
|
|
|
txstat = WB_TXSTATUS(cur_tx);
|
|
|
|
|
|
|
|
if ((txstat & WB_TXSTAT_OWN) || txstat == WB_UNSENT)
|
|
|
|
break;
|
|
|
|
|
|
|
|
if (txstat & WB_TXSTAT_TXERR) {
|
|
|
|
ifp->if_oerrors++;
|
|
|
|
if (txstat & WB_TXSTAT_ABORT)
|
|
|
|
ifp->if_collisions++;
|
|
|
|
if (txstat & WB_TXSTAT_LATECOLL)
|
|
|
|
ifp->if_collisions++;
|
|
|
|
}
|
|
|
|
|
|
|
|
ifp->if_collisions += (txstat & WB_TXSTAT_COLLCNT) >> 3;
|
|
|
|
|
|
|
|
ifp->if_opackets++;
|
|
|
|
m_freem(cur_tx->wb_mbuf);
|
|
|
|
cur_tx->wb_mbuf = NULL;
|
|
|
|
|
|
|
|
if (sc->wb_cdata.wb_tx_head == sc->wb_cdata.wb_tx_tail) {
|
|
|
|
sc->wb_cdata.wb_tx_head = NULL;
|
|
|
|
sc->wb_cdata.wb_tx_tail = NULL;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
sc->wb_cdata.wb_tx_head = cur_tx->wb_nextdesc;
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* TX 'end of channel' interrupt handler.
|
|
|
|
*/
|
|
|
|
static void wb_txeoc(sc)
|
|
|
|
struct wb_softc *sc;
|
|
|
|
{
|
|
|
|
struct ifnet *ifp;
|
|
|
|
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
|
|
|
|
ifp->if_timer = 0;
|
|
|
|
|
|
|
|
if (sc->wb_cdata.wb_tx_head == NULL) {
|
|
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
sc->wb_cdata.wb_tx_tail = NULL;
|
|
|
|
if (sc->wb_want_auto)
|
|
|
|
wb_autoneg_mii(sc, WB_FLAG_SCHEDDELAY, 1);
|
|
|
|
} else {
|
|
|
|
if (WB_TXOWN(sc->wb_cdata.wb_tx_head) == WB_UNSENT) {
|
|
|
|
WB_TXOWN(sc->wb_cdata.wb_tx_head) = WB_TXSTAT_OWN;
|
|
|
|
ifp->if_timer = 5;
|
|
|
|
CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void wb_intr(arg)
|
|
|
|
void *arg;
|
|
|
|
{
|
|
|
|
struct wb_softc *sc;
|
|
|
|
struct ifnet *ifp;
|
|
|
|
u_int32_t status;
|
|
|
|
|
|
|
|
sc = arg;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
|
|
|
|
if (!(ifp->if_flags & IFF_UP))
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* Disable interrupts. */
|
|
|
|
CSR_WRITE_4(sc, WB_IMR, 0x00000000);
|
|
|
|
|
|
|
|
for (;;) {
|
|
|
|
|
|
|
|
status = CSR_READ_4(sc, WB_ISR);
|
|
|
|
if (status)
|
|
|
|
CSR_WRITE_4(sc, WB_ISR, status);
|
|
|
|
|
|
|
|
if ((status & WB_INTRS) == 0)
|
|
|
|
break;
|
|
|
|
|
|
|
|
if (status & WB_ISR_RX_OK)
|
|
|
|
wb_rxeof(sc);
|
|
|
|
|
|
|
|
if (status & WB_ISR_RX_IDLE)
|
|
|
|
wb_rxeoc(sc);
|
|
|
|
|
|
|
|
if ((status & WB_ISR_RX_NOBUF) || (status & WB_ISR_RX_ERR)) {
|
|
|
|
ifp->if_ierrors++;
|
1999-01-16 06:25:59 +00:00
|
|
|
#ifdef foo
|
An early Christmas present: add driver support for a whole bunch of
PCI fast ethernet adapters, plus man pages.
