1993-06-29 09:48:26 +00:00
|
|
|
|
/*-
|
|
|
|
|
* This code is derived from software copyrighted by the Free Software
|
|
|
|
|
* Foundation.
|
|
|
|
|
*
|
|
|
|
|
* Modified 1991 by Donn Seeley at UUNET Technologies, Inc.
|
|
|
|
|
* Modified 1990 by Van Jacobson at Lawrence Berkeley Laboratory.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
#ifndef lint
|
|
|
|
|
static char sccsid[] = "@(#)dbxread.c 6.3 (Berkeley) 5/8/91";
|
|
|
|
|
#endif /* not lint */
|
|
|
|
|
|
|
|
|
|
/* Read dbx symbol tables and convert to internal format, for GDB.
|
|
|
|
|
Copyright (C) 1986, 1987, 1988, 1989 Free Software Foundation, Inc.
|
|
|
|
|
|
|
|
|
|
This file is part of GDB.
|
|
|
|
|
|
|
|
|
|
GDB is free software; you can redistribute it and/or modify
|
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
|
the Free Software Foundation; either version 1, or (at your option)
|
|
|
|
|
any later version.
|
|
|
|
|
|
|
|
|
|
GDB is distributed in the hope that it will be useful,
|
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
|
along with GDB; see the file COPYING. If not, write to
|
|
|
|
|
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
|
|
|
|
|
|
|
|
|
/* Symbol read-in occurs in two phases:
|
|
|
|
|
1. A scan (read_dbx_symtab()) of the entire executable, whose sole
|
|
|
|
|
purpose is to make a list of symbols (partial symbol table)
|
|
|
|
|
which will cause symbols
|
|
|
|
|
to be read in if referenced. This scan happens when the
|
|
|
|
|
"symbol-file" command is given (symbol_file_command()).
|
|
|
|
|
2. Full read-in of symbols. (psymtab_to_symtab()). This happens
|
|
|
|
|
when a symbol in a file for which symbols have not yet been
|
|
|
|
|
read in is referenced.
|
|
|
|
|
2a. The "add-file" command. Similar to #2. */
|
|
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
|
#include "defs.h"
|
|
|
|
|
#include "param.h"
|
|
|
|
|
|
|
|
|
|
#ifdef READ_DBX_FORMAT
|
|
|
|
|
|
|
|
|
|
#ifdef USG
|
|
|
|
|
#include <sys/types.h>
|
|
|
|
|
#include <fcntl.h>
|
|
|
|
|
#define L_SET 0
|
|
|
|
|
#define L_INCR 1
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#ifdef COFF_ENCAPSULATE
|
|
|
|
|
#include "a.out.encap.h"
|
|
|
|
|
#include "stab.gnu.h"
|
|
|
|
|
#else
|
|
|
|
|
#include <a.out.h>
|
|
|
|
|
#include <stab.h>
|
|
|
|
|
#endif
|
|
|
|
|
#include <ctype.h>
|
|
|
|
|
|
|
|
|
|
#ifndef NO_GNU_STABS
|
|
|
|
|
/*
|
|
|
|
|
* Define specifically gnu symbols here.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* The following type indicates the definition of a symbol as being
|
|
|
|
|
an indirect reference to another symbol. The other symbol
|
|
|
|
|
appears as an undefined reference, immediately following this symbol.
|
|
|
|
|
|
|
|
|
|
Indirection is asymmetrical. The other symbol's value will be used
|
|
|
|
|
to satisfy requests for the indirect symbol, but not vice versa.
|
|
|
|
|
If the other symbol does not have a definition, libraries will
|
|
|
|
|
be searched to find a definition. */
|
|
|
|
|
#ifndef N_INDR
|
|
|
|
|
#define N_INDR 0xa
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* The following symbols refer to set elements.
|
|
|
|
|
All the N_SET[ATDB] symbols with the same name form one set.
|
|
|
|
|
Space is allocated for the set in the text section, and each set
|
|
|
|
|
element's value is stored into one word of the space.
|
|
|
|
|
The first word of the space is the length of the set (number of elements).
|
|
|
|
|
|
|
|
|
|
The address of the set is made into an N_SETV symbol
|
|
|
|
|
whose name is the same as the name of the set.
|
|
|
|
|
This symbol acts like a N_DATA global symbol
|
|
|
|
|
in that it can satisfy undefined external references. */
|
|
|
|
|
|
|
|
|
|
#ifndef N_SETA
|
|
|
|
|
#define N_SETA 0x14 /* Absolute set element symbol */
|
|
|
|
|
#endif /* This is input to LD, in a .o file. */
|
|
|
|
|
|
|
|
|
|
#ifndef N_SETT
|
|
|
|
|
#define N_SETT 0x16 /* Text set element symbol */
|
|
|
|
|
#endif /* This is input to LD, in a .o file. */
|
|
|
|
|
|
|
|
|
|
#ifndef N_SETD
|
|
|
|
|
#define N_SETD 0x18 /* Data set element symbol */
|
|
|
|
|
#endif /* This is input to LD, in a .o file. */
|
|
|
|
|
|
|
|
|
|
#ifndef N_SETB
|
|
|
|
|
#define N_SETB 0x1A /* Bss set element symbol */
|
|
|
|
|
#endif /* This is input to LD, in a .o file. */
|
|
|
|
|
|
|
|
|
|
/* Macros dealing with the set element symbols defined in a.out.h */
|
|
|
|
|
#define SET_ELEMENT_P(x) ((x)>=N_SETA&&(x)<=(N_SETB|N_EXT))
|
|
|
|
|
#define TYPE_OF_SET_ELEMENT(x) ((x)-N_SETA+N_ABS)
|
|
|
|
|
|
|
|
|
|
#ifndef N_SETV
|
|
|
|
|
#define N_SETV 0x1C /* Pointer to set vector in data area. */
|
|
|
|
|
#endif /* This is output from LD. */
|
|
|
|
|
|
|
|
|
|
#ifndef N_WARNING
|
|
|
|
|
#define N_WARNING 0x1E /* Warning message to print if file included */
|
|
|
|
|
#endif /* This is input to ld */
|
|
|
|
|
|
|
|
|
|
#ifndef __GNU_STAB__
|
|
|
|
|
|
|
|
|
|
/* Line number for the data section. This is to be used to describe
|
|
|
|
|
the source location of a variable declaration. */
|
|
|
|
|
#ifndef N_DSLINE
|
|
|
|
|
#define N_DSLINE (N_SLINE+N_DATA-N_TEXT)
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Line number for the bss section. This is to be used to describe
|
|
|
|
|
the source location of a variable declaration. */
|
|
|
|
|
#ifndef N_BSLINE
|
|
|
|
|
#define N_BSLINE (N_SLINE+N_BSS-N_TEXT)
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#endif /* not __GNU_STAB__ */
|
|
|
|
|
#endif /* NO_GNU_STABS */
|
|
|
|
|
|
|
|
|
|
#include <obstack.h>
|
|
|
|
|
#include <sys/param.h>
|
|
|
|
|
#include <sys/file.h>
|
|
|
|
|
#include <sys/stat.h>
|
|
|
|
|
|
|
|
|
|
#include "symtab.h"
|
|
|
|
|
|
|
|
|
|
#ifndef COFF_FORMAT
|
|
|
|
|
#ifndef AOUTHDR
|
|
|
|
|
#define AOUTHDR struct exec
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
static void add_symbol_to_list ();
|
|
|
|
|
static void read_dbx_symtab ();
|
|
|
|
|
static void process_one_symbol ();
|
|
|
|
|
static void free_all_psymbols ();
|
|
|
|
|
static struct type *read_type ();
|
|
|
|
|
static struct type *read_range_type ();
|
|
|
|
|
static struct type *read_enum_type ();
|
|
|
|
|
static struct type *read_struct_type ();
|
|
|
|
|
static struct type *read_array_type ();
|
|
|
|
|
static long read_number ();
|
1993-07-26 22:40:41 +00:00
|
|
|
|
static void read_huge_number ();
|
1993-06-29 09:48:26 +00:00
|
|
|
|
static void finish_block ();
|
|
|
|
|
static struct blockvector *make_blockvector ();
|
|
|
|
|
static struct symbol *define_symbol ();
|
|
|
|
|
static void start_subfile ();
|
|
|
|
|
static int hashname ();
|
|
|
|
|
static void hash_symsegs ();
|
|
|
|
|
static struct pending *copy_pending ();
|
|
|
|
|
static void fix_common_block ();
|
|
|
|
|
|
|
|
|
|
static void add_undefined_type ();
|
|
|
|
|
static void cleanup_undefined_types ();
|
|
|
|
|
|
|
|
|
|
extern char *index();
|
|
|
|
|
|
|
|
|
|
extern struct symtab *read_symsegs ();
|
|
|
|
|
extern void free_all_symtabs ();
|
|
|
|
|
extern void free_all_psymtabs ();
|
|
|
|
|
extern void free_inclink_symtabs ();
|
|
|
|
|
|
|
|
|
|
/* C++ */
|
|
|
|
|
static struct type **read_args ();
|
|
|
|
|
|
|
|
|
|
/* Macro to determine which symbols to ignore when reading the first symbol
|
|
|
|
|
of a file. Some machines override this definition. */
|
|
|
|
|
#ifdef N_NSYMS
|
|
|
|
|
#ifndef IGNORE_SYMBOL
|
|
|
|
|
/* This code is used on Ultrix systems. Ignore it */
|
|
|
|
|
#define IGNORE_SYMBOL(type) (type == N_NSYMS)
|
|
|
|
|
#endif
|
|
|
|
|
#else
|
|
|
|
|
#ifndef IGNORE_SYMBOL
|
|
|
|
|
/* Don't ignore any symbols. */
|
|
|
|
|
#define IGNORE_SYMBOL(type) (0)
|
|
|
|
|
#endif
|
|
|
|
|
#endif /* not N_NSYMS */
|
|
|
|
|
|
|
|
|
|
/* Macro for number of symbol table entries (in usual a.out format).
|
|
|
|
|
Some machines override this definition. */
|
|
|
|
|
#ifndef NUMBER_OF_SYMBOLS
|
|
|
|
|
#ifdef COFF_HEADER
|
|
|
|
|
#define NUMBER_OF_SYMBOLS \
|
|
|
|
|
((COFF_HEADER(hdr) ? hdr.coffhdr.filehdr.f_nsyms : hdr.a_syms) / \
|
|
|
|
|
sizeof (struct nlist))
|
|
|
|
|
#else
|
|
|
|
|
#define NUMBER_OF_SYMBOLS (hdr.a_syms / sizeof (struct nlist))
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Macro for file-offset of symbol table (in usual a.out format). */
|
|
|
|
|
#ifndef SYMBOL_TABLE_OFFSET
|
|
|
|
|
#define SYMBOL_TABLE_OFFSET N_SYMOFF (hdr)
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Macro for file-offset of string table (in usual a.out format). */
|
|
|
|
|
#ifndef STRING_TABLE_OFFSET
|
|
|
|
|
#define STRING_TABLE_OFFSET (N_SYMOFF (hdr) + hdr.a_syms)
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Macro to store the length of the string table data in INTO. */
|
|
|
|
|
#ifndef READ_STRING_TABLE_SIZE
|
|
|
|
|
#define READ_STRING_TABLE_SIZE(INTO) \
|
|
|
|
|
{ val = myread (desc, &INTO, sizeof INTO); \
|
|
|
|
|
if (val < 0) perror_with_name (name); }
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Macro to declare variables to hold the file's header data. */
|
|
|
|
|
#ifndef DECLARE_FILE_HEADERS
|
|
|
|
|
#define DECLARE_FILE_HEADERS AOUTHDR hdr
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Macro to read the header data from descriptor DESC and validate it.
|
|
|
|
|
NAME is the file name, for error messages. */
|
|
|
|
|
#ifndef READ_FILE_HEADERS
|
|
|
|
|
#ifdef HEADER_SEEK_FD
|
|
|
|
|
#define READ_FILE_HEADERS(DESC, NAME) \
|
|
|
|
|
{ HEADER_SEEK_FD (DESC); \
|
|
|
|
|
val = myread (DESC, &hdr, sizeof hdr); \
|
|
|
|
|
if (val < 0) perror_with_name (NAME); \
|
|
|
|
|
if (N_BADMAG (hdr)) \
|
|
|
|
|
error ("File \"%s\" not in executable format.", NAME); }
|
|
|
|
|
#else
|
|
|
|
|
#define READ_FILE_HEADERS(DESC, NAME) \
|
|
|
|
|
{ val = myread (DESC, &hdr, sizeof hdr); \
|
|
|
|
|
if (val < 0) perror_with_name (NAME); \
|
|
|
|
|
if (N_BADMAG (hdr)) \
|
|
|
|
|
error ("File \"%s\" not in executable format.", NAME); }
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Non-zero if this is an object (.o) file, rather than an executable.
|
|
|
|
|
Distinguishing between the two is rarely necessary (and seems like
|
|
|
|
|
a hack, but there is no other way to do ADDR_OF_TEXT_SEGMENT
|
|
|
|
|
right for SunOS). */
|
|
|
|
|
#if !defined (IS_OBJECT_FILE)
|
|
|
|
|
/* This will not work
|
|
|
|
|
if someone decides to make ld preserve relocation info. */
|
|
|
|
|
#define IS_OBJECT_FILE (hdr.a_trsize != 0)
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Macro for size of text segment */
|
|
|
|
|
#ifndef SIZE_OF_TEXT_SEGMENT
|
|
|
|
|
#define SIZE_OF_TEXT_SEGMENT hdr.a_text
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Get the address in debugged memory of the start
|
|
|
|
|
of the text segment. */
|
|
|
|
|
#if !defined (ADDR_OF_TEXT_SEGMENT)
|
|
|
|
|
#if defined (N_TXTADDR)
|
|
|
|
|
#define ADDR_OF_TEXT_SEGMENT (IS_OBJECT_FILE ? 0 : N_TXTADDR (hdr))
|
|
|
|
|
#else /* no N_TXTADDR */
|
|
|
|
|
#define ADDR_OF_TEXT_SEGMENT 0
|
|
|
|
|
#endif /* no N_TXTADDR */
|
|
|
|
|
#endif /* no ADDR_OF_TEXT_SEGMENT */
|
|
|
|
|
|
|
|
|
|
/* Macro to get entry point from headers. */
|
|
|
|
|
#ifndef ENTRY_POINT
|
|
|
|
|
#define ENTRY_POINT hdr.a_entry
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Macro for name of symbol to indicate a file compiled with gcc. */
|
|
|
|
|
#ifndef GCC_COMPILED_FLAG_SYMBOL
|
|
|
|
|
#define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Convert stab register number (from `r' declaration) to a gdb REGNUM. */
|
|
|
|
|
|
|
|
|
|
#ifndef STAB_REG_TO_REGNUM
|
|
|
|
|
#define STAB_REG_TO_REGNUM(VALUE) (VALUE)
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Define this as 1 if a pcc declaration of a char or short argument
|
|
|
|
|
gives the correct address. Otherwise assume pcc gives the
|
|
|
|
|
address of the corresponding int, which is not the same on a
|
|
|
|
|
big-endian machine. */
|
|
|
|
|
|
|
|
|
|
#ifndef BELIEVE_PCC_PROMOTION
|
|
|
|
|
#define BELIEVE_PCC_PROMOTION 0
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Nonzero means give verbose info on gdb action. From main.c. */
|
|
|
|
|
extern int info_verbose;
|
|
|
|
|
|
|
|
|
|
/* Chain of symtabs made from reading the file's symsegs.
|
|
|
|
|
These symtabs do not go into symtab_list themselves,
|
|
|
|
|
but the information is copied from them when appropriate
|
|
|
|
|
to make the symtabs that will exist permanently. */
|
|
|
|
|
|
|
|
|
|
static struct symtab *symseg_chain;
|
|
|
|
|
|
|
|
|
|
/* Symseg symbol table for the file whose data we are now processing.
|
|
|
|
|
It is one of those in symseg_chain. Or 0, for a compilation that
|
|
|
|
|
has no symseg. */
|
|
|
|
|
|
|
|
|
|
static struct symtab *current_symseg;
|
|
|
|
|
|
|
|
|
|
/* Name of source file whose symbol data we are now processing.
|
|
|
|
|
This comes from a symbol of type N_SO. */
|
|
|
|
|
|
|
|
|
|
static char *last_source_file;
|
|
|
|
|
|
|
|
|
|
/* Core address of start of text of current source file.
|
|
|
|
|
This too comes from the N_SO symbol. */
|
|
|
|
|
|
|
|
|
|
static CORE_ADDR last_source_start_addr;
|
|
|
|
|
|
|
|
|
|
/* End of the text segment of the executable file,
|
|
|
|
|
as found in the symbol _etext. */
|
|
|
|
|
|
|
|
|
|
static CORE_ADDR end_of_text_addr;
|
|
|
|
|
|
|
|
|
|
/* The list of sub-source-files within the current individual compilation.
|
|
|
|
|
Each file gets its own symtab with its own linetable and associated info,
|
|
|
|
|
but they all share one blockvector. */
|
|
|
|
|
|
|
|
|
|
struct subfile
|
|
|
|
|
{
|
|
|
|
|
struct subfile *next;
|
|
|
|
|
char *name;
|
|
|
|
|
struct linetable *line_vector;
|
|
|
|
|
int line_vector_length;
|
|
|
|
|
int line_vector_index;
|
|
|
|
|
int prev_line_number;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
static struct subfile *subfiles;
|
|
|
|
|
|
|
|
|
|
static struct subfile *current_subfile;
|
|
|
|
|
|
|
|
|
|
/* Count symbols as they are processed, for error messages. */
|
|
|
|
|
|
|
|
|
|
static int symnum;
|
|
|
|
|
|
|
|
|
|
/* Vector of types defined so far, indexed by their dbx type numbers.
|
|
|
|
|
(In newer sun systems, dbx uses a pair of numbers in parens,
|
|
|
|
|
as in "(SUBFILENUM,NUMWITHINSUBFILE)". Then these numbers must be
|
|
|
|
|
translated through the type_translations hash table to get
|
|
|
|
|
the index into the type vector.) */
|
|
|
|
|
|
|
|
|
|
static struct typevector *type_vector;
|
|
|
|
|
|
|
|
|
|
/* Number of elements allocated for type_vector currently. */
|
|
|
|
|
|
|
|
|
|
static int type_vector_length;
|
|
|
|
|
|
|
|
|
|
/* Vector of line number information. */
|
|
|
|
|
|
|
|
|
|
static struct linetable *line_vector;
|
|
|
|
|
|
|
|
|
|
/* Index of next entry to go in line_vector_index. */
|
|
|
|
|
|
|
|
|
|
static int line_vector_index;
|
|
|
|
|
|
|
|
|
|
/* Last line number recorded in the line vector. */
|
|
|
|
|
|
|
|
|
|
static int prev_line_number;
|
|
|
|
|
|
|
|
|
|
/* Number of elements allocated for line_vector currently. */
|
|
|
|
|
|
|
|
|
|
static int line_vector_length;
|
|
|
|
|
|
|
|
|
|
/* Hash table of global symbols whose values are not known yet.
|
|
|
|
|
They are chained thru the SYMBOL_VALUE, since we don't
|
|
|
|
|
have the correct data for that slot yet. */
|
|
|
|
|
/* The use of the LOC_BLOCK code in this chain is nonstandard--
|
|
|
|
|
it refers to a FORTRAN common block rather than the usual meaning. */
|
|
|
|
|
|
|
|
|
|
#define HASHSIZE 127
|
|
|
|
|
static struct symbol *global_sym_chain[HASHSIZE];
|
|
|
|
|
|
|
|
|
|
/* Record the symbols defined for each context in a list.
|
|
|
|
|
We don't create a struct block for the context until we
|
|
|
|
|
know how long to make it. */
|
|
|
|
|
|
|
|
|
|
#define PENDINGSIZE 100
|
|
|
|
|
|
|
|
|
|
struct pending
|
|
|
|
|
{
|
|
|
|
|
struct pending *next;
|
|
|
|
|
int nsyms;
|
|
|
|
|
struct symbol *symbol[PENDINGSIZE];
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* List of free `struct pending' structures for reuse. */
|
|
|
|
|
struct pending *free_pendings;
|
|
|
|
|
|
|
|
|
|
/* Here are the three lists that symbols are put on. */
|
|
|
|
|
|
|
|
|
|
struct pending *file_symbols; /* static at top level, and types */
|
|
|
|
|
|
|
|
|
|
struct pending *global_symbols; /* global functions and variables */
|
|
|
|
|
|
|
|
|
|
struct pending *local_symbols; /* everything local to lexical context */
|
|
|
|
|
|
|
|
|
|
/* List of symbols declared since the last BCOMM. This list is a tail
|
|
|
|
|
of local_symbols. When ECOMM is seen, the symbols on the list
|
|
|
|
|
are noted so their proper addresses can be filled in later,
|
|
|
|
|
using the common block base address gotten from the assembler
|
|
|
|
|
stabs. */
|
|
|
|
|
|
|
|
|
|
struct pending *common_block;
|
|
|
|
|
int common_block_i;
|
|
|
|
|
|
|
|
|
|
/* Stack representing unclosed lexical contexts
|
|
|
|
|
(that will become blocks, eventually). */
|
|
|
|
|
|
|
|
|
|
struct context_stack
|
|
|
|
|
{
|
|
|
|
|
struct pending *locals;
|
|
|
|
|
struct pending_block *old_blocks;
|
|
|
|
|
struct symbol *name;
|
|
|
|
|
CORE_ADDR start_addr;
|
|
|
|
|
int depth;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
struct context_stack *context_stack;
|
|
|
|
|
|
|
|
|
|
/* Index of first unused entry in context stack. */
|
|
|
|
|
int context_stack_depth;
|
|
|
|
|
|
|
|
|
|
/* Currently allocated size of context stack. */
|
|
|
|
|
|
|
|
|
|
int context_stack_size;
|
|
|
|
|
|
|
|
|
|
/* Nonzero if within a function (so symbols should be local,
|
|
|
|
|
if nothing says specifically). */
|
|
|
|
|
|
|
|
|
|
int within_function;
|
|
|
|
|
|
|
|
|
|
/* List of blocks already made (lexical contexts already closed).
