317 lines
10 KiB
C
Raw Normal View History

2008-11-20 12:01:55 -08:00
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2016 by Delphix. All rights reserved.
* Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
2008-11-20 12:01:55 -08:00
*/
#ifndef _SYS_ARC_H
#define _SYS_ARC_H
#include <sys/zfs_context.h>
#ifdef __cplusplus
extern "C" {
#endif
#include <sys/zio.h>
#include <sys/dmu.h>
#include <sys/spa.h>
Linux 3.1 compat, super_block->s_shrink The Linux 3.1 kernel has introduced the concept of per-filesystem shrinkers which are directly assoicated with a super block. Prior to this change there was one shared global shrinker. The zfs code relied on being able to call the global shrinker when the arc_meta_limit was exceeded. This would cause the VFS to drop references on a fraction of the dentries in the dcache. The ARC could then safely reclaim the memory used by these entries and honor the arc_meta_limit. Unfortunately, when per-filesystem shrinkers were added the old interfaces were made unavailable. This change adds support to use the new per-filesystem shrinker interface so we can continue to honor the arc_meta_limit. The major benefit of the new interface is that we can now target only the zfs filesystem for dentry and inode pruning. Thus we can minimize any impact on the caching of other filesystems. In the context of making this change several other important issues related to managing the ARC were addressed, they include: * The dnlc_reduce_cache() function which was called by the ARC to drop dentries for the Posix layer was replaced with a generic zfs_prune_t callback. The ZPL layer now registers a callback to drop these dentries removing a layering violation which dates back to the Solaris code. This callback can also be used by other ARC consumers such as Lustre. arc_add_prune_callback() arc_remove_prune_callback() * The arc_reduce_dnlc_percent module option has been changed to arc_meta_prune for clarity. The dnlc functions are specific to Solaris's VFS and have already been largely eliminated already. The replacement tunable now represents the number of bytes the prune callback will request when invoked. * Less aggressively invoke the prune callback. We used to call this whenever we exceeded the arc_meta_limit however that's not strictly correct since it results in over zeleous reclaim of dentries and inodes. It is now only called once the arc_meta_limit is exceeded and every effort has been made to evict other data from the ARC cache. * More promptly manage exceeding the arc_meta_limit. When reading meta data in to the cache if a buffer was unable to be recycled notify the arc_reclaim thread to invoke the required prune. * Added arcstat_prune kstat which is incremented when the ARC is forced to request that a consumer prune its cache. Remember this will only occur when the ARC has no other choice. If it can evict buffers safely without invoking the prune callback it will. * This change is also expected to resolve the unexpect collapses of the ARC cache. This would occur because when exceeded just the arc_meta_limit reclaim presure would be excerted on the arc_c value via arc_shrink(). This effectively shrunk the entire cache when really we just needed to reclaim meta data. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #466 Closes #292
2011-12-22 12:20:43 -08:00
#include <sys/refcount.h>
2008-11-20 12:01:55 -08:00
Illumos 5497 - lock contention on arcs_mtx Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Richard Elling <richard.elling@richardelling.com> Approved by: Dan McDonald <danmcd@omniti.com> Porting notes and other significant code changes: The illumos 5368 patch (ARC should cache more metadata), which was never picked up by ZoL, is mostly reverted by this patch. Since ZoL relies on the kernel asynchronously calling the shrinker to actually reap memory, the shrinker wakes up arc_reclaim_waiters_cv every time it runs. The arc_adapt_thread() function no longer calls arc_do_user_evicts() since the newly-added arc_user_evicts_thread() calls it periodically. Notable conflicting ZoL commits which conflicted with this patch or whose effects are either duplicated or un-done by this patch: 302f753 - Integrate ARC more tightly with Linux 39e055c - Adjust arc_p based on "bytes" in arc_shrink f521ce1 - Allow "arc_p" to drop to zero or grow to "arc_c" 77765b5 - Remove "arc_meta_used" from arc_adjust calculation 94520ca - Prune metadata from ghost lists in arc_adjust_meta Trace support for multilist_insert() and multilist_remove() has been added and produces the following output: fio-12498 [077] .... 112936.448324: zfs_multilist__insert: ml { offset 240 numsublists 80 sublistidx 63 } fio-12498 [077] .... 112936.448347: zfs_multilist__remove: ml { offset 240 numsublists 80 sublistidx 29 } The following arcstats have been removed: recycle_miss - Used by arcstat.py and arc_summary.py, both of which have been updated appropriately. l2_writes_hdr_miss The following arcstats have been added: evict_not_enough - Number of times arc_evict_state() was unable to evict enough buffers to reach its target amount. evict_l2_skip - Number of times arc_evict_hdr() skipped eviction because it was being written to the l2arc. l2_writes_lock_retry - Replaces l2_writes_hdr_miss. Number of times l2arc_write_done() failed to acquire hash_lock (and re-tries). arc_meta_min - Shows the value of the zfs_arc_meta_min module parameter (see below). The "index" column of the "dbuf" kstat has been removed since it doesn't have a direct analog in the new multilist scheme. Additional multilist- related stats could be added in the future but would likely require extensions to the mulilist API. The following module parameters have been added: zfs_arc_evict_batch_limit - Number of ARC headers to free per sub-list before moving on to the next sub-list. zfs_arc_meta_min - Enforce a floor on the amount of metadata in the ARC. zfs_arc_num_sublists_per_state - Number of multilist sub-lists per ARC state. zfs_arc_overflow_shift - Controls amount by which the ARC must exceed the target size to be considered "overflowing". Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov
2015-01-12 19:52:19 -08:00
/*
* Used by arc_flush() to inform arc_evict_state() that it should evict
* all available buffers from the arc state being passed in.
