freebsd-nq/include/sys/metaslab_impl.h

573 lines
21 KiB
C
Raw Normal View History

2008-11-20 20:01:55 +00:00
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
2009-07-02 22:44:48 +00:00
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
2008-11-20 20:01:55 +00:00
* Use is subject to license terms.
*/
/*
Log Spacemap Project = Motivation At Delphix we've seen a lot of customer systems where fragmentation is over 75% and random writes take a performance hit because a lot of time is spend on I/Os that update on-disk space accounting metadata. Specifically, we seen cases where 20% to 40% of sync time is spend after sync pass 1 and ~30% of the I/Os on the system is spent updating spacemaps. The problem is that these pools have existed long enough that we've touched almost every metaslab at least once, and random writes scatter frees across all metaslabs every TXG, thus appending to their spacemaps and resulting in many I/Os. To give an example, assuming that every VDEV has 200 metaslabs and our writes fit within a single spacemap block (generally 4K) we have 200 I/Os. Then if we assume 2 levels of indirection, we need 400 additional I/Os and since we are talking about metadata for which we keep 2 extra copies for redundancy we need to triple that number, leading to a total of 1800 I/Os per VDEV every TXG. We could try and decrease the number of metaslabs so we have less I/Os per TXG but then each metaslab would cover a wider range on disk and thus would take more time to be loaded in memory from disk. In addition, after it's loaded, it's range tree would consume more memory. Another idea would be to just increase the spacemap block size which would allow us to fit more entries within an I/O block resulting in fewer I/Os per metaslab and a speedup in loading time. The problem is still that we don't deal with the number of I/Os going up as the number of metaslabs is increasing and the fact is that we generally write a lot to a few metaslabs and a little to the rest of them. Thus, just increasing the block size would actually waste bandwidth because we won't be utilizing our bigger block size. = About this patch This patch introduces the Log Spacemap project which provides the solution to the above problem while taking into account all the aforementioned tradeoffs. The details on how it achieves that can be found in the references sections below and in the code (see Big Theory Statement in spa_log_spacemap.c). Even though the change is fairly constraint within the metaslab and lower-level SPA codepaths, there is a side-change that is user-facing. The change is that VDEV IDs from VDEV holes will no longer be reused. To give some background and reasoning for this, when a log device is removed and its VDEV structure was replaced with a hole (or was compacted; if at the end of the vdev array), its vdev_id could be reused by devices added after that. Now with the pool-wide space maps recording the vdev ID, this behavior can cause problems (e.g. is this entry referring to a segment in the new vdev or the removed log?). Thus, to simplify things the ID reuse behavior is gone and now vdev IDs for top-level vdevs are truly unique within a pool. = Testing The illumos implementation of this feature has been used internally for a year and has been in production for ~6 months. For this patch specifically there don't seem to be any regressions introduced to ZTS and I have been running zloop for a week without any related problems. = Performance Analysis (Linux Specific) All performance results and analysis for illumos can be found in the links of the references. Redoing the same experiments in Linux gave similar results. Below are the specifics of the Linux run. After the pool reached stable state the percentage of the time spent in pass 1 per TXG was 64% on average for the stock bits while the log spacemap bits stayed at 95% during the experiment (graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png). Sync times per TXG were 37.6 seconds on average for the stock bits and 22.7 seconds for the log spacemap bits (related graph: sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result the log spacemap bits were able to push more TXGs, which is also the reason why all graphs quantified per TXG have more entries for the log spacemap bits. Another interesting aspect in terms of txg syncs is that the stock bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8, and 20% reach 9. The log space map bits reached sync pass 4 in 79% of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This emphasizes the fact that not only we spend less time on metadata but we also iterate less times to convergence in spa_sync() dirtying objects. [related graphs: stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png] Finally, the improvement in IOPs that the userland gains from the change is approximately 40%. There is a consistent win in IOPS as you can see from the graphs below but the absolute amount of improvement that the log spacemap gives varies within each minute interval. sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png = Porting to Other Platforms For people that want to port this commit to other platforms below is a list of ZoL commits that this patch depends on: Make zdb results for checkpoint tests consistent db587941c5ff6dea01932bb78f70db63cf7f38ba Update vdev_is_spacemap_addressable() for new spacemap encoding 419ba5914552c6185afbe1dd17b3ed4b0d526547 Simplify spa_sync by breaking it up to smaller functions 8dc2197b7b1e4d7ebc1420ea30e51c6541f1d834 Factor metaslab_load_wait() in metaslab_load() b194fab0fb6caad18711abccaff3c69ad8b3f6d3 Rename range_tree_verify to range_tree_verify_not_present df72b8bebe0ebac0b20e0750984bad182cb6564a Change target size of metaslabs from 256GB to 16GB c853f382db731e15a87512f4ef1101d14d778a55 zdb -L should skip leak detection altogether 21e7cf5da89f55ce98ec1115726b150e19eefe89 vs_alloc can underflow in L2ARC vdevs 7558997d2f808368867ca7e5234e5793446e8f3f Simplify log vdev removal code 6c926f426a26ffb6d7d8e563e33fc176164175cb Get rid of space_map_update() for ms_synced_length 425d3237ee88abc53d8522a7139c926d278b4b7f Introduce auxiliary metaslab histograms 928e8ad47d3478a3d5d01f0dd6ae74a9371af65e Error path in metaslab_load_impl() forgets to drop ms_sync_lock 8eef997679ba54547f7d361553d21b3291f41ae7 = References Background, Motivation, and Internals of the Feature - OpenZFS 2017 Presentation: youtu.be/jj2IxRkl5bQ - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project Flushing Algorithm Internals & Performance Results (Illumos Specific) - Blogpost: sdimitro.github.io/post/zfs-lsm-flushing/ - OpenZFS 2018 Presentation: youtu.be/x6D2dHRjkxw - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm Upstream Delphix Issues: DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320 DLPX-63385 Reviewed-by: Sean Eric Fagan <sef@ixsystems.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8442
2019-07-16 17:11:49 +00:00
* Copyright (c) 2011, 2019 by Delphix. All rights reserved.
2008-11-20 20:01:55 +00:00
*/
#ifndef _SYS_METASLAB_IMPL_H
#define _SYS_METASLAB_IMPL_H
#include <sys/metaslab.h>
#include <sys/space_map.h>
Illumos #4101, #4102, #4103, #4105, #4106 4101 metaslab_debug should allow for fine-grained control 4102 space_maps should store more information about themselves 4103 space map object blocksize should be increased 4105 removing a mirrored log device results in a leaked object 4106 asynchronously load metaslab Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Sebastien Roy <seb@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> Prior to this patch, space_maps were preferred solely based on the amount of free space left in each. Unfortunately, this heuristic didn't contain any information about the make-up of that free space, which meant we could keep preferring and loading a highly fragmented space map that wouldn't actually have enough contiguous space to satisfy the allocation; then unloading that space_map and repeating the process. This change modifies the space_map's to store additional information about the contiguous space in the space_map, so that we can use this information to make a better decision about which space_map to load. This requires reallocating all space_map objects to increase their bonus buffer size sizes enough to fit the new metadata. The above feature can be enabled via a new feature flag introduced by this change: com.delphix:spacemap_histogram In addition to the above, this patch allows the space_map block size to be increase. Currently the block size is set to be 4K in size, which has certain implications including the following: * 4K sector devices will not see any compression benefit * large space_maps require more metadata on-disk * large space_maps require more time to load (typically random reads) Now the space_map block size can adjust as needed up to the maximum size set via the space_map_max_blksz variable. A bug was fixed which resulted in potentially leaking an object when removing a mirrored log device. The previous logic for vdev_remove() did not deal with removing top-level vdevs that are interior vdevs (i.e. mirror) correctly. The problem would occur when removing a mirrored log device, and result in the DTL space map object being leaked; because top-level vdevs don't have DTL space map objects associated with them. References: https://www.illumos.org/issues/4101 https://www.illumos.org/issues/4102 https://www.illumos.org/issues/4103 https://www.illumos.org/issues/4105 https://www.illumos.org/issues/4106 https://github.com/illumos/illumos-gate/commit/0713e23 Porting notes: A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also, the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary. Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2488
2013-10-01 21:25:53 +00:00
#include <sys/range_tree.h>
2008-11-20 20:01:55 +00:00
#include <sys/vdev.h>
#include <sys/txg.h>
#include <sys/avl.h>
#include <sys/multilist.h>
2008-11-20 20:01:55 +00:00
#ifdef __cplusplus
extern "C" {
#endif
/*
* Metaslab allocation tracing record.
*/
typedef struct metaslab_alloc_trace {
list_node_t mat_list_node;
metaslab_group_t *mat_mg;
metaslab_t *mat_msp;
uint64_t mat_size;
uint64_t mat_weight;
uint32_t mat_dva_id;
uint64_t mat_offset;
OpenZFS 9112 - Improve allocation performance on high-end systems Overview ======== We parallelize the allocation process by creating the concept of "allocators". There are a certain number of allocators per metaslab group, defined by the value of a tunable at pool open time. Each allocator for a given metaslab group has up to 2 active metaslabs; one "primary", and one "secondary". The primary and secondary weight mean the same thing they did in in the pre-allocator world; primary metaslabs are used for most allocations, secondary metaslabs are used for ditto blocks being allocated in the same metaslab group. There is also the CLAIM weight, which has been separated out from the other weights, but that is less important to understanding the patch. The active metaslabs for each allocator are moved from their normal place in the metaslab tree for the group to the back of the tree. This way, they will not be selected for use by other allocators searching for new metaslabs unless all the passive metaslabs are unsuitable for allocations. If that does happen, the allocators will "steal" from each other to ensure that IOs don't fail until there is truly no space left to perform allocations. In addition, the alloc queue for each metaslab group has been broken into a separate queue for each allocator. We don't want to dramatically increase the number of inflight IOs on low-end systems, because it can significantly increase txg times. On the other hand, we want to ensure that there are enough IOs for each allocator to allow for good coalescing before sending the IOs to the disk. As a result, we take a compromise path; each allocator's alloc queue max depth starts at a certain value for every txg. Every time an IO completes, we increase the max depth. This should hopefully provide a good balance between the two failure modes, while not dramatically increasing complexity. We also parallelize the spa_alloc_tree and spa_alloc_lock, which cause very similar contention when selecting IOs to allocate. This parallelization uses the same allocator scheme as metaslab selection. Performance Results =================== Performance improvements from this change can vary significantly based on the number of CPUs in the system, whether or not the system has a NUMA architecture, the speed of the drives, the values for the various tunables, and the workload being performed. For an fio async sequential write workload on a 24 core NUMA system with 256 GB of RAM and 8 128 GB SSDs, there is a roughly 25% performance improvement. Future Work =========== Analysis of the performance of the system with this patch applied shows that a significant new bottleneck is the vdev disk queues, which also need to be parallelized. Prototyping of this change has occurred, and there was a performance improvement, but more work needs to be done before its stability has been verified and it is ready to be upstreamed. Authored by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Alexander Motin <mav@FreeBSD.org> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Gordon Ross <gwr@nexenta.com> Ported-by: Paul Dagnelie <pcd@delphix.com> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Porting Notes: * Fix reservation test failures by increasing tolerance. OpenZFS-issue: https://illumos.org/issues/9112 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3f3cc3c3 Closes #7682
2018-02-12 20:56:06 +00:00
int mat_allocator;
} metaslab_alloc_trace_t;
/*
* Used by the metaslab allocation tracing facility to indicate
* error conditions. These errors are stored to the offset member
* of the metaslab_alloc_trace_t record and displayed by mdb.
*/
typedef enum trace_alloc_type {
TRACE_ALLOC_FAILURE = -1ULL,
TRACE_TOO_SMALL = -2ULL,
TRACE_FORCE_GANG = -3ULL,
TRACE_NOT_ALLOCATABLE = -4ULL,
TRACE_GROUP_FAILURE = -5ULL,
TRACE_ENOSPC = -6ULL,
TRACE_CONDENSING = -7ULL,
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 14:54:59 +00:00
TRACE_VDEV_ERROR = -8ULL,
Add TRIM support UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Contributions-by: Tim Chase <tim@chase2k.com> Contributions-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8419 Closes #598
2019-03-29 16:13:20 +00:00
TRACE_DISABLED = -9ULL,
} trace_alloc_type_t;
#define METASLAB_WEIGHT_PRIMARY (1ULL << 63)
#define METASLAB_WEIGHT_SECONDARY (1ULL << 62)
OpenZFS 9112 - Improve allocation performance on high-end systems Overview ======== We parallelize the allocation process by creating the concept of "allocators". There are a certain number of allocators per metaslab group, defined by the value of a tunable at pool open time. Each allocator for a given metaslab group has up to 2 active metaslabs; one "primary", and one "secondary". The primary and secondary weight mean the same thing they did in in the pre-allocator world; primary metaslabs are used for most allocations, secondary metaslabs are used for ditto blocks being allocated in the same metaslab group. There is also the CLAIM weight, which has been separated out from the other weights, but that is less important to understanding the patch. The active metaslabs for each allocator are moved from their normal place in the metaslab tree for the group to the back of the tree. This way, they will not be selected for use by other allocators searching for new metaslabs unless all the passive metaslabs are unsuitable for allocations. If that does happen, the allocators will "steal" from each other to ensure that IOs don't fail until there is truly no space left to perform allocations. In addition, the alloc queue for each metaslab group has been broken into a separate queue for each allocator. We don't want to dramatically increase the number of inflight IOs on low-end systems, because it can significantly increase txg times. On the other hand, we want to ensure that there are enough IOs for each allocator to allow for good coalescing before sending the IOs to the disk. As a result, we take a compromise path; each allocator's alloc queue max depth starts at a certain value for every txg. Every time an IO completes, we increase the max depth. This should hopefully provide a good balance between the two failure modes, while not dramatically increasing complexity. We also parallelize the spa_alloc_tree and spa_alloc_lock, which cause very similar contention when selecting IOs to allocate. This parallelization uses the same allocator scheme as metaslab selection. Performance Results =================== Performance improvements from this change can vary significantly based on the number of CPUs in the system, whether or not the system has a NUMA architecture, the speed of the drives, the values for the various tunables, and the workload being performed. For an fio async sequential write workload on a 24 core NUMA system with 256 GB of RAM and 8 128 GB SSDs, there is a roughly 25% performance improvement. Future Work =========== Analysis of the performance of the system with this patch applied shows that a significant new bottleneck is the vdev disk queues, which also need to be parallelized. Prototyping of this change has occurred, and there was a performance improvement, but more work needs to be done before its stability has been verified and it is ready to be upstreamed. Authored by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Alexander Motin <mav@FreeBSD.org> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Gordon Ross <gwr@nexenta.com> Ported-by: Paul Dagnelie <pcd@delphix.com> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Porting Notes: * Fix reservation test failures by increasing tolerance. OpenZFS-issue: https://illumos.org/issues/9112 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3f3cc3c3 Closes #7682
2018-02-12 20:56:06 +00:00
#define METASLAB_WEIGHT_CLAIM (1ULL << 61)
#define METASLAB_WEIGHT_TYPE (1ULL << 60)
#define METASLAB_ACTIVE_MASK \
OpenZFS 9112 - Improve allocation performance on high-end systems Overview ======== We parallelize the allocation process by creating the concept of "allocators". There are a certain number of allocators per metaslab group, defined by the value of a tunable at pool open time. Each allocator for a given metaslab group has up to 2 active metaslabs; one "primary", and one "secondary". The primary and secondary weight mean the same thing they did in in the pre-allocator world; primary metaslabs are used for most allocations, secondary metaslabs are used for ditto blocks being allocated in the same metaslab group. There is also the CLAIM weight, which has been separated out from the other weights, but that is less important to understanding the patch. The active metaslabs for each allocator are moved from their normal place in the metaslab tree for the group to the back of the tree. This way, they will not be selected for use by other allocators searching for new metaslabs unless all the passive metaslabs are unsuitable for allocations. If that does happen, the allocators will "steal" from each other to ensure that IOs don't fail until there is truly no space left to perform allocations. In addition, the alloc queue for each metaslab group has been broken into a separate queue for each allocator. We don't want to dramatically increase the number of inflight IOs on low-end systems, because it can significantly increase txg times. On the other hand, we want to ensure that there are enough IOs for each allocator to allow for good coalescing before sending the IOs to the disk. As a result, we take a compromise path; each allocator's alloc queue max depth starts at a certain value for every txg. Every time an IO completes, we increase the max depth. This should hopefully provide a good balance between the two failure modes, while not dramatically increasing complexity. We also parallelize the spa_alloc_tree and spa_alloc_lock, which cause very similar contention when selecting IOs to allocate. This parallelization uses the same allocator scheme as metaslab selection. Performance Results =================== Performance improvements from this change can vary significantly based on the number of CPUs in the system, whether or not the system has a NUMA architecture, the speed of the drives, the values for the various tunables, and the workload being performed. For an fio async sequential write workload on a 24 core NUMA system with 256 GB of RAM and 8 128 GB SSDs, there is a roughly 25% performance improvement. Future Work =========== Analysis of the performance of the system with this patch applied shows that a significant new bottleneck is the vdev disk queues, which also need to be parallelized. Prototyping of this change has occurred, and there was a performance improvement, but more work needs to be done before its stability has been verified and it is ready to be upstreamed. Authored by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Alexander Motin <mav@FreeBSD.org> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Gordon Ross <gwr@nexenta.com> Ported-by: Paul Dagnelie <pcd@delphix.com> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Porting Notes: * Fix reservation test failures by increasing tolerance. OpenZFS-issue: https://illumos.org/issues/9112 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3f3cc3c3 Closes #7682
2018-02-12 20:56:06 +00:00
(METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY | \
METASLAB_WEIGHT_CLAIM)
/*
* The metaslab weight is used to encode the amount of free space in a
* metaslab, such that the "best" metaslab appears first when sorting the
* metaslabs by weight. The weight (and therefore the "best" metaslab) can
* be determined in two different ways: by computing a weighted sum of all
* the free space in the metaslab (a space based weight) or by counting only
* the free segments of the largest size (a segment based weight). We prefer
* the segment based weight because it reflects how the free space is
* comprised, but we cannot always use it -- legacy pools do not have the
* space map histogram information necessary to determine the largest
* contiguous regions. Pools that have the space map histogram determine
* the segment weight by looking at each bucket in the histogram and
* determining the free space whose size in bytes is in the range:
* [2^i, 2^(i+1))
* We then encode the largest index, i, that contains regions into the
* segment-weighted value.