|
|
|
|
|
This is used at the end to make the blockvector. */
|
|
|
|
|
|
|
|
|
|
struct pending_block
|
|
|
|
|
{
|
|
|
|
|
struct pending_block *next;
|
|
|
|
|
struct block *block;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
struct pending_block *pending_blocks;
|
|
|
|
|
|
|
|
|
|
extern CORE_ADDR startup_file_start; /* From blockframe.c */
|
|
|
|
|
extern CORE_ADDR startup_file_end; /* From blockframe.c */
|
|
|
|
|
|
|
|
|
|
/* File name symbols were loaded from. */
|
|
|
|
|
|
|
|
|
|
static char *symfile;
|
|
|
|
|
|
|
|
|
|
/* Low and high symbol values (inclusive) for the global variable
|
|
|
|
|
entries in the symbol file. */
|
|
|
|
|
|
|
|
|
|
static int first_global_sym, last_global_sym;
|
|
|
|
|
|
|
|
|
|
/* Structures with which to manage partial symbol allocation. */
|
|
|
|
|
|
|
|
|
|
struct psymbol_allocation_list global_psymbols, static_psymbols;
|
|
|
|
|
|
|
|
|
|
/* Global variable which, when set, indicates that we are processing a
|
|
|
|
|
.o file compiled with gcc */
|
|
|
|
|
|
|
|
|
|
static unsigned char processing_gcc_compilation;
|
|
|
|
|
|
|
|
|
|
/* Make a list of forward references which haven't been defined. */
|
|
|
|
|
static struct type **undef_types;
|
|
|
|
|
static int undef_types_allocated, undef_types_length;
|
|
|
|
|
|
|
|
|
|
/* Setup a define to deal cleanly with the underscore problem */
|
|
|
|
|
|
|
|
|
|
#ifdef NAMES_HAVE_UNDERSCORE
|
|
|
|
|
#define HASH_OFFSET 1
|
|
|
|
|
#else
|
|
|
|
|
#define HASH_OFFSET 0
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
/* I'm not sure why this is here. To debug bugs which cause
|
|
|
|
|
an infinite loop of allocations, I suppose. In any event,
|
|
|
|
|
dumping core when out of memory isn't usually right. */
|
|
|
|
|
static int
|
|
|
|
|
xxmalloc (n)
|
|
|
|
|
{
|
|
|
|
|
int v = malloc (n);
|
|
|
|
|
if (v == 0)
|
|
|
|
|
{
|
|
|
|
|
fprintf (stderr, "Virtual memory exhausted.\n");
|
|
|
|
|
abort ();
|
|
|
|
|
}
|
|
|
|
|
return v;
|
|
|
|
|
}
|
|
|
|
|
#else /* not 0 */
|
|
|
|
|
#define xxmalloc xmalloc
|
|
|
|
|
#endif /* not 0 */
|
|
|
|
|
|
|
|
|
|
/* Make a copy of the string at PTR with SIZE characters in the symbol obstack
|
|
|
|
|
(and add a null character at the end in the copy).
|
|
|
|
|
Returns the address of the copy. */
|
|
|
|
|
|
|
|
|
|
static char *
|
|
|
|
|
obsavestring (ptr, size)
|
|
|
|
|
char *ptr;
|
|
|
|
|
int size;
|
|
|
|
|
{
|
|
|
|
|
register char *p = (char *) obstack_alloc (symbol_obstack, size + 1);
|
|
|
|
|
/* Open-coded bcopy--saves function call time.
|
|
|
|
|
These strings are usually short. */
|
|
|
|
|
{
|
|
|
|
|
register char *p1 = ptr;
|
|
|
|
|
register char *p2 = p;
|
|
|
|
|
char *end = ptr + size;
|
|
|
|
|
while (p1 != end)
|
|
|
|
|
*p2++ = *p1++;
|
|
|
|
|
}
|
|
|
|
|
p[size] = 0;
|
|
|
|
|
return p;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Concatenate strings S1, S2 and S3; return the new string.
|
|
|
|
|
Space is found in the symbol_obstack. */
|
|
|
|
|
|
|
|
|
|
static char *
|
|
|
|
|
obconcat (s1, s2, s3)
|
|
|
|
|
char *s1, *s2, *s3;
|
|
|
|
|
{
|
|
|
|
|
register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
|
|
|
|
|
register char *val = (char *) obstack_alloc (symbol_obstack, len);
|
|
|
|
|
strcpy (val, s1);
|
|
|
|
|
strcat (val, s2);
|
|
|
|
|
strcat (val, s3);
|
|
|
|
|
return val;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Support for Sun changes to dbx symbol format */
|
|
|
|
|
|
|
|
|
|
/* For each identified header file, we have a table of types defined
|
|
|
|
|
in that header file.
|
|
|
|
|
|
|
|
|
|
header_files maps header file names to their type tables.
|
|
|
|
|
It is a vector of n_header_files elements.
|
|
|
|
|
Each element describes one header file.
|
|
|
|
|
It contains a vector of types.
|
|
|
|
|
|
|
|
|
|
Sometimes it can happen that the same header file produces
|
|
|
|
|
different results when included in different places.
|
|
|
|
|
This can result from conditionals or from different
|
|
|
|
|
things done before including the file.
|
|
|
|
|
When this happens, there are multiple entries for the file in this table,
|
|
|
|
|
one entry for each distinct set of results.
|
|
|
|
|
The entries are distinguished by the INSTANCE field.
|
|
|
|
|
The INSTANCE field appears in the N_BINCL and N_EXCL symbol table and is
|
|
|
|
|
used to match header-file references to their corresponding data. */
|
|
|
|
|
|
|
|
|
|
struct header_file
|
|
|
|
|
{
|
|
|
|
|
char *name; /* Name of header file */
|
|
|
|
|
int instance; /* Numeric code distinguishing instances
|
|
|
|
|
of one header file that produced
|
|
|
|
|
different results when included.
|
|
|
|
|
It comes from the N_BINCL or N_EXCL. */
|
|
|
|
|
struct type **vector; /* Pointer to vector of types */
|
|
|
|
|
int length; /* Allocated length (# elts) of that vector */
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
static struct header_file *header_files;
|
|
|
|
|
|
|
|
|
|
static int n_header_files;
|
|
|
|
|
|
|
|
|
|
static int n_allocated_header_files;
|
|
|
|
|
|
|
|
|
|
/* During initial symbol readin, we need to have a structure to keep
|
|
|
|
|
track of which psymtabs have which bincls in them. This structure
|
|
|
|
|
is used during readin to setup the list of dependencies within each
|
|
|
|
|
partial symbol table. */
|
|
|
|
|
|
|
|
|
|
struct header_file_location
|
|
|
|
|
{
|
|
|
|
|
char *name; /* Name of header file */
|
|
|
|
|
int instance; /* See above */
|
|
|
|
|
struct partial_symtab *pst; /* Partial symtab that has the
|
|
|
|
|
BINCL/EINCL defs for this file */
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* The actual list and controling variables */
|
|
|
|
|
static struct header_file_location *bincl_list, *next_bincl;
|
|
|
|
|
static int bincls_allocated;
|
|
|
|
|
|
|
|
|
|
/* Within each object file, various header files are assigned numbers.
|
|
|
|
|
A type is defined or referred to with a pair of numbers
|
|
|
|
|
(FILENUM,TYPENUM) where FILENUM is the number of the header file
|
|
|
|
|
and TYPENUM is the number within that header file.
|
|
|
|
|
TYPENUM is the index within the vector of types for that header file.
|
|
|
|
|
|
|
|
|
|
FILENUM == 1 is special; it refers to the main source of the object file,
|
|
|
|
|
and not to any header file. FILENUM != 1 is interpreted by looking it up
|
|
|
|
|
in the following table, which contains indices in header_files. */
|
|
|
|
|
|
|
|
|
|
static int *this_object_header_files;
|
|
|
|
|
|
|
|
|
|
static int n_this_object_header_files;
|
|
|
|
|
|
|
|
|
|
static int n_allocated_this_object_header_files;
|
|
|
|
|
|
|
|
|
|
/* When a header file is getting special overriding definitions
|
|
|
|
|
for one source file, record here the header_files index
|
|
|
|
|
of its normal definition vector.
|
|
|
|
|
At other times, this is -1. */
|
|
|
|
|
|
|
|
|
|
static int header_file_prev_index;
|
|
|
|
|
|
|
|
|
|
/* At the start of reading dbx symbols, allocate our tables. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
init_header_files ()
|
|
|
|
|
{
|
|
|
|
|
n_allocated_header_files = 10;
|
|
|
|
|
header_files = (struct header_file *) xxmalloc (10 * sizeof (struct header_file));
|
|
|
|
|
n_header_files = 0;
|
|
|
|
|
|
|
|
|
|
n_allocated_this_object_header_files = 10;
|
|
|
|
|
this_object_header_files = (int *) xxmalloc (10 * sizeof (int));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* At the end of reading dbx symbols, free our tables. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
free_header_files ()
|
|
|
|
|
{
|
|
|
|
|
register int i;
|
|
|
|
|
for (i = 0; i < n_header_files; i++)
|
|
|
|
|
free (header_files[i].name);
|
|
|
|
|
if (header_files) free (header_files);
|
|
|
|
|
if (this_object_header_files)
|
|
|
|
|
free (this_object_header_files);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Called at the start of each object file's symbols.
|
|
|
|
|
Clear out the mapping of header file numbers to header files. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
new_object_header_files ()
|
|
|
|
|
{
|
|
|
|
|
/* Leave FILENUM of 0 free for builtin types and this file's types. */
|
|
|
|
|
n_this_object_header_files = 1;
|
|
|
|
|
header_file_prev_index = -1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Add header file number I for this object file
|
|
|
|
|
at the next successive FILENUM. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
add_this_object_header_file (i)
|
|
|
|
|
int i;
|
|
|
|
|
{
|
|
|
|
|
if (n_this_object_header_files == n_allocated_this_object_header_files)
|
|
|
|
|
{
|
|
|
|
|
n_allocated_this_object_header_files *= 2;
|
|
|
|
|
this_object_header_files
|
|
|
|
|
= (int *) xrealloc (this_object_header_files,
|
|
|
|
|
n_allocated_this_object_header_files * sizeof (int));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
this_object_header_files[n_this_object_header_files++] = i;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Add to this file an "old" header file, one already seen in
|
|
|
|
|
a previous object file. NAME is the header file's name.
|
|
|
|
|
INSTANCE is its instance code, to select among multiple
|
|
|
|
|
symbol tables for the same header file. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
add_old_header_file (name, instance)
|
|
|
|
|
char *name;
|
|
|
|
|
int instance;
|
|
|
|
|
{
|
|
|
|
|
register struct header_file *p = header_files;
|
|
|
|
|
register int i;
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < n_header_files; i++)
|
|
|
|
|
if (!strcmp (p[i].name, name) && instance == p[i].instance)
|
|
|
|
|
{
|
|
|
|
|
add_this_object_header_file (i);
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
error ("Invalid symbol data: \"repeated\" header file that hasn't been seen before, at symtab pos %d.",
|
|
|
|
|
symnum);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Add to this file a "new" header file: definitions for its types follow.
|
|
|
|
|
NAME is the header file's name.
|
|
|
|
|
Most often this happens only once for each distinct header file,
|
|
|
|
|
but not necessarily. If it happens more than once, INSTANCE has
|
|
|
|
|
a different value each time, and references to the header file
|
|
|
|
|
use INSTANCE values to select among them.
|
|
|
|
|
|
|
|
|
|
dbx output contains "begin" and "end" markers for each new header file,
|
|
|
|
|
but at this level we just need to know which files there have been;
|
|
|
|
|
so we record the file when its "begin" is seen and ignore the "end". */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
add_new_header_file (name, instance)
|
|
|
|
|
char *name;
|
|
|
|
|
int instance;
|
|
|
|
|
{
|
|
|
|
|
register int i;
|
|
|
|
|
register struct header_file *p = header_files;
|
|
|
|
|
header_file_prev_index = -1;
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
/* This code was used before I knew about the instance codes.
|
|
|
|
|
My first hypothesis is that it is not necessary now
|
|
|
|
|
that instance codes are handled. */
|
|
|
|
|
|
|
|
|
|
/* Has this header file a previous definition?
|
|
|
|
|
If so, make a new entry anyway so that this use in this source file
|
|
|
|
|
gets a separate entry. Later source files get the old entry.
|
|
|
|
|
Record here the index of the old entry, so that any type indices
|
|
|
|
|
not previously defined can get defined in the old entry as
|
|
|
|
|
well as in the new one. */
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < n_header_files; i++)
|
|
|
|
|
if (!strcmp (p[i].name, name))
|
|
|
|
|
{
|
|
|
|
|
header_file_prev_index = i;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Make sure there is room for one more header file. */
|
|
|
|
|
|
|
|
|
|
if (n_header_files == n_allocated_header_files)
|
|
|
|
|
{
|
|
|
|
|
n_allocated_header_files *= 2;
|
|
|
|
|
header_files = (struct header_file *)
|
|
|
|
|
xrealloc (header_files,
|
|
|
|
|
(n_allocated_header_files
|
|
|
|
|
* sizeof (struct header_file)));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Create an entry for this header file. */
|
|
|
|
|
|
|
|
|
|
i = n_header_files++;
|
|
|
|
|
header_files[i].name = savestring (name, strlen(name));
|
|
|
|
|
header_files[i].instance = instance;
|
|
|
|
|
header_files[i].length = 10;
|
|
|
|
|
header_files[i].vector
|
|
|
|
|
= (struct type **) xxmalloc (10 * sizeof (struct type *));
|
|
|
|
|
bzero (header_files[i].vector, 10 * sizeof (struct type *));
|
|
|
|
|
|
|
|
|
|
add_this_object_header_file (i);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Look up a dbx type-number pair. Return the address of the slot
|
|
|
|
|
where the type for that number-pair is stored.
|
|
|
|
|
The number-pair is in TYPENUMS.
|
|
|
|
|
|
|
|
|
|
This can be used for finding the type associated with that pair
|
|
|
|
|
or for associating a new type with the pair. */
|
|
|
|
|
|
|
|
|
|
static struct type **
|
|
|
|
|
dbx_lookup_type (typenums)
|
|
|
|
|
int typenums[2];
|
|
|
|
|
{
|
|
|
|
|
register int filenum = typenums[0], index = typenums[1];
|
|
|
|
|
|
|
|
|
|
if (filenum < 0 || filenum >= n_this_object_header_files)
|
|
|
|
|
error ("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
|
|
|
|
|
filenum, index, symnum);
|
|
|
|
|
|
|
|
|
|
if (filenum == 0)
|
|
|
|
|
{
|
|
|
|
|
/* Type is defined outside of header files.
|
|
|
|
|
Find it in this object file's type vector. */
|
|
|
|
|
if (index >= type_vector_length)
|
|
|
|
|
{
|
|
|
|
|
type_vector_length *= 2;
|
|
|
|
|
type_vector = (struct typevector *)
|
|
|
|
|
xrealloc (type_vector,
|
|
|
|
|
(sizeof (struct typevector)
|
|
|
|
|
+ type_vector_length * sizeof (struct type *)));
|
|
|
|
|
bzero (&type_vector->type[type_vector_length / 2],
|
|
|
|
|
type_vector_length * sizeof (struct type *) / 2);
|
|
|
|
|
}
|
|
|
|
|
return &type_vector->type[index];
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
register int real_filenum = this_object_header_files[filenum];
|
|
|
|
|
register struct header_file *f;
|
|
|
|
|
|
|
|
|
|
if (real_filenum >= n_header_files)
|
|
|
|
|
abort ();
|
|
|
|
|
|
|
|
|
|
f = &header_files[real_filenum];
|
|
|
|
|
|
|
|
|
|
if (index >= f->length)
|
|
|
|
|
{
|
|
|
|
|
f->length *= 2;
|
|
|
|
|
f->vector = (struct type **)
|
|
|
|
|
xrealloc (f->vector, f->length * sizeof (struct type *));
|
|
|
|
|
bzero (&f->vector[f->length / 2],
|
|
|
|
|
f->length * sizeof (struct type *) / 2);
|
|
|
|
|
}
|
|
|
|
|
return &f->vector[index];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Create a type object. Occaisionally used when you need a type
|
|
|
|
|
which isn't going to be given a type number. */
|
|
|
|
|
|
|
|
|
|
static struct type *
|
|
|
|
|
dbx_create_type ()
|
|
|
|
|
{
|
|
|
|
|
register struct type *type =
|
|
|
|
|
(struct type *) obstack_alloc (symbol_obstack, sizeof (struct type));
|
|
|
|
|
|
|
|
|
|
bzero (type, sizeof (struct type));
|
|
|
|
|
TYPE_VPTR_FIELDNO (type) = -1;
|
|
|
|
|
return type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Make sure there is a type allocated for type numbers TYPENUMS
|
|
|
|
|
and return the type object.
|
|
|
|
|
This can create an empty (zeroed) type object.
|
|
|
|
|
TYPENUMS may be (-1, -1) to return a new type object that is not
|
|
|
|
|
put into the type vector, and so may not be referred to by number. */
|
|
|
|
|
|
|
|
|
|
static struct type *
|
|
|
|
|
dbx_alloc_type (typenums)
|
|
|
|
|
int typenums[2];
|
|
|
|
|
{
|
|
|
|
|
register struct type **type_addr;
|
|
|
|
|
register struct type *type;
|
|
|
|
|
|
|
|
|
|
if (typenums[1] != -1)
|
|
|
|
|
{
|
|
|
|
|
type_addr = dbx_lookup_type (typenums);
|
|
|
|
|
type = *type_addr;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
type_addr = 0;
|
|
|
|
|
type = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If we are referring to a type not known at all yet,
|
|
|
|
|
allocate an empty type for it.
|
|
|
|
|
We will fill it in later if we find out how. */
|
|
|
|
|
if (type == 0)
|
|
|
|
|
{
|
|
|
|
|
type = dbx_create_type ();
|
|
|
|
|
if (type_addr)
|
|
|
|
|
*type_addr = type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
static struct type **
|
|
|
|
|
explicit_lookup_type (real_filenum, index)
|
|
|
|
|
int real_filenum, index;
|
|
|
|
|
{
|
|
|
|
|
register struct header_file *f = &header_files[real_filenum];
|
|
|
|
|
|
|
|
|
|
if (index >= f->length)
|
|
|
|
|
{
|
|
|
|
|
f->length *= 2;
|
|
|
|
|
f->vector = (struct type **)
|
|
|
|
|
xrealloc (f->vector, f->length * sizeof (struct type *));
|
|
|
|
|
bzero (&f->vector[f->length / 2],
|
|
|
|
|
f->length * sizeof (struct type *) / 2);
|
|
|
|
|
}
|
|
|
|
|
return &f->vector[index];
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* maintain the lists of symbols and blocks */
|
|
|
|
|
|
|
|
|
|
/* Add a symbol to one of the lists of symbols. */
|
|
|
|
|
static void
|
|
|
|
|
add_symbol_to_list (symbol, listhead)
|
|
|
|
|
struct symbol *symbol;
|
|
|
|
|
struct pending **listhead;
|
|
|
|
|
{
|
|
|
|
|
/* We keep PENDINGSIZE symbols in each link of the list.
|
|
|
|
|
If we don't have a link with room in it, add a new link. */
|
|
|
|
|
if (*listhead == 0 || (*listhead)->nsyms == PENDINGSIZE)
|
|
|
|
|
{
|
|
|
|
|
register struct pending *link;
|
|
|
|
|
if (free_pendings)
|
|
|
|
|
{
|
|
|
|
|
link = free_pendings;
|
|
|
|
|
free_pendings = link->next;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
link = (struct pending *) xxmalloc (sizeof (struct pending));
|
|
|
|
|
|
|
|
|
|
link->next = *listhead;
|
|
|
|
|
*listhead = link;
|
|
|
|
|
link->nsyms = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
(*listhead)->symbol[(*listhead)->nsyms++] = symbol;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* At end of reading syms, or in case of quit,
|
|
|
|
|
really free as many `struct pending's as we can easily find. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
really_free_pendings ()
|
|
|
|
|
{
|
|
|
|
|
struct pending *next, *next1;
|
|
|
|
|
struct pending_block *bnext, *bnext1;
|
|
|
|
|
|
|
|
|
|
for (next = free_pendings; next; next = next1)
|
|
|
|
|
{
|
|
|
|
|
next1 = next->next;
|
|
|
|
|
free (next);
|
|
|
|
|
}
|
|
|
|
|
free_pendings = 0;
|
|
|
|
|
|
|
|
|
|
for (bnext = pending_blocks; bnext; bnext = bnext1)
|
|
|
|
|
{
|
|
|
|
|
bnext1 = bnext->next;
|
|
|
|
|
free (bnext);
|
|
|
|
|
}
|
|
|
|
|
pending_blocks = 0;
|
|
|
|
|
|
|
|
|
|
for (next = file_symbols; next; next = next1)
|
|
|
|
|
{
|
|
|
|
|
next1 = next->next;
|
|
|
|
|
free (next);
|
|
|
|
|
}
|
|
|
|
|
for (next = global_symbols; next; next = next1)
|
|
|
|
|
{
|
|
|
|
|
next1 = next->next;
|
|
|
|
|
free (next);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Take one of the lists of symbols and make a block from it.
|
|
|
|
|
Keep the order the symbols have in the list (reversed from the input file).