if_pn.c: Netgear FA310TX model D1, LinkSys LNE100TX, Matrox FastNIC 10/100,
various other PNIC devices
if_mx.c: NDC Communications SOHOware SFA100 (Macronix 98713A), various
other boards based on the Macronix 98713, 98713A, 98715, 98715A
and 98725 chips
if_vr.c: D-Link DFE530-TX, other boards based on the VIA Rhine and
Rhine II chips (note: the D-Link and certain other cards
that actually use a Rhine II chip still return the PCI
device ID of the Rhine I. I don't know why, and it doesn't
really matter since the driver treats both chips the same
anyway.)
if_wb.c: Trendware TE100-PCIE and various other cards based on the
Winbond W89C840F chip (the Trendware card is identical to
the sample boards Winbond sent me, so who knows how many
clones there are running around)
All drivers include support for ifmedia, BPF and hardware multicast
filtering.
Also updated GENERIC, LINT, RELNOTES.TXT, userconfig and
sysinstall device list.
I also have a driver for the ASIX AX88140A in the works.
1998-12-04 18:01:24 +00:00
|
|
|
wb_stop(sc);
|
|
|
|
wb_reset(sc);
|
|
|
|
wb_init(sc);
|
1999-01-16 06:25:59 +00:00
|
|
|
#endif
|
An early Christmas present: add driver support for a whole bunch of
PCI fast ethernet adapters, plus man pages.
if_pn.c: Netgear FA310TX model D1, LinkSys LNE100TX, Matrox FastNIC 10/100,
various other PNIC devices
if_mx.c: NDC Communications SOHOware SFA100 (Macronix 98713A), various
other boards based on the Macronix 98713, 98713A, 98715, 98715A
and 98725 chips
if_vr.c: D-Link DFE530-TX, other boards based on the VIA Rhine and
Rhine II chips (note: the D-Link and certain other cards
that actually use a Rhine II chip still return the PCI
device ID of the Rhine I. I don't know why, and it doesn't
really matter since the driver treats both chips the same
anyway.)
if_wb.c: Trendware TE100-PCIE and various other cards based on the
Winbond W89C840F chip (the Trendware card is identical to
the sample boards Winbond sent me, so who knows how many
clones there are running around)
All drivers include support for ifmedia, BPF and hardware multicast
filtering.
Also updated GENERIC, LINT, RELNOTES.TXT, userconfig and
sysinstall device list.
I also have a driver for the ASIX AX88140A in the works.
1998-12-04 18:01:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (status & WB_ISR_TX_OK)
|
|
|
|
wb_txeof(sc);
|
|
|
|
|
|
|
|
if (status & WB_ISR_TX_NOBUF)
|
|
|
|
wb_txeoc(sc);
|
|
|
|
|
|
|
|
if (status & WB_ISR_TX_IDLE) {
|
|
|
|
wb_txeof(sc);
|
|
|
|
if (sc->wb_cdata.wb_tx_head != NULL) {
|
|
|
|
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
|
|
|
|
CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (status & WB_ISR_TX_UNDERRUN) {
|
|
|
|
ifp->if_oerrors++;
|
|
|
|
wb_txeof(sc);
|
|
|
|
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
|
|
|
|
/* Jack up TX threshold */
|
|
|
|
sc->wb_txthresh += WB_TXTHRESH_CHUNK;
|
|
|
|
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_THRESH);
|
|
|
|
WB_SETBIT(sc, WB_NETCFG, WB_TXTHRESH(sc->wb_txthresh));
|
|
|
|
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (status & WB_ISR_BUS_ERR) {
|
|
|
|
wb_reset(sc);
|
|
|
|
wb_init(sc);
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Re-enable interrupts. */
|
|
|
|
CSR_WRITE_4(sc, WB_IMR, WB_INTRS);
|
|
|
|
|
|
|
|
if (ifp->if_snd.ifq_head != NULL) {
|
|
|
|
wb_start(ifp);
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
|
|
|
|
* pointers to the fragment pointers.