*
* Space-based weight:
*
* 64 56 48 40 32 24 16 8 0
* +-------+-------+-------+-------+-------+-------+-------+-------+
OpenZFS 9112 - Improve allocation performance on high-end systems Overview ======== We parallelize the allocation process by creating the concept of "allocators". There are a certain number of allocators per metaslab group, defined by the value of a tunable at pool open time. Each allocator for a given metaslab group has up to 2 active metaslabs; one "primary", and one "secondary". The primary and secondary weight mean the same thing they did in in the pre-allocator world; primary metaslabs are used for most allocations, secondary metaslabs are used for ditto blocks being allocated in the same metaslab group. There is also the CLAIM weight, which has been separated out from the other weights, but that is less important to understanding the patch. The active metaslabs for each allocator are moved from their normal place in the metaslab tree for the group to the back of the tree. This way, they will not be selected for use by other allocators searching for new metaslabs unless all the passive metaslabs are unsuitable for allocations. If that does happen, the allocators will "steal" from each other to ensure that IOs don't fail until there is truly no space left to perform allocations. In addition, the alloc queue for each metaslab group has been broken into a separate queue for each allocator. We don't want to dramatically increase the number of inflight IOs on low-end systems, because it can significantly increase txg times. On the other hand, we want to ensure that there are enough IOs for each allocator to allow for good coalescing before sending the IOs to the disk. As a result, we take a compromise path; each allocator's alloc queue max depth starts at a certain value for every txg. Every time an IO completes, we increase the max depth. This should hopefully provide a good balance between the two failure modes, while not dramatically increasing complexity. We also parallelize the spa_alloc_tree and spa_alloc_lock, which cause very similar contention when selecting IOs to allocate. This parallelization uses the same allocator scheme as metaslab selection. Performance Results =================== Performance improvements from this change can vary significantly based on the number of CPUs in the system, whether or not the system has a NUMA architecture, the speed of the drives, the values for the various tunables, and the workload being performed. For an fio async sequential write workload on a 24 core NUMA system with 256 GB of RAM and 8 128 GB SSDs, there is a roughly 25% performance improvement. Future Work =========== Analysis of the performance of the system with this patch applied shows that a significant new bottleneck is the vdev disk queues, which also need to be parallelized. Prototyping of this change has occurred, and there was a performance improvement, but more work needs to be done before its stability has been verified and it is ready to be upstreamed. Authored by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Alexander Motin <mav@FreeBSD.org> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Gordon Ross <gwr@nexenta.com> Ported-by: Paul Dagnelie <pcd@delphix.com> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Porting Notes: * Fix reservation test failures by increasing tolerance. OpenZFS-issue: https://illumos.org/issues/9112 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3f3cc3c3 Closes #7682
2018-02-12 20:56:06 +00:00
* |PSC1| weighted-free space |
* +-------+-------+-------+-------+-------+-------+-------+-------+
*
* PS - indicates primary and secondary activation
OpenZFS 9112 - Improve allocation performance on high-end systems Overview ======== We parallelize the allocation process by creating the concept of "allocators". There are a certain number of allocators per metaslab group, defined by the value of a tunable at pool open time. Each allocator for a given metaslab group has up to 2 active metaslabs; one "primary", and one "secondary". The primary and secondary weight mean the same thing they did in in the pre-allocator world; primary metaslabs are used for most allocations, secondary metaslabs are used for ditto blocks being allocated in the same metaslab group. There is also the CLAIM weight, which has been separated out from the other weights, but that is less important to understanding the patch. The active metaslabs for each allocator are moved from their normal place in the metaslab tree for the group to the back of the tree. This way, they will not be selected for use by other allocators searching for new metaslabs unless all the passive metaslabs are unsuitable for allocations. If that does happen, the allocators will "steal" from each other to ensure that IOs don't fail until there is truly no space left to perform allocations. In addition, the alloc queue for each metaslab group has been broken into a separate queue for each allocator. We don't want to dramatically increase the number of inflight IOs on low-end systems, because it can significantly increase txg times. On the other hand, we want to ensure that there are enough IOs for each allocator to allow for good coalescing before sending the IOs to the disk. As a result, we take a compromise path; each allocator's alloc queue max depth starts at a certain value for every txg. Every time an IO completes, we increase the max depth. This should hopefully provide a good balance between the two failure modes, while not dramatically increasing complexity. We also parallelize the spa_alloc_tree and spa_alloc_lock, which cause very similar contention when selecting IOs to allocate. This parallelization uses the same allocator scheme as metaslab selection. Performance Results =================== Performance improvements from this change can vary significantly based on the number of CPUs in the system, whether or not the system has a NUMA architecture, the speed of the drives, the values for the various tunables, and the workload being performed. For an fio async sequential write workload on a 24 core NUMA system with 256 GB of RAM and 8 128 GB SSDs, there is a roughly 25% performance improvement. Future Work =========== Analysis of the performance of the system with this patch applied shows that a significant new bottleneck is the vdev disk queues, which also need to be parallelized. Prototyping of this change has occurred, and there was a performance improvement, but more work needs to be done before its stability has been verified and it is ready to be upstreamed. Authored by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Alexander Motin <mav@FreeBSD.org> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Gordon Ross <gwr@nexenta.com> Ported-by: Paul Dagnelie <pcd@delphix.com> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Porting Notes: * Fix reservation test failures by increasing tolerance. OpenZFS-issue: https://illumos.org/issues/9112 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3f3cc3c3 Closes #7682
2018-02-12 20:56:06 +00:00
* C - indicates activation for claimed block zio
* space - the fragmentation-weighted space
*
* Segment-based weight:
*
* 64 56 48 40 32 24 16 8 0
* +-------+-------+-------+-------+-------+-------+-------+-------+
OpenZFS 9112 - Improve allocation performance on high-end systems Overview ======== We parallelize the allocation process by creating the concept of "allocators". There are a certain number of allocators per metaslab group, defined by the value of a tunable at pool open time. Each allocator for a given metaslab group has up to 2 active metaslabs; one "primary", and one "secondary". The primary and secondary weight mean the same thing they did in in the pre-allocator world; primary metaslabs are used for most allocations, secondary metaslabs are used for ditto blocks being allocated in the same metaslab group. There is also the CLAIM weight, which has been separated out from the other weights, but that is less important to understanding the patch. The active metaslabs for each allocator are moved from their normal place in the metaslab tree for the group to the back of the tree. This way, they will not be selected for use by other allocators searching for new metaslabs unless all the passive metaslabs are unsuitable for allocations. If that does happen, the allocators will "steal" from each other to ensure that IOs don't fail until there is truly no space left to perform allocations. In addition, the alloc queue for each metaslab group has been broken into a separate queue for each allocator. We don't want to dramatically increase the number of inflight IOs on low-end systems, because it can significantly increase txg times. On the other hand, we want to ensure that there are enough IOs for each allocator to allow for good coalescing before sending the IOs to the disk. As a result, we take a compromise path; each allocator's alloc queue max depth starts at a certain value for every txg. Every time an IO completes, we increase the max depth. This should hopefully provide a good balance between the two failure modes, while not dramatically increasing complexity. We also parallelize the spa_alloc_tree and spa_alloc_lock, which cause very similar contention when selecting IOs to allocate. This parallelization uses the same allocator scheme as metaslab selection. Performance Results =================== Performance improvements from this change can vary significantly based on the number of CPUs in the system, whether or not the system has a NUMA architecture, the speed of the drives, the values for the various tunables, and the workload being performed. For an fio async sequential write workload on a 24 core NUMA system with 256 GB of RAM and 8 128 GB SSDs, there is a roughly 25% performance improvement. Future Work =========== Analysis of the performance of the system with this patch applied shows that a significant new bottleneck is the vdev disk queues, which also need to be parallelized. Prototyping of this change has occurred, and there was a performance improvement, but more work needs to be done before its stability has been verified and it is ready to be upstreamed. Authored by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Alexander Motin <mav@FreeBSD.org> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Gordon Ross <gwr@nexenta.com> Ported-by: Paul Dagnelie <pcd@delphix.com> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Porting Notes: * Fix reservation test failures by increasing tolerance. OpenZFS-issue: https://illumos.org/issues/9112 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3f3cc3c3 Closes #7682
2018-02-12 20:56:06 +00:00
* |PSC0| idx| count of segments in region |
* +-------+-------+-------+-------+-------+-------+-------+-------+
*
* PS - indicates primary and secondary activation
OpenZFS 9112 - Improve allocation performance on high-end systems Overview ======== We parallelize the allocation process by creating the concept of "allocators". There are a certain number of allocators per metaslab group, defined by the value of a tunable at pool open time. Each allocator for a given metaslab group has up to 2 active metaslabs; one "primary", and one "secondary". The primary and secondary weight mean the same thing they did in in the pre-allocator world; primary metaslabs are used for most allocations, secondary metaslabs are used for ditto blocks being allocated in the same metaslab group. There is also the CLAIM weight, which has been separated out from the other weights, but that is less important to understanding the patch. The active metaslabs for each allocator are moved from their normal place in the metaslab tree for the group to the back of the tree. This way, they will not be selected for use by other allocators searching for new metaslabs unless all the passive metaslabs are unsuitable for allocations. If that does happen, the allocators will "steal" from each other to ensure that IOs don't fail until there is truly no space left to perform allocations. In addition, the alloc queue for each metaslab group has been broken into a separate queue for each allocator. We don't want to dramatically increase the number of inflight IOs on low-end systems, because it can significantly increase txg times. On the other hand, we want to ensure that there are enough IOs for each allocator to allow for good coalescing before sending the IOs to the disk. As a result, we take a compromise path; each allocator's alloc queue max depth starts at a certain value for every txg. Every time an IO completes, we increase the max depth. This should hopefully provide a good balance between the two failure modes, while not dramatically increasing complexity. We also parallelize the spa_alloc_tree and spa_alloc_lock, which cause very similar contention when selecting IOs to allocate. This parallelization uses the same allocator scheme as metaslab selection. Performance Results =================== Performance improvements from this change can vary significantly based on the number of CPUs in the system, whether or not the system has a NUMA architecture, the speed of the drives, the values for the various tunables, and the workload being performed. For an fio async sequential write workload on a 24 core NUMA system with 256 GB of RAM and 8 128 GB SSDs, there is a roughly 25% performance improvement. Future Work =========== Analysis of the performance of the system with this patch applied shows that a significant new bottleneck is the vdev disk queues, which also need to be parallelized. Prototyping of this change has occurred, and there was a performance improvement, but more work needs to be done before its stability has been verified and it is ready to be upstreamed. Authored by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Alexander Motin <mav@FreeBSD.org> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Gordon Ross <gwr@nexenta.com> Ported-by: Paul Dagnelie <pcd@delphix.com> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Porting Notes: * Fix reservation test failures by increasing tolerance. OpenZFS-issue: https://illumos.org/issues/9112 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3f3cc3c3 Closes #7682
2018-02-12 20:56:06 +00:00
* C - indicates activation for claimed block zio
* idx - index for the highest bucket in the histogram
* count - number of segments in the specified bucket
*/
OpenZFS 9112 - Improve allocation performance on high-end systems Overview ======== We parallelize the allocation process by creating the concept of "allocators". There are a certain number of allocators per metaslab group, defined by the value of a tunable at pool open time. Each allocator for a given metaslab group has up to 2 active metaslabs; one "primary", and one "secondary". The primary and secondary weight mean the same thing they did in in the pre-allocator world; primary metaslabs are used for most allocations, secondary metaslabs are used for ditto blocks being allocated in the same metaslab group. There is also the CLAIM weight, which has been separated out from the other weights, but that is less important to understanding the patch. The active metaslabs for each allocator are moved from their normal place in the metaslab tree for the group to the back of the tree. This way, they will not be selected for use by other allocators searching for new metaslabs unless all the passive metaslabs are unsuitable for allocations. If that does happen, the allocators will "steal" from each other to ensure that IOs don't fail until there is truly no space left to perform allocations. In addition, the alloc queue for each metaslab group has been broken into a separate queue for each allocator. We don't want to dramatically increase the number of inflight IOs on low-end systems, because it can significantly increase txg times. On the other hand, we want to ensure that there are enough IOs for each allocator to allow for good coalescing before sending the IOs to the disk. As a result, we take a compromise path; each allocator's alloc queue max depth starts at a certain value for every txg. Every time an IO completes, we increase the max depth. This should hopefully provide a good balance between the two failure modes, while not dramatically increasing complexity. We also parallelize the spa_alloc_tree and spa_alloc_lock, which cause very similar contention when selecting IOs to allocate. This parallelization uses the same allocator scheme as metaslab selection. Performance Results =================== Performance improvements from this change can vary significantly based on the number of CPUs in the system, whether or not the system has a NUMA architecture, the speed of the drives, the values for the various tunables, and the workload being performed. For an fio async sequential write workload on a 24 core NUMA system with 256 GB of RAM and 8 128 GB SSDs, there is a roughly 25% performance improvement. Future Work =========== Analysis of the performance of the system with this patch applied shows that a significant new bottleneck is the vdev disk queues, which also need to be parallelized. Prototyping of this change has occurred, and there was a performance improvement, but more work needs to be done before its stability has been verified and it is ready to be upstreamed. Authored by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Alexander Motin <mav@FreeBSD.org> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Gordon Ross <gwr@nexenta.com> Ported-by: Paul Dagnelie <pcd@delphix.com> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Porting Notes: * Fix reservation test failures by increasing tolerance. OpenZFS-issue: https://illumos.org/issues/9112 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3f3cc3c3 Closes #7682
2018-02-12 20:56:06 +00:00
#define WEIGHT_GET_ACTIVE(weight) BF64_GET((weight), 61, 3)
#define WEIGHT_SET_ACTIVE(weight, x) BF64_SET((weight), 61, 3, x)
#define WEIGHT_IS_SPACEBASED(weight) \
OpenZFS 9112 - Improve allocation performance on high-end systems Overview ======== We parallelize the allocation process by creating the concept of "allocators". There are a certain number of allocators per metaslab group, defined by the value of a tunable at pool open time. Each allocator for a given metaslab group has up to 2 active metaslabs; one "primary", and one "secondary". The primary and secondary weight mean the same thing they did in in the pre-allocator world; primary metaslabs are used for most allocations, secondary metaslabs are used for ditto blocks being allocated in the same metaslab group. There is also the CLAIM weight, which has been separated out from the other weights, but that is less important to understanding the patch. The active metaslabs for each allocator are moved from their normal place in the metaslab tree for the group to the back of the tree. This way, they will not be selected for use by other allocators searching for new metaslabs unless all the passive metaslabs are unsuitable for allocations. If that does happen, the allocators will "steal" from each other to ensure that IOs don't fail until there is truly no space left to perform allocations. In addition, the alloc queue for each metaslab group has been broken into a separate queue for each allocator. We don't want to dramatically increase the number of inflight IOs on low-end systems, because it can significantly increase txg times. On the other hand, we want to ensure that there are enough IOs for each allocator to allow for good coalescing before sending the IOs to the disk. As a result, we take a compromise path; each allocator's alloc queue max depth starts at a certain value for every txg. Every time an IO completes, we increase the max depth. This should hopefully provide a good balance between the two failure modes, while not dramatically increasing complexity. We also parallelize the spa_alloc_tree and spa_alloc_lock, which cause very similar contention when selecting IOs to allocate. This parallelization uses the same allocator scheme as metaslab selection. Performance Results =================== Performance improvements from this change can vary significantly based on the number of CPUs in the system, whether or not the system has a NUMA architecture, the speed of the drives, the values for the various tunables, and the workload being performed. For an fio async sequential write workload on a 24 core NUMA system with 256 GB of RAM and 8 128 GB SSDs, there is a roughly 25% performance improvement. Future Work =========== Analysis of the performance of the system with this patch applied shows that a significant new bottleneck is the vdev disk queues, which also need to be parallelized. Prototyping of this change has occurred, and there was a performance improvement, but more work needs to be done before its stability has been verified and it is ready to be upstreamed. Authored by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Alexander Motin <mav@FreeBSD.org> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Gordon Ross <gwr@nexenta.com> Ported-by: Paul Dagnelie <pcd@delphix.com> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Porting Notes: * Fix reservation test failures by increasing tolerance. OpenZFS-issue: https://illumos.org/issues/9112 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3f3cc3c3 Closes #7682
2018-02-12 20:56:06 +00:00
((weight) == 0 || BF64_GET((weight), 60, 1))
#define WEIGHT_SET_SPACEBASED(weight) BF64_SET((weight), 60, 1, 1)
/*
* These macros are only applicable to segment-based weighting.
*/
OpenZFS 9112 - Improve allocation performance on high-end systems Overview ======== We parallelize the allocation process by creating the concept of "allocators". There are a certain number of allocators per metaslab group, defined by the value of a tunable at pool open time. Each allocator for a given metaslab group has up to 2 active metaslabs; one "primary", and one "secondary". The primary and secondary weight mean the same thing they did in in the pre-allocator world; primary metaslabs are used for most allocations, secondary metaslabs are used for ditto blocks being allocated in the same metaslab group. There is also the CLAIM weight, which has been separated out from the other weights, but that is less important to understanding the patch. The active metaslabs for each allocator are moved from their normal place in the metaslab tree for the group to the back of the tree. This way, they will not be selected for use by other allocators searching for new metaslabs unless all the passive metaslabs are unsuitable for allocations. If that does happen, the allocators will "steal" from each other to ensure that IOs don't fail until there is truly no space left to perform allocations. In addition, the alloc queue for each metaslab group has been broken into a separate queue for each allocator. We don't want to dramatically increase the number of inflight IOs on low-end systems, because it can significantly increase txg times. On the other hand, we want to ensure that there are enough IOs for each allocator to allow for good coalescing before sending the IOs to the disk. As a result, we take a compromise path; each allocator's alloc queue max depth starts at a certain value for every txg. Every time an IO completes, we increase the max depth. This should hopefully provide a good balance between the two failure modes, while not dramatically increasing complexity. We also parallelize the spa_alloc_tree and spa_alloc_lock, which cause very similar contention when selecting IOs to allocate. This parallelization uses the same allocator scheme as metaslab selection. Performance Results =================== Performance improvements from this change can vary significantly based on the number of CPUs in the system, whether or not the system has a NUMA architecture, the speed of the drives, the values for the various tunables, and the workload being performed. For an fio async sequential write workload on a 24 core NUMA system with 256 GB of RAM and 8 128 GB SSDs, there is a roughly 25% performance improvement. Future Work =========== Analysis of the performance of the system with this patch applied shows that a significant new bottleneck is the vdev disk queues, which also need to be parallelized. Prototyping of this change has occurred, and there was a performance improvement, but more work needs to be done before its stability has been verified and it is ready to be upstreamed. Authored by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Alexander Motin <mav@FreeBSD.org> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Gordon Ross <gwr@nexenta.com> Ported-by: Paul Dagnelie <pcd@delphix.com> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Porting Notes: * Fix reservation test failures by increasing tolerance. OpenZFS-issue: https://illumos.org/issues/9112 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3f3cc3c3 Closes #7682
2018-02-12 20:56:06 +00:00
#define WEIGHT_GET_INDEX(weight) BF64_GET((weight), 54, 6)
#define WEIGHT_SET_INDEX(weight, x) BF64_SET((weight), 54, 6, x)
#define WEIGHT_GET_COUNT(weight) BF64_GET((weight), 0, 54)
#define WEIGHT_SET_COUNT(weight, x) BF64_SET((weight), 0, 54, x)
/*
* Per-allocator data structure.
*/
typedef struct metaslab_class_allocator {
metaslab_group_t *mca_rotor;
uint64_t mca_aliquot;
/*
* The allocation throttle works on a reservation system. Whenever
* an asynchronous zio wants to perform an allocation it must
* first reserve the number of blocks that it wants to allocate.
* If there aren't sufficient slots available for the pending zio
* then that I/O is throttled until more slots free up. The current
* number of reserved allocations is maintained by the mca_alloc_slots
* refcount. The mca_alloc_max_slots value determines the maximum
* number of allocations that the system allows. Gang blocks are
* allowed to reserve slots even if we've reached the maximum
* number of allocations allowed.
*/
uint64_t mca_alloc_max_slots;
zfs_refcount_t mca_alloc_slots;
} metaslab_class_allocator_t;
Illumos 4976-4984 - metaslab improvements 4976 zfs should only avoid writing to a failing non-redundant top-level vdev 4978 ztest fails in get_metaslab_refcount() 4979 extend free space histogram to device and pool 4980 metaslabs should have a fragmentation metric 4981 remove fragmented ops vector from block allocator 4982 space_map object should proactively upgrade when feature is enabled 4983 need to collect metaslab information via mdb 4984 device selection should use fragmentation metric Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <adam.leventhal@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> References: https://www.illumos.org/issues/4976 https://www.illumos.org/issues/4978 https://www.illumos.org/issues/4979 https://www.illumos.org/issues/4980 https://www.illumos.org/issues/4981 https://www.illumos.org/issues/4982 https://www.illumos.org/issues/4983 https://www.illumos.org/issues/4984 https://github.com/illumos/illumos-gate/commit/2e4c998 Notes: The "zdb -M" option has been re-tasked to display the new metaslab fragmentation metric and the new "zdb -I" option is used to control the maximum number of in-flight I/Os. The new fragmentation metric is derived from the space map histogram which has been rolled up to the vdev and pool level and is presented to the user via "zpool list". Add a number of module parameters related to the new metaslab weighting logic. Ported by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2595
2014-07-19 20:19:24 +00:00
/*
* A metaslab class encompasses a category of allocatable top-level vdevs.
* Each top-level vdev is associated with a metaslab group which defines
* the allocatable region for that vdev. Examples of these categories include
* "normal" for data block allocations (i.e. main pool allocations) or "log"
* for allocations designated for intent log devices (i.e. slog devices).
* When a block allocation is requested from the SPA it is associated with a
* metaslab_class_t, and only top-level vdevs (i.e. metaslab groups) belonging
* to the class can be used to satisfy that request. Allocations are done
* by traversing the metaslab groups that are linked off of the mca_rotor field.
Illumos 4976-4984 - metaslab improvements 4976 zfs should only avoid writing to a failing non-redundant top-level vdev 4978 ztest fails in get_metaslab_refcount() 4979 extend free space histogram to device and pool 4980 metaslabs should have a fragmentation metric 4981 remove fragmented ops vector from block allocator 4982 space_map object should proactively upgrade when feature is enabled 4983 need to collect metaslab information via mdb 4984 device selection should use fragmentation metric Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <adam.leventhal@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> References: https://www.illumos.org/issues/4976 https://www.illumos.org/issues/4978 https://www.illumos.org/issues/4979 https://www.illumos.org/issues/4980 https://www.illumos.org/issues/4981 https://www.illumos.org/issues/4982 https://www.illumos.org/issues/4983 https://www.illumos.org/issues/4984 https://github.com/illumos/illumos-gate/commit/2e4c998 Notes: The "zdb -M" option has been re-tasked to display the new metaslab fragmentation metric and the new "zdb -I" option is used to control the maximum number of in-flight I/Os. The new fragmentation metric is derived from the space map histogram which has been rolled up to the vdev and pool level and is presented to the user via "zpool list". Add a number of module parameters related to the new metaslab weighting logic. Ported by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2595
2014-07-19 20:19:24 +00:00
* This rotor points to the next metaslab group where allocations will be
* attempted. Allocating a block is a 3 step process -- select the metaslab
* group, select the metaslab, and then allocate the block. The metaslab
* class defines the low-level block allocator that will be used as the
* final step in allocation. These allocators are pluggable allowing each class
* to use a block allocator that best suits that class.