|
|
|
|
|
Put the block on the list of pending blocks. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
finish_block (symbol, listhead, old_blocks, start, end)
|
|
|
|
|
struct symbol *symbol;
|
|
|
|
|
struct pending **listhead;
|
|
|
|
|
struct pending_block *old_blocks;
|
|
|
|
|
CORE_ADDR start, end;
|
|
|
|
|
{
|
|
|
|
|
register struct pending *next, *next1;
|
|
|
|
|
register struct block *block;
|
|
|
|
|
register struct pending_block *pblock;
|
|
|
|
|
struct pending_block *opblock;
|
|
|
|
|
register int i;
|
|
|
|
|
|
|
|
|
|
/* Count the length of the list of symbols. */
|
|
|
|
|
|
|
|
|
|
for (next = *listhead, i = 0; next; i += next->nsyms, next = next->next);
|
|
|
|
|
|
|
|
|
|
block = (struct block *) obstack_alloc (symbol_obstack,
|
|
|
|
|
(sizeof (struct block)
|
|
|
|
|
+ ((i - 1)
|
|
|
|
|
* sizeof (struct symbol *))));
|
|
|
|
|
|
|
|
|
|
/* Copy the symbols into the block. */
|
|
|
|
|
|
|
|
|
|
BLOCK_NSYMS (block) = i;
|
|
|
|
|
for (next = *listhead; next; next = next->next)
|
|
|
|
|
{
|
|
|
|
|
register int j;
|
|
|
|
|
for (j = next->nsyms - 1; j >= 0; j--)
|
|
|
|
|
BLOCK_SYM (block, --i) = next->symbol[j];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
BLOCK_START (block) = start;
|
|
|
|
|
BLOCK_END (block) = end;
|
|
|
|
|
BLOCK_SUPERBLOCK (block) = 0; /* Filled in when containing block is made */
|
|
|
|
|
BLOCK_GCC_COMPILED (block) = processing_gcc_compilation;
|
|
|
|
|
|
|
|
|
|
/* Put the block in as the value of the symbol that names it. */
|
|
|
|
|
|
|
|
|
|
if (symbol)
|
|
|
|
|
{
|
|
|
|
|
SYMBOL_BLOCK_VALUE (symbol) = block;
|
|
|
|
|
BLOCK_FUNCTION (block) = symbol;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
BLOCK_FUNCTION (block) = 0;
|
|
|
|
|
|
|
|
|
|
/* Now "free" the links of the list, and empty the list. */
|
|
|
|
|
|
|
|
|
|
for (next = *listhead; next; next = next1)
|
|
|
|
|
{
|
|
|
|
|
next1 = next->next;
|
|
|
|
|
next->next = free_pendings;
|
|
|
|
|
free_pendings = next;
|
|
|
|
|
}
|
|
|
|
|
*listhead = 0;
|
|
|
|
|
|
|
|
|
|
/* Install this block as the superblock
|
|
|
|
|
of all blocks made since the start of this scope
|
|
|
|
|
that don't have superblocks yet. */
|
|
|
|
|
|
|
|
|
|
opblock = 0;
|
|
|
|
|
for (pblock = pending_blocks; pblock != old_blocks; pblock = pblock->next)
|
|
|
|
|
{
|
|
|
|
|
if (BLOCK_SUPERBLOCK (pblock->block) == 0)
|
|
|
|
|
BLOCK_SUPERBLOCK (pblock->block) = block;
|
|
|
|
|
opblock = pblock;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Record this block on the list of all blocks in the file.
|
|
|
|
|
Put it after opblock, or at the beginning if opblock is 0.
|
|
|
|
|
This puts the block in the list after all its subblocks. */
|
|
|
|
|
|
|
|
|
|
/* Allocate in the symbol_obstack to save time.
|
|
|
|
|
It wastes a little space. */
|
|
|
|
|
pblock = (struct pending_block *)
|
|
|
|
|
obstack_alloc (symbol_obstack,
|
|
|
|
|
sizeof (struct pending_block));
|
|
|
|
|
pblock->block = block;
|
|
|
|
|
if (opblock)
|
|
|
|
|
{
|
|
|
|
|
pblock->next = opblock->next;
|
|
|
|
|
opblock->next = pblock;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
pblock->next = pending_blocks;
|
|
|
|
|
pending_blocks = pblock;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static struct blockvector *
|
|
|
|
|
make_blockvector ()
|
|
|
|
|
{
|
|
|
|
|
register struct pending_block *next, *next1;
|
|
|
|
|
register struct blockvector *blockvector;
|
|
|
|
|
register int i;
|
|
|
|
|
|
|
|
|
|
/* Count the length of the list of blocks. */
|
|
|
|
|
|
|
|
|
|
for (next = pending_blocks, i = 0; next; next = next->next, i++);
|
|
|
|
|
|
|
|
|
|
blockvector = (struct blockvector *)
|
|
|
|
|
obstack_alloc (symbol_obstack,
|
|
|
|
|
(sizeof (struct blockvector)
|
|
|
|
|
+ (i - 1) * sizeof (struct block *)));
|
|
|
|
|
|
|
|
|
|
/* Copy the blocks into the blockvector.
|
|
|
|
|
This is done in reverse order, which happens to put
|
|
|
|
|
the blocks into the proper order (ascending starting address).
|
|
|
|
|
finish_block has hair to insert each block into the list
|
|
|
|
|
after its subblocks in order to make sure this is true. */
|
|
|
|
|
|
|
|
|
|
BLOCKVECTOR_NBLOCKS (blockvector) = i;
|
|
|
|
|
for (next = pending_blocks; next; next = next->next)
|
|
|
|
|
BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
|
|
|
|
|
|
|
|
|
|
#if 0 /* Now we make the links in the obstack, so don't free them. */
|
|
|
|
|
/* Now free the links of the list, and empty the list. */
|
|
|
|
|
|
|
|
|
|
for (next = pending_blocks; next; next = next1)
|
|
|
|
|
{
|
|
|
|
|
next1 = next->next;
|
|
|
|
|
free (next);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
pending_blocks = 0;
|
|
|
|
|
|
|
|
|
|
return blockvector;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Manage the vector of line numbers. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
record_line (line, pc)
|
|
|
|
|
int line;
|
|
|
|
|
CORE_ADDR pc;
|
|
|
|
|
{
|
|
|
|
|
struct linetable_entry *e;
|
|
|
|
|
/* Ignore the dummy line number in libg.o */
|
|
|
|
|
|
|
|
|
|
if (line == 0xffff)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
/* Make sure line vector is big enough. */
|
|
|
|
|
|
|
|
|
|
if (line_vector_index + 1 >= line_vector_length)
|
|
|
|
|
{
|
|
|
|
|
line_vector_length *= 2;
|
|
|
|
|
line_vector = (struct linetable *)
|
|
|
|
|
xrealloc (line_vector,
|
|
|
|
|
(sizeof (struct linetable)
|
|
|
|
|
+ line_vector_length * sizeof (struct linetable_entry)));
|
|
|
|
|
current_subfile->line_vector = line_vector;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
e = line_vector->item + line_vector_index++;
|
|
|
|
|
e->line = line; e->pc = pc;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Start a new symtab for a new source file.
|
|
|
|
|
This is called when a dbx symbol of type N_SO is seen;
|
|
|
|
|
it indicates the start of data for one original source file. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
start_symtab (name, start_addr)
|
|
|
|
|
char *name;
|
|
|
|
|
CORE_ADDR start_addr;
|
|
|
|
|
{
|
|
|
|
|
register struct symtab *s;
|
|
|
|
|
|
|
|
|
|
last_source_file = name;
|
|
|
|
|
last_source_start_addr = start_addr;
|
|
|
|
|
file_symbols = 0;
|
|
|
|
|
global_symbols = 0;
|
|
|
|
|
within_function = 0;
|
|
|
|
|
|
|
|
|
|
/* Context stack is initially empty, with room for 10 levels. */
|
|
|
|
|
context_stack
|
|
|
|
|
= (struct context_stack *) xxmalloc (10 * sizeof (struct context_stack));
|
|
|
|
|
context_stack_size = 10;
|
|
|
|
|
context_stack_depth = 0;
|
|
|
|
|
|
|
|
|
|
new_object_header_files ();
|
|
|
|
|
|
|
|
|
|
for (s = symseg_chain; s; s = s->next)
|
|
|
|
|
if (s->ldsymoff == symnum * sizeof (struct nlist))
|
|
|
|
|
break;
|
|
|
|
|
current_symseg = s;
|
|
|
|
|
if (s != 0)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
type_vector_length = 160;
|
|
|
|
|
type_vector = (struct typevector *)
|
|
|
|
|
xxmalloc (sizeof (struct typevector)
|
|
|
|
|
+ type_vector_length * sizeof (struct type *));
|
|
|
|
|
bzero (type_vector->type, type_vector_length * sizeof (struct type *));
|
|
|
|
|
|
|
|
|
|
/* Initialize the list of sub source files with one entry
|
|
|
|
|
for this file (the top-level source file). */
|
|
|
|
|
|
|
|
|
|
subfiles = 0;
|
|
|
|
|
current_subfile = 0;
|
|
|
|
|
start_subfile (name);
|
|
|
|
|
|
|
|
|
|
#if 0 /* This is now set at the beginning of read_ofile_symtab */
|
|
|
|
|
/* Set default for compiler to pcc; assume that we aren't processing
|
|
|
|
|
a gcc compiled file until proved otherwise. */
|
|
|
|
|
|
|
|
|
|
processing_gcc_compilation = 0;
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Handle an N_SOL symbol, which indicates the start of
|
|
|
|
|
code that came from an included (or otherwise merged-in)
|
|
|
|
|
source file with a different name. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
start_subfile (name)
|
|
|
|
|
char *name;
|
|
|
|
|
{
|
|
|
|
|
register struct subfile *subfile;
|
|
|
|
|
|
|
|
|
|
/* Save the current subfile's line vector data. */
|
|
|
|
|
|
|
|
|
|
if (current_subfile)
|
|
|
|
|
{
|
|
|
|
|
current_subfile->line_vector_index = line_vector_index;
|
|
|
|
|
current_subfile->line_vector_length = line_vector_length;
|
|
|
|
|
current_subfile->prev_line_number = prev_line_number;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* See if this subfile is already known as a subfile of the
|
|
|
|
|
current main source file. */
|
|
|
|
|
|
|
|
|
|
for (subfile = subfiles; subfile; subfile = subfile->next)
|
|
|
|
|
{
|
|
|
|
|
if (!strcmp (subfile->name, name))
|
|
|
|
|
{
|
|
|
|
|
line_vector = subfile->line_vector;
|
|
|
|
|
line_vector_index = subfile->line_vector_index;
|
|
|
|
|
line_vector_length = subfile->line_vector_length;
|
|
|
|
|
prev_line_number = subfile->prev_line_number;
|
|
|
|
|
current_subfile = subfile;
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* This subfile is not known. Add an entry for it. */
|
|
|
|
|
|
|
|
|
|
line_vector_index = 0;
|
|
|
|
|
line_vector_length = 1000;
|
|
|
|
|
prev_line_number = -2; /* Force first line number to be explicit */
|
|
|
|
|
line_vector = (struct linetable *)
|
|
|
|
|
xxmalloc (sizeof (struct linetable)
|
|
|
|
|
+ line_vector_length * sizeof (struct linetable_entry));
|
|
|
|
|
|
|
|
|
|
/* Make an entry for this subfile in the list of all subfiles
|
|
|
|
|
of the current main source file. */
|
|
|
|
|
|
|
|
|
|
subfile = (struct subfile *) xxmalloc (sizeof (struct subfile));
|
|
|
|
|
subfile->next = subfiles;
|
|
|
|
|
subfile->name = savestring (name, strlen (name));
|
|
|
|
|
subfile->line_vector = line_vector;
|
|
|
|
|
subfiles = subfile;
|
|
|
|
|
current_subfile = subfile;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Finish the symbol definitions for one main source file,
|
|
|
|
|
close off all the lexical contexts for that file
|
|
|
|
|
(creating struct block's for them), then make the struct symtab
|
|
|
|
|
for that file and put it in the list of all such.
|
|
|
|
|
|
|
|
|
|
END_ADDR is the address of the end of the file's text. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
end_symtab (end_addr)
|
|
|
|
|
CORE_ADDR end_addr;
|
|
|
|
|
{
|
|
|
|
|
register struct symtab *symtab;
|
|
|
|
|
register struct blockvector *blockvector;
|
|
|
|
|
register struct subfile *subfile;
|
|
|
|
|
register struct linetable *lv;
|
|
|
|
|
struct subfile *nextsub;
|
|
|
|
|
|
|
|
|
|
if (current_symseg != 0)
|
|
|
|
|
{
|
|
|
|
|
last_source_file = 0;
|
|
|
|
|
current_symseg = 0;
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Finish the lexical context of the last function in the file;
|
|
|
|
|
pop the context stack. */
|
|
|
|
|
|
|
|
|
|
if (context_stack_depth > 0)
|
|
|
|
|
{
|
|
|
|
|
register struct context_stack *cstk;
|
|
|
|
|
context_stack_depth--;
|
|
|
|
|
cstk = &context_stack[context_stack_depth];
|
|
|
|
|
/* Make a block for the local symbols within. */
|
|
|
|
|
finish_block (cstk->name, &local_symbols, cstk->old_blocks,
|
|
|
|
|
cstk->start_addr, end_addr);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Cleanup any undefined types that have been left hanging around
|
|
|
|
|
(this needs to be done before the finish_blocks so that
|
|
|
|
|
file_symbols is still good). */
|
|
|
|
|
cleanup_undefined_types ();
|
|
|
|
|
|
|
|
|
|
/* Finish defining all the blocks of this symtab. */
|
|
|
|
|
finish_block (0, &file_symbols, 0, last_source_start_addr, end_addr);
|
|
|
|
|
finish_block (0, &global_symbols, 0, last_source_start_addr, end_addr);
|
|
|
|
|
blockvector = make_blockvector ();
|
|
|
|
|
|
|
|
|
|
current_subfile->line_vector_index = line_vector_index;
|
|
|
|
|
|
|
|
|
|
/* Now create the symtab objects proper, one for each subfile. */
|
|
|
|
|
/* (The main file is one of them.) */
|
|
|
|
|
|
|
|
|
|
for (subfile = subfiles; subfile; subfile = nextsub)
|
|
|
|
|
{
|
|
|
|
|
symtab = (struct symtab *) xxmalloc (sizeof (struct symtab));
|
|
|
|
|
symtab->free_ptr = 0;
|
|
|
|
|
|
|
|
|
|
/* Fill in its components. */
|
|
|
|
|
symtab->blockvector = blockvector;
|
|
|
|
|
type_vector->length = type_vector_length;
|
|
|
|
|
symtab->typevector = type_vector;
|
|
|
|
|
symtab->free_code = free_linetable;
|
|
|
|
|
if (subfile->next == 0)
|
|
|
|
|
symtab->free_ptr = (char *) type_vector;
|
|
|
|
|
|
|
|
|
|
symtab->filename = subfile->name;
|
|
|
|
|
lv = subfile->line_vector;
|
|
|
|
|
lv->nitems = subfile->line_vector_index;
|
|
|
|
|
symtab->linetable = (struct linetable *)
|
|
|
|
|
xrealloc (lv, (sizeof (struct linetable)
|
|
|
|
|
+ lv->nitems * sizeof (struct linetable_entry)));
|
|
|
|
|
symtab->nlines = 0;
|
|
|
|
|
symtab->line_charpos = 0;
|
|
|
|
|
|
|
|
|
|
/* Link the new symtab into the list of such. */
|
|
|
|
|
symtab->next = symtab_list;
|
|
|
|
|
symtab_list = symtab;
|
|
|
|
|
|
|
|
|
|
nextsub = subfile->next;
|
|
|
|
|
free (subfile);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
type_vector = 0;
|
|
|
|
|
type_vector_length = -1;
|
|
|
|
|
line_vector = 0;
|
|
|
|
|
line_vector_length = -1;
|
|
|
|
|
last_source_file = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifdef N_BINCL
|
|
|
|
|
|
|
|
|
|
/* Handle the N_BINCL and N_EINCL symbol types
|
|
|
|
|
that act like N_SOL for switching source files
|
|
|
|
|
(different subfiles, as we call them) within one object file,
|
|
|
|
|
but using a stack rather than in an arbitrary order. */
|
|
|
|
|
|
|
|
|
|
struct subfile_stack
|
|
|
|
|
{
|
|
|
|
|
struct subfile_stack *next;
|
|
|
|
|
char *name;
|
|
|
|
|
int prev_index;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
struct subfile_stack *subfile_stack;
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
push_subfile ()
|
|
|
|
|
{
|
|
|
|
|
register struct subfile_stack *tem
|
|
|
|
|
= (struct subfile_stack *) xxmalloc (sizeof (struct subfile_stack));
|
|
|
|
|
|
|
|
|
|
tem->next = subfile_stack;
|
|
|
|
|
subfile_stack = tem;
|
|
|
|
|
if (current_subfile == 0 || current_subfile->name == 0)
|
|
|
|
|
abort ();
|
|
|
|
|
tem->name = current_subfile->name;
|
|
|
|
|
tem->prev_index = header_file_prev_index;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static char *
|
|
|
|
|
pop_subfile ()
|
|
|
|
|
{
|
|
|
|
|
register char *name;
|
|
|
|
|
register struct subfile_stack *link = subfile_stack;
|
|
|
|
|
|
|
|
|
|
if (link == 0)
|
|
|
|
|
abort ();
|
|
|
|
|
|
|
|
|
|
name = link->name;
|
|
|
|
|
subfile_stack = link->next;
|
|
|
|
|
header_file_prev_index = link->prev_index;
|
|
|
|
|
free (link);
|
|
|
|
|
|
|
|
|
|
return name;
|
|
|
|
|
}
|
|
|
|
|
#endif /* Have N_BINCL */
|
|
|
|
|
|
|
|
|
|
/* Accumulate the misc functions in bunches of 127.
|
|
|
|
|
At the end, copy them all into one newly allocated structure. */
|
|
|
|
|
|
|
|
|
|
#define MISC_BUNCH_SIZE 127
|
|
|
|
|
|
|
|
|
|
struct misc_bunch
|
|
|
|
|
{
|
|
|
|
|
struct misc_bunch *next;
|
|
|
|
|
struct misc_function contents[MISC_BUNCH_SIZE];
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* Bunch currently being filled up.
|
|
|
|
|
The next field points to chain of filled bunches. */
|
|
|
|
|
|
|
|
|
|
static struct misc_bunch *misc_bunch;
|
|
|
|
|
|
|
|
|
|
/* Number of slots filled in current bunch. */
|
|
|
|
|
|
|
|
|
|
static int misc_bunch_index;
|
|
|
|
|
|
|
|
|
|
/* Total number of misc functions recorded so far. */
|
|
|
|
|
|
|
|
|
|
static int misc_count;
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
init_misc_functions ()
|
|
|
|
|
{
|
|
|
|
|
misc_count = 0;
|
|
|
|
|
misc_bunch = 0;
|
|
|
|
|
misc_bunch_index = MISC_BUNCH_SIZE;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
record_misc_function (name, address, type)
|
|
|
|
|
char *name;
|
|
|
|
|
CORE_ADDR address;
|
|
|
|
|
int type;
|
|
|
|
|
{
|
|
|
|
|
register struct misc_bunch *new;
|
|
|
|
|
register unsigned char mtype;
|
|
|
|
|
|
|
|
|
|
if (misc_bunch_index == MISC_BUNCH_SIZE)
|
|
|
|
|
{
|
|
|
|
|
new = (struct misc_bunch *) xxmalloc (sizeof (struct misc_bunch));
|
|
|
|
|
misc_bunch_index = 0;
|
|
|
|
|
new->next = misc_bunch;
|
|
|
|
|
misc_bunch = new;
|
|
|
|
|
}
|
|
|
|
|
misc_bunch->contents[misc_bunch_index].name = name;
|
|
|
|
|
misc_bunch->contents[misc_bunch_index].address = address;
|
|
|
|
|
switch (type &~ N_EXT)
|
|
|
|
|
{
|
|
|
|
|
case N_TEXT: mtype = mf_text; break;
|
|
|
|
|
case N_DATA: mtype = mf_data; break;
|
|
|
|
|
case N_BSS: mtype = mf_bss; break;
|
|
|
|
|
case N_ABS: mtype = mf_abs; break;
|
|
|
|
|
#ifdef N_SETV
|
|
|
|
|
case N_SETV: mtype = mf_data; break;
|
|
|
|
|
#endif
|
|
|
|
|
default: mtype = mf_unknown; break;
|
|
|
|
|
}
|
|
|
|
|
misc_bunch->contents[misc_bunch_index].type = mtype;
|
|
|
|
|
misc_bunch_index++;
|
|
|
|
|
misc_count++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
compare_misc_functions (fn1, fn2)
|
|
|
|
|
struct misc_function *fn1, *fn2;
|
|
|
|
|
{
|
|
|
|
|
/* Return a signed result based on unsigned comparisons
|
|
|
|
|
so that we sort into unsigned numeric order. */
|
|
|
|
|
if (fn1->address < fn2->address)
|
|
|
|
|
return -1;
|
|
|
|
|
if (fn1->address > fn2->address)
|
|
|
|
|
return 1;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
discard_misc_bunches ()
|
|
|
|
|
{
|
|
|
|
|
register struct misc_bunch *next;
|
|
|
|
|
|
|
|
|
|
while (misc_bunch)
|
|
|
|
|
{
|
|
|
|
|
next = misc_bunch->next;
|
|
|
|
|
free (misc_bunch);
|
|
|
|
|
misc_bunch = next;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* INCLINK nonzero means bunches are from an incrementally-linked file.
|
|
|
|
|
Add them to the existing bunches.
