freebsd-nq/sys/dev/hptmv/entry.c

2909 lines
83 KiB
C
Raw Normal View History

/*
* Copyright (c) 2004-2005 HighPoint Technologies, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/malloc.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <sys/callout.h>
#include <sys/signalvar.h>
#include <sys/eventhandler.h>
#include <sys/proc.h>
#include <sys/kthread.h>
#if (__FreeBSD_version >= 500000)
#include <sys/mutex.h>
#include <sys/module.h>
#endif
#if (__FreeBSD_version >= 500000)
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#else
#include <pci/pcireg.h>
#include <pci/pcivar.h>
#include <machine/clock.h>
#include <sys/wait.h>
#include <sys/sysproto.h>
#endif
#ifndef __KERNEL__
#define __KERNEL__
#endif
#include <dev/hptmv/global.h>
#include <dev/hptmv/hptintf.h>
#include <dev/hptmv/osbsd.h>
#include <dev/hptmv/access601.h>
#ifdef DEBUG
#ifdef DEBUG_LEVEL
int hpt_dbg_level = DEBUG_LEVEL;
#else
int hpt_dbg_level = 0;
#endif
#endif
#define MV_ERROR printf
/*
* CAM SIM entry points
*/
static int hpt_probe (device_t dev);
static void launch_worker_thread(void);
static int hpt_attach(device_t dev);
static int hpt_detach(device_t dev);
static int hpt_shutdown(device_t dev);
static void hpt_poll(struct cam_sim *sim);
static void hpt_intr(void *arg);
static void hpt_async(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg);
static void hpt_action(struct cam_sim *sim, union ccb *ccb);
static device_method_t driver_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, hpt_probe),
DEVMETHOD(device_attach, hpt_attach),
DEVMETHOD(device_detach, hpt_detach),
/* DEVMETHOD(device_shutdown, hpt_shutdown), */
{ 0, 0 }
};
static driver_t hpt_pci_driver = {
__str(PROC_DIR_NAME),
driver_methods,
sizeof(IAL_ADAPTER_T)
};
static devclass_t hpt_devclass;
#define __DRIVER_MODULE(p1, p2, p3, p4, p5, p6) DRIVER_MODULE(p1, p2, p3, p4, p5, p6)
__DRIVER_MODULE(PROC_DIR_NAME, pci, hpt_pci_driver, hpt_devclass, 0, 0);
#define ccb_ccb_ptr spriv_ptr0
#define ccb_adapter ccb_h.spriv_ptr1
static void SetInquiryData(PINQUIRYDATA inquiryData, PVDevice pVDev);
static void HPTLIBAPI OsSendCommand (_VBUS_ARG union ccb * ccb);
static void HPTLIBAPI fOsCommandDone(_VBUS_ARG PCommand pCmd);
static void ccb_done(union ccb *ccb);
static void hpt_queue_ccb(union ccb **ccb_Q, union ccb *ccb);
static void hpt_free_ccb(union ccb **ccb_Q, union ccb *ccb);
static void hptmv_free_edma_queues(IAL_ADAPTER_T *pAdapter);
static void hptmv_free_channel(IAL_ADAPTER_T *pAdapter, MV_U8 channelNum);
static void handleEdmaError(_VBUS_ARG PCommand pCmd);
static int hptmv_init_channel(IAL_ADAPTER_T *pAdapter, MV_U8 channelNum);
static int fResetActiveCommands(PVBus _vbus_p);
static void fRegisterVdevice(IAL_ADAPTER_T *pAdapter);
static int hptmv_allocate_edma_queues(IAL_ADAPTER_T *pAdapter);
static void hptmv_handle_event_disconnect(void *data);
static void hptmv_handle_event_connect(void *data);
static int start_channel(IAL_ADAPTER_T *pAdapter, MV_U8 channelNum);
static void init_vdev_params(IAL_ADAPTER_T *pAdapter, MV_U8 channel);
static int hptmv_parse_identify_results(MV_SATA_CHANNEL *pMvSataChannel);
static int HPTLIBAPI fOsBuildSgl(_VBUS_ARG PCommand pCmd, FPSCAT_GATH pSg,
int logical);
static MV_BOOLEAN CommandCompletionCB(MV_SATA_ADAPTER *pMvSataAdapter,
MV_U8 channelNum, MV_COMPLETION_TYPE comp_type, MV_VOID_PTR commandId,
MV_U16 responseFlags, MV_U32 timeStamp,
MV_STORAGE_DEVICE_REGISTERS *registerStruct);
static MV_BOOLEAN hptmv_event_notify(MV_SATA_ADAPTER *pMvSataAdapter,
MV_EVENT_TYPE eventType, MV_U32 param1, MV_U32 param2);
#define ccb_ccb_ptr spriv_ptr0
#define ccb_adapter ccb_h.spriv_ptr1
IAL_ADAPTER_T *gIal_Adapter = 0;
IAL_ADAPTER_T *pCurAdapter = 0;
static MV_SATA_CHANNEL gMvSataChannels[MAX_VBUS][MV_SATA_CHANNELS_NUM];
typedef struct st_HPT_DPC {
IAL_ADAPTER_T *pAdapter;
void (*dpc)(IAL_ADAPTER_T *, void *, UCHAR);
void *arg;
UCHAR flags;
} ST_HPT_DPC;
#define MAX_DPC 16
UCHAR DPC_Request_Nums = 0;
static ST_HPT_DPC DpcQueue[MAX_DPC];
static int DpcQueue_First=0;
static int DpcQueue_Last = 0;
char DRIVER_VERSION[] = "v1.12";
#if (__FreeBSD_version >= 500000)
static struct mtx driver_lock;
intrmask_t lock_driver()
{
intrmask_t spl = 0;
mtx_lock_spin(&driver_lock);
return spl;
}
void unlock_driver(intrmask_t spl)
{
mtx_unlock_spin(&driver_lock);
}
#else
static int driver_locked = 0;
intrmask_t lock_driver()
{
intrmask_t spl = splcam();
loop:
while (driver_locked)
tsleep(&driver_locked, PRIBIO, "hptlck", hz);
atomic_add_int(&driver_locked, 1);
if (driver_locked>1) {
atomic_subtract_int(&driver_locked, 1);
goto loop;
}
return spl;
}
void unlock_driver(intrmask_t spl)
{
atomic_subtract_int(&driver_locked, 1);
if (driver_locked==0) {
wakeup(&driver_locked);
}
splx(spl);
}
#endif
/*******************************************************************************
* Name: hptmv_free_channel
*
* Description: free allocated queues for the given channel
*
* Parameters: pMvSataAdapter - pointer to the RR182x controler this
* channel connected to.
* channelNum - channel number.
*
******************************************************************************/
static void
hptmv_free_channel(IAL_ADAPTER_T *pAdapter, MV_U8 channelNum)
{
HPT_ASSERT(channelNum < MV_SATA_CHANNELS_NUM);
pAdapter->mvSataAdapter.sataChannel[channelNum] = NULL;
}
static void failDevice(PVDevice pVDev)
{
PVBus _vbus_p = pVDev->pVBus;
IAL_ADAPTER_T *pAdapter = (IAL_ADAPTER_T *)_vbus_p->OsExt;
pVDev->u.disk.df_on_line = 0;
pVDev->vf_online = 0;
if (pVDev->pfnDeviceFailed)
CallWhenIdle(_VBUS_P (DPC_PROC)pVDev->pfnDeviceFailed, pVDev);
fNotifyGUI(ET_DEVICE_REMOVED, pVDev);
#ifndef FOR_DEMO
if (pAdapter->ver_601==2 && !pAdapter->beeping) {
pAdapter->beeping = 1;
BeepOn(pAdapter->mvSataAdapter.adapterIoBaseAddress);
set_fail_led(&pAdapter->mvSataAdapter, pVDev->u.disk.mv->channelNumber, 1);
}
#endif
}
int MvSataResetChannel(MV_SATA_ADAPTER *pMvSataAdapter, MV_U8 channel);
/*void fDeviceSendCommand(_VBUS_ARG PCommand pCmd); */
static void
handleEdmaError(_VBUS_ARG PCommand pCmd)
{
PDevice pDevice = &pCmd->pVDevice->u.disk;
MV_SATA_ADAPTER * pSataAdapter = pDevice->mv->mvSataAdapter;
if (!pDevice->df_on_line) {
KdPrint(("Device is offline"));
pCmd->Result = RETURN_BAD_DEVICE;
CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd);
return;
}
if (pCmd->RetryCount++>5) {
hpt_printk(("too many retries on channel(%d)\n", pDevice->mv->channelNumber));
failed:
failDevice(pCmd->pVDevice);
pCmd->Result = RETURN_IDE_ERROR;
CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd);
return;
}
/* reset the channel and retry the command */
if (MvSataResetChannel(pSataAdapter, pDevice->mv->channelNumber))
goto failed;
fNotifyGUI(ET_DEVICE_ERROR, Map2pVDevice(pDevice));
hpt_printk(("Retry on channel(%d)\n", pDevice->mv->channelNumber));
fDeviceSendCommand(_VBUS_P pCmd);
}
/****************************************************************
* Name: hptmv_init_channel
*
* Description: allocate request and response queues for the EDMA of the
* given channel and sets other fields.
*
* Parameters:
* pAdapter - pointer to the emulated adapter data structure
* channelNum - channel number.
* Return: 0 on success, otherwise on failure
****************************************************************/
static int
hptmv_init_channel(IAL_ADAPTER_T *pAdapter, MV_U8 channelNum)
{
MV_SATA_CHANNEL *pMvSataChannel;
dma_addr_t req_dma_addr;
dma_addr_t rsp_dma_addr;
if (channelNum >= MV_SATA_CHANNELS_NUM)
{
MV_ERROR("RR182x[%d]: Bad channelNum=%d",
pAdapter->mvSataAdapter.adapterId, channelNum);
return -1;
}
pMvSataChannel = &gMvSataChannels[pAdapter->mvSataAdapter.adapterId][channelNum];
pAdapter->mvSataAdapter.sataChannel[channelNum] = pMvSataChannel;
pMvSataChannel->channelNumber = channelNum;
pMvSataChannel->lba48Address = MV_FALSE;
pMvSataChannel->maxReadTransfer = MV_FALSE;
pMvSataChannel->requestQueue = (struct mvDmaRequestQueueEntry *)
(pAdapter->requestsArrayBaseAlignedAddr + (channelNum * MV_EDMA_REQUEST_QUEUE_SIZE));
req_dma_addr = pAdapter->requestsArrayBaseDmaAlignedAddr + (channelNum * MV_EDMA_REQUEST_QUEUE_SIZE);
KdPrint(("requestQueue addr is 0x%llX", (HPT_U64)(ULONG_PTR)req_dma_addr));
/* check the 1K alignment of the request queue*/
if (req_dma_addr & 0x3ff)
{
MV_ERROR("RR182x[%d]: request queue allocated isn't 1 K aligned,"
" dma_addr=%llx channel=%d\n", pAdapter->mvSataAdapter.adapterId,
(HPT_U64)(ULONG_PTR)req_dma_addr, channelNum);
return -1;
}
pMvSataChannel->requestQueuePciLowAddress = req_dma_addr;
pMvSataChannel->requestQueuePciHiAddress = 0;
KdPrint(("RR182x[%d,%d]: request queue allocated: 0x%p",
pAdapter->mvSataAdapter.adapterId, channelNum,
pMvSataChannel->requestQueue));
pMvSataChannel->responseQueue = (struct mvDmaResponseQueueEntry *)
(pAdapter->responsesArrayBaseAlignedAddr + (channelNum * MV_EDMA_RESPONSE_QUEUE_SIZE));
rsp_dma_addr = pAdapter->responsesArrayBaseDmaAlignedAddr + (channelNum * MV_EDMA_RESPONSE_QUEUE_SIZE);
/* check the 256 alignment of the response queue*/
if (rsp_dma_addr & 0xff)
{
MV_ERROR("RR182x[%d,%d]: response queue allocated isn't 256 byte "
"aligned, dma_addr=%llx\n",
pAdapter->mvSataAdapter.adapterId, channelNum, (HPT_U64)(ULONG_PTR)rsp_dma_addr);
return -1;
}
pMvSataChannel->responseQueuePciLowAddress = rsp_dma_addr;
pMvSataChannel->responseQueuePciHiAddress = 0;
KdPrint(("RR182x[%d,%d]: response queue allocated: 0x%p",
pAdapter->mvSataAdapter.adapterId, channelNum,
pMvSataChannel->responseQueue));
pAdapter->mvChannel[channelNum].online = MV_TRUE;
return 0;
}
/******************************************************************************
* Name: hptmv_parse_identify_results
*
* Description: this functions parses the identify command results, checks
* that the connected deives can be accesed by RR182x EDMA,
* and updates the channel stucture accordingly.
*
* Parameters: pMvSataChannel, pointer to the channel data structure.
*
* Returns: =0 ->success, < 0 ->failure.