*/
2008-11-20 20:01:55 +00:00
struct metaslab_class {
OpenZFS 7090 - zfs should throttle allocations OpenZFS 7090 - zfs should throttle allocations Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Alex Reece <alex@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <paul.dagnelie@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Sebastien Roy <sebastien.roy@delphix.com> Approved by: Matthew Ahrens <mahrens@delphix.com> Ported-by: Don Brady <don.brady@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> When write I/Os are issued, they are issued in block order but the ZIO pipeline will drive them asynchronously through the allocation stage which can result in blocks being allocated out-of-order. It would be nice to preserve as much of the logical order as possible. In addition, the allocations are equally scattered across all top-level VDEVs but not all top-level VDEVs are created equally. The pipeline should be able to detect devices that are more capable of handling allocations and should allocate more blocks to those devices. This allows for dynamic allocation distribution when devices are imbalanced as fuller devices will tend to be slower than empty devices. The change includes a new pool-wide allocation queue which would throttle and order allocations in the ZIO pipeline. The queue would be ordered by issued time and offset and would provide an initial amount of allocation of work to each top-level vdev. The allocation logic utilizes a reservation system to reserve allocations that will be performed by the allocator. Once an allocation is successfully completed it's scheduled on a given top-level vdev. Each top-level vdev maintains a maximum number of allocations that it can handle (mg_alloc_queue_depth). The pool-wide reserved allocations (top-levels * mg_alloc_queue_depth) are distributed across the top-level vdevs metaslab groups and round robin across all eligible metaslab groups to distribute the work. As top-levels complete their work, they receive additional work from the pool-wide allocation queue until the allocation queue is emptied. OpenZFS-issue: https://www.illumos.org/issues/7090 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/4756c3d7 Closes #5258 Porting Notes: - Maintained minimal stack in zio_done - Preserve linux-specific io sizes in zio_write_compress - Added module params and documentation - Updated to use optimize AVL cmp macros
2016-10-14 00:59:18 +00:00
kmutex_t mc_lock;
spa_t *mc_spa;
Illumos #4101, #4102, #4103, #4105, #4106 4101 metaslab_debug should allow for fine-grained control 4102 space_maps should store more information about themselves 4103 space map object blocksize should be increased 4105 removing a mirrored log device results in a leaked object 4106 asynchronously load metaslab Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Sebastien Roy <seb@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> Prior to this patch, space_maps were preferred solely based on the amount of free space left in each. Unfortunately, this heuristic didn't contain any information about the make-up of that free space, which meant we could keep preferring and loading a highly fragmented space map that wouldn't actually have enough contiguous space to satisfy the allocation; then unloading that space_map and repeating the process. This change modifies the space_map's to store additional information about the contiguous space in the space_map, so that we can use this information to make a better decision about which space_map to load. This requires reallocating all space_map objects to increase their bonus buffer size sizes enough to fit the new metadata. The above feature can be enabled via a new feature flag introduced by this change: com.delphix:spacemap_histogram In addition to the above, this patch allows the space_map block size to be increase. Currently the block size is set to be 4K in size, which has certain implications including the following: * 4K sector devices will not see any compression benefit * large space_maps require more metadata on-disk * large space_maps require more time to load (typically random reads) Now the space_map block size can adjust as needed up to the maximum size set via the space_map_max_blksz variable. A bug was fixed which resulted in potentially leaking an object when removing a mirrored log device. The previous logic for vdev_remove() did not deal with removing top-level vdevs that are interior vdevs (i.e. mirror) correctly. The problem would occur when removing a mirrored log device, and result in the DTL space map object being leaked; because top-level vdevs don't have DTL space map objects associated with them. References: https://www.illumos.org/issues/4101 https://www.illumos.org/issues/4102 https://www.illumos.org/issues/4103 https://www.illumos.org/issues/4105 https://www.illumos.org/issues/4106 https://github.com/illumos/illumos-gate/commit/0713e23 Porting notes: A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also, the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary. Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2488
2013-10-01 21:25:53 +00:00
metaslab_ops_t *mc_ops;
OpenZFS 7090 - zfs should throttle allocations OpenZFS 7090 - zfs should throttle allocations Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Alex Reece <alex@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <paul.dagnelie@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Sebastien Roy <sebastien.roy@delphix.com> Approved by: Matthew Ahrens <mahrens@delphix.com> Ported-by: Don Brady <don.brady@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> When write I/Os are issued, they are issued in block order but the ZIO pipeline will drive them asynchronously through the allocation stage which can result in blocks being allocated out-of-order. It would be nice to preserve as much of the logical order as possible. In addition, the allocations are equally scattered across all top-level VDEVs but not all top-level VDEVs are created equally. The pipeline should be able to detect devices that are more capable of handling allocations and should allocate more blocks to those devices. This allows for dynamic allocation distribution when devices are imbalanced as fuller devices will tend to be slower than empty devices. The change includes a new pool-wide allocation queue which would throttle and order allocations in the ZIO pipeline. The queue would be ordered by issued time and offset and would provide an initial amount of allocation of work to each top-level vdev. The allocation logic utilizes a reservation system to reserve allocations that will be performed by the allocator. Once an allocation is successfully completed it's scheduled on a given top-level vdev. Each top-level vdev maintains a maximum number of allocations that it can handle (mg_alloc_queue_depth). The pool-wide reserved allocations (top-levels * mg_alloc_queue_depth) are distributed across the top-level vdevs metaslab groups and round robin across all eligible metaslab groups to distribute the work. As top-levels complete their work, they receive additional work from the pool-wide allocation queue until the allocation queue is emptied. OpenZFS-issue: https://www.illumos.org/issues/7090 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/4756c3d7 Closes #5258 Porting Notes: - Maintained minimal stack in zio_done - Preserve linux-specific io sizes in zio_write_compress - Added module params and documentation - Updated to use optimize AVL cmp macros
2016-10-14 00:59:18 +00:00
/*
* Track the number of metaslab groups that have been initialized
* and can accept allocations. An initialized metaslab group is
* one has been completely added to the config (i.e. we have
* updated the MOS config and the space has been added to the pool).
*/
uint64_t mc_groups;
/*
* Toggle to enable/disable the allocation throttle.
*/
boolean_t mc_alloc_throttle_enabled;
uint64_t mc_alloc_groups; /* # of allocatable groups */
OpenZFS 7090 - zfs should throttle allocations OpenZFS 7090 - zfs should throttle allocations Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Alex Reece <alex@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <paul.dagnelie@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Sebastien Roy <sebastien.roy@delphix.com> Approved by: Matthew Ahrens <mahrens@delphix.com> Ported-by: Don Brady <don.brady@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> When write I/Os are issued, they are issued in block order but the ZIO pipeline will drive them asynchronously through the allocation stage which can result in blocks being allocated out-of-order. It would be nice to preserve as much of the logical order as possible. In addition, the allocations are equally scattered across all top-level VDEVs but not all top-level VDEVs are created equally. The pipeline should be able to detect devices that are more capable of handling allocations and should allocate more blocks to those devices. This allows for dynamic allocation distribution when devices are imbalanced as fuller devices will tend to be slower than empty devices. The change includes a new pool-wide allocation queue which would throttle and order allocations in the ZIO pipeline. The queue would be ordered by issued time and offset and would provide an initial amount of allocation of work to each top-level vdev. The allocation logic utilizes a reservation system to reserve allocations that will be performed by the allocator. Once an allocation is successfully completed it's scheduled on a given top-level vdev. Each top-level vdev maintains a maximum number of allocations that it can handle (mg_alloc_queue_depth). The pool-wide reserved allocations (top-levels * mg_alloc_queue_depth) are distributed across the top-level vdevs metaslab groups and round robin across all eligible metaslab groups to distribute the work. As top-levels complete their work, they receive additional work from the pool-wide allocation queue until the allocation queue is emptied. OpenZFS-issue: https://www.illumos.org/issues/7090 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/4756c3d7 Closes #5258 Porting Notes: - Maintained minimal stack in zio_done - Preserve linux-specific io sizes in zio_write_compress - Added module params and documentation - Updated to use optimize AVL cmp macros
2016-10-14 00:59:18 +00:00
uint64_t mc_alloc; /* total allocated space */
uint64_t mc_deferred; /* total deferred frees */
uint64_t mc_space; /* total space (alloc + free) */
uint64_t mc_dspace; /* total deflated space */
Illumos 4976-4984 - metaslab improvements 4976 zfs should only avoid writing to a failing non-redundant top-level vdev 4978 ztest fails in get_metaslab_refcount() 4979 extend free space histogram to device and pool 4980 metaslabs should have a fragmentation metric 4981 remove fragmented ops vector from block allocator 4982 space_map object should proactively upgrade when feature is enabled 4983 need to collect metaslab information via mdb 4984 device selection should use fragmentation metric Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <adam.leventhal@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> References: https://www.illumos.org/issues/4976 https://www.illumos.org/issues/4978 https://www.illumos.org/issues/4979 https://www.illumos.org/issues/4980 https://www.illumos.org/issues/4981 https://www.illumos.org/issues/4982 https://www.illumos.org/issues/4983 https://www.illumos.org/issues/4984 https://github.com/illumos/illumos-gate/commit/2e4c998 Notes: The "zdb -M" option has been re-tasked to display the new metaslab fragmentation metric and the new "zdb -I" option is used to control the maximum number of in-flight I/Os. The new fragmentation metric is derived from the space map histogram which has been rolled up to the vdev and pool level and is presented to the user via "zpool list". Add a number of module parameters related to the new metaslab weighting logic. Ported by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2595
2014-07-19 20:19:24 +00:00
uint64_t mc_histogram[RANGE_TREE_HISTOGRAM_SIZE];
/*
* List of all loaded metaslabs in the class, sorted in order of most
* recent use.
*/
multilist_t *mc_metaslab_txg_list;
metaslab_class_allocator_t mc_allocator[];
2008-11-20 20:01:55 +00:00
};
/*
* Per-allocator data structure.
*/
typedef struct metaslab_group_allocator {
uint64_t mga_cur_max_alloc_queue_depth;
zfs_refcount_t mga_alloc_queue_depth;
metaslab_t *mga_primary;
metaslab_t *mga_secondary;
} metaslab_group_allocator_t;
Illumos 4976-4984 - metaslab improvements 4976 zfs should only avoid writing to a failing non-redundant top-level vdev 4978 ztest fails in get_metaslab_refcount() 4979 extend free space histogram to device and pool 4980 metaslabs should have a fragmentation metric 4981 remove fragmented ops vector from block allocator 4982 space_map object should proactively upgrade when feature is enabled 4983 need to collect metaslab information via mdb 4984 device selection should use fragmentation metric Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <adam.leventhal@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> References: https://www.illumos.org/issues/4976 https://www.illumos.org/issues/4978 https://www.illumos.org/issues/4979 https://www.illumos.org/issues/4980 https://www.illumos.org/issues/4981 https://www.illumos.org/issues/4982 https://www.illumos.org/issues/4983 https://www.illumos.org/issues/4984 https://github.com/illumos/illumos-gate/commit/2e4c998 Notes: The "zdb -M" option has been re-tasked to display the new metaslab fragmentation metric and the new "zdb -I" option is used to control the maximum number of in-flight I/Os. The new fragmentation metric is derived from the space map histogram which has been rolled up to the vdev and pool level and is presented to the user via "zpool list". Add a number of module parameters related to the new metaslab weighting logic. Ported by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2595
2014-07-19 20:19:24 +00:00
/*
* Metaslab groups encapsulate all the allocatable regions (i.e. metaslabs)
* of a top-level vdev. They are linked together to form a circular linked
Illumos 4976-4984 - metaslab improvements 4976 zfs should only avoid writing to a failing non-redundant top-level vdev 4978 ztest fails in get_metaslab_refcount() 4979 extend free space histogram to device and pool 4980 metaslabs should have a fragmentation metric 4981 remove fragmented ops vector from block allocator 4982 space_map object should proactively upgrade when feature is enabled 4983 need to collect metaslab information via mdb 4984 device selection should use fragmentation metric Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <adam.leventhal@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> References: https://www.illumos.org/issues/4976 https://www.illumos.org/issues/4978 https://www.illumos.org/issues/4979 https://www.illumos.org/issues/4980 https://www.illumos.org/issues/4981 https://www.illumos.org/issues/4982 https://www.illumos.org/issues/4983 https://www.illumos.org/issues/4984 https://github.com/illumos/illumos-gate/commit/2e4c998 Notes: The "zdb -M" option has been re-tasked to display the new metaslab fragmentation metric and the new "zdb -I" option is used to control the maximum number of in-flight I/Os. The new fragmentation metric is derived from the space map histogram which has been rolled up to the vdev and pool level and is presented to the user via "zpool list". Add a number of module parameters related to the new metaslab weighting logic. Ported by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2595
2014-07-19 20:19:24 +00:00
* list and can belong to only one metaslab class. Metaslab groups may become
* ineligible for allocations for a number of reasons such as limited free
* space, fragmentation, or going offline. When this happens the allocator will
* simply find the next metaslab group in the linked list and attempt
* to allocate from that group instead.
*/
2008-11-20 20:01:55 +00:00
struct metaslab_group {
kmutex_t mg_lock;
avl_tree_t mg_metaslab_tree;
uint64_t mg_aliquot;
boolean_t mg_allocatable; /* can we allocate? */
OpenZFS 9112 - Improve allocation performance on high-end systems Overview ======== We parallelize the allocation process by creating the concept of "allocators". There are a certain number of allocators per metaslab group, defined by the value of a tunable at pool open time. Each allocator for a given metaslab group has up to 2 active metaslabs; one "primary", and one "secondary". The primary and secondary weight mean the same thing they did in in the pre-allocator world; primary metaslabs are used for most allocations, secondary metaslabs are used for ditto blocks being allocated in the same metaslab group. There is also the CLAIM weight, which has been separated out from the other weights, but that is less important to understanding the patch. The active metaslabs for each allocator are moved from their normal place in the metaslab tree for the group to the back of the tree. This way, they will not be selected for use by other allocators searching for new metaslabs unless all the passive metaslabs are unsuitable for allocations. If that does happen, the allocators will "steal" from each other to ensure that IOs don't fail until there is truly no space left to perform allocations. In addition, the alloc queue for each metaslab group has been broken into a separate queue for each allocator. We don't want to dramatically increase the number of inflight IOs on low-end systems, because it can significantly increase txg times. On the other hand, we want to ensure that there are enough IOs for each allocator to allow for good coalescing before sending the IOs to the disk. As a result, we take a compromise path; each allocator's alloc queue max depth starts at a certain value for every txg. Every time an IO completes, we increase the max depth. This should hopefully provide a good balance between the two failure modes, while not dramatically increasing complexity. We also parallelize the spa_alloc_tree and spa_alloc_lock, which cause very similar contention when selecting IOs to allocate. This parallelization uses the same allocator scheme as metaslab selection. Performance Results =================== Performance improvements from this change can vary significantly based on the number of CPUs in the system, whether or not the system has a NUMA architecture, the speed of the drives, the values for the various tunables, and the workload being performed. For an fio async sequential write workload on a 24 core NUMA system with 256 GB of RAM and 8 128 GB SSDs, there is a roughly 25% performance improvement. Future Work =========== Analysis of the performance of the system with this patch applied shows that a significant new bottleneck is the vdev disk queues, which also need to be parallelized. Prototyping of this change has occurred, and there was a performance improvement, but more work needs to be done before its stability has been verified and it is ready to be upstreamed. Authored by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Alexander Motin <mav@FreeBSD.org> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Gordon Ross <gwr@nexenta.com> Ported-by: Paul Dagnelie <pcd@delphix.com> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Porting Notes: * Fix reservation test failures by increasing tolerance. OpenZFS-issue: https://illumos.org/issues/9112 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3f3cc3c3 Closes #7682
2018-02-12 20:56:06 +00:00
uint64_t mg_ms_ready;
OpenZFS 7090 - zfs should throttle allocations OpenZFS 7090 - zfs should throttle allocations Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Alex Reece <alex@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <paul.dagnelie@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Sebastien Roy <sebastien.roy@delphix.com> Approved by: Matthew Ahrens <mahrens@delphix.com> Ported-by: Don Brady <don.brady@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> When write I/Os are issued, they are issued in block order but the ZIO pipeline will drive them asynchronously through the allocation stage which can result in blocks being allocated out-of-order. It would be nice to preserve as much of the logical order as possible. In addition, the allocations are equally scattered across all top-level VDEVs but not all top-level VDEVs are created equally. The pipeline should be able to detect devices that are more capable of handling allocations and should allocate more blocks to those devices. This allows for dynamic allocation distribution when devices are imbalanced as fuller devices will tend to be slower than empty devices. The change includes a new pool-wide allocation queue which would throttle and order allocations in the ZIO pipeline. The queue would be ordered by issued time and offset and would provide an initial amount of allocation of work to each top-level vdev. The allocation logic utilizes a reservation system to reserve allocations that will be performed by the allocator. Once an allocation is successfully completed it's scheduled on a given top-level vdev. Each top-level vdev maintains a maximum number of allocations that it can handle (mg_alloc_queue_depth). The pool-wide reserved allocations (top-levels * mg_alloc_queue_depth) are distributed across the top-level vdevs metaslab groups and round robin across all eligible metaslab groups to distribute the work. As top-levels complete their work, they receive additional work from the pool-wide allocation queue until the allocation queue is emptied. OpenZFS-issue: https://www.illumos.org/issues/7090 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/4756c3d7 Closes #5258 Porting Notes: - Maintained minimal stack in zio_done - Preserve linux-specific io sizes in zio_write_compress - Added module params and documentation - Updated to use optimize AVL cmp macros
2016-10-14 00:59:18 +00:00
/*
* A metaslab group is considered to be initialized only after
* we have updated the MOS config and added the space to the pool.
* We only allow allocation attempts to a metaslab group if it
* has been initialized.
*/
boolean_t mg_initialized;
uint64_t mg_free_capacity; /* percentage free */
2008-11-20 20:01:55 +00:00
int64_t mg_bias;
int64_t mg_activation_count;
2008-11-20 20:01:55 +00:00
metaslab_class_t *mg_class;
vdev_t *mg_vd;
Illumos #4101, #4102, #4103, #4105, #4106 4101 metaslab_debug should allow for fine-grained control 4102 space_maps should store more information about themselves 4103 space map object blocksize should be increased 4105 removing a mirrored log device results in a leaked object 4106 asynchronously load metaslab Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Sebastien Roy <seb@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> Prior to this patch, space_maps were preferred solely based on the amount of free space left in each. Unfortunately, this heuristic didn't contain any information about the make-up of that free space, which meant we could keep preferring and loading a highly fragmented space map that wouldn't actually have enough contiguous space to satisfy the allocation; then unloading that space_map and repeating the process. This change modifies the space_map's to store additional information about the contiguous space in the space_map, so that we can use this information to make a better decision about which space_map to load. This requires reallocating all space_map objects to increase their bonus buffer size sizes enough to fit the new metadata. The above feature can be enabled via a new feature flag introduced by this change: com.delphix:spacemap_histogram In addition to the above, this patch allows the space_map block size to be increase. Currently the block size is set to be 4K in size, which has certain implications including the following: * 4K sector devices will not see any compression benefit * large space_maps require more metadata on-disk * large space_maps require more time to load (typically random reads) Now the space_map block size can adjust as needed up to the maximum size set via the space_map_max_blksz variable. A bug was fixed which resulted in potentially leaking an object when removing a mirrored log device. The previous logic for vdev_remove() did not deal with removing top-level vdevs that are interior vdevs (i.e. mirror) correctly. The problem would occur when removing a mirrored log device, and result in the DTL space map object being leaked; because top-level vdevs don't have DTL space map objects associated with them. References: https://www.illumos.org/issues/4101 https://www.illumos.org/issues/4102 https://www.illumos.org/issues/4103 https://www.illumos.org/issues/4105 https://www.illumos.org/issues/4106 https://github.com/illumos/illumos-gate/commit/0713e23 Porting notes: A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also, the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary. Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2488
2013-10-01 21:25:53 +00:00
taskq_t *mg_taskq;
2008-11-20 20:01:55 +00:00
metaslab_group_t *mg_prev;
metaslab_group_t *mg_next;
OpenZFS 7090 - zfs should throttle allocations OpenZFS 7090 - zfs should throttle allocations Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Alex Reece <alex@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <paul.dagnelie@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Sebastien Roy <sebastien.roy@delphix.com> Approved by: Matthew Ahrens <mahrens@delphix.com> Ported-by: Don Brady <don.brady@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> When write I/Os are issued, they are issued in block order but the ZIO pipeline will drive them asynchronously through the allocation stage which can result in blocks being allocated out-of-order. It would be nice to preserve as much of the logical order as possible. In addition, the allocations are equally scattered across all top-level VDEVs but not all top-level VDEVs are created equally. The pipeline should be able to detect devices that are more capable of handling allocations and should allocate more blocks to those devices. This allows for dynamic allocation distribution when devices are imbalanced as fuller devices will tend to be slower than empty devices. The change includes a new pool-wide allocation queue which would throttle and order allocations in the ZIO pipeline. The queue would be ordered by issued time and offset and would provide an initial amount of allocation of work to each top-level vdev. The allocation logic utilizes a reservation system to reserve allocations that will be performed by the allocator. Once an allocation is successfully completed it's scheduled on a given top-level vdev. Each top-level vdev maintains a maximum number of allocations that it can handle (mg_alloc_queue_depth). The pool-wide reserved allocations (top-levels * mg_alloc_queue_depth) are distributed across the top-level vdevs metaslab groups and round robin across all eligible metaslab groups to distribute the work. As top-levels complete their work, they receive additional work from the pool-wide allocation queue until the allocation queue is emptied. OpenZFS-issue: https://www.illumos.org/issues/7090 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/4756c3d7 Closes #5258 Porting Notes: - Maintained minimal stack in zio_done - Preserve linux-specific io sizes in zio_write_compress - Added module params and documentation - Updated to use optimize AVL cmp macros
2016-10-14 00:59:18 +00:00
/*
OpenZFS 9112 - Improve allocation performance on high-end systems Overview ======== We parallelize the allocation process by creating the concept of "allocators". There are a certain number of allocators per metaslab group, defined by the value of a tunable at pool open time. Each allocator for a given metaslab group has up to 2 active metaslabs; one "primary", and one "secondary". The primary and secondary weight mean the same thing they did in in the pre-allocator world; primary metaslabs are used for most allocations, secondary metaslabs are used for ditto blocks being allocated in the same metaslab group. There is also the CLAIM weight, which has been separated out from the other weights, but that is less important to understanding the patch. The active metaslabs for each allocator are moved from their normal place in the metaslab tree for the group to the back of the tree. This way, they will not be selected for use by other allocators searching for new metaslabs unless all the passive metaslabs are unsuitable for allocations. If that does happen, the allocators will "steal" from each other to ensure that IOs don't fail until there is truly no space left to perform allocations. In addition, the alloc queue for each metaslab group has been broken into a separate queue for each allocator. We don't want to dramatically increase the number of inflight IOs on low-end systems, because it can significantly increase txg times. On the other hand, we want to ensure that there are enough IOs for each allocator to allow for good coalescing before sending the IOs to the disk. As a result, we take a compromise path; each allocator's alloc queue max depth starts at a certain value for every txg. Every time an IO completes, we increase the max depth. This should hopefully provide a good balance between the two failure modes, while not dramatically increasing complexity. We also parallelize the spa_alloc_tree and spa_alloc_lock, which cause very similar contention when selecting IOs to allocate. This parallelization uses the same allocator scheme as metaslab selection. Performance Results =================== Performance improvements from this change can vary significantly based on the number of CPUs in the system, whether or not the system has a NUMA architecture, the speed of the drives, the values for the various tunables, and the workload being performed. For an fio async sequential write workload on a 24 core NUMA system with 256 GB of RAM and 8 128 GB SSDs, there is a roughly 25% performance improvement. Future Work =========== Analysis of the performance of the system with this patch applied shows that a significant new bottleneck is the vdev disk queues, which also need to be parallelized. Prototyping of this change has occurred, and there was a performance improvement, but more work needs to be done before its stability has been verified and it is ready to be upstreamed. Authored by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Alexander Motin <mav@FreeBSD.org> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Gordon Ross <gwr@nexenta.com> Ported-by: Paul Dagnelie <pcd@delphix.com> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Porting Notes: * Fix reservation test failures by increasing tolerance. OpenZFS-issue: https://illumos.org/issues/9112 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3f3cc3c3 Closes #7682
2018-02-12 20:56:06 +00:00
* In order for the allocation throttle to function properly, we cannot
* have too many IOs going to each disk by default; the throttle
* operates by allocating more work to disks that finish quickly, so
* allocating larger chunks to each disk reduces its effectiveness.