*/
#define ARC_EVICT_ALL -1ULL
OpenZFS 6950 - ARC should cache compressed data Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Tom Caputi <tcaputi@datto.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported by: David Quigley <david.quigley@intel.com> This review covers the reading and writing of compressed arc headers, sharing data between the arc_hdr_t and the arc_buf_t, and the implementation of a new dbuf cache to keep frequently access data uncompressed. I've added a new member to l1 arc hdr called b_pdata. The b_pdata always hangs off the arc_buf_hdr_t (if an L1 hdr is in use) and points to the physical block for that DVA. The physical block may or may not be compressed. If compressed arc is enabled and the block on-disk is compressed, then the b_pdata will match the block on-disk and remain compressed in memory. If the block on disk is not compressed, then neither will the b_pdata. Lastly, if compressed arc is disabled, then b_pdata will always be an uncompressed version of the on-disk block. Typically the arc will cache only the arc_buf_hdr_t and will aggressively evict any arc_buf_t's that are no longer referenced. This means that the arc will primarily have compressed blocks as the arc_buf_t's are considered overhead and are always uncompressed. When a consumer reads a block we first look to see if the arc_buf_hdr_t is cached. If the hdr is cached then we allocate a new arc_buf_t and decompress the b_pdata contents into the arc_buf_t's b_data. If the hdr already has a arc_buf_t, then we will allocate an additional arc_buf_t and bcopy the uncompressed contents from the first arc_buf_t to the new one. Writing to the compressed arc requires that we first discard the b_pdata since the physical block is about to be rewritten. The new data contents will be passed in via an arc_buf_t (uncompressed) and during the I/O pipeline stages we will copy the physical block contents to a newly allocated b_pdata. When an l2arc is inuse it will also take advantage of the b_pdata. Now the l2arc will always write the contents of b_pdata to the l2arc. This means that when compressed arc is enabled that the l2arc blocks are identical to those stored in the main data pool. This provides a significant advantage since we can leverage the bp's checksum when reading from the l2arc to determine if the contents are valid. If the compressed arc is disabled, then we must first transform the read block to look like the physical block in the main data pool before comparing the checksum and determining it's valid. OpenZFS-issue: https://www.illumos.org/issues/6950 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7fc10f0 Issue #5078
2016-06-02 00:04:53 -04:00
#define HDR_SET_LSIZE(hdr, x) do { \
ASSERT(IS_P2ALIGNED(x, 1U << SPA_MINBLOCKSHIFT)); \
(hdr)->b_lsize = ((x) >> SPA_MINBLOCKSHIFT); \
_NOTE(CONSTCOND) } while (0)
#define HDR_SET_PSIZE(hdr, x) do { \
ASSERT(IS_P2ALIGNED((x), 1U << SPA_MINBLOCKSHIFT)); \
(hdr)->b_psize = ((x) >> SPA_MINBLOCKSHIFT); \
_NOTE(CONSTCOND) } while (0)
#define HDR_GET_LSIZE(hdr) ((hdr)->b_lsize << SPA_MINBLOCKSHIFT)
#define HDR_GET_PSIZE(hdr) ((hdr)->b_psize << SPA_MINBLOCKSHIFT)
2008-11-20 12:01:55 -08:00
typedef struct arc_buf_hdr arc_buf_hdr_t;
typedef struct arc_buf arc_buf_t;
Linux 3.1 compat, super_block->s_shrink The Linux 3.1 kernel has introduced the concept of per-filesystem shrinkers which are directly assoicated with a super block. Prior to this change there was one shared global shrinker. The zfs code relied on being able to call the global shrinker when the arc_meta_limit was exceeded. This would cause the VFS to drop references on a fraction of the dentries in the dcache. The ARC could then safely reclaim the memory used by these entries and honor the arc_meta_limit. Unfortunately, when per-filesystem shrinkers were added the old interfaces were made unavailable. This change adds support to use the new per-filesystem shrinker interface so we can continue to honor the arc_meta_limit. The major benefit of the new interface is that we can now target only the zfs filesystem for dentry and inode pruning. Thus we can minimize any impact on the caching of other filesystems. In the context of making this change several other important issues related to managing the ARC were addressed, they include: * The dnlc_reduce_cache() function which was called by the ARC to drop dentries for the Posix layer was replaced with a generic zfs_prune_t callback. The ZPL layer now registers a callback to drop these dentries removing a layering violation which dates back to the Solaris code. This callback can also be used by other ARC consumers such as Lustre. arc_add_prune_callback() arc_remove_prune_callback() * The arc_reduce_dnlc_percent module option has been changed to arc_meta_prune for clarity. The dnlc functions are specific to Solaris's VFS and have already been largely eliminated already. The replacement tunable now represents the number of bytes the prune callback will request when invoked. * Less aggressively invoke the prune callback. We used to call this whenever we exceeded the arc_meta_limit however that's not strictly correct since it results in over zeleous reclaim of dentries and inodes. It is now only called once the arc_meta_limit is exceeded and every effort has been made to evict other data from the ARC cache. * More promptly manage exceeding the arc_meta_limit. When reading meta data in to the cache if a buffer was unable to be recycled notify the arc_reclaim thread to invoke the required prune. * Added arcstat_prune kstat which is incremented when the ARC is forced to request that a consumer prune its cache. Remember this will only occur when the ARC has no other choice. If it can evict buffers safely without invoking the prune callback it will. * This change is also expected to resolve the unexpect collapses of the ARC cache. This would occur because when exceeded just the arc_meta_limit reclaim presure would be excerted on the arc_c value via arc_shrink(). This effectively shrunk the entire cache when really we just needed to reclaim meta data. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #466 Closes #292
2011-12-22 12:20:43 -08:00
typedef struct arc_prune arc_prune_t;
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 13:36:48 -04:00
/*
* Because the ARC can store encrypted data, errors (not due to bugs) may arise
* while transforming data into its desired format - specifically, when
* decrypting, the key may not be present, or the HMAC may not be correct
* which signifies deliberate tampering with the on-disk state
* (assuming that the checksum was correct). The "error" parameter will be
* nonzero in this case, even if there is no associated zio.
*/
typedef void arc_read_done_func_t(zio_t *zio, int error, arc_buf_t *buf,
void *private);
typedef void arc_write_done_func_t(zio_t *zio, arc_buf_t *buf, void *private);
Linux 3.1 compat, super_block->s_shrink The Linux 3.1 kernel has introduced the concept of per-filesystem shrinkers which are directly assoicated with a super block. Prior to this change there was one shared global shrinker. The zfs code relied on being able to call the global shrinker when the arc_meta_limit was exceeded. This would cause the VFS to drop references on a fraction of the dentries in the dcache. The ARC could then safely reclaim the memory used by these entries and honor the arc_meta_limit. Unfortunately, when per-filesystem shrinkers were added the old interfaces were made unavailable. This change adds support to use the new per-filesystem shrinker interface so we can continue to honor the arc_meta_limit. The major benefit of the new interface is that we can now target only the zfs filesystem for dentry and inode pruning. Thus we can minimize any impact on the caching of other filesystems. In the context of making this change several other important issues related to managing the ARC were addressed, they include: * The dnlc_reduce_cache() function which was called by the ARC to drop dentries for the Posix layer was replaced with a generic zfs_prune_t callback. The ZPL layer now registers a callback to drop these dentries removing a layering violation which dates back to the Solaris code. This callback can also be used by other ARC consumers such as Lustre. arc_add_prune_callback() arc_remove_prune_callback() * The arc_reduce_dnlc_percent module option has been changed to arc_meta_prune for clarity. The dnlc functions are specific to Solaris's VFS and have already been largely eliminated already. The replacement tunable now represents the number of bytes the prune callback will request when invoked. * Less aggressively invoke the prune callback. We used to call this whenever we exceeded the arc_meta_limit however that's not strictly correct since it results in over zeleous reclaim of dentries and inodes. It is now only called once the arc_meta_limit is exceeded and every effort has been made to evict other data from the ARC cache. * More promptly manage exceeding the arc_meta_limit. When reading meta data in to the cache if a buffer was unable to be recycled notify the arc_reclaim thread to invoke the required prune. * Added arcstat_prune kstat which is incremented when the ARC is forced to request that a consumer prune its cache. Remember this will only occur when the ARC has no other choice. If it can evict buffers safely without invoking the prune callback it will. * This change is also expected to resolve the unexpect collapses of the ARC cache. This would occur because when exceeded just the arc_meta_limit reclaim presure would be excerted on the arc_c value via arc_shrink(). This effectively shrunk the entire cache when really we just needed to reclaim meta data. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #466 Closes #292
2011-12-22 12:20:43 -08:00
