2005-01-06 01:43:34 +00:00
|
|
|
#-
|
2000-08-28 21:48:13 +00:00
|
|
|
# Copyright (c) 2000 Doug Rabson
|
|
|
|
# All rights reserved.
|
|
|
|
#
|
|
|
|
# Redistribution and use in source and binary forms, with or without
|
|
|
|
# modification, are permitted provided that the following conditions
|
|
|
|
# are met:
|
|
|
|
# 1. Redistributions of source code must retain the above copyright
|
|
|
|
# notice, this list of conditions and the following disclaimer.
|
|
|
|
# 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
# notice, this list of conditions and the following disclaimer in the
|
|
|
|
# documentation and/or other materials provided with the distribution.
|
|
|
|
#
|
|
|
|
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
# OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
# SUCH DAMAGE.
|
|
|
|
#
|
|
|
|
# $FreeBSD$
|
|
|
|
#
|
|
|
|
|
|
|
|
#include <sys/bus.h>
|
2014-04-01 16:02:02 +00:00
|
|
|
#include <sys/rman.h>
|
2005-04-13 19:10:27 +00:00
|
|
|
#include <dev/pci/pcivar.h>
|
2014-04-01 16:02:02 +00:00
|
|
|
#include <dev/pci/pcib_private.h>
|
2000-08-28 21:48:13 +00:00
|
|
|
|
|
|
|
INTERFACE pcib;
|
|
|
|
|
2005-04-13 16:30:30 +00:00
|
|
|
CODE {
|
|
|
|
static int
|
|
|
|
null_route_interrupt(device_t pcib, device_t dev, int pin)
|
|
|
|
{
|
|
|
|
return (PCI_INVALID_IRQ);
|
|
|
|
}
|
2015-03-01 00:39:40 +00:00
|
|
|
|
|
|
|
static int
|
|
|
|
pcib_null_ari_enabled(device_t pcib)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
2005-04-13 16:30:30 +00:00
|
|
|
};
|
|
|
|
|
2016-05-16 09:15:50 +00:00
|
|
|
HEADER {
|
|
|
|
#include "pci_if.h"
|
|
|
|
};
|
|
|
|
|
2000-08-28 21:48:13 +00:00
|
|
|
#
|
|
|
|
# Return the number of slots on the attached PCI bus.
|
|
|
|
#
|
|
|
|
METHOD int maxslots {
|
|
|
|
device_t dev;
|
|
|
|
};
|
|
|
|
|
2014-04-01 16:02:02 +00:00
|
|
|
#
|
|
|
|
#
|
|
|
|
# Return the number of functions on the attached PCI bus.
|
|
|
|
#
|
|
|
|
METHOD int maxfuncs {
|
|
|
|
device_t dev;
|
|
|
|
} DEFAULT pcib_maxfuncs;
|
|
|
|
|
2000-08-28 21:48:13 +00:00
|
|
|
#
|
|
|
|
# Read configuration space on the PCI bus. The bus, slot and func
|
|
|
|
# arguments determine the device which is being read and the reg
|
|
|
|
# argument is a byte offset into configuration space for that
|
|
|
|
# device. The width argument (which should be 1, 2 or 4) specifies how
|
|
|
|
# many byte of configuration space to read from that offset.
|
|
|
|
#
|
|
|
|
METHOD u_int32_t read_config {
|
|
|
|
device_t dev;
|
2000-12-01 15:27:48 +00:00
|
|
|
u_int bus;
|
|
|
|
u_int slot;
|
|
|
|
u_int func;
|
|
|
|
u_int reg;
|
2000-08-28 21:48:13 +00:00
|
|
|
int width;
|
|
|
|
};
|
|
|
|
|
|
|
|
#
|
|
|
|
# Write configuration space on the PCI bus. The bus, slot and func
|
|
|
|
# arguments determine the device which is being written and the reg
|
|
|
|
# argument is a byte offset into configuration space for that
|
|
|
|
# device. The value field is written to the configuration space, with
|
|
|
|
# the number of bytes written depending on the width argument.
|
|
|
|
#
|
|
|
|
METHOD void write_config {
|
|
|
|
device_t dev;
|
2000-12-01 15:27:48 +00:00
|
|
|
u_int bus;
|
|
|
|
u_int slot;
|
|
|
|
u_int func;
|
|
|
|
u_int reg;
|
2000-08-28 21:48:13 +00:00
|
|
|
u_int32_t value;
|
|
|
|
int width;
|
|
|
|
};