* However, if the number of IOs going to each allocator is too small,
* we will not perform proper aggregation at the vdev_queue layer,
* also resulting in decreased performance. Therefore, we will use a
* ramp-up strategy.
*
* Each allocator in each metaslab group has a current queue depth
* (mg_alloc_queue_depth[allocator]) and a current max queue depth
* (mga_cur_max_alloc_queue_depth[allocator]), and each metaslab group
OpenZFS 9112 - Improve allocation performance on high-end systems Overview ======== We parallelize the allocation process by creating the concept of "allocators". There are a certain number of allocators per metaslab group, defined by the value of a tunable at pool open time. Each allocator for a given metaslab group has up to 2 active metaslabs; one "primary", and one "secondary". The primary and secondary weight mean the same thing they did in in the pre-allocator world; primary metaslabs are used for most allocations, secondary metaslabs are used for ditto blocks being allocated in the same metaslab group. There is also the CLAIM weight, which has been separated out from the other weights, but that is less important to understanding the patch. The active metaslabs for each allocator are moved from their normal place in the metaslab tree for the group to the back of the tree. This way, they will not be selected for use by other allocators searching for new metaslabs unless all the passive metaslabs are unsuitable for allocations. If that does happen, the allocators will "steal" from each other to ensure that IOs don't fail until there is truly no space left to perform allocations. In addition, the alloc queue for each metaslab group has been broken into a separate queue for each allocator. We don't want to dramatically increase the number of inflight IOs on low-end systems, because it can significantly increase txg times. On the other hand, we want to ensure that there are enough IOs for each allocator to allow for good coalescing before sending the IOs to the disk. As a result, we take a compromise path; each allocator's alloc queue max depth starts at a certain value for every txg. Every time an IO completes, we increase the max depth. This should hopefully provide a good balance between the two failure modes, while not dramatically increasing complexity. We also parallelize the spa_alloc_tree and spa_alloc_lock, which cause very similar contention when selecting IOs to allocate. This parallelization uses the same allocator scheme as metaslab selection. Performance Results =================== Performance improvements from this change can vary significantly based on the number of CPUs in the system, whether or not the system has a NUMA architecture, the speed of the drives, the values for the various tunables, and the workload being performed. For an fio async sequential write workload on a 24 core NUMA system with 256 GB of RAM and 8 128 GB SSDs, there is a roughly 25% performance improvement. Future Work =========== Analysis of the performance of the system with this patch applied shows that a significant new bottleneck is the vdev disk queues, which also need to be parallelized. Prototyping of this change has occurred, and there was a performance improvement, but more work needs to be done before its stability has been verified and it is ready to be upstreamed. Authored by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Alexander Motin <mav@FreeBSD.org> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Gordon Ross <gwr@nexenta.com> Ported-by: Paul Dagnelie <pcd@delphix.com> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Porting Notes: * Fix reservation test failures by increasing tolerance. OpenZFS-issue: https://illumos.org/issues/9112 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3f3cc3c3 Closes #7682
2018-02-12 20:56:06 +00:00
* has an absolute max queue depth (mg_max_alloc_queue_depth). We
* add IOs to an allocator until the mg_alloc_queue_depth for that
* allocator hits the cur_max. Every time an IO completes for a given
* allocator on a given metaslab group, we increment its cur_max until
* it reaches mg_max_alloc_queue_depth. The cur_max resets every txg to
* help protect against disks that decrease in performance over time.
*
* It's possible for an allocator to handle more allocations than
* its max. This can occur when gang blocks are required or when other
* groups are unable to handle their share of allocations.
OpenZFS 7090 - zfs should throttle allocations OpenZFS 7090 - zfs should throttle allocations Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Alex Reece <alex@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <paul.dagnelie@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Sebastien Roy <sebastien.roy@delphix.com> Approved by: Matthew Ahrens <mahrens@delphix.com> Ported-by: Don Brady <don.brady@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> When write I/Os are issued, they are issued in block order but the ZIO pipeline will drive them asynchronously through the allocation stage which can result in blocks being allocated out-of-order. It would be nice to preserve as much of the logical order as possible. In addition, the allocations are equally scattered across all top-level VDEVs but not all top-level VDEVs are created equally. The pipeline should be able to detect devices that are more capable of handling allocations and should allocate more blocks to those devices. This allows for dynamic allocation distribution when devices are imbalanced as fuller devices will tend to be slower than empty devices. The change includes a new pool-wide allocation queue which would throttle and order allocations in the ZIO pipeline. The queue would be ordered by issued time and offset and would provide an initial amount of allocation of work to each top-level vdev. The allocation logic utilizes a reservation system to reserve allocations that will be performed by the allocator. Once an allocation is successfully completed it's scheduled on a given top-level vdev. Each top-level vdev maintains a maximum number of allocations that it can handle (mg_alloc_queue_depth). The pool-wide reserved allocations (top-levels * mg_alloc_queue_depth) are distributed across the top-level vdevs metaslab groups and round robin across all eligible metaslab groups to distribute the work. As top-levels complete their work, they receive additional work from the pool-wide allocation queue until the allocation queue is emptied. OpenZFS-issue: https://www.illumos.org/issues/7090 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/4756c3d7 Closes #5258 Porting Notes: - Maintained minimal stack in zio_done - Preserve linux-specific io sizes in zio_write_compress - Added module params and documentation - Updated to use optimize AVL cmp macros
2016-10-14 00:59:18 +00:00
*/
uint64_t mg_max_alloc_queue_depth;
OpenZFS 7090 - zfs should throttle allocations OpenZFS 7090 - zfs should throttle allocations Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Alex Reece <alex@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <paul.dagnelie@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Sebastien Roy <sebastien.roy@delphix.com> Approved by: Matthew Ahrens <mahrens@delphix.com> Ported-by: Don Brady <don.brady@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> When write I/Os are issued, they are issued in block order but the ZIO pipeline will drive them asynchronously through the allocation stage which can result in blocks being allocated out-of-order. It would be nice to preserve as much of the logical order as possible. In addition, the allocations are equally scattered across all top-level VDEVs but not all top-level VDEVs are created equally. The pipeline should be able to detect devices that are more capable of handling allocations and should allocate more blocks to those devices. This allows for dynamic allocation distribution when devices are imbalanced as fuller devices will tend to be slower than empty devices. The change includes a new pool-wide allocation queue which would throttle and order allocations in the ZIO pipeline. The queue would be ordered by issued time and offset and would provide an initial amount of allocation of work to each top-level vdev. The allocation logic utilizes a reservation system to reserve allocations that will be performed by the allocator. Once an allocation is successfully completed it's scheduled on a given top-level vdev. Each top-level vdev maintains a maximum number of allocations that it can handle (mg_alloc_queue_depth). The pool-wide reserved allocations (top-levels * mg_alloc_queue_depth) are distributed across the top-level vdevs metaslab groups and round robin across all eligible metaslab groups to distribute the work. As top-levels complete their work, they receive additional work from the pool-wide allocation queue until the allocation queue is emptied. OpenZFS-issue: https://www.illumos.org/issues/7090 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/4756c3d7 Closes #5258 Porting Notes: - Maintained minimal stack in zio_done - Preserve linux-specific io sizes in zio_write_compress - Added module params and documentation - Updated to use optimize AVL cmp macros
2016-10-14 00:59:18 +00:00
/*
* A metalab group that can no longer allocate the minimum block
* size will set mg_no_free_space. Once a metaslab group is out
* of space then its share of work must be distributed to other
* groups.
*/
boolean_t mg_no_free_space;
uint64_t mg_allocations;
uint64_t mg_failed_allocations;
Illumos 4976-4984 - metaslab improvements 4976 zfs should only avoid writing to a failing non-redundant top-level vdev 4978 ztest fails in get_metaslab_refcount() 4979 extend free space histogram to device and pool 4980 metaslabs should have a fragmentation metric 4981 remove fragmented ops vector from block allocator 4982 space_map object should proactively upgrade when feature is enabled 4983 need to collect metaslab information via mdb 4984 device selection should use fragmentation metric Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <adam.leventhal@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> References: https://www.illumos.org/issues/4976 https://www.illumos.org/issues/4978 https://www.illumos.org/issues/4979 https://www.illumos.org/issues/4980 https://www.illumos.org/issues/4981 https://www.illumos.org/issues/4982 https://www.illumos.org/issues/4983 https://www.illumos.org/issues/4984 https://github.com/illumos/illumos-gate/commit/2e4c998 Notes: The "zdb -M" option has been re-tasked to display the new metaslab fragmentation metric and the new "zdb -I" option is used to control the maximum number of in-flight I/Os. The new fragmentation metric is derived from the space map histogram which has been rolled up to the vdev and pool level and is presented to the user via "zpool list". Add a number of module parameters related to the new metaslab weighting logic. Ported by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2595
2014-07-19 20:19:24 +00:00
uint64_t mg_fragmentation;
uint64_t mg_histogram[RANGE_TREE_HISTOGRAM_SIZE];
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 14:54:59 +00:00
Add TRIM support UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Contributions-by: Tim Chase <tim@chase2k.com> Contributions-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8419 Closes #598
2019-03-29 16:13:20 +00:00
int mg_ms_disabled;
boolean_t mg_disabled_updating;
kmutex_t mg_ms_disabled_lock;
kcondvar_t mg_ms_disabled_cv;
int mg_allocators;
metaslab_group_allocator_t mg_allocator[];
2008-11-20 20:01:55 +00:00
};
/*
Illumos #4101, #4102, #4103, #4105, #4106 4101 metaslab_debug should allow for fine-grained control 4102 space_maps should store more information about themselves 4103 space map object blocksize should be increased 4105 removing a mirrored log device results in a leaked object 4106 asynchronously load metaslab Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Sebastien Roy <seb@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> Prior to this patch, space_maps were preferred solely based on the amount of free space left in each. Unfortunately, this heuristic didn't contain any information about the make-up of that free space, which meant we could keep preferring and loading a highly fragmented space map that wouldn't actually have enough contiguous space to satisfy the allocation; then unloading that space_map and repeating the process. This change modifies the space_map's to store additional information about the contiguous space in the space_map, so that we can use this information to make a better decision about which space_map to load. This requires reallocating all space_map objects to increase their bonus buffer size sizes enough to fit the new metadata. The above feature can be enabled via a new feature flag introduced by this change: com.delphix:spacemap_histogram In addition to the above, this patch allows the space_map block size to be increase. Currently the block size is set to be 4K in size, which has certain implications including the following: * 4K sector devices will not see any compression benefit * large space_maps require more metadata on-disk * large space_maps require more time to load (typically random reads) Now the space_map block size can adjust as needed up to the maximum size set via the space_map_max_blksz variable. A bug was fixed which resulted in potentially leaking an object when removing a mirrored log device. The previous logic for vdev_remove() did not deal with removing top-level vdevs that are interior vdevs (i.e. mirror) correctly. The problem would occur when removing a mirrored log device, and result in the DTL space map object being leaked; because top-level vdevs don't have DTL space map objects associated with them. References: https://www.illumos.org/issues/4101 https://www.illumos.org/issues/4102 https://www.illumos.org/issues/4103 https://www.illumos.org/issues/4105 https://www.illumos.org/issues/4106 https://github.com/illumos/illumos-gate/commit/0713e23 Porting notes: A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also, the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary. Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2488
2013-10-01 21:25:53 +00:00
* This value defines the number of elements in the ms_lbas array. The value
Illumos 4976-4984 - metaslab improvements 4976 zfs should only avoid writing to a failing non-redundant top-level vdev 4978 ztest fails in get_metaslab_refcount() 4979 extend free space histogram to device and pool 4980 metaslabs should have a fragmentation metric 4981 remove fragmented ops vector from block allocator 4982 space_map object should proactively upgrade when feature is enabled 4983 need to collect metaslab information via mdb 4984 device selection should use fragmentation metric Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <adam.leventhal@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> References: https://www.illumos.org/issues/4976 https://www.illumos.org/issues/4978 https://www.illumos.org/issues/4979 https://www.illumos.org/issues/4980 https://www.illumos.org/issues/4981 https://www.illumos.org/issues/4982 https://www.illumos.org/issues/4983 https://www.illumos.org/issues/4984 https://github.com/illumos/illumos-gate/commit/2e4c998 Notes: The "zdb -M" option has been re-tasked to display the new metaslab fragmentation metric and the new "zdb -I" option is used to control the maximum number of in-flight I/Os. The new fragmentation metric is derived from the space map histogram which has been rolled up to the vdev and pool level and is presented to the user via "zpool list". Add a number of module parameters related to the new metaslab weighting logic. Ported by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2595
2014-07-19 20:19:24 +00:00
* of 64 was chosen as it covers all power of 2 buckets up to UINT64_MAX.
* This is the equivalent of highbit(UINT64_MAX).
Illumos #4101, #4102, #4103, #4105, #4106 4101 metaslab_debug should allow for fine-grained control 4102 space_maps should store more information about themselves 4103 space map object blocksize should be increased 4105 removing a mirrored log device results in a leaked object 4106 asynchronously load metaslab Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Sebastien Roy <seb@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> Prior to this patch, space_maps were preferred solely based on the amount of free space left in each. Unfortunately, this heuristic didn't contain any information about the make-up of that free space, which meant we could keep preferring and loading a highly fragmented space map that wouldn't actually have enough contiguous space to satisfy the allocation; then unloading that space_map and repeating the process. This change modifies the space_map's to store additional information about the contiguous space in the space_map, so that we can use this information to make a better decision about which space_map to load. This requires reallocating all space_map objects to increase their bonus buffer size sizes enough to fit the new metadata. The above feature can be enabled via a new feature flag introduced by this change: com.delphix:spacemap_histogram In addition to the above, this patch allows the space_map block size to be increase. Currently the block size is set to be 4K in size, which has certain implications including the following: * 4K sector devices will not see any compression benefit * large space_maps require more metadata on-disk * large space_maps require more time to load (typically random reads) Now the space_map block size can adjust as needed up to the maximum size set via the space_map_max_blksz variable. A bug was fixed which resulted in potentially leaking an object when removing a mirrored log device. The previous logic for vdev_remove() did not deal with removing top-level vdevs that are interior vdevs (i.e. mirror) correctly. The problem would occur when removing a mirrored log device, and result in the DTL space map object being leaked; because top-level vdevs don't have DTL space map objects associated with them. References: https://www.illumos.org/issues/4101 https://www.illumos.org/issues/4102 https://www.illumos.org/issues/4103 https://www.illumos.org/issues/4105 https://www.illumos.org/issues/4106 https://github.com/illumos/illumos-gate/commit/0713e23 Porting notes: A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also, the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary. Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2488
2013-10-01 21:25:53 +00:00
*/
#define MAX_LBAS 64
/*
* Each metaslab maintains a set of in-core trees to track metaslab
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-16 22:11:29 +00:00
* operations. The in-core free tree (ms_allocatable) contains the list of
* free segments which are eligible for allocation. As blocks are
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-16 22:11:29 +00:00
* allocated, the allocated segment are removed from the ms_allocatable and
* added to a per txg allocation tree (ms_allocating). As blocks are
* freed, they are added to the free tree (ms_freeing). These trees
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 16:30:13 +00:00
* allow us to process all allocations and frees in syncing context
* where it is safe to update the on-disk space maps. An additional set
* of in-core trees is maintained to track deferred frees
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-16 22:11:29 +00:00
* (ms_defer). Once a block is freed it will move from the
* ms_freed to the ms_defer tree. A deferred free means that a block
* has been freed but cannot be used by the pool until TXG_DEFER_SIZE
* transactions groups later. For example, a block that is freed in txg
* 50 will not be available for reallocation until txg 52 (50 +
* TXG_DEFER_SIZE). This provides a safety net for uberblock rollback.
* A pool could be safely rolled back TXG_DEFERS_SIZE transactions
* groups and ensure that no block has been reallocated.
Illumos #4101, #4102, #4103, #4105, #4106 4101 metaslab_debug should allow for fine-grained control 4102 space_maps should store more information about themselves 4103 space map object blocksize should be increased 4105 removing a mirrored log device results in a leaked object 4106 asynchronously load metaslab Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Sebastien Roy <seb@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> Prior to this patch, space_maps were preferred solely based on the amount of free space left in each. Unfortunately, this heuristic didn't contain any information about the make-up of that free space, which meant we could keep preferring and loading a highly fragmented space map that wouldn't actually have enough contiguous space to satisfy the allocation; then unloading that space_map and repeating the process. This change modifies the space_map's to store additional information about the contiguous space in the space_map, so that we can use this information to make a better decision about which space_map to load. This requires reallocating all space_map objects to increase their bonus buffer size sizes enough to fit the new metadata. The above feature can be enabled via a new feature flag introduced by this change: com.delphix:spacemap_histogram In addition to the above, this patch allows the space_map block size to be increase. Currently the block size is set to be 4K in size, which has certain implications including the following: * 4K sector devices will not see any compression benefit * large space_maps require more metadata on-disk * large space_maps require more time to load (typically random reads) Now the space_map block size can adjust as needed up to the maximum size set via the space_map_max_blksz variable. A bug was fixed which resulted in potentially leaking an object when removing a mirrored log device. The previous logic for vdev_remove() did not deal with removing top-level vdevs that are interior vdevs (i.e. mirror) correctly. The problem would occur when removing a mirrored log device, and result in the DTL space map object being leaked; because top-level vdevs don't have DTL space map objects associated with them. References: https://www.illumos.org/issues/4101 https://www.illumos.org/issues/4102 https://www.illumos.org/issues/4103 https://www.illumos.org/issues/4105 https://www.illumos.org/issues/4106 https://github.com/illumos/illumos-gate/commit/0713e23 Porting notes: A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also, the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary. Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2488
2013-10-01 21:25:53 +00:00
*
* The simplified transition diagram looks like this:
*
*
* ALLOCATE
* |
* V
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-16 22:11:29 +00:00
* free segment (ms_allocatable) -> ms_allocating[4] -> (write to space map)
Illumos #4101, #4102, #4103, #4105, #4106 4101 metaslab_debug should allow for fine-grained control 4102 space_maps should store more information about themselves 4103 space map object blocksize should be increased 4105 removing a mirrored log device results in a leaked object 4106 asynchronously load metaslab Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Sebastien Roy <seb@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> Prior to this patch, space_maps were preferred solely based on the amount of free space left in each. Unfortunately, this heuristic didn't contain any information about the make-up of that free space, which meant we could keep preferring and loading a highly fragmented space map that wouldn't actually have enough contiguous space to satisfy the allocation; then unloading that space_map and repeating the process. This change modifies the space_map's to store additional information about the contiguous space in the space_map, so that we can use this information to make a better decision about which space_map to load. This requires reallocating all space_map objects to increase their bonus buffer size sizes enough to fit the new metadata. The above feature can be enabled via a new feature flag introduced by this change: com.delphix:spacemap_histogram In addition to the above, this patch allows the space_map block size to be increase. Currently the block size is set to be 4K in size, which has certain implications including the following: * 4K sector devices will not see any compression benefit * large space_maps require more metadata on-disk * large space_maps require more time to load (typically random reads) Now the space_map block size can adjust as needed up to the maximum size set via the space_map_max_blksz variable. A bug was fixed which resulted in potentially leaking an object when removing a mirrored log device. The previous logic for vdev_remove() did not deal with removing top-level vdevs that are interior vdevs (i.e. mirror) correctly. The problem would occur when removing a mirrored log device, and result in the DTL space map object being leaked; because top-level vdevs don't have DTL space map objects associated with them. References: https://www.illumos.org/issues/4101 https://www.illumos.org/issues/4102 https://www.illumos.org/issues/4103 https://www.illumos.org/issues/4105 https://www.illumos.org/issues/4106 https://github.com/illumos/illumos-gate/commit/0713e23 Porting notes: A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also, the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary. Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2488
2013-10-01 21:25:53 +00:00
* ^
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-16 22:11:29 +00:00
* | ms_freeing <--- FREE
* | |
* | v
* | ms_freed
* | |
* +-------- ms_defer[2] <-------+-------> (write to space map)
*
Illumos #4101, #4102, #4103, #4105, #4106 4101 metaslab_debug should allow for fine-grained control 4102 space_maps should store more information about themselves 4103 space map object blocksize should be increased 4105 removing a mirrored log device results in a leaked object 4106 asynchronously load metaslab Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Sebastien Roy <seb@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> Prior to this patch, space_maps were preferred solely based on the amount of free space left in each. Unfortunately, this heuristic didn't contain any information about the make-up of that free space, which meant we could keep preferring and loading a highly fragmented space map that wouldn't actually have enough contiguous space to satisfy the allocation; then unloading that space_map and repeating the process. This change modifies the space_map's to store additional information about the contiguous space in the space_map, so that we can use this information to make a better decision about which space_map to load. This requires reallocating all space_map objects to increase their bonus buffer size sizes enough to fit the new metadata. The above feature can be enabled via a new feature flag introduced by this change: com.delphix:spacemap_histogram In addition to the above, this patch allows the space_map block size to be increase. Currently the block size is set to be 4K in size, which has certain implications including the following: * 4K sector devices will not see any compression benefit * large space_maps require more metadata on-disk * large space_maps require more time to load (typically random reads) Now the space_map block size can adjust as needed up to the maximum size set via the space_map_max_blksz variable. A bug was fixed which resulted in potentially leaking an object when removing a mirrored log device. The previous logic for vdev_remove() did not deal with removing top-level vdevs that are interior vdevs (i.e. mirror) correctly. The problem would occur when removing a mirrored log device, and result in the DTL space map object being leaked; because top-level vdevs don't have DTL space map objects associated with them. References: https://www.illumos.org/issues/4101 https://www.illumos.org/issues/4102 https://www.illumos.org/issues/4103 https://www.illumos.org/issues/4105 https://www.illumos.org/issues/4106 https://github.com/illumos/illumos-gate/commit/0713e23 Porting notes: A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also, the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary. Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2488
2013-10-01 21:25:53 +00:00
*
* Each metaslab's space is tracked in a single space map in the MOS,
* which is only updated in syncing context. Each time we sync a txg,
* we append the allocs and frees from that txg to the space map. The
* pool space is only updated once all metaslabs have finished syncing.
