freebsd-nq/sys/netatalk/at_control.c

615 lines
15 KiB
C
Raw Normal View History

/*
* Copyright (c) 1990,1991 Regents of The University of Michigan.
* All Rights Reserved.
*/
#include <sys/param.h>
#include <sys/systm.h>
#ifdef ibm032
#include <sys/dir.h>
#endif ibm032
#include <sys/proc.h>
#ifndef BSD4_4
#include <sys/user.h>
#endif
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/mbuf.h>
#ifndef _IBMR2
#include <sys/kernel.h>
#endif _IBMR2
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <net/if.h>
/* #include <net/af.h> */
#include <net/route.h>
#include <netinet/in.h>
#undef s_net
#include <netinet/if_ether.h>
#ifdef _IBMR2
#include <net/spl.h>
#endif _IBMR2
#include "at.h"
#include "at_var.h"
#include "aarp.h"
#include "phase2.h"
#include <netatalk/at_extern.h>
static int at_scrub( struct ifnet *ifp, struct at_ifaddr *aa );
static int at_ifinit( struct ifnet *ifp, struct at_ifaddr *aa,
struct sockaddr_at *sat );
#ifdef BSD4_4
# define sateqaddr(a,b) ((a)->sat_len == (b)->sat_len && \
(a)->sat_family == (b)->sat_family && \
(a)->sat_addr.s_net == (b)->sat_addr.s_net && \
(a)->sat_addr.s_node == (b)->sat_addr.s_node )
#else BSD4_4
atalk_hash( sat, hp )
struct sockaddr_at *sat;
struct afhash *hp;
{
hp->afh_nethash = sat->sat_addr.s_net;
hp->afh_hosthash = ( sat->sat_addr.s_net << 8 ) +
sat->sat_addr.s_node;
}
/*
* Note the magic to get ifa_ifwithnet() to work without adding an
* ifaddr entry for each net in our local range.
*/
int
atalk_netmatch( sat1, sat2 )
struct sockaddr_at *sat1, *sat2;
{
struct at_ifaddr *aa;
for ( aa = at_ifaddr; aa; aa = aa->aa_next ) {
if ( AA_SAT( aa ) == sat1 ) {
break;
}
}
if ( aa ) {
return( ntohs( aa->aa_firstnet ) <= ntohs( sat2->sat_addr.s_net ) &&
ntohs( aa->aa_lastnet ) >= ntohs( sat2->sat_addr.s_net ));
}
return( sat1->sat_addr.s_net == sat2->sat_addr.s_net );
}
#endif BSD4_4
int
at_control( int cmd, caddr_t data, struct ifnet *ifp, struct proc *p )
{
struct ifreq *ifr = (struct ifreq *)data;
struct sockaddr_at *sat;
struct netrange *nr;
#ifdef BSD4_4
struct at_aliasreq *ifra = (struct at_aliasreq *)data;
struct at_ifaddr *aa0;
#endif BSD4_4
struct at_ifaddr *aa = 0;
struct mbuf *m;
struct ifaddr *ifa;
if ( ifp ) {
for ( aa = at_ifaddr; aa; aa = aa->aa_next ) {
if ( aa->aa_ifp == ifp ) break;
}
}
switch ( cmd ) {
#ifdef BSD4_4
case SIOCAIFADDR:
case SIOCDIFADDR:
if ( ifra->ifra_addr.sat_family == AF_APPLETALK ) {
for ( ; aa; aa = aa->aa_next ) {
if ( aa->aa_ifp == ifp &&
sateqaddr( &aa->aa_addr, &ifra->ifra_addr )) {
break;
}
}
}
if ( cmd == SIOCDIFADDR && aa == 0 ) {
return( EADDRNOTAVAIL );
}
/*FALLTHROUGH*/
#endif BSD4_4
case SIOCSIFADDR:
#ifdef BSD4_4
/*
* What a great idea this is: Let's reverse the meaning of
* the return...