*
******************************************************************************/
static int
hptmv_parse_identify_results(MV_SATA_CHANNEL *pMvSataChannel)
{
MV_U16 *iden = pMvSataChannel->identifyDevice;
/*LBA addressing*/
if (! (iden[IDEN_CAPACITY_1_OFFSET] & 0x200))
{
KdPrint(("IAL Error in IDENTIFY info: LBA not supported\n"));
return -1;
}
else
{
KdPrint(("%25s - %s\n", "Capabilities", "LBA supported"));
}
/*DMA support*/
if (! (iden[IDEN_CAPACITY_1_OFFSET] & 0x100))
{
KdPrint(("IAL Error in IDENTIFY info: DMA not supported\n"));
return -1;
}
else
{
KdPrint(("%25s - %s\n", "Capabilities", "DMA supported"));
}
/* PIO */
if ((iden[IDEN_VALID] & 2) == 0)
{
KdPrint(("IAL Error in IDENTIFY info: not able to find PIO mode\n"));
return -1;
}
KdPrint(("%25s - 0x%02x\n", "PIO modes supported",
iden[IDEN_PIO_MODE_SPPORTED] & 0xff));
/*UDMA*/
if ((iden[IDEN_VALID] & 4) == 0)
{
KdPrint(("IAL Error in IDENTIFY info: not able to find UDMA mode\n"));
return -1;
}
/* 48 bit address */
if ((iden[IDEN_SUPPORTED_COMMANDS2] & 0x400))
{
KdPrint(("%25s - %s\n", "LBA48 addressing", "supported"));
pMvSataChannel->lba48Address = MV_TRUE;
}
else
{
KdPrint(("%25s - %s\n", "LBA48 addressing", "Not supported"));
pMvSataChannel->lba48Address = MV_FALSE;
}
return 0;
}
static void
init_vdev_params(IAL_ADAPTER_T *pAdapter, MV_U8 channel)
{
PVDevice pVDev = &pAdapter->VDevices[channel];
MV_SATA_CHANNEL *pMvSataChannel = pAdapter->mvSataAdapter.sataChannel[channel];
MV_U16_PTR IdentifyData = pMvSataChannel->identifyDevice;
pMvSataChannel->outstandingCommands = 0;
pVDev->u.disk.mv = pMvSataChannel;
pVDev->u.disk.df_on_line = 1;
pVDev->u.disk.pVBus = &pAdapter->VBus;
pVDev->pVBus = &pAdapter->VBus;
#ifdef SUPPORT_48BIT_LBA
if (pMvSataChannel->lba48Address == MV_TRUE)
pVDev->u.disk.dDeRealCapacity = ((IdentifyData[101]<<16) | IdentifyData[100]) - 1;
else
#endif
if(IdentifyData[53] & 1) {
pVDev->u.disk.dDeRealCapacity =
(((IdentifyData[58]<<16 | IdentifyData[57]) < (IdentifyData[61]<<16 | IdentifyData[60])) ?
(IdentifyData[61]<<16 | IdentifyData[60]) :
(IdentifyData[58]<<16 | IdentifyData[57])) - 1;
} else
pVDev->u.disk.dDeRealCapacity =
(IdentifyData[61]<<16 | IdentifyData[60]) - 1;
pVDev->u.disk.bDeUsable_Mode = pVDev->u.disk.bDeModeSetting =
pAdapter->mvChannel[channel].maxPioModeSupported - MV_ATA_TRANSFER_PIO_0;
if (pAdapter->mvChannel[channel].maxUltraDmaModeSupported!=0xFF) {
pVDev->u.disk.bDeUsable_Mode = pVDev->u.disk.bDeModeSetting =
pAdapter->mvChannel[channel].maxUltraDmaModeSupported - MV_ATA_TRANSFER_UDMA_0 + 8;
}
}
static void device_change(IAL_ADAPTER_T *pAdapter , MV_U8 channelIndex, int plugged)
{
PVDevice pVDev;
MV_SATA_ADAPTER *pMvSataAdapter = &pAdapter->mvSataAdapter;
MV_SATA_CHANNEL *pMvSataChannel = pMvSataAdapter->sataChannel[channelIndex];
if (!pMvSataChannel) return;
if (plugged)
{
pVDev = &(pAdapter->VDevices[channelIndex]);
init_vdev_params(pAdapter, channelIndex);
pVDev->VDeviceType = pVDev->u.disk.df_atapi? VD_ATAPI :
pVDev->u.disk.df_removable_drive? VD_REMOVABLE : VD_SINGLE_DISK;
pVDev->VDeviceCapacity = pVDev->u.disk.dDeRealCapacity-SAVE_FOR_RAID_INFO;
pVDev->pfnSendCommand = pfnSendCommand[pVDev->VDeviceType];
pVDev->pfnDeviceFailed = pfnDeviceFailed[pVDev->VDeviceType];
pVDev->vf_online = 1;
#ifdef SUPPORT_ARRAY
if(pVDev->pParent)
{
int iMember;
for(iMember = 0; iMember < pVDev->pParent->u.array.bArnMember; iMember++)
if((PVDevice)pVDev->pParent->u.array.pMember[iMember] == pVDev)
pVDev->pParent->u.array.pMember[iMember] = NULL;
pVDev->pParent = NULL;
}
#endif
fNotifyGUI(ET_DEVICE_PLUGGED,pVDev);
fCheckBootable(pVDev);
RegisterVDevice(pVDev);
#ifndef FOR_DEMO
if (pAdapter->beeping) {
pAdapter->beeping = 0;
BeepOff(pAdapter->mvSataAdapter.adapterIoBaseAddress);
}
#endif
}
else
{
pVDev = &(pAdapter->VDevices[channelIndex]);
failDevice(pVDev);
}
}
static int
start_channel(IAL_ADAPTER_T *pAdapter, MV_U8 channelNum)
{
MV_SATA_ADAPTER *pMvSataAdapter = &pAdapter->mvSataAdapter;
MV_SATA_CHANNEL *pMvSataChannel = pMvSataAdapter->sataChannel[channelNum];
MV_CHANNEL *pChannelInfo = &(pAdapter->mvChannel[channelNum]);
MV_U32 udmaMode,pioMode;
KdPrint(("RR182x [%d]: start channel (%d)", pMvSataAdapter->adapterId,
channelNum));
/* Software reset channel */
if (mvStorageDevATASoftResetDevice(pMvSataAdapter, channelNum) == MV_FALSE)
{
MV_ERROR("RR182x [%d,%d]: failed to perform Software reset\n",
pMvSataAdapter->adapterId, channelNum);
return -1;
}
/* Hardware reset channel */
if (mvSataChannelHardReset(pMvSataAdapter, channelNum) == MV_FALSE)
{
/* If failed, try again - this is when trying to hardreset a channel */
/* when drive is just spinning up */
StallExec(5000000); /* wait 5 sec before trying again */
if (mvSataChannelHardReset(pMvSataAdapter, channelNum) == MV_FALSE)
{
MV_ERROR("RR182x [%d,%d]: failed to perform Hard reset\n",
pMvSataAdapter->adapterId, channelNum);
return -1;
}
}
/* identify device*/
if (mvStorageDevATAIdentifyDevice(pMvSataAdapter, channelNum) == MV_FALSE)
{
MV_ERROR("RR182x [%d,%d]: failed to perform ATA Identify command\n"
, pMvSataAdapter->adapterId, channelNum);
return -1;
}
if (hptmv_parse_identify_results(pMvSataChannel))
{
MV_ERROR("RR182x [%d,%d]: Error in parsing ATA Identify message\n"
, pMvSataAdapter->adapterId, channelNum);
return -1;
}
/* mvStorageDevATASetFeatures */
/* Disable 8 bit PIO in case CFA enabled */
if (pMvSataChannel->identifyDevice[86] & 4)
{
KdPrint(("RR182x [%d]: Disable 8 bit PIO (CFA enabled) \n",
pMvSataAdapter->adapterId));
if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum,
MV_ATA_SET_FEATURES_DISABLE_8_BIT_PIO, 0,
0, 0, 0) == MV_FALSE)
{
MV_ERROR("RR182x [%d]: channel %d: mvStorageDevATASetFeatures"
" failed\n", pMvSataAdapter->adapterId, channelNum);
return -1;
}
}
/* Write cache */
#ifdef ENABLE_WRITE_CACHE
if (pMvSataChannel->identifyDevice[82] & 0x20)
{
if (!(pMvSataChannel->identifyDevice[85] & 0x20)) /* if not enabled by default */
{
if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum,
MV_ATA_SET_FEATURES_ENABLE_WCACHE, 0,
0, 0, 0) == MV_FALSE)
{
MV_ERROR("RR182x [%d]: channel %d: mvStorageDevATASetFeatures failed\n",
pMvSataAdapter->adapterId, channelNum);
return -1;
}
}
KdPrint(("RR182x [%d]: channel %d, write cache enabled\n",
pMvSataAdapter->adapterId, channelNum));
}
else
{
KdPrint(("RR182x [%d]: channel %d, write cache not supported\n",
pMvSataAdapter->adapterId, channelNum));
}
#else /* disable write cache */
{
if (pMvSataChannel->identifyDevice[85] & 0x20)
{
KdPrint(("RR182x [%d]: channel =%d, disable write cache\n",
pMvSataAdapter->adapterId, channelNum));
if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum,
MV_ATA_SET_FEATURES_DISABLE_WCACHE, 0,
0, 0, 0) == MV_FALSE)
{
MV_ERROR("RR182x [%d]: channel %d: mvStorageDevATASetFeatures failed\n",
pMvSataAdapter->adapterId, channelNum);
return -1;
}
}
KdPrint(("RR182x [%d]: channel=%d, write cache disabled\n",
pMvSataAdapter->adapterId, channelNum));
}
#endif
/* Set transfer mode */
KdPrint(("RR182x [%d] Set transfer mode XFER_PIO_SLOW\n",
pMvSataAdapter->adapterId));
if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum,
MV_ATA_SET_FEATURES_TRANSFER,
MV_ATA_TRANSFER_PIO_SLOW, 0, 0, 0) ==
MV_FALSE)
{
MV_ERROR("RR182x [%d] channel %d: Set Features failed\n",
pMvSataAdapter->adapterId, channelNum);
return -1;
}
if (pMvSataChannel->identifyDevice[IDEN_PIO_MODE_SPPORTED] & 1)
{
pioMode = MV_ATA_TRANSFER_PIO_4;
}
else if (pMvSataChannel->identifyDevice[IDEN_PIO_MODE_SPPORTED] & 2)
{
pioMode = MV_ATA_TRANSFER_PIO_3;
}
else
{
MV_ERROR("IAL Error in IDENTIFY info: PIO modes 3 and 4 not supported\n");
pioMode = MV_ATA_TRANSFER_PIO_SLOW;
}
KdPrint(("RR182x [%d] Set transfer mode XFER_PIO_4\n",
pMvSataAdapter->adapterId));
pAdapter->mvChannel[channelNum].maxPioModeSupported = pioMode;
if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum,
MV_ATA_SET_FEATURES_TRANSFER,
pioMode, 0, 0, 0) == MV_FALSE)
{
MV_ERROR("RR182x [%d] channel %d: Set Features failed\n",
pMvSataAdapter->adapterId, channelNum);
return -1;
}
udmaMode = MV_ATA_TRANSFER_UDMA_0;
if (pMvSataChannel->identifyDevice[IDEN_UDMA_MODE] & 0x40)
{
udmaMode = MV_ATA_TRANSFER_UDMA_6;
}
else if (pMvSataChannel->identifyDevice[IDEN_UDMA_MODE] & 0x20)
{
udmaMode = MV_ATA_TRANSFER_UDMA_5;
}
else if (pMvSataChannel->identifyDevice[IDEN_UDMA_MODE] & 0x10)
{
udmaMode = MV_ATA_TRANSFER_UDMA_4;
}
else if (pMvSataChannel->identifyDevice[IDEN_UDMA_MODE] & 8)
{
udmaMode = MV_ATA_TRANSFER_UDMA_3;
}
else if (pMvSataChannel->identifyDevice[IDEN_UDMA_MODE] & 4)
{
udmaMode = MV_ATA_TRANSFER_UDMA_2;
}
KdPrint(("RR182x [%d] Set transfer mode XFER_UDMA_%d\n",
pMvSataAdapter->adapterId, udmaMode & 0xf));
pChannelInfo->maxUltraDmaModeSupported = udmaMode;
/*if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum,
MV_ATA_SET_FEATURES_TRANSFER, udmaMode,
0, 0, 0) == MV_FALSE)
{
MV_ERROR("RR182x [%d] channel %d: Set Features failed\n",
pMvSataAdapter->adapterId, channelNum);
return -1;
}*/
if (pChannelInfo->maxUltraDmaModeSupported == 0xFF)
return TRUE;
else
do
{
if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum,
MV_ATA_SET_FEATURES_TRANSFER,
pChannelInfo->maxUltraDmaModeSupported,
0, 0, 0) == MV_FALSE)
{
if (pChannelInfo->maxUltraDmaModeSupported > MV_ATA_TRANSFER_UDMA_0)
{
if (mvStorageDevATASoftResetDevice(pMvSataAdapter, channelNum) == MV_FALSE)
{
MV_REG_WRITE_BYTE(pMvSataAdapter->adapterIoBaseAddress,
pMvSataChannel->eDmaRegsOffset +
0x11c, /* command reg */
MV_ATA_COMMAND_IDLE_IMMEDIATE);
mvMicroSecondsDelay(10000);
mvSataChannelHardReset(pMvSataAdapter, channelNum);
if (mvStorageDevATASoftResetDevice(pMvSataAdapter, channelNum) == MV_FALSE)
return FALSE;
}
if (mvSataChannelHardReset(pMvSataAdapter, channelNum) == MV_FALSE)
return FALSE;
pChannelInfo->maxUltraDmaModeSupported--;
continue;
}
else return FALSE;
}
break;
}while (1);
/* Read look ahead */
#ifdef ENABLE_READ_AHEAD
if (pMvSataChannel->identifyDevice[82] & 0x40)