|
|
|
|
*/
|
|
|
|
static int wb_encap(sc, c, m_head)
|
|
|
|
struct wb_softc *sc;
|
|
|
|
struct wb_chain *c;
|
|
|
|
struct mbuf *m_head;
|
|
|
|
{
|
|
|
|
int frag = 0;
|
|
|
|
struct wb_desc *f = NULL;
|
|
|
|
int total_len;
|
|
|
|
struct mbuf *m;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Start packing the mbufs in this chain into
|
|
|
|
* the fragment pointers. Stop when we run out
|
|
|
|
* of fragments or hit the end of the mbuf chain.
|
|
|
|
*/
|
|
|
|
m = m_head;
|
|
|
|
total_len = 0;
|
|
|
|
|
|
|
|
for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
|
|
|
|
if (m->m_len != 0) {
|
|
|
|
if (frag == WB_MAXFRAGS)
|
|
|
|
break;
|
|
|
|
total_len += m->m_len;
|
|
|
|
f = &c->wb_ptr->wb_frag[frag];
|
|
|
|
f->wb_ctl = WB_TXCTL_TLINK | m->m_len;
|
|
|
|
if (frag == 0) {
|
|
|
|
f->wb_ctl |= WB_TXCTL_FIRSTFRAG;
|
|
|
|
f->wb_status = 0;
|
|
|
|
} else
|
|
|
|
f->wb_status = WB_TXSTAT_OWN;
|
|
|
|
f->wb_next = vtophys(&c->wb_ptr->wb_frag[frag + 1]);
|
|
|
|
f->wb_data = vtophys(mtod(m, vm_offset_t));
|
|
|
|
frag++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Handle special case: we used up all 16 fragments,
|
|
|
|
* but we have more mbufs left in the chain. Copy the
|
|
|
|
* data into an mbuf cluster. Note that we don't
|
|
|
|
* bother clearing the values in the other fragment
|
|
|
|
* pointers/counters; it wouldn't gain us anything,
|
|
|
|
* and would waste cycles.
|
|
|
|
*/
|
|
|
|
if (m != NULL) {
|
|
|
|
struct mbuf *m_new = NULL;
|
|
|
|
|
|
|
|
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
|
|
|
|
if (m_new == NULL) {
|
|
|
|
printf("wb%d: no memory for tx list", sc->wb_unit);
|
|
|
|
return(1);
|
|
|
|
}
|
|
|
|
if (m_head->m_pkthdr.len > MHLEN) {
|
|
|
|
MCLGET(m_new, M_DONTWAIT);
|
|
|
|
if (!(m_new->m_flags & M_EXT)) {
|
|
|
|
m_freem(m_new);
|
|
|
|
printf("wb%d: no memory for tx list",
|
|
|
|
sc->wb_unit);
|
|
|
|
return(1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
m_copydata(m_head, 0, m_head->m_pkthdr.len,
|
|
|
|
mtod(m_new, caddr_t));
|
|
|
|
m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
|
|
|
|
m_freem(m_head);
|
|
|
|
m_head = m_new;
|
|
|
|
f = &c->wb_ptr->wb_frag[0];
|
|
|
|
f->wb_status = 0;
|
|
|
|
f->wb_data = vtophys(mtod(m_new, caddr_t));
|
|
|
|
f->wb_ctl = total_len = m_new->m_len;
|
|
|
|
f->wb_ctl |= WB_TXCTL_TLINK|WB_TXCTL_FIRSTFRAG;
|
|
|
|
frag = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (total_len < WB_MIN_FRAMELEN) {
|
|
|
|
f = &c->wb_ptr->wb_frag[frag];
|
|
|
|
f->wb_ctl = WB_MIN_FRAMELEN - total_len;
|
|
|
|
f->wb_data = vtophys(&sc->wb_cdata.wb_pad);
|
|
|
|
f->wb_ctl |= WB_TXCTL_TLINK;
|
|
|
|
f->wb_status = WB_TXSTAT_OWN;
|
|
|
|
frag++;
|
|
|
|
}
|
|
|
|
|
|
|
|
c->wb_mbuf = m_head;
|
|
|
|
c->wb_lastdesc = frag - 1;
|
|
|
|
WB_TXCTL(c) |= WB_TXCTL_LASTFRAG;