|
|
|
|
|
Otherwise INCLINK is zero, and we start from scratch. */
|
|
|
|
|
static void
|
|
|
|
|
condense_misc_bunches (inclink)
|
|
|
|
|
int inclink;
|
|
|
|
|
{
|
|
|
|
|
register int i, j;
|
|
|
|
|
register struct misc_bunch *bunch;
|
|
|
|
|
#ifdef NAMES_HAVE_UNDERSCORE
|
|
|
|
|
int offset = 1;
|
|
|
|
|
#else
|
|
|
|
|
int offset = 0;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
if (inclink)
|
|
|
|
|
{
|
|
|
|
|
misc_function_vector
|
|
|
|
|
= (struct misc_function *)
|
|
|
|
|
xrealloc (misc_function_vector, (misc_count + misc_function_count)
|
|
|
|
|
* sizeof (struct misc_function));
|
|
|
|
|
j = misc_function_count;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
misc_function_vector
|
|
|
|
|
= (struct misc_function *)
|
|
|
|
|
xxmalloc (misc_count * sizeof (struct misc_function));
|
|
|
|
|
j = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bunch = misc_bunch;
|
|
|
|
|
while (bunch)
|
|
|
|
|
{
|
|
|
|
|
for (i = 0; i < misc_bunch_index; i++)
|
|
|
|
|
{
|
|
|
|
|
misc_function_vector[j] = bunch->contents[i];
|
|
|
|
|
misc_function_vector[j].name
|
|
|
|
|
= obconcat (misc_function_vector[j].name
|
|
|
|
|
+ (misc_function_vector[j].name[0] == '_' ? offset : 0),
|
|
|
|
|
"", "");
|
|
|
|
|
j++;
|
|
|
|
|
}
|
|
|
|
|
bunch = bunch->next;
|
|
|
|
|
misc_bunch_index = MISC_BUNCH_SIZE;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (inclink)
|
|
|
|
|
misc_function_count += misc_count;
|
|
|
|
|
else
|
|
|
|
|
misc_function_count = j;
|
|
|
|
|
|
|
|
|
|
/* Sort the misc functions by address. */
|
|
|
|
|
|
|
|
|
|
qsort (misc_function_vector, misc_function_count,
|
|
|
|
|
sizeof (struct misc_function),
|
|
|
|
|
compare_misc_functions);
|
|
|
|
|
|
|
|
|
|
/* (re)build the hash table (positions changed during the sort) */
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < MISC_FUNC_HASH_SIZE; ++i)
|
|
|
|
|
misc_function_hash_tab[i] = -1;
|
|
|
|
|
for (i = 0; i < misc_function_count; ++i)
|
|
|
|
|
{
|
|
|
|
|
j = hash_symbol(misc_function_vector[i].name) & (MISC_FUNC_HASH_SIZE - 1);
|
|
|
|
|
misc_function_vector[i].next = misc_function_hash_tab[j];
|
|
|
|
|
misc_function_hash_tab[j] = i;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Call sort_syms to sort alphabetically
|
|
|
|
|
the symbols of each block of each symtab. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
compare_symbols (s1, s2)
|
|
|
|
|
struct symbol **s1, **s2;
|
|
|
|
|
{
|
|
|
|
|
register int namediff;
|
|
|
|
|
|
|
|
|
|
/* Compare the initial characters. */
|
|
|
|
|
namediff = SYMBOL_NAME (*s1)[0] - SYMBOL_NAME (*s2)[0];
|
|
|
|
|
if (namediff != 0) return namediff;
|
|
|
|
|
|
|
|
|
|
/* If they match, compare the rest of the names. */
|
|
|
|
|
namediff = strcmp (SYMBOL_NAME (*s1), SYMBOL_NAME (*s2));
|
|
|
|
|
if (namediff != 0) return namediff;
|
|
|
|
|
|
|
|
|
|
/* For symbols of the same name, registers should come first. */
|
|
|
|
|
return ((SYMBOL_CLASS (*s2) == LOC_REGISTER)
|
|
|
|
|
- (SYMBOL_CLASS (*s1) == LOC_REGISTER));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void sort_symtab_syms ();
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
sort_syms ()
|
|
|
|
|
{
|
|
|
|
|
register struct symtab *s;
|
|
|
|
|
|
|
|
|
|
for (s = symtab_list; s; s = s->next)
|
|
|
|
|
sort_symtab_syms (s);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
sort_symtab_syms (s)
|
|
|
|
|
register struct symtab *s;
|
|
|
|
|
{
|
|
|
|
|
register struct blockvector *bv = BLOCKVECTOR (s);
|
|
|
|
|
int nbl = BLOCKVECTOR_NBLOCKS (bv);
|
|
|
|
|
int i;
|
|
|
|
|
register struct block *b;
|
|
|
|
|
|
|
|
|
|
/* Note that in the following sort, we always make sure that
|
|
|
|
|
register debug symbol declarations always come before regular
|
|
|
|
|
debug symbol declarations (as might happen when parameters are
|
|
|
|
|
then put into registers by the compiler). We do this by a
|
|
|
|
|
correct compare in compare_symbols, and by the reversal of the
|
|
|
|
|
symbols if we don't sort. This works as long as a register debug
|
|
|
|
|
symbol always comes after a parameter debug symbol. */
|
|
|
|
|
|
|
|
|
|
/* This is no longer necessary; lookup_block_symbol now always
|
|
|
|
|
prefers some other declaration over a parameter declaration. We
|
|
|
|
|
still sort the thing (that is necessary), but we don't reverse it
|
|
|
|
|
if we shouldn't sort it. */
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < nbl; i++)
|
|
|
|
|
{
|
|
|
|
|
b = BLOCKVECTOR_BLOCK (bv, i);
|
|
|
|
|
if (BLOCK_SHOULD_SORT (b))
|
|
|
|
|
qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
|
|
|
|
|
sizeof (struct symbol *), compare_symbols);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extern struct symtab *psymtab_to_symtab ();
|
|
|
|
|
|
|
|
|
|
/* The entry point. */
|
|
|
|
|
static CORE_ADDR entry_point;
|
|
|
|
|
|
|
|
|
|
static char *symfile_string_table;
|
|
|
|
|
static int symfile_string_table_size;
|
|
|
|
|
|
|
|
|
|
/* This is the symbol-file command. Read the file, analyze its symbols,
|
|
|
|
|
and add a struct symtab to symtab_list. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
symbol_file_command (name, from_tty)
|
|
|
|
|
char *name;
|
|
|
|
|
int from_tty;
|
|
|
|
|
{
|
|
|
|
|
register int desc;
|
|
|
|
|
DECLARE_FILE_HEADERS;
|
|
|
|
|
struct nlist *nlist;
|
|
|
|
|
|
|
|
|
|
/* The string table. */
|
|
|
|
|
char *stringtab;
|
|
|
|
|
|
|
|
|
|
/* The size of the string table (buffer is a bizarre name...). */
|
|
|
|
|
long buffer;
|
|
|
|
|
|
|
|
|
|
register int val;
|
|
|
|
|
extern void close ();
|
|
|
|
|
struct cleanup *old_chain;
|
|
|
|
|
struct symtab *symseg;
|
|
|
|
|
struct stat statbuf;
|
|
|
|
|
|
|
|
|
|
dont_repeat ();
|
|
|
|
|
|
|
|
|
|
if (name == 0)
|
|
|
|
|
{
|
|
|
|
|
if ((symtab_list || partial_symtab_list)
|
|
|
|
|
&& from_tty
|
|
|
|
|
&& !query ("Discard symbol table? ", 0))
|
|
|
|
|
error ("Not confirmed.");
|
|
|
|
|
if (symfile)
|
|
|
|
|
free (symfile);
|
|
|
|
|
symfile = 0;
|
|
|
|
|
free_all_symtabs ();
|
|
|
|
|
free_all_psymtabs ();
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
name = tilde_expand (name);
|
|
|
|
|
make_cleanup (free, name);
|
|
|
|
|
|
|
|
|
|
if ((symtab_list || partial_symtab_list)
|
|
|
|
|
&& !query ("Load new symbol table from \"%s\"? ", name))
|
|
|
|
|
error ("Not confirmed.");
|
|
|
|
|
|
|
|
|
|
{
|
|
|
|
|
char *absolute_name;
|
|
|
|
|
desc = openp (getenv ("PATH"), 1, name, O_RDONLY, 0, &absolute_name);
|
|
|
|
|
if (desc < 0)
|
|
|
|
|
perror_with_name (name);
|
|
|
|
|
else
|
|
|
|
|
name = absolute_name;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
old_chain = make_cleanup (close, desc);
|
|
|
|
|
make_cleanup (free_current_contents, &name);
|
|
|
|
|
|
|
|
|
|
READ_FILE_HEADERS (desc, name);
|
|
|
|
|
|
|
|
|
|
entry_point = ENTRY_POINT;
|
|
|
|
|
|
|
|
|
|
if (NUMBER_OF_SYMBOLS == 0)
|
|
|
|
|
{
|
|
|
|
|
if (symfile)
|
|
|
|
|
free (symfile);
|
|
|
|
|
symfile = 0;
|
|
|
|
|
free_all_symtabs ();
|
|
|
|
|
free_all_psymtabs ();
|
|
|
|
|
printf ("%s has no symbol-table; symbols discarded.\n", name);
|
|
|
|
|
fflush (stdout);
|
|
|
|
|
do_cleanups (old_chain);
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
printf ("Reading symbol data from %s...", name);
|
|
|
|
|
fflush (stdout);
|
|
|
|
|
|
|
|
|
|
/* Now read the string table, all at once. */
|
|
|
|
|
val = lseek (desc, STRING_TABLE_OFFSET, 0);
|
|
|
|
|
if (val < 0)
|
|
|
|
|
perror_with_name (name);
|
|
|
|
|
if (stat (name, &statbuf) == -1)
|
|
|
|
|
perror_with_name (name);
|
|
|
|
|
READ_STRING_TABLE_SIZE (buffer);
|
|
|
|
|
if (buffer >= 0 && buffer < statbuf.st_size)
|
|
|
|
|
{
|
|
|
|
|
/* This should speed things up without consuming much
|
|
|
|
|
extra memory (because probably little of the space is going
|
|
|
|
|
to be reused anyway, whether in data or stack space).
|
|
|
|
|
|
|
|
|
|
A quick test (running GDB on itself and setting 9 breakpoints
|
|
|
|
|
in different files) showed that memory usage was almost
|
|
|
|
|
identical for the two cases. */
|
|
|
|
|
#if 0
|
|
|
|
|
#ifdef BROKEN_LARGE_ALLOCA
|
|
|
|
|
stringtab = (char *) xmalloc (buffer);
|
|
|
|
|
make_cleanup (free, stringtab);
|
|
|
|
|
#else
|
|
|
|
|
stringtab = (char *) alloca (buffer);
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
stringtab = (char *) xmalloc (buffer);
|
|
|
|
|
symfile_string_table = stringtab;
|
|
|
|
|
symfile_string_table_size = buffer;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
stringtab = NULL;
|
|
|
|
|
if (stringtab == NULL)
|
|
|
|
|
error ("ridiculous string table size: %d bytes", buffer);
|
|
|
|
|
|
|
|
|
|
/* Usually READ_STRING_TABLE_SIZE will have shifted the file pointer.
|
|
|
|
|
Occaisionally, it won't. */
|
|
|
|
|
val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
|
|
|
|
|
if (val < 0)
|
|
|
|
|
perror_with_name (name);
|
|
|
|
|
val = myread (desc, stringtab, buffer);
|
|
|
|
|
if (val < 0)
|
|
|
|
|
perror_with_name (name);
|
|
|
|
|
|
|
|
|
|
/* Throw away the old symbol table. */
|
|
|
|
|
|
|
|
|
|
if (symfile)
|
|
|
|
|
free (symfile);
|
|
|
|
|
symfile = 0;
|
|
|
|
|
free_all_symtabs ();
|
|
|
|
|
free_all_psymtabs ();
|
|
|
|
|
|
|
|
|
|
/* Empty the hash table of global syms looking for values. */
|
|
|
|
|
bzero (global_sym_chain, sizeof global_sym_chain);
|
|
|
|
|
|
|
|
|
|
/* Symsegs are no longer supported by GDB. Setting symseg_chain to
|
|
|
|
|
0 is easier than finding all the symseg code and eliminating it. */
|
|
|
|
|
symseg_chain = 0;
|
|
|
|
|
|
|
|
|
|
/* Position to read the symbol table. Do not read it all at once. */
|
|
|
|
|
val = lseek (desc, SYMBOL_TABLE_OFFSET, 0);
|
|
|
|
|
if (val < 0)
|
|
|
|
|
perror_with_name (name);
|
|
|
|
|
|
|
|
|
|
/* Don't put these on the cleanup chain; they need to stick around
|
|
|
|
|
until the next call to symbol_file_command. *Then* we'll free
|
|
|
|
|
them. */
|
|
|
|
|
free_header_files ();
|
|
|
|
|
init_header_files ();
|
|
|
|
|
|
|
|
|
|
init_misc_functions ();
|
|
|
|
|
make_cleanup (discard_misc_bunches, 0);
|
|
|
|
|
|
|
|
|
|
free_pendings = 0;
|
|
|
|
|
pending_blocks = 0;
|
|
|
|
|
file_symbols = 0;
|
|
|
|
|
global_symbols = 0;
|
|
|
|
|
make_cleanup (really_free_pendings, 0);
|
|
|
|
|
|
|
|
|
|
/* Now that the symbol table data of the executable file are all in core,
|
|
|
|
|
process them and define symbols accordingly. Closes desc. */
|
|
|
|
|
|
|
|
|
|
read_dbx_symtab (desc, stringtab, buffer, NUMBER_OF_SYMBOLS, 0,
|
|
|
|
|
ADDR_OF_TEXT_SEGMENT, SIZE_OF_TEXT_SEGMENT);
|
|
|
|
|
|
|
|
|
|
/* Go over the misc functions and install them in vector. */
|
|
|
|
|
|
|
|
|
|
condense_misc_bunches (0);
|
|
|
|
|
|
|
|
|
|
/* Don't allow char * to have a typename (else would get caddr_t.) */
|
|
|
|
|
|
|
|
|
|
TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
|
|
|
|
|
|
|
|
|
|
/* Make a default for file to list. */
|
|
|
|
|
|
|
|
|
|
symfile = savestring (name, strlen (name));
|
|
|
|
|
|
|
|
|
|
/* Call to select_source_symtab used to be here; it was using too
|
|
|
|
|
much time. I'll make sure that list_sources can handle the lack
|
|
|
|
|
of current_source_symtab */
|
|
|
|
|
|
|
|
|
|
do_cleanups (old_chain); /* Descriptor closed here */
|
|
|
|
|
|
|
|
|
|
/* Free the symtabs made by read_symsegs, but not their contents,
|
|
|
|
|
which have been copied into symtabs on symtab_list. */
|
|
|
|
|
while (symseg_chain)
|
|
|
|
|
{
|
|
|
|
|
register struct symtab *s = symseg_chain->next;
|
|
|
|
|
free (symseg_chain);
|
|
|
|
|
symseg_chain = s;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!partial_symtab_list)
|
|
|
|
|
printf ("\n(no debugging symbols found)...");
|
|
|
|
|
|
|
|
|
|
printf ("done.\n");
|
|
|
|
|
fflush (stdout);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return name of file symbols were loaded from, or 0 if none.. */
|
|
|
|
|
|
|
|
|
|
char *
|
|
|
|
|
get_sym_file ()
|
|
|
|
|
{
|
|
|
|
|
return symfile;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Buffer for reading the symbol table entries. */
|
|
|
|
|
static struct nlist symbuf[4096];
|
|
|
|
|
static int symbuf_idx;
|
|
|
|
|
static int symbuf_end;
|
|
|
|
|
|
|
|
|
|
/* I/O descriptor for reading the symbol table. */
|
|
|
|
|
static int symtab_input_desc;
|
|
|
|
|
|
|
|
|
|
/* The address of the string table
|
|
|
|
|
of the object file we are reading (as copied into core). */
|
|
|
|
|
static char *stringtab_global;
|
|
|
|
|
|
|
|
|
|
/* Refill the symbol table input buffer
|
|
|
|
|
and set the variables that control fetching entries from it.
|
|
|
|
|
Reports an error if no data available.
|
|
|
|
|
This function can read past the end of the symbol table
|
|
|
|
|
(into the string table) but this does no harm. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
fill_symbuf ()
|
|
|
|
|
{
|
|
|
|
|
int nbytes = myread (symtab_input_desc, symbuf, sizeof (symbuf));
|
|
|
|
|
if (nbytes <= 0)
|
|
|
|
|
error ("error or end of file reading symbol table");
|
|
|
|
|
symbuf_end = nbytes / sizeof (struct nlist);
|
|
|
|
|
symbuf_idx = 0;
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* dbx allows the text of a symbol name to be continued into the
|
|
|
|
|
next symbol name! When such a continuation is encountered
|
|
|
|
|
(a \ at the end of the text of a name)
|
|
|
|
|
call this function to get the continuation. */
|
|
|
|
|
|
|
|
|
|
static char *
|
|
|
|
|
next_symbol_text ()
|
|
|
|
|
{
|
|
|
|
|
if (symbuf_idx == symbuf_end)
|
|
|
|
|
fill_symbuf ();
|
|
|
|
|
symnum++;
|
|
|
|
|
return symbuf[symbuf_idx++].n_un.n_strx + stringtab_global;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Initializes storage for all of the partial symbols that will be
|
|
|
|
|
* created by read_dbx_symtab and subsidiaries.
|
|
|
|
|
*/
|
|
|
|
|
void
|
|
|
|
|
init_psymbol_list (total_symbols)
|
|
|
|
|
int total_symbols;
|
|
|
|
|
{
|
|
|
|
|
/* Current best guess is that there are approximately a twentieth
|
|
|
|
|
of the total symbols (in a debugging file) are global or static
|
|
|
|
|
oriented symbols */
|
|
|
|
|
global_psymbols.size = total_symbols / 10;
|
|
|
|
|
static_psymbols.size = total_symbols / 10;
|
|
|
|
|
global_psymbols.next = global_psymbols.list = (struct partial_symbol *)
|
|
|
|
|
xmalloc (global_psymbols.size * sizeof (struct partial_symbol));
|
|
|
|
|
static_psymbols.next = static_psymbols.list = (struct partial_symbol *)
|
|
|
|
|
xmalloc (static_psymbols.size * sizeof (struct partial_symbol));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Initialize the list of bincls to contain none and have some
|
|
|
|
|
* allocated.
|
|
|
|
|
*/
|
|
|
|
|
static void
|
|
|
|
|
init_bincl_list (number)
|
|
|
|
|
int number;
|
|
|
|
|
{
|
|
|
|
|
bincls_allocated = number;
|
|
|
|
|
next_bincl = bincl_list = (struct header_file_location *)
|
|
|
|
|
xmalloc (bincls_allocated * sizeof(struct header_file_location));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Add a bincl to the list.
|
|
|
|
|
*/
|
|
|
|
|
static void
|
|
|
|
|
add_bincl_to_list (pst, name, instance)
|
|
|
|
|
struct partial_symtab *pst;
|
|
|
|
|
char *name;
|
|
|
|
|
int instance;
|
|
|
|
|
{
|
|
|
|
|
if (next_bincl >= bincl_list + bincls_allocated)
|
|
|
|
|
{
|
|
|
|
|
int offset = next_bincl - bincl_list;
|
|
|
|
|
bincls_allocated *= 2;
|
|
|
|
|
bincl_list = (struct header_file_location *)
|
|
|
|
|
xrealloc (bincl_list,
|
|
|
|
|
bincls_allocated * sizeof (struct header_file_location));
|
|
|
|
|
next_bincl = bincl_list + offset;
|
|
|
|
|
}
|
|
|
|
|
next_bincl->pst = pst;
|
|
|
|
|
next_bincl->instance = instance;
|
|
|
|
|
next_bincl++->name = name;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Given a name, value pair, find the corresponding
|
|
|
|
|
* bincl in the list. Return the partial symtab associated
|
|
|
|
|
* with that header_file_location.
|
|
|
|
|
*/
|
|
|
|
|
struct partial_symtab *
|
|
|
|
|
find_corresponding_bincl_psymtab (name, instance)
|
|
|
|
|
char *name;
|
|
|
|
|
int instance;
|
|
|
|
|
{
|
|
|
|
|
struct header_file_location *bincl;
|
|
|
|
|
|
|
|
|
|
for (bincl = bincl_list; bincl < next_bincl; bincl++)
|
|
|
|
|
if (bincl->instance == instance
|
|
|
|
|
&& !strcmp (name, bincl->name))
|
|
|
|
|
return bincl->pst;
|
|
|
|
|
|
|
|
|
|
return (struct partial_symtab *) 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Free the storage allocated for the bincl list.
|
|
|
|
|
*/
|
|
|
|
|
static void
|
|
|
|
|
free_bincl_list ()
|
|
|
|
|
{
|
|
|
|
|
free (bincl_list);
|
|
|
|
|
bincls_allocated = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static struct partial_symtab *start_psymtab ();
|
|
|
|
|
static void add_psymtab_dependency ();
|
|
|
|
|
static void end_psymtab();
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
compare_psymbols (s1, s2)
|
|
|
|
|
register struct partial_symbol *s1, *s2;
|
|
|
|
|
{
|
|
|
|
|
register char
|
|
|
|
|
*st1 = SYMBOL_NAME (s1),
|
|
|
|
|
*st2 = SYMBOL_NAME (s2);
|
|
|
|
|
register int i;
|
|
|
|
|
|
|
|
|
|
if (st1[0] - st2[0])
|
|
|
|
|
return (st1[0] - st2[0]);
|
|
|
|
|
if (st1[1] - st2[1])
|
|
|
|
|
return (st1[1] - st2[1]);
|
|
|
|
|
if (i = strcmp(st1, st2))
|
|
|
|
|
return (i);
|
|
|
|
|
/* Next comparison implements policy that used to be in lookup_symbol:
|
|
|
|
|
* it would search psymtabs in psymtab_list order (reverse order of
|
|
|
|
|
* declaration) & take first occurance of symbol it found. So, we
|
|
|
|
|
* collate duplicate names in reverse psymtab order. */
|
|
|
|
|
return (s2->pst - s1->pst);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Given pointers to an a.out symbol table in core containing dbx
|
|
|
|
|
style data, setup partial_symtab's describing each source file for
|
|
|
|
|
which debugging information is available. NLISTLEN is the number
|
|
|
|
|
of symbols in the symbol table. All symbol names are given as
|
|
|
|
|
offsets relative to STRINGTAB. STRINGTAB_SIZE is the size of
|
|
|
|
|
STRINGTAB.