{
if (!(pMvSataChannel->identifyDevice[85] & 0x40)) /* if not enabled by default */
{
if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum,
MV_ATA_SET_FEATURES_ENABLE_RLA, 0, 0,
0, 0) == MV_FALSE)
{
MV_ERROR("RR182x [%d] channel %d: Set Features failed\n",
pMvSataAdapter->adapterId, channelNum);
return -1;
}
}
KdPrint(("RR182x [%d]: channel=%d, read look ahead enabled\n",
pMvSataAdapter->adapterId, channelNum));
}
else
{
KdPrint(("RR182x [%d]: channel %d, Read Look Ahead not supported\n",
pMvSataAdapter->adapterId, channelNum));
}
#else
{
if (pMvSataChannel->identifyDevice[86] & 0x20)
{
KdPrint(("RR182x [%d]:channel %d, disable read look ahead\n",
pMvSataAdapter->adapterId, channelNum));
if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum,
MV_ATA_SET_FEATURES_DISABLE_RLA, 0, 0,
0, 0) == MV_FALSE)
{
MV_ERROR("RR182x [%d]:channel %d: ATA Set Features failed\n",
pMvSataAdapter->adapterId, channelNum);
return -1;
}
}
KdPrint(("RR182x [%d]:channel %d, read look ahead disabled\n",
pMvSataAdapter->adapterId, channelNum));
}
#endif
{
KdPrint(("RR182x [%d]: channel %d config EDMA, Non Queued Mode\n",
pMvSataAdapter->adapterId,
channelNum));
if (mvSataConfigEdmaMode(pMvSataAdapter, channelNum,
MV_EDMA_MODE_NOT_QUEUED, 0) == MV_FALSE)
{
MV_ERROR("RR182x [%d] channel %d Error: mvSataConfigEdmaMode failed\n",
pMvSataAdapter->adapterId, channelNum);
return -1;
}
}
/* Enable EDMA */
if (mvSataEnableChannelDma(pMvSataAdapter, channelNum) == MV_FALSE)
{
MV_ERROR("RR182x [%d] Failed to enable DMA, channel=%d\n",
pMvSataAdapter->adapterId, channelNum);
return -1;
}
MV_ERROR("RR182x [%d,%d]: channel started successfully\n",
pMvSataAdapter->adapterId, channelNum);
#ifndef FOR_DEMO
set_fail_led(pMvSataAdapter, channelNum, 0);
#endif
return 0;
}
static void
hptmv_handle_event(void * data, int flag)
{
IAL_ADAPTER_T *pAdapter = (IAL_ADAPTER_T *)data;
MV_SATA_ADAPTER *pMvSataAdapter = &pAdapter->mvSataAdapter;
MV_U8 channelIndex;
/* mvOsSemTake(&pMvSataAdapter->semaphore); */
for (channelIndex = 0; channelIndex < MV_SATA_CHANNELS_NUM; channelIndex++)
{
switch(pAdapter->sataEvents[channelIndex])
{
case SATA_EVENT_CHANNEL_CONNECTED:
/* Handle only connects */
if (flag == 1)
break;
KdPrint(("RR182x [%d,%d]: new device connected\n",
pMvSataAdapter->adapterId, channelIndex));
hptmv_init_channel(pAdapter, channelIndex);
if (mvSataConfigureChannel( pMvSataAdapter, channelIndex) == MV_FALSE)
{
MV_ERROR("RR182x [%d,%d] Failed to configure\n",
pMvSataAdapter->adapterId, channelIndex);
hptmv_free_channel(pAdapter, channelIndex);
}
else
{
/*mvSataChannelHardReset(pMvSataAdapter, channel);*/
if (start_channel( pAdapter, channelIndex))
{
MV_ERROR("RR182x [%d,%d]Failed to start channel\n",
pMvSataAdapter->adapterId, channelIndex);
hptmv_free_channel(pAdapter, channelIndex);
}
else
{
device_change(pAdapter, channelIndex, TRUE);
}
}
pAdapter->sataEvents[channelIndex] = SATA_EVENT_NO_CHANGE;
break;
case SATA_EVENT_CHANNEL_DISCONNECTED:
/* Handle only disconnects */
if (flag == 0)
break;
KdPrint(("RR182x [%d,%d]: device disconnected\n",
pMvSataAdapter->adapterId, channelIndex));
/* Flush pending commands */
if(pMvSataAdapter->sataChannel[channelIndex])
{
_VBUS_INST(&pAdapter->VBus)
mvSataFlushDmaQueue (pMvSataAdapter, channelIndex,
MV_FLUSH_TYPE_CALLBACK);
CheckPendingCall(_VBUS_P0);
mvSataRemoveChannel(pMvSataAdapter,channelIndex);
hptmv_free_channel(pAdapter, channelIndex);
pMvSataAdapter->sataChannel[channelIndex] = NULL;
KdPrint(("RR182x [%d,%d]: channel removed\n",
pMvSataAdapter->adapterId, channelIndex));
if (pAdapter->outstandingCommands==0 && DPC_Request_Nums==0)
Check_Idle_Call(pAdapter);
}
else
{
KdPrint(("RR182x [%d,%d]: channel already removed!!\n",
pMvSataAdapter->adapterId, channelIndex));
}
pAdapter->sataEvents[channelIndex] = SATA_EVENT_NO_CHANGE;
break;
case SATA_EVENT_NO_CHANGE:
break;
default:
break;
}
}
/* mvOsSemRelease(&pMvSataAdapter->semaphore); */
}
#define EVENT_CONNECT 1
#define EVENT_DISCONNECT 0
static void
hptmv_handle_event_connect(void *data)
{
hptmv_handle_event (data, 0);
}
static void
hptmv_handle_event_disconnect(void *data)
{
hptmv_handle_event (data, 1);
}
static MV_BOOLEAN
hptmv_event_notify(MV_SATA_ADAPTER *pMvSataAdapter, MV_EVENT_TYPE eventType,
MV_U32 param1, MV_U32 param2)
{
IAL_ADAPTER_T *pAdapter = pMvSataAdapter->IALData;
switch (eventType)
{
case MV_EVENT_TYPE_SATA_CABLE:
{
MV_U8 channel = param2;
if (param1 == EVENT_CONNECT)
{
pAdapter->sataEvents[channel] = SATA_EVENT_CHANNEL_CONNECTED;
KdPrint(("RR182x [%d,%d]: device connected event received\n",
pMvSataAdapter->adapterId, channel));
/* Delete previous timers (if multiple drives connected in the same time */
pAdapter->event_timer_connect = timeout(hptmv_handle_event_connect, pAdapter, 10*hz);
}
else if (param1 == EVENT_DISCONNECT)
{
pAdapter->sataEvents[channel] = SATA_EVENT_CHANNEL_DISCONNECTED;
KdPrint(("RR182x [%d,%d]: device disconnected event received \n",
pMvSataAdapter->adapterId, channel));
device_change(pAdapter, channel, FALSE);
/* Delete previous timers (if multiple drives disconnected in the same time */
/*pAdapter->event_timer_disconnect = timeout(hptmv_handle_event_disconnect, pAdapter, 10*hz); */
/*It is not necessary to wait, handle it directly*/
hptmv_handle_event_disconnect(pAdapter);
}
else
{
MV_ERROR("RR182x: illigal value for param1(%d) at "
"connect/disconect event, host=%d\n", param1,
pMvSataAdapter->adapterId );
}
}
break;
case MV_EVENT_TYPE_ADAPTER_ERROR:
KdPrint(("RR182x: DEVICE error event received, pci cause "
"reg=%x, don't how to handle this\n", param1));
return MV_TRUE;
default:
MV_ERROR("RR182x[%d]: unknown event type (%d)\n",
pMvSataAdapter->adapterId, eventType);
return MV_FALSE;
}
return MV_TRUE;
}
static int
hptmv_allocate_edma_queues(IAL_ADAPTER_T *pAdapter)
{
pAdapter->requestsArrayBaseAddr = (MV_U8 *)contigmalloc(REQUESTS_ARRAY_SIZE,
M_DEVBUF, M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0ul);
if (pAdapter->requestsArrayBaseAddr == NULL)
{
MV_ERROR("RR182x[%d]: Failed to allocate memory for EDMA request"
" queues\n", pAdapter->mvSataAdapter.adapterId);
return -1;
}
pAdapter->requestsArrayBaseDmaAddr = fOsPhysicalAddress(pAdapter->requestsArrayBaseAddr);
pAdapter->requestsArrayBaseAlignedAddr = pAdapter->requestsArrayBaseAddr;
pAdapter->requestsArrayBaseAlignedAddr += MV_EDMA_REQUEST_QUEUE_SIZE;
pAdapter->requestsArrayBaseAlignedAddr = (MV_U8 *)
(((ULONG_PTR)pAdapter->requestsArrayBaseAlignedAddr) & ~(ULONG_PTR)(MV_EDMA_REQUEST_QUEUE_SIZE - 1));
pAdapter->requestsArrayBaseDmaAlignedAddr = pAdapter->requestsArrayBaseDmaAddr;
pAdapter->requestsArrayBaseDmaAlignedAddr += MV_EDMA_REQUEST_QUEUE_SIZE;
pAdapter->requestsArrayBaseDmaAlignedAddr &= ~(ULONG_PTR)(MV_EDMA_REQUEST_QUEUE_SIZE - 1);
if ((pAdapter->requestsArrayBaseDmaAlignedAddr - pAdapter->requestsArrayBaseDmaAddr) !=
(pAdapter->requestsArrayBaseAlignedAddr - pAdapter->requestsArrayBaseAddr))
{
MV_ERROR("RR182x[%d]: Error in Request Quueues Alignment\n",
pAdapter->mvSataAdapter.adapterId);
contigfree(pAdapter->requestsArrayBaseAddr, REQUESTS_ARRAY_SIZE, M_DEVBUF);
return -1;
}
/* response queues */
pAdapter->responsesArrayBaseAddr = (MV_U8 *)contigmalloc(RESPONSES_ARRAY_SIZE,
M_DEVBUF, M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0ul);
if (pAdapter->responsesArrayBaseAddr == NULL)
{
MV_ERROR("RR182x[%d]: Failed to allocate memory for EDMA response"
" queues\n", pAdapter->mvSataAdapter.adapterId);
contigfree(pAdapter->requestsArrayBaseAddr, RESPONSES_ARRAY_SIZE, M_DEVBUF);
return -1;
}
pAdapter->responsesArrayBaseDmaAddr = fOsPhysicalAddress(pAdapter->responsesArrayBaseAddr);
pAdapter->responsesArrayBaseAlignedAddr = pAdapter->responsesArrayBaseAddr;
pAdapter->responsesArrayBaseAlignedAddr += MV_EDMA_RESPONSE_QUEUE_SIZE;
pAdapter->responsesArrayBaseAlignedAddr = (MV_U8 *)
(((ULONG_PTR)pAdapter->responsesArrayBaseAlignedAddr) & ~(ULONG_PTR)(MV_EDMA_RESPONSE_QUEUE_SIZE - 1));
pAdapter->responsesArrayBaseDmaAlignedAddr = pAdapter->responsesArrayBaseDmaAddr;
pAdapter->responsesArrayBaseDmaAlignedAddr += MV_EDMA_RESPONSE_QUEUE_SIZE;
pAdapter->responsesArrayBaseDmaAlignedAddr &= ~(ULONG_PTR)(MV_EDMA_RESPONSE_QUEUE_SIZE - 1);
if ((pAdapter->responsesArrayBaseDmaAlignedAddr - pAdapter->responsesArrayBaseDmaAddr) !=
(pAdapter->responsesArrayBaseAlignedAddr - pAdapter->responsesArrayBaseAddr))
{
MV_ERROR("RR182x[%d]: Error in Response Quueues Alignment\n",
pAdapter->mvSataAdapter.adapterId);
contigfree(pAdapter->requestsArrayBaseAddr, REQUESTS_ARRAY_SIZE, M_DEVBUF);
contigfree(pAdapter->responsesArrayBaseAddr, RESPONSES_ARRAY_SIZE, M_DEVBUF);
return -1;
}
return 0;
}
static void
hptmv_free_edma_queues(IAL_ADAPTER_T *pAdapter)
{
contigfree(pAdapter->requestsArrayBaseAddr, REQUESTS_ARRAY_SIZE, M_DEVBUF);
contigfree(pAdapter->responsesArrayBaseAddr, RESPONSES_ARRAY_SIZE, M_DEVBUF);
}
static PVOID
AllocatePRDTable(IAL_ADAPTER_T *pAdapter)
{
PVOID ret;
if (pAdapter->pFreePRDLink) {
KdPrint(("pAdapter->pFreePRDLink:%p\n",pAdapter->pFreePRDLink));
ret = pAdapter->pFreePRDLink;
pAdapter->pFreePRDLink = *(void**)ret;
return ret;
}
return NULL;
}
static void
FreePRDTable(IAL_ADAPTER_T *pAdapter, PVOID PRDTable)
{
*(void**)PRDTable = pAdapter->pFreePRDLink;
pAdapter->pFreePRDLink = PRDTable;
}
extern PVDevice fGetFirstChild(PVDevice pLogical);
extern void fResetBootMark(PVDevice pLogical);
static void
fRegisterVdevice(IAL_ADAPTER_T *pAdapter)
{
PVDevice pPhysical, pLogical;
PVBus pVBus;
int i,j;
for(i=0;i<MV_SATA_CHANNELS_NUM;i++) {
pPhysical = &(pAdapter->VDevices[i]);
pLogical = pPhysical;
while (pLogical->pParent) pLogical = pLogical->pParent;
if (pLogical->vf_online==0) {
pPhysical->vf_bootmark = pLogical->vf_bootmark = 0;
continue;
}
if (pLogical->VDeviceType==VD_SPARE || pPhysical!=fGetFirstChild(pLogical))
continue;
pVBus = &pAdapter->VBus;
if(pVBus)
{
j=0;
while(j<MAX_VDEVICE_PER_VBUS && pVBus->pVDevice[j]) j++;