|
2000-10-16 19:43:44 +00:00
|
|
|
|
|
|
|
#
|
2015-10-18 08:13:51 +00:00
|
|
|
# Route an interrupt. Returns a value suitable for stuffing into
|
2000-10-16 19:43:44 +00:00
|
|
|
# a device's interrupt register.
|
|
|
|
#
|
|
|
|
METHOD int route_interrupt {
|
2006-11-07 18:55:51 +00:00
|
|
|
device_t pcib;
|
|
|
|
device_t dev;
|
|
|
|
int pin;
|
2005-04-13 19:10:27 +00:00
|
|
|
} DEFAULT null_route_interrupt;
|
First cut at MI support for PCI Message Signalled Interrupts (MSI):
- Add 3 new functions to the pci_if interface along with suitable wrappers
to provide the device driver visible API:
- pci_alloc_msi(dev, int *count) backed by PCI_ALLOC_MSI(). '*count'
here is an in and out parameter. The driver stores the desired number
of messages in '*count' before calling the function. On success,
'*count' holds the number of messages allocated to the device. Also on
success, the driver can access the messages as SYS_RES_IRQ resources
starting at rid 1. Note that the legacy INTx interrupt resource will
not be available when using MSI. Note that this function will allocate
either MSI or MSI-X messages depending on the devices capabilities and
the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. Also note
that the driver should activate the memory resource that holds the
MSI-X table and pending bit array (PBA) before calling this function
if the device supports MSI-X.
- pci_release_msi(dev) backed by PCI_RELEASE_MSI(). This function
releases the messages allocated for this device. All of the
SYS_RES_IRQ resources need to be released for this function to succeed.
- pci_msi_count(dev) backed by PCI_MSI_COUNT(). This function returns
the maximum number of MSI or MSI-X messages supported by this device.
MSI-X is preferred if present, but this function will honor the
'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. This function
should return the largest value that pci_alloc_msi() can return
(assuming the MD code is able to allocate sufficient backing resources
for all of the messages).
- Add default implementations for these 3 methods to the pci_driver generic
PCI bus driver. (The various other PCI bus drivers such as for ACPI and
OFW will inherit these default implementations.) This default
implementation depends on 4 new pcib_if methods that bubble up through
the PCI bridges to the MD code to allocate IRQ values and perform any
needed MD setup code needed:
- PCIB_ALLOC_MSI() attempts to allocate a group of MSI messages.
- PCIB_RELEASE_MSI() releases a group of MSI messages.
- PCIB_ALLOC_MSIX() attempts to allocate a single MSI-X message.
- PCIB_RELEASE_MSIX() releases a single MSI-X message.
- Add default implementations for these 4 methods that just pass the
request up to the parent bus's parent bridge driver and use the
default implementation in the various MI PCI bridge drivers.
- Add MI functions for use by MD code when managing MSI and MSI-X
interrupts:
- pci_enable_msi(dev, address, data) programs the MSI capability address
and data registers for a group of MSI messages
- pci_enable_msix(dev, index, address, data) initializes a single MSI-X
message in the MSI-X table
- pci_mask_msix(dev, index) masks a single MSI-X message
- pci_unmask_msix(dev, index) unmasks a single MSI-X message
- pci_pending_msix(dev, index) returns true if the specified MSI-X
message is currently pending
- Save the MSI capability address and data registers in the pci_cfgreg
block in a PCI devices ivars and restore the values when a device is
resumed. Note that the MSI-X table is not currently restored during
resume.
- Add constants for MSI-X register offsets and fields.
- Record interesting data about any MSI-X capability blocks we come
across in the pci_cfgreg block in the ivars for PCI devices.
Tested on: em (i386, MSI), bce (amd64/i386, MSI), mpt (amd64, MSI-X)
Reviewed by: scottl, grehan, jfv
MFC after: 2 months
2006-11-13 21:47:30 +00:00
|
|
|
|
|
|
|
#
|
|
|
|
# Allocate 'count' MSI messsages mapped onto 'count' IRQs. 'irq' points
|
|
|
|
# to an array of at least 'count' ints. The max number of messages this
|
|
|
|
# device supports is included so that the MD code can take that into
|
|
|
|
# account when assigning resources so that the proper number of low bits
|
|
|
|
# are clear in the resulting message data value.
|
|
|
|
#
|
|
|
|
METHOD int alloc_msi {
|
|
|
|
device_t pcib;
|
|
|
|
device_t dev;
|
|
|
|
int count;
|
|
|
|
int maxcount;
|
|
|
|
int *irqs;
|
|
|
|
};