*
* To load the in-core free tree we read the space map from disk. This
* object contains a series of alloc and free records that are combined
* to make up the list of all free segments in this metaslab. These
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-16 22:11:29 +00:00
* segments are represented in-core by the ms_allocatable and are stored
* in an AVL tree.
*
Illumos #4101, #4102, #4103, #4105, #4106 4101 metaslab_debug should allow for fine-grained control 4102 space_maps should store more information about themselves 4103 space map object blocksize should be increased 4105 removing a mirrored log device results in a leaked object 4106 asynchronously load metaslab Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Sebastien Roy <seb@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> Prior to this patch, space_maps were preferred solely based on the amount of free space left in each. Unfortunately, this heuristic didn't contain any information about the make-up of that free space, which meant we could keep preferring and loading a highly fragmented space map that wouldn't actually have enough contiguous space to satisfy the allocation; then unloading that space_map and repeating the process. This change modifies the space_map's to store additional information about the contiguous space in the space_map, so that we can use this information to make a better decision about which space_map to load. This requires reallocating all space_map objects to increase their bonus buffer size sizes enough to fit the new metadata. The above feature can be enabled via a new feature flag introduced by this change: com.delphix:spacemap_histogram In addition to the above, this patch allows the space_map block size to be increase. Currently the block size is set to be 4K in size, which has certain implications including the following: * 4K sector devices will not see any compression benefit * large space_maps require more metadata on-disk * large space_maps require more time to load (typically random reads) Now the space_map block size can adjust as needed up to the maximum size set via the space_map_max_blksz variable. A bug was fixed which resulted in potentially leaking an object when removing a mirrored log device. The previous logic for vdev_remove() did not deal with removing top-level vdevs that are interior vdevs (i.e. mirror) correctly. The problem would occur when removing a mirrored log device, and result in the DTL space map object being leaked; because top-level vdevs don't have DTL space map objects associated with them. References: https://www.illumos.org/issues/4101 https://www.illumos.org/issues/4102 https://www.illumos.org/issues/4103 https://www.illumos.org/issues/4105 https://www.illumos.org/issues/4106 https://github.com/illumos/illumos-gate/commit/0713e23 Porting notes: A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also, the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary. Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2488
2013-10-01 21:25:53 +00:00
* As the space map grows (as a result of the appends) it will
* eventually become space-inefficient. When the metaslab's in-core
* free tree is zfs_condense_pct/100 times the size of the minimal
* on-disk representation, we rewrite it in its minimized form. If a
* metaslab needs to condense then we must set the ms_condensing flag to
* ensure that allocations are not performed on the metaslab that is
* being written.
2008-11-20 20:01:55 +00:00
*/
struct metaslab {
Get rid of space_map_update() for ms_synced_length Initially, metaslabs and space maps used to be the same thing in ZFS. Later, we started differentiating them by referring to the space map as the on-disk state of the metaslab, making the metaslab a higher-level concept that is metadata that deals with space accounting. Today we've managed to split that code furthermore, with the space map being its own on-disk data structure used in areas of ZFS besides metaslabs (e.g. the vdev-wide space maps used for zpool checkpoint or vdev removal features). This patch refactors the space map code to further split the space map code from the metaslab code. It does so by getting rid of the idea that the space map can have a different in-core and on-disk length (sm_length vs smp_length) which is something that is only used for the metaslab code, and other consumers of space maps just have to deal with. Instead, this patch introduces changes that move the old in-core length of the metaslab's space map to the metaslab structure itself (see ms_synced_length field) while making the space map code only care about the actual space map's length on-disk. The result of this is that space map consumers no longer have to deal with syncing two different lengths for the same structure (e.g. space_map_update() goes away) while metaslab specific behavior stays within the metaslab code. Specifically, the ms_synced_length field keeps track of the amount of data metaslab_load() can read from the metaslab's space map while working concurrently with metaslab_sync() that may be appending to that same space map. As a side note, the patch also adds a few comments around the metaslab code documenting some assumptions and expected behavior. Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8328
2019-02-12 18:38:11 +00:00
/*
* This is the main lock of the metaslab and its purpose is to
* coordinate our allocations and frees [e.g metaslab_block_alloc(),
* metaslab_free_concrete(), ..etc] with our various syncing
* procedures [e.g. metaslab_sync(), metaslab_sync_done(), ..etc].
*
* The lock is also used during some miscellaneous operations like
* using the metaslab's histogram for the metaslab group's histogram
* aggregation, or marking the metaslab for initialization.
*/
Illumos #4101, #4102, #4103, #4105, #4106 4101 metaslab_debug should allow for fine-grained control 4102 space_maps should store more information about themselves 4103 space map object blocksize should be increased 4105 removing a mirrored log device results in a leaked object 4106 asynchronously load metaslab Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Sebastien Roy <seb@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> Prior to this patch, space_maps were preferred solely based on the amount of free space left in each. Unfortunately, this heuristic didn't contain any information about the make-up of that free space, which meant we could keep preferring and loading a highly fragmented space map that wouldn't actually have enough contiguous space to satisfy the allocation; then unloading that space_map and repeating the process. This change modifies the space_map's to store additional information about the contiguous space in the space_map, so that we can use this information to make a better decision about which space_map to load. This requires reallocating all space_map objects to increase their bonus buffer size sizes enough to fit the new metadata. The above feature can be enabled via a new feature flag introduced by this change: com.delphix:spacemap_histogram In addition to the above, this patch allows the space_map block size to be increase. Currently the block size is set to be 4K in size, which has certain implications including the following: * 4K sector devices will not see any compression benefit * large space_maps require more metadata on-disk * large space_maps require more time to load (typically random reads) Now the space_map block size can adjust as needed up to the maximum size set via the space_map_max_blksz variable. A bug was fixed which resulted in potentially leaking an object when removing a mirrored log device. The previous logic for vdev_remove() did not deal with removing top-level vdevs that are interior vdevs (i.e. mirror) correctly. The problem would occur when removing a mirrored log device, and result in the DTL space map object being leaked; because top-level vdevs don't have DTL space map objects associated with them. References: https://www.illumos.org/issues/4101 https://www.illumos.org/issues/4102 https://www.illumos.org/issues/4103 https://www.illumos.org/issues/4105 https://www.illumos.org/issues/4106 https://github.com/illumos/illumos-gate/commit/0713e23 Porting notes: A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also, the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary. Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2488
2013-10-01 21:25:53 +00:00
kmutex_t ms_lock;
Get rid of space_map_update() for ms_synced_length Initially, metaslabs and space maps used to be the same thing in ZFS. Later, we started differentiating them by referring to the space map as the on-disk state of the metaslab, making the metaslab a higher-level concept that is metadata that deals with space accounting. Today we've managed to split that code furthermore, with the space map being its own on-disk data structure used in areas of ZFS besides metaslabs (e.g. the vdev-wide space maps used for zpool checkpoint or vdev removal features). This patch refactors the space map code to further split the space map code from the metaslab code. It does so by getting rid of the idea that the space map can have a different in-core and on-disk length (sm_length vs smp_length) which is something that is only used for the metaslab code, and other consumers of space maps just have to deal with. Instead, this patch introduces changes that move the old in-core length of the metaslab's space map to the metaslab structure itself (see ms_synced_length field) while making the space map code only care about the actual space map's length on-disk. The result of this is that space map consumers no longer have to deal with syncing two different lengths for the same structure (e.g. space_map_update() goes away) while metaslab specific behavior stays within the metaslab code. Specifically, the ms_synced_length field keeps track of the amount of data metaslab_load() can read from the metaslab's space map while working concurrently with metaslab_sync() that may be appending to that same space map. As a side note, the patch also adds a few comments around the metaslab code documenting some assumptions and expected behavior. Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8328
2019-02-12 18:38:11 +00:00
/*
* Acquired together with the ms_lock whenever we expect to
* write to metaslab data on-disk (i.e flushing entries to
* the metaslab's space map). It helps coordinate readers of
* the metaslab's space map [see spa_vdev_remove_thread()]
Log Spacemap Project = Motivation At Delphix we've seen a lot of customer systems where fragmentation is over 75% and random writes take a performance hit because a lot of time is spend on I/Os that update on-disk space accounting metadata. Specifically, we seen cases where 20% to 40% of sync time is spend after sync pass 1 and ~30% of the I/Os on the system is spent updating spacemaps. The problem is that these pools have existed long enough that we've touched almost every metaslab at least once, and random writes scatter frees across all metaslabs every TXG, thus appending to their spacemaps and resulting in many I/Os. To give an example, assuming that every VDEV has 200 metaslabs and our writes fit within a single spacemap block (generally 4K) we have 200 I/Os. Then if we assume 2 levels of indirection, we need 400 additional I/Os and since we are talking about metadata for which we keep 2 extra copies for redundancy we need to triple that number, leading to a total of 1800 I/Os per VDEV every TXG. We could try and decrease the number of metaslabs so we have less I/Os per TXG but then each metaslab would cover a wider range on disk and thus would take more time to be loaded in memory from disk. In addition, after it's loaded, it's range tree would consume more memory. Another idea would be to just increase the spacemap block size which would allow us to fit more entries within an I/O block resulting in fewer I/Os per metaslab and a speedup in loading time. The problem is still that we don't deal with the number of I/Os going up as the number of metaslabs is increasing and the fact is that we generally write a lot to a few metaslabs and a little to the rest of them. Thus, just increasing the block size would actually waste bandwidth because we won't be utilizing our bigger block size. = About this patch This patch introduces the Log Spacemap project which provides the solution to the above problem while taking into account all the aforementioned tradeoffs. The details on how it achieves that can be found in the references sections below and in the code (see Big Theory Statement in spa_log_spacemap.c). Even though the change is fairly constraint within the metaslab and lower-level SPA codepaths, there is a side-change that is user-facing. The change is that VDEV IDs from VDEV holes will no longer be reused. To give some background and reasoning for this, when a log device is removed and its VDEV structure was replaced with a hole (or was compacted; if at the end of the vdev array), its vdev_id could be reused by devices added after that. Now with the pool-wide space maps recording the vdev ID, this behavior can cause problems (e.g. is this entry referring to a segment in the new vdev or the removed log?). Thus, to simplify things the ID reuse behavior is gone and now vdev IDs for top-level vdevs are truly unique within a pool. = Testing The illumos implementation of this feature has been used internally for a year and has been in production for ~6 months. For this patch specifically there don't seem to be any regressions introduced to ZTS and I have been running zloop for a week without any related problems. = Performance Analysis (Linux Specific) All performance results and analysis for illumos can be found in the links of the references. Redoing the same experiments in Linux gave similar results. Below are the specifics of the Linux run. After the pool reached stable state the percentage of the time spent in pass 1 per TXG was 64% on average for the stock bits while the log spacemap bits stayed at 95% during the experiment (graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png). Sync times per TXG were 37.6 seconds on average for the stock bits and 22.7 seconds for the log spacemap bits (related graph: sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result the log spacemap bits were able to push more TXGs, which is also the reason why all graphs quantified per TXG have more entries for the log spacemap bits. Another interesting aspect in terms of txg syncs is that the stock bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8, and 20% reach 9. The log space map bits reached sync pass 4 in 79% of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This emphasizes the fact that not only we spend less time on metadata but we also iterate less times to convergence in spa_sync() dirtying objects. [related graphs: stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png] Finally, the improvement in IOPs that the userland gains from the change is approximately 40%. There is a consistent win in IOPS as you can see from the graphs below but the absolute amount of improvement that the log spacemap gives varies within each minute interval. sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png = Porting to Other Platforms For people that want to port this commit to other platforms below is a list of ZoL commits that this patch depends on: Make zdb results for checkpoint tests consistent db587941c5ff6dea01932bb78f70db63cf7f38ba Update vdev_is_spacemap_addressable() for new spacemap encoding 419ba5914552c6185afbe1dd17b3ed4b0d526547 Simplify spa_sync by breaking it up to smaller functions 8dc2197b7b1e4d7ebc1420ea30e51c6541f1d834 Factor metaslab_load_wait() in metaslab_load() b194fab0fb6caad18711abccaff3c69ad8b3f6d3 Rename range_tree_verify to range_tree_verify_not_present df72b8bebe0ebac0b20e0750984bad182cb6564a Change target size of metaslabs from 256GB to 16GB c853f382db731e15a87512f4ef1101d14d778a55 zdb -L should skip leak detection altogether 21e7cf5da89f55ce98ec1115726b150e19eefe89 vs_alloc can underflow in L2ARC vdevs 7558997d2f808368867ca7e5234e5793446e8f3f Simplify log vdev removal code 6c926f426a26ffb6d7d8e563e33fc176164175cb Get rid of space_map_update() for ms_synced_length 425d3237ee88abc53d8522a7139c926d278b4b7f Introduce auxiliary metaslab histograms 928e8ad47d3478a3d5d01f0dd6ae74a9371af65e Error path in metaslab_load_impl() forgets to drop ms_sync_lock 8eef997679ba54547f7d361553d21b3291f41ae7 = References Background, Motivation, and Internals of the Feature - OpenZFS 2017 Presentation: youtu.be/jj2IxRkl5bQ - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project Flushing Algorithm Internals & Performance Results (Illumos Specific) - Blogpost: sdimitro.github.io/post/zfs-lsm-flushing/ - OpenZFS 2018 Presentation: youtu.be/x6D2dHRjkxw - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm Upstream Delphix Issues: DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320 DLPX-63385 Reviewed-by: Sean Eric Fagan <sef@ixsystems.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8442
2019-07-16 17:11:49 +00:00
* with writers [see metaslab_sync() or metaslab_flush()].
Get rid of space_map_update() for ms_synced_length Initially, metaslabs and space maps used to be the same thing in ZFS. Later, we started differentiating them by referring to the space map as the on-disk state of the metaslab, making the metaslab a higher-level concept that is metadata that deals with space accounting. Today we've managed to split that code furthermore, with the space map being its own on-disk data structure used in areas of ZFS besides metaslabs (e.g. the vdev-wide space maps used for zpool checkpoint or vdev removal features). This patch refactors the space map code to further split the space map code from the metaslab code. It does so by getting rid of the idea that the space map can have a different in-core and on-disk length (sm_length vs smp_length) which is something that is only used for the metaslab code, and other consumers of space maps just have to deal with. Instead, this patch introduces changes that move the old in-core length of the metaslab's space map to the metaslab structure itself (see ms_synced_length field) while making the space map code only care about the actual space map's length on-disk. The result of this is that space map consumers no longer have to deal with syncing two different lengths for the same structure (e.g. space_map_update() goes away) while metaslab specific behavior stays within the metaslab code. Specifically, the ms_synced_length field keeps track of the amount of data metaslab_load() can read from the metaslab's space map while working concurrently with metaslab_sync() that may be appending to that same space map. As a side note, the patch also adds a few comments around the metaslab code documenting some assumptions and expected behavior. Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8328
2019-02-12 18:38:11 +00:00
*
* Note that metaslab_load(), even though a reader, uses
* a completely different mechanism to deal with the reading
* of the metaslab's space map based on ms_synced_length. That
* said, the function still uses the ms_sync_lock after it
* has read the ms_sm [see relevant comment in metaslab_load()
* as to why].