if(j<MAX_VDEVICE_PER_VBUS){
pVBus->pVDevice[j] = pLogical;
pLogical->pVBus = pVBus;
if (j>0 && pLogical->vf_bootmark) {
if (pVBus->pVDevice[0]->vf_bootmark) {
fResetBootMark(pLogical);
}
else {
do { pVBus->pVDevice[j] = pVBus->pVDevice[j-1]; } while (--j);
pVBus->pVDevice[0] = pLogical;
}
}
}
}
}
}
PVDevice
GetSpareDisk(_VBUS_ARG PVDevice pArray)
{
IAL_ADAPTER_T *pAdapter = (IAL_ADAPTER_T *)pArray->pVBus->OsExt;
ULONG capacity = LongDiv(pArray->VDeviceCapacity, pArray->u.array.bArnMember-1);
ULONG thiscap, maxcap = MAX_LBA_T;
PVDevice pVDevice, pFind = NULL;
int i;
for(i=0;i<MV_SATA_CHANNELS_NUM;i++)
{
pVDevice = &pAdapter->VDevices[i];
if(!pVDevice)
continue;
thiscap = pArray->vf_format_v2? pVDevice->u.disk.dDeRealCapacity : pVDevice->VDeviceCapacity;
/* find the smallest usable spare disk */
if (pVDevice->VDeviceType==VD_SPARE &&
pVDevice->u.disk.df_on_line &&
thiscap < maxcap &&
thiscap >= capacity)
{
maxcap = pVDevice->VDeviceCapacity;
pFind = pVDevice;
}
}
return pFind;
}
/******************************************************************
* IO ATA Command
*******************************************************************/
int HPTLIBAPI
fDeReadWrite(PDevice pDev, ULONG Lba, UCHAR Cmd, void *tmpBuffer)
{
return mvReadWrite(pDev->mv, Lba, Cmd, tmpBuffer);
}
void HPTLIBAPI fDeSelectMode(PDevice pDev, UCHAR NewMode)
{
MV_SATA_CHANNEL *pSataChannel = pDev->mv;
MV_SATA_ADAPTER *pSataAdapter = pSataChannel->mvSataAdapter;
MV_U8 channelIndex = pSataChannel->channelNumber;
UCHAR mvMode;
/* 508x don't use MW-DMA? */
if (NewMode>4 && NewMode<8) NewMode = 4;
pDev->bDeModeSetting = NewMode;
if (NewMode<=4)
mvMode = MV_ATA_TRANSFER_PIO_0 + NewMode;
else
mvMode = MV_ATA_TRANSFER_UDMA_0 + (NewMode-8);
/*To fix 88i8030 bug*/
if (mvMode > MV_ATA_TRANSFER_UDMA_0 && mvMode < MV_ATA_TRANSFER_UDMA_4)
mvMode = MV_ATA_TRANSFER_UDMA_0;
mvSataDisableChannelDma(pSataAdapter, channelIndex);
/* Flush pending commands */
mvSataFlushDmaQueue (pSataAdapter, channelIndex, MV_FLUSH_TYPE_NONE);
if (mvStorageDevATASetFeatures(pSataAdapter, channelIndex,
MV_ATA_SET_FEATURES_TRANSFER,
mvMode, 0, 0, 0) == MV_FALSE)
{
KdPrint(("channel %d: Set Features failed\n", channelIndex));
}
/* Enable EDMA */
if (mvSataEnableChannelDma(pSataAdapter, channelIndex) == MV_FALSE)
KdPrint(("Failed to enable DMA, channel=%d", channelIndex));
}
#ifdef SUPPORT_ARRAY
#define IdeRegisterVDevice fCheckArray
#else
void
IdeRegisterVDevice(PDevice pDev)
{
PVDevice pVDev = Map2pVDevice(pDev);
pVDev->VDeviceType = pDev->df_atapi? VD_ATAPI :
pDev->df_removable_drive? VD_REMOVABLE : VD_SINGLE_DISK;
pVDev->vf_online = 1;
pVDev->VDeviceCapacity = pDev->dDeRealCapacity;
pVDev->pfnSendCommand = pfnSendCommand[pVDev->VDeviceType];
pVDev->pfnDeviceFailed = pfnDeviceFailed[pVDev->VDeviceType];
}
#endif
static __inline PBUS_DMAMAP
dmamap_get(struct IALAdapter * pAdapter)
{
PBUS_DMAMAP p = pAdapter->pbus_dmamap_list;
if (p)
pAdapter->pbus_dmamap_list = p-> next;
return p;
}
static __inline void
dmamap_put(PBUS_DMAMAP p)
{
p->next = p->pAdapter->pbus_dmamap_list;
p->pAdapter->pbus_dmamap_list = p;
}
/*Since mtx not provide the initialize when declare, so we Final init here to initialize the global mtx*/
#if __FreeBSD_version >= 500000
static void hpt_init(void *dummy)
{
mtx_init(&driver_lock, "hptlock", NULL, MTX_SPIN);
}
SYSINIT(hptinit, SI_SUB_CONFIGURE, SI_ORDER_FIRST, hpt_init, NULL);
#endif
static int num_adapters = 0;
static int
init_adapter(IAL_ADAPTER_T *pAdapter)
{
PVBus _vbus_p = &pAdapter->VBus;
MV_SATA_ADAPTER *pMvSataAdapter;
int i, channel, rid;
PVDevice pVDev;
intrmask_t oldspl = lock_driver();
pAdapter->next = 0;
if(gIal_Adapter == 0){
gIal_Adapter = pAdapter;
pCurAdapter = gIal_Adapter;
}
else {
pCurAdapter->next = pAdapter;
pCurAdapter = pAdapter;
}
pAdapter->outstandingCommands = 0;
pMvSataAdapter = &(pAdapter->mvSataAdapter);
_vbus_p->OsExt = (void *)pAdapter;
pMvSataAdapter->IALData = pAdapter;
if (bus_dma_tag_create(NULL,/* parent */
4, /* alignment */
BUS_SPACE_MAXADDR_32BIT+1, /* boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
PAGE_SIZE * (MAX_SG_DESCRIPTORS-1), /* maxsize */
MAX_SG_DESCRIPTORS, /* nsegments */
0x10000, /* maxsegsize */
BUS_DMA_WAITOK, /* flags */
#if __FreeBSD_version>502000
busdma_lock_mutex, /* lockfunc */
&driver_lock, /* lockfuncarg */
#endif
&pAdapter->io_dma_parent /* tag */))
{
return ENXIO;;
}
if (hptmv_allocate_edma_queues(pAdapter))
{
MV_ERROR("RR182x: Failed to allocate memory for EDMA queues\n");
unlock_driver(oldspl);
return ENOMEM;
}
/* also map EPROM address */
rid = 0x10;
if (!(pAdapter->mem_res = bus_alloc_resource(pAdapter->hpt_dev, SYS_RES_MEMORY, &rid,
0, ~0, MV_SATA_PCI_BAR0_SPACE_SIZE+0x40000, RF_ACTIVE))
||
!(pMvSataAdapter->adapterIoBaseAddress = rman_get_virtual(pAdapter->mem_res)))
{
MV_ERROR("RR182x: Failed to remap memory space\n");
hptmv_free_edma_queues(pAdapter);
unlock_driver(oldspl);
return ENXIO;
}
else
{
KdPrint(("RR182x: io base address 0x%p\n", pMvSataAdapter->adapterIoBaseAddress));
}
pMvSataAdapter->adapterId = num_adapters++;
/* get the revision ID */
pMvSataAdapter->pciConfigRevisionId = pci_read_config(pAdapter->hpt_dev, PCIR_REVID, 1);
pMvSataAdapter->pciConfigDeviceId = pci_get_device(pAdapter->hpt_dev);
/* init RR182x */
pMvSataAdapter->intCoalThre[0]= 1;
pMvSataAdapter->intCoalThre[1]= 1;
pMvSataAdapter->intTimeThre[0] = 1;
pMvSataAdapter->intTimeThre[1] = 1;
pMvSataAdapter->pciCommand = 0x0107E371;
pMvSataAdapter->pciSerrMask = 0xd77fe6ul;
pMvSataAdapter->pciInterruptMask = 0xd77fe6ul;
pMvSataAdapter->mvSataEventNotify = hptmv_event_notify;
if (mvSataInitAdapter(pMvSataAdapter) == MV_FALSE)
{
MV_ERROR("RR182x[%d]: core failed to initialize the adapter\n",
pMvSataAdapter->adapterId);
unregister:
bus_release_resource(pAdapter->hpt_dev, SYS_RES_MEMORY, rid, pAdapter->mem_res);
hptmv_free_edma_queues(pAdapter);
unlock_driver(oldspl);
return ENXIO;
}
pAdapter->ver_601 = pMvSataAdapter->pcbVersion;
#ifndef FOR_DEMO
set_fail_leds(pMvSataAdapter, 0);
#endif
/* setup command blocks */
KdPrint(("Allocate command blocks\n"));
_vbus_(pFreeCommands) = 0;
pAdapter->pCommandBlocks =
malloc(sizeof(struct _Command) * MAX_COMMAND_BLOCKS_FOR_EACH_VBUS, M_DEVBUF, M_NOWAIT);
KdPrint(("pCommandBlocks:%p\n",pAdapter->pCommandBlocks));
if (!pAdapter->pCommandBlocks) {
MV_ERROR("insufficient memory\n");
goto unregister;
}
for (i=0; i<MAX_COMMAND_BLOCKS_FOR_EACH_VBUS; i++) {
FreeCommand(_VBUS_P &(pAdapter->pCommandBlocks[i]));
}
/*Set up the bus_dmamap*/
pAdapter->pbus_dmamap = (PBUS_DMAMAP)malloc (sizeof(struct _BUS_DMAMAP) * MAX_QUEUE_COMM, M_DEVBUF, M_NOWAIT);
if(!pAdapter->pbus_dmamap) {
MV_ERROR("insufficient memory\n");
free(pAdapter->pCommandBlocks, M_DEVBUF);
goto unregister;
}
memset((void *)pAdapter->pbus_dmamap, 0, sizeof(struct _BUS_DMAMAP) * MAX_QUEUE_COMM);
pAdapter->pbus_dmamap_list = 0;
for (i=0; i < MAX_QUEUE_COMM; i++) {
PBUS_DMAMAP pmap = &(pAdapter->pbus_dmamap[i]);
pmap->pAdapter = pAdapter;
dmamap_put(pmap);
if(bus_dmamap_create(pAdapter->io_dma_parent, 0, &pmap->dma_map)) {
MV_ERROR("Can not allocate dma map\n");
free(pAdapter->pCommandBlocks, M_DEVBUF);
free(pAdapter->pbus_dmamap, M_DEVBUF);
goto unregister;
}
}
/* setup PRD Tables */
KdPrint(("Allocate PRD Tables\n"));
pAdapter->pFreePRDLink = 0;
pAdapter->prdTableAddr = (PUCHAR)contigmalloc(
(PRD_ENTRIES_SIZE*PRD_TABLES_FOR_VBUS + 32), M_DEVBUF, M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0ul);
KdPrint(("prdTableAddr:%p\n",pAdapter->prdTableAddr));
if (!pAdapter->prdTableAddr) {
MV_ERROR("insufficient PRD Tables\n");
goto unregister;
}
pAdapter->prdTableAlignedAddr = (PUCHAR)(((ULONG_PTR)pAdapter->prdTableAddr + 0x1f) & ~(ULONG_PTR)0x1fL);
{
PUCHAR PRDTable = pAdapter->prdTableAlignedAddr;
for (i=0; i<PRD_TABLES_FOR_VBUS; i++)
{
/* KdPrint(("i=%d,pAdapter->pFreePRDLink=%p\n",i,pAdapter->pFreePRDLink)); */
FreePRDTable(pAdapter, PRDTable);
PRDTable += PRD_ENTRIES_SIZE;
}
}
/* enable the adapter interrupts */
/* configure and start the connected channels*/
for (channel = 0; channel < MV_SATA_CHANNELS_NUM; channel++)
{
pAdapter->mvChannel[channel].online = MV_FALSE;
if (mvSataIsStorageDeviceConnected(pMvSataAdapter, channel)
== MV_TRUE)
{
KdPrint(("RR182x[%d]: channel %d is connected\n",
pMvSataAdapter->adapterId, channel));
if (hptmv_init_channel(pAdapter, channel) == 0)
{
if (mvSataConfigureChannel(pMvSataAdapter, channel) == MV_FALSE)
{
MV_ERROR("RR182x[%d]: Failed to configure channel"
" %d\n",pMvSataAdapter->adapterId, channel);
hptmv_free_channel(pAdapter, channel);
}
else
{
if (start_channel(pAdapter, channel))
{
MV_ERROR("RR182x[%d]: Failed to start channel,"
" channel=%d\n",pMvSataAdapter->adapterId,
channel);
hptmv_free_channel(pAdapter, channel);
}
pAdapter->mvChannel[channel].online = MV_TRUE;
/* mvSataChannelSetEdmaLoopBackMode(pMvSataAdapter,
channel,
MV_TRUE);*/
}
}
}
KdPrint(("pAdapter->mvChannel[channel].online:%x, channel:%d\n",
pAdapter->mvChannel[channel].online, channel));
}
#ifdef SUPPORT_ARRAY
for(i = MAX_ARRAY_DEVICE - 1; i >= 0; i--) {
pVDev = ArrayTables(i);
mArFreeArrayTable(pVDev);
}
#endif
KdPrint(("Initialize Devices\n"));
for (channel = 0; channel < MV_SATA_CHANNELS_NUM; channel++) {
MV_SATA_CHANNEL *pMvSataChannel = pMvSataAdapter->sataChannel[channel];
if (pMvSataChannel) {
init_vdev_params(pAdapter, channel);
IdeRegisterVDevice(&pAdapter->VDevices[channel].u.disk);
}
}
#ifdef SUPPORT_ARRAY
CheckArrayCritical(_VBUS_P0);
#endif
_vbus_p->nInstances = 1;
fRegisterVdevice(pAdapter);
for (channel=0;channel<MV_SATA_CHANNELS_NUM;channel++) {
pVDev = _vbus_p->pVDevice[channel];
if (pVDev && pVDev->vf_online)
fCheckBootable(pVDev);
}
#if defined(SUPPORT_ARRAY) && defined(_RAID5N_)
init_raid5_memory(_VBUS_P0);
_vbus_(r5).enable_write_back = 1;
printf("RR182x: RAID5 write-back %s\n", _vbus_(r5).enable_write_back? "enabled" : "disabled");
#endif
mvSataUnmaskAdapterInterrupt(pMvSataAdapter);