|
|
|
|
|
|
|
|
#
|
2007-05-02 17:50:36 +00:00
|
|
|
# Release 'count' MSI messages mapped onto 'count' IRQs stored in the
|
|
|
|
# array pointed to by 'irqs'.
|
First cut at MI support for PCI Message Signalled Interrupts (MSI):
- Add 3 new functions to the pci_if interface along with suitable wrappers
to provide the device driver visible API:
- pci_alloc_msi(dev, int *count) backed by PCI_ALLOC_MSI(). '*count'
here is an in and out parameter. The driver stores the desired number
of messages in '*count' before calling the function. On success,
'*count' holds the number of messages allocated to the device. Also on
success, the driver can access the messages as SYS_RES_IRQ resources
starting at rid 1. Note that the legacy INTx interrupt resource will
not be available when using MSI. Note that this function will allocate
either MSI or MSI-X messages depending on the devices capabilities and
the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. Also note
that the driver should activate the memory resource that holds the
MSI-X table and pending bit array (PBA) before calling this function
if the device supports MSI-X.
- pci_release_msi(dev) backed by PCI_RELEASE_MSI(). This function
releases the messages allocated for this device. All of the
SYS_RES_IRQ resources need to be released for this function to succeed.
- pci_msi_count(dev) backed by PCI_MSI_COUNT(). This function returns
the maximum number of MSI or MSI-X messages supported by this device.
MSI-X is preferred if present, but this function will honor the
'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. This function
should return the largest value that pci_alloc_msi() can return
(assuming the MD code is able to allocate sufficient backing resources
for all of the messages).
- Add default implementations for these 3 methods to the pci_driver generic
PCI bus driver. (The various other PCI bus drivers such as for ACPI and
OFW will inherit these default implementations.) This default
implementation depends on 4 new pcib_if methods that bubble up through
the PCI bridges to the MD code to allocate IRQ values and perform any
needed MD setup code needed:
- PCIB_ALLOC_MSI() attempts to allocate a group of MSI messages.
- PCIB_RELEASE_MSI() releases a group of MSI messages.
- PCIB_ALLOC_MSIX() attempts to allocate a single MSI-X message.
- PCIB_RELEASE_MSIX() releases a single MSI-X message.
- Add default implementations for these 4 methods that just pass the
request up to the parent bus's parent bridge driver and use the
default implementation in the various MI PCI bridge drivers.
- Add MI functions for use by MD code when managing MSI and MSI-X
interrupts:
- pci_enable_msi(dev, address, data) programs the MSI capability address
and data registers for a group of MSI messages
- pci_enable_msix(dev, index, address, data) initializes a single MSI-X
message in the MSI-X table
- pci_mask_msix(dev, index) masks a single MSI-X message
- pci_unmask_msix(dev, index) unmasks a single MSI-X message
- pci_pending_msix(dev, index) returns true if the specified MSI-X
message is currently pending
- Save the MSI capability address and data registers in the pci_cfgreg
block in a PCI devices ivars and restore the values when a device is
resumed. Note that the MSI-X table is not currently restored during
resume.
- Add constants for MSI-X register offsets and fields.
- Record interesting data about any MSI-X capability blocks we come
across in the pci_cfgreg block in the ivars for PCI devices.
Tested on: em (i386, MSI), bce (amd64/i386, MSI), mpt (amd64, MSI-X)
Reviewed by: scottl, grehan, jfv
MFC after: 2 months
2006-11-13 21:47:30 +00:00
|
|
|
#
|
|
|
|
METHOD int release_msi {
|
|
|
|
device_t pcib;
|
|
|
|
device_t dev;
|
|
|
|
int count;
|
|
|
|
int *irqs;
|
|
|
|
};
|
|
|
|
|
|
|
|
#
|
|
|
|
# Allocate a single MSI-X message mapped onto '*irq'.
|
|
|
|
#
|
|
|
|
METHOD int alloc_msix {
|
|
|
|
device_t pcib;
|
|
|
|
device_t dev;
|
|
|
|
int *irq;
|
|
|
|
};
|
|
|
|
|
Expand the MSI/MSI-X API to address some deficiencies in the MSI-X support.
- First off, device drivers really do need to know if they are allocating
MSI or MSI-X messages. MSI requires allocating powerof2() messages for
example where MSI-X does not. To address this, split out the MSI-X
support from pci_msi_count() and pci_alloc_msi() into new driver-visible
functions pci_msix_count() and pci_alloc_msix(). As a result,
pci_msi_count() now just returns a count of the max supported MSI
messages for the device, and pci_alloc_msi() only tries to allocate MSI
messages. To get a count of the max supported MSI-X messages, use
pci_msix_count(). To allocate MSI-X messages, use pci_alloc_msix().
pci_release_msi() still handles both MSI and MSI-X messages, however.