typedef void arc_prune_func_t(int64_t bytes, void *private);
2008-11-20 12:01:55 -08:00
/* Shared module parameters */
extern int zfs_arc_average_blocksize;
2008-11-20 12:01:55 -08:00
/* generic arc_done_func_t's which you can use */
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 13:36:48 -04:00
arc_read_done_func_t arc_bcopy_func;
arc_read_done_func_t arc_getbuf_func;
2008-11-20 12:01:55 -08:00
Linux 3.1 compat, super_block->s_shrink The Linux 3.1 kernel has introduced the concept of per-filesystem shrinkers which are directly assoicated with a super block. Prior to this change there was one shared global shrinker. The zfs code relied on being able to call the global shrinker when the arc_meta_limit was exceeded. This would cause the VFS to drop references on a fraction of the dentries in the dcache. The ARC could then safely reclaim the memory used by these entries and honor the arc_meta_limit. Unfortunately, when per-filesystem shrinkers were added the old interfaces were made unavailable. This change adds support to use the new per-filesystem shrinker interface so we can continue to honor the arc_meta_limit. The major benefit of the new interface is that we can now target only the zfs filesystem for dentry and inode pruning. Thus we can minimize any impact on the caching of other filesystems. In the context of making this change several other important issues related to managing the ARC were addressed, they include: * The dnlc_reduce_cache() function which was called by the ARC to drop dentries for the Posix layer was replaced with a generic zfs_prune_t callback. The ZPL layer now registers a callback to drop these dentries removing a layering violation which dates back to the Solaris code. This callback can also be used by other ARC consumers such as Lustre. arc_add_prune_callback() arc_remove_prune_callback() * The arc_reduce_dnlc_percent module option has been changed to arc_meta_prune for clarity. The dnlc functions are specific to Solaris's VFS and have already been largely eliminated already. The replacement tunable now represents the number of bytes the prune callback will request when invoked. * Less aggressively invoke the prune callback. We used to call this whenever we exceeded the arc_meta_limit however that's not strictly correct since it results in over zeleous reclaim of dentries and inodes. It is now only called once the arc_meta_limit is exceeded and every effort has been made to evict other data from the ARC cache. * More promptly manage exceeding the arc_meta_limit. When reading meta data in to the cache if a buffer was unable to be recycled notify the arc_reclaim thread to invoke the required prune. * Added arcstat_prune kstat which is incremented when the ARC is forced to request that a consumer prune its cache. Remember this will only occur when the ARC has no other choice. If it can evict buffers safely without invoking the prune callback it will. * This change is also expected to resolve the unexpect collapses of the ARC cache. This would occur because when exceeded just the arc_meta_limit reclaim presure would be excerted on the arc_c value via arc_shrink(). This effectively shrunk the entire cache when really we just needed to reclaim meta data. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #466 Closes #292
2011-12-22 12:20:43 -08:00
/* generic arc_prune_func_t wrapper for callbacks */
struct arc_prune {
arc_prune_func_t *p_pfunc;
void *p_private;
uint64_t p_adjust;
Linux 3.1 compat, super_block->s_shrink The Linux 3.1 kernel has introduced the concept of per-filesystem shrinkers which are directly assoicated with a super block. Prior to this change there was one shared global shrinker. The zfs code relied on being able to call the global shrinker when the arc_meta_limit was exceeded. This would cause the VFS to drop references on a fraction of the dentries in the dcache. The ARC could then safely reclaim the memory used by these entries and honor the arc_meta_limit. Unfortunately, when per-filesystem shrinkers were added the old interfaces were made unavailable. This change adds support to use the new per-filesystem shrinker interface so we can continue to honor the arc_meta_limit. The major benefit of the new interface is that we can now target only the zfs filesystem for dentry and inode pruning. Thus we can minimize any impact on the caching of other filesystems. In the context of making this change several other important issues related to managing the ARC were addressed, they include: * The dnlc_reduce_cache() function which was called by the ARC to drop dentries for the Posix layer was replaced with a generic zfs_prune_t callback. The ZPL layer now registers a callback to drop these dentries removing a layering violation which dates back to the Solaris code. This callback can also be used by other ARC consumers such as Lustre. arc_add_prune_callback() arc_remove_prune_callback() * The arc_reduce_dnlc_percent module option has been changed to arc_meta_prune for clarity. The dnlc functions are specific to Solaris's VFS and have already been largely eliminated already. The replacement tunable now represents the number of bytes the prune callback will request when invoked. * Less aggressively invoke the prune callback. We used to call this whenever we exceeded the arc_meta_limit however that's not strictly correct since it results in over zeleous reclaim of dentries and inodes. It is now only called once the arc_meta_limit is exceeded and every effort has been made to evict other data from the ARC cache. * More promptly manage exceeding the arc_meta_limit. When reading meta data in to the cache if a buffer was unable to be recycled notify the arc_reclaim thread to invoke the required prune. * Added arcstat_prune kstat which is incremented when the ARC is forced to request that a consumer prune its cache. Remember this will only occur when the ARC has no other choice. If it can evict buffers safely without invoking the prune callback it will. * This change is also expected to resolve the unexpect collapses of the ARC cache. This would occur because when exceeded just the arc_meta_limit reclaim presure would be excerted on the arc_c value via arc_shrink(). This effectively shrunk the entire cache when really we just needed to reclaim meta data. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #466 Closes #292
2011-12-22 12:20:43 -08:00
list_node_t p_node;
refcount_t p_refcnt;
};
typedef enum arc_strategy {
ARC_STRATEGY_META_ONLY = 0, /* Evict only meta data buffers */
ARC_STRATEGY_META_BALANCED = 1, /* Evict data buffers if needed */
} arc_strategy_t;
typedef enum arc_flags
{
/*
* Public flags that can be passed into the ARC by external consumers.
*/
OpenZFS 6950 - ARC should cache compressed data Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Tom Caputi <tcaputi@datto.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported by: David Quigley <david.quigley@intel.com> This review covers the reading and writing of compressed arc headers, sharing data between the arc_hdr_t and the arc_buf_t, and the implementation of a new dbuf cache to keep frequently access data uncompressed. I've added a new member to l1 arc hdr called b_pdata. The b_pdata always hangs off the arc_buf_hdr_t (if an L1 hdr is in use) and points to the physical block for that DVA. The physical block may or may not be compressed. If compressed arc is enabled and the block on-disk is compressed, then the b_pdata will match the block on-disk and remain compressed in memory. If the block on disk is not compressed, then neither will the b_pdata. Lastly, if compressed arc is disabled, then b_pdata will always be an uncompressed version of the on-disk block. Typically the arc will cache only the arc_buf_hdr_t and will aggressively evict any arc_buf_t's that are no longer referenced. This means that the arc will primarily have compressed blocks as the arc_buf_t's are considered overhead and are always uncompressed. When a consumer reads a block we first look to see if the arc_buf_hdr_t is cached. If the hdr is cached then we allocate a new arc_buf_t and decompress the b_pdata contents into the arc_buf_t's b_data. If the hdr already has a arc_buf_t, then we will allocate an additional arc_buf_t and bcopy the uncompressed contents from the first arc_buf_t to the new one. Writing to the compressed arc requires that we first discard the b_pdata since the physical block is about to be rewritten. The new data contents will be passed in via an arc_buf_t (uncompressed) and during the I/O pipeline stages we will copy the physical block contents to a newly allocated b_pdata. When an l2arc is inuse it will also take advantage of the b_pdata. Now the l2arc will always write the contents of b_pdata to the l2arc. This means that when compressed arc is enabled that the l2arc blocks are identical to those stored in the main data pool. This provides a significant advantage since we can leverage the bp's checksum when reading from the l2arc to determine if the contents are valid. If the compressed arc is disabled, then we must first transform the read block to look like the physical block in the main data pool before comparing the checksum and determining it's valid. OpenZFS-issue: https://www.illumos.org/issues/6950 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7fc10f0 Issue #5078
2016-06-02 00:04:53 -04:00
ARC_FLAG_WAIT = 1 << 0, /* perform sync I/O */
ARC_FLAG_NOWAIT = 1 << 1, /* perform async I/O */
ARC_FLAG_PREFETCH = 1 << 2, /* I/O is a prefetch */
ARC_FLAG_CACHED = 1 << 3, /* I/O was in cache */
ARC_FLAG_L2CACHE = 1 << 4, /* cache in L2ARC */
ARC_FLAG_PREDICTIVE_PREFETCH = 1 << 5, /* I/O from zfetch */
/*
* Private ARC flags. These flags are private ARC only flags that
* will show up in b_flags in the arc_hdr_buf_t. These flags should
* only be set by ARC code.