unlock_driver(oldspl);
return 0;
}
int
MvSataResetChannel(MV_SATA_ADAPTER *pMvSataAdapter, MV_U8 channel)
{
IAL_ADAPTER_T *pAdapter = (IAL_ADAPTER_T *)pMvSataAdapter->IALData;
mvSataDisableChannelDma(pMvSataAdapter, channel);
/* Flush pending commands */
mvSataFlushDmaQueue (pMvSataAdapter, channel, MV_FLUSH_TYPE_CALLBACK);
/* Software reset channel */
if (mvStorageDevATASoftResetDevice(pMvSataAdapter, channel) == MV_FALSE)
{
MV_ERROR("RR182x [%d,%d]: failed to perform Software reset\n",
pMvSataAdapter->adapterId, channel);
hptmv_free_channel(pAdapter, channel);
return -1;
}
/* Hardware reset channel */
if (mvSataChannelHardReset(pMvSataAdapter, channel)== MV_FALSE)
{
MV_ERROR("RR182x [%d,%d] Failed to Hard reser the SATA channel\n",
pMvSataAdapter->adapterId, channel);
hptmv_free_channel(pAdapter, channel);
return -1;
}
if (mvSataIsStorageDeviceConnected(pMvSataAdapter, channel) == MV_FALSE)
{
MV_ERROR("RR182x [%d,%d] Failed to Connect Device\n",
pMvSataAdapter->adapterId, channel);
hptmv_free_channel(pAdapter, channel);
return -1;
}else
{
MV_ERROR("channel %d: perform recalibrate command", channel);
if (!mvStorageDevATAExecuteNonUDMACommand(pMvSataAdapter, channel,
MV_NON_UDMA_PROTOCOL_NON_DATA,
MV_FALSE,
NULL, /* pBuffer*/
0, /* count */
0, /*features*/
/* sectorCount */
0,
0, /* lbaLow */
0, /* lbaMid */
/* lbaHigh */
0,
0, /* device */
/* command */
0x10))
MV_ERROR("channel %d: recalibrate failed", channel);
/* Set transfer mode */
if((mvStorageDevATASetFeatures(pMvSataAdapter, channel,
MV_ATA_SET_FEATURES_TRANSFER,
MV_ATA_TRANSFER_PIO_SLOW, 0, 0, 0) == MV_FALSE) ||
(mvStorageDevATASetFeatures(pMvSataAdapter, channel,
MV_ATA_SET_FEATURES_TRANSFER,
pAdapter->mvChannel[channel].maxPioModeSupported, 0, 0, 0) == MV_FALSE) ||
(mvStorageDevATASetFeatures(pMvSataAdapter, channel,
MV_ATA_SET_FEATURES_TRANSFER,
pAdapter->mvChannel[channel].maxUltraDmaModeSupported, 0, 0, 0) == MV_FALSE) )
{
MV_ERROR("channel %d: Set Features failed", channel);
hptmv_free_channel(pAdapter, channel);
return -1;
}
/* Enable EDMA */
if (mvSataEnableChannelDma(pMvSataAdapter, channel) == MV_FALSE)
{
MV_ERROR("Failed to enable DMA, channel=%d", channel);
hptmv_free_channel(pAdapter, channel);
return -1;
}
}
return 0;
}
static int
fResetActiveCommands(PVBus _vbus_p)
{
MV_SATA_ADAPTER *pMvSataAdapter = &((IAL_ADAPTER_T *)_vbus_p->OsExt)->mvSataAdapter;
MV_U8 channel;
for (channel=0;channel< MV_SATA_CHANNELS_NUM;channel++) {
if (pMvSataAdapter->sataChannel[channel] && pMvSataAdapter->sataChannel[channel]->outstandingCommands)
MvSataResetChannel(pMvSataAdapter,channel);
}
return 0;
}
void fCompleteAllCommandsSynchronously(PVBus _vbus_p)
{
UINT cont;
ULONG ticks = 0;
MV_U8 channel;
MV_SATA_ADAPTER *pMvSataAdapter = &((IAL_ADAPTER_T *)_vbus_p->OsExt)->mvSataAdapter;
MV_SATA_CHANNEL *pMvSataChannel;
do {
check_cmds:
cont = 0;
CheckPendingCall(_VBUS_P0);
#ifdef _RAID5N_
dataxfer_poll();
xor_poll();
#endif
for (channel=0;channel< MV_SATA_CHANNELS_NUM;channel++) {
pMvSataChannel = pMvSataAdapter->sataChannel[channel];
if (pMvSataChannel && pMvSataChannel->outstandingCommands)
{
while (pMvSataChannel->outstandingCommands) {
if (!mvSataInterruptServiceRoutine(pMvSataAdapter)) {
StallExec(1000);
if (ticks++ > 3000) {
MvSataResetChannel(pMvSataAdapter,channel);
goto check_cmds;
}
}
else
ticks = 0;
}
cont = 1;
}
}
} while (cont);
}
void
fResetVBus(_VBUS_ARG0)
{
KdPrint(("fMvResetBus(%p)", _vbus_p));
/* some commands may already finished. */
CheckPendingCall(_VBUS_P0);
fResetActiveCommands(_vbus_p);
/*
* the other pending commands may still be finished successfully.
*/
fCompleteAllCommandsSynchronously(_vbus_p);
/* Now there should be no pending commands. No more action needed. */
CheckIdleCall(_VBUS_P0);
KdPrint(("fMvResetBus() done"));
}
/*No rescan function*/
void
fRescanAllDevice(_VBUS_ARG0)
{
}
static MV_BOOLEAN
CommandCompletionCB(MV_SATA_ADAPTER *pMvSataAdapter,
MV_U8 channelNum,
MV_COMPLETION_TYPE comp_type,
MV_VOID_PTR commandId,
MV_U16 responseFlags,
MV_U32 timeStamp,
MV_STORAGE_DEVICE_REGISTERS *registerStruct)
{
PCommand pCmd = (PCommand) commandId;
_VBUS_INST(pCmd->pVDevice->pVBus)
if (pCmd->uScratch.sata_param.prdAddr)
FreePRDTable(pMvSataAdapter->IALData,pCmd->uScratch.sata_param.prdAddr);
switch (comp_type)
{
case MV_COMPLETION_TYPE_NORMAL:
pCmd->Result = RETURN_SUCCESS;
break;
case MV_COMPLETION_TYPE_ABORT:
pCmd->Result = RETURN_BUS_RESET;
break;
case MV_COMPLETION_TYPE_ERROR:
MV_ERROR("IAL: COMPLETION ERROR, adapter %d, channel %d, flags=%x\n",
pMvSataAdapter->adapterId, channelNum, responseFlags);
if (responseFlags & 4) {
MV_ERROR("ATA regs: error %x, sector count %x, LBA low %x, LBA mid %x,"
" LBA high %x, device %x, status %x\n",
registerStruct->errorRegister,
registerStruct->sectorCountRegister,
registerStruct->lbaLowRegister,
registerStruct->lbaMidRegister,
registerStruct->lbaHighRegister,
registerStruct->deviceRegister,
registerStruct->statusRegister);
}
/*We can't do handleEdmaError directly here, because CommandCompletionCB is called by
* mv's ISR, if we retry the command, than the internel data structure may be destroyed*/
pCmd->uScratch.sata_param.responseFlags = responseFlags;
pCmd->uScratch.sata_param.bIdeStatus = registerStruct->statusRegister;
pCmd->uScratch.sata_param.errorRegister = registerStruct->errorRegister;
pCmd->pVDevice->u.disk.QueueLength--;
CallAfterReturn(_VBUS_P (DPC_PROC)handleEdmaError,pCmd);
return TRUE;
default:
MV_ERROR(" Unknown completion type (%d)\n", comp_type);
return MV_FALSE;
}
if (pCmd->uCmd.Ide.Command == IDE_COMMAND_VERIFY && pCmd->uScratch.sata_param.cmd_priv > 1) {
pCmd->uScratch.sata_param.cmd_priv --;
return TRUE;
}
pCmd->pVDevice->u.disk.QueueLength--;
CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd);
return TRUE;
}
void
fDeviceSendCommand(_VBUS_ARG PCommand pCmd)
{
MV_SATA_EDMA_PRD_ENTRY *pPRDTable = 0;
MV_SATA_ADAPTER *pMvSataAdapter;
MV_SATA_CHANNEL *pMvSataChannel;
PVDevice pVDevice = pCmd->pVDevice;
PDevice pDevice = &pVDevice->u.disk;
ULONG Lba = pCmd->uCmd.Ide.Lba;
USHORT nSector = pCmd->uCmd.Ide.nSectors;
MV_QUEUE_COMMAND_RESULT result;
MV_QUEUE_COMMAND_INFO commandInfo;
MV_UDMA_COMMAND_PARAMS *pUdmaParams = &commandInfo.commandParams.udmaCommand;
MV_NONE_UDMA_COMMAND_PARAMS *pNoUdmaParams = &commandInfo.commandParams.NoneUdmaCommand;
MV_BOOLEAN is48bit = MV_FALSE;
MV_U8 channel;
int i=0;
DECLARE_BUFFER(FPSCAT_GATH, tmpSg);
if (!pDevice->df_on_line) {
MV_ERROR("Device is offline");
pCmd->Result = RETURN_BAD_DEVICE;
CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd);
return;
}
pDevice->HeadPosition = pCmd->uCmd.Ide.Lba + pCmd->uCmd.Ide.nSectors;
pMvSataChannel = pDevice->mv;
pMvSataAdapter = pMvSataChannel->mvSataAdapter;
channel = pMvSataChannel->channelNumber;
/* old RAID0 has hidden lba. Remember to clear dDeHiddenLba when delete array! */
Lba += pDevice->dDeHiddenLba;
/* check LBA */
if (Lba+nSector-1 > pDevice->dDeRealCapacity) {
pCmd->Result = RETURN_INVALID_REQUEST;
CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd);
return;
}
if(Lba & 0xF0000000){
is48bit = MV_TRUE;
}
switch (pCmd->uCmd.Ide.Command)
{
case IDE_COMMAND_READ:
case IDE_COMMAND_WRITE:
if (pDevice->bDeModeSetting<8) goto pio;
commandInfo.type = MV_QUEUED_COMMAND_TYPE_UDMA;
pUdmaParams->isEXT = is48bit;
pUdmaParams->numOfSectors = nSector;
pUdmaParams->lowLBAAddress = Lba;
pUdmaParams->highLBAAddress = 0;
pUdmaParams->prdHighAddr = 0;
pUdmaParams->callBack = CommandCompletionCB;
pUdmaParams->commandId = (MV_VOID_PTR )pCmd;
if(pCmd->uCmd.Ide.Command == IDE_COMMAND_READ)
pUdmaParams->readWrite = MV_UDMA_TYPE_READ;
else
pUdmaParams->readWrite = MV_UDMA_TYPE_WRITE;
if (pCmd->pSgTable && pCmd->cf_physical_sg) {
FPSCAT_GATH sg1=tmpSg, sg2=pCmd->pSgTable;
do { *sg1++=*sg2; } while ((sg2++->wSgFlag & SG_FLAG_EOT)==0);
}
else {
if (!pCmd->pfnBuildSgl || !pCmd->pfnBuildSgl(_VBUS_P pCmd, tmpSg, 0)) {
pio:
mvSataDisableChannelDma(pMvSataAdapter, channel);
mvSataFlushDmaQueue(pMvSataAdapter, channel, MV_FLUSH_TYPE_CALLBACK);
if (pCmd->pSgTable && pCmd->cf_physical_sg==0) {
FPSCAT_GATH sg1=tmpSg, sg2=pCmd->pSgTable;
do { *sg1++=*sg2; } while ((sg2++->wSgFlag & SG_FLAG_EOT)==0);
}
else {
if (!pCmd->pfnBuildSgl || !pCmd->pfnBuildSgl(_VBUS_P pCmd, tmpSg, 1)) {
pCmd->Result = RETURN_NEED_LOGICAL_SG;
goto finish_cmd;
}
}
do {
ULONG size = tmpSg->wSgSize? tmpSg->wSgSize : 0x10000;
ULONG_PTR addr = tmpSg->dSgAddress;
if (size & 0x1ff) {
pCmd->Result = RETURN_INVALID_REQUEST;
goto finish_cmd;
}
if (mvStorageDevATAExecuteNonUDMACommand(pMvSataAdapter, channel,
(pCmd->cf_data_out)?MV_NON_UDMA_PROTOCOL_PIO_DATA_OUT:MV_NON_UDMA_PROTOCOL_PIO_DATA_IN,
is48bit,
(MV_U16_PTR)addr,
size >> 1, /* count */
0, /* features N/A */
(MV_U16)(size>>9), /*sector count*/
(MV_U16)( (is48bit? (MV_U16)((Lba >> 16) & 0xFF00) : 0 ) | (UCHAR)(Lba & 0xFF) ), /*lbalow*/
(MV_U16)((Lba >> 8) & 0xFF), /* lbaMid */
(MV_U16)((Lba >> 16) & 0xFF),/* lbaHigh */
(MV_U8)(0x40 | (is48bit ? 0 : (UCHAR)(Lba >> 24) & 0xFF )),/* device */
(MV_U8)(is48bit ? (pCmd->cf_data_in?IDE_COMMAND_READ_EXT:IDE_COMMAND_WRITE_EXT):pCmd->uCmd.Ide.Command)
)==MV_FALSE)
{
pCmd->Result = RETURN_IDE_ERROR;
goto finish_cmd;
}
Lba += size>>9;
if(Lba & 0xF0000000) is48bit = MV_TRUE;
}
while ((tmpSg++->wSgFlag & SG_FLAG_EOT)==0);
pCmd->Result = RETURN_SUCCESS;
finish_cmd:
mvSataEnableChannelDma(pMvSataAdapter,channel);
CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd);
return;
}
}
pPRDTable = (MV_SATA_EDMA_PRD_ENTRY *) AllocatePRDTable(pMvSataAdapter->IALData);
KdPrint(("pPRDTable:%p\n",pPRDTable));
if (!pPRDTable) {
pCmd->Result = RETURN_DEVICE_BUSY;
CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd);
HPT_ASSERT(0);
return;
}
do{
pPRDTable[i].highBaseAddr = (sizeof(tmpSg->dSgAddress)>4 ? (MV_U32)(tmpSg->dSgAddress>>32) : 0);
pPRDTable[i].flags = (MV_U16)tmpSg->wSgFlag;
pPRDTable[i].byteCount = (MV_U16)tmpSg->wSgSize;