As a result of this change, drivers using the existing API will only
use MSI messages and will no longer try to use MSI-X messages.
- Because MSI-X allows for each message to have its own data and address
values (and thus does not require all of the messages to have their
MD vectors allocated as a group), some devices allow for "sparse" use
of MSI-X message slots. For example, if a device supports 8 messages
but the OS is only able to allocate 2 messages, the device may make the
best use of 2 IRQs if it enables the messages at slots 1 and 4 rather
than default of using the first N slots (or indicies) at 1 and 2. To
support this, add a new pci_remap_msix() function that a driver may call
after a successful pci_alloc_msix() (but before allocating any of the
SYS_RES_IRQ resources) to allow the allocated IRQ resources to be
assigned to different message indices. For example, from the earlier
example, after pci_alloc_msix() returned a value of 2, the driver would
call pci_remap_msix() passing in array of integers { 1, 4 } as the
new message indices to use. The rid's for the SYS_RES_IRQ resources
will always match the message indices. Thus, after the call to
pci_remap_msix() the driver would be able to access the first message
in slot 1 at SYS_RES_IRQ rid 1, and the second message at slot 4 at
SYS_RES_IRQ rid 4. Note that the message slots/indices are 1-based
rather than 0-based so that they will always correspond to the rid
values (SYS_RES_IRQ rid 0 is reserved for the legacy INTx interrupt).
To support this API, a new PCIB_REMAP_MSIX() method was added to the
pcib interface to change the message index for a single IRQ.
Tested by: scottl
2007-01-22 21:48:44 +00:00
|
|
|
#
|
2007-05-02 17:50:36 +00:00
|
|
|
# Release a single MSI-X message mapped onto 'irq'.
|
Expand the MSI/MSI-X API to address some deficiencies in the MSI-X support.
- First off, device drivers really do need to know if they are allocating
MSI or MSI-X messages. MSI requires allocating powerof2() messages for
example where MSI-X does not. To address this, split out the MSI-X
support from pci_msi_count() and pci_alloc_msi() into new driver-visible
functions pci_msix_count() and pci_alloc_msix(). As a result,
pci_msi_count() now just returns a count of the max supported MSI
messages for the device, and pci_alloc_msi() only tries to allocate MSI
messages. To get a count of the max supported MSI-X messages, use
pci_msix_count(). To allocate MSI-X messages, use pci_alloc_msix().
pci_release_msi() still handles both MSI and MSI-X messages, however.
As a result of this change, drivers using the existing API will only
use MSI messages and will no longer try to use MSI-X messages.
- Because MSI-X allows for each message to have its own data and address
values (and thus does not require all of the messages to have their
MD vectors allocated as a group), some devices allow for "sparse" use
of MSI-X message slots. For example, if a device supports 8 messages
but the OS is only able to allocate 2 messages, the device may make the
best use of 2 IRQs if it enables the messages at slots 1 and 4 rather
than default of using the first N slots (or indicies) at 1 and 2. To
support this, add a new pci_remap_msix() function that a driver may call
after a successful pci_alloc_msix() (but before allocating any of the
SYS_RES_IRQ resources) to allow the allocated IRQ resources to be
assigned to different message indices. For example, from the earlier
example, after pci_alloc_msix() returned a value of 2, the driver would
call pci_remap_msix() passing in array of integers { 1, 4 } as the
new message indices to use. The rid's for the SYS_RES_IRQ resources
will always match the message indices. Thus, after the call to
pci_remap_msix() the driver would be able to access the first message
in slot 1 at SYS_RES_IRQ rid 1, and the second message at slot 4 at
SYS_RES_IRQ rid 4. Note that the message slots/indices are 1-based
rather than 0-based so that they will always correspond to the rid
values (SYS_RES_IRQ rid 0 is reserved for the legacy INTx interrupt).
To support this API, a new PCIB_REMAP_MSIX() method was added to the
pcib interface to change the message index for a single IRQ.
Tested by: scottl
2007-01-22 21:48:44 +00:00
|
|
|
#
|
2007-05-02 17:50:36 +00:00
|
|
|
METHOD int release_msix {
|
Expand the MSI/MSI-X API to address some deficiencies in the MSI-X support.