|
|
|
|
WB_TXNEXT(c) = vtophys(&c->wb_nextdesc->wb_ptr->wb_frag[0]);
|
|
|
|
|
|
|
|
return(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
|
|
|
|
* to the mbuf data regions directly in the transmit lists. We also save a
|
|
|
|
* copy of the pointers since the transmit list fragment pointers are
|
|
|
|
* physical addresses.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static void wb_start(ifp)
|
|
|
|
struct ifnet *ifp;
|
|
|
|
{
|
|
|
|
struct wb_softc *sc;
|
|
|
|
struct mbuf *m_head = NULL;
|
|
|
|
struct wb_chain *cur_tx = NULL, *start_tx;
|
|
|
|
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
|
|
|
|
if (sc->wb_autoneg) {
|
|
|
|
sc->wb_tx_pend = 1;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check for an available queue slot. If there are none,
|
|
|
|
* punt.
|
|
|
|
*/
|
|
|
|
if (sc->wb_cdata.wb_tx_free->wb_mbuf != NULL) {
|
|
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
start_tx = sc->wb_cdata.wb_tx_free;
|
|
|
|
|
|
|
|
while(sc->wb_cdata.wb_tx_free->wb_mbuf == NULL) {
|
|
|
|
IF_DEQUEUE(&ifp->if_snd, m_head);
|
|
|
|
if (m_head == NULL)
|
|
|
|
break;
|
|
|
|
|
|
|
|
/* Pick a descriptor off the free list. */
|
|
|
|
cur_tx = sc->wb_cdata.wb_tx_free;
|
|
|
|
sc->wb_cdata.wb_tx_free = cur_tx->wb_nextdesc;
|
|
|
|
|
|
|
|
/* Pack the data into the descriptor. */
|
|
|
|
wb_encap(sc, cur_tx, m_head);
|
|
|
|
|
|
|
|
if (cur_tx != start_tx)
|
|
|
|
WB_TXOWN(cur_tx) = WB_TXSTAT_OWN;
|
|
|
|
|
|
|
|
#if NBPFILTER > 0
|
|
|
|
/*
|
|
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
|
|
* to him.
|
|
|
|
*/
|
|
|
|
if (ifp->if_bpf)
|
|
|
|
bpf_mtap(ifp, cur_tx->wb_mbuf);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
1998-12-05 02:21:44 +00:00
|
|
|
/*
|
|
|
|
* If there are no packets queued, bail.
|
|
|
|
*/
|
|
|
|
if (cur_tx == NULL)
|
|
|
|
return;
|
|
|
|
|
An early Christmas present: add driver support for a whole bunch of
PCI fast ethernet adapters, plus man pages.
if_pn.c: Netgear FA310TX model D1, LinkSys LNE100TX, Matrox FastNIC 10/100,
various other PNIC devices
if_mx.c: NDC Communications SOHOware SFA100 (Macronix 98713A), various
other boards based on the Macronix 98713, 98713A, 98715, 98715A
and 98725 chips
if_vr.c: D-Link DFE530-TX, other boards based on the VIA Rhine and
Rhine II chips (note: the D-Link and certain other cards
that actually use a Rhine II chip still return the PCI
device ID of the Rhine I. I don't know why, and it doesn't
really matter since the driver treats both chips the same
anyway.)
if_wb.c: Trendware TE100-PCIE and various other cards based on the
Winbond W89C840F chip (the Trendware card is identical to
the sample boards Winbond sent me, so who knows how many
clones there are running around)
All drivers include support for ifmedia, BPF and hardware multicast
filtering.