|
|
|
|
|
|
|
|
|
|
I have no idea whether or not this routine should be setup to deal
|
|
|
|
|
with inclinks. It seems reasonable to me that they be dealt with
|
|
|
|
|
standardly, so I am not going to make a strong effort to deal with
|
|
|
|
|
them here.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
read_dbx_symtab (desc, stringtab, stringtab_size, nlistlen, inclink,
|
|
|
|
|
text_addr, text_size)
|
|
|
|
|
int desc;
|
|
|
|
|
register char *stringtab;
|
|
|
|
|
register long stringtab_size;
|
|
|
|
|
register int nlistlen;
|
|
|
|
|
int inclink;
|
|
|
|
|
unsigned text_addr;
|
|
|
|
|
int text_size;
|
|
|
|
|
{
|
|
|
|
|
register struct nlist *bufp;
|
|
|
|
|
register char *namestring;
|
|
|
|
|
register struct partial_symbol *psym;
|
|
|
|
|
register struct psymbol_allocation_list *psymbol_struct;
|
|
|
|
|
|
|
|
|
|
int nsl;
|
|
|
|
|
int past_first_source_file = 0;
|
|
|
|
|
CORE_ADDR last_o_file_start = 0;
|
|
|
|
|
char *last_o_file_name = "*bogus*";
|
|
|
|
|
struct cleanup *old_chain;
|
|
|
|
|
char *p;
|
|
|
|
|
enum namespace ns;
|
|
|
|
|
enum address_class class;
|
|
|
|
|
|
|
|
|
|
#ifdef PROFILE_TYPES
|
|
|
|
|
int i;
|
|
|
|
|
int profile_types [256];
|
|
|
|
|
int strcmp_called = 0;
|
|
|
|
|
int autovars = 0;
|
|
|
|
|
int global_funs = 0;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Current partial symtab */
|
|
|
|
|
struct partial_symtab *pst;
|
|
|
|
|
|
|
|
|
|
/* List of current psymtab's include files */
|
|
|
|
|
char **psymtab_include_list;
|
|
|
|
|
int includes_allocated;
|
|
|
|
|
int includes_used;
|
|
|
|
|
|
|
|
|
|
/* Index within current psymtab dependency list */
|
|
|
|
|
struct partial_symtab **dependency_list;
|
|
|
|
|
int dependencies_used, dependencies_allocated;
|
|
|
|
|
|
|
|
|
|
#ifdef PROFILE_TYPES
|
|
|
|
|
for (i = 0; i < 256; i++)
|
|
|
|
|
profile_types[i] = 0;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
stringtab_global = stringtab;
|
|
|
|
|
|
|
|
|
|
pst = (struct partial_symtab *) 0;
|
|
|
|
|
|
|
|
|
|
includes_allocated = 30;
|
|
|
|
|
includes_used = 0;
|
|
|
|
|
psymtab_include_list = (char **) alloca (includes_allocated *
|
|
|
|
|
sizeof (char *));
|
|
|
|
|
|
|
|
|
|
dependencies_allocated = 30;
|
|
|
|
|
dependencies_used = 0;
|
|
|
|
|
dependency_list =
|
|
|
|
|
(struct partial_symtab **) alloca (dependencies_allocated *
|
|
|
|
|
sizeof (struct partial_symtab *));
|
|
|
|
|
|
|
|
|
|
old_chain = make_cleanup (free_all_psymtabs, 0);
|
|
|
|
|
|
|
|
|
|
/* Init bincl list */
|
|
|
|
|
init_bincl_list (20);
|
|
|
|
|
make_cleanup (free_bincl_list, 0);
|
|
|
|
|
|
|
|
|
|
/* Setup global partial symbol list */
|
|
|
|
|
init_psymbol_list (nlistlen);
|
|
|
|
|
|
|
|
|
|
last_source_file = 0;
|
|
|
|
|
|
|
|
|
|
#ifdef END_OF_TEXT_DEFAULT
|
|
|
|
|
end_of_text_addr = END_OF_TEXT_DEFAULT;
|
|
|
|
|
#else
|
|
|
|
|
end_of_text_addr = text_addr + text_size;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
symtab_input_desc = desc; /* This is needed for fill_symbuf below */
|
|
|
|
|
symbuf_end = symbuf_idx = 0;
|
|
|
|
|
|
|
|
|
|
for (symnum = 0; symnum < nlistlen; symnum++)
|
|
|
|
|
{
|
|
|
|
|
/* Get the symbol for this run and pull out some info */
|
|
|
|
|
QUIT; /* allow this to be interruptable */
|
|
|
|
|
if (symbuf_idx == symbuf_end)
|
|
|
|
|
fill_symbuf ();
|
|
|
|
|
bufp = &symbuf[symbuf_idx++];
|
|
|
|
|
|
|
|
|
|
#ifdef PROFILE_TYPES
|
|
|
|
|
profile_types[bufp->n_type]++;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Special case to speed up readin.
|
|
|
|
|
*/
|
|
|
|
|
if (bufp->n_type == N_SLINE) continue;
|
|
|
|
|
|
|
|
|
|
/* Ok. There is a lot of code duplicated in the rest of this
|
|
|
|
|
switch statiement (for efficiency reasons). Since I don't
|
|
|
|
|
like duplicating code, I will do my penance here, and
|
|
|
|
|
describe the code which is duplicated:
|
|
|
|
|
|
|
|
|
|
*) The assignment to namestring.
|
|
|
|
|
*) The call to index.
|
|
|
|
|
*) The addition of a partial symbol the the two partial
|
|
|
|
|
symbol lists. This last is a large section of code, so
|
|
|
|
|
I've imbedded it in the following macro.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Set namestring based on bufp. */
|
|
|
|
|
#define SET_NAMESTRING()\
|
|
|
|
|
if (bufp->n_un.n_strx < 0 || bufp->n_un.n_strx >= stringtab_size) \
|
|
|
|
|
error ("Invalid symbol data: bad string table offset: %d", \
|
|
|
|
|
bufp->n_un.n_strx); \
|
|
|
|
|
namestring = bufp->n_un.n_strx + stringtab
|
|
|
|
|
|
|
|
|
|
#define ADD_PSYMBOL_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE)\
|
|
|
|
|
do { \
|
|
|
|
|
if ((LIST).next >= \
|
|
|
|
|
(LIST).list + (LIST).size) \
|
|
|
|
|
{ \
|
|
|
|
|
(LIST).list = (struct partial_symbol *) \
|
|
|
|
|
xrealloc ((LIST).list, \
|
|
|
|
|
((LIST).size * 2 \
|
|
|
|
|
* sizeof (struct partial_symbol))); \
|
|
|
|
|
/* Next assumes we only went one over. Should be good if \
|
|
|
|
|
program works correctly */ \
|
|
|
|
|
(LIST).next = \
|
|
|
|
|
(LIST).list + (LIST).size; \
|
|
|
|
|
(LIST).size *= 2; \
|
|
|
|
|
} \
|
|
|
|
|
psym = (LIST).next++; \
|
|
|
|
|
\
|
|
|
|
|
SYMBOL_NAME (psym) = (char *) obstack_alloc (psymbol_obstack, \
|
|
|
|
|
(NAMELENGTH) + 1); \
|
|
|
|
|
strncpy (SYMBOL_NAME (psym), (NAME), (NAMELENGTH)); \
|
|
|
|
|
SYMBOL_NAME (psym)[(NAMELENGTH)] = '\0'; \
|
|
|
|
|
SYMBOL_NAMESPACE (psym) = (NAMESPACE); \
|
|
|
|
|
SYMBOL_CLASS (psym) = (CLASS); \
|
|
|
|
|
SYMBOL_VALUE (psym) = (VALUE); \
|
|
|
|
|
} while (0);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
switch (bufp->n_type)
|
|
|
|
|
{
|
|
|
|
|
/*
|
|
|
|
|
* Standard, non-debugger, symbols
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
case N_TEXT | N_EXT:
|
|
|
|
|
/* Catch etext */
|
|
|
|
|
|
|
|
|
|
SET_NAMESTRING();
|
|
|
|
|
|
|
|
|
|
if (namestring[6] == '\0' && namestring[5] == 't'
|
|
|
|
|
&& namestring[4] == 'x' && namestring[3] == 'e'
|
|
|
|
|
&& namestring[2] == 't' && namestring[1] == 'e'
|
|
|
|
|
&& namestring[0] == '_')
|
|
|
|
|
end_of_text_addr = bufp->n_value;
|
|
|
|
|
|
|
|
|
|
/* Figure out beginning and end of global linker symbol
|
|
|
|
|
section and put non-debugger specified symbols on
|
|
|
|
|
tmp_symchain */
|
|
|
|
|
|
|
|
|
|
last_global_sym = symnum;
|
|
|
|
|
if (!first_global_sym) first_global_sym = symnum;
|
|
|
|
|
|
|
|
|
|
record_misc_function (namestring, bufp->n_value,
|
|
|
|
|
bufp->n_type); /* Always */
|
|
|
|
|
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
#ifdef N_NBTEXT
|
|
|
|
|
case N_NBTEXT | N_EXT:
|
|
|
|
|
#endif
|
|
|
|
|
#ifdef N_NBDATA
|
|
|
|
|
case N_NBDATA | N_EXT:
|
|
|
|
|
#endif
|
|
|
|
|
#ifdef N_NBBSS
|
|
|
|
|
case N_NBBSS | N_EXT:
|
|
|
|
|
#endif
|
|
|
|
|
#ifdef N_SETV
|
|
|
|
|
case N_SETV | N_EXT:
|
|
|
|
|
#endif
|
|
|
|
|
case N_ABS | N_EXT:
|
|
|
|
|
case N_DATA | N_EXT:
|
|
|
|
|
case N_BSS | N_EXT:
|
|
|
|
|
/* Figure out beginning and end of global linker symbol
|
|
|
|
|
section and put non-debugger specified symbols on
|
|
|
|
|
tmp_symchain */
|
|
|
|
|
|
|
|
|
|
SET_NAMESTRING();
|
|
|
|
|
|
|
|
|
|
last_global_sym = symnum;
|
|
|
|
|
if (!first_global_sym) first_global_sym = symnum;
|
|
|
|
|
|
|
|
|
|
/* Not really a function here, but... */
|
|
|
|
|
record_misc_function (namestring, bufp->n_value,
|
|
|
|
|
bufp->n_type); /* Always */
|
|
|
|
|
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
#ifdef N_NBTEXT
|
|
|
|
|
case N_NBTEXT:
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* We need to be able to deal with both N_FN or N_TEXT,
|
|
|
|
|
because we have no way of knowing whether the sys-supplied ld
|
|
|
|
|
or GNU ld was used to make the executable. */
|
|
|
|
|
#if ! (N_FN & N_EXT)
|
|
|
|
|
case N_FN:
|
|
|
|
|
#endif
|
|
|
|
|
case N_FN | N_EXT:
|
|
|
|
|
case N_TEXT:
|
|
|
|
|
SET_NAMESTRING();
|
|
|
|
|
if ((namestring[0] == '-' && namestring[1] == 'l')
|
|
|
|
|
|| (namestring [(nsl = strlen (namestring)) - 1] == 'o'
|
|
|
|
|
&& namestring [nsl - 2] == '.'))
|
|
|
|
|
{
|
|
|
|
|
if (entry_point < bufp->n_value
|
|
|
|
|
&& entry_point >= last_o_file_start)
|
|
|
|
|
{
|
|
|
|
|
startup_file_start = last_o_file_start;
|
|
|
|
|
startup_file_end = bufp->n_value;
|
|
|
|
|
}
|
|
|
|
|
if (past_first_source_file && pst)
|
|
|
|
|
{
|
|
|
|
|
end_psymtab (pst, psymtab_include_list, includes_used,
|
|
|
|
|
symnum * sizeof (struct nlist), bufp->n_value,
|
|
|
|
|
dependency_list, dependencies_used,
|
|
|
|
|
global_psymbols.next, static_psymbols.next);
|
|
|
|
|
pst = (struct partial_symtab *) 0;
|
|
|
|
|
includes_used = 0;
|
|
|
|
|
dependencies_used = 0;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
past_first_source_file = 1;
|
|
|
|
|
last_o_file_start = bufp->n_value;
|
|
|
|
|
last_o_file_name = namestring;
|
|
|
|
|
nsl = strlen(namestring);
|
|
|
|
|
if (namestring[nsl-2] == '.' && namestring[nsl-1] == 'o')
|
|
|
|
|
namestring[nsl-2] = 0;
|
|
|
|
|
}
|
|
|
|
|
else if (strcmp(namestring, "gcc_compiled."))
|
|
|
|
|
{
|
|
|
|
|
if (*namestring == '_')
|
|
|
|
|
++namestring;
|
|
|
|
|
namestring = obconcat(last_o_file_name, ":", namestring);
|
|
|
|
|
last_global_sym = symnum;
|
|
|
|
|
if (!first_global_sym)
|
|
|
|
|
first_global_sym = symnum;
|
|
|
|
|
record_misc_function(namestring, bufp->n_value, bufp->n_type);
|
|
|
|
|
}
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
case N_ABS:
|
|
|
|
|
case N_DATA:
|
|
|
|
|
case N_BSS:
|
|
|
|
|
SET_NAMESTRING();
|
|
|
|
|
if (*namestring == '_')
|
|
|
|
|
++namestring;
|
|
|
|
|
namestring = obconcat(last_o_file_name, ":", namestring);
|
|
|
|
|
last_global_sym = symnum;
|
|
|
|
|
if (!first_global_sym)
|
|
|
|
|
first_global_sym = symnum;
|
|
|
|
|
record_misc_function(namestring, bufp->n_value, bufp->n_type);
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
case N_UNDF:
|
|
|
|
|
case N_UNDF | N_EXT:
|
|
|
|
|
#ifdef N_NBDATA
|
|
|
|
|
case N_NBDATA:
|
|
|
|
|
#endif
|
|
|
|
|
#ifdef N_NBBSS
|
|
|
|
|
case N_NBBSS:
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Keep going . . .*/
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Special symbol types for GNU
|
|
|
|
|
*/
|
|
|
|
|
#ifdef N_INDR
|
|
|
|
|
case N_INDR:
|
|
|
|
|
case N_INDR | N_EXT:
|
|
|
|
|
#endif
|
|
|
|
|
#ifdef N_SETA
|
|
|
|
|
case N_SETA:
|
|
|
|
|
case N_SETA | N_EXT:
|
|
|
|
|
case N_SETT:
|
|
|
|
|
case N_SETT | N_EXT:
|
|
|
|
|
case N_SETD:
|
|
|
|
|
case N_SETD | N_EXT:
|
|
|
|
|
case N_SETB:
|
|
|
|
|
case N_SETB | N_EXT:
|
|
|
|
|
case N_SETV:
|
|
|
|
|
#endif
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Debugger symbols
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
case N_SO:
|
|
|
|
|
/* End the current partial symtab and start a new one */
|
|
|
|
|
|
|
|
|
|
SET_NAMESTRING();
|
|
|
|
|
|
|
|
|
|
if (pst && past_first_source_file)
|
|
|
|
|
{
|
|
|
|
|
end_psymtab (pst, psymtab_include_list, includes_used,
|
|
|
|
|
symnum * sizeof (struct nlist), bufp->n_value,
|
|
|
|
|
dependency_list, dependencies_used,
|
|
|
|
|
global_psymbols.next, static_psymbols.next);
|
|
|
|
|
pst = (struct partial_symtab *) 0;
|
|
|
|
|
includes_used = 0;
|
|
|
|
|
dependencies_used = 0;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
past_first_source_file = 1;
|
|
|
|
|
|
|
|
|
|
pst = start_psymtab (namestring, bufp->n_value,
|
|
|
|
|
symnum * sizeof (struct nlist),
|
|
|
|
|
global_psymbols.next, static_psymbols.next);
|
|
|
|
|
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
#ifdef N_BINCL
|
|
|
|
|
case N_BINCL:
|
|
|
|
|
/* Add this bincl to the bincl_list for future EXCLs. No
|
|
|
|
|
need to save the string; it'll be around until
|
|
|
|
|
read_dbx_symtab function return */
|
|
|
|
|
|
|
|
|
|
SET_NAMESTRING();
|
|
|
|
|
|
|
|
|
|
add_bincl_to_list (pst, namestring, bufp->n_value);
|
|
|
|
|
|
|
|
|
|
/* Mark down an include file in the current psymtab */
|
|
|
|
|
|
|
|
|
|
psymtab_include_list[includes_used++] = namestring;
|
|
|
|
|
if (includes_used >= includes_allocated)
|
|
|
|
|
{
|
|
|
|
|
char **orig = psymtab_include_list;
|
|
|
|
|
|
|
|
|
|
psymtab_include_list = (char **)
|
|
|
|
|
alloca ((includes_allocated *= 2) *
|
|
|
|
|
sizeof (char *));
|
|
|
|
|
bcopy (orig, psymtab_include_list,
|
|
|
|
|
includes_used * sizeof (char *));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
continue;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
case N_SOL:
|
|
|
|
|
/* Mark down an include file in the current psymtab */
|
|
|
|
|
|
|
|
|
|
SET_NAMESTRING();
|
|
|
|
|
|
|
|
|
|
/* In C++, one may expect the same filename to come round many
|
|
|
|
|
times, when code is coming alternately from the main file
|
|
|
|
|
and from inline functions in other files. So I check to see
|
|
|
|
|
if this is a file we've seen before.
|
|
|
|
|
|
|
|
|
|
This seems to be a lot of time to be spending on N_SOL, but
|
|
|
|
|
things like "break expread.y:435" need to work (I
|
|
|
|
|
suppose the psymtab_include_list could be hashed or put
|
|
|
|
|
in a binary tree, if profiling shows this is a major hog). */
|
|
|
|
|
{
|
|
|
|
|
register int i;
|
|
|
|
|
for (i = 0; i < includes_used; i++)
|
|
|
|
|
if (!strcmp (namestring, psymtab_include_list[i]))
|
|
|
|
|
{
|
|
|
|
|
i = -1;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
if (i == -1)
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
psymtab_include_list[includes_used++] = namestring;
|
|
|
|
|
if (includes_used >= includes_allocated)
|
|
|
|
|
{
|
|
|
|
|
char **orig = psymtab_include_list;
|
|
|
|
|
|
|
|
|
|
psymtab_include_list = (char **)
|
|
|
|
|
alloca ((includes_allocated *= 2) *
|
|
|
|
|
sizeof (char *));
|
|
|
|
|
bcopy (orig, psymtab_include_list,
|
|
|
|
|
includes_used * sizeof (char *));
|
|
|
|
|
}
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
case N_LSYM: /* Typedef or automatic variable. */
|
|
|
|
|
SET_NAMESTRING();
|
|
|
|
|
|
|
|
|
|
p = (char *) index (namestring, ':');
|
|
|
|
|
|
|
|
|
|
/* Skip if there is no :. */
|
|
|
|
|
if (!p) continue;
|
|
|
|
|
|
|
|
|
|
switch (p[1])
|
|
|
|
|
{
|
|
|
|
|
case 'T':
|
|
|
|
|
ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
|
|
|
|
|
STRUCT_NAMESPACE, LOC_TYPEDEF,
|
|
|
|
|
static_psymbols, bufp->n_value);
|
|
|
|
|
goto check_enum;
|
|
|
|
|
case 't':
|
|
|
|
|
ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
|
|
|
|
|
VAR_NAMESPACE, LOC_TYPEDEF,
|
|
|
|
|
static_psymbols, bufp->n_value);
|
|
|
|
|
check_enum:
|
|
|
|
|
/* If this is an enumerated type, we need to
|
|
|
|
|
add all the enum constants to the partial symbol
|
|
|
|
|
table. This does not cover enums without names, e.g.
|
|
|
|
|
"enum {a, b} c;" in C, but fortunately those are
|
|
|
|
|
rare. There is no way for GDB to find those from the
|
|
|
|
|
enum type without spending too much time on it. Thus
|
|
|
|
|
to solve this problem, the compiler needs to put out separate
|
|
|
|
|
constant symbols ('c' N_LSYMS) for enum constants in
|
|
|
|
|
enums without names. */
|
|
|
|
|
|
|
|
|
|
/* We are looking for something of the form
|
|
|
|
|
<name> ":" ("t" | "T") [<number> "="] "e"
|
|
|
|
|
{<constant> ":" <value> ","} ";". */
|
|
|
|
|
|
|
|
|
|
/* Skip over the colon and the 't' or 'T'. */
|
|
|
|
|
p += 2;
|
|
|
|
|
/* This type may be given a number. Skip over it. */
|
|
|
|
|
while ((*p >= '0' && *p <= '9')
|
|
|
|
|
|| *p == '=')
|
|
|
|
|
p++;
|
|
|
|
|
|
|
|
|
|
if (*p++ == 'e')
|
|
|
|
|
{
|
|
|
|
|
/* We have found an enumerated type. */
|
|
|
|
|
/* According to comments in read_enum_type
|
|
|
|
|
a comma could end it instead of a semicolon.
|
|
|
|
|
I don't know where that happens.
|
|
|
|
|
Accept either. */
|
|
|
|
|
while (*p && *p != ';' && *p != ',')
|
|
|
|
|
{
|
|
|
|
|
char *q;
|
|
|
|
|
|
|
|
|
|
/* Check for and handle cretinous dbx symbol name
|
|
|
|
|
continuation! */
|
|
|
|
|
if (*p == '\\')
|
|
|
|
|
p = next_symbol_text ();
|
|
|
|
|
|
|
|
|
|
/* Point to the character after the name
|
|
|
|
|
of the enum constant. */
|
|
|
|
|
for (q = p; *q && *q != ':'; q++)
|
|
|
|
|
;
|
|
|
|
|
/* Note that the value doesn't matter for
|
|
|
|
|
enum constants in psymtabs, just in symtabs. */
|
|
|
|
|
ADD_PSYMBOL_TO_LIST (p, q - p,
|
|
|
|
|
VAR_NAMESPACE, LOC_CONST,
|
|
|
|
|
static_psymbols, 0);
|
|
|
|
|
/* Point past the name. */
|
|
|
|
|
p = q;
|
|
|
|
|
/* Skip over the value. */
|
|
|
|
|
while (*p && *p != ',')
|
|
|
|
|
p++;
|
|
|
|
|
/* Advance past the comma. */
|
|
|
|
|
if (*p)
|
|
|
|
|
p++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
continue;
|
|
|
|
|
case 'c':
|
|
|
|
|
/* Constant, e.g. from "const" in Pascal. */
|
|
|
|
|
ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
|
|
|
|
|
VAR_NAMESPACE, LOC_CONST,
|
|
|
|
|
static_psymbols, bufp->n_value);
|
|
|
|
|
continue;
|
|
|
|
|
default:
|
|
|
|
|
#ifdef PROFILE_TYPES
|
|
|
|
|
if (isalpha(p[1]))
|
|
|
|
|
printf ("Funny...LSYM with a letter that isn't a type\n");
|
|
|
|
|
autovars++;
|
|
|
|
|
#endif
|
|
|
|
|
/* Skip if the thing following the : is
|
|
|
|
|
not a letter (which indicates declaration of a local
|
|
|
|
|
variable, which we aren't interested in). */
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
case N_FUN:
|
|
|
|
|
#if 0
|
|
|
|
|
/* This special-casing of N_FUN is just wrong; N_FUN
|
|
|
|
|
does not mean "function"; it means "text segment".