pPRDTable[i].lowBaseAddr = (MV_U32)tmpSg->dSgAddress;
pPRDTable[i].reserved = 0;
i++;
}while((tmpSg++->wSgFlag & SG_FLAG_EOT)==0);
pUdmaParams->prdLowAddr = (ULONG)fOsPhysicalAddress(pPRDTable);
if ((pUdmaParams->numOfSectors == 256) && (pMvSataChannel->lba48Address == MV_FALSE)) {
pUdmaParams->numOfSectors = 0;
}
pCmd->uScratch.sata_param.prdAddr = (PVOID)pPRDTable;
result = mvSataQueueCommand(pMvSataAdapter, channel, &commandInfo);
if (result != MV_QUEUE_COMMAND_RESULT_OK)
{
queue_failed:
switch (result)
{
case MV_QUEUE_COMMAND_RESULT_BAD_LBA_ADDRESS:
MV_ERROR("IAL Error: Edma Queue command failed. Bad LBA "
"LBA[31:0](0x%08x)\n", pUdmaParams->lowLBAAddress);
pCmd->Result = RETURN_IDE_ERROR;
break;
case MV_QUEUE_COMMAND_RESULT_QUEUED_MODE_DISABLED:
MV_ERROR("IAL Error: Edma Queue command failed. EDMA"
" disabled adapter %d channel %d\n",
pMvSataAdapter->adapterId, channel);
mvSataEnableChannelDma(pMvSataAdapter,channel);
pCmd->Result = RETURN_IDE_ERROR;
break;
case MV_QUEUE_COMMAND_RESULT_FULL:
MV_ERROR("IAL Error: Edma Queue command failed. Queue is"
" Full adapter %d channel %d\n",
pMvSataAdapter->adapterId, channel);
pCmd->Result = RETURN_DEVICE_BUSY;
break;
case MV_QUEUE_COMMAND_RESULT_BAD_PARAMS:
MV_ERROR("IAL Error: Edma Queue command failed. (Bad "
"Params), pMvSataAdapter: %p, pSataChannel: %p.\n",
pMvSataAdapter, pMvSataAdapter->sataChannel[channel]);
pCmd->Result = RETURN_IDE_ERROR;
break;
default:
MV_ERROR("IAL Error: Bad result value (%d) from queue"
" command\n", result);
pCmd->Result = RETURN_IDE_ERROR;
}
if(pPRDTable)
FreePRDTable(pMvSataAdapter->IALData,pPRDTable);
CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd);
}
pDevice->QueueLength++;
return;
case IDE_COMMAND_VERIFY:
commandInfo.type = MV_QUEUED_COMMAND_TYPE_NONE_UDMA;
pNoUdmaParams->bufPtr = NULL;
pNoUdmaParams->callBack = CommandCompletionCB;
pNoUdmaParams->commandId = (MV_VOID_PTR)pCmd;
pNoUdmaParams->count = 0;
pNoUdmaParams->features = 0;
pNoUdmaParams->protocolType = MV_NON_UDMA_PROTOCOL_NON_DATA;
pCmd->uScratch.sata_param.cmd_priv = 1;
if (pMvSataChannel->lba48Address == MV_TRUE){
pNoUdmaParams->command = MV_ATA_COMMAND_READ_VERIFY_SECTORS_EXT;
pNoUdmaParams->isEXT = MV_TRUE;
pNoUdmaParams->lbaHigh = (MV_U16)((Lba & 0xff0000) >> 16);
pNoUdmaParams->lbaMid = (MV_U16)((Lba & 0xff00) >> 8);
pNoUdmaParams->lbaLow =
(MV_U16)(((Lba & 0xff000000) >> 16)| (Lba & 0xff));
pNoUdmaParams->sectorCount = nSector;
pNoUdmaParams->device = 0x40;
result = mvSataQueueCommand(pMvSataAdapter, channel, &commandInfo);
if (result != MV_QUEUE_COMMAND_RESULT_OK){
goto queue_failed;
}
return;
}
else{
pNoUdmaParams->command = MV_ATA_COMMAND_READ_VERIFY_SECTORS;
pNoUdmaParams->isEXT = MV_FALSE;
pNoUdmaParams->lbaHigh = (MV_U16)((Lba & 0xff0000) >> 16);
pNoUdmaParams->lbaMid = (MV_U16)((Lba & 0xff00) >> 8);
pNoUdmaParams->lbaLow = (MV_U16)(Lba & 0xff);
pNoUdmaParams->sectorCount = 0xff & nSector;
pNoUdmaParams->device = (MV_U8)(0x40 |
((Lba & 0xf000000) >> 24));
pNoUdmaParams->callBack = CommandCompletionCB;
result = mvSataQueueCommand(pMvSataAdapter, channel, &commandInfo);
/*FIXME: how about the commands already queued? but marvel also forgets to consider this*/
if (result != MV_QUEUE_COMMAND_RESULT_OK){
goto queue_failed;
}
}
break;
default:
pCmd->Result = RETURN_INVALID_REQUEST;
CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd);
break;
}
}
/**********************************************************
*
* Probe the hostadapter.
*
**********************************************************/
static int
hpt_probe(device_t dev)
{
if ((pci_get_vendor(dev) == MV_SATA_VENDOR_ID) &&
(pci_get_device(dev) == MV_SATA_DEVICE_ID_5081
#ifdef FOR_DEMO
|| pci_get_device(dev) == MV_SATA_DEVICE_ID_5080
#endif
))
{
KdPrintI((CONTROLLER_NAME " found\n"));
device_set_desc(dev, CONTROLLER_NAME);
return 0;
}
else
return(ENXIO);
}
/***********************************************************
*
* Auto configuration: attach and init a host adapter.
*
***********************************************************/
static int
hpt_attach(device_t dev)
{
IAL_ADAPTER_T * pAdapter = device_get_softc(dev);
int rid;
union ccb *ccb;
struct cam_devq *devq;
struct cam_sim *hpt_vsim;
printf("%s Version %s \n", DRIVER_NAME, DRIVER_VERSION);
if (!pAdapter)
{
pAdapter = (IAL_ADAPTER_T *)malloc(sizeof (IAL_ADAPTER_T), M_DEVBUF, M_NOWAIT);
#if __FreeBSD_version > 410000
device_set_softc(dev, (void *)pAdapter);
#else
device_set_driver(dev, (driver_t *)pAdapter);
#endif
}
if (!pAdapter) return (ENOMEM);
bzero(pAdapter, sizeof(IAL_ADAPTER_T));
pAdapter->hpt_dev = dev;
rid = init_adapter(pAdapter);
if (rid)
return rid;
rid = 0;
if ((pAdapter->hpt_irq = bus_alloc_resource(pAdapter->hpt_dev, SYS_RES_IRQ, &rid, 0, ~0ul, 1, RF_SHAREABLE | RF_ACTIVE)) == NULL)
{
hpt_printk(("can't allocate interrupt\n"));
return(ENXIO);
}
if(bus_setup_intr(pAdapter->hpt_dev, pAdapter->hpt_irq, INTR_TYPE_CAM, hpt_intr, pAdapter, &pAdapter->hpt_intr))
{
hpt_printk(("can't set up interrupt\n"));
free(pAdapter, M_DEVBUF);
return(ENXIO);
}
if((ccb = (union ccb *)malloc(sizeof(*ccb), M_DEVBUF, M_WAITOK)) != (union ccb*)NULL)
{
bzero(ccb, sizeof(*ccb));
ccb->ccb_h.pinfo.priority = 1;
ccb->ccb_h.pinfo.index = CAM_UNQUEUED_INDEX;
}
else
{
return ENOMEM;
}
/*
* Create the device queue for our SIM(s).
*/
if((devq = cam_simq_alloc(8/*MAX_QUEUE_COMM*/)) == NULL)
{
KdPrint(("ENXIO\n"));
return ENOMEM;
}
/*
* Construct our SIM entry
*/
if ((hpt_vsim = cam_sim_alloc(hpt_action, hpt_poll, __str(PROC_DIR_NAME),
pAdapter, device_get_unit(pAdapter->hpt_dev), /*untagged*/1, /*tagged*/8, devq)) == NULL) {
cam_simq_free(devq);
return ENOMEM;
}
if(xpt_bus_register(hpt_vsim, 0) != CAM_SUCCESS)
{
cam_sim_free(hpt_vsim, /*free devq*/ TRUE);
hpt_vsim = NULL;
return ENXIO;
}
if(xpt_create_path(&pAdapter->path, /*periph */ NULL,
cam_sim_path(hpt_vsim), CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD) != CAM_REQ_CMP)
{
xpt_bus_deregister(cam_sim_path(hpt_vsim));
cam_sim_free(hpt_vsim, /*free_devq*/TRUE);
hpt_vsim = NULL;
return ENXIO;
}
xpt_setup_ccb(&(ccb->ccb_h), pAdapter->path, /*priority*/5);
ccb->ccb_h.func_code = XPT_SASYNC_CB;
ccb->csa.event_enable = AC_LOST_DEVICE;
ccb->csa.callback = hpt_async;
ccb->csa.callback_arg = hpt_vsim;
xpt_action((union ccb *)ccb);
free(ccb, M_DEVBUF);
/* Register shutdown handler, and start the work thread. */
if (device_get_unit(dev) == 0) {
pAdapter->eh = EVENTHANDLER_REGISTER(shutdown_final,
hpt_shutdown, dev, SHUTDOWN_PRI_DEFAULT);
if (pAdapter->eh)
launch_worker_thread();
else
hpt_printk(("shutdown event registration failed\n"));
}
return 0;
}
static int
hpt_detach(device_t dev)
{
return (EBUSY);
}
/***************************************************************
* The poll function is used to simulate the interrupt when
* the interrupt subsystem is not functioning.
*
***************************************************************/
static void
hpt_poll(struct cam_sim *sim)
{
hpt_intr((void *)cam_sim_softc(sim));
}
/****************************************************************
* Name: hpt_intr
* Description: Interrupt handler.
****************************************************************/
static void
hpt_intr(void *arg)
{
IAL_ADAPTER_T *pAdapter = (IAL_ADAPTER_T *)arg;
intrmask_t oldspl = lock_driver();
/* KdPrintI(("----- Entering Isr() -----\n")); */
if (mvSataInterruptServiceRoutine(&pAdapter->mvSataAdapter) == MV_TRUE)
{
_VBUS_INST(&pAdapter->VBus)
CheckPendingCall(_VBUS_P0);
}
/* KdPrintI(("----- Leaving Isr() -----\n")); */
unlock_driver(oldspl);
}
/**********************************************************
* Asynchronous Events
*********************************************************/
#if (!defined(UNREFERENCED_PARAMETER))
#define UNREFERENCED_PARAMETER(x) (void)(x)
#endif
static void
hpt_async(void * callback_arg, u_int32_t code, struct cam_path * path,
void * arg)
{
/* debug XXXX */
panic("Here");
UNREFERENCED_PARAMETER(callback_arg);
UNREFERENCED_PARAMETER(code);
UNREFERENCED_PARAMETER(path);
UNREFERENCED_PARAMETER(arg);
}
static void
FlushAdapter(IAL_ADAPTER_T *pAdapter)
{
int i;
hpt_printk(("flush all devices\n"));
/* flush all devices */
for (i=0; i<MAX_VDEVICE_PER_VBUS; i++) {
PVDevice pVDev = pAdapter->VBus.pVDevice[i];
if(pVDev) fFlushVDev(pVDev);
}
}
static int
hpt_shutdown(device_t dev)
{
IAL_ADAPTER_T *pAdapter;
pAdapter = device_get_softc(dev);
if (pAdapter == NULL)
return (EINVAL);
EVENTHANDLER_DEREGISTER(shutdown_final, pAdapter->eh);
FlushAdapter(pAdapter);
/* give the flush some time to happen,
*otherwise "shutdown -p now" will make file system corrupted */
DELAY(1000 * 1000 * 5);
return 0;
}
void
Check_Idle_Call(IAL_ADAPTER_T *pAdapter)
{
_VBUS_INST(&pAdapter->VBus)
if (mWaitingForIdle(_VBUS_P0)) {
CheckIdleCall(_VBUS_P0);
#ifdef SUPPORT_ARRAY
{
int i;
PVDevice pArray;
for(i = 0; i < MAX_ARRAY_PER_VBUS; i++){
if ((pArray=ArrayTables(i))->u.array.dArStamp==0)
continue;
else if (pArray->u.array.rf_auto_rebuild) {
KdPrint(("auto rebuild.\n"));
pArray->u.array.rf_auto_rebuild = 0;
hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block, pAdapter, pArray, DUPLICATE);
}
}
}
#endif
}
/* launch the awaiting commands blocked by mWaitingForIdle */
while(pAdapter->pending_Q!= NULL)
{
_VBUS_INST(&pAdapter->VBus)
union ccb *ccb = (union ccb *)pAdapter->pending_Q->ccb_h.ccb_ccb_ptr;
hpt_free_ccb(&pAdapter->pending_Q, ccb);
CallAfterReturn(_VBUS_P (DPC_PROC)OsSendCommand, ccb);
}
}
static void
ccb_done(union ccb *ccb)
{
PBUS_DMAMAP pmap = (PBUS_DMAMAP)ccb->ccb_adapter;
IAL_ADAPTER_T * pAdapter = pmap->pAdapter;
KdPrintI(("ccb_done: ccb %p status %x\n", ccb, ccb->ccb_h.status));
dmamap_put(pmap);
xpt_done(ccb);
pAdapter->outstandingCommands--;
if (pAdapter->outstandingCommands == 0)
{
if(DPC_Request_Nums == 0)
Check_Idle_Call(pAdapter);
}
}
/****************************************************************
* Name: hpt_action
* Description: Process a queued command from the CAM layer.