Also updated GENERIC, LINT, RELNOTES.TXT, userconfig and
sysinstall device list.
I also have a driver for the ASIX AX88140A in the works.
1998-12-04 18:01:24 +00:00
|
|
|
/*
|
|
|
|
* Place the request for the upload interrupt
|
|
|
|
* in the last descriptor in the chain. This way, if
|
|
|
|
* we're chaining several packets at once, we'll only
|
|
|
|
* get an interupt once for the whole chain rather than
|
|
|
|
* once for each packet.
|
|
|
|
*/
|
|
|
|
WB_TXCTL(cur_tx) |= WB_TXCTL_FINT;
|
1999-01-16 06:25:59 +00:00
|
|
|
cur_tx->wb_ptr->wb_frag[0].wb_ctl |= WB_TXCTL_FINT;
|
An early Christmas present: add driver support for a whole bunch of
PCI fast ethernet adapters, plus man pages.
if_pn.c: Netgear FA310TX model D1, LinkSys LNE100TX, Matrox FastNIC 10/100,
various other PNIC devices
if_mx.c: NDC Communications SOHOware SFA100 (Macronix 98713A), various
other boards based on the Macronix 98713, 98713A, 98715, 98715A
and 98725 chips
if_vr.c: D-Link DFE530-TX, other boards based on the VIA Rhine and
Rhine II chips (note: the D-Link and certain other cards
that actually use a Rhine II chip still return the PCI
device ID of the Rhine I. I don't know why, and it doesn't
really matter since the driver treats both chips the same
anyway.)
if_wb.c: Trendware TE100-PCIE and various other cards based on the
Winbond W89C840F chip (the Trendware card is identical to
the sample boards Winbond sent me, so who knows how many
clones there are running around)
All drivers include support for ifmedia, BPF and hardware multicast
filtering.
Also updated GENERIC, LINT, RELNOTES.TXT, userconfig and
sysinstall device list.
I also have a driver for the ASIX AX88140A in the works.
1998-12-04 18:01:24 +00:00
|
|
|
sc->wb_cdata.wb_tx_tail = cur_tx;
|
|
|
|
|
|
|
|
if (sc->wb_cdata.wb_tx_head == NULL) {
|
|
|
|
sc->wb_cdata.wb_tx_head = start_tx;
|
|
|
|
WB_TXOWN(start_tx) = WB_TXSTAT_OWN;
|
|
|
|
CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* We need to distinguish between the case where
|
|
|
|
* the own bit is clear because the chip cleared it
|
|
|
|
* and where the own bit is clear because we haven't
|
|
|
|
* set it yet. The magic value WB_UNSET is just some
|
|
|
|
* ramdomly chosen number which doesn't have the own
|
|
|
|
* bit set. When we actually transmit the frame, the
|
|
|
|
* status word will have _only_ the own bit set, so
|
|
|
|
* the txeoc handler will be able to tell if it needs
|
|
|
|
* to initiate another transmission to flush out pending
|
|
|
|
* frames.
|
|
|
|
*/
|
|
|
|
WB_TXOWN(start_tx) = WB_UNSENT;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set a timeout in case the chip goes out to lunch.
|
|
|
|
*/
|
|
|
|
ifp->if_timer = 5;
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void wb_init(xsc)
|
|
|
|
void *xsc;
|
|
|
|
{
|
|
|
|
struct wb_softc *sc = xsc;
|
|
|
|
struct ifnet *ifp = &sc->arpcom.ac_if;
|
|
|
|
int s, i;
|
|
|
|
u_int16_t phy_bmcr = 0;
|
|
|
|
|
|
|
|
if (sc->wb_autoneg)
|
|
|
|
return;
|
|
|
|
|
|
|
|
s = splimp();
|
|
|
|
|
|
|
|
if (sc->wb_pinfo != NULL)
|
|
|
|
phy_bmcr = wb_phy_readreg(sc, PHY_BMCR);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Cancel pending I/O and free all RX/TX buffers.