|
|
|
|
|
So N_FUN can go with 'V', etc. as well as 'f' or 'F'. */
|
|
|
|
|
|
|
|
|
|
SET_NAMESTRING();
|
|
|
|
|
|
|
|
|
|
p = (char *) index (namestring, ':');
|
|
|
|
|
|
|
|
|
|
if (!p || p[1] == 'F') continue;
|
|
|
|
|
|
|
|
|
|
#ifdef PROFILE_TYPES
|
|
|
|
|
if (p[1] != 'f')
|
|
|
|
|
printf ("Funny...FUN with a letter that isn't 'F' or 'f'.\n");
|
|
|
|
|
global_funs++;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
|
|
|
|
|
VAR_NAMESPACE, LOC_BLOCK,
|
|
|
|
|
static_psymbols, bufp->n_value);
|
|
|
|
|
|
|
|
|
|
continue;
|
|
|
|
|
#endif /* 0 */
|
|
|
|
|
case N_GSYM: /* Global (extern) variable; can be
|
|
|
|
|
data or bss (sigh). */
|
|
|
|
|
case N_STSYM: /* Data seg var -- static */
|
|
|
|
|
case N_LCSYM: /* BSS " */
|
|
|
|
|
|
|
|
|
|
/* Following may probably be ignored; I'll leave them here
|
|
|
|
|
for now (until I do Pascal and Modula 2 extensions). */
|
|
|
|
|
|
|
|
|
|
case N_PC: /* I may or may not need this; I
|
|
|
|
|
suspect not. */
|
|
|
|
|
#ifdef N_M2C
|
|
|
|
|
case N_M2C: /* I suspect that I can ignore this here. */
|
|
|
|
|
case N_SCOPE: /* Same. */
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
SET_NAMESTRING();
|
|
|
|
|
|
|
|
|
|
p = (char *) index (namestring, ':');
|
|
|
|
|
if (!p)
|
|
|
|
|
continue; /* Not a debugging symbol. */
|
|
|
|
|
|
|
|
|
|
process_symbol_for_psymtab:
|
|
|
|
|
|
|
|
|
|
/* Main processing section for debugging symbols which
|
|
|
|
|
the initial read through the symbol tables needs to worry
|
|
|
|
|
about. If we reach this point, the symbol which we are
|
|
|
|
|
considering is definitely one we are interested in.
|
|
|
|
|
p must also contain the (valid) index into the namestring
|
|
|
|
|
which indicates the debugging type symbol. */
|
|
|
|
|
|
|
|
|
|
switch (p[1])
|
|
|
|
|
{
|
|
|
|
|
case 'c':
|
|
|
|
|
ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
|
|
|
|
|
VAR_NAMESPACE, LOC_CONST,
|
|
|
|
|
static_psymbols, bufp->n_value);
|
|
|
|
|
continue;
|
|
|
|
|
case 'S':
|
|
|
|
|
ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
|
|
|
|
|
VAR_NAMESPACE, LOC_STATIC,
|
|
|
|
|
static_psymbols, bufp->n_value);
|
|
|
|
|
continue;
|
|
|
|
|
case 'G':
|
|
|
|
|
ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
|
|
|
|
|
VAR_NAMESPACE, LOC_EXTERNAL,
|
|
|
|
|
global_psymbols, bufp->n_value);
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
case 't':
|
|
|
|
|
ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
|
|
|
|
|
VAR_NAMESPACE, LOC_TYPEDEF,
|
|
|
|
|
global_psymbols, bufp->n_value);
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
case 'f':
|
|
|
|
|
ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
|
|
|
|
|
VAR_NAMESPACE, LOC_BLOCK,
|
|
|
|
|
static_psymbols, bufp->n_value);
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
/* Two things show up here (hopefully); static symbols of
|
|
|
|
|
local scope (static used inside braces) or extensions
|
|
|
|
|
of structure symbols. We can ignore both. */
|
|
|
|
|
case 'V':
|
|
|
|
|
case '(':
|
|
|
|
|
case '0':
|
|
|
|
|
case '1':
|
|
|
|
|
case '2':
|
|
|
|
|
case '3':
|
|
|
|
|
case '4':
|
|
|
|
|
case '5':
|
|
|
|
|
case '6':
|
|
|
|
|
case '7':
|
|
|
|
|
case '8':
|
|
|
|
|
case '9':
|
|
|
|
|
/* Global functions are ignored here. I'm not
|
|
|
|
|
sure what psymtab they go into (or just the misc
|
|
|
|
|
function vector). */
|
|
|
|
|
case 'F':
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
fatal ("Internal error: Unexpected debugging symbol type '%c' at symnum %d.\n",
|
|
|
|
|
p[1], symnum);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifdef N_BINCL
|
|
|
|
|
case N_EXCL:
|
|
|
|
|
|
|
|
|
|
SET_NAMESTRING();
|
|
|
|
|
|
|
|
|
|
/* Find the corresponding bincl and mark that psymtab on the
|
|
|
|
|
psymtab dependency list */
|
|
|
|
|
{
|
|
|
|
|
struct partial_symtab *needed_pst =
|
|
|
|
|
find_corresponding_bincl_psymtab (namestring, bufp->n_value);
|
|
|
|
|
|
|
|
|
|
/* If this include file was defined earlier in this file,
|
|
|
|
|
leave it alone. */
|
|
|
|
|
if (needed_pst == pst) continue;
|
|
|
|
|
|
|
|
|
|
if (needed_pst)
|
|
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
int found = 0;
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < dependencies_used; i++)
|
|
|
|
|
if (dependency_list[i] == needed_pst)
|
|
|
|
|
{
|
|
|
|
|
found = 1;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If it's already in the list, skip the rest. */
|
|
|
|
|
if (found) continue;
|
|
|
|
|
|
|
|
|
|
dependency_list[dependencies_used++] = needed_pst;
|
|
|
|
|
if (dependencies_used >= dependencies_allocated)
|
|
|
|
|
{
|
|
|
|
|
struct partial_symtab **orig = dependency_list;
|
|
|
|
|
dependency_list =
|
|
|
|
|
(struct partial_symtab **)
|
|
|
|
|
alloca ((dependencies_allocated *= 2)
|
|
|
|
|
* sizeof (struct partial_symtab *));
|
|
|
|
|
bcopy (orig, dependency_list,
|
|
|
|
|
(dependencies_used
|
|
|
|
|
* sizeof (struct partial_symtab *)));
|
|
|
|
|
#ifdef DEBUG_INFO
|
|
|
|
|
fprintf (stderr, "Had to reallocate dependency list.\n");
|
|
|
|
|
fprintf (stderr, "New dependencies allocated: %d\n",
|
|
|
|
|
dependencies_allocated);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
error ("Invalid symbol data: \"repeated\" header file not previously seen, at symtab pos %d.",
|
|
|
|
|
symnum);
|
|
|
|
|
}
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
case N_EINCL:
|
|
|
|
|
#endif
|
|
|
|
|
#ifdef N_DSLINE
|
|
|
|
|
case N_DSLINE:
|
|
|
|
|
#endif
|
|
|
|
|
#ifdef N_BSLINE
|
|
|
|
|
case N_BSLINE:
|
|
|
|
|
#endif
|
|
|
|
|
case N_SSYM: /* Claim: Structure or union element.
|
|
|
|
|
Hopefully, I can ignore this. */
|
|
|
|
|
case N_ENTRY: /* Alternate entry point; can ignore. */
|
|
|
|
|
#ifdef N_MAIN
|
|
|
|
|
case N_MAIN: /* Can definitely ignore this. */
|
|
|
|
|
#endif
|
|
|
|
|
case N_LENG:
|
|
|
|
|
case N_BCOMM:
|
|
|
|
|
case N_ECOMM:
|
|
|
|
|
case N_ECOML:
|
|
|
|
|
case N_FNAME:
|
|
|
|
|
case N_SLINE:
|
|
|
|
|
case N_RSYM:
|
|
|
|
|
case N_PSYM:
|
|
|
|
|
case N_LBRAC:
|
|
|
|
|
case N_RBRAC:
|
|
|
|
|
/* These symbols aren't interesting; don't worry about them */
|
|
|
|
|
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
/* If we haven't found it yet, we've got problems */
|
|
|
|
|
|
|
|
|
|
if (IGNORE_SYMBOL (bufp->n_type))
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
fatal ("Bad symbol type 0x%x encountered in gdb scan", bufp->n_type);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If there's stuff to be cleaned up, clean it up. */
|
|
|
|
|
if (entry_point < bufp->n_value
|
|
|
|
|
&& entry_point >= last_o_file_start)
|
|
|
|
|
{
|
|
|
|
|
startup_file_start = last_o_file_start;
|
|
|
|
|
startup_file_end = bufp->n_value;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (pst)
|
|
|
|
|
{
|
|
|
|
|
end_psymtab (pst, psymtab_include_list, includes_used,
|
|
|
|
|
symnum * sizeof (struct nlist), end_of_text_addr,
|
|
|
|
|
dependency_list, dependencies_used,
|
|
|
|
|
global_psymbols.next, static_psymbols.next);
|
|
|
|
|
includes_used = 0;
|
|
|
|
|
dependencies_used = 0;
|
|
|
|
|
pst = (struct partial_symtab *) 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* sort the global & static symtab list so we can binary search them */
|
|
|
|
|
qsort (global_psymbols.list, global_psymbols.next - global_psymbols.list,
|
|
|
|
|
sizeof (struct partial_symbol), compare_psymbols);
|
|
|
|
|
qsort (static_psymbols.list, static_psymbols.next - static_psymbols.list,
|
|
|
|
|
sizeof (struct partial_symbol), compare_psymbols);
|
|
|
|
|
free_bincl_list ();
|
|
|
|
|
discard_cleanups (old_chain);
|
|
|
|
|
#ifdef PROFILE_TYPES
|
|
|
|
|
{
|
|
|
|
|
int i, j;
|
|
|
|
|
#define __define_stab(SYM, NUMBER, NAME) {NUMBER, NAME},
|
|
|
|
|
static struct xyzzy {
|
|
|
|
|
unsigned char symnum;
|
|
|
|
|
char *name;
|
|
|
|
|
} tmp_list[] = {
|
|
|
|
|
#include "stab.def"
|
|
|
|
|
{0x1, "eREF"},
|
|
|
|
|
{0x2, "ABS"},
|
|
|
|
|
{0x3, "eABS"},
|
|
|
|
|
{0x4, "TEXT"},
|
|
|
|
|
{0x5, "eTEXT"},
|
|
|
|
|
{0x6, "DATA"},
|
|
|
|
|
{0x7, "eDATA"},
|
|
|
|
|
{0x8, "BSS"},
|
|
|
|
|
{0x9, "eBSS"},
|
|
|
|
|
{0x12, "COMM"},
|
|
|
|
|
{0x13, "eCOMM"},
|
|
|
|
|
{0x1f, "FN"},
|
|
|
|
|
{0, "Unknown"},
|
|
|
|
|
};
|
|
|
|
|
for (i = 0; i < 256; i++)
|
|
|
|
|
{
|
|
|
|
|
for (j = 0; j < (sizeof (tmp_list) / sizeof (struct xyzzy)) - 1; j++)
|
|
|
|
|
if (tmp_list[j].symnum == i)
|
|
|
|
|
break;
|
|
|
|
|
printf ("Symbol \"%s\" (0x%x) occured %d times.\n",
|
|
|
|
|
tmp_list[j].name, i, profile_types[i]);
|
|
|
|
|
}
|
|
|
|
|
printf ("Auto vars (under LSYM): %d\n", autovars);
|
|
|
|
|
printf ("Global funs (under FUN): %d\n", global_funs);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Allocate and partially fill a partial symtab. It will be
|
|
|
|
|
* completely filled at the end of the symbol list.
|
|
|
|
|
*/
|
|
|
|
|
static struct partial_symtab *
|
|
|
|
|
start_psymtab (filename, textlow, ldsymoff, global_syms, static_syms)
|
|
|
|
|
char *filename;
|
|
|
|
|
int textlow;
|
|
|
|
|
int ldsymoff;
|
|
|
|
|
struct partial_symbol *global_syms;
|
|
|
|
|
struct partial_symbol *static_syms;
|
|
|
|
|
{
|
|
|
|
|
struct partial_symtab *result =
|
|
|
|
|
(struct partial_symtab *) obstack_alloc (psymbol_obstack,
|
|
|
|
|
sizeof (struct partial_symtab));
|
|
|
|
|
|
|
|
|
|
result->filename =
|
|
|
|
|
(char *) obstack_alloc (psymbol_obstack,
|
|
|
|
|
strlen (filename) + 1);
|
|
|
|
|
strcpy (result->filename, filename);
|
|
|
|
|
|
|
|
|
|
result->textlow = textlow;
|
|
|
|
|
result->ldsymoff = ldsymoff;
|
|
|
|
|
|
|
|
|
|
result->readin = 0;
|
|
|
|
|
|
|
|
|
|
result->globals_offset = global_syms - global_psymbols.list;
|
|
|
|
|
result->statics_offset = static_syms - static_psymbols.list;
|
|
|
|
|
|
|
|
|
|
result->n_global_syms = 0;
|
|
|
|
|
result->n_static_syms = 0;
|
|
|
|
|
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Close off the current usage of a partial_symbol table entry. This
|
|
|
|
|
involves setting the correct number of includes (with a realloc),
|
|
|
|
|
setting the high text mark, setting the symbol length in the
|
|
|
|
|
executable, and setting the length of the global and static lists
|
|
|
|
|
of psymbols.
|
|
|
|
|
|
|
|
|
|
The global symbols and static symbols are then seperately sorted.
|
|
|
|
|
|
|
|
|
|
Then the partial symtab is put on the global list.
|
|
|
|
|
*** List variables and peculiarities of same. ***
|
|
|
|
|
*/
|
|
|
|
|
static void
|
|
|
|
|
end_psymtab (pst, include_list, num_includes, capping_symbol_offset,
|
|
|
|
|
capping_text, dependency_list, number_dependencies,
|
|
|
|
|
capping_global, capping_static)
|
|
|
|
|
struct partial_symtab *pst;
|
|
|
|
|
char **include_list;
|
|
|
|
|
int num_includes;
|
|
|
|
|
int capping_symbol_offset;
|
|
|
|
|
int capping_text;
|
|
|
|
|
struct partial_symtab **dependency_list;
|
|
|
|
|
int number_dependencies;
|
|
|
|
|
struct partial_symbol *capping_global, *capping_static;
|
|
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
register struct partial_symbol *ps;
|
|
|
|
|
|
|
|
|
|
pst->ldsymlen = capping_symbol_offset - pst->ldsymoff;
|
|
|
|
|
pst->texthigh = capping_text;
|
|
|
|
|
|
|
|
|
|
pst->n_global_syms =
|
|
|
|
|
capping_global - (global_psymbols.list + pst->globals_offset);
|
|
|
|
|
pst->n_static_syms =
|
|
|
|
|
capping_static - (static_psymbols.list + pst->statics_offset);
|
|
|
|
|
|
|
|
|
|
pst->dependencies = (struct partial_symtab **)
|
|
|
|
|
obstack_alloc (psymbol_obstack,
|
|
|
|
|
number_dependencies * sizeof (struct partial_symtab *));
|
|
|
|
|
bcopy (dependency_list, pst->dependencies,
|
|
|
|
|
number_dependencies * sizeof (struct partial_symtab *));
|
|
|
|
|
pst->number_of_dependencies = number_dependencies;
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < num_includes; i++)
|
|
|
|
|
{
|
|
|
|
|
/* Eventually, put this on obstack */
|
|
|
|
|
struct partial_symtab *subpst =
|
|
|
|
|
(struct partial_symtab *)
|
|
|
|
|
obstack_alloc (psymbol_obstack,
|
|
|
|
|
sizeof (struct partial_symtab));
|
|
|
|
|
|
|
|
|
|
subpst->filename =
|
|
|
|
|
(char *) obstack_alloc (psymbol_obstack,
|
|
|
|
|
strlen (include_list[i]) + 1);
|
|
|
|
|
strcpy (subpst->filename, include_list[i]);
|
|
|
|
|
|
|
|
|
|
subpst->ldsymoff =
|
|
|
|
|
subpst->ldsymlen =
|
|
|
|
|
subpst->textlow =
|
|
|
|
|
subpst->texthigh = 0;
|
|
|
|
|
subpst->readin = 0;
|
|
|
|
|
|
|
|
|
|
subpst->dependencies = (struct partial_symtab **)
|
|
|
|
|
obstack_alloc (psymbol_obstack,
|
|
|
|
|
sizeof (struct partial_symtab *));
|
|
|
|
|
subpst->dependencies[0] = pst;
|
|
|
|
|
subpst->number_of_dependencies = 1;
|
|
|
|
|
|
|
|
|
|
subpst->globals_offset =
|
|
|
|
|
subpst->n_global_syms =
|
|
|
|
|
subpst->statics_offset =
|
|
|
|
|
subpst->n_static_syms = 0;
|
|
|
|
|
|
|
|
|
|
subpst->next = partial_symtab_list;
|
|
|
|
|
partial_symtab_list = subpst;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (ps = global_psymbols.list + pst->globals_offset;
|
|
|
|
|
ps < capping_global; ++ps)
|
|
|
|
|
ps->pst = pst;
|
|
|
|
|
for (ps = static_psymbols.list + pst->statics_offset;
|
|
|
|
|
ps < capping_static; ++ps)
|
|
|
|
|
ps->pst = pst;
|
|
|
|
|
|
|
|
|
|
/* Put the psymtab on the psymtab list */
|
|
|
|
|
pst->next = partial_symtab_list;
|
|
|
|
|
partial_symtab_list = pst;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Helper routines for psymtab_to_symtab. */
|
|
|
|
|
static void scan_file_globals ();
|
|
|
|
|
static void read_ofile_symtab ();
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
psymtab_to_symtab_1 (pst, desc, stringtab, stringtab_size, sym_offset)
|
|
|
|
|
struct partial_symtab *pst;
|
|
|
|
|
int desc;
|
|
|
|
|
char *stringtab;
|
|
|
|
|
int stringtab_size;
|
|
|
|
|
int sym_offset;
|
|
|
|
|
{
|
|
|
|
|
struct cleanup *old_chain;
|
|
|
|
|
int i;
|
|
|
|
|
|
|
|
|
|
if (!pst)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
if (pst->readin)
|
|
|
|
|
{
|
|
|
|
|
fprintf (stderr, "Psymtab for %s already read in. Shouldn't happen.\n",
|
|
|
|
|
pst->filename);
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Read in all partial symbtabs on which this one is dependent */
|
|
|
|
|
for (i = 0; i < pst->number_of_dependencies; i++)
|
|
|
|
|
if (!pst->dependencies[i]->readin)
|
|
|
|
|
{
|
|
|
|
|
/* Inform about additional files that need to be read in. */
|
|
|
|
|
if (info_verbose)
|
|
|
|
|
{
|
|
|
|
|
printf_filtered (" and %s...", pst->dependencies[i]->filename);
|
|
|
|
|
fflush (stdout);
|
|
|
|
|
}
|
|
|
|
|
psymtab_to_symtab_1 (pst->dependencies[i], desc,
|
|
|
|
|
stringtab, stringtab_size, sym_offset);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (pst->ldsymlen) /* Otherwise it's a dummy */
|
|
|
|
|
{
|
|
|
|
|
/* Init stuff necessary for reading in symbols */
|
|
|
|
|
free_pendings = 0;
|
|
|
|
|
pending_blocks = 0;
|
|
|
|
|
file_symbols = 0;
|
|
|
|
|
global_symbols = 0;
|
|
|
|
|
old_chain = make_cleanup (really_free_pendings, 0);
|
|
|
|
|
|
|
|
|
|
/* Read in this files symbols */
|
|
|
|
|
lseek (desc, sym_offset, L_SET);
|
|
|
|
|
read_ofile_symtab (desc, stringtab, stringtab_size,
|
|
|
|
|
pst->ldsymoff,
|
|
|
|
|
pst->ldsymlen, pst->textlow,
|
|
|
|
|
pst->texthigh - pst->textlow, 0);
|
|
|
|
|
sort_symtab_syms (symtab_list); /* At beginning since just added */
|
|
|
|
|
|
|
|
|
|
do_cleanups (old_chain);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pst->readin = 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Read in all of the symbols for a given psymtab for real. Return
|
|
|
|
|
* the value of the symtab you create. Do not free the storage
|
|
|
|
|
* allocated to the psymtab; it may have pointers to it.
|
|
|
|
|
*/
|
|
|
|
|
struct symtab *
|
|
|
|
|
psymtab_to_symtab(pst)
|
|
|
|
|
struct partial_symtab *pst;
|
|
|
|
|
{
|
|
|
|
|
int desc;
|
|
|
|
|
DECLARE_FILE_HEADERS;
|
|
|
|
|
char *stringtab;
|
|
|
|
|
struct partial_symtab **list_patch;
|
|
|
|
|
int stsize, val;
|
|
|
|
|
struct stat statbuf;
|
|
|
|
|
struct cleanup *old_chain;
|
|
|
|
|
extern void close ();
|
|
|
|
|
int i;
|
|
|
|
|
struct symtab *result;
|
|
|
|
|
char *name = symfile; /* Some of the macros require the */
|
|
|
|
|
/* variable "name" to be defined in */
|
|
|
|
|
/* the context in which they execute */
|
|
|
|
|
/* (Yech!) */
|
|
|
|
|
|
|
|
|
|
if (!pst)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
if (pst->readin)
|
|
|
|
|
{
|
|
|
|
|
fprintf (stderr, "Psymtab for %s already read in. Shouldn't happen.\n",
|
|
|
|
|
pst->filename);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!name)
|
|
|
|
|
error("No symbol file currently specified; use command symbol-file");
|
|
|
|
|
|
|
|
|
|
if (pst->ldsymlen || pst->number_of_dependencies)
|
|
|
|
|
{
|
|
|
|
|
/* Print the message now, before reading the string table,
|
|
|
|
|
to avoid disconcerting pauses. */
|
|
|
|
|
if (info_verbose)
|
|
|
|
|
{
|
|
|
|
|
printf_filtered ("Reading in symbols for %s...", pst->filename);
|
|
|
|
|
fflush (stdout);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Open symbol file and read in string table */
|
|
|
|
|
if (stat (name, &statbuf) < 0)
|
|
|
|
|
perror_with_name (name);
|
|
|
|
|
desc = open(name, O_RDONLY, 0); /* symbol_file_command
|
|
|
|
|
guarrantees that the symbol file name
|
|
|
|
|
will be absolute, so there is no
|
|
|
|
|
need for openp */
|
|
|
|
|
|
|
|
|
|
old_chain = make_cleanup (close, desc);
|
|
|
|
|
|
|
|
|
|
if (desc < 0)
|
|
|
|
|
error("Symbol file not readable");
|
|
|
|
|
|
|
|
|
|
READ_FILE_HEADERS (desc, name);
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
/* Read in the string table */
|
|
|
|
|
lseek (desc, STRING_TABLE_OFFSET, L_SET);
|
|
|
|
|
READ_STRING_TABLE_SIZE (stsize);
|
|
|
|
|
if (stsize >= 0 && stsize < statbuf.st_size)
|
|
|
|
|
{
|
|
|
|
|
#ifdef BROKEN_LARGE_ALLOCA
|
|
|
|
|
stringtab = (char *) xmalloc (stsize);
|
|
|
|
|
make_cleanup (free, stringtab);
|
|
|
|
|
#else
|
|
|
|
|
stringtab = (char *) alloca (stsize);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
stringtab = NULL;
|
|
|
|
|
if (stringtab == NULL)
|
|
|
|
|
error ("ridiculous string table size: %d bytes", stsize);
|
|
|
|
|
|
|
|
|
|
/* Usually READ_STRING_TABLE_SIZE will have shifted the file pointer.