*/
OpenZFS 6950 - ARC should cache compressed data Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Tom Caputi <tcaputi@datto.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported by: David Quigley <david.quigley@intel.com> This review covers the reading and writing of compressed arc headers, sharing data between the arc_hdr_t and the arc_buf_t, and the implementation of a new dbuf cache to keep frequently access data uncompressed. I've added a new member to l1 arc hdr called b_pdata. The b_pdata always hangs off the arc_buf_hdr_t (if an L1 hdr is in use) and points to the physical block for that DVA. The physical block may or may not be compressed. If compressed arc is enabled and the block on-disk is compressed, then the b_pdata will match the block on-disk and remain compressed in memory. If the block on disk is not compressed, then neither will the b_pdata. Lastly, if compressed arc is disabled, then b_pdata will always be an uncompressed version of the on-disk block. Typically the arc will cache only the arc_buf_hdr_t and will aggressively evict any arc_buf_t's that are no longer referenced. This means that the arc will primarily have compressed blocks as the arc_buf_t's are considered overhead and are always uncompressed. When a consumer reads a block we first look to see if the arc_buf_hdr_t is cached. If the hdr is cached then we allocate a new arc_buf_t and decompress the b_pdata contents into the arc_buf_t's b_data. If the hdr already has a arc_buf_t, then we will allocate an additional arc_buf_t and bcopy the uncompressed contents from the first arc_buf_t to the new one. Writing to the compressed arc requires that we first discard the b_pdata since the physical block is about to be rewritten. The new data contents will be passed in via an arc_buf_t (uncompressed) and during the I/O pipeline stages we will copy the physical block contents to a newly allocated b_pdata. When an l2arc is inuse it will also take advantage of the b_pdata. Now the l2arc will always write the contents of b_pdata to the l2arc. This means that when compressed arc is enabled that the l2arc blocks are identical to those stored in the main data pool. This provides a significant advantage since we can leverage the bp's checksum when reading from the l2arc to determine if the contents are valid. If the compressed arc is disabled, then we must first transform the read block to look like the physical block in the main data pool before comparing the checksum and determining it's valid. OpenZFS-issue: https://www.illumos.org/issues/6950 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7fc10f0 Issue #5078
2016-06-02 00:04:53 -04:00
ARC_FLAG_IN_HASH_TABLE = 1 << 6, /* buffer is hashed */
ARC_FLAG_IO_IN_PROGRESS = 1 << 7, /* I/O in progress */
ARC_FLAG_IO_ERROR = 1 << 8, /* I/O failed for buf */
ARC_FLAG_INDIRECT = 1 << 9, /* indirect block */
/* Indicates that block was read with ASYNC priority. */
OpenZFS 6950 - ARC should cache compressed data Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Tom Caputi <tcaputi@datto.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported by: David Quigley <david.quigley@intel.com> This review covers the reading and writing of compressed arc headers, sharing data between the arc_hdr_t and the arc_buf_t, and the implementation of a new dbuf cache to keep frequently access data uncompressed. I've added a new member to l1 arc hdr called b_pdata. The b_pdata always hangs off the arc_buf_hdr_t (if an L1 hdr is in use) and points to the physical block for that DVA. The physical block may or may not be compressed. If compressed arc is enabled and the block on-disk is compressed, then the b_pdata will match the block on-disk and remain compressed in memory. If the block on disk is not compressed, then neither will the b_pdata. Lastly, if compressed arc is disabled, then b_pdata will always be an uncompressed version of the on-disk block. Typically the arc will cache only the arc_buf_hdr_t and will aggressively evict any arc_buf_t's that are no longer referenced. This means that the arc will primarily have compressed blocks as the arc_buf_t's are considered overhead and are always uncompressed. When a consumer reads a block we first look to see if the arc_buf_hdr_t is cached. If the hdr is cached then we allocate a new arc_buf_t and decompress the b_pdata contents into the arc_buf_t's b_data. If the hdr already has a arc_buf_t, then we will allocate an additional arc_buf_t and bcopy the uncompressed contents from the first arc_buf_t to the new one. Writing to the compressed arc requires that we first discard the b_pdata since the physical block is about to be rewritten. The new data contents will be passed in via an arc_buf_t (uncompressed) and during the I/O pipeline stages we will copy the physical block contents to a newly allocated b_pdata. When an l2arc is inuse it will also take advantage of the b_pdata. Now the l2arc will always write the contents of b_pdata to the l2arc. This means that when compressed arc is enabled that the l2arc blocks are identical to those stored in the main data pool. This provides a significant advantage since we can leverage the bp's checksum when reading from the l2arc to determine if the contents are valid. If the compressed arc is disabled, then we must first transform the read block to look like the physical block in the main data pool before comparing the checksum and determining it's valid. OpenZFS-issue: https://www.illumos.org/issues/6950 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7fc10f0 Issue #5078
2016-06-02 00:04:53 -04:00
ARC_FLAG_PRIO_ASYNC_READ = 1 << 10,
ARC_FLAG_L2_WRITING = 1 << 11, /* write in progress */
ARC_FLAG_L2_EVICTED = 1 << 12, /* evicted during I/O */
ARC_FLAG_L2_WRITE_HEAD = 1 << 13, /* head of write list */
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 13:36:48 -04:00
/*
* Encrypted or authenticated on disk (may be plaintext in memory).
* This header has b_crypt_hdr allocated. Does not include indirect
* blocks with checksums of MACs which will also have their X
* (encrypted) bit set in the bp.
*/
ARC_FLAG_PROTECTED = 1 << 14,
/* data has not been authenticated yet */
ARC_FLAG_NOAUTH = 1 << 15,
/* indicates that the buffer contains metadata (otherwise, data) */
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 13:36:48 -04:00
ARC_FLAG_BUFC_METADATA = 1 << 16,
/* Flags specifying whether optional hdr struct fields are defined */
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 13:36:48 -04:00
ARC_FLAG_HAS_L1HDR = 1 << 17,
ARC_FLAG_HAS_L2HDR = 1 << 18,
OpenZFS 6950 - ARC should cache compressed data Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Tom Caputi <tcaputi@datto.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported by: David Quigley <david.quigley@intel.com> This review covers the reading and writing of compressed arc headers, sharing data between the arc_hdr_t and the arc_buf_t, and the implementation of a new dbuf cache to keep frequently access data uncompressed. I've added a new member to l1 arc hdr called b_pdata. The b_pdata always hangs off the arc_buf_hdr_t (if an L1 hdr is in use) and points to the physical block for that DVA. The physical block may or may not be compressed. If compressed arc is enabled and the block on-disk is compressed, then the b_pdata will match the block on-disk and remain compressed in memory. If the block on disk is not compressed, then neither will the b_pdata. Lastly, if compressed arc is disabled, then b_pdata will always be an uncompressed version of the on-disk block. Typically the arc will cache only the arc_buf_hdr_t and will aggressively evict any arc_buf_t's that are no longer referenced. This means that the arc will primarily have compressed blocks as the arc_buf_t's are considered overhead and are always uncompressed. When a consumer reads a block we first look to see if the arc_buf_hdr_t is cached. If the hdr is cached then we allocate a new arc_buf_t and decompress the b_pdata contents into the arc_buf_t's b_data. If the hdr already has a arc_buf_t, then we will allocate an additional arc_buf_t and bcopy the uncompressed contents from the first arc_buf_t to the new one. Writing to the compressed arc requires that we first discard the b_pdata since the physical block is about to be rewritten. The new data contents will be passed in via an arc_buf_t (uncompressed) and during the I/O pipeline stages we will copy the physical block contents to a newly allocated b_pdata. When an l2arc is inuse it will also take advantage of the b_pdata. Now the l2arc will always write the contents of b_pdata to the l2arc. This means that when compressed arc is enabled that the l2arc blocks are identical to those stored in the main data pool. This provides a significant advantage since we can leverage the bp's checksum when reading from the l2arc to determine if the contents are valid. If the compressed arc is disabled, then we must first transform the read block to look like the physical block in the main data pool before comparing the checksum and determining it's valid. OpenZFS-issue: https://www.illumos.org/issues/6950 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7fc10f0 Issue #5078
2016-06-02 00:04:53 -04:00
/*
* Indicates the arc_buf_hdr_t's b_pdata matches the on-disk data.