*/
#if defined( __FreeBSD__ )
if ( suser(p->p_ucred, &p->p_acflag) ) {
#else
if ( suser( u.u_cred, &u.u_acflag )) {
#endif
return( EPERM );
}
#else BSD4_4
if ( !suser()) {
return( EPERM );
}
#endif BSD4_4
sat = satosat( &ifr->ifr_addr );
nr = (struct netrange *)sat->sat_zero;
if ( nr->nr_phase == 1 ) {
for ( ; aa; aa = aa->aa_next ) {
if ( aa->aa_ifp == ifp &&
( aa->aa_flags & AFA_PHASE2 ) == 0 ) {
break;
}
}
} else { /* default to phase 2 */
for ( ; aa; aa = aa->aa_next ) {
if ( aa->aa_ifp == ifp && ( aa->aa_flags & AFA_PHASE2 )) {
break;
}
}
}
if ( ifp == 0 )
panic( "at_control" );
if ( aa == (struct at_ifaddr *) 0 ) {
m = m_getclr( M_WAIT, MT_IFADDR );
if ( m == (struct mbuf *)NULL ) {
return( ENOBUFS );
}
if (( aa = at_ifaddr ) != NULL ) {
/*
* Don't let the loopback be first, since the first
* address is the machine's default address for
* binding.
*/
if ( at_ifaddr->aa_ifp->if_flags & IFF_LOOPBACK ) {
aa = mtod( m, struct at_ifaddr *);
aa->aa_next = at_ifaddr;
at_ifaddr = aa;
} else {
for ( ; aa->aa_next; aa = aa->aa_next )
;
aa->aa_next = mtod( m, struct at_ifaddr *);
}
} else {
at_ifaddr = mtod( m, struct at_ifaddr *);
}
aa = mtod( m, struct at_ifaddr *);
if (( ifa = ifp->if_addrlist ) != NULL ) {
for ( ; ifa->ifa_next; ifa = ifa->ifa_next )
;
ifa->ifa_next = (struct ifaddr *)aa;
} else {
ifp->if_addrlist = (struct ifaddr *)aa;
}
#ifdef BSD4_4
aa->aa_ifa.ifa_addr = (struct sockaddr *)&aa->aa_addr;
aa->aa_ifa.ifa_dstaddr = (struct sockaddr *)&aa->aa_addr;
aa->aa_ifa.ifa_netmask = (struct sockaddr *)&aa->aa_netmask;
#endif BSD4_4
/*
* Set/clear the phase 2 bit.
*/
if ( nr->nr_phase == 1 ) {
aa->aa_flags &= ~AFA_PHASE2;
} else {
aa->aa_flags |= AFA_PHASE2;
}
aa->aa_ifp = ifp;
} else {
at_scrub( ifp, aa );
}
break;
case SIOCGIFADDR :
sat = satosat( &ifr->ifr_addr );
nr = (struct netrange *)sat->sat_zero;
if ( nr->nr_phase == 1 ) {
for ( ; aa; aa = aa->aa_next ) {
if ( aa->aa_ifp == ifp &&
( aa->aa_flags & AFA_PHASE2 ) == 0 ) {
break;
}
}
} else { /* default to phase 2 */
for ( ; aa; aa = aa->aa_next ) {
if ( aa->aa_ifp == ifp && ( aa->aa_flags & AFA_PHASE2 )) {
break;
}
}
}
if ( aa == (struct at_ifaddr *) 0 )
return( EADDRNOTAVAIL );
break;
}
switch ( cmd ) {
case SIOCGIFADDR:
#ifdef BSD4_4
*(struct sockaddr_at *)&ifr->ifr_addr = aa->aa_addr;
#else BSD4_4
ifr->ifr_addr = aa->aa_addr;
#endif BSD4_4
break;
case SIOCSIFADDR:
return( at_ifinit( ifp, aa, (struct sockaddr_at *)&ifr->ifr_addr ));
#ifdef BSD4_4
case SIOCAIFADDR:
if ( sateqaddr( &ifra->ifra_addr, &aa->aa_addr )) {
return( 0 );
}
return( at_ifinit( ifp, aa, (struct sockaddr_at *)&ifr->ifr_addr ));
case SIOCDIFADDR:
at_scrub( ifp, aa );
if (( ifa = ifp->if_addrlist ) == (struct ifaddr *)aa ) {
ifp->if_addrlist = ifa->ifa_next;