|
|
|
|
|
Occaisionally, it won't. */
|
|
|
|
|
val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
|
|
|
|
|
if (val < 0)
|
|
|
|
|
perror_with_name (name);
|
|
|
|
|
val = myread (desc, stringtab, stsize);
|
|
|
|
|
if (val < 0)
|
|
|
|
|
perror_with_name (name);
|
|
|
|
|
#endif /* 0 */
|
|
|
|
|
stringtab = symfile_string_table;
|
|
|
|
|
stsize = symfile_string_table_size;
|
|
|
|
|
|
|
|
|
|
psymtab_to_symtab_1 (pst, desc, stringtab, stsize,
|
|
|
|
|
SYMBOL_TABLE_OFFSET);
|
|
|
|
|
|
|
|
|
|
/* Match with global symbols. This only needs to be done once,
|
|
|
|
|
after all of the symtabs and dependencies have been read in. */
|
|
|
|
|
scan_file_globals ();
|
|
|
|
|
|
|
|
|
|
do_cleanups (old_chain);
|
|
|
|
|
|
|
|
|
|
/* Finish up the debug error message. */
|
|
|
|
|
if (info_verbose)
|
|
|
|
|
printf_filtered ("done.\n");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Search through list for correct name. */
|
|
|
|
|
for (result = symtab_list; result; result = result->next)
|
|
|
|
|
if (!strcmp (result->filename, pst->filename))
|
|
|
|
|
return result;
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Scan through all of the global symbols defined in the object file,
|
|
|
|
|
* assigning values to the debugging symbols that need to be assigned
|
|
|
|
|
* to. Get these symbols from the misc function list.
|
|
|
|
|
*/
|
|
|
|
|
static void
|
|
|
|
|
scan_file_globals ()
|
|
|
|
|
{
|
|
|
|
|
int hash;
|
|
|
|
|
int mf;
|
|
|
|
|
|
|
|
|
|
for (mf = 0; mf < misc_function_count; mf++)
|
|
|
|
|
{
|
|
|
|
|
char *namestring = misc_function_vector[mf].name;
|
|
|
|
|
struct symbol *sym, *prev;
|
|
|
|
|
|
|
|
|
|
QUIT;
|
|
|
|
|
|
|
|
|
|
prev = (struct symbol *) 0;
|
|
|
|
|
|
|
|
|
|
/* Get the hash index and check all the symbols
|
|
|
|
|
under that hash index. */
|
|
|
|
|
|
|
|
|
|
hash = hashname (namestring);
|
|
|
|
|
|
|
|
|
|
for (sym = global_sym_chain[hash]; sym;)
|
|
|
|
|
{
|
|
|
|
|
if (*namestring == SYMBOL_NAME (sym)[0]
|
|
|
|
|
&& !strcmp(namestring + 1, SYMBOL_NAME (sym) + 1))
|
|
|
|
|
{
|
|
|
|
|
/* Splice this symbol out of the hash chain and
|
|
|
|
|
assign the value we have to it. */
|
|
|
|
|
if (prev)
|
|
|
|
|
SYMBOL_VALUE (prev) = SYMBOL_VALUE (sym);
|
|
|
|
|
else
|
|
|
|
|
global_sym_chain[hash]
|
|
|
|
|
= (struct symbol *) SYMBOL_VALUE (sym);
|
|
|
|
|
|
|
|
|
|
/* Check to see whether we need to fix up a common block. */
|
|
|
|
|
/* Note: this code might be executed several times for
|
|
|
|
|
the same symbol if there are multiple references. */
|
|
|
|
|
if (SYMBOL_CLASS (sym) == LOC_BLOCK)
|
|
|
|
|
fix_common_block (sym, misc_function_vector[mf].address);
|
|
|
|
|
else
|
|
|
|
|
SYMBOL_VALUE (sym) = misc_function_vector[mf].address;
|
|
|
|
|
|
|
|
|
|
if (prev)
|
|
|
|
|
sym = (struct symbol *) SYMBOL_VALUE (prev);
|
|
|
|
|
else
|
|
|
|
|
sym = global_sym_chain[hash];
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
prev = sym;
|
|
|
|
|
sym = (struct symbol *) SYMBOL_VALUE (sym);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Read in a defined section of a specific object file's symbols.
|
|
|
|
|
*
|
|
|
|
|
* DESC is the file descriptor for the file, positioned at the
|
|
|
|
|
* beginning of the symtab
|
|
|
|
|
* STRINGTAB is a pointer to the files string
|
|
|
|
|
* table, already read in
|
|
|
|
|
* SYM_OFFSET is the offset within the file of
|
|
|
|
|
* the beginning of the symbols we want to read, NUM_SUMBOLS is the
|
|
|
|
|
* number of symbols to read
|
|
|
|
|
* TEXT_OFFSET is the offset to be added to
|
|
|
|
|
* all values of symbols coming in and
|
|
|
|
|
* TEXT_SIZE is the size of the text segment read in.
|
|
|
|
|
* OFFSET is a flag which indicates that the value of all of the
|
|
|
|
|
* symbols should be offset by TEXT_OFFSET (for the purposes of
|
|
|
|
|
* incremental linking).
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
read_ofile_symtab (desc, stringtab, stringtab_size, sym_offset,
|
|
|
|
|
sym_size, text_offset, text_size, offset)
|
|
|
|
|
int desc;
|
|
|
|
|
register char *stringtab;
|
|
|
|
|
int sym_offset;
|
|
|
|
|
int sym_size;
|
|
|
|
|
int text_offset;
|
|
|
|
|
int text_size;
|
|
|
|
|
int offset;
|
|
|
|
|
{
|
|
|
|
|
register char *namestring;
|
|
|
|
|
register struct symbol *sym, *prev;
|
|
|
|
|
int hash;
|
|
|
|
|
struct cleanup *old_chain;
|
|
|
|
|
struct nlist *bufp;
|
|
|
|
|
unsigned char type;
|
|
|
|
|
#ifdef N_BINCL
|
|
|
|
|
subfile_stack = 0;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
stringtab_global = stringtab;
|
|
|
|
|
last_source_file = 0;
|
|
|
|
|
|
|
|
|
|
symtab_input_desc = desc;
|
|
|
|
|
symbuf_end = symbuf_idx = 0;
|
|
|
|
|
|
|
|
|
|
/* It is necessary to actually read one symbol *before* the start
|
|
|
|
|
of this symtab's symbols, because the GCC_COMPILED_FLAG_SYMBOL
|
|
|
|
|
occurs before the N_SO symbol.
|
|
|
|
|
|
|
|
|
|
Detecting this in read_dbx_symtab
|
|
|
|
|
would slow down initial readin, so we look for it here instead. */
|
|
|
|
|
if (sym_offset >= sizeof (struct nlist))
|
|
|
|
|
{
|
|
|
|
|
lseek (desc, sym_offset - sizeof (struct nlist), L_INCR);
|
|
|
|
|
fill_symbuf ();
|
|
|
|
|
bufp = &symbuf[symbuf_idx++];
|
|
|
|
|
|
|
|
|
|
if (bufp->n_un.n_strx < 0 || bufp->n_un.n_strx >= stringtab_size)
|
|
|
|
|
error ("Invalid symbol data: bad string table offset: %d",
|
|
|
|
|
bufp->n_un.n_strx);
|
|
|
|
|
namestring = bufp->n_un.n_strx + stringtab;
|
|
|
|
|
|
|
|
|
|
processing_gcc_compilation =
|
|
|
|
|
(bufp->n_type == N_TEXT
|
|
|
|
|
&& !strcmp (namestring, GCC_COMPILED_FLAG_SYMBOL));
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* The N_SO starting this symtab is the first symbol, so we
|
|
|
|
|
better not check the symbol before it. I'm not this can
|
|
|
|
|
happen, but it doesn't hurt to check for it. */
|
|
|
|
|
lseek(desc, sym_offset, L_INCR);
|
|
|
|
|
processing_gcc_compilation = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (symbuf_idx == symbuf_end)
|
|
|
|
|
fill_symbuf();
|
|
|
|
|
bufp = &symbuf[symbuf_idx];
|
|
|
|
|
if ((unsigned char) bufp->n_type != N_SO)
|
|
|
|
|
fatal("First symbol in segment of executable not a source symbol");
|
|
|
|
|
|
|
|
|
|
for (symnum = 0;
|
|
|
|
|
symnum < sym_size / sizeof(struct nlist);
|
|
|
|
|
symnum++)
|
|
|
|
|
{
|
|
|
|
|
QUIT; /* Allow this to be interruptable */
|
|
|
|
|
if (symbuf_idx == symbuf_end)
|
|
|
|
|
fill_symbuf();
|
|
|
|
|
bufp = &symbuf[symbuf_idx++];
|
|
|
|
|
type = bufp->n_type;
|
|
|
|
|
|
|
|
|
|
if (offset &&
|
|
|
|
|
(type == N_TEXT || type == N_DATA || type == N_BSS))
|
|
|
|
|
bufp->n_value += text_offset;
|
|
|
|
|
|
|
|
|
|
if (bufp->n_un.n_strx < 0 || bufp->n_un.n_strx >= stringtab_size)
|
|
|
|
|
error ("Invalid symbol data: bad string table offset: %d",
|
|
|
|
|
bufp->n_un.n_strx);
|
|
|
|
|
namestring = bufp->n_un.n_strx + stringtab;
|
|
|
|
|
|
|
|
|
|
if (type & N_STAB)
|
|
|
|
|
process_one_symbol(type, bufp->n_desc,
|
|
|
|
|
bufp->n_value, namestring);
|
|
|
|
|
/* We skip checking for a new .o or -l file; that should never
|
|
|
|
|
happen in this routine. */
|
|
|
|
|
else if (type == N_TEXT
|
|
|
|
|
&& !strcmp (namestring, GCC_COMPILED_FLAG_SYMBOL))
|
|
|
|
|
/* I don't think this code will ever be executed, because
|
|
|
|
|
the GCC_COMPILED_FLAG_SYMBOL usually is right before
|
|
|
|
|
the N_SO symbol which starts this source file.
|
|
|
|
|
However, there is no reason not to accept
|
|
|
|
|
the GCC_COMPILED_FLAG_SYMBOL anywhere. */
|
|
|
|
|
processing_gcc_compilation = 1;
|
|
|
|
|
else if (type & N_EXT || type == N_TEXT
|
|
|
|
|
#ifdef N_NBTEXT
|
|
|
|
|
|| type == N_NBTEXT
|
|
|
|
|
#endif
|
|
|
|
|
)
|
|
|
|
|
/* Global symbol: see if we came across a dbx defintion for
|
|
|
|
|
a corresponding symbol. If so, store the value. Remove
|
|
|
|
|
syms from the chain when their values are stored, but
|
|
|
|
|
search the whole chain, as there may be several syms from
|
|
|
|
|
different files with the same name. */
|
|
|
|
|
/* This is probably not true. Since the files will be read
|
|
|
|
|
in one at a time, each reference to a global symbol will
|
|
|
|
|
be satisfied in each file as it appears. So we skip this
|
|
|
|
|
section. */
|
|
|
|
|
&stringtab_global; /* For debugger; am I right? */
|
|
|
|
|
}
|
|
|
|
|
end_symtab (text_offset + text_size);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
hashname (name)
|
|
|
|
|
char *name;
|
|
|
|
|
{
|
|
|
|
|
register char *p = name;
|
|
|
|
|
register int total = p[0];
|
|
|
|
|
register int c;
|
|
|
|
|
|
|
|
|
|
c = p[1];
|
|
|
|
|
total += c << 2;
|
|
|
|
|
if (c)
|
|
|
|
|
{
|
|
|
|
|
c = p[2];
|
|
|
|
|
total += c << 4;
|
|
|
|
|
if (c)
|
|
|
|
|
total += p[3] << 6;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Ensure result is positive. */
|
|
|
|
|
if (total < 0) total += (1000 << 6);
|
|
|
|
|
return total % HASHSIZE;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Put all appropriate global symbols in the symseg data
|
|
|
|
|
onto the hash chains so that their addresses will be stored
|
|
|
|
|
when seen later in loader global symbols. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
hash_symsegs ()
|
|
|
|
|
{
|
|
|
|
|
/* Look at each symbol in each block in each symseg symtab. */
|
|
|
|
|
struct symtab *s;
|
|
|
|
|
for (s = symseg_chain; s; s = s->next)
|
|
|
|
|
{
|
|
|
|
|
register int n;
|
|
|
|
|
for (n = BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)) - 1; n >= 0; n--)
|
|
|
|
|
{
|
|
|
|
|
register struct block *b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), n);
|
|
|
|
|
register int i;
|
|
|
|
|
for (i = BLOCK_NSYMS (b) - 1; i >= 0; i--)
|
|
|
|
|
{
|
|
|
|
|
register struct symbol *sym = BLOCK_SYM (b, i);
|
|
|
|
|
|
|
|
|
|
/* Put the symbol on a chain if its value is an address
|
|
|
|
|
that is figured out by the loader. */
|
|
|
|
|
|
|
|
|
|
if (SYMBOL_CLASS (sym) == LOC_EXTERNAL)
|
|
|
|
|
{
|
|
|
|
|
register int hash = hashname (SYMBOL_NAME (sym));
|
|
|
|
|
SYMBOL_VALUE (sym) = (int) global_sym_chain[hash];
|
|
|
|
|
global_sym_chain[hash] = sym;
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_STATIC;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
process_one_symbol (type, desc, value, name)
|
|
|
|
|
int type, desc;
|
|
|
|
|
CORE_ADDR value;
|
|
|
|
|
char *name;
|
|
|
|
|
{
|
|
|
|
|
register struct context_stack *new;
|
|
|
|
|
char *colon_pos;
|
|
|
|
|
|
|
|
|
|
/* Something is wrong if we see real data before
|
|
|
|
|
seeing a source file name. */
|
|
|
|
|
|
|
|
|
|
if (last_source_file == 0 && type != N_SO)
|
|
|
|
|
{
|
|
|
|
|
/* Currently this ignores N_ENTRY on Gould machines, N_NSYM on machines
|
|
|
|
|
where that code is defined. */
|
|
|
|
|
if (IGNORE_SYMBOL (type))
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
error ("Invalid symbol data: does not start by identifying a source file.");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
switch (type)
|
|
|
|
|
{
|
|
|
|
|
case N_FUN:
|
|
|
|
|
case N_FNAME:
|
|
|
|
|
/* Either of these types of symbols indicates the start of
|
|
|
|
|
a new function. We must process its "name" normally for dbx,
|
|
|
|
|
but also record the start of a new lexical context, and possibly
|
|
|
|
|
also the end of the lexical context for the previous function. */
|
|
|
|
|
/* This is not always true. This type of symbol may indicate a
|
|
|
|
|
text segment variable. */
|
|
|
|
|
|
|
|
|
|
colon_pos = index (name, ':');
|
|
|
|
|
if (!colon_pos++
|
|
|
|
|
|| (*colon_pos != 'f' && *colon_pos != 'F'))
|
|
|
|
|
{
|
|
|
|
|
define_symbol (value, name, desc);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
within_function = 1;
|
|
|
|
|
if (context_stack_depth > 0)
|
|
|
|
|
{
|
|
|
|
|
new = &context_stack[--context_stack_depth];
|
|
|
|
|
/* Make a block for the local symbols within. */
|
|
|
|
|
finish_block (new->name, &local_symbols, new->old_blocks,
|
|
|
|
|
new->start_addr, value);
|
|
|
|
|
}
|
|
|
|
|
/* Stack must be empty now. */
|
|
|
|
|
if (context_stack_depth != 0)
|
|
|
|
|
error ("Invalid symbol data: unmatched N_LBRAC before symtab pos %d.",
|
|
|
|
|
symnum);
|
|
|
|
|
|
|
|
|
|
new = &context_stack[context_stack_depth++];
|
|
|
|
|
new->old_blocks = pending_blocks;
|
|
|
|
|
new->start_addr = value;
|
|
|
|
|
new->name = define_symbol (value, name, desc);
|
|
|
|
|
local_symbols = 0;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case N_LBRAC:
|
|
|
|
|
/* This "symbol" just indicates the start of an inner lexical
|
|
|
|
|
context within a function. */
|
|
|
|
|
|
|
|
|
|
if (context_stack_depth == context_stack_size)
|
|
|
|
|
{
|
|
|
|
|
context_stack_size *= 2;
|
|
|
|
|
context_stack = (struct context_stack *)
|
|
|
|
|
xrealloc (context_stack,
|
|
|
|
|
(context_stack_size
|
|
|
|
|
* sizeof (struct context_stack)));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
new = &context_stack[context_stack_depth++];
|
|
|
|
|
new->depth = desc;
|
|
|
|
|
new->locals = local_symbols;
|
|
|
|
|
new->old_blocks = pending_blocks;
|
|
|
|
|
new->start_addr = value;
|
|
|
|
|
new->name = 0;
|
|
|
|
|
local_symbols = 0;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case N_RBRAC:
|
|
|
|
|
/* This "symbol" just indicates the end of an inner lexical
|
|
|
|
|
context that was started with N_LBRAC. */
|
|
|
|
|
new = &context_stack[--context_stack_depth];
|
|
|
|
|
if (desc != new->depth)
|
|
|
|
|
error ("Invalid symbol data: N_LBRAC/N_RBRAC symbol mismatch, symtab pos %d.", symnum);
|
|
|
|
|
|
|
|
|
|
/* Some native compilers put the variable decls inside of an
|
|
|
|
|
LBRAC/RBRAC block. This macro should be nonzero if this
|
|
|
|
|
is true. DESC is N_DESC from the N_RBRAC symbol. */
|
|
|
|
|
#if !defined (VARIABLES_INSIDE_BLOCK)
|
|
|
|
|
#define VARIABLES_INSIDE_BLOCK(desc) 0
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Can only use new->locals as local symbols here if we're in
|
|
|
|
|
gcc or on a machine that puts them before the lbrack. */
|
|
|
|
|
if (!VARIABLES_INSIDE_BLOCK(desc))
|
|
|
|
|
local_symbols = new->locals;
|
|
|
|
|
|
|
|
|
|
/* If this is not the outermost LBRAC...RBRAC pair in the
|
|
|
|
|
function, its local symbols preceded it, and are the ones
|
|
|
|
|
just recovered from the context stack. Defined the block for them.
|
|
|
|
|
|
|
|
|
|
If this is the outermost LBRAC...RBRAC pair, there is no
|
|
|
|
|
need to do anything; leave the symbols that preceded it
|
|
|
|
|
to be attached to the function's own block. However, if
|
|
|
|
|
it is so, we need to indicate that we just moved outside
|
|
|
|
|
of the function. */
|
|
|
|
|
if (local_symbols
|
|
|
|
|
&& context_stack_depth > !VARIABLES_INSIDE_BLOCK(desc))
|
|
|
|
|
{
|
|
|
|
|
/* Muzzle a compiler bug that makes end < start. */
|
|
|
|
|
if (new->start_addr > value)
|
|
|
|
|
new->start_addr = value;
|
|
|
|
|
/* Make a block for the local symbols within. */
|
|
|
|
|
finish_block (0, &local_symbols, new->old_blocks,
|
|
|
|
|
new->start_addr + last_source_start_addr,
|
|
|
|
|
value + last_source_start_addr);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
within_function = 0;
|
|
|
|
|
}
|
|
|
|
|
if (VARIABLES_INSIDE_BLOCK(desc))
|
|
|
|
|
/* Now pop locals of block just finished. */
|
|
|
|
|
local_symbols = new->locals;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case N_FN | N_EXT:
|
|
|
|
|
/* This kind of symbol supposedly indicates the start
|
|
|
|
|
of an object file. In fact this type does not appear. */
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case N_SO:
|
|
|
|
|
/* This type of symbol indicates the start of data
|
|
|
|
|
for one source file.
|
|
|
|
|
Finish the symbol table of the previous source file
|
|
|
|
|
(if any) and start accumulating a new symbol table. */
|
|
|
|
|
#ifdef PCC_SOL_BROKEN
|
|
|
|
|
/* pcc bug, occasionally puts out SO for SOL. */
|
|
|
|
|
if (context_stack_depth > 0)
|
|
|
|
|
{
|
|
|
|
|
start_subfile (name);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
if (last_source_file)
|
|
|
|
|
end_symtab (value);
|
|
|
|
|
start_symtab (name, value);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case N_SOL:
|
|
|
|
|
/* This type of symbol indicates the start of data for
|
|
|
|
|
a sub-source-file, one whose contents were copied or
|
|
|
|
|
included in the compilation of the main source file
|
|
|
|
|
(whose name was given in the N_SO symbol.) */
|
|
|
|
|
start_subfile (name);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
#ifdef N_BINCL
|
|
|
|
|
case N_BINCL:
|
|
|
|
|
push_subfile ();
|
|
|
|
|
add_new_header_file (name, value);
|
|
|
|
|
start_subfile (name);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case N_EINCL:
|
|
|
|
|
start_subfile (pop_subfile ());
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case N_EXCL:
|
|
|
|
|
add_old_header_file (name, value);
|
|
|
|
|
break;
|
|
|
|
|
#endif /* have N_BINCL */
|
|
|
|
|
|
|
|
|
|
case N_SLINE:
|
|
|
|
|
/* This type of "symbol" really just records
|
|
|
|
|
one line-number -- core-address correspondence.