* This allows the l2arc to use the blkptr's checksum to verify
* the data without having to store the checksum in the hdr.
*/
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 13:36:48 -04:00
ARC_FLAG_COMPRESSED_ARC = 1 << 19,
ARC_FLAG_SHARED_DATA = 1 << 20,
OpenZFS 6950 - ARC should cache compressed data Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Tom Caputi <tcaputi@datto.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported by: David Quigley <david.quigley@intel.com> This review covers the reading and writing of compressed arc headers, sharing data between the arc_hdr_t and the arc_buf_t, and the implementation of a new dbuf cache to keep frequently access data uncompressed. I've added a new member to l1 arc hdr called b_pdata. The b_pdata always hangs off the arc_buf_hdr_t (if an L1 hdr is in use) and points to the physical block for that DVA. The physical block may or may not be compressed. If compressed arc is enabled and the block on-disk is compressed, then the b_pdata will match the block on-disk and remain compressed in memory. If the block on disk is not compressed, then neither will the b_pdata. Lastly, if compressed arc is disabled, then b_pdata will always be an uncompressed version of the on-disk block. Typically the arc will cache only the arc_buf_hdr_t and will aggressively evict any arc_buf_t's that are no longer referenced. This means that the arc will primarily have compressed blocks as the arc_buf_t's are considered overhead and are always uncompressed. When a consumer reads a block we first look to see if the arc_buf_hdr_t is cached. If the hdr is cached then we allocate a new arc_buf_t and decompress the b_pdata contents into the arc_buf_t's b_data. If the hdr already has a arc_buf_t, then we will allocate an additional arc_buf_t and bcopy the uncompressed contents from the first arc_buf_t to the new one. Writing to the compressed arc requires that we first discard the b_pdata since the physical block is about to be rewritten. The new data contents will be passed in via an arc_buf_t (uncompressed) and during the I/O pipeline stages we will copy the physical block contents to a newly allocated b_pdata. When an l2arc is inuse it will also take advantage of the b_pdata. Now the l2arc will always write the contents of b_pdata to the l2arc. This means that when compressed arc is enabled that the l2arc blocks are identical to those stored in the main data pool. This provides a significant advantage since we can leverage the bp's checksum when reading from the l2arc to determine if the contents are valid. If the compressed arc is disabled, then we must first transform the read block to look like the physical block in the main data pool before comparing the checksum and determining it's valid. OpenZFS-issue: https://www.illumos.org/issues/6950 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7fc10f0 Issue #5078
2016-06-02 00:04:53 -04:00
/*
* The arc buffer's compression mode is stored in the top 7 bits of the
* flags field, so these dummy flags are included so that MDB can
* interpret the enum properly.
*/
ARC_FLAG_COMPRESS_0 = 1 << 24,
ARC_FLAG_COMPRESS_1 = 1 << 25,
ARC_FLAG_COMPRESS_2 = 1 << 26,
ARC_FLAG_COMPRESS_3 = 1 << 27,
ARC_FLAG_COMPRESS_4 = 1 << 28,
ARC_FLAG_COMPRESS_5 = 1 << 29,
ARC_FLAG_COMPRESS_6 = 1 << 30
} arc_flags_t;
typedef enum arc_buf_flags {
ARC_BUF_FLAG_SHARED = 1 << 0,
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 13:36:48 -04:00
ARC_BUF_FLAG_COMPRESSED = 1 << 1,
/*
* indicates whether this arc_buf_t is encrypted, regardless of
* state on-disk
*/
ARC_BUF_FLAG_ENCRYPTED = 1 << 2
} arc_buf_flags_t;
2008-11-20 12:01:55 -08:00
struct arc_buf {
arc_buf_hdr_t *b_hdr;
arc_buf_t *b_next;
kmutex_t b_evict_lock;
2008-11-20 12:01:55 -08:00
void *b_data;
arc_buf_flags_t b_flags;
2008-11-20 12:01:55 -08:00
};
typedef enum arc_buf_contents {
OpenZFS 6950 - ARC should cache compressed data Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Tom Caputi <tcaputi@datto.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported by: David Quigley <david.quigley@intel.com> This review covers the reading and writing of compressed arc headers, sharing data between the arc_hdr_t and the arc_buf_t, and the implementation of a new dbuf cache to keep frequently access data uncompressed. I've added a new member to l1 arc hdr called b_pdata. The b_pdata always hangs off the arc_buf_hdr_t (if an L1 hdr is in use) and points to the physical block for that DVA. The physical block may or may not be compressed. If compressed arc is enabled and the block on-disk is compressed, then the b_pdata will match the block on-disk and remain compressed in memory. If the block on disk is not compressed, then neither will the b_pdata. Lastly, if compressed arc is disabled, then b_pdata will always be an uncompressed version of the on-disk block. Typically the arc will cache only the arc_buf_hdr_t and will aggressively evict any arc_buf_t's that are no longer referenced. This means that the arc will primarily have compressed blocks as the arc_buf_t's are considered overhead and are always uncompressed. When a consumer reads a block we first look to see if the arc_buf_hdr_t is cached. If the hdr is cached then we allocate a new arc_buf_t and decompress the b_pdata contents into the arc_buf_t's b_data. If the hdr already has a arc_buf_t, then we will allocate an additional arc_buf_t and bcopy the uncompressed contents from the first arc_buf_t to the new one. Writing to the compressed arc requires that we first discard the b_pdata since the physical block is about to be rewritten. The new data contents will be passed in via an arc_buf_t (uncompressed) and during the I/O pipeline stages we will copy the physical block contents to a newly allocated b_pdata. When an l2arc is inuse it will also take advantage of the b_pdata. Now the l2arc will always write the contents of b_pdata to the l2arc. This means that when compressed arc is enabled that the l2arc blocks are identical to those stored in the main data pool. This provides a significant advantage since we can leverage the bp's checksum when reading from the l2arc to determine if the contents are valid. If the compressed arc is disabled, then we must first transform the read block to look like the physical block in the main data pool before comparing the checksum and determining it's valid. OpenZFS-issue: https://www.illumos.org/issues/6950 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7fc10f0 Issue #5078
2016-06-02 00:04:53 -04:00
ARC_BUFC_INVALID, /* invalid type */
2008-11-20 12:01:55 -08:00
ARC_BUFC_DATA, /* buffer contains data */
ARC_BUFC_METADATA, /* buffer contains metadata */
ARC_BUFC_NUMTYPES
} arc_buf_contents_t;
2009-02-18 12:51:31 -08:00
/*
* The following breakdows of arc_size exist for kstat only.