- First off, device drivers really do need to know if they are allocating
MSI or MSI-X messages. MSI requires allocating powerof2() messages for
example where MSI-X does not. To address this, split out the MSI-X
support from pci_msi_count() and pci_alloc_msi() into new driver-visible
functions pci_msix_count() and pci_alloc_msix(). As a result,
pci_msi_count() now just returns a count of the max supported MSI
messages for the device, and pci_alloc_msi() only tries to allocate MSI
messages. To get a count of the max supported MSI-X messages, use
pci_msix_count(). To allocate MSI-X messages, use pci_alloc_msix().
pci_release_msi() still handles both MSI and MSI-X messages, however.
As a result of this change, drivers using the existing API will only
use MSI messages and will no longer try to use MSI-X messages.
- Because MSI-X allows for each message to have its own data and address
values (and thus does not require all of the messages to have their
MD vectors allocated as a group), some devices allow for "sparse" use
of MSI-X message slots. For example, if a device supports 8 messages
but the OS is only able to allocate 2 messages, the device may make the
best use of 2 IRQs if it enables the messages at slots 1 and 4 rather
than default of using the first N slots (or indicies) at 1 and 2. To
support this, add a new pci_remap_msix() function that a driver may call
after a successful pci_alloc_msix() (but before allocating any of the
SYS_RES_IRQ resources) to allow the allocated IRQ resources to be
assigned to different message indices. For example, from the earlier
example, after pci_alloc_msix() returned a value of 2, the driver would
call pci_remap_msix() passing in array of integers { 1, 4 } as the
new message indices to use. The rid's for the SYS_RES_IRQ resources
will always match the message indices. Thus, after the call to
pci_remap_msix() the driver would be able to access the first message
in slot 1 at SYS_RES_IRQ rid 1, and the second message at slot 4 at
SYS_RES_IRQ rid 4. Note that the message slots/indices are 1-based
rather than 0-based so that they will always correspond to the rid
values (SYS_RES_IRQ rid 0 is reserved for the legacy INTx interrupt).
To support this API, a new PCIB_REMAP_MSIX() method was added to the
pcib interface to change the message index for a single IRQ.
Tested by: scottl
2007-01-22 21:48:44 +00:00
|
|
|
device_t pcib;
|
|
|
|
device_t dev;
|
|
|
|
int irq;
|
|
|
|
};
|
|
|
|
|
First cut at MI support for PCI Message Signalled Interrupts (MSI):
- Add 3 new functions to the pci_if interface along with suitable wrappers
to provide the device driver visible API:
- pci_alloc_msi(dev, int *count) backed by PCI_ALLOC_MSI(). '*count'
here is an in and out parameter. The driver stores the desired number
of messages in '*count' before calling the function. On success,
'*count' holds the number of messages allocated to the device. Also on
success, the driver can access the messages as SYS_RES_IRQ resources
starting at rid 1. Note that the legacy INTx interrupt resource will
not be available when using MSI. Note that this function will allocate
either MSI or MSI-X messages depending on the devices capabilities and
the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. Also note
that the driver should activate the memory resource that holds the
MSI-X table and pending bit array (PBA) before calling this function
if the device supports MSI-X.
- pci_release_msi(dev) backed by PCI_RELEASE_MSI(). This function
releases the messages allocated for this device. All of the
SYS_RES_IRQ resources need to be released for this function to succeed.
- pci_msi_count(dev) backed by PCI_MSI_COUNT(). This function returns
the maximum number of MSI or MSI-X messages supported by this device.
MSI-X is preferred if present, but this function will honor the
'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. This function
should return the largest value that pci_alloc_msi() can return
(assuming the MD code is able to allocate sufficient backing resources
for all of the messages).
- Add default implementations for these 3 methods to the pci_driver generic
PCI bus driver. (The various other PCI bus drivers such as for ACPI and
OFW will inherit these default implementations.) This default
implementation depends on 4 new pcib_if methods that bubble up through
the PCI bridges to the MD code to allocate IRQ values and perform any
needed MD setup code needed:
- PCIB_ALLOC_MSI() attempts to allocate a group of MSI messages.
- PCIB_RELEASE_MSI() releases a group of MSI messages.
- PCIB_ALLOC_MSIX() attempts to allocate a single MSI-X message.
- PCIB_RELEASE_MSIX() releases a single MSI-X message.
- Add default implementations for these 4 methods that just pass the
request up to the parent bus's parent bridge driver and use the
default implementation in the various MI PCI bridge drivers.
- Add MI functions for use by MD code when managing MSI and MSI-X
interrupts:
- pci_enable_msi(dev, address, data) programs the MSI capability address
and data registers for a group of MSI messages
- pci_enable_msix(dev, index, address, data) initializes a single MSI-X
message in the MSI-X table
- pci_mask_msix(dev, index) masks a single MSI-X message
- pci_unmask_msix(dev, index) unmasks a single MSI-X message
- pci_pending_msix(dev, index) returns true if the specified MSI-X
message is currently pending
- Save the MSI capability address and data registers in the pci_cfgreg
block in a PCI devices ivars and restore the values when a device is
resumed. Note that the MSI-X table is not currently restored during
resume.
