freebsd-nq/lib/libkvm/kvm_proc.c

883 lines
22 KiB
C
Raw Normal View History

1994-05-27 05:00:24 +00:00
/*-
* Copyright (c) 1989, 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software developed by the Computer Systems
* Engineering group at Lawrence Berkeley Laboratory under DARPA contract
* BG 91-66 and contributed to Berkeley.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
1994-05-27 05:00:24 +00:00
*/
2001-09-16 21:35:07 +00:00
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
1994-05-27 05:00:24 +00:00
#if defined(LIBC_SCCS) && !defined(lint)
static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
#endif /* LIBC_SCCS and not lint */
/*
* Proc traversal interface for kvm. ps and w are (probably) the exclusive
* users of this code, so we've factored it out into a separate module.
* Thus, we keep this grunge out of the other kvm applications (i.e.,
* most other applications are interested only in open/close/read/nlist).
*/
#include <sys/param.h>
#include <sys/user.h>
#include <sys/proc.h>
#include <sys/exec.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/tty.h>
#include <sys/file.h>
#include <stdio.h>
#include <stdlib.h>
1994-05-27 05:00:24 +00:00
#include <unistd.h>
#include <nlist.h>
#include <kvm.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/swap_pager.h>
#include <sys/sysctl.h>
#include <limits.h>
#include <memory.h>
1994-05-27 05:00:24 +00:00
#include <paths.h>
#include "kvm_private.h"
#if used
1994-05-27 05:00:24 +00:00
static char *
kvm_readswap(kd, p, va, cnt)
kvm_t *kd;
const struct proc *p;
u_long va;
u_long *cnt;
{
#ifdef __FreeBSD__
/* XXX Stubbed out, our vm system is differnet */
_kvm_err(kd, kd->program, "kvm_readswap not implemented");
return(0);
#endif /* __FreeBSD__ */
1994-05-27 05:00:24 +00:00
}
#endif
1994-05-27 05:00:24 +00:00
#define KREAD(kd, addr, obj) \
(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
/*
* Read proc's from memory file into buffer bp, which has space to hold
* at most maxcnt procs.
*/
static int
kvm_proclist(kd, what, arg, p, bp, maxcnt)
kvm_t *kd;
int what, arg;
struct proc *p;
struct kinfo_proc *bp;
int maxcnt;
{
register int cnt = 0;
struct kinfo_proc kinfo_proc, *kp;
1994-05-27 05:00:24 +00:00
struct pgrp pgrp;
struct session sess;
struct tty tty;
struct vmspace vmspace;
struct procsig procsig;
struct pstats pstats;
struct ucred ucred;
1994-05-27 05:00:24 +00:00
struct proc proc;
struct proc pproc;
1994-05-27 05:00:24 +00:00
kp = &kinfo_proc;
kp->ki_structsize = sizeof(kinfo_proc);
2000-12-30 21:52:34 +00:00
for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
memset(kp, 0, sizeof *kp);
1994-05-27 05:00:24 +00:00
if (KREAD(kd, (u_long)p, &proc)) {
_kvm_err(kd, kd->program, "can't read proc at %x", p);
return (-1);
}
o Merge contents of struct pcred into struct ucred. Specifically, add the real uid, saved uid, real gid, and saved gid to ucred, as well as the pcred->pc_uidinfo, which was associated with the real uid, only rename it to cr_ruidinfo so as not to conflict with cr_uidinfo, which corresponds to the effective uid. o Remove p_cred from struct proc; add p_ucred to struct proc, replacing original macro that pointed. p->p_ucred to p->p_cred->pc_ucred. o Universally update code so that it makes use of ucred instead of pcred, p->p_ucred instead of p->p_pcred, cr_ruidinfo instead of p_uidinfo, cr_{r,sv}{u,g}id instead of p_*, etc. o Remove pcred0 and its initialization from init_main.c; initialize cr_ruidinfo there. o Restruction many credential modification chunks to always crdup while we figure out locking and optimizations; generally speaking, this means moving to a structure like this: newcred = crdup(oldcred); ... p->p_ucred = newcred; crfree(oldcred); It's not race-free, but better than nothing. There are also races in sys_process.c, all