|
|
|
|
*/
|
|
|
|
wb_stop(sc);
|
|
|
|
wb_reset(sc);
|
|
|
|
|
|
|
|
sc->wb_txthresh = WB_TXTHRESH_INIT;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set cache alignment and burst length.
|
|
|
|
*/
|
|
|
|
CSR_WRITE_4(sc, WB_BUSCTL, WB_BUSCTL_CONFIG);
|
|
|
|
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_THRESH);
|
|
|
|
WB_SETBIT(sc, WB_NETCFG, WB_TXTHRESH(sc->wb_txthresh));
|
|
|
|
|
|
|
|
/* This doesn't tend to work too well at 100Mbps. */
|
|
|
|
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_EARLY_ON);
|
|
|
|
|
|
|
|
wb_setcfg(sc, phy_bmcr);
|
|
|
|
|
|
|
|
/* Init our MAC address */
|
|
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++) {
|
|
|
|
CSR_WRITE_1(sc, WB_NODE0 + i, sc->arpcom.ac_enaddr[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Init circular RX list. */
|
|
|
|
if (wb_list_rx_init(sc) == ENOBUFS) {
|
|
|
|
printf("wb%d: initialization failed: no "
|
|
|
|
"memory for rx buffers\n", sc->wb_unit);
|
|
|
|
wb_stop(sc);
|
|
|
|
(void)splx(s);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Init TX descriptors. */
|
|
|
|
wb_list_tx_init(sc);
|
|
|
|
|
|
|
|
/* If we want promiscuous mode, set the allframes bit. */
|
|
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
|
|
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ALLPHYS);
|
|
|
|
} else {
|
|
|
|
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ALLPHYS);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set capture broadcast bit to capture broadcast frames.
|
|
|
|
*/
|
|
|
|
if (ifp->if_flags & IFF_BROADCAST) {
|
|
|
|
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_BROAD);
|
|
|
|
} else {
|
|
|
|
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_BROAD);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Program the multicast filter, if necessary.
|
|
|
|
*/
|
|
|
|
wb_setmulti(sc);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Load the address of the RX list.
|
|
|
|
*/
|
|
|
|
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
|
|
|
|
CSR_WRITE_4(sc, WB_RXADDR, vtophys(&sc->wb_ldata->wb_rx_list[0]));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Enable interrupts.
|
|
|
|
*/
|
|
|
|
CSR_WRITE_4(sc, WB_IMR, WB_INTRS);
|
|
|
|
CSR_WRITE_4(sc, WB_ISR, 0xFFFFFFFF);
|
|
|
|
|
|
|
|
/* Enable receiver and transmitter. */
|
|
|
|
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
|
|
|
|
CSR_WRITE_4(sc, WB_RXSTART, 0xFFFFFFFF);
|
|
|
|
|
|
|
|
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
|
|
|
|
CSR_WRITE_4(sc, WB_TXADDR, vtophys(&sc->wb_ldata->wb_tx_list[0]));
|
|
|
|
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
|
|
|
|
|
|
|
|
/* Restore state of BMCR */
|
|
|
|
if (sc->wb_pinfo != NULL)
|
|
|
|
wb_phy_writereg(sc, PHY_BMCR, phy_bmcr);
|
|
|
|
|
|
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
|
|
|
|
(void)splx(s);
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set media options.