*/
typedef enum arc_space_type {
ARC_SPACE_DATA,
ARC_SPACE_META,
2009-02-18 12:51:31 -08:00
ARC_SPACE_HDRS,
ARC_SPACE_L2HDRS,
Limit the amount of dnode metadata in the ARC Metadata-intensive workloads can cause the ARC to become permanently filled with dnode_t objects as they're pinned by the VFS layer. Subsequent data-intensive workloads may only benefit from about 25% of the potential ARC (arc_c_max - arc_meta_limit). In order to help track metadata usage more precisely, the other_size metadata arcstat has replaced with dbuf_size, dnode_size and bonus_size. The new zfs_arc_dnode_limit tunable, which defaults to 10% of zfs_arc_meta_limit, defines the minimum number of bytes which is desirable to be consumed by dnodes. Attempts to evict non-metadata will trigger async prune tasks if the space used by dnodes exceeds this limit. The new zfs_arc_dnode_reduce_percent tunable specifies the amount by which the excess dnode space is attempted to be pruned as a percentage of the amount by which zfs_arc_dnode_limit is being exceeded. By default, it tries to unpin 10% of the dnodes. The problem of dnode metadata pinning was observed with the following testing procedure (in this example, zfs_arc_max is set to 4GiB): - Create a large number of small files until arc_meta_used exceeds arc_meta_limit (3GiB with default tuning) and arc_prune starts increasing. - Create a 3GiB file with dd. Observe arc_mata_used. It will still be around 3GiB. - Repeatedly read the 3GiB file and observe arc_meta_limit as before. It will continue to stay around 3GiB. With this modification, space for the 3GiB file is gradually made available as subsequent demands on the ARC are made. The previous behavior can be restored by setting zfs_arc_dnode_limit to the same value as the zfs_arc_meta_limit. Signed-off-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #4345 Issue #4512 Issue #4773 Closes #4858
2016-07-13 07:42:40 -05:00
ARC_SPACE_DBUF,
ARC_SPACE_DNODE,
ARC_SPACE_BONUS,
2009-02-18 12:51:31 -08:00
ARC_SPACE_NUMTYPES
} arc_space_type_t;
typedef enum arc_state_type {
ARC_STATE_ANON,
ARC_STATE_MRU,
ARC_STATE_MRU_GHOST,
ARC_STATE_MFU,
ARC_STATE_MFU_GHOST,
ARC_STATE_L2C_ONLY,
ARC_STATE_NUMTYPES
} arc_state_type_t;
typedef struct arc_buf_info {
arc_state_type_t abi_state_type;
arc_buf_contents_t abi_state_contents;
uint32_t abi_flags;
OpenZFS 6950 - ARC should cache compressed data Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Tom Caputi <tcaputi@datto.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported by: David Quigley <david.quigley@intel.com> This review covers the reading and writing of compressed arc headers, sharing data between the arc_hdr_t and the arc_buf_t, and the implementation of a new dbuf cache to keep frequently access data uncompressed. I've added a new member to l1 arc hdr called b_pdata. The b_pdata always hangs off the arc_buf_hdr_t (if an L1 hdr is in use) and points to the physical block for that DVA. The physical block may or may not be compressed. If compressed arc is enabled and the block on-disk is compressed, then the b_pdata will match the block on-disk and remain compressed in memory. If the block on disk is not compressed, then neither will the b_pdata. Lastly, if compressed arc is disabled, then b_pdata will always be an uncompressed version of the on-disk block. Typically the arc will cache only the arc_buf_hdr_t and will aggressively evict any arc_buf_t's that are no longer referenced. This means that the arc will primarily have compressed blocks as the arc_buf_t's are considered overhead and are always uncompressed. When a consumer reads a block we first look to see if the arc_buf_hdr_t is cached. If the hdr is cached then we allocate a new arc_buf_t and decompress the b_pdata contents into the arc_buf_t's b_data. If the hdr already has a arc_buf_t, then we will allocate an additional arc_buf_t and bcopy the uncompressed contents from the first arc_buf_t to the new one. Writing to the compressed arc requires that we first discard the b_pdata since the physical block is about to be rewritten. The new data contents will be passed in via an arc_buf_t (uncompressed) and during the I/O pipeline stages we will copy the physical block contents to a newly allocated b_pdata. When an l2arc is inuse it will also take advantage of the b_pdata. Now the l2arc will always write the contents of b_pdata to the l2arc. This means that when compressed arc is enabled that the l2arc blocks are identical to those stored in the main data pool. This provides a significant advantage since we can leverage the bp's checksum when reading from the l2arc to determine if the contents are valid. If the compressed arc is disabled, then we must first transform the read block to look like the physical block in the main data pool before comparing the checksum and determining it's valid. OpenZFS-issue: https://www.illumos.org/issues/6950 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7fc10f0 Issue #5078
2016-06-02 00:04:53 -04:00
uint32_t abi_bufcnt;
uint64_t abi_size;
uint64_t abi_spa;
uint64_t abi_access;
uint32_t abi_mru_hits;
uint32_t abi_mru_ghost_hits;
uint32_t abi_mfu_hits;
uint32_t abi_mfu_ghost_hits;
uint32_t abi_l2arc_hits;
uint32_t abi_holds;
uint64_t abi_l2arc_dattr;
uint64_t abi_l2arc_asize;
enum zio_compress abi_l2arc_compress;
} arc_buf_info_t;
2009-02-18 12:51:31 -08:00
void arc_space_consume(uint64_t space, arc_space_type_t type);
void arc_space_return(uint64_t space, arc_space_type_t type);
boolean_t arc_is_metadata(arc_buf_t *buf);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 13:36:48 -04:00
boolean_t arc_is_encrypted(arc_buf_t *buf);
boolean_t arc_is_unauthenticated(arc_buf_t *buf);
enum zio_compress arc_get_compression(arc_buf_t *buf);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 13:36:48 -04:00
void arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
uint8_t *iv, uint8_t *mac);
int arc_untransform(arc_buf_t *buf, spa_t *spa, uint64_t dsobj,
boolean_t in_place);
void arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
const uint8_t *mac);
arc_buf_t *arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type,
int32_t size);
arc_buf_t *arc_alloc_compressed_buf(spa_t *spa, void *tag,
uint64_t psize, uint64_t lsize, enum zio_compress compression_type);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 13:36:48 -04:00
arc_buf_t *arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj,
boolean_t byteorder, const uint8_t *salt, const uint8_t *iv,
const uint8_t *mac, dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
enum zio_compress compression_type);
arc_buf_t *arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size);
arc_buf_t *arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
enum zio_compress compression_type);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 13:36:48 -04:00
arc_buf_t *arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
enum zio_compress compression_type);
2009-07-02 15:44:48 -07:00
void arc_return_buf(arc_buf_t *buf, void *tag);
void arc_loan_inuse_buf(arc_buf_t *buf, void *tag);
OpenZFS 6950 - ARC should cache compressed data Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Tom Caputi <tcaputi@datto.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported by: David Quigley <david.quigley@intel.com> This review covers the reading and writing of compressed arc headers, sharing data between the arc_hdr_t and the arc_buf_t, and the implementation of a new dbuf cache to keep frequently access data uncompressed. I've added a new member to l1 arc hdr called b_pdata. The b_pdata always hangs off the arc_buf_hdr_t (if an L1 hdr is in use) and points to the physical block for that DVA. The physical block may or may not be compressed. If compressed arc is enabled and the block on-disk is compressed, then the b_pdata will match the block on-disk and remain compressed in memory. If the block on disk is not compressed, then neither will the b_pdata. Lastly, if compressed arc is disabled, then b_pdata will always be an uncompressed version of the on-disk block. Typically the arc will cache only the arc_buf_hdr_t and will aggressively evict any arc_buf_t's that are no longer referenced. This means that the arc will primarily have compressed blocks as the arc_buf_t's are considered overhead and are always uncompressed. When a consumer reads a block we first look to see if the arc_buf_hdr_t is cached. If the hdr is cached then we allocate a new arc_buf_t and decompress the b_pdata contents into the arc_buf_t's b_data. If the hdr already has a arc_buf_t, then we will allocate an additional arc_buf_t and bcopy the uncompressed contents from the first arc_buf_t to the new one. Writing to the compressed arc requires that we first discard the b_pdata since the physical block is about to be rewritten. The new data contents will be passed in via an arc_buf_t (uncompressed) and during the I/O pipeline stages we will copy the physical block contents to a newly allocated b_pdata. When an l2arc is inuse it will also take advantage of the b_pdata. Now the l2arc will always write the contents of b_pdata to the l2arc. This means that when compressed arc is enabled that the l2arc blocks are identical to those stored in the main data pool. This provides a significant advantage since we can leverage the bp's checksum when reading from the l2arc to determine if the contents are valid. If the compressed arc is disabled, then we must first transform the read block to look like the physical block in the main data pool before comparing the checksum and determining it's valid. OpenZFS-issue: https://www.illumos.org/issues/6950 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7fc10f0 Issue #5078