inter-process authorization, fork, exec, and exit. o Remove sigio->sio_ruid since sigio->sio_ucred now contains the ruid; remove comments indicating that the old arrangement was a problem. o Restructure exec1() a little to use newcred/oldcred arrangement, and use improved uid management primitives. o Clean up exit1() so as to do less work in credential cleanup due to pcred removal. o Clean up fork1() so as to do less work in credential cleanup and allocation. o Clean up ktrcanset() to take into account changes, and move to using suser_xxx() instead of performing a direct uid==0 comparision. o Improve commenting in various kern_prot.c credential modification calls to better document current behavior. In a couple of places, current behavior is a little questionable and we need to check POSIX.1 to make sure it's "right". More commenting work still remains to be done. o Update credential management calls, such as crfree(), to take into account new ruidinfo reference. o Modify or add the following uid and gid helper routines: change_euid() change_egid() change_ruid() change_rgid() change_svuid() change_svgid() In each case, the call now acts on a credential not a process, and as such no longer requires more complicated process locking/etc. They now assume the caller will do any necessary allocation of an exclusive credential reference. Each is commented to document its reference requirements. o CANSIGIO() is simplified to require only credentials, not processes and pcreds. o Remove lots of (p_pcred==NULL) checks. o Add an XXX to authorization code in nfs_lock.c, since it's questionable, and needs to be considered carefully. o Simplify posix4 authorization code to require only credentials, not processes and pcreds. Note that this authorization, as well as CANSIGIO(), needs to be updated to use the p_cansignal() and p_cansched() centralized authorization routines, as they currently do not take into account some desirable restrictions that are handled by the centralized routines, as well as being inconsistent with other similar authorization instances. o Update libkvm to take these changes into account. Obtained from: TrustedBSD Project Reviewed by: green, bde, jhb, freebsd-arch, freebsd-audit
2001-05-25 16:59:11 +00:00
if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
kp->ki_ruid = ucred.cr_ruid;
kp->ki_svuid = ucred.cr_svuid;
kp->ki_rgid = ucred.cr_rgid;
kp->ki_svgid = ucred.cr_svgid;
kp->ki_ngroups = ucred.cr_ngroups;
bcopy(ucred.cr_groups, kp->ki_groups,
NGROUPS * sizeof(gid_t));
kp->ki_uid = ucred.cr_uid;
}
1994-05-27 05:00:24 +00:00
switch(what) {
1995-05-30 05:51:47 +00:00
1994-05-27 05:00:24 +00:00
case KERN_PROC_PID:
if (proc.p_pid != (pid_t)arg)
continue;
break;
case KERN_PROC_UID:
if (kp->ki_uid != (uid_t)arg)
1994-05-27 05:00:24 +00:00
continue;
break;
case KERN_PROC_RUID:
if (kp->ki_ruid != (uid_t)arg)
1994-05-27 05:00:24 +00:00
continue;
break;
}
/*
* We're going to add another proc to the set. If this
* will overflow the buffer, assume the reason is because
* nprocs (or the proc list) is corrupt and declare an error.
*/
if (cnt >= maxcnt) {
_kvm_err(kd, kd->program, "nprocs corrupt");
return (-1);
}
/*
* gather kinfo_proc
1994-05-27 05:00:24 +00:00
*/
kp->ki_paddr = p;
kp->ki_addr = proc.p_uarea;
/* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
kp->ki_args = proc.p_args;
kp->ki_tracep = proc.p_tracep;
kp->ki_textvp = proc.p_textvp;
kp->ki_fd = proc.p_fd;
kp->ki_vmspace = proc.p_vmspace;
if (proc.p_procsig != NULL) {
if (KREAD(kd, (u_long)proc.p_procsig, &procsig)) {
_kvm_err(kd, kd->program,
"can't read procsig at %x", proc.p_procsig);
return (-1);
}
kp->ki_sigignore = procsig.ps_sigignore;
kp->ki_sigcatch = procsig.ps_sigcatch;
}
if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) {
if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