*/
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 16:30:13 +00:00
kmutex_t ms_sync_lock;
Get rid of space_map_update() for ms_synced_length Initially, metaslabs and space maps used to be the same thing in ZFS. Later, we started differentiating them by referring to the space map as the on-disk state of the metaslab, making the metaslab a higher-level concept that is metadata that deals with space accounting. Today we've managed to split that code furthermore, with the space map being its own on-disk data structure used in areas of ZFS besides metaslabs (e.g. the vdev-wide space maps used for zpool checkpoint or vdev removal features). This patch refactors the space map code to further split the space map code from the metaslab code. It does so by getting rid of the idea that the space map can have a different in-core and on-disk length (sm_length vs smp_length) which is something that is only used for the metaslab code, and other consumers of space maps just have to deal with. Instead, this patch introduces changes that move the old in-core length of the metaslab's space map to the metaslab structure itself (see ms_synced_length field) while making the space map code only care about the actual space map's length on-disk. The result of this is that space map consumers no longer have to deal with syncing two different lengths for the same structure (e.g. space_map_update() goes away) while metaslab specific behavior stays within the metaslab code. Specifically, the ms_synced_length field keeps track of the amount of data metaslab_load() can read from the metaslab's space map while working concurrently with metaslab_sync() that may be appending to that same space map. As a side note, the patch also adds a few comments around the metaslab code documenting some assumptions and expected behavior. Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8328
2019-02-12 18:38:11 +00:00
Illumos #4101, #4102, #4103, #4105, #4106 4101 metaslab_debug should allow for fine-grained control 4102 space_maps should store more information about themselves 4103 space map object blocksize should be increased 4105 removing a mirrored log device results in a leaked object 4106 asynchronously load metaslab Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Sebastien Roy <seb@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> Prior to this patch, space_maps were preferred solely based on the amount of free space left in each. Unfortunately, this heuristic didn't contain any information about the make-up of that free space, which meant we could keep preferring and loading a highly fragmented space map that wouldn't actually have enough contiguous space to satisfy the allocation; then unloading that space_map and repeating the process. This change modifies the space_map's to store additional information about the contiguous space in the space_map, so that we can use this information to make a better decision about which space_map to load. This requires reallocating all space_map objects to increase their bonus buffer size sizes enough to fit the new metadata. The above feature can be enabled via a new feature flag introduced by this change: com.delphix:spacemap_histogram In addition to the above, this patch allows the space_map block size to be increase. Currently the block size is set to be 4K in size, which has certain implications including the following: * 4K sector devices will not see any compression benefit * large space_maps require more metadata on-disk * large space_maps require more time to load (typically random reads) Now the space_map block size can adjust as needed up to the maximum size set via the space_map_max_blksz variable. A bug was fixed which resulted in potentially leaking an object when removing a mirrored log device. The previous logic for vdev_remove() did not deal with removing top-level vdevs that are interior vdevs (i.e. mirror) correctly. The problem would occur when removing a mirrored log device, and result in the DTL space map object being leaked; because top-level vdevs don't have DTL space map objects associated with them. References: https://www.illumos.org/issues/4101 https://www.illumos.org/issues/4102 https://www.illumos.org/issues/4103 https://www.illumos.org/issues/4105 https://www.illumos.org/issues/4106 https://github.com/illumos/illumos-gate/commit/0713e23 Porting notes: A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also, the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary. Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2488
2013-10-01 21:25:53 +00:00
kcondvar_t ms_load_cv;
space_map_t *ms_sm;
uint64_t ms_id;
uint64_t ms_start;
uint64_t ms_size;
Illumos 4976-4984 - metaslab improvements 4976 zfs should only avoid writing to a failing non-redundant top-level vdev 4978 ztest fails in get_metaslab_refcount() 4979 extend free space histogram to device and pool 4980 metaslabs should have a fragmentation metric 4981 remove fragmented ops vector from block allocator 4982 space_map object should proactively upgrade when feature is enabled 4983 need to collect metaslab information via mdb 4984 device selection should use fragmentation metric Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <adam.leventhal@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> References: https://www.illumos.org/issues/4976 https://www.illumos.org/issues/4978 https://www.illumos.org/issues/4979 https://www.illumos.org/issues/4980 https://www.illumos.org/issues/4981 https://www.illumos.org/issues/4982 https://www.illumos.org/issues/4983 https://www.illumos.org/issues/4984 https://github.com/illumos/illumos-gate/commit/2e4c998 Notes: The "zdb -M" option has been re-tasked to display the new metaslab fragmentation metric and the new "zdb -I" option is used to control the maximum number of in-flight I/Os. The new fragmentation metric is derived from the space map histogram which has been rolled up to the vdev and pool level and is presented to the user via "zpool list". Add a number of module parameters related to the new metaslab weighting logic. Ported by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2595
2014-07-19 20:19:24 +00:00
uint64_t ms_fragmentation;
Illumos #4101, #4102, #4103, #4105, #4106 4101 metaslab_debug should allow for fine-grained control 4102 space_maps should store more information about themselves 4103 space map object blocksize should be increased 4105 removing a mirrored log device results in a leaked object 4106 asynchronously load metaslab Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Sebastien Roy <seb@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> Prior to this patch, space_maps were preferred solely based on the amount of free space left in each. Unfortunately, this heuristic didn't contain any information about the make-up of that free space, which meant we could keep preferring and loading a highly fragmented space map that wouldn't actually have enough contiguous space to satisfy the allocation; then unloading that space_map and repeating the process. This change modifies the space_map's to store additional information about the contiguous space in the space_map, so that we can use this information to make a better decision about which space_map to load. This requires reallocating all space_map objects to increase their bonus buffer size sizes enough to fit the new metadata. The above feature can be enabled via a new feature flag introduced by this change: com.delphix:spacemap_histogram In addition to the above, this patch allows the space_map block size to be increase. Currently the block size is set to be 4K in size, which has certain implications including the following: * 4K sector devices will not see any compression benefit * large space_maps require more metadata on-disk * large space_maps require more time to load (typically random reads) Now the space_map block size can adjust as needed up to the maximum size set via the space_map_max_blksz variable. A bug was fixed which resulted in potentially leaking an object when removing a mirrored log device. The previous logic for vdev_remove() did not deal with removing top-level vdevs that are interior vdevs (i.e. mirror) correctly. The problem would occur when removing a mirrored log device, and result in the DTL space map object being leaked; because top-level vdevs don't have DTL space map objects associated with them. References: https://www.illumos.org/issues/4101 https://www.illumos.org/issues/4102 https://www.illumos.org/issues/4103 https://www.illumos.org/issues/4105 https://www.illumos.org/issues/4106 https://github.com/illumos/illumos-gate/commit/0713e23 Porting notes: A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also, the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary. Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2488
2013-10-01 21:25:53 +00:00
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-16 22:11:29 +00:00
range_tree_t *ms_allocating[TXG_SIZE];
range_tree_t *ms_allocatable;
Get rid of space_map_update() for ms_synced_length Initially, metaslabs and space maps used to be the same thing in ZFS. Later, we started differentiating them by referring to the space map as the on-disk state of the metaslab, making the metaslab a higher-level concept that is metadata that deals with space accounting. Today we've managed to split that code furthermore, with the space map being its own on-disk data structure used in areas of ZFS besides metaslabs (e.g. the vdev-wide space maps used for zpool checkpoint or vdev removal features). This patch refactors the space map code to further split the space map code from the metaslab code. It does so by getting rid of the idea that the space map can have a different in-core and on-disk length (sm_length vs smp_length) which is something that is only used for the metaslab code, and other consumers of space maps just have to deal with. Instead, this patch introduces changes that move the old in-core length of the metaslab's space map to the metaslab structure itself (see ms_synced_length field) while making the space map code only care about the actual space map's length on-disk. The result of this is that space map consumers no longer have to deal with syncing two different lengths for the same structure (e.g. space_map_update() goes away) while metaslab specific behavior stays within the metaslab code. Specifically, the ms_synced_length field keeps track of the amount of data metaslab_load() can read from the metaslab's space map while working concurrently with metaslab_sync() that may be appending to that same space map. As a side note, the patch also adds a few comments around the metaslab code documenting some assumptions and expected behavior. Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8328
2019-02-12 18:38:11 +00:00
uint64_t ms_allocated_this_txg;
uint64_t ms_allocating_total;
Illumos #4101, #4102, #4103, #4105, #4106 4101 metaslab_debug should allow for fine-grained control 4102 space_maps should store more information about themselves 4103 space map object blocksize should be increased 4105 removing a mirrored log device results in a leaked object 4106 asynchronously load metaslab Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Sebastien Roy <seb@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> Prior to this patch, space_maps were preferred solely based on the amount of free space left in each. Unfortunately, this heuristic didn't contain any information about the make-up of that free space, which meant we could keep preferring and loading a highly fragmented space map that wouldn't actually have enough contiguous space to satisfy the allocation; then unloading that space_map and repeating the process. This change modifies the space_map's to store additional information about the contiguous space in the space_map, so that we can use this information to make a better decision about which space_map to load. This requires reallocating all space_map objects to increase their bonus buffer size sizes enough to fit the new metadata. The above feature can be enabled via a new feature flag introduced by this change: com.delphix:spacemap_histogram In addition to the above, this patch allows the space_map block size to be increase. Currently the block size is set to be 4K in size, which has certain implications including the following: * 4K sector devices will not see any compression benefit * large space_maps require more metadata on-disk * large space_maps require more time to load (typically random reads) Now the space_map block size can adjust as needed up to the maximum size set via the space_map_max_blksz variable. A bug was fixed which resulted in potentially leaking an object when removing a mirrored log device. The previous logic for vdev_remove() did not deal with removing top-level vdevs that are interior vdevs (i.e. mirror) correctly. The problem would occur when removing a mirrored log device, and result in the DTL space map object being leaked; because top-level vdevs don't have DTL space map objects associated with them. References: https://www.illumos.org/issues/4101 https://www.illumos.org/issues/4102 https://www.illumos.org/issues/4103 https://www.illumos.org/issues/4105 https://www.illumos.org/issues/4106 https://github.com/illumos/illumos-gate/commit/0713e23 Porting notes: A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also, the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary. Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2488
2013-10-01 21:25:53 +00:00
/*
* The following range trees are accessed only from syncing context.
* ms_free*tree only have entries while syncing, and are empty
* between syncs.
*/
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-16 22:11:29 +00:00
range_tree_t *ms_freeing; /* to free this syncing txg */
range_tree_t *ms_freed; /* already freed this syncing txg */
range_tree_t *ms_defer[TXG_DEFER_SIZE];
range_tree_t *ms_checkpointing; /* to add to the checkpoint */
Add TRIM support UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Contributions-by: Tim Chase <tim@chase2k.com> Contributions-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8419 Closes #598
2019-03-29 16:13:20 +00:00
/*
* The ms_trim tree is the set of allocatable segments which are
* eligible for trimming. (When the metaslab is loaded, it's a
* subset of ms_allocatable.) It's kept in-core as long as the
* autotrim property is set and is not vacated when the metaslab
* is unloaded. Its purpose is to aggregate freed ranges to
* facilitate efficient trimming.
*/
range_tree_t *ms_trim;
Illumos #4101, #4102, #4103, #4105, #4106 4101 metaslab_debug should allow for fine-grained control 4102 space_maps should store more information about themselves 4103 space map object blocksize should be increased 4105 removing a mirrored log device results in a leaked object 4106 asynchronously load metaslab Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Sebastien Roy <seb@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> Prior to this patch, space_maps were preferred solely based on the amount of free space left in each. Unfortunately, this heuristic didn't contain any information about the make-up of that free space, which meant we could keep preferring and loading a highly fragmented space map that wouldn't actually have enough contiguous space to satisfy the allocation; then unloading that space_map and repeating the process. This change modifies the space_map's to store additional information about the contiguous space in the space_map, so that we can use this information to make a better decision about which space_map to load. This requires reallocating all space_map objects to increase their bonus buffer size sizes enough to fit the new metadata. The above feature can be enabled via a new feature flag introduced by this change: com.delphix:spacemap_histogram In addition to the above, this patch allows the space_map block size to be increase. Currently the block size is set to be 4K in size, which has certain implications including the following: * 4K sector devices will not see any compression benefit * large space_maps require more metadata on-disk * large space_maps require more time to load (typically random reads) Now the space_map block size can adjust as needed up to the maximum size set via the space_map_max_blksz variable. A bug was fixed which resulted in potentially leaking an object when removing a mirrored log device. The previous logic for vdev_remove() did not deal with removing top-level vdevs that are interior vdevs (i.e. mirror) correctly. The problem would occur when removing a mirrored log device, and result in the DTL space map object being leaked; because top-level vdevs don't have DTL space map objects associated with them. References: https://www.illumos.org/issues/4101 https://www.illumos.org/issues/4102 https://www.illumos.org/issues/4103 https://www.illumos.org/issues/4105 https://www.illumos.org/issues/4106 https://github.com/illumos/illumos-gate/commit/0713e23 Porting notes: A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also, the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary. Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2488
2013-10-01 21:25:53 +00:00
boolean_t ms_condensing; /* condensing? */
Illumos 4976-4984 - metaslab improvements 4976 zfs should only avoid writing to a failing non-redundant top-level vdev 4978 ztest fails in get_metaslab_refcount() 4979 extend free space histogram to device and pool 4980 metaslabs should have a fragmentation metric 4981 remove fragmented ops vector from block allocator 4982 space_map object should proactively upgrade when feature is enabled 4983 need to collect metaslab information via mdb 4984 device selection should use fragmentation metric Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <adam.leventhal@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> References: https://www.illumos.org/issues/4976 https://www.illumos.org/issues/4978 https://www.illumos.org/issues/4979 https://www.illumos.org/issues/4980 https://www.illumos.org/issues/4981 https://www.illumos.org/issues/4982 https://www.illumos.org/issues/4983 https://www.illumos.org/issues/4984 https://github.com/illumos/illumos-gate/commit/2e4c998 Notes: The "zdb -M" option has been re-tasked to display the new metaslab fragmentation metric and the new "zdb -I" option is used to control the maximum number of in-flight I/Os. The new fragmentation metric is derived from the space map histogram which has been rolled up to the vdev and pool level and is presented to the user via "zpool list". Add a number of module parameters related to the new metaslab weighting logic. Ported by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2595
2014-07-19 20:19:24 +00:00
boolean_t ms_condense_wanted;
Add TRIM support UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Contributions-by: Tim Chase <tim@chase2k.com> Contributions-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8419 Closes #598
2019-03-29 16:13:20 +00:00
/*
* The number of consumers which have disabled the metaslab.
*/
uint64_t ms_disabled;
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 14:54:59 +00:00
/*
* We must always hold the ms_lock when modifying ms_loaded
* and ms_loading.
*/
Illumos #4101, #4102, #4103, #4105, #4106 4101 metaslab_debug should allow for fine-grained control 4102 space_maps should store more information about themselves 4103 space map object blocksize should be increased 4105 removing a mirrored log device results in a leaked object 4106 asynchronously load metaslab Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Sebastien Roy <seb@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> Prior to this patch, space_maps were preferred solely based on the amount of free space left in each. Unfortunately, this heuristic didn't contain any information about the make-up of that free space, which meant we could keep preferring and loading a highly fragmented space map that wouldn't actually have enough contiguous space to satisfy the allocation; then unloading that space_map and repeating the process. This change modifies the space_map's to store additional information about the contiguous space in the space_map, so that we can use this information to make a better decision about which space_map to load. This requires reallocating all space_map objects to increase their bonus buffer size sizes enough to fit the new metadata. The above feature can be enabled via a new feature flag introduced by this change: com.delphix:spacemap_histogram In addition to the above, this patch allows the space_map block size to be increase. Currently the block size is set to be 4K in size, which has certain implications including the following: * 4K sector devices will not see any compression benefit * large space_maps require more metadata on-disk * large space_maps require more time to load (typically random reads) Now the space_map block size can adjust as needed up to the maximum size set via the space_map_max_blksz variable. A bug was fixed which resulted in potentially leaking an object when removing a mirrored log device. The previous logic for vdev_remove() did not deal with removing top-level vdevs that are interior vdevs (i.e. mirror) correctly. The problem would occur when removing a mirrored log device, and result in the DTL space map object being leaked; because top-level vdevs don't have DTL space map objects associated with them. References: https://www.illumos.org/issues/4101 https://www.illumos.org/issues/4102 https://www.illumos.org/issues/4103 https://www.illumos.org/issues/4105 https://www.illumos.org/issues/4106 https://github.com/illumos/illumos-gate/commit/0713e23 Porting notes: A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also, the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary. Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2488
2013-10-01 21:25:53 +00:00
boolean_t ms_loaded;
boolean_t ms_loading;
Log Spacemap Project = Motivation At Delphix we've seen a lot of customer systems where fragmentation is over 75% and random writes take a performance hit because a lot of time is spend on I/Os that update on-disk space accounting metadata. Specifically, we seen cases where 20% to 40% of sync time is spend after sync pass 1 and ~30% of the I/Os on the system is spent updating spacemaps. The problem is that these pools have existed long enough that we've touched almost every metaslab at least once, and random writes scatter frees across all metaslabs every TXG, thus appending to their spacemaps and resulting in many I/Os. To give an example, assuming that every VDEV has 200 metaslabs and our writes fit within a single spacemap block (generally 4K) we have 200 I/Os. Then if we assume 2 levels of indirection, we need 400 additional I/Os and since we are talking about metadata for which we keep 2 extra copies for redundancy we need to triple that number, leading to a total of 1800 I/Os per VDEV every TXG. We could try and decrease the number of metaslabs so we have less I/Os per TXG but then each metaslab would cover a wider range on disk and thus would take more time to be loaded in memory from disk. In addition, after it's loaded, it's range tree would consume more memory. Another idea would be to just increase the spacemap block size which would allow us to fit more entries within an I/O block resulting in fewer I/Os per metaslab and a speedup in loading time. The problem is still that we don't deal with the number of I/Os going up as the number of metaslabs is increasing and the fact is that we generally write a lot to a few metaslabs and a little to the rest of them. Thus, just increasing the block size would actually waste bandwidth because we won't be utilizing our bigger block size. = About this patch This patch introduces the Log Spacemap project which provides the solution to the above problem while taking into account all the aforementioned tradeoffs. The details on how it achieves that can be found in the references sections below and in the code (see Big Theory Statement in spa_log_spacemap.c). Even though the change is fairly constraint within the metaslab and lower-level SPA codepaths, there is a side-change that is user-facing. The change is that VDEV IDs from VDEV holes will no longer be reused. To give some background and reasoning for this, when a log device is removed and its VDEV structure was replaced with a hole (or was compacted; if at the end of the vdev array), its vdev_id could be reused by devices added after that. Now with the pool-wide space maps recording the vdev ID, this behavior can cause problems (e.g. is this entry referring to a segment in the new vdev or the removed log?). Thus, to simplify things the ID reuse behavior is gone and now vdev IDs for top-level vdevs are truly unique within a pool. = Testing The illumos implementation of this feature has been used internally for a year and has been in production for ~6 months. For this patch specifically there don't seem to be any regressions introduced to ZTS and I have been running zloop for a week without any related problems. = Performance Analysis (Linux Specific) All performance results and analysis for illumos can be found in the links of the references. Redoing the same experiments in Linux gave similar results. Below are the specifics of the Linux run. After the pool reached stable state the percentage of the time spent in pass 1 per TXG was 64% on average for the stock bits while the log spacemap bits stayed at 95% during the experiment (graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png). Sync times per TXG were 37.6 seconds on average for the stock bits and 22.7 seconds for the log spacemap bits (related graph: sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result the log spacemap bits were able to push more TXGs, which is also the reason why all graphs quantified per TXG have more entries for the log spacemap bits. Another interesting aspect in terms of txg syncs is that the stock bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8, and 20% reach 9. The log space map bits reached sync pass 4 in 79% of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This emphasizes the fact that not only we spend less time on metadata but we also iterate less times to convergence in spa_sync() dirtying objects. [related graphs: stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png] Finally, the improvement in IOPs that the userland gains from the change is approximately 40%. There is a consistent win in IOPS as you can see from the graphs below but the absolute amount of improvement that the log spacemap gives varies within each minute interval. sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png = Porting to Other Platforms For people that want to port this commit to other platforms below is a list of ZoL commits that this patch depends on: Make zdb results for checkpoint tests consistent db587941c5ff6dea01932bb78f70db63cf7f38ba Update vdev_is_spacemap_addressable() for new spacemap encoding 419ba5914552c6185afbe1dd17b3ed4b0d526547 Simplify spa_sync by breaking it up to smaller functions 8dc2197b7b1e4d7ebc1420ea30e51c6541f1d834 Factor metaslab_load_wait() in metaslab_load() b194fab0fb6caad18711abccaff3c69ad8b3f6d3 Rename range_tree_verify to range_tree_verify_not_present df72b8bebe0ebac0b20e0750984bad182cb6564a Change target size of metaslabs from 256GB to 16GB c853f382db731e15a87512f4ef1101d14d778a55 zdb -L should skip leak detection altogether 21e7cf5da89f55ce98ec1115726b150e19eefe89 vs_alloc can underflow in L2ARC vdevs 7558997d2f808368867ca7e5234e5793446e8f3f Simplify log vdev removal code 6c926f426a26ffb6d7d8e563e33fc176164175cb Get rid of space_map_update() for ms_synced_length 425d3237ee88abc53d8522a7139c926d278b4b7f Introduce auxiliary metaslab histograms 928e8ad47d3478a3d5d01f0dd6ae74a9371af65e Error path in metaslab_load_impl() forgets to drop ms_sync_lock 8eef997679ba54547f7d361553d21b3291f41ae7 = References Background, Motivation, and Internals of the Feature - OpenZFS 2017 Presentation: youtu.be/jj2IxRkl5bQ - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project Flushing Algorithm Internals & Performance Results (Illumos Specific) - Blogpost: sdimitro.github.io/post/zfs-lsm-flushing/ - OpenZFS 2018 Presentation: youtu.be/x6D2dHRjkxw - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm Upstream Delphix Issues: DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320 DLPX-63385 Reviewed-by: Sean Eric Fagan <sef@ixsystems.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8442
2019-07-16 17:11:49 +00:00
kcondvar_t ms_flush_cv;
boolean_t ms_flushing;
Illumos #4101, #4102, #4103, #4105, #4106 4101 metaslab_debug should allow for fine-grained control 4102 space_maps should store more information about themselves 4103 space map object blocksize should be increased 4105 removing a mirrored log device results in a leaked object 4106 asynchronously load metaslab Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Sebastien Roy <seb@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> Prior to this patch, space_maps were preferred solely based on the amount of free space left in each. Unfortunately, this heuristic didn't contain any information about the make-up of that free space, which meant we could keep preferring and loading a highly fragmented space map that wouldn't actually have enough contiguous space to satisfy the allocation; then unloading that space_map and repeating the process. This change modifies the space_map's to store additional information about the contiguous space in the space_map, so that we can use this information to make a better decision about which space_map to load. This requires reallocating all space_map objects to increase their bonus buffer size sizes enough to fit the new metadata. The above feature can be enabled via a new feature flag introduced by this change: com.delphix:spacemap_histogram In addition to the above, this patch allows the space_map block size to be increase. Currently the block size is set to be 4K in size, which has certain implications including the following: * 4K sector devices will not see any compression benefit * large space_maps require more metadata on-disk * large space_maps require more time to load (typically random reads) Now the space_map block size can adjust as needed up to the maximum size set via the space_map_max_blksz variable. A bug was fixed which resulted in potentially leaking an object when removing a mirrored log device. The previous logic for vdev_remove() did not deal with removing top-level vdevs that are interior vdevs (i.e. mirror) correctly. The problem would occur when removing a mirrored log device, and result in the DTL space map object being leaked; because top-level vdevs don't have DTL space map objects associated with them. References: https://www.illumos.org/issues/4101 https://www.illumos.org/issues/4102 https://www.illumos.org/issues/4103 https://www.illumos.org/issues/4105 https://www.illumos.org/issues/4106 https://github.com/illumos/illumos-gate/commit/0713e23 Porting notes: A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also, the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary. Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2488
2013-10-01 21:25:53 +00:00
Introduce auxiliary metaslab histograms This patch introduces 3 new histograms per metaslab. These histograms track segments that have made it to the metaslab's space map histogram (and are part of the spacemap) but have not yet reached the ms_allocatable tree on loaded metaslab's because these metaslab's are currently syncing and haven't gone through metaslab_sync_done() yet. The histograms help when we decide whether to load an unloaded metaslab in-order to allocate from it. When calculating the weight of an unloaded metaslab traditionally, we look at the highest bucket of its spacemap's histogram. The problem is that we are not guaranteed to be able to allocated that segment when we load the metaslab because it may still be at the freeing, freed, or defer trees. The new histograms are used when we try to calculate an unloaded metaslab's weight to deal with this issue by removing segments that have would not be in the allocatable tree at runtime. Note, that this method of dealing with this is not completely accurate as adjacent segments are not always consolidated in the space map histogram of a metaslab. In addition and to make things deterministic, we always reset the weight of unloaded metaslabs based on their space map weight (instead of doing that on a need basis). Thus, every time a metaslab is loaded and its weight is reset again (from the weight based on its space map to the one based on its allocatable range tree) we expect (and assert) that this change in weight can only get better if it doesn't stay the same. Reviewed by: Paul Dagnelie <pcd@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Matt Ahrens <mahrens@delphix.com> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8358
2019-02-20 17:59:57 +00:00
/*
* The following histograms count entries that are in the
* metaslab's space map (and its histogram) but are not in
* ms_allocatable yet, because they are in ms_freed, ms_freeing,
* or ms_defer[].
*
* When the metaslab is not loaded, its ms_weight needs to
* reflect what is allocatable (i.e. what will be part of
* ms_allocatable if it is loaded). The weight is computed from
* the spacemap histogram, but that includes ranges that are
* not yet allocatable (because they are in ms_freed,
* ms_freeing, or ms_defer[]). Therefore, when calculating the
* weight, we need to remove those ranges.