2016-06-02 00:04:53 -04:00
void arc_buf_destroy(arc_buf_t *buf, void *tag);
void arc_buf_info(arc_buf_t *buf, arc_buf_info_t *abi, int state_index);
uint64_t arc_buf_size(arc_buf_t *buf);
uint64_t arc_buf_lsize(arc_buf_t *buf);
2008-11-20 12:01:55 -08:00
void arc_release(arc_buf_t *buf, void *tag);
int arc_released(arc_buf_t *buf);
void arc_buf_sigsegv(int sig, siginfo_t *si, void *unused);
2008-11-20 12:01:55 -08:00
void arc_buf_freeze(arc_buf_t *buf);
void arc_buf_thaw(arc_buf_t *buf);
#ifdef ZFS_DEBUG
int arc_referenced(arc_buf_t *buf);
#endif
int arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 13:36:48 -04:00
arc_read_done_func_t *done, void *private, zio_priority_t priority,
int flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb);
zio_t *arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
OpenZFS 6950 - ARC should cache compressed data Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Tom Caputi <tcaputi@datto.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported by: David Quigley <david.quigley@intel.com> This review covers the reading and writing of compressed arc headers, sharing data between the arc_hdr_t and the arc_buf_t, and the implementation of a new dbuf cache to keep frequently access data uncompressed. I've added a new member to l1 arc hdr called b_pdata. The b_pdata always hangs off the arc_buf_hdr_t (if an L1 hdr is in use) and points to the physical block for that DVA. The physical block may or may not be compressed. If compressed arc is enabled and the block on-disk is compressed, then the b_pdata will match the block on-disk and remain compressed in memory. If the block on disk is not compressed, then neither will the b_pdata. Lastly, if compressed arc is disabled, then b_pdata will always be an uncompressed version of the on-disk block. Typically the arc will cache only the arc_buf_hdr_t and will aggressively evict any arc_buf_t's that are no longer referenced. This means that the arc will primarily have compressed blocks as the arc_buf_t's are considered overhead and are always uncompressed. When a consumer reads a block we first look to see if the arc_buf_hdr_t is cached. If the hdr is cached then we allocate a new arc_buf_t and decompress the b_pdata contents into the arc_buf_t's b_data. If the hdr already has a arc_buf_t, then we will allocate an additional arc_buf_t and bcopy the uncompressed contents from the first arc_buf_t to the new one. Writing to the compressed arc requires that we first discard the b_pdata since the physical block is about to be rewritten. The new data contents will be passed in via an arc_buf_t (uncompressed) and during the I/O pipeline stages we will copy the physical block contents to a newly allocated b_pdata. When an l2arc is inuse it will also take advantage of the b_pdata. Now the l2arc will always write the contents of b_pdata to the l2arc. This means that when compressed arc is enabled that the l2arc blocks are identical to those stored in the main data pool. This provides a significant advantage since we can leverage the bp's checksum when reading from the l2arc to determine if the contents are valid. If the compressed arc is disabled, then we must first transform the read block to look like the physical block in the main data pool before comparing the checksum and determining it's valid. OpenZFS-issue: https://www.illumos.org/issues/6950 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7fc10f0 Issue #5078
2016-06-02 00:04:53 -04:00
blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp,
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 13:36:48 -04:00
arc_write_done_func_t *ready, arc_write_done_func_t *child_ready,
arc_write_done_func_t *physdone, arc_write_done_func_t *done,
void *private, zio_priority_t priority, int zio_flags,
const zbookmark_phys_t *zb);
2008-11-20 12:01:55 -08:00
Linux 3.1 compat, super_block->s_shrink The Linux 3.1 kernel has introduced the concept of per-filesystem shrinkers which are directly assoicated with a super block. Prior to this change there was one shared global shrinker. The zfs code relied on being able to call the global shrinker when the arc_meta_limit was exceeded. This would cause the VFS to drop references on a fraction of the dentries in the dcache. The ARC could then safely reclaim the memory used by these entries and honor the arc_meta_limit. Unfortunately, when per-filesystem shrinkers were added the old interfaces were made unavailable. This change adds support to use the new per-filesystem shrinker interface so we can continue to honor the arc_meta_limit. The major benefit of the new interface is that we can now target only the zfs filesystem for dentry and inode pruning. Thus we can minimize any impact on the caching of other filesystems. In the context of making this change several other important issues related to managing the ARC were addressed, they include: * The dnlc_reduce_cache() function which was called by the ARC to drop dentries for the Posix layer was replaced with a generic zfs_prune_t callback. The ZPL layer now registers a callback to drop these dentries removing a layering violation which dates back to the Solaris code. This callback can also be used by other ARC consumers such as Lustre. arc_add_prune_callback() arc_remove_prune_callback() * The arc_reduce_dnlc_percent module option has been changed to arc_meta_prune for clarity. The dnlc functions are specific to Solaris's VFS and have already been largely eliminated already. The replacement tunable now represents the number of bytes the prune callback will request when invoked. * Less aggressively invoke the prune callback. We used to call this whenever we exceeded the arc_meta_limit however that's not strictly correct since it results in over zeleous reclaim of dentries and inodes. It is now only called once the arc_meta_limit is exceeded and every effort has been made to evict other data from the ARC cache. * More promptly manage exceeding the arc_meta_limit. When reading meta data in to the cache if a buffer was unable to be recycled notify the arc_reclaim thread to invoke the required prune. * Added arcstat_prune kstat which is incremented when the ARC is forced to request that a consumer prune its cache. Remember this will only occur when the ARC has no other choice. If it can evict buffers safely without invoking the prune callback it will. * This change is also expected to resolve the unexpect collapses of the ARC cache. This would occur because when exceeded just the arc_meta_limit reclaim presure would be excerted on the arc_c value via arc_shrink(). This effectively shrunk the entire cache when really we just needed to reclaim meta data. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #466 Closes #292
2011-12-22 12:20:43 -08:00
arc_prune_t *arc_add_prune_callback(arc_prune_func_t *func, void *private);
void arc_remove_prune_callback(arc_prune_t *p);