_kvm_err(kd, kd->program,
"can't read stats at %x", proc.p_stats);
return (-1);
}
kp->ki_start = pstats.p_start;
kp->ki_rusage = pstats.p_ru;
kp->ki_childtime.tv_sec = pstats.p_cru.ru_utime.tv_sec +
pstats.p_cru.ru_stime.tv_sec;
kp->ki_childtime.tv_usec =
pstats.p_cru.ru_utime.tv_usec +
pstats.p_cru.ru_stime.tv_usec;
}
if (proc.p_oppid)
kp->ki_ppid = proc.p_oppid;
else if (proc.p_pptr) {
if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
_kvm_err(kd, kd->program,
"can't read pproc at %x", proc.p_pptr);
return (-1);
}
kp->ki_ppid = pproc.p_pid;
} else
kp->ki_ppid = 0;
if (proc.p_pgrp == NULL)
goto nopgrp;
if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
_kvm_err(kd, kd->program, "can't read pgrp at %x",
proc.p_pgrp);
return (-1);
}
kp->ki_pgid = pgrp.pg_id;
kp->ki_jobc = pgrp.pg_jobc;
1994-05-27 05:00:24 +00:00
if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
1995-05-30 05:51:47 +00:00
_kvm_err(kd, kd->program, "can't read session at %x",
1994-05-27 05:00:24 +00:00
pgrp.pg_session);
return (-1);
}
kp->ki_sid = sess.s_sid;
(void)memcpy(kp->ki_login, sess.s_login,
sizeof(kp->ki_login));
kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
if (sess.s_leader == p)
kp->ki_kiflag |= KI_SLEADER;
1994-05-27 05:00:24 +00:00
if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
_kvm_err(kd, kd->program,
"can't read tty at %x", sess.s_ttyp);
return (-1);
}
kp->ki_tdev = tty.t_dev;
1994-05-27 05:00:24 +00:00
if (tty.t_pgrp != NULL) {
if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
_kvm_err(kd, kd->program,
1995-05-30 05:51:47 +00:00
"can't read tpgrp at &x",
1994-05-27 05:00:24 +00:00
tty.t_pgrp);
return (-1);
}
kp->ki_tpgid = pgrp.pg_id;
1994-05-27 05:00:24 +00:00
} else
kp->ki_tpgid = -1;
if (tty.t_session != NULL) {
if (KREAD(kd, (u_long)tty.t_session, &sess)) {
_kvm_err(kd, kd->program,
"can't read session at %x",
tty.t_session);
return (-1);
}
kp->ki_tsid = sess.s_sid;
}
} else {
nopgrp:
kp->ki_tdev = NODEV;
}
if (proc.p_thread.td_wmesg) /* XXXKSE */
(void)kvm_read(kd, (u_long)proc.p_thread.td_wmesg,
kp->ki_wmesg, WMESGLEN);
1994-05-27 05:00:24 +00:00
#ifdef sparc
(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
(char *)&kp->ki_rssize,
sizeof(kp->ki_rssize));
1994-05-27 05:00:24 +00:00
(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
(char *)&kp->ki_tsize,
3 * sizeof(kp->ki_rssize)); /* XXX */
1994-05-27 05:00:24 +00:00
#else
(void)kvm_read(kd, (u_long)proc.p_vmspace,
(char *)&vmspace, sizeof(vmspace));
kp->ki_size = vmspace.vm_map.size;
kp->ki_rssize = vmspace.vm_swrss; /* XXX */
kp->ki_swrss = vmspace.vm_swrss;
kp->ki_tsize = vmspace.vm_tsize;
kp->ki_dsize = vmspace.vm_dsize;
kp->ki_ssize = vmspace.vm_ssize;
1994-05-27 05:00:24 +00:00
#endif
switch (what) {
case KERN_PROC_PGRP:
if (kp->ki_pgid != (pid_t)arg)
1994-05-27 05:00:24 +00:00
continue;
break;
case KERN_PROC_TTY:
1995-05-30 05:51:47 +00:00
if ((proc.p_flag & P_CONTROLT) == 0 ||
kp->ki_tdev != (dev_t)arg)
1994-05-27 05:00:24 +00:00
continue;
break;
}
if (proc.p_comm[0] != 0) {
strncpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
kp->ki_comm[MAXCOMLEN] = 0;
}
if (proc.p_thread.td_blocked != 0) { /* XXXKSE */
kp->ki_kiflag |= KI_MTXBLOCK;
if (proc.p_thread.td_mtxname) /* XXXKSE */
(void)kvm_read(kd, (u_long)proc.p_thread.td_mtxname,
kp->ki_mtxname, MTXNAMELEN);
kp->ki_mtxname[MTXNAMELEN] = 0;
}
kp->ki_runtime = proc.p_runtime;
kp->ki_pid = proc.p_pid;
kp->ki_siglist = proc.p_siglist;
kp->ki_sigmask = proc.p_sigmask;
kp->ki_xstat = proc.p_xstat;
kp->ki_acflag = proc.p_acflag;
kp->ki_pctcpu = proc.p_kse.ke_pctcpu; /* XXXKSE */
kp->ki_estcpu = proc.p_ksegrp.kg_estcpu; /* XXXKSE */
kp->ki_slptime = proc.p_kse.ke_slptime; /* XXXKSE */
kp->ki_swtime = proc.p_swtime;
kp->ki_flag = proc.p_flag;
kp->ki_sflag = proc.p_sflag;