- Add constants for MSI-X register offsets and fields.
- Record interesting data about any MSI-X capability blocks we come
across in the pci_cfgreg block in the ivars for PCI devices.
Tested on: em (i386, MSI), bce (amd64/i386, MSI), mpt (amd64, MSI-X)
Reviewed by: scottl, grehan, jfv
MFC after: 2 months
2006-11-13 21:47:30 +00:00
|
|
|
#
|
2007-05-02 17:50:36 +00:00
|
|
|
# Determine the MSI/MSI-X message address and data for 'irq'. The address
|
|
|
|
# is returned in '*addr', and the data in '*data'.
|
First cut at MI support for PCI Message Signalled Interrupts (MSI):
- Add 3 new functions to the pci_if interface along with suitable wrappers
to provide the device driver visible API:
- pci_alloc_msi(dev, int *count) backed by PCI_ALLOC_MSI(). '*count'
here is an in and out parameter. The driver stores the desired number
of messages in '*count' before calling the function. On success,
'*count' holds the number of messages allocated to the device. Also on
success, the driver can access the messages as SYS_RES_IRQ resources
starting at rid 1. Note that the legacy INTx interrupt resource will
not be available when using MSI. Note that this function will allocate
either MSI or MSI-X messages depending on the devices capabilities and
the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. Also note
that the driver should activate the memory resource that holds the
MSI-X table and pending bit array (PBA) before calling this function
if the device supports MSI-X.
- pci_release_msi(dev) backed by PCI_RELEASE_MSI(). This function
releases the messages allocated for this device. All of the
SYS_RES_IRQ resources need to be released for this function to succeed.
- pci_msi_count(dev) backed by PCI_MSI_COUNT(). This function returns
the maximum number of MSI or MSI-X messages supported by this device.
MSI-X is preferred if present, but this function will honor the
'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. This function
should return the largest value that pci_alloc_msi() can return
(assuming the MD code is able to allocate sufficient backing resources
for all of the messages).
- Add default implementations for these 3 methods to the pci_driver generic
PCI bus driver. (The various other PCI bus drivers such as for ACPI and
OFW will inherit these default implementations.) This default
implementation depends on 4 new pcib_if methods that bubble up through
the PCI bridges to the MD code to allocate IRQ values and perform any
needed MD setup code needed:
- PCIB_ALLOC_MSI() attempts to allocate a group of MSI messages.
- PCIB_RELEASE_MSI() releases a group of MSI messages.
- PCIB_ALLOC_MSIX() attempts to allocate a single MSI-X message.
- PCIB_RELEASE_MSIX() releases a single MSI-X message.
- Add default implementations for these 4 methods that just pass the
request up to the parent bus's parent bridge driver and use the
default implementation in the various MI PCI bridge drivers.
- Add MI functions for use by MD code when managing MSI and MSI-X
interrupts:
- pci_enable_msi(dev, address, data) programs the MSI capability address
and data registers for a group of MSI messages
- pci_enable_msix(dev, index, address, data) initializes a single MSI-X
message in the MSI-X table
- pci_mask_msix(dev, index) masks a single MSI-X message
- pci_unmask_msix(dev, index) unmasks a single MSI-X message
- pci_pending_msix(dev, index) returns true if the specified MSI-X
message is currently pending
- Save the MSI capability address and data registers in the pci_cfgreg
block in a PCI devices ivars and restore the values when a device is
resumed. Note that the MSI-X table is not currently restored during
resume.
- Add constants for MSI-X register offsets and fields.
- Record interesting data about any MSI-X capability blocks we come
across in the pci_cfgreg block in the ivars for PCI devices.
Tested on: em (i386, MSI), bce (amd64/i386, MSI), mpt (amd64, MSI-X)
Reviewed by: scottl, grehan, jfv
MFC after: 2 months
2006-11-13 21:47:30 +00:00
|
|
|
#
|
2007-05-02 17:50:36 +00:00
|
|
|
METHOD int map_msi {
|
First cut at MI support for PCI Message Signalled Interrupts (MSI):
- Add 3 new functions to the pci_if interface along with suitable wrappers
to provide the device driver visible API:
- pci_alloc_msi(dev, int *count) backed by PCI_ALLOC_MSI(). '*count'
here is an in and out parameter. The driver stores the desired number
of messages in '*count' before calling the function. On success,
'*count' holds the number of messages allocated to the device. Also on
success, the driver can access the messages as SYS_RES_IRQ resources
starting at rid 1. Note that the legacy INTx interrupt resource will
not be available when using MSI. Note that this function will allocate
either MSI or MSI-X messages depending on the devices capabilities and
the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. Also note
that the driver should activate the memory resource that holds the
MSI-X table and pending bit array (PBA) before calling this function
if the device supports MSI-X.