} else {
while ( ifa->ifa_next && ( ifa->ifa_next != (struct ifaddr *)aa )) {
ifa = ifa->ifa_next;
}
if ( ifa->ifa_next ) {
ifa->ifa_next = ((struct ifaddr *)aa)->ifa_next;
} else {
panic( "at_control" );
}
}
aa0 = aa;
if ( aa0 == ( aa = at_ifaddr )) {
at_ifaddr = aa->aa_next;
} else {
while ( aa->aa_next && ( aa->aa_next != aa0 )) {
aa = aa->aa_next;
}
if ( aa->aa_next ) {
aa->aa_next = aa0->aa_next;
} else {
panic( "at_control" );
}
}
m_free( dtom( aa0 ));
break;
#endif BSD4_4
default:
if ( ifp == 0 || ifp->if_ioctl == 0 )
return( EOPNOTSUPP );
return( (*ifp->if_ioctl)( ifp, cmd, data ));
}
return( 0 );
}
static int
at_scrub( ifp, aa )
struct ifnet *ifp;
struct at_ifaddr *aa;
{
#ifndef BSD4_4
struct sockaddr_at netsat;
u_short net;
#endif BSD4_4
int error;
if ( aa->aa_flags & AFA_ROUTE ) {
#ifdef BSD4_4
if (( error = rtinit( &(aa->aa_ifa), RTM_DELETE,
( ifp->if_flags & IFF_LOOPBACK ) ? RTF_HOST : 0 )) != 0 ) {
return( error );
}
aa->aa_ifa.ifa_flags &= ~IFA_ROUTE;
#else BSD4_4
if ( ifp->if_flags & IFF_LOOPBACK ) {
rtinit( &aa->aa_addr, &aa->aa_addr, SIOCDELRT, RTF_HOST );
} else {
bzero( &netsat, sizeof( struct sockaddr_at ));
netsat.sat_family = AF_APPLETALK;
netsat.sat_addr.s_node = ATADDR_ANYNODE;
/*
* If the range is the full 0-fffe range, just use
* the default route.
*/
if ( aa->aa_firstnet == htons( 0x0000 ) &&
aa->aa_lastnet == htons( 0xfffe )) {
netsat.sat_addr.s_net = 0;
rtinit((struct sockaddr *)&netsat, &aa->aa_addr,
(int)SIOCDELRT, 0 );
} else {
for ( net = ntohs( aa->aa_firstnet );
net <= ntohs( aa->aa_lastnet ); net++ ) {
netsat.sat_addr.s_net = htons( net );
rtinit((struct sockaddr *)&netsat, &aa->aa_addr,
(int)SIOCDELRT, 0 );
}
}
}
#endif BSD4_4
aa->aa_flags &= ~AFA_ROUTE;
}
return( 0 );
}
#if !defined( __FreeBSD__ )
extern struct timeval time;
#endif __FreeBSD__
static int
at_ifinit( ifp, aa, sat )
struct ifnet *ifp;
struct at_ifaddr *aa;
struct sockaddr_at *sat;
{
struct netrange nr, onr;
#ifdef BSD4_4
struct sockaddr_at oldaddr;
#else BSD4_4
struct sockaddr oldaddr;
#endif BSD4_4
struct sockaddr_at netaddr;
int s = splimp(), error = 0, i, j, netinc, nodeinc, nnets;
u_short net;
oldaddr = aa->aa_addr;
bzero( AA_SAT( aa ), sizeof( struct sockaddr_at ));
bcopy( sat->sat_zero, &nr, sizeof( struct netrange ));
nnets = ntohs( nr.nr_lastnet ) - ntohs( nr.nr_firstnet ) + 1;
onr.nr_firstnet = aa->aa_firstnet;
onr.nr_lastnet = aa->aa_lastnet;
aa->aa_firstnet = nr.nr_firstnet;
aa->aa_lastnet = nr.nr_lastnet;
/*
* We could eliminate the need for a second phase 1 probe (post
* autoconf) if we check whether we're resetting the node. Note
* that phase 1 probes use only nodes, not net.node pairs. Under
* phase 2, both the net and node must be the same.