*
* The ranges in the ms_freed and ms_defer[] range trees are all
* present in the spacemap. However, the spacemap may have
* multiple entries to represent a contiguous range, because it
* is written across multiple sync passes, but the changes of
* all sync passes are consolidated into the range trees.
* Adjacent ranges that are freed in different sync passes of
* one txg will be represented separately (as 2 or more entries)
* in the space map (and its histogram), but these adjacent
* ranges will be consolidated (represented as one entry) in the
* ms_freed/ms_defer[] range trees (and their histograms).
*
* When calculating the weight, we can not simply subtract the
* range trees' histograms from the spacemap's histogram,
* because the range trees' histograms may have entries in
* higher buckets than the spacemap, due to consolidation.
* Instead we must subtract the exact entries that were added to
* the spacemap's histogram. ms_synchist and ms_deferhist[]
* represent these exact entries, so we can subtract them from
* the spacemap's histogram when calculating ms_weight.
*
* ms_synchist represents the same ranges as ms_freeing +
* ms_freed, but without consolidation across sync passes.
*
* ms_deferhist[i] represents the same ranges as ms_defer[i],
* but without consolidation across sync passes.
*/
uint64_t ms_synchist[SPACE_MAP_HISTOGRAM_SIZE];
uint64_t ms_deferhist[TXG_DEFER_SIZE][SPACE_MAP_HISTOGRAM_SIZE];
Get rid of space_map_update() for ms_synced_length Initially, metaslabs and space maps used to be the same thing in ZFS. Later, we started differentiating them by referring to the space map as the on-disk state of the metaslab, making the metaslab a higher-level concept that is metadata that deals with space accounting. Today we've managed to split that code furthermore, with the space map being its own on-disk data structure used in areas of ZFS besides metaslabs (e.g. the vdev-wide space maps used for zpool checkpoint or vdev removal features). This patch refactors the space map code to further split the space map code from the metaslab code. It does so by getting rid of the idea that the space map can have a different in-core and on-disk length (sm_length vs smp_length) which is something that is only used for the metaslab code, and other consumers of space maps just have to deal with. Instead, this patch introduces changes that move the old in-core length of the metaslab's space map to the metaslab structure itself (see ms_synced_length field) while making the space map code only care about the actual space map's length on-disk. The result of this is that space map consumers no longer have to deal with syncing two different lengths for the same structure (e.g. space_map_update() goes away) while metaslab specific behavior stays within the metaslab code. Specifically, the ms_synced_length field keeps track of the amount of data metaslab_load() can read from the metaslab's space map while working concurrently with metaslab_sync() that may be appending to that same space map. As a side note, the patch also adds a few comments around the metaslab code documenting some assumptions and expected behavior. Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8328
2019-02-12 18:38:11 +00:00
/*
* Tracks the exact amount of allocated space of this metaslab
* (and specifically the metaslab's space map) up to the most
* recently completed sync pass [see usage in metaslab_sync()].
*/
uint64_t ms_allocated_space;
int64_t ms_deferspace; /* sum of ms_defermap[] space */
2008-11-20 20:01:55 +00:00
uint64_t ms_weight; /* weight vs. others in group */
uint64_t ms_activation_weight; /* activation weight */
/*
* Track of whenever a metaslab is selected for loading or allocation.
* We use this value to determine how long the metaslab should
* stay cached.
*/
uint64_t ms_selected_txg;
/*
* ms_load/unload_time can be used for performance monitoring
* (e.g. by dtrace or mdb).
*/
hrtime_t ms_load_time; /* time last loaded */
hrtime_t ms_unload_time; /* time last unloaded */
hrtime_t ms_selected_time; /* time last allocated from */
uint64_t ms_alloc_txg; /* last successful alloc (debug only) */
uint64_t ms_max_size; /* maximum allocatable size */
Illumos #4101, #4102, #4103, #4105, #4106 4101 metaslab_debug should allow for fine-grained control 4102 space_maps should store more information about themselves 4103 space map object blocksize should be increased 4105 removing a mirrored log device results in a leaked object 4106 asynchronously load metaslab Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Sebastien Roy <seb@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> Prior to this patch, space_maps were preferred solely based on the amount of free space left in each. Unfortunately, this heuristic didn't contain any information about the make-up of that free space, which meant we could keep preferring and loading a highly fragmented space map that wouldn't actually have enough contiguous space to satisfy the allocation; then unloading that space_map and repeating the process. This change modifies the space_map's to store additional information about the contiguous space in the space_map, so that we can use this information to make a better decision about which space_map to load. This requires reallocating all space_map objects to increase their bonus buffer size sizes enough to fit the new metadata. The above feature can be enabled via a new feature flag introduced by this change: com.delphix:spacemap_histogram In addition to the above, this patch allows the space_map block size to be increase. Currently the block size is set to be 4K in size, which has certain implications including the following: * 4K sector devices will not see any compression benefit * large space_maps require more metadata on-disk * large space_maps require more time to load (typically random reads) Now the space_map block size can adjust as needed up to the maximum size set via the space_map_max_blksz variable. A bug was fixed which resulted in potentially leaking an object when removing a mirrored log device. The previous logic for vdev_remove() did not deal with removing top-level vdevs that are interior vdevs (i.e. mirror) correctly. The problem would occur when removing a mirrored log device, and result in the DTL space map object being leaked; because top-level vdevs don't have DTL space map objects associated with them. References: https://www.illumos.org/issues/4101 https://www.illumos.org/issues/4102 https://www.illumos.org/issues/4103 https://www.illumos.org/issues/4105 https://www.illumos.org/issues/4106 https://github.com/illumos/illumos-gate/commit/0713e23 Porting notes: A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also, the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary. Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2488
2013-10-01 21:25:53 +00:00
OpenZFS 9112 - Improve allocation performance on high-end systems Overview ======== We parallelize the allocation process by creating the concept of "allocators". There are a certain number of allocators per metaslab group, defined by the value of a tunable at pool open time. Each allocator for a given metaslab group has up to 2 active metaslabs; one "primary", and one "secondary". The primary and secondary weight mean the same thing they did in in the pre-allocator world; primary metaslabs are used for most allocations, secondary metaslabs are used for ditto blocks being allocated in the same metaslab group. There is also the CLAIM weight, which has been separated out from the other weights, but that is less important to understanding the patch. The active metaslabs for each allocator are moved from their normal place in the metaslab tree for the group to the back of the tree. This way, they will not be selected for use by other allocators searching for new metaslabs unless all the passive metaslabs are unsuitable for allocations. If that does happen, the allocators will "steal" from each other to ensure that IOs don't fail until there is truly no space left to perform allocations. In addition, the alloc queue for each metaslab group has been broken into a separate queue for each allocator. We don't want to dramatically increase the number of inflight IOs on low-end systems, because it can significantly increase txg times. On the other hand, we want to ensure that there are enough IOs for each allocator to allow for good coalescing before sending the IOs to the disk. As a result, we take a compromise path; each allocator's alloc queue max depth starts at a certain value for every txg. Every time an IO completes, we increase the max depth. This should hopefully provide a good balance between the two failure modes, while not dramatically increasing complexity. We also parallelize the spa_alloc_tree and spa_alloc_lock, which cause very similar contention when selecting IOs to allocate. This parallelization uses the same allocator scheme as metaslab selection. Performance Results =================== Performance improvements from this change can vary significantly based on the number of CPUs in the system, whether or not the system has a NUMA architecture, the speed of the drives, the values for the various tunables, and the workload being performed. For an fio async sequential write workload on a 24 core NUMA system with 256 GB of RAM and 8 128 GB SSDs, there is a roughly 25% performance improvement. Future Work =========== Analysis of the performance of the system with this patch applied shows that a significant new bottleneck is the vdev disk queues, which also need to be parallelized. Prototyping of this change has occurred, and there was a performance improvement, but more work needs to be done before its stability has been verified and it is ready to be upstreamed. Authored by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Alexander Motin <mav@FreeBSD.org> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Gordon Ross <gwr@nexenta.com> Ported-by: Paul Dagnelie <pcd@delphix.com> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Porting Notes: * Fix reservation test failures by increasing tolerance. OpenZFS-issue: https://illumos.org/issues/9112 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3f3cc3c3 Closes #7682
2018-02-12 20:56:06 +00:00
/*
* -1 if it's not active in an allocator, otherwise set to the allocator
* this metaslab is active for.
*/
int ms_allocator;
boolean_t ms_primary; /* Only valid if ms_allocator is not -1 */
Illumos #4101, #4102, #4103, #4105, #4106 4101 metaslab_debug should allow for fine-grained control 4102 space_maps should store more information about themselves 4103 space map object blocksize should be increased 4105 removing a mirrored log device results in a leaked object 4106 asynchronously load metaslab Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Sebastien Roy <seb@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> Prior to this patch, space_maps were preferred solely based on the amount of free space left in each. Unfortunately, this heuristic didn't contain any information about the make-up of that free space, which meant we could keep preferring and loading a highly fragmented space map that wouldn't actually have enough contiguous space to satisfy the allocation; then unloading that space_map and repeating the process. This change modifies the space_map's to store additional information about the contiguous space in the space_map, so that we can use this information to make a better decision about which space_map to load. This requires reallocating all space_map objects to increase their bonus buffer size sizes enough to fit the new metadata. The above feature can be enabled via a new feature flag introduced by this change: com.delphix:spacemap_histogram In addition to the above, this patch allows the space_map block size to be increase. Currently the block size is set to be 4K in size, which has certain implications including the following: * 4K sector devices will not see any compression benefit * large space_maps require more metadata on-disk * large space_maps require more time to load (typically random reads) Now the space_map block size can adjust as needed up to the maximum size set via the space_map_max_blksz variable. A bug was fixed which resulted in potentially leaking an object when removing a mirrored log device. The previous logic for vdev_remove() did not deal with removing top-level vdevs that are interior vdevs (i.e. mirror) correctly. The problem would occur when removing a mirrored log device, and result in the DTL space map object being leaked; because top-level vdevs don't have DTL space map objects associated with them. References: https://www.illumos.org/issues/4101 https://www.illumos.org/issues/4102 https://www.illumos.org/issues/4103 https://www.illumos.org/issues/4105 https://www.illumos.org/issues/4106 https://github.com/illumos/illumos-gate/commit/0713e23 Porting notes: A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also, the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary. Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2488
2013-10-01 21:25:53 +00:00
/*
* The metaslab block allocators can optionally use a size-ordered
* range tree and/or an array of LBAs. Not all allocators use
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-16 22:11:29 +00:00
* this functionality. The ms_allocatable_by_size should always
* contain the same number of segments as the ms_allocatable. The
* only difference is that the ms_allocatable_by_size is ordered by
* segment sizes.
Illumos #4101, #4102, #4103, #4105, #4106 4101 metaslab_debug should allow for fine-grained control 4102 space_maps should store more information about themselves 4103 space map object blocksize should be increased 4105 removing a mirrored log device results in a leaked object 4106 asynchronously load metaslab Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Sebastien Roy <seb@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> Prior to this patch, space_maps were preferred solely based on the amount of free space left in each. Unfortunately, this heuristic didn't contain any information about the make-up of that free space, which meant we could keep preferring and loading a highly fragmented space map that wouldn't actually have enough contiguous space to satisfy the allocation; then unloading that space_map and repeating the process. This change modifies the space_map's to store additional information about the contiguous space in the space_map, so that we can use this information to make a better decision about which space_map to load. This requires reallocating all space_map objects to increase their bonus buffer size sizes enough to fit the new metadata. The above feature can be enabled via a new feature flag introduced by this change: com.delphix:spacemap_histogram In addition to the above, this patch allows the space_map block size to be increase. Currently the block size is set to be 4K in size, which has certain implications including the following: * 4K sector devices will not see any compression benefit * large space_maps require more metadata on-disk * large space_maps require more time to load (typically random reads) Now the space_map block size can adjust as needed up to the maximum size set via the space_map_max_blksz variable. A bug was fixed which resulted in potentially leaking an object when removing a mirrored log device. The previous logic for vdev_remove() did not deal with removing top-level vdevs that are interior vdevs (i.e. mirror) correctly. The problem would occur when removing a mirrored log device, and result in the DTL space map object being leaked; because top-level vdevs don't have DTL space map objects associated with them. References: https://www.illumos.org/issues/4101 https://www.illumos.org/issues/4102 https://www.illumos.org/issues/4103 https://www.illumos.org/issues/4105 https://www.illumos.org/issues/4106 https://github.com/illumos/illumos-gate/commit/0713e23 Porting notes: A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also, the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary. Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2488
2013-10-01 21:25:53 +00:00
*/
Reduce loaded range tree memory usage This patch implements a new tree structure for ZFS, and uses it to store range trees more efficiently. The new structure is approximately a B-tree, though there are some small differences from the usual characterizations. The tree has core nodes and leaf nodes; each contain data elements, which the elements in the core nodes acting as separators between its children. The difference between core and leaf nodes is that the core nodes have an array of children, while leaf nodes don't. Every node in the tree may be only partially full; in most cases, they are all at least 50% full (in terms of element count) except for the root node, which can be less full. Underfull nodes will steal from their neighbors or merge to remain full enough, while overfull nodes will split in two. The data elements are contained in tree-controlled buffers; they are copied into these on insertion, and overwritten on deletion. This means that the elements are not independently allocated, which reduces overhead, but also means they can't be shared between trees (and also that pointers to them are only valid until a side-effectful tree operation occurs). The overhead varies based on how dense the tree is, but is usually on the order of about 50% of the element size; the per-node overheads are very small, and so don't make a significant difference. The trees can accept arbitrary records; they accept a size and a comparator to allow them to be used for a variety of purposes. The new trees replace the AVL trees used in the range trees today. Currently, the range_seg_t structure contains three 8 byte integers of payload and two 24 byte avl_tree_node_ts to handle its storage in both an offset-sorted tree and a size-sorted tree (total size: 64 bytes). In the new model, the range seg structures are usually two 4 byte integers, but a separate one needs to exist for the size-sorted and offset-sorted tree. Between the raw size, the 50% overhead, and the double storage, the new btrees are expected to use 8*1.5*2 = 24 bytes per record, or 33.3% as much memory as the AVL trees (this is for the purposes of storing metaslab range trees; for other purposes, like scrubs, they use ~50% as much memory). We reduced the size of the payload in the range segments by teaching range trees about starting offsets and shifts; since metaslabs have a fixed starting offset, and they all operate in terms of disk sectors, we can store the ranges using 4-byte integers as long as the size of the metaslab divided by the sector size is less than 2^32. For 512-byte sectors, this is a 2^41 (or 2TB) metaslab, which with the default settings corresponds to a 256PB disk. 4k sector disks can handle metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not anticipate disks of this size in the near future, there should be almost no cases where metaslabs need 64-byte integers to store their ranges. We do still have the capability to store 64-byte integer ranges to account for cases where we are storing per-vdev (or per-dnode) trees, which could reasonably go above the limits discussed. We also do not store fill information in the compact version of the node, since it is only used for sorted scrub. We also optimized the metaslab loading process in various other ways to offset some inefficiencies in the btree model. While individual operations (find, insert, remove_from) are faster for the btree than they are for the avl tree, remove usually requires a find operation, while in the AVL tree model the element itself suffices. Some clever changes actually caused an overall speedup in metaslab loading; we use approximately 40% less cpu to load metaslabs in our tests on Illumos. Another memory and performance optimization was achieved by changing what is stored in the size-sorted trees. When a disk is heavily fragmented, the df algorithm used by default in ZFS will almost always find a number of small regions in its initial cursor-based search; it will usually only fall back to the size-sorted tree to find larger regions. If we increase the size of the cursor-based search slightly, and don't store segments that are smaller than a tunable size floor in the size-sorted tree, we can further cut memory usage down to below 20% of what the AVL trees store. This also results in further reductions in CPU time spent loading metaslabs. The 16KiB size floor was chosen because it results in substantial memory usage reduction while not usually resulting in situations where we can't find an appropriate chunk with the cursor and are forced to use an oversized chunk from the size-sorted tree. In addition, even if we do have to use an oversized chunk from the size-sorted tree, the chunk would be too small to use for ZIL allocations, so it isn't as big of a loss as it might otherwise be. And often, more small allocations will follow the initial one, and the cursor search will now find the remainder of the chunk we didn't use all of and use it for subsequent allocations. Practical testing has shown little or no change in fragmentation as a result of this change. If the size-sorted tree becomes empty while the offset sorted one still has entries, it will load all the entries from the offset sorted tree and disregard the size floor until it is unloaded again. This operation occurs rarely with the default setting, only on incredibly thoroughly fragmented pools. There are some other small changes to zdb to teach it to handle btrees, but nothing major. Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed by: Sebastien Roy seb@delphix.com Reviewed-by: Igor Kozhukhov <igor@dilos.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #9181
2019-10-09 17:36:03 +00:00
zfs_btree_t ms_allocatable_by_size;
zfs_btree_t ms_unflushed_frees_by_size;
Illumos #4101, #4102, #4103, #4105, #4106 4101 metaslab_debug should allow for fine-grained control 4102 space_maps should store more information about themselves 4103 space map object blocksize should be increased 4105 removing a mirrored log device results in a leaked object 4106 asynchronously load metaslab Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Sebastien Roy <seb@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> Prior to this patch, space_maps were preferred solely based on the amount of free space left in each. Unfortunately, this heuristic didn't contain any information about the make-up of that free space, which meant we could keep preferring and loading a highly fragmented space map that wouldn't actually have enough contiguous space to satisfy the allocation; then unloading that space_map and repeating the process. This change modifies the space_map's to store additional information about the contiguous space in the space_map, so that we can use this information to make a better decision about which space_map to load. This requires reallocating all space_map objects to increase their bonus buffer size sizes enough to fit the new metadata. The above feature can be enabled via a new feature flag introduced by this change: com.delphix:spacemap_histogram In addition to the above, this patch allows the space_map block size to be increase. Currently the block size is set to be 4K in size, which has certain implications including the following: * 4K sector devices will not see any compression benefit * large space_maps require more metadata on-disk * large space_maps require more time to load (typically random reads) Now the space_map block size can adjust as needed up to the maximum size set via the space_map_max_blksz variable. A bug was fixed which resulted in potentially leaking an object when removing a mirrored log device. The previous logic for vdev_remove() did not deal with removing top-level vdevs that are interior vdevs (i.e. mirror) correctly. The problem would occur when removing a mirrored log device, and result in the DTL space map object being leaked; because top-level vdevs don't have DTL space map objects associated with them. References: https://www.illumos.org/issues/4101 https://www.illumos.org/issues/4102 https://www.illumos.org/issues/4103 https://www.illumos.org/issues/4105 https://www.illumos.org/issues/4106 https://github.com/illumos/illumos-gate/commit/0713e23 Porting notes: A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also, the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary. Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2488
2013-10-01 21:25:53 +00:00
uint64_t ms_lbas[MAX_LBAS];
2008-11-20 20:01:55 +00:00
metaslab_group_t *ms_group; /* metaslab group */
avl_node_t ms_group_node; /* node in metaslab group tree */
txg_node_t ms_txg_node; /* per-txg dirty metaslab links */