* Parameters: sim - Pointer to SIM object
* ccb - Pointer to SCSI command structure.
****************************************************************/
void
hpt_action(struct cam_sim *sim, union ccb *ccb)
{
intrmask_t oldspl;
IAL_ADAPTER_T * pAdapter = (IAL_ADAPTER_T *) cam_sim_softc(sim);
PBUS_DMAMAP pmap;
_VBUS_INST(&pAdapter->VBus)
2005-09-08 14:13:36 +00:00
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("hpt_action\n"));
KdPrint(("hpt_action(%lx,%lx{%x})\n", (u_long)sim, (u_long)ccb, ccb->ccb_h.func_code));
switch (ccb->ccb_h.func_code)
{
case XPT_SCSI_IO: /* Execute the requested I/O operation */
{
/* ccb->ccb_h.path_id is not our bus id - don't check it */
if (ccb->ccb_h.target_lun) {
ccb->ccb_h.status = CAM_LUN_INVALID;
xpt_done(ccb);
return;
}
if (ccb->ccb_h.target_id >= MAX_VDEVICE_PER_VBUS ||
pAdapter->VBus.pVDevice[ccb->ccb_h.target_id]==0) {
ccb->ccb_h.status = CAM_TID_INVALID;
xpt_done(ccb);
return;
}
oldspl = lock_driver();
if (pAdapter->outstandingCommands==0 && DPC_Request_Nums==0)
Check_Idle_Call(pAdapter);
pmap = dmamap_get(pAdapter);
HPT_ASSERT(pmap);
ccb->ccb_adapter = pmap;
memset((void *)pmap->psg, 0, sizeof(pmap->psg));
if (mWaitingForIdle(_VBUS_P0))
hpt_queue_ccb(&pAdapter->pending_Q, ccb);
else
OsSendCommand(_VBUS_P ccb);
unlock_driver(oldspl);
/* KdPrint(("leave scsiio\n")); */
break;
}
case XPT_RESET_BUS:
KdPrint(("reset bus\n"));
oldspl = lock_driver();
fResetVBus(_VBUS_P0);
unlock_driver(oldspl);
xpt_done(ccb);
break;
case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */
case XPT_EN_LUN: /* Enable LUN as a target */
case XPT_TARGET_IO: /* Execute target I/O request */
case XPT_ACCEPT_TARGET_IO: /* Accept Host Target Mode CDB */
case XPT_CONT_TARGET_IO: /* Continue Host Target I/O Connection*/
case XPT_ABORT: /* Abort the specified CCB */
case XPT_TERM_IO: /* Terminate the I/O process */
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
case XPT_GET_TRAN_SETTINGS:
case XPT_SET_TRAN_SETTINGS:
/* XXX Implement */
ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
xpt_done(ccb);
break;
case XPT_CALC_GEOMETRY:
{
struct ccb_calc_geometry *ccg;
u_int32_t size_mb;
u_int32_t secs_per_cylinder;
ccg = &ccb->ccg;
size_mb = ccg->volume_size / ((1024L * 1024L) / ccg->block_size);
if (size_mb > 1024 ) {
ccg->heads = 255;
ccg->secs_per_track = 63;
} else {
ccg->heads = 64;
ccg->secs_per_track = 32;
}
secs_per_cylinder = ccg->heads * ccg->secs_per_track;
ccg->cylinders = ccg->volume_size / secs_per_cylinder;
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_PATH_INQ: /* Path routing inquiry */
{
struct ccb_pathinq *cpi = &ccb->cpi;
cpi->version_num = 1; /* XXX??? */
cpi->hba_inquiry = PI_SDTR_ABLE;
cpi->target_sprt = 0;
/* Not necessary to reset bus */
cpi->hba_misc = PIM_NOBUSRESET;
cpi->hba_eng_cnt = 0;
cpi->max_target = MAX_VDEVICE_PER_VBUS;
cpi->max_lun = 0;
cpi->initiator_id = MAX_VDEVICE_PER_VBUS;
cpi->bus_id = cam_sim_bus(sim);
cpi->base_transfer_speed = 3300;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "HPT ", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
default:
KdPrint(("invalid cmd\n"));
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
/* KdPrint(("leave hpt_action..............\n")); */
}
/* shall be called at lock_driver() */
static void
hpt_queue_ccb(union ccb **ccb_Q, union ccb *ccb)
{
if(*ccb_Q == NULL)
ccb->ccb_h.ccb_ccb_ptr = ccb;
else {
ccb->ccb_h.ccb_ccb_ptr = (*ccb_Q)->ccb_h.ccb_ccb_ptr;
(*ccb_Q)->ccb_h.ccb_ccb_ptr = (char *)ccb;
}
*ccb_Q = ccb;
}
/* shall be called at lock_driver() */
static void
hpt_free_ccb(union ccb **ccb_Q, union ccb *ccb)
{
union ccb *TempCCB;
TempCCB = *ccb_Q;
if(ccb->ccb_h.ccb_ccb_ptr == ccb) /*it means SCpnt is the last one in CURRCMDs*/
*ccb_Q = NULL;
else {
while(TempCCB->ccb_h.ccb_ccb_ptr != (char *)ccb)
TempCCB = (union ccb *)TempCCB->ccb_h.ccb_ccb_ptr;
TempCCB->ccb_h.ccb_ccb_ptr = ccb->ccb_h.ccb_ccb_ptr;
if(*ccb_Q == ccb)
*ccb_Q = TempCCB;
}
}
#ifdef SUPPORT_ARRAY
/***************************************************************************
* Function: hpt_worker_thread
* Description: Do background rebuilding. Execute in kernel thread context.
* Returns: None
***************************************************************************/
static void hpt_worker_thread(void)
{
intrmask_t oldspl;
for(;;) {
while (DpcQueue_First!=DpcQueue_Last) {
ST_HPT_DPC p;
oldspl = lock_driver();
p = DpcQueue[DpcQueue_First];
DpcQueue_First++;
DpcQueue_First %= MAX_DPC;
DPC_Request_Nums++;
unlock_driver(oldspl);
p.dpc(p.pAdapter, p.arg, p.flags);
oldspl = lock_driver();
DPC_Request_Nums--;
/* since we may have prevented Check_Idle_Call, do it here */
if (DPC_Request_Nums==0) {
if (p.pAdapter->outstandingCommands == 0) {
_VBUS_INST(&p.pAdapter->VBus);
Check_Idle_Call(p.pAdapter);
CheckPendingCall(_VBUS_P0);
}
}
unlock_driver(oldspl);
/*Schedule out*/
#if (__FreeBSD_version < 500000)
YIELD_THREAD;
#else
tsleep((caddr_t)hpt_worker_thread, PPAUSE, "sched", 1);
#endif
if (SIGISMEMBER(curproc->p_siglist, SIGSTOP)) {
/* abort rebuilding process. */
IAL_ADAPTER_T *pAdapter;
PVDevice pArray;
PVBus _vbus_p;
int i;
pAdapter = gIal_Adapter;
while(pAdapter != 0){
_vbus_p = &pAdapter->VBus;
for (i=0;i<MAX_ARRAY_PER_VBUS;i++)
{
if ((pArray=ArrayTables(i))->u.array.dArStamp==0)
continue;
else if (pArray->u.array.rf_rebuilding ||
pArray->u.array.rf_verifying ||
pArray->u.array.rf_initializing)
{
pArray->u.array.rf_abort_rebuild = 1;
}
}
pAdapter = pAdapter->next;
}
}
}
/*Remove this debug option*/
/*
#ifdef DEBUG
if (SIGISMEMBER(curproc->p_siglist, SIGSTOP))
tsleep((caddr_t)hpt_worker_thread, PPAUSE, "hptrdy", 2*hz);
#endif
*/
#if (__FreeBSD_version >= 500043)
kthread_suspend_check(curproc);
#else
kproc_suspend_loop(curproc);
#endif
tsleep((caddr_t)hpt_worker_thread, PPAUSE, "hptrdy", 2*hz); /* wait for something to do */
}
}
static struct proc *hptdaemonproc;
static struct kproc_desc hpt_kp = {
"hpt_wt",
hpt_worker_thread,
&hptdaemonproc
};
/*Start this thread in the hpt_attach, to prevent kernel from loading it without our controller.*/
static void
launch_worker_thread(void)
{
IAL_ADAPTER_T *pAdapTemp;
kproc_start(&hpt_kp);
for (pAdapTemp = gIal_Adapter; pAdapTemp; pAdapTemp = pAdapTemp->next) {
_VBUS_INST(&pAdapTemp->VBus)
int i;
PVDevice pVDev;
for(i = 0; i < MAX_ARRAY_PER_VBUS; i++)
if ((pVDev=ArrayTables(i))->u.array.dArStamp==0)
continue;
else{
if (pVDev->u.array.rf_need_rebuild && !pVDev->u.array.rf_rebuilding)
hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block, pAdapTemp, pVDev,
(UCHAR)((pVDev->u.array.CriticalMembers || pVDev->VDeviceType == VD_RAID_1)? DUPLICATE : REBUILD_PARITY));
}
}
/*
* hpt_worker_thread needs to be suspended after shutdown sync, when fs sync finished.