|
|
|
|
*/
|
|
|
|
static int wb_ifmedia_upd(ifp)
|
|
|
|
struct ifnet *ifp;
|
|
|
|
{
|
|
|
|
struct wb_softc *sc;
|
|
|
|
struct ifmedia *ifm;
|
|
|
|
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
ifm = &sc->ifmedia;
|
|
|
|
|
|
|
|
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
|
|
|
|
return(EINVAL);
|
|
|
|
|
|
|
|
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
|
|
|
|
wb_autoneg_mii(sc, WB_FLAG_SCHEDDELAY, 1);
|
|
|
|
else
|
|
|
|
wb_setmode_mii(sc, ifm->ifm_media);
|
|
|
|
|
|
|
|
return(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Report current media status.
|
|
|
|
*/
|
|
|
|
static void wb_ifmedia_sts(ifp, ifmr)
|
|
|
|
struct ifnet *ifp;
|
|
|
|
struct ifmediareq *ifmr;
|
|
|
|
{
|
|
|
|
struct wb_softc *sc;
|
|
|
|
u_int16_t advert = 0, ability = 0;
|
|
|
|
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
|
|
|
|
ifmr->ifm_active = IFM_ETHER;
|
|
|
|
|
|
|
|
if (!(wb_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
|
|
|
|
if (wb_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
|
|
|
|
ifmr->ifm_active = IFM_ETHER|IFM_100_TX;
|
|
|
|
else
|
|
|
|
ifmr->ifm_active = IFM_ETHER|IFM_10_T;
|
|
|
|
if (wb_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
|
|
|
|
ifmr->ifm_active |= IFM_FDX;
|
|
|
|
else
|
|
|
|
ifmr->ifm_active |= IFM_HDX;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
ability = wb_phy_readreg(sc, PHY_LPAR);
|
|
|
|
advert = wb_phy_readreg(sc, PHY_ANAR);
|
|
|
|
if (advert & PHY_ANAR_100BT4 &&
|
|
|
|
ability & PHY_ANAR_100BT4) {
|
|
|
|
ifmr->ifm_active = IFM_ETHER|IFM_100_T4;
|
|
|
|
} else if (advert & PHY_ANAR_100BTXFULL &&
|
|
|
|
ability & PHY_ANAR_100BTXFULL) {
|
|
|
|
ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_FDX;
|
|
|
|
} else if (advert & PHY_ANAR_100BTXHALF &&
|
|
|
|
ability & PHY_ANAR_100BTXHALF) {
|
|
|
|
ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_HDX;
|
|
|
|
} else if (advert & PHY_ANAR_10BTFULL &&
|
|
|
|
ability & PHY_ANAR_10BTFULL) {
|
|
|
|
ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_FDX;
|
|
|
|
} else if (advert & PHY_ANAR_10BTHALF &&
|
|
|
|
ability & PHY_ANAR_10BTHALF) {
|
|
|
|
ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_HDX;
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int wb_ioctl(ifp, command, data)
|
|
|
|
struct ifnet *ifp;
|
|
|
|
u_long command;
|
|
|
|
caddr_t data;
|
|
|
|
{
|
|
|
|
struct wb_softc *sc = ifp->if_softc;
|
|
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
|
|
int s, error = 0;
|
|
|
|
|
|
|
|
s = splimp();
|
|
|
|
|
|
|
|
switch(command) {
|
|
|
|
case SIOCSIFADDR:
|
|
|
|
case SIOCGIFADDR:
|
|
|
|
case SIOCSIFMTU:
|
|
|
|
error = ether_ioctl(ifp, command, data);
|
|
|
|
break;
|
|
|
|
case SIOCSIFFLAGS:
|
|
|
|
if (ifp->if_flags & IFF_UP) {
|
|
|
|
wb_init(sc);
|
|
|
|
} else {
|
|
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
|
|
wb_stop(sc);
|
|
|
|
}
|
|
|
|
error = 0;
|
|
|
|
break;
|
|
|
|
case SIOCADDMULTI:
|
|
|
|
case SIOCDELMULTI:
|
|
|
|
wb_setmulti(sc);
|
|
|