*/
if ( ifp->if_flags & IFF_LOOPBACK ) {
#ifdef BSD4_4
AA_SAT( aa )->sat_len = sat->sat_len;
#endif BSD4_4
AA_SAT( aa )->sat_family = AF_APPLETALK;
AA_SAT( aa )->sat_addr.s_net = sat->sat_addr.s_net;
AA_SAT( aa )->sat_addr.s_node = sat->sat_addr.s_node;
} else {
aa->aa_flags |= AFA_PROBING;
#ifdef BSD4_4
AA_SAT( aa )->sat_len = sizeof(struct sockaddr_at);
#endif BSD4_4
AA_SAT( aa )->sat_family = AF_APPLETALK;
if ( aa->aa_flags & AFA_PHASE2 ) {
if ( sat->sat_addr.s_net == ATADDR_ANYNET ) {
if ( nnets != 1 ) {
net = ntohs( nr.nr_firstnet ) + time.tv_sec % ( nnets - 1 );
} else {
net = ntohs( nr.nr_firstnet );
}
} else {
if ( ntohs( sat->sat_addr.s_net ) < ntohs( nr.nr_firstnet ) ||
ntohs( sat->sat_addr.s_net ) > ntohs( nr.nr_lastnet )) {
aa->aa_addr = oldaddr;
aa->aa_firstnet = onr.nr_firstnet;
aa->aa_lastnet = onr.nr_lastnet;
return( EINVAL );
}
net = ntohs( sat->sat_addr.s_net );
}
} else {
net = ntohs( sat->sat_addr.s_net );
}
if ( sat->sat_addr.s_node == ATADDR_ANYNODE ) {
AA_SAT( aa )->sat_addr.s_node = time.tv_sec;
} else {
AA_SAT( aa )->sat_addr.s_node = sat->sat_addr.s_node;
}
for ( i = nnets, netinc = 1; i > 0; net = ntohs( nr.nr_firstnet ) +
(( net - ntohs( nr.nr_firstnet ) + netinc ) % nnets ), i-- ) {
AA_SAT( aa )->sat_addr.s_net = htons( net );
for ( j = 0, nodeinc = time.tv_sec | 1; j < 256;
j++, AA_SAT( aa )->sat_addr.s_node += nodeinc ) {
if ( AA_SAT( aa )->sat_addr.s_node > 253 ||
AA_SAT( aa )->sat_addr.s_node < 1 ) {
continue;
}
aa->aa_probcnt = 10;
timeout( (timeout_func_t)aarpprobe, (caddr_t)ifp, hz / 5 );
splx( s );
if (
#if defined( __FreeBSD__ )
tsleep( aa, PPAUSE|PCATCH, "at_ifinit", 0 )
#else
sleep( aa, PSLEP|PCATCH )
#endif
) {
printf( "at_ifinit why did this happen?!\n" );
aa->aa_addr = oldaddr;
aa->aa_firstnet = onr.nr_firstnet;
aa->aa_lastnet = onr.nr_lastnet;
return( EINTR );
}
s = splimp();
if (( aa->aa_flags & AFA_PROBING ) == 0 ) {
break;
}
}
if (( aa->aa_flags & AFA_PROBING ) == 0 ) {
break;
}
/* reset node for next network */
AA_SAT( aa )->sat_addr.s_node = time.tv_sec;
}
if ( aa->aa_flags & AFA_PROBING ) {
aa->aa_addr = oldaddr;
aa->aa_firstnet = onr.nr_firstnet;
aa->aa_lastnet = onr.nr_lastnet;
splx( s );
return( EADDRINUSE );
}
}
if ( ifp->if_ioctl &&
( error = (*ifp->if_ioctl)( ifp, SIOCSIFADDR, (caddr_t)aa ))) {
splx( s );
aa->aa_addr = oldaddr;
aa->aa_firstnet = onr.nr_firstnet;
aa->aa_lastnet = onr.nr_lastnet;
return( error );
}
#ifdef BSD4_4
aa->aa_netmask.sat_len = 6/*sizeof(struct sockaddr_at)*/;
aa->aa_netmask.sat_family = AF_APPLETALK;
aa->aa_netmask.sat_addr.s_net = 0xffff;
aa->aa_netmask.sat_addr.s_node = 0;
#if defined( __FreeBSD__ )
aa->aa_ifa.ifa_netmask =(struct sockaddr *) &(aa->aa_netmask); /* XXX */
#endif __FreeBSD__
#endif BSD4_4
if ( ifp->if_flags & IFF_LOOPBACK ) {
#ifndef BSD4_4
rtinit( &aa->aa_addr, &aa->aa_addr, (int)SIOCADDRT,
RTF_HOST|RTF_UP );
#else BSD4_4
error = rtinit( &(aa->aa_ifa), (int)RTM_ADD,
#if !defined( __FreeBSD__ )
RTF_HOST |
#else
/* XXX not a host route? */
#endif __FreeBSD__
RTF_UP );
#endif BSD4_4
} else {
#ifndef BSD4_4
/*
* rtrequest looks for point-to-point links first. The
* broadaddr is in the same spot as the destaddr. So, if
* ATADDR_ANYNET is 0, and we don't fill in the broadaddr, we
* get 0.0 routed out the ether interface. So, initialize the
* broadaddr, even tho we don't use it.