Illumos #3805 arc shouldn't cache freed blocks 3805 arc shouldn't cache freed blocks Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Richard Elling <richard.elling@dey-sys.com> Reviewed by: Will Andrews <will@firepipe.net> Approved by: Dan McDonald <danmcd@nexenta.com> References: illumos/illumos-gate@6e6d5868f52089b9026785bd90257a3d3f6e5ee2 https://www.illumos.org/issues/3805 ZFS should proactively evict freed blocks from the cache. On dcenter, we saw that we were caching ~256GB of metadata, while the pool only had <4GB of metadata on disk. We were wasting about half the system's RAM (252GB) on blocks that have been freed. Even though these freed blocks will never be used again, and thus will eventually be evicted, this causes us to use memory inefficiently for 2 reasons: 1. A block that is freed has no chance of being accessed again, but will be kept in memory preferentially to a block that was accessed before it (and is thus older) but has not been freed and thus has at least some chance of being accessed again. 2. We partition the ARC into several buckets: user data that has been accessed only once (MRU) metadata that has been accessed only once (MRU) user data that has been accessed more than once (MFU) metadata that has been accessed more than once (MFU) The user data vs metadata split is somewhat arbitrary, and the primary control on how much memory is used to cache data vs metadata is to simply try to keep the proportion the same as it has been in the past (each bucket "evicts against" itself). The secondary control is to evict data before evicting metadata. Because of this bucketing, we may end up with one bucket mostly containing freed blocks that are very old, while another bucket has more recently accessed, still-allocated blocks. Data in the useful bucket (with still-allocated blocks) may be evicted in preference to data in the useless bucket (with old, freed blocks). On dcenter, we saw that the MFU metadata bucket was 230MB, while the MFU data bucket was 27GB and the MRU metadata bucket was 256GB. However, the vast majority of data in the MRU metadata bucket (256GB) was freed blocks, and thus useless. Meanwhile, the MFU metadata bucket (230MB) was constantly evicting useful blocks that will be soon needed. The problem of cache segmentation is a larger problem that needs more investigation. However, if we stop caching freed blocks, it should reduce the impact of this more fundamental issue. Ported-by: Richard Yao <ryao@cs.stonybrook.edu> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1503
2013-06-06 18:46:55 -04:00
void arc_freed(spa_t *spa, const blkptr_t *bp);
Linux 3.1 compat, super_block->s_shrink The Linux 3.1 kernel has introduced the concept of per-filesystem shrinkers which are directly assoicated with a super block. Prior to this change there was one shared global shrinker. The zfs code relied on being able to call the global shrinker when the arc_meta_limit was exceeded. This would cause the VFS to drop references on a fraction of the dentries in the dcache. The ARC could then safely reclaim the memory used by these entries and honor the arc_meta_limit. Unfortunately, when per-filesystem shrinkers were added the old interfaces were made unavailable. This change adds support to use the new per-filesystem shrinker interface so we can continue to honor the arc_meta_limit. The major benefit of the new interface is that we can now target only the zfs filesystem for dentry and inode pruning. Thus we can minimize any impact on the caching of other filesystems. In the context of making this change several other important issues related to managing the ARC were addressed, they include: * The dnlc_reduce_cache() function which was called by the ARC to drop dentries for the Posix layer was replaced with a generic zfs_prune_t callback. The ZPL layer now registers a callback to drop these dentries removing a layering violation which dates back to the Solaris code. This callback can also be used by other ARC consumers such as Lustre. arc_add_prune_callback() arc_remove_prune_callback() * The arc_reduce_dnlc_percent module option has been changed to arc_meta_prune for clarity. The dnlc functions are specific to Solaris's VFS and have already been largely eliminated already. The replacement tunable now represents the number of bytes the prune callback will request when invoked. * Less aggressively invoke the prune callback. We used to call this whenever we exceeded the arc_meta_limit however that's not strictly correct since it results in over zeleous reclaim of dentries and inodes. It is now only called once the arc_meta_limit is exceeded and every effort has been made to evict other data from the ARC cache. * More promptly manage exceeding the arc_meta_limit. When reading meta data in to the cache if a buffer was unable to be recycled notify the arc_reclaim thread to invoke the required prune. * Added arcstat_prune kstat which is incremented when the ARC is forced to request that a consumer prune its cache. Remember this will only occur when the ARC has no other choice. If it can evict buffers safely without invoking the prune callback it will. * This change is also expected to resolve the unexpect collapses of the ARC cache. This would occur because when exceeded just the arc_meta_limit reclaim presure would be excerted on the arc_c value via arc_shrink(). This effectively shrunk the entire cache when really we just needed to reclaim meta data. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #466 Closes #292
2011-12-22 12:20:43 -08:00
Illumos 5497 - lock contention on arcs_mtx Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Richard Elling <richard.elling@richardelling.com> Approved by: Dan McDonald <danmcd@omniti.com> Porting notes and other significant code changes: The illumos 5368 patch (ARC should cache more metadata), which was never picked up by ZoL, is mostly reverted by this patch. Since ZoL relies on the kernel asynchronously calling the shrinker to actually reap memory, the shrinker wakes up arc_reclaim_waiters_cv every time it runs. The arc_adapt_thread() function no longer calls arc_do_user_evicts() since the newly-added arc_user_evicts_thread() calls it periodically. Notable conflicting ZoL commits which conflicted with this patch or whose effects are either duplicated or un-done by this patch: 302f753 - Integrate ARC more tightly with Linux 39e055c - Adjust arc_p based on "bytes" in arc_shrink f521ce1 - Allow "arc_p" to drop to zero or grow to "arc_c" 77765b5 - Remove "arc_meta_used" from arc_adjust calculation 94520ca - Prune metadata from ghost lists in arc_adjust_meta Trace support for multilist_insert() and multilist_remove() has been added and produces the following output: fio-12498 [077] .... 112936.448324: zfs_multilist__insert: ml { offset 240 numsublists 80 sublistidx 63 } fio-12498 [077] .... 112936.448347: zfs_multilist__remove: ml { offset 240 numsublists 80 sublistidx 29 } The following arcstats have been removed: recycle_miss - Used by arcstat.py and arc_summary.py, both of which have been updated appropriately. l2_writes_hdr_miss The following arcstats have been added: evict_not_enough - Number of times arc_evict_state() was unable to evict enough buffers to reach its target amount. evict_l2_skip - Number of times arc_evict_hdr() skipped eviction because it was being written to the l2arc. l2_writes_lock_retry - Replaces l2_writes_hdr_miss. Number of times l2arc_write_done() failed to acquire hash_lock (and re-tries). arc_meta_min - Shows the value of the zfs_arc_meta_min module parameter (see below). The "index" column of the "dbuf" kstat has been removed since it doesn't have a direct analog in the new multilist scheme. Additional multilist- related stats could be added in the future but would likely require extensions to the mulilist API. The following module parameters have been added: zfs_arc_evict_batch_limit - Number of ARC headers to free per sub-list before moving on to the next sub-list. zfs_arc_meta_min - Enforce a floor on the amount of metadata in the ARC. zfs_arc_num_sublists_per_state - Number of multilist sub-lists per ARC state. zfs_arc_overflow_shift - Controls amount by which the ARC must exceed the target size to be considered "overflowing". Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov
2015-01-12 19:52:19 -08:00
void arc_flush(spa_t *spa, boolean_t retry);
2008-11-20 12:01:55 -08:00
void arc_tempreserve_clear(uint64_t reserve);
int arc_tempreserve_space(uint64_t reserve, uint64_t txg);
uint64_t arc_target_bytes(void);
2008-11-20 12:01:55 -08:00
void arc_init(void);
void arc_fini(void);
/*
* Level 2 ARC
*/
2009-07-02 15:44:48 -07:00
void l2arc_add_vdev(spa_t *spa, vdev_t *vd);
2008-11-20 12:01:55 -08:00
void l2arc_remove_vdev(vdev_t *vd);
boolean_t l2arc_vdev_present(vdev_t *vd);
2008-11-20 12:01:55 -08:00
void l2arc_init(void);
void l2arc_fini(void);
void l2arc_start(void);
void l2arc_stop(void);
2008-11-20 12:01:55 -08:00
#ifndef _KERNEL
extern boolean_t arc_watch;
#endif
2008-11-20 12:01:55 -08:00
#ifdef __cplusplus
}
#endif
#endif /* _SYS_ARC_H */