- pci_release_msi(dev) backed by PCI_RELEASE_MSI(). This function
releases the messages allocated for this device. All of the
SYS_RES_IRQ resources need to be released for this function to succeed.
- pci_msi_count(dev) backed by PCI_MSI_COUNT(). This function returns
the maximum number of MSI or MSI-X messages supported by this device.
MSI-X is preferred if present, but this function will honor the
'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. This function
should return the largest value that pci_alloc_msi() can return
(assuming the MD code is able to allocate sufficient backing resources
for all of the messages).
- Add default implementations for these 3 methods to the pci_driver generic
PCI bus driver. (The various other PCI bus drivers such as for ACPI and
OFW will inherit these default implementations.) This default
implementation depends on 4 new pcib_if methods that bubble up through
the PCI bridges to the MD code to allocate IRQ values and perform any
needed MD setup code needed:
- PCIB_ALLOC_MSI() attempts to allocate a group of MSI messages.
- PCIB_RELEASE_MSI() releases a group of MSI messages.
- PCIB_ALLOC_MSIX() attempts to allocate a single MSI-X message.
- PCIB_RELEASE_MSIX() releases a single MSI-X message.
- Add default implementations for these 4 methods that just pass the
request up to the parent bus's parent bridge driver and use the
default implementation in the various MI PCI bridge drivers.
- Add MI functions for use by MD code when managing MSI and MSI-X
interrupts:
- pci_enable_msi(dev, address, data) programs the MSI capability address
and data registers for a group of MSI messages
- pci_enable_msix(dev, index, address, data) initializes a single MSI-X
message in the MSI-X table
- pci_mask_msix(dev, index) masks a single MSI-X message
- pci_unmask_msix(dev, index) unmasks a single MSI-X message
- pci_pending_msix(dev, index) returns true if the specified MSI-X
message is currently pending
- Save the MSI capability address and data registers in the pci_cfgreg
block in a PCI devices ivars and restore the values when a device is
resumed. Note that the MSI-X table is not currently restored during
resume.
- Add constants for MSI-X register offsets and fields.
- Record interesting data about any MSI-X capability blocks we come
across in the pci_cfgreg block in the ivars for PCI devices.
Tested on: em (i386, MSI), bce (amd64/i386, MSI), mpt (amd64, MSI-X)
Reviewed by: scottl, grehan, jfv
MFC after: 2 months
2006-11-13 21:47:30 +00:00
|
|
|
device_t pcib;
|
|
|
|
device_t dev;
|
|
|
|
int irq;
|
2007-05-02 17:50:36 +00:00
|
|
|
uint64_t *addr;
|
|
|
|
uint32_t *data;
|
First cut at MI support for PCI Message Signalled Interrupts (MSI):
- Add 3 new functions to the pci_if interface along with suitable wrappers
to provide the device driver visible API:
- pci_alloc_msi(dev, int *count) backed by PCI_ALLOC_MSI(). '*count'
here is an in and out parameter. The driver stores the desired number
of messages in '*count' before calling the function. On success,
'*count' holds the number of messages allocated to the device. Also on
success, the driver can access the messages as SYS_RES_IRQ resources
starting at rid 1. Note that the legacy INTx interrupt resource will
not be available when using MSI. Note that this function will allocate
either MSI or MSI-X messages depending on the devices capabilities and
the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. Also note
that the driver should activate the memory resource that holds the
MSI-X table and pending bit array (PBA) before calling this function
if the device supports MSI-X.
- pci_release_msi(dev) backed by PCI_RELEASE_MSI(). This function
releases the messages allocated for this device. All of the
SYS_RES_IRQ resources need to be released for this function to succeed.
- pci_msi_count(dev) backed by PCI_MSI_COUNT(). This function returns
the maximum number of MSI or MSI-X messages supported by this device.
MSI-X is preferred if present, but this function will honor the
'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. This function
should return the largest value that pci_alloc_msi() can return
(assuming the MD code is able to allocate sufficient backing resources
for all of the messages).