kp->ki_wchan = proc.p_thread.td_wchan; /* XXXKSE */
kp->ki_traceflag = proc.p_traceflag;
kp->ki_stat = proc.p_stat;
kp->ki_pri = proc.p_ksegrp.kg_pri; /* XXXKSE */
kp->ki_nice = proc.p_ksegrp.kg_nice; /* XXXKSE */
kp->ki_lock = proc.p_lock;
kp->ki_rqindex = proc.p_kse.ke_rqindex; /* XXXKSE */
kp->ki_oncpu = proc.p_kse.ke_oncpu; /* XXXKSE */
kp->ki_lastcpu = proc.p_thread.td_lastcpu; /* XXXKSE */
bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
1994-05-27 05:00:24 +00:00
++bp;
++cnt;
}
return (cnt);
}
/*
* Build proc info array by reading in proc list from a crash dump.
* Return number of procs read. maxcnt is the max we will read.
*/
static int
kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
kvm_t *kd;
int what, arg;
u_long a_allproc;
u_long a_zombproc;
int maxcnt;
{
register struct kinfo_proc *bp = kd->procbase;
register int acnt, zcnt;
struct proc *p;
if (KREAD(kd, a_allproc, &p)) {
_kvm_err(kd, kd->program, "cannot read allproc");
return (-1);
}
acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
if (acnt < 0)
return (acnt);
if (KREAD(kd, a_zombproc, &p)) {
_kvm_err(kd, kd->program, "cannot read zombproc");
return (-1);
}
zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
if (zcnt < 0)
zcnt = 0;
return (acnt + zcnt);
}
struct kinfo_proc *
kvm_getprocs(kd, op, arg, cnt)
kvm_t *kd;
int op, arg;
int *cnt;
{
int mib[4], st, nprocs;
size_t size;
1994-05-27 05:00:24 +00:00
if (kd->procbase != 0) {
free((void *)kd->procbase);
1995-05-30 05:51:47 +00:00
/*
1994-05-27 05:00:24 +00:00
* Clear this pointer in case this call fails. Otherwise,
* kvm_close() will free it again.
*/
kd->procbase = 0;
}
if (ISALIVE(kd)) {
size = 0;
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = op;
mib[3] = arg;
st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0);
1994-05-27 05:00:24 +00:00
if (st == -1) {
_kvm_syserr(kd, kd->program, "kvm_getprocs");
return (0);
}
do {
size += size / 10;
kd->procbase = (struct kinfo_proc *)
_kvm_realloc(kd, kd->procbase, size);
if (kd->procbase == 0)
return (0);
st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4,
kd->procbase, &size, NULL, 0);
} while (st == -1 && errno == ENOMEM);
1994-05-27 05:00:24 +00:00
if (st == -1) {
_kvm_syserr(kd, kd->program, "kvm_getprocs");
return (0);
}
if (size > 0 &&
kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
1994-05-27 05:00:24 +00:00
_kvm_err(kd, kd->program,
"kinfo_proc size mismatch (expected %d, got %d)",
sizeof(struct kinfo_proc),
kd->procbase->ki_structsize);
1994-05-27 05:00:24 +00:00
return (0);
}
nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
1994-05-27 05:00:24 +00:00
} else {
struct nlist nl[4], *p;
nl[0].n_name = "_nprocs";
nl[1].n_name = "_allproc";
nl[2].n_name = "_zombproc";
nl[3].n_name = 0;
if (kvm_nlist(kd, nl) != 0) {
for (p = nl; p->n_type != 0; ++p)
;
_kvm_err(kd, kd->program,
"%s: no such symbol", p->n_name);
return (0);
}
if (KREAD(kd, nl[0].n_value, &nprocs)) {
_kvm_err(kd, kd->program, "can't read nprocs");
return (0);
}
size = nprocs * sizeof(struct kinfo_proc);
kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
if (kd->procbase == 0)
return (0);
nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
nl[2].n_value, nprocs);
#ifdef notdef
size = nprocs * sizeof(struct kinfo_proc);
(void)realloc(kd->procbase, size);
#endif
}
*cnt = nprocs;
return (kd->procbase);
}
void
_kvm_freeprocs(kd)
kvm_t *kd;
{
if (kd->procbase) {
free(kd->procbase);
kd->procbase = 0;
}
}
void *
_kvm_realloc(kd, p, n)
kvm_t *kd;
void *p;
size_t n;
{
void *np = (void *)realloc(p, n);
if (np == 0) {
free(p);
1994-05-27 05:00:24 +00:00
_kvm_err(kd, kd->program, "out of memory");
}
1994-05-27 05:00:24 +00:00
return (np);
}
#ifndef MAX
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#endif
/*
* Read in an argument vector from the user address space of process kp.