Log Spacemap Project = Motivation At Delphix we've seen a lot of customer systems where fragmentation is over 75% and random writes take a performance hit because a lot of time is spend on I/Os that update on-disk space accounting metadata. Specifically, we seen cases where 20% to 40% of sync time is spend after sync pass 1 and ~30% of the I/Os on the system is spent updating spacemaps. The problem is that these pools have existed long enough that we've touched almost every metaslab at least once, and random writes scatter frees across all metaslabs every TXG, thus appending to their spacemaps and resulting in many I/Os. To give an example, assuming that every VDEV has 200 metaslabs and our writes fit within a single spacemap block (generally 4K) we have 200 I/Os. Then if we assume 2 levels of indirection, we need 400 additional I/Os and since we are talking about metadata for which we keep 2 extra copies for redundancy we need to triple that number, leading to a total of 1800 I/Os per VDEV every TXG. We could try and decrease the number of metaslabs so we have less I/Os per TXG but then each metaslab would cover a wider range on disk and thus would take more time to be loaded in memory from disk. In addition, after it's loaded, it's range tree would consume more memory. Another idea would be to just increase the spacemap block size which would allow us to fit more entries within an I/O block resulting in fewer I/Os per metaslab and a speedup in loading time. The problem is still that we don't deal with the number of I/Os going up as the number of metaslabs is increasing and the fact is that we generally write a lot to a few metaslabs and a little to the rest of them. Thus, just increasing the block size would actually waste bandwidth because we won't be utilizing our bigger block size. = About this patch This patch introduces the Log Spacemap project which provides the solution to the above problem while taking into account all the aforementioned tradeoffs. The details on how it achieves that can be found in the references sections below and in the code (see Big Theory Statement in spa_log_spacemap.c). Even though the change is fairly constraint within the metaslab and lower-level SPA codepaths, there is a side-change that is user-facing. The change is that VDEV IDs from VDEV holes will no longer be reused. To give some background and reasoning for this, when a log device is removed and its VDEV structure was replaced with a hole (or was compacted; if at the end of the vdev array), its vdev_id could be reused by devices added after that. Now with the pool-wide space maps recording the vdev ID, this behavior can cause problems (e.g. is this entry referring to a segment in the new vdev or the removed log?). Thus, to simplify things the ID reuse behavior is gone and now vdev IDs for top-level vdevs are truly unique within a pool. = Testing The illumos implementation of this feature has been used internally for a year and has been in production for ~6 months. For this patch specifically there don't seem to be any regressions introduced to ZTS and I have been running zloop for a week without any related problems. = Performance Analysis (Linux Specific) All performance results and analysis for illumos can be found in the links of the references. Redoing the same experiments in Linux gave similar results. Below are the specifics of the Linux run. After the pool reached stable state the percentage of the time spent in pass 1 per TXG was 64% on average for the stock bits while the log spacemap bits stayed at 95% during the experiment (graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png). Sync times per TXG were 37.6 seconds on average for the stock bits and 22.7 seconds for the log spacemap bits (related graph: sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result the log spacemap bits were able to push more TXGs, which is also the reason why all graphs quantified per TXG have more entries for the log spacemap bits. Another interesting aspect in terms of txg syncs is that the stock bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8, and 20% reach 9. The log space map bits reached sync pass 4 in 79% of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This emphasizes the fact that not only we spend less time on metadata but we also iterate less times to convergence in spa_sync() dirtying objects. [related graphs: stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png] Finally, the improvement in IOPs that the userland gains from the change is approximately 40%. There is a consistent win in IOPS as you can see from the graphs below but the absolute amount of improvement that the log spacemap gives varies within each minute interval. sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png = Porting to Other Platforms For people that want to port this commit to other platforms below is a list of ZoL commits that this patch depends on: Make zdb results for checkpoint tests consistent db587941c5ff6dea01932bb78f70db63cf7f38ba Update vdev_is_spacemap_addressable() for new spacemap encoding 419ba5914552c6185afbe1dd17b3ed4b0d526547 Simplify spa_sync by breaking it up to smaller functions 8dc2197b7b1e4d7ebc1420ea30e51c6541f1d834 Factor metaslab_load_wait() in metaslab_load() b194fab0fb6caad18711abccaff3c69ad8b3f6d3 Rename range_tree_verify to range_tree_verify_not_present df72b8bebe0ebac0b20e0750984bad182cb6564a Change target size of metaslabs from 256GB to 16GB c853f382db731e15a87512f4ef1101d14d778a55 zdb -L should skip leak detection altogether 21e7cf5da89f55ce98ec1115726b150e19eefe89 vs_alloc can underflow in L2ARC vdevs 7558997d2f808368867ca7e5234e5793446e8f3f Simplify log vdev removal code 6c926f426a26ffb6d7d8e563e33fc176164175cb Get rid of space_map_update() for ms_synced_length 425d3237ee88abc53d8522a7139c926d278b4b7f Introduce auxiliary metaslab histograms 928e8ad47d3478a3d5d01f0dd6ae74a9371af65e Error path in metaslab_load_impl() forgets to drop ms_sync_lock 8eef997679ba54547f7d361553d21b3291f41ae7 = References Background, Motivation, and Internals of the Feature - OpenZFS 2017 Presentation: youtu.be/jj2IxRkl5bQ - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project Flushing Algorithm Internals & Performance Results (Illumos Specific) - Blogpost: sdimitro.github.io/post/zfs-lsm-flushing/ - OpenZFS 2018 Presentation: youtu.be/x6D2dHRjkxw - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm Upstream Delphix Issues: DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320 DLPX-63385 Reviewed-by: Sean Eric Fagan <sef@ixsystems.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8442
2019-07-16 17:11:49 +00:00
avl_node_t ms_spa_txg_node; /* node in spa_metaslabs_by_txg */
/*
* Node in metaslab class's selected txg list
*/
multilist_node_t ms_class_txg_node;
Log Spacemap Project = Motivation At Delphix we've seen a lot of customer systems where fragmentation is over 75% and random writes take a performance hit because a lot of time is spend on I/Os that update on-disk space accounting metadata. Specifically, we seen cases where 20% to 40% of sync time is spend after sync pass 1 and ~30% of the I/Os on the system is spent updating spacemaps. The problem is that these pools have existed long enough that we've touched almost every metaslab at least once, and random writes scatter frees across all metaslabs every TXG, thus appending to their spacemaps and resulting in many I/Os. To give an example, assuming that every VDEV has 200 metaslabs and our writes fit within a single spacemap block (generally 4K) we have 200 I/Os. Then if we assume 2 levels of indirection, we need 400 additional I/Os and since we are talking about metadata for which we keep 2 extra copies for redundancy we need to triple that number, leading to a total of 1800 I/Os per VDEV every TXG. We could try and decrease the number of metaslabs so we have less I/Os per TXG but then each metaslab would cover a wider range on disk and thus would take more time to be loaded in memory from disk. In addition, after it's loaded, it's range tree would consume more memory. Another idea would be to just increase the spacemap block size which would allow us to fit more entries within an I/O block resulting in fewer I/Os per metaslab and a speedup in loading time. The problem is still that we don't deal with the number of I/Os going up as the number of metaslabs is increasing and the fact is that we generally write a lot to a few metaslabs and a little to the rest of them. Thus, just increasing the block size would actually waste bandwidth because we won't be utilizing our bigger block size. = About this patch This patch introduces the Log Spacemap project which provides the solution to the above problem while taking into account all the aforementioned tradeoffs. The details on how it achieves that can be found in the references sections below and in the code (see Big Theory Statement in spa_log_spacemap.c). Even though the change is fairly constraint within the metaslab and lower-level SPA codepaths, there is a side-change that is user-facing. The change is that VDEV IDs from VDEV holes will no longer be reused. To give some background and reasoning for this, when a log device is removed and its VDEV structure was replaced with a hole (or was compacted; if at the end of the vdev array), its vdev_id could be reused by devices added after that. Now with the pool-wide space maps recording the vdev ID, this behavior can cause problems (e.g. is this entry referring to a segment in the new vdev or the removed log?). Thus, to simplify things the ID reuse behavior is gone and now vdev IDs for top-level vdevs are truly unique within a pool. = Testing The illumos implementation of this feature has been used internally for a year and has been in production for ~6 months. For this patch specifically there don't seem to be any regressions introduced to ZTS and I have been running zloop for a week without any related problems. = Performance Analysis (Linux Specific) All performance results and analysis for illumos can be found in the links of the references. Redoing the same experiments in Linux gave similar results. Below are the specifics of the Linux run. After the pool reached stable state the percentage of the time spent in pass 1 per TXG was 64% on average for the stock bits while the log spacemap bits stayed at 95% during the experiment (graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png). Sync times per TXG were 37.6 seconds on average for the stock bits and 22.7 seconds for the log spacemap bits (related graph: sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result the log spacemap bits were able to push more TXGs, which is also the reason why all graphs quantified per TXG have more entries for the log spacemap bits. Another interesting aspect in terms of txg syncs is that the stock bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8, and 20% reach 9. The log space map bits reached sync pass 4 in 79% of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This emphasizes the fact that not only we spend less time on metadata but we also iterate less times to convergence in spa_sync() dirtying objects. [related graphs: stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png] Finally, the improvement in IOPs that the userland gains from the change is approximately 40%. There is a consistent win in IOPS as you can see from the graphs below but the absolute amount of improvement that the log spacemap gives varies within each minute interval. sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png = Porting to Other Platforms For people that want to port this commit to other platforms below is a list of ZoL commits that this patch depends on: Make zdb results for checkpoint tests consistent db587941c5ff6dea01932bb78f70db63cf7f38ba Update vdev_is_spacemap_addressable() for new spacemap encoding 419ba5914552c6185afbe1dd17b3ed4b0d526547 Simplify spa_sync by breaking it up to smaller functions 8dc2197b7b1e4d7ebc1420ea30e51c6541f1d834 Factor metaslab_load_wait() in metaslab_load() b194fab0fb6caad18711abccaff3c69ad8b3f6d3 Rename range_tree_verify to range_tree_verify_not_present df72b8bebe0ebac0b20e0750984bad182cb6564a Change target size of metaslabs from 256GB to 16GB c853f382db731e15a87512f4ef1101d14d778a55 zdb -L should skip leak detection altogether 21e7cf5da89f55ce98ec1115726b150e19eefe89 vs_alloc can underflow in L2ARC vdevs 7558997d2f808368867ca7e5234e5793446e8f3f Simplify log vdev removal code 6c926f426a26ffb6d7d8e563e33fc176164175cb Get rid of space_map_update() for ms_synced_length 425d3237ee88abc53d8522a7139c926d278b4b7f Introduce auxiliary metaslab histograms 928e8ad47d3478a3d5d01f0dd6ae74a9371af65e Error path in metaslab_load_impl() forgets to drop ms_sync_lock 8eef997679ba54547f7d361553d21b3291f41ae7 = References Background, Motivation, and Internals of the Feature - OpenZFS 2017 Presentation: youtu.be/jj2IxRkl5bQ - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project Flushing Algorithm Internals & Performance Results (Illumos Specific) - Blogpost: sdimitro.github.io/post/zfs-lsm-flushing/ - OpenZFS 2018 Presentation: youtu.be/x6D2dHRjkxw - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm Upstream Delphix Issues: DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320 DLPX-63385 Reviewed-by: Sean Eric Fagan <sef@ixsystems.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8442
2019-07-16 17:11:49 +00:00
/*
* Allocs and frees that are committed to the vdev log spacemap but
* not yet to this metaslab's spacemap.
*/
range_tree_t *ms_unflushed_allocs;
range_tree_t *ms_unflushed_frees;
/*
* We have flushed entries up to but not including this TXG. In
* other words, all changes from this TXG and onward should not
* be in this metaslab's space map and must be read from the
* log space maps.
*/
uint64_t ms_unflushed_txg;
OpenZFS 9112 - Improve allocation performance on high-end systems Overview ======== We parallelize the allocation process by creating the concept of "allocators". There are a certain number of allocators per metaslab group, defined by the value of a tunable at pool open time. Each allocator for a given metaslab group has up to 2 active metaslabs; one "primary", and one "secondary". The primary and secondary weight mean the same thing they did in in the pre-allocator world; primary metaslabs are used for most allocations, secondary metaslabs are used for ditto blocks being allocated in the same metaslab group. There is also the CLAIM weight, which has been separated out from the other weights, but that is less important to understanding the patch. The active metaslabs for each allocator are moved from their normal place in the metaslab tree for the group to the back of the tree. This way, they will not be selected for use by other allocators searching for new metaslabs unless all the passive metaslabs are unsuitable for allocations. If that does happen, the allocators will "steal" from each other to ensure that IOs don't fail until there is truly no space left to perform allocations. In addition, the alloc queue for each metaslab group has been broken into a separate queue for each allocator. We don't want to dramatically increase the number of inflight IOs on low-end systems, because it can significantly increase txg times. On the other hand, we want to ensure that there are enough IOs for each allocator to allow for good coalescing before sending the IOs to the disk. As a result, we take a compromise path; each allocator's alloc queue max depth starts at a certain value for every txg. Every time an IO completes, we increase the max depth. This should hopefully provide a good balance between the two failure modes, while not dramatically increasing complexity. We also parallelize the spa_alloc_tree and spa_alloc_lock, which cause very similar contention when selecting IOs to allocate. This parallelization uses the same allocator scheme as metaslab selection. Performance Results =================== Performance improvements from this change can vary significantly based on the number of CPUs in the system, whether or not the system has a NUMA architecture, the speed of the drives, the values for the various tunables, and the workload being performed. For an fio async sequential write workload on a 24 core NUMA system with 256 GB of RAM and 8 128 GB SSDs, there is a roughly 25% performance improvement. Future Work =========== Analysis of the performance of the system with this patch applied shows that a significant new bottleneck is the vdev disk queues, which also need to be parallelized. Prototyping of this change has occurred, and there was a performance improvement, but more work needs to be done before its stability has been verified and it is ready to be upstreamed. Authored by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Alexander Motin <mav@FreeBSD.org> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Gordon Ross <gwr@nexenta.com> Ported-by: Paul Dagnelie <pcd@delphix.com> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Porting Notes: * Fix reservation test failures by increasing tolerance. OpenZFS-issue: https://illumos.org/issues/9112 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3f3cc3c3 Closes #7682
2018-02-12 20:56:06 +00:00
Get rid of space_map_update() for ms_synced_length Initially, metaslabs and space maps used to be the same thing in ZFS. Later, we started differentiating them by referring to the space map as the on-disk state of the metaslab, making the metaslab a higher-level concept that is metadata that deals with space accounting. Today we've managed to split that code furthermore, with the space map being its own on-disk data structure used in areas of ZFS besides metaslabs (e.g. the vdev-wide space maps used for zpool checkpoint or vdev removal features). This patch refactors the space map code to further split the space map code from the metaslab code. It does so by getting rid of the idea that the space map can have a different in-core and on-disk length (sm_length vs smp_length) which is something that is only used for the metaslab code, and other consumers of space maps just have to deal with. Instead, this patch introduces changes that move the old in-core length of the metaslab's space map to the metaslab structure itself (see ms_synced_length field) while making the space map code only care about the actual space map's length on-disk. The result of this is that space map consumers no longer have to deal with syncing two different lengths for the same structure (e.g. space_map_update() goes away) while metaslab specific behavior stays within the metaslab code. Specifically, the ms_synced_length field keeps track of the amount of data metaslab_load() can read from the metaslab's space map while working concurrently with metaslab_sync() that may be appending to that same space map. As a side note, the patch also adds a few comments around the metaslab code documenting some assumptions and expected behavior. Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8328
2019-02-12 18:38:11 +00:00
/* updated every time we are done syncing the metaslab's space map */
uint64_t ms_synced_length;
OpenZFS 9112 - Improve allocation performance on high-end systems Overview ======== We parallelize the allocation process by creating the concept of "allocators". There are a certain number of allocators per metaslab group, defined by the value of a tunable at pool open time. Each allocator for a given metaslab group has up to 2 active metaslabs; one "primary", and one "secondary". The primary and secondary weight mean the same thing they did in in the pre-allocator world; primary metaslabs are used for most allocations, secondary metaslabs are used for ditto blocks being allocated in the same metaslab group. There is also the CLAIM weight, which has been separated out from the other weights, but that is less important to understanding the patch. The active metaslabs for each allocator are moved from their normal place in the metaslab tree for the group to the back of the tree. This way, they will not be selected for use by other allocators searching for new metaslabs unless all the passive metaslabs are unsuitable for allocations. If that does happen, the allocators will "steal" from each other to ensure that IOs don't fail until there is truly no space left to perform allocations. In addition, the alloc queue for each metaslab group has been broken into a separate queue for each allocator. We don't want to dramatically increase the number of inflight IOs on low-end systems, because it can significantly increase txg times. On the other hand, we want to ensure that there are enough IOs for each allocator to allow for good coalescing before sending the IOs to the disk. As a result, we take a compromise path; each allocator's alloc queue max depth starts at a certain value for every txg. Every time an IO completes, we increase the max depth. This should hopefully provide a good balance between the two failure modes, while not dramatically increasing complexity. We also parallelize the spa_alloc_tree and spa_alloc_lock, which cause very similar contention when selecting IOs to allocate. This parallelization uses the same allocator scheme as metaslab selection. Performance Results =================== Performance improvements from this change can vary significantly based on the number of CPUs in the system, whether or not the system has a NUMA architecture, the speed of the drives, the values for the various tunables, and the workload being performed. For an fio async sequential write workload on a 24 core NUMA system with 256 GB of RAM and 8 128 GB SSDs, there is a roughly 25% performance improvement. Future Work =========== Analysis of the performance of the system with this patch applied shows that a significant new bottleneck is the vdev disk queues, which also need to be parallelized. Prototyping of this change has occurred, and there was a performance improvement, but more work needs to be done before its stability has been verified and it is ready to be upstreamed. Authored by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Alexander Motin <mav@FreeBSD.org> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Gordon Ross <gwr@nexenta.com> Ported-by: Paul Dagnelie <pcd@delphix.com> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Porting Notes: * Fix reservation test failures by increasing tolerance. OpenZFS-issue: https://illumos.org/issues/9112 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3f3cc3c3 Closes #7682
2018-02-12 20:56:06 +00:00
boolean_t ms_new;
2008-11-20 20:01:55 +00:00
};
Log Spacemap Project = Motivation At Delphix we've seen a lot of customer systems where fragmentation is over 75% and random writes take a performance hit because a lot of time is spend on I/Os that update on-disk space accounting metadata. Specifically, we seen cases where 20% to 40% of sync time is spend after sync pass 1 and ~30% of the I/Os on the system is spent updating spacemaps. The problem is that these pools have existed long enough that we've touched almost every metaslab at least once, and random writes scatter frees across all metaslabs every TXG, thus appending to their spacemaps and resulting in many I/Os. To give an example, assuming that every VDEV has 200 metaslabs and our writes fit within a single spacemap block (generally 4K) we have 200 I/Os. Then if we assume 2 levels of indirection, we need 400 additional I/Os and since we are talking about metadata for which we keep 2 extra copies for redundancy we need to triple that number, leading to a total of 1800 I/Os per VDEV every TXG. We could try and decrease the number of metaslabs so we have less I/Os per TXG but then each metaslab would cover a wider range on disk and thus would take more time to be loaded in memory from disk. In addition, after it's loaded, it's range tree would consume more memory. Another idea would be to just increase the spacemap block size which would allow us to fit more entries within an I/O block resulting in fewer I/Os per metaslab and a speedup in loading time. The problem is still that we don't deal with the number of I/Os going up as the number of metaslabs is increasing and the fact is that we generally write a lot to a few metaslabs and a little to the rest of them. Thus, just increasing the block size would actually waste bandwidth because we won't be utilizing our bigger block size. = About this patch This patch introduces the Log Spacemap project which provides the solution to the above problem while taking into account all the aforementioned tradeoffs. The details on how it achieves that can be found in the references sections below and in the code (see Big Theory Statement in spa_log_spacemap.c). Even though the change is fairly constraint within the metaslab and lower-level SPA codepaths, there is a side-change that is user-facing. The change is that VDEV IDs from VDEV holes will no longer be reused. To give some background and reasoning for this, when a log device is removed and its VDEV structure was replaced with a hole (or was compacted; if at the end of the vdev array), its vdev_id could be reused by devices added after that. Now with the pool-wide space maps recording the vdev ID, this behavior can cause problems (e.g. is this entry referring to a segment in the new vdev or the removed log?). Thus, to simplify things the ID reuse behavior is gone and now vdev IDs for top-level vdevs are truly unique within a pool. = Testing The illumos implementation of this feature has been used internally for a year and has been in production for ~6 months. For this patch specifically there don't seem to be any regressions introduced to ZTS and I have been running zloop for a week without any related problems. = Performance Analysis (Linux Specific) All performance results and analysis for illumos can be found in the links of the references. Redoing the same experiments in Linux gave similar results. Below are the specifics of the Linux run. After the pool reached stable state the percentage of the time spent in pass 1 per TXG was 64% on average for the stock bits while the log spacemap bits stayed at 95% during the experiment (graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png). Sync times per TXG were 37.6 seconds on average for the stock bits and 22.7 seconds for the log spacemap bits (related graph: sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result the log spacemap bits were able to push more TXGs, which is also the reason why all graphs quantified per TXG have more entries for the log spacemap bits. Another interesting aspect in terms of txg syncs is that the stock bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8, and 20% reach 9. The log space map bits reached sync pass 4 in 79% of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This emphasizes the fact that not only we spend less time on metadata but we also iterate less times to convergence in spa_sync() dirtying objects. [related graphs: stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png] Finally, the improvement in IOPs that the userland gains from the change is approximately 40%. There is a consistent win in IOPS as you can see from the graphs below but the absolute amount of improvement that the log spacemap gives varies within each minute interval. sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png = Porting to Other Platforms For people that want to port this commit to other platforms below is a list of ZoL commits that this patch depends on: Make zdb results for checkpoint tests consistent db587941c5ff6dea01932bb78f70db63cf7f38ba Update vdev_is_spacemap_addressable() for new spacemap encoding 419ba5914552c6185afbe1dd17b3ed4b0d526547 Simplify spa_sync by breaking it up to smaller functions 8dc2197b7b1e4d7ebc1420ea30e51c6541f1d834 Factor metaslab_load_wait() in metaslab_load() b194fab0fb6caad18711abccaff3c69ad8b3f6d3 Rename range_tree_verify to range_tree_verify_not_present df72b8bebe0ebac0b20e0750984bad182cb6564a Change target size of metaslabs from 256GB to 16GB c853f382db731e15a87512f4ef1101d14d778a55 zdb -L should skip leak detection altogether 21e7cf5da89f55ce98ec1115726b150e19eefe89 vs_alloc can underflow in L2ARC vdevs 7558997d2f808368867ca7e5234e5793446e8f3f Simplify log vdev removal code 6c926f426a26ffb6d7d8e563e33fc176164175cb Get rid of space_map_update() for ms_synced_length 425d3237ee88abc53d8522a7139c926d278b4b7f Introduce auxiliary metaslab histograms 928e8ad47d3478a3d5d01f0dd6ae74a9371af65e Error path in metaslab_load_impl() forgets to drop ms_sync_lock 8eef997679ba54547f7d361553d21b3291f41ae7 = References Background, Motivation, and Internals of the Feature - OpenZFS 2017 Presentation: youtu.be/jj2IxRkl5bQ - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project Flushing Algorithm Internals & Performance Results (Illumos Specific) - Blogpost: sdimitro.github.io/post/zfs-lsm-flushing/ - OpenZFS 2018 Presentation: youtu.be/x6D2dHRjkxw - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm Upstream Delphix Issues: DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320 DLPX-63385 Reviewed-by: Sean Eric Fagan <sef@ixsystems.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8442
2019-07-16 17:11:49 +00:00
typedef struct metaslab_unflushed_phys {
/* on-disk counterpart of ms_unflushed_txg */
uint64_t msp_unflushed_txg;
} metaslab_unflushed_phys_t;
2008-11-20 20:01:55 +00:00
#ifdef __cplusplus
}
#endif
#endif /* _SYS_METASLAB_IMPL_H */