- Add default implementations for these 3 methods to the pci_driver generic
PCI bus driver. (The various other PCI bus drivers such as for ACPI and
OFW will inherit these default implementations.) This default
implementation depends on 4 new pcib_if methods that bubble up through
the PCI bridges to the MD code to allocate IRQ values and perform any
needed MD setup code needed:
- PCIB_ALLOC_MSI() attempts to allocate a group of MSI messages.
- PCIB_RELEASE_MSI() releases a group of MSI messages.
- PCIB_ALLOC_MSIX() attempts to allocate a single MSI-X message.
- PCIB_RELEASE_MSIX() releases a single MSI-X message.
- Add default implementations for these 4 methods that just pass the
request up to the parent bus's parent bridge driver and use the
default implementation in the various MI PCI bridge drivers.
- Add MI functions for use by MD code when managing MSI and MSI-X
interrupts:
- pci_enable_msi(dev, address, data) programs the MSI capability address
and data registers for a group of MSI messages
- pci_enable_msix(dev, index, address, data) initializes a single MSI-X
message in the MSI-X table
- pci_mask_msix(dev, index) masks a single MSI-X message
- pci_unmask_msix(dev, index) unmasks a single MSI-X message
- pci_pending_msix(dev, index) returns true if the specified MSI-X
message is currently pending
- Save the MSI capability address and data registers in the pci_cfgreg
block in a PCI devices ivars and restore the values when a device is
resumed. Note that the MSI-X table is not currently restored during
resume.
- Add constants for MSI-X register offsets and fields.
- Record interesting data about any MSI-X capability blocks we come
across in the pci_cfgreg block in the ivars for PCI devices.
Tested on: em (i386, MSI), bce (amd64/i386, MSI), mpt (amd64, MSI-X)
Reviewed by: scottl, grehan, jfv
MFC after: 2 months
2006-11-13 21:47:30 +00:00
|
|
|
};
|
2010-08-17 15:44:52 +00:00
|
|
|
|
|
|
|
#
|
|
|
|
# Return the device power state to be used during a system sleep state
|
|
|
|
# transition such as suspend and resume.
|
|
|
|
#
|
|
|
|
METHOD int power_for_sleep {
|
|
|
|
device_t pcib;
|
|
|
|
device_t dev;
|
|
|
|
int *pstate;
|
|
|
|
};
|
2014-04-01 15:47:24 +00:00
|
|
|
|
|
|
|
#
|
|
|
|
# Return the PCI Routing Identifier (RID) for the device.
|
|
|
|
#
|
2016-05-16 09:15:50 +00:00
|
|
|
METHOD int get_id {
|
2014-04-29 20:49:47 +00:00
|
|
|
device_t pcib;
|
|
|
|
device_t dev;
|
2016-05-16 09:15:50 +00:00
|
|
|
enum pci_id_type type;
|
|
|
|
uintptr_t *id;
|
|
|
|
} DEFAULT pcib_get_id;
|
2014-04-01 16:02:02 +00:00
|
|
|
|
|
|
|
#
|
|
|
|
# Enable Alternative RID Interpretation if both the downstream port (pcib)
|
|
|
|
# and the endpoint device (dev) both support it.
|
|
|
|
#
|
|
|
|
METHOD int try_enable_ari {
|
|
|
|
device_t pcib;
|
|
|
|
device_t dev;
|
2014-04-01 15:47:24 +00:00
|
|
|
};
|
|
|
|
|
2015-03-01 00:39:40 +00:00
|
|
|
#
|
|
|
|
# Return non-zero if PCI ARI is enabled, or zero otherwise
|
|
|
|
#
|
|
|
|
METHOD int ari_enabled {
|
|
|
|
device_t pcib;
|
|
|
|
} DEFAULT pcib_null_ari_enabled;
|
|
|
|
|
|
|
|
#
|
|
|
|
# Decode a PCI Routing Identifier (RID) into PCI bus/slot/function
|
|
|
|
#
|
|
|
|
METHOD void decode_rid {
|
|
|
|
device_t pcib;
|
|
|
|
uint16_t rid;
|
|
|
|
int *bus;
|
|
|
|
int *slot;
|
|
|
|
int *func;
|
|
|
|
} DEFAULT pcib_decode_rid;
|
2017-02-25 06:11:36 +00:00
|
|
|
|
|
|
|
#
|
|
|
|
# Request control of PCI features from host firmware, if any.
|
|
|
|
#
|
|
|
|
METHOD int request_feature {
|
|
|
|
device_t pcib;
|
|
|
|
device_t dev;
|
|
|
|
enum pci_feature feature;
|
|
|
|
};
|