* addr if the user-space base address of narg null-terminated contiguous
1994-05-27 05:00:24 +00:00
* strings. This is used to read in both the command arguments and
* environment strings. Read at most maxcnt characters of strings.
*/
static char **
kvm_argv(kd, kp, addr, narg, maxcnt)
1994-05-27 05:00:24 +00:00
kvm_t *kd;
struct kinfo_proc *kp;
1994-05-27 05:00:24 +00:00
register u_long addr;
register int narg;
register int maxcnt;
{
register char *np, *cp, *ep, *ap;
register u_long oaddr = -1;
1994-05-27 05:00:24 +00:00
register int len, cc;
register char **argv;
/*
* Check that there aren't an unreasonable number of agruments,
* and that the address is in user space.
*/
if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
1994-05-27 05:00:24 +00:00
return (0);
/*
* kd->argv : work space for fetching the strings from the target
* process's space, and is converted for returning to caller
*/
1994-05-27 05:00:24 +00:00
if (kd->argv == 0) {
/*
* Try to avoid reallocs.
*/
kd->argc = MAX(narg + 1, 32);
1995-05-30 05:51:47 +00:00
kd->argv = (char **)_kvm_malloc(kd, kd->argc *
1994-05-27 05:00:24 +00:00
sizeof(*kd->argv));
if (kd->argv == 0)
return (0);
} else if (narg + 1 > kd->argc) {
kd->argc = MAX(2 * kd->argc, narg + 1);
1995-05-30 05:51:47 +00:00
kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
1994-05-27 05:00:24 +00:00
sizeof(*kd->argv));
if (kd->argv == 0)
return (0);
}
/*
* kd->argspc : returned to user, this is where the kd->argv
* arrays are left pointing to the collected strings.
*/
1994-05-27 05:00:24 +00:00
if (kd->argspc == 0) {
1996-05-02 09:23:36 +00:00
kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
1994-05-27 05:00:24 +00:00
if (kd->argspc == 0)
return (0);
1996-05-02 09:23:36 +00:00
kd->arglen = PAGE_SIZE;
1994-05-27 05:00:24 +00:00
}
/*
* kd->argbuf : used to pull in pages from the target process.
* the strings are copied out of here.
*/
if (kd->argbuf == 0) {
1996-05-02 09:23:36 +00:00
kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
if (kd->argbuf == 0)
return (0);
}
/* Pull in the target process'es argv vector */
cc = sizeof(char *) * narg;
if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
return (0);
/*
* ap : saved start address of string we're working on in kd->argspc
* np : pointer to next place to write in kd->argspc
* len: length of data in kd->argspc
* argv: pointer to the argv vector that we are hunting around the
* target process space for, and converting to addresses in
* our address space (kd->argspc).
*/
ap = np = kd->argspc;
1994-05-27 05:00:24 +00:00
argv = kd->argv;
len = 0;
/*
* Loop over pages, filling in the argument vector.
* Note that the argv strings could be pointing *anywhere* in
* the user address space and are no longer contiguous.
* Note that *argv is modified when we are going to fetch a string
* that crosses a page boundary. We copy the next part of the string
* into to "np" and eventually convert the pointer.