*
* We *could* use the broadaddr field to reduce some of the
* sockaddr_at overloading that we've done. E.g. Just send
* to INTERFACE-NET.255, and have the kernel reroute that
* to broadaddr, which would be 0.255 for phase 2 interfaces,
* and IFACE-NET.255 for phase 1 interfaces.
*/
((struct sockaddr_at *)&aa->aa_broadaddr)->sat_addr.s_net =
sat->sat_addr.s_net;
((struct sockaddr_at *)&aa->aa_broadaddr)->sat_addr.s_node =
ATADDR_BCAST;
bzero( &netaddr, sizeof( struct sockaddr_at ));
netaddr.sat_family = AF_APPLETALK;
netaddr.sat_addr.s_node = ATADDR_ANYNODE;
if (( aa->aa_flags & AFA_PHASE2 ) == 0 ) {
netaddr.sat_addr.s_net = AA_SAT( aa )->sat_addr.s_net;
rtinit((struct sockaddr *)&netaddr, &aa->aa_addr,
(int)SIOCADDRT, RTF_UP );
} else {
/*
* If the range is the full 0-fffe range, just use
* the default route.
*/
if ( aa->aa_firstnet == htons( 0x0000 ) &&
aa->aa_lastnet == htons( 0xfffe )) {
netaddr.sat_addr.s_net = 0;
rtinit((struct sockaddr *)&netaddr, &aa->aa_addr,
(int)SIOCADDRT, RTF_UP );
} else {
for ( net = ntohs( aa->aa_firstnet );
net <= ntohs( aa->aa_lastnet ); net++ ) {
netaddr.sat_addr.s_net = htons( net );
rtinit((struct sockaddr *)&netaddr, &aa->aa_addr,
(int)SIOCADDRT, RTF_UP );
}
}
}
#else BSD4_4
error = rtinit( &(aa->aa_ifa), (int)RTM_ADD, RTF_UP );
#endif BSD4_4
}
if ( error ) {
aa->aa_addr = oldaddr;
aa->aa_firstnet = onr.nr_firstnet;
aa->aa_lastnet = onr.nr_lastnet;
splx( s );
return( error );
}
#ifdef BSD4_4
aa->aa_ifa.ifa_flags |= IFA_ROUTE;
#endif BSD4_4
aa->aa_flags |= AFA_ROUTE;
splx( s );
return( 0 );
}
int
at_broadcast( sat )
struct sockaddr_at *sat;
{
struct at_ifaddr *aa;
if ( sat->sat_addr.s_node != ATADDR_BCAST ) {
return( 0 );
}
if ( sat->sat_addr.s_net == ATADDR_ANYNET ) {
return( 1 );
} else {
for ( aa = at_ifaddr; aa; aa = aa->aa_next ) {
if (( aa->aa_ifp->if_flags & IFF_BROADCAST ) &&
( ntohs( sat->sat_addr.s_net ) >= ntohs( aa->aa_firstnet ) &&
ntohs( sat->sat_addr.s_net ) <= ntohs( aa->aa_lastnet ))) {
return( 1 );
}
}
}
return( 0 );
}
static void
aa_clean(void)
{
struct at_ifaddr *aa;
struct ifaddr *ifa;
struct ifnet *ifp;
while ( aa = at_ifaddr ) {
ifp = aa->aa_ifp;
at_scrub( ifp, aa );
at_ifaddr = aa->aa_next;
if (( ifa = ifp->if_addrlist ) == (struct ifaddr *)aa ) {
ifp->if_addrlist = ifa->ifa_next;
} else {
while ( ifa->ifa_next &&
( ifa->ifa_next != (struct ifaddr *)aa )) {
ifa = ifa->ifa_next;
}
if ( ifa->ifa_next ) {
ifa->ifa_next = ((struct ifaddr *)aa)->ifa_next;
} else {
panic( "at_entry" );
}
}
}
}