|
error = 0;
|
|
|
|
break;
|
|
|
|
case SIOCGIFMEDIA:
|
|
|
|
case SIOCSIFMEDIA:
|
|
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
error = EINVAL;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
(void)splx(s);
|
|
|
|
|
|
|
|
return(error);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void wb_watchdog(ifp)
|
|
|
|
struct ifnet *ifp;
|
|
|
|
{
|
|
|
|
struct wb_softc *sc;
|
|
|
|
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
|
|
|
|
if (sc->wb_autoneg) {
|
|
|
|
wb_autoneg_mii(sc, WB_FLAG_DELAYTIMEO, 1);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
ifp->if_oerrors++;
|
|
|
|
printf("wb%d: watchdog timeout\n", sc->wb_unit);
|
|
|
|
|
|
|
|
if (!(wb_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
|
|
|
|
printf("wb%d: no carrier - transceiver cable problem?\n",
|
|
|
|
sc->wb_unit);
|
|
|
|
|
|
|
|
wb_stop(sc);
|
|
|
|
wb_reset(sc);
|
|
|
|
wb_init(sc);
|
|
|
|
|
|
|
|
if (ifp->if_snd.ifq_head != NULL)
|
|
|
|
wb_start(ifp);
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Stop the adapter and free any mbufs allocated to the
|
|
|
|
* RX and TX lists.
|
|
|
|
*/
|
|
|
|
static void wb_stop(sc)
|
|
|
|
struct wb_softc *sc;
|
|
|
|
{
|
|
|
|
register int i;
|
|
|
|
struct ifnet *ifp;
|
|
|
|
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
ifp->if_timer = 0;
|
|
|
|
|
|
|
|
WB_CLRBIT(sc, WB_NETCFG, (WB_NETCFG_RX_ON|WB_NETCFG_TX_ON));
|
|
|
|
CSR_WRITE_4(sc, WB_IMR, 0x00000000);
|
|
|
|
CSR_WRITE_4(sc, WB_TXADDR, 0x00000000);
|
|
|
|
CSR_WRITE_4(sc, WB_RXADDR, 0x00000000);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Free data in the RX lists.
|
|
|
|
*/
|
|
|
|
for (i = 0; i < WB_RX_LIST_CNT; i++) {
|
|
|
|
if (sc->wb_cdata.wb_rx_chain[i].wb_mbuf != NULL) {
|
|
|
|
m_freem(sc->wb_cdata.wb_rx_chain[i].wb_mbuf);
|
|
|
|
sc->wb_cdata.wb_rx_chain[i].wb_mbuf = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
bzero((char *)&sc->wb_ldata->wb_rx_list,
|
|
|
|
sizeof(sc->wb_ldata->wb_rx_list));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Free the TX list buffers.
|
|
|
|
*/
|
|
|
|
for (i = 0; i < WB_TX_LIST_CNT; i++) {
|
|
|
|
if (sc->wb_cdata.wb_tx_chain[i].wb_mbuf != NULL) {
|
|
|
|
m_freem(sc->wb_cdata.wb_tx_chain[i].wb_mbuf);
|
|
|
|
sc->wb_cdata.wb_tx_chain[i].wb_mbuf = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bzero((char *)&sc->wb_ldata->wb_tx_list,
|
|
|
|
sizeof(sc->wb_ldata->wb_tx_list));
|
|
|
|
|
|
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Stop all chip I/O so that the kernel's probe routines don't
|
|
|
|
* get confused by errant DMAs when rebooting.
|
|
|
|
*/
|
|
|
|
static void wb_shutdown(howto, arg)
|
|
|
|
int howto;
|
|
|
|
void *arg;
|
|
|
|
{
|
|
|
|
struct wb_softc *sc = (struct wb_softc *)arg;
|
|
|
|
|
|
|
|
wb_stop(sc);
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct pci_device wb_device = {
|
|
|
|
"wb",
|
|
|
|
wb_probe,
|
|
|
|
wb_attach,
|
|
|
|
&wb_count,
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
DATA_SET(pcidevice_set, wb_device);
|