1994-05-27 05:00:24 +00:00
*/
while (argv < kd->argv + narg && *argv != 0) {
/* get the address that the current argv string is on */
1996-05-02 09:23:36 +00:00
addr = (u_long)*argv & ~(PAGE_SIZE - 1);
/* is it the same page as the last one? */
if (addr != oaddr) {
if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
1996-05-02 09:23:36 +00:00
PAGE_SIZE)
return (0);
oaddr = addr;
}
/* offset within the page... kd->argbuf */
1996-05-02 09:23:36 +00:00
addr = (u_long)*argv & (PAGE_SIZE - 1);
/* cp = start of string, cc = count of chars in this chunk */
cp = kd->argbuf + addr;
1996-05-02 09:23:36 +00:00
cc = PAGE_SIZE - addr;
/* dont get more than asked for by user process */
1994-05-27 05:00:24 +00:00
if (maxcnt > 0 && cc > maxcnt - len)
cc = maxcnt - len;
/* pointer to end of string if we found it in this page */
ep = memchr(cp, '\0', cc);
if (ep != 0)
cc = ep - cp + 1;
/*
* at this point, cc is the count of the chars that we are
* going to retrieve this time. we may or may not have found
* the end of it. (ep points to the null if the end is known)
*/
/* will we exceed the malloc/realloced buffer? */
1994-05-27 05:00:24 +00:00
if (len + cc > kd->arglen) {
register int off;
register char **pp;
register char *op = kd->argspc;
kd->arglen *= 2;
kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
kd->arglen);
if (kd->argspc == 0)
return (0);
/*
* Adjust argv pointers in case realloc moved
* the string space.
*/
off = kd->argspc - op;
for (pp = kd->argv; pp < argv; pp++)
1994-05-27 05:00:24 +00:00
*pp += off;
ap += off;
np += off;
1994-05-27 05:00:24 +00:00
}
/* np = where to put the next part of the string in kd->argspc*/
/* np is kinda redundant.. could use "kd->argspc + len" */
memcpy(np, cp, cc);
np += cc; /* inc counters */
1994-05-27 05:00:24 +00:00
len += cc;
/*
* if end of string found, set the *argv pointer to the
* saved beginning of string, and advance. argv points to
* somewhere in kd->argv.. This is initially relative
* to the target process, but when we close it off, we set
* it to point in our address space.
*/
if (ep != 0) {
*argv++ = ap;
ap = np;
} else {
/* update the address relative to the target process */
*argv += cc;
}
1994-05-27 05:00:24 +00:00
if (maxcnt > 0 && len >= maxcnt) {
/*
* We're stopping prematurely. Terminate the
* current string.
1994-05-27 05:00:24 +00:00
*/
if (ep == 0) {
*np = '\0';
*argv++ = ap;
}
break;
}
}
/* Make sure argv is terminated. */
*argv = 0;
return (kd->argv);
1994-05-27 05:00:24 +00:00
}
static void
ps_str_a(p, addr, n)
struct ps_strings *p;
u_long *addr;
int *n;
{
*addr = (u_long)p->ps_argvstr;
*n = p->ps_nargvstr;
}
static void
ps_str_e(p, addr, n)
struct ps_strings *p;
u_long *addr;
int *n;
{
*addr = (u_long)p->ps_envstr;
*n = p->ps_nenvstr;
}
/*
* Determine if the proc indicated by p is still active.
* This test is not 100% foolproof in theory, but chances of
* being wrong are very low.
*/
static int
proc_verify(curkp)
struct kinfo_proc *curkp;
1994-05-27 05:00:24 +00:00
{
struct kinfo_proc newkp;
int mib[4];
size_t len;
1994-05-27 05:00:24 +00:00
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_PID;
mib[3] = curkp->ki_pid;
len = sizeof(newkp);
if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
return (0);
return (curkp->ki_pid == newkp.ki_pid &&
(newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
1994-05-27 05:00:24 +00:00
}
static char **
kvm_doargv(kd, kp, nchr, info)
kvm_t *kd;
struct kinfo_proc *kp;
1994-05-27 05:00:24 +00:00
int nchr;
void (*info)(struct ps_strings *, u_long *, int *);
1994-05-27 05:00:24 +00:00
{
char **ap;
1994-05-27 05:00:24 +00:00
u_long addr;
int cnt;
static struct ps_strings arginfo;
static u_long ps_strings;
size_t len;
if (ps_strings == NULL) {
len = sizeof(ps_strings);
if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
0) == -1)
ps_strings = PS_STRINGS;
}
1994-05-27 05:00:24 +00:00
/*
* Pointers are stored at the top of the user stack.