*/
#if (__FreeBSD_version < 500043)
EVENTHANDLER_REGISTER(shutdown_post_sync, shutdown_kproc, hptdaemonproc, SHUTDOWN_PRI_FIRST);
#else
EVENTHANDLER_REGISTER(shutdown_post_sync, kproc_shutdown, hptdaemonproc, SHUTDOWN_PRI_FIRST);
#endif
}
/*
*SYSINIT(hptwt, SI_SUB_KTHREAD_IDLE, SI_ORDER_FIRST, launch_worker_thread, NULL);
*/
#endif
/********************************************************************************/
int HPTLIBAPI fOsBuildSgl(_VBUS_ARG PCommand pCmd, FPSCAT_GATH pSg, int logical)
{
union ccb *ccb = (union ccb *)pCmd->pOrgCommand;
bus_dma_segment_t *sgList = (bus_dma_segment_t *)ccb->csio.data_ptr;
int idx;
if(logical) {
if (ccb->ccb_h.flags & CAM_DATA_PHYS)
panic("physical address unsupported");
if (ccb->ccb_h.flags & CAM_SCATTER_VALID) {
if (ccb->ccb_h.flags & CAM_SG_LIST_PHYS)
panic("physical address unsupported");
for (idx = 0; idx < ccb->csio.sglist_cnt; idx++) {
pSg[idx].dSgAddress = (ULONG_PTR)(UCHAR *)sgList[idx].ds_addr;
pSg[idx].wSgSize = sgList[idx].ds_len;
pSg[idx].wSgFlag = (idx==ccb->csio.sglist_cnt-1)? SG_FLAG_EOT : 0;
}
}
else {
pSg->dSgAddress = (ULONG_PTR)(UCHAR *)ccb->csio.data_ptr;
pSg->wSgSize = ccb->csio.dxfer_len;
pSg->wSgFlag = SG_FLAG_EOT;
}
return TRUE;
}
/* since we have provided physical sg, nobody will ask us to build physical sg */
HPT_ASSERT(0);
return FALSE;
}
/*******************************************************************************/
ULONG HPTLIBAPI
GetStamp(void)
{
/*
* the system variable, ticks, can't be used since it hasn't yet been active
* when our driver starts (ticks==0, it's a invalid stamp value)
*/
ULONG stamp;
do { stamp = random(); } while (stamp==0);
return stamp;
}
static void
SetInquiryData(PINQUIRYDATA inquiryData, PVDevice pVDev)
{
int i;
IDENTIFY_DATA2 *pIdentify = (IDENTIFY_DATA2*)pVDev->u.disk.mv->identifyDevice;
inquiryData->DeviceType = T_DIRECT; /*DIRECT_ACCESS_DEVICE*/
inquiryData->AdditionalLength = (UCHAR)(sizeof(INQUIRYDATA) - 5);
#ifndef SERIAL_CMDS
inquiryData->CommandQueue = 1;
#endif
switch(pVDev->VDeviceType) {
case VD_SINGLE_DISK:
case VD_ATAPI:
case VD_REMOVABLE:
/* Set the removable bit, if applicable. */
if ((pVDev->u.disk.df_removable_drive) || (pIdentify->GeneralConfiguration & 0x80))
inquiryData->RemovableMedia = 1;
/* Fill in vendor identification fields. */
for (i = 0; i < 20; i += 2) {
inquiryData->VendorId[i] = ((PUCHAR)pIdentify->ModelNumber)[i + 1];
inquiryData->VendorId[i+1] = ((PUCHAR)pIdentify->ModelNumber)[i];
}
/* Initialize unused portion of product id. */
for (i = 0; i < 4; i++) inquiryData->ProductId[12+i] = ' ';
/* firmware revision */
for (i = 0; i < 4; i += 2)
{
inquiryData->ProductRevisionLevel[i] = ((PUCHAR)pIdentify->FirmwareRevision)[i+1];
inquiryData->ProductRevisionLevel[i+1] = ((PUCHAR)pIdentify->FirmwareRevision)[i];
}
break;
default:
memcpy(&inquiryData->VendorId, "RR182x ", 8);
#ifdef SUPPORT_ARRAY
switch(pVDev->VDeviceType){
case VD_RAID_0:
if ((pVDev->u.array.pMember[0] && mIsArray(pVDev->u.array.pMember[0])) ||
(pVDev->u.array.pMember[1] && mIsArray(pVDev->u.array.pMember[1])))
memcpy(&inquiryData->ProductId, "RAID 1/0 Array ", 16);
else
memcpy(&inquiryData->ProductId, "RAID 0 Array ", 16);
break;
case VD_RAID_1:
if ((pVDev->u.array.pMember[0] && mIsArray(pVDev->u.array.pMember[0])) ||
(pVDev->u.array.pMember[1] && mIsArray(pVDev->u.array.pMember[1])))
memcpy(&inquiryData->ProductId, "RAID 0/1 Array ", 16);
else
memcpy(&inquiryData->ProductId, "RAID 1 Array ", 16);
break;
case VD_RAID_5:
memcpy(&inquiryData->ProductId, "RAID 5 Array ", 16);
break;
case VD_JBOD:
memcpy(&inquiryData->ProductId, "JBOD Array ", 16);
break;
}
#endif
memcpy(&inquiryData->ProductRevisionLevel, "3.00", 4);
break;
}
}
static void
hpt_timeout(void *arg)
{
_VBUS_INST(&((PBUS_DMAMAP)((union ccb *)arg)->ccb_adapter)->pAdapter->VBus)
intrmask_t oldspl = lock_driver();
fResetVBus(_VBUS_P0);
unlock_driver(oldspl);
}
static void
hpt_io_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
PCommand pCmd = (PCommand)arg;
union ccb *ccb = pCmd->pOrgCommand;
struct ccb_hdr *ccb_h = &ccb->ccb_h;
PBUS_DMAMAP pmap = (PBUS_DMAMAP) ccb->ccb_adapter;
IAL_ADAPTER_T *pAdapter = pmap->pAdapter;
PVDevice pVDev = pAdapter->VBus.pVDevice[ccb_h->target_id];
FPSCAT_GATH psg = pCmd->pSgTable;
int idx;
_VBUS_INST(pVDev->pVBus)
HPT_ASSERT(pCmd->cf_physical_sg);
if (error || nsegs == 0)
panic("busdma error");
HPT_ASSERT(nsegs<= MAX_SG_DESCRIPTORS);
for (idx = 0; idx < nsegs; idx++, psg++) {
psg->dSgAddress = (ULONG_PTR)(UCHAR *)segs[idx].ds_addr;
psg->wSgSize = segs[idx].ds_len;
psg->wSgFlag = (idx == nsegs-1)? SG_FLAG_EOT: 0;
/* KdPrint(("psg[%d]:add=%p,size=%x,flag=%x\n", idx, psg->dSgAddress,psg->wSgSize,psg->wSgFlag)); */
}
/* psg[-1].wSgFlag = SG_FLAG_EOT; */
if (pCmd->cf_data_in) {
bus_dmamap_sync(pAdapter->io_dma_parent, pmap->dma_map, BUS_DMASYNC_PREREAD);
}
else if (pCmd->cf_data_out) {
bus_dmamap_sync(pAdapter->io_dma_parent, pmap->dma_map, BUS_DMASYNC_PREWRITE);
}
ccb->ccb_h.timeout_ch = timeout(hpt_timeout, (caddr_t)ccb, 20*hz);
pVDev->pfnSendCommand(_VBUS_P pCmd);
CheckPendingCall(_VBUS_P0);
}
static void HPTLIBAPI
OsSendCommand(_VBUS_ARG union ccb *ccb)
{
PBUS_DMAMAP pmap = (PBUS_DMAMAP)ccb->ccb_adapter;
IAL_ADAPTER_T *pAdapter = pmap->pAdapter;
struct ccb_hdr *ccb_h = &ccb->ccb_h;
struct ccb_scsiio *csio = &ccb->csio;
PVDevice pVDev = pAdapter->VBus.pVDevice[ccb_h->target_id];
KdPrintI(("OsSendCommand: ccb %p cdb %x-%x-%x\n",
ccb,
*(ULONG *)&ccb->csio.cdb_io.cdb_bytes[0],
*(ULONG *)&ccb->csio.cdb_io.cdb_bytes[4],
*(ULONG *)&ccb->csio.cdb_io.cdb_bytes[8]
));
pAdapter->outstandingCommands++;
if (pVDev == NULL || pVDev->vf_online == 0) {
ccb->ccb_h.status = CAM_REQ_INVALID;
ccb_done(ccb);
goto Command_Complished;
}
switch(ccb->csio.cdb_io.cdb_bytes[0])
{
case TEST_UNIT_READY:
case START_STOP_UNIT:
case SYNCHRONIZE_CACHE:
/* FALLTHROUGH */
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case INQUIRY:
ZeroMemory(ccb->csio.data_ptr, ccb->csio.dxfer_len);
SetInquiryData((PINQUIRYDATA)ccb->csio.data_ptr, pVDev);
ccb_h->status = CAM_REQ_CMP;
break;
case READ_CAPACITY:
{
UCHAR swip[4];
/* Claim 512 byte blocks (big-endian). */
((PREAD_CAPACITY_DATA)csio->data_ptr)->BytesPerBlock = 0x20000;
*(ULONG*)swip = pVDev->VDeviceCapacity - 1;
((PREAD_CAPACITY_DATA)csio->data_ptr)->LogicalBlockAddress =
(swip[0] << 24) | (swip[1] << 16) | (swip[2] << 8) | swip[3];
ccb_h->status = CAM_REQ_CMP;
break;
}
case READ_6:
case WRITE_6:
case READ_10:
case WRITE_10:
case 0x13:
case 0x2f:
{
UCHAR Cdb[16];
UCHAR CdbLength;
_VBUS_INST(pVDev->pVBus)
PCommand pCmd = AllocateCommand(_VBUS_P0);
HPT_ASSERT(pCmd);
CdbLength = csio->cdb_len;
if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0)
{
if ((ccb->ccb_h.flags & CAM_CDB_PHYS) == 0)
{
bcopy(csio->cdb_io.cdb_ptr, Cdb, CdbLength);
}
else
{
KdPrintE(("ERROR!!!\n"));
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
}
else
{
bcopy(csio->cdb_io.cdb_bytes, Cdb, CdbLength);
}
pCmd->pOrgCommand = ccb;
pCmd->pVDevice = pVDev;
pCmd->pfnCompletion = fOsCommandDone;
pCmd->pfnBuildSgl = fOsBuildSgl;
pCmd->pSgTable = pmap->psg;
switch (Cdb[0])
{
case READ_6:
case WRITE_6:
case 0x13:
pCmd->uCmd.Ide.Lba = ((ULONG)Cdb[1] << 16) | ((ULONG)Cdb[2] << 8) | (ULONG)Cdb[3];
pCmd->uCmd.Ide.nSectors = (USHORT) Cdb[4];
break;
default:
pCmd->uCmd.Ide.Lba = (ULONG)Cdb[5] | ((ULONG)Cdb[4] << 8) | ((ULONG)Cdb[3] << 16) | ((ULONG)Cdb[2] << 24);
pCmd->uCmd.Ide.nSectors = (USHORT) Cdb[8] | ((USHORT)Cdb[7]<<8);
break;
}
switch (Cdb[0])
{
case READ_6:
case READ_10:
pCmd->uCmd.Ide.Command = IDE_COMMAND_READ;
pCmd->cf_data_in = 1;
break;
case WRITE_6:
case WRITE_10:
pCmd->uCmd.Ide.Command = IDE_COMMAND_WRITE;
pCmd->cf_data_out = 1;
break;
case 0x13:
case 0x2f:
pCmd->uCmd.Ide.Command = IDE_COMMAND_VERIFY;
break;
}
/*///////////////////////// */
if (ccb->ccb_h.flags & CAM_SCATTER_VALID) {
int idx;
bus_dma_segment_t *sgList = (bus_dma_segment_t *)ccb->csio.data_ptr;
if (ccb->ccb_h.flags & CAM_SG_LIST_PHYS)
pCmd->cf_physical_sg = 1;
for (idx = 0; idx < ccb->csio.sglist_cnt; idx++) {
pCmd->pSgTable[idx].dSgAddress = (ULONG_PTR)(UCHAR *)sgList[idx].ds_addr;
pCmd->pSgTable[idx].wSgSize = sgList[idx].ds_len;
pCmd->pSgTable[idx].wSgFlag= (idx==ccb->csio.sglist_cnt-1)?SG_FLAG_EOT: 0;
}
ccb->ccb_h.timeout_ch = timeout(hpt_timeout, (caddr_t)ccb, 20*hz);
pVDev->pfnSendCommand(_VBUS_P pCmd);
}
else {
int error;
pCmd->cf_physical_sg = 1;
error = bus_dmamap_load(pAdapter->io_dma_parent,
pmap->dma_map,
ccb->csio.data_ptr, ccb->csio.dxfer_len,
hpt_io_dmamap_callback, pCmd,
BUS_DMA_WAITOK
);
KdPrint(("bus_dmamap_load return %d\n", error));
if (error && error!=EINPROGRESS) {
hpt_printk(("bus_dmamap_load error %d\n", error));
FreeCommand(_VBUS_P pCmd);
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
dmamap_put(pmap);
pAdapter->outstandingCommands--;
xpt_done(ccb);
}
}
goto Command_Complished;
}
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
ccb_done(ccb);
Command_Complished:
CheckPendingCall(_VBUS_P0);
return;
}
static void HPTLIBAPI
fOsCommandDone(_VBUS_ARG PCommand pCmd)
{
union ccb *ccb = pCmd->pOrgCommand;
PBUS_DMAMAP pmap = (PBUS_DMAMAP)ccb->ccb_adapter;
IAL_ADAPTER_T *pAdapter = pmap->pAdapter;
KdPrint(("fOsCommandDone(pcmd=%p, result=%d)\n", pCmd, pCmd->Result));
untimeout(hpt_timeout, (caddr_t)ccb, ccb->ccb_h.timeout_ch);
switch(pCmd->Result) {
case RETURN_SUCCESS:
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case RETURN_BAD_DEVICE:
ccb->ccb_h.status = CAM_DEV_NOT_THERE;
break;
case RETURN_DEVICE_BUSY:
ccb->ccb_h.status = CAM_BUSY;
break;
case RETURN_INVALID_REQUEST:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
case RETURN_SELECTION_TIMEOUT:
ccb->ccb_h.status = CAM_SEL_TIMEOUT;
break;
case RETURN_RETRY:
ccb->ccb_h.status = CAM_BUSY;
break;
default:
ccb->ccb_h.status = CAM_SCSI_STATUS_ERROR;
break;
}
if (pCmd->cf_data_in) {
bus_dmamap_sync(pAdapter->io_dma_parent, pmap->dma_map, BUS_DMASYNC_POSTREAD);
}
else if (pCmd->cf_data_in) {
bus_dmamap_sync(pAdapter->io_dma_parent, pmap->dma_map, BUS_DMASYNC_POSTWRITE);
}
bus_dmamap_unload(pAdapter->io_dma_parent, pmap->dma_map);
FreeCommand(_VBUS_P pCmd);
ccb_done(ccb);
}
int
hpt_queue_dpc(HPT_DPC dpc, IAL_ADAPTER_T * pAdapter, void *arg, UCHAR flags)
{
int p;
p = (DpcQueue_Last + 1) % MAX_DPC;
if (p==DpcQueue_First) {
KdPrint(("DPC Queue full!\n"));
return -1;
}
DpcQueue[DpcQueue_Last].dpc = dpc;
DpcQueue[DpcQueue_Last].pAdapter = pAdapter;
DpcQueue[DpcQueue_Last].arg = arg;
DpcQueue[DpcQueue_Last].flags = flags;
DpcQueue_Last = p;
return 0;
}
#ifdef _RAID5N_
/*
* Allocate memory above 16M, otherwise we may eat all low memory for ISA devices.
* How about the memory for 5081 request/response array and PRD table?
*/
void
*os_alloc_page(_VBUS_ARG0)
{
return (void *)contigmalloc(0x1000, M_DEVBUF, M_NOWAIT, 0x1000000, 0xffffffff, PAGE_SIZE, 0ul);
}
void
*os_alloc_dma_page(_VBUS_ARG0)
{
return (void *)contigmalloc(0x1000, M_DEVBUF, M_NOWAIT, 0x1000000, 0xffffffff, PAGE_SIZE, 0ul);
}
void
os_free_page(_VBUS_ARG void *p)
{
contigfree(p, 0x1000, M_DEVBUF);
}
void
os_free_dma_page(_VBUS_ARG void *p)
{
contigfree(p, 0x1000, M_DEVBUF);
}
void
DoXor1(ULONG *p0, ULONG *p1, ULONG *p2, UINT nBytes)
{
UINT i;
for (i = 0; i < nBytes / 4; i++) *p0++ = *p1++ ^ *p2++;
}
void
DoXor2(ULONG *p0, ULONG *p2, UINT nBytes)
{
UINT i;
for (i = 0; i < nBytes / 4; i++) *p0++ ^= *p2++;
}
#endif