*/
if (kp->ki_stat == SZOMB ||
kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
sizeof(arginfo)) != sizeof(arginfo))
1994-05-27 05:00:24 +00:00
return (0);
(*info)(&arginfo, &addr, &cnt);
if (cnt == 0)
return (0);
ap = kvm_argv(kd, kp, addr, cnt, nchr);
1994-05-27 05:00:24 +00:00
/*
* For live kernels, make sure this process didn't go away.
*/
if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
1994-05-27 05:00:24 +00:00
ap = 0;
return (ap);
}
/*
* Get the command args. This code is now machine independent.
*/
char **
kvm_getargv(kd, kp, nchr)
kvm_t *kd;
const struct kinfo_proc *kp;
int nchr;
{
int oid[4];
int i;
size_t bufsz;
static int buflen;
static char *buf, *p;
static char **bufp;
static int argc;
if (!ISALIVE(kd)) {
_kvm_err(kd, kd->program,
"cannot read user space from dead kernel");
return (0);
}
if (!buflen) {
bufsz = sizeof(buflen);
i = sysctlbyname("kern.ps_arg_cache_limit",
&buflen, &bufsz, NULL, 0);
if (i == -1) {
buflen = 0;
} else {
buf = malloc(buflen);
if (buf == NULL)
buflen = 0;
argc = 32;
bufp = malloc(sizeof(char *) * argc);
}
}
if (buf != NULL) {
oid[0] = CTL_KERN;
oid[1] = KERN_PROC;
oid[2] = KERN_PROC_ARGS;
oid[3] = kp->ki_pid;
bufsz = buflen;
i = sysctl(oid, 4, buf, &bufsz, 0, 0);
if (i == 0 && bufsz > 0) {
i = 0;
p = buf;
do {
bufp[i++] = p;
p += strlen(p) + 1;
if (i >= argc) {
argc += argc;
bufp = realloc(bufp,
sizeof(char *) * argc);
}
} while (p < buf + bufsz);
bufp[i++] = 0;
return (bufp);
}
}
if (kp->ki_flag & P_SYSTEM)
return (NULL);
1994-05-27 05:00:24 +00:00
return (kvm_doargv(kd, kp, nchr, ps_str_a));
}
char **
kvm_getenvv(kd, kp, nchr)
kvm_t *kd;
const struct kinfo_proc *kp;
int nchr;
{
return (kvm_doargv(kd, kp, nchr, ps_str_e));
}
/*
* Read from user space. The user context is given by p.
*/
ssize_t
kvm_uread(kd, kp, uva, buf, len)
1994-05-27 05:00:24 +00:00
kvm_t *kd;
struct kinfo_proc *kp;
1994-05-27 05:00:24 +00:00
register u_long uva;
register char *buf;
register size_t len;
{
register char *cp;
char procfile[MAXPATHLEN];
ssize_t amount;
int fd;
1994-05-27 05:00:24 +00:00
if (!ISALIVE(kd)) {
_kvm_err(kd, kd->program,
"cannot read user space from dead kernel");
return (0);
}
sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
fd = open(procfile, O_RDONLY, 0);
if (fd < 0) {
_kvm_err(kd, kd->program, "cannot open %s", procfile);
close(fd);
return (0);
}
cp = buf;
1994-05-27 05:00:24 +00:00
while (len > 0) {
errno = 0;
if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
_kvm_err(kd, kd->program, "invalid address (%x) in %s",
uva, procfile);
break;
}
amount = read(fd, cp, len);
if (amount < 0) {
_kvm_syserr(kd, kd->program, "error reading %s",
procfile);
break;
}
if (amount == 0) {
_kvm_err(kd, kd->program, "EOF reading %s", procfile);
1994-05-27 05:00:24 +00:00
break;
}
cp += amount;
uva += amount;
len -= amount;
1994-05-27 05:00:24 +00:00
}
close(fd);
return ((ssize_t)(cp - buf));
1994-05-27 05:00:24 +00:00
}