|
|
|
|
|
Enter it in the line list for this symbol table. */
|
|
|
|
|
record_line (desc, value);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case N_BCOMM:
|
|
|
|
|
if (common_block)
|
|
|
|
|
error ("Invalid symbol data: common within common at symtab pos %d",
|
|
|
|
|
symnum);
|
|
|
|
|
common_block = local_symbols;
|
|
|
|
|
common_block_i = local_symbols ? local_symbols->nsyms : 0;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case N_ECOMM:
|
|
|
|
|
/* Symbols declared since the BCOMM are to have the common block
|
|
|
|
|
start address added in when we know it. common_block points to
|
|
|
|
|
the first symbol after the BCOMM in the local_symbols list;
|
|
|
|
|
copy the list and hang it off the symbol for the common block name
|
|
|
|
|
for later fixup. */
|
|
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
struct pending *link = local_symbols;
|
|
|
|
|
struct symbol *sym =
|
|
|
|
|
(struct symbol *) xmalloc (sizeof (struct symbol));
|
|
|
|
|
bzero (sym, sizeof *sym);
|
|
|
|
|
SYMBOL_NAME (sym) = savestring (name, strlen (name));
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_BLOCK;
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = (enum namespace)((long)
|
|
|
|
|
copy_pending (local_symbols, common_block_i, common_block));
|
|
|
|
|
i = hashname (SYMBOL_NAME (sym));
|
|
|
|
|
SYMBOL_VALUE (sym) = (int) global_sym_chain[i];
|
|
|
|
|
global_sym_chain[i] = sym;
|
|
|
|
|
common_block = 0;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
case N_ECOML:
|
|
|
|
|
case N_LENG:
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
if (name)
|
|
|
|
|
define_symbol (value, name, desc);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* This function was added for C++ functionality. I presume that it
|
|
|
|
|
condenses the bunches formed by reading in an additional .o file
|
|
|
|
|
(incremental linking). */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
condense_addl_misc_bunches ()
|
|
|
|
|
{
|
|
|
|
|
register int i, j;
|
|
|
|
|
register struct misc_bunch *bunch;
|
|
|
|
|
#ifdef NAMES_HAVE_UNDERSCORE
|
|
|
|
|
int offset = 1;
|
|
|
|
|
#else
|
|
|
|
|
int offset = 0;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
misc_function_vector
|
|
|
|
|
= (struct misc_function *) xrealloc (misc_function_vector,
|
|
|
|
|
(misc_count + misc_function_count) * sizeof (struct misc_function));
|
|
|
|
|
|
|
|
|
|
j = misc_function_count;
|
|
|
|
|
bunch = misc_bunch;
|
|
|
|
|
while (bunch)
|
|
|
|
|
{
|
|
|
|
|
for (i = 0; i < misc_bunch_index; i++)
|
|
|
|
|
{
|
|
|
|
|
misc_function_vector[j] = bunch->contents[i];
|
|
|
|
|
misc_function_vector[j].name
|
|
|
|
|
= concat (misc_function_vector[j].name
|
|
|
|
|
+ (misc_function_vector[j].name[0] == '_' ? offset : 0),
|
|
|
|
|
"", "");
|
|
|
|
|
j++;
|
|
|
|
|
}
|
|
|
|
|
bunch = bunch->next;
|
|
|
|
|
misc_bunch_index = MISC_BUNCH_SIZE;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
misc_function_count += misc_count;
|
|
|
|
|
|
|
|
|
|
/* Sort the misc functions by address. */
|
|
|
|
|
|
|
|
|
|
qsort (misc_function_vector, misc_function_count,
|
|
|
|
|
sizeof (struct misc_function), compare_misc_functions);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Read in another .o file and create a symtab entry for it.*/
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
read_addl_syms (desc, stringtab, nlistlen, text_addr, text_size)
|
|
|
|
|
int desc;
|
|
|
|
|
register char *stringtab;
|
|
|
|
|
register int nlistlen;
|
|
|
|
|
unsigned text_addr;
|
|
|
|
|
int text_size;
|
|
|
|
|
{
|
|
|
|
|
FILE *stream = fdopen (desc, "r");
|
|
|
|
|
register char *namestring;
|
|
|
|
|
register struct symbol *sym, *prev;
|
|
|
|
|
int hash;
|
|
|
|
|
|
|
|
|
|
#ifdef N_BINCL
|
|
|
|
|
subfile_stack = 0;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
last_source_file = 0;
|
|
|
|
|
bzero (global_sym_chain, sizeof global_sym_chain);
|
|
|
|
|
symtab_input_desc = desc;
|
|
|
|
|
stringtab_global = stringtab;
|
|
|
|
|
fill_symbuf ();
|
|
|
|
|
|
|
|
|
|
for (symnum = 0; symnum < nlistlen; symnum++)
|
|
|
|
|
{
|
|
|
|
|
struct nlist *bufp;
|
|
|
|
|
unsigned char type;
|
|
|
|
|
|
|
|
|
|
QUIT; /* allow this to be interruptable */
|
|
|
|
|
if (symbuf_idx == symbuf_end)
|
|
|
|
|
fill_symbuf ();
|
|
|
|
|
bufp = &symbuf[symbuf_idx++];
|
|
|
|
|
type = bufp->n_type & N_TYPE;
|
|
|
|
|
namestring = bufp->n_un.n_strx + stringtab;
|
|
|
|
|
|
|
|
|
|
if( (type == N_TEXT) || (type == N_DATA) || (type == N_BSS) )
|
|
|
|
|
{
|
|
|
|
|
/* Relocate this file's symbol table information
|
|
|
|
|
to the address it has been loaded into. */
|
|
|
|
|
bufp->n_value += text_addr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
type = bufp->n_type;
|
|
|
|
|
|
|
|
|
|
if (type & N_STAB)
|
|
|
|
|
process_one_symbol (type, bufp->n_desc,
|
|
|
|
|
bufp->n_value, namestring);
|
|
|
|
|
/* A static text symbol whose name ends in ".o"
|
|
|
|
|
can only mean the start of another object file.
|
|
|
|
|
So end the symtab of the source file we have been processing.
|
|
|
|
|
This is how we avoid counting the libraries as part
|
|
|
|
|
or the last source file.
|
|
|
|
|
Also this way we find end of first object file (crt0). */
|
|
|
|
|
else if ((type == N_TEXT
|
|
|
|
|
#ifdef N_NBTEXT
|
|
|
|
|
|| type == N_NBTEXT
|
|
|
|
|
#endif
|
|
|
|
|
)
|
|
|
|
|
&& (!strcmp (namestring + strlen (namestring) - 2, ".o"))
|
|
|
|
|
|| ! strncmp (namestring, "-l", 2))
|
|
|
|
|
{
|
|
|
|
|
if (last_source_file)
|
|
|
|
|
end_symtab (bufp->n_value);
|
|
|
|
|
}
|
|
|
|
|
else if (type & N_EXT || type == N_TEXT
|
|
|
|
|
#ifdef N_NBTEXT
|
|
|
|
|
|| type == N_NBTEXT
|
|
|
|
|
#endif
|
|
|
|
|
)
|
|
|
|
|
{
|
|
|
|
|
int used_up = 0;
|
|
|
|
|
|
|
|
|
|
/* Record the location of _etext. */
|
|
|
|
|
if (type == (N_TEXT | N_EXT)
|
|
|
|
|
&& !strcmp (namestring, "_etext"))
|
|
|
|
|
end_of_text_addr = bufp->n_value;
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
/* 25 Sep 89: The following seems to be stolen from
|
|
|
|
|
read_ofile_symtab, and is wrong here (i.e. there was no
|
|
|
|
|
first pass for add-file symbols). */
|
|
|
|
|
/* This shouldn't be necessary, as we now do all of this work
|
|
|
|
|
in scan_global syms and all misc functions should have been
|
|
|
|
|
recorded on the first pass. */
|
|
|
|
|
/* Global symbol: see if we came across a dbx definition
|
|
|
|
|
for a corresponding symbol. If so, store the value.
|
|
|
|
|
Remove syms from the chain when their values are stored,
|
|
|
|
|
but search the whole chain, as there may be several syms
|
|
|
|
|
from different files with the same name. */
|
|
|
|
|
if (type & N_EXT)
|
|
|
|
|
{
|
|
|
|
|
prev = 0;
|
|
|
|
|
#ifdef NAMES_HAVE_UNDERSCORE
|
|
|
|
|
hash = hashname (namestring + 1);
|
|
|
|
|
#else /* not NAMES_HAVE_UNDERSCORE */
|
|
|
|
|
hash = hashname (namestring);
|
|
|
|
|
#endif /* not NAMES_HAVE_UNDERSCORE */
|
|
|
|
|
for (sym = global_sym_chain[hash];
|
|
|
|
|
sym;)
|
|
|
|
|
{
|
|
|
|
|
if (
|
|
|
|
|
#ifdef NAMES_HAVE_UNDERSCORE
|
|
|
|
|
*namestring == '_'
|
|
|
|
|
&& namestring[1] == SYMBOL_NAME (sym)[0]
|
|
|
|
|
&&
|
|
|
|
|
!strcmp (namestring + 2, SYMBOL_NAME (sym) + 1)
|
|
|
|
|
#else /* NAMES_HAVE_UNDERSCORE */
|
|
|
|
|
namestring[0] == SYMBOL_NAME (sym)[0]
|
|
|
|
|
&&
|
|
|
|
|
!strcmp (namestring + 1, SYMBOL_NAME (sym) + 1)
|
|
|
|
|
#endif /* NAMES_HAVE_UNDERSCORE */
|
|
|
|
|
)
|
|
|
|
|
{
|
|
|
|
|
if (prev)
|
|
|
|
|
SYMBOL_VALUE (prev) = SYMBOL_VALUE (sym);
|
|
|
|
|
else
|
|
|
|
|
global_sym_chain[hash]
|
|
|
|
|
= (struct symbol *) SYMBOL_VALUE (sym);
|
|
|
|
|
if (SYMBOL_CLASS (sym) == LOC_BLOCK)
|
|
|
|
|
fix_common_block (sym, bufp->n_value);
|
|
|
|
|
else
|
|
|
|
|
SYMBOL_VALUE (sym) = bufp->n_value;
|
|
|
|
|
if (prev)
|
|
|
|
|
sym = (struct symbol *) SYMBOL_VALUE (prev);
|
|
|
|
|
else
|
|
|
|
|
sym = global_sym_chain[hash];
|
|
|
|
|
|
|
|
|
|
used_up = 1;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
prev = sym;
|
|
|
|
|
sym = (struct symbol *) SYMBOL_VALUE (sym);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Defined global or text symbol: record as a misc function
|
|
|
|
|
if it didn't give its address to a debugger symbol above. */
|
|
|
|
|
if (type <= (N_TYPE | N_EXT)
|
|
|
|
|
&& type != N_EXT
|
|
|
|
|
&& ! used_up)
|
|
|
|
|
record_misc_function (namestring, bufp->n_value,
|
|
|
|
|
bufp->n_type);
|
|
|
|
|
#endif /* 0 */
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (last_source_file)
|
|
|
|
|
end_symtab (text_addr + text_size);
|
|
|
|
|
|
|
|
|
|
fclose (stream);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* C++:
|
|
|
|
|
This function allows the addition of incrementally linked object files.
|
|
|
|
|
Since this has a fair amount of code in common with symbol_file_command,
|
|
|
|
|
it might be worthwhile to consolidate things, as was done with
|
|
|
|
|
read_dbx_symtab and condense_misc_bunches. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
add_file_command (arg_string)
|
|
|
|
|
char* arg_string;
|
|
|
|
|
{
|
|
|
|
|
register int desc;
|
|
|
|
|
DECLARE_FILE_HEADERS;
|
|
|
|
|
struct nlist *nlist;
|
|
|
|
|
char *stringtab;
|
|
|
|
|
long buffer;
|
|
|
|
|
register int val;
|
|
|
|
|
extern void close ();
|
|
|
|
|
struct cleanup *old_chain;
|
|
|
|
|
struct symtab *symseg;
|
|
|
|
|
struct stat statbuf;
|
|
|
|
|
char *name;
|
|
|
|
|
unsigned text_addr;
|
|
|
|
|
|
|
|
|
|
if (arg_string == 0)
|
|
|
|
|
error ("add-file takes a file name and an address");
|
|
|
|
|
|
|
|
|
|
arg_string = tilde_expand (arg_string);
|
|
|
|
|
make_cleanup (free, arg_string);
|
|
|
|
|
|
|
|
|
|
for( ; *arg_string == ' '; arg_string++ );
|
|
|
|
|
name = arg_string;
|
|
|
|
|
for( ; *arg_string && *arg_string != ' ' ; arg_string++ );
|
|
|
|
|
*arg_string++ = (char) 0;
|
|
|
|
|
|
|
|
|
|
if (name[0] == 0)
|
|
|
|
|
error ("add-file takes a file name and an address");
|
|
|
|
|
|
|
|
|
|
text_addr = parse_and_eval_address (arg_string);
|
|
|
|
|
|
|
|
|
|
dont_repeat ();
|
|
|
|
|
|
|
|
|
|
if (!query ("add symbol table from filename \"%s\" at text_addr = 0x%x\n",
|
|
|
|
|
name, text_addr))
|
|
|
|
|
error ("Not confirmed.");
|
|
|
|
|
|
|
|
|
|
desc = open (name, O_RDONLY);
|
|
|
|
|
if (desc < 0)
|
|
|
|
|
perror_with_name (name);
|
|
|
|
|
|
|
|
|
|
old_chain = make_cleanup (close, desc);
|
|
|
|
|
|
|
|
|
|
READ_FILE_HEADERS (desc, name);
|
|
|
|
|
|
|
|
|
|
if (NUMBER_OF_SYMBOLS == 0)
|
|
|
|
|
{
|
|
|
|
|
printf ("%s does not have a symbol-table.\n", name);
|
|
|
|
|
fflush (stdout);
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
printf ("Reading symbol data from %s...", name);
|
|
|
|
|
fflush (stdout);
|
|
|
|
|
|
|
|
|
|
/* Now read the string table, all at once. */
|
|
|
|
|
val = lseek (desc, STRING_TABLE_OFFSET, 0);
|
|
|
|
|
if (val < 0)
|
|
|
|
|
perror_with_name (name);
|
|
|
|
|
if (stat (name, &statbuf) < 0)
|
|
|
|
|
perror_with_name (name);
|
|
|
|
|
READ_STRING_TABLE_SIZE (buffer);
|
|
|
|
|
if (buffer >= 0 && buffer < statbuf.st_size)
|
|
|
|
|
{
|
|
|
|
|
#ifdef BROKEN_LARGE_ALLOCA
|
|
|
|
|
stringtab = (char *) xmalloc (buffer);
|
|
|
|
|
make_cleanup (free, stringtab);
|
|
|
|
|
#else
|
|
|
|
|
stringtab = (char *) alloca (buffer);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
stringtab = NULL;
|
|
|
|
|
if (stringtab == NULL)
|
|
|
|
|
error ("ridiculous string table size: %d bytes", buffer);
|
|
|
|
|
|
|
|
|
|
/* Usually READ_STRING_TABLE_SIZE will have shifted the file pointer.
|
|
|
|
|
Occaisionally, it won't. */
|
|
|
|
|
val = lseek (desc, STRING_TABLE_OFFSET, 0);
|
|
|
|
|
if (val < 0)
|
|
|
|
|
perror_with_name (name);
|
|
|
|
|
val = myread (desc, stringtab, buffer);
|
|
|
|
|
if (val < 0)
|
|
|
|
|
perror_with_name (name);
|
|
|
|
|
|
|
|
|
|
/* Symsegs are no longer supported by GDB. Setting symseg_chain to
|
|
|
|
|
0 is easier than finding all the symseg code and eliminating it. */
|
|
|
|
|
symseg_chain = 0;
|
|
|
|
|
|
|
|
|
|
/* Position to read the symbol table. Do not read it all at once. */
|
|
|
|
|
val = lseek (desc, SYMBOL_TABLE_OFFSET, 0);
|
|
|
|
|
if (val < 0)
|
|
|
|
|
perror_with_name (name);
|
|
|
|
|
|
|
|
|
|
init_misc_functions ();
|
|
|
|
|
make_cleanup (discard_misc_bunches, 0);
|
|
|
|
|
init_header_files ();
|
|
|
|
|
make_cleanup (free_header_files, 0);
|
|
|
|
|
free_pendings = 0;
|
|
|
|
|
pending_blocks = 0;
|
|
|
|
|
file_symbols = 0;
|
|
|
|
|
global_symbols = 0;
|
|
|
|
|
make_cleanup (really_free_pendings, 0);
|
|
|
|
|
|
|
|
|
|
read_addl_syms (desc, stringtab, NUMBER_OF_SYMBOLS, text_addr,
|
|
|
|
|
SIZE_OF_TEXT_SEGMENT);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Sort symbols alphabetically within each block. */
|
|
|
|
|
|
|
|
|
|
sort_syms ();
|
|
|
|
|
|
|
|
|
|
/* Go over the misc functions and install them in vector. */
|
|
|
|
|
|
|
|
|
|
condense_addl_misc_bunches (1);
|
|
|
|
|
|
|
|
|
|
/* Don't allow char * to have a typename (else would get caddr_t.) */
|
|
|
|
|
|
|
|
|
|
TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
|
|
|
|
|
|
|
|
|
|
do_cleanups (old_chain);
|
|
|
|
|
|
|
|
|
|
/* Free the symtabs made by read_symsegs, but not their contents,
|
|
|
|
|
which have been copied into symtabs on symtab_list. */
|
|
|
|
|
while (symseg_chain)
|
|
|
|
|
{
|
|
|
|
|
register struct symtab *s = symseg_chain->next;
|
|
|
|
|
free (symseg_chain);
|
|
|
|
|
symseg_chain = s;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
printf ("done.\n");
|
|
|
|
|
fflush (stdout);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Read a number by which a type is referred to in dbx data,
|
|
|
|
|
or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
|
|
|
|
|
Just a single number N is equivalent to (0,N).
|
|
|
|
|
Return the two numbers by storing them in the vector TYPENUMS.
|
|
|
|
|
TYPENUMS will then be used as an argument to dbx_lookup_type. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
read_type_number (pp, typenums)
|
|
|
|
|
register char **pp;
|
|
|
|
|
register int *typenums;
|
|
|
|
|
{
|
|
|
|
|
if (**pp == '(')
|
|
|
|
|
{
|
|
|
|
|
(*pp)++;
|
|
|
|
|
typenums[0] = read_number (pp, ',');
|
|
|
|
|
typenums[1] = read_number (pp, ')');
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
typenums[0] = 0;
|
|
|
|
|
typenums[1] = read_number (pp, 0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static struct symbol *
|
|
|
|
|
define_symbol (value, string, desc)
|
|
|
|
|
int value;
|
|
|
|
|
char *string;
|
|
|
|
|
int desc;
|
|
|
|
|
{
|
|
|
|
|
register struct symbol *sym
|
|
|
|
|
= (struct symbol *) obstack_alloc (symbol_obstack, sizeof (struct symbol));
|
|
|
|
|
char *p = (char *) index (string, ':');
|
|
|
|
|
int deftype;
|
|
|
|
|
register int i;
|
|
|
|
|
|
|
|
|
|
/* Ignore syms with empty names. */
|
|
|
|
|
if (string[0] == 0)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* Ignore old-style symbols from cc -go */
|
|
|
|
|
if (p == 0)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
SYMBOL_NAME (sym)
|
|
|
|
|
= (char *) obstack_alloc (symbol_obstack, ((p - string) + 1));
|
|
|
|
|
/* Open-coded bcopy--saves function call time. */
|
|
|
|
|
{
|
|
|
|
|
register char *p1 = string;
|
|
|
|
|
register char *p2 = SYMBOL_NAME (sym);
|
|
|
|
|
while (p1 != p)
|
|
|
|
|
*p2++ = *p1++;
|
|
|
|
|
*p2++ = '\0';
|
|
|
|
|
}
|
|
|
|
|
p++;
|
|
|
|
|
/* Determine the type of name being defined. */
|
|
|
|
|
if ((*p >= '0' && *p <= '9') || *p == '(')
|
|
|
|
|
deftype = 'l';
|
|
|
|
|
else
|
|
|
|
|
deftype = *p++;
|
|
|
|
|
|
|
|
|
|
/* c is a special case, not followed by a type-number.
|
|
|
|
|
SYMBOL:c=iVALUE for an integer constant symbol.
|
|
|
|
|
SYMBOL:c=rVALUE for a floating constant symbol.
|
|
|
|
|
SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
|
|
|
|
|
e.g. "b:c=e6,0" for "const b = blob1"
|
|
|
|
|
(where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
|
|
|
|
|
if (deftype == 'c')
|
|
|
|
|
{
|
|
|
|
|
if (*p++ != '=')
|
|
|
|
|
error ("Invalid symbol data at symtab pos %d.", symnum);
|
|
|
|
|
switch (*p++)
|
|
|
|
|
{
|
|
|
|
|
case 'r':
|
|
|
|
|
{
|
|
|
|
|
double d = atof (p);
|
|
|
|
|
char *value;
|
|
|
|
|
|
|
|
|
|
SYMBOL_TYPE (sym) = builtin_type_double;
|
|
|
|
|
value = (char *) obstack_alloc (symbol_obstack, sizeof (double));
|
|
|
|
|
bcopy (&d, value, sizeof (double));
|
|
|
|
|
SYMBOL_VALUE_BYTES (sym) = value;
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case 'i':
|
|
|
|
|
{
|
|
|
|
|
SYMBOL_TYPE (sym) = builtin_type_int;
|
|
|
|
|
SYMBOL_VALUE (sym) = atoi (p);
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_CONST;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case 'e':
|
|
|
|
|
/* SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
|
|
|
|
|
e.g. "b:c=e6,0" for "const b = blob1"
|
|
|
|
|
(where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
|
|
|
|
|
{
|
|
|
|
|
int typenums[2];
|
|
|
|
|
|
|
|
|
|
read_type_number (&p, typenums);
|
|
|
|
|
if (*p++ != ',')
|
|
|
|
|
error ("Invalid symbol data: no comma in enum const symbol");
|
|
|
|
|
|
|
|
|
|
SYMBOL_TYPE (sym) = *dbx_lookup_type (typenums);
|
|
|
|
|
SYMBOL_VALUE (sym) = atoi (p);
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_CONST;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
error ("Invalid symbol data at symtab pos %d.", symnum);
|
|
|
|
|
}
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
|
|
|
|
add_symbol_to_list (sym, &file_symbols);
|
|
|
|
|
return sym;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Now usually comes a number that says which data type,
|
|
|
|
|
and possibly more stuff to define the type
|
|
|
|
|
(all of which is handled by read_type) */
|
|
|
|
|
|
|
|
|
|
if (deftype == 'p' && *p == 'F')
|
|
|
|
|
/* pF is a two-letter code that means a function parameter in Fortran.
|
|
|
|
|
The type-number specifies the type of the return value.
|
|
|
|
|
Translate it into a pointer-to-function type. */
|
|
|
|
|
{
|
|
|
|
|
p++;
|
|
|
|
|
SYMBOL_TYPE (sym)
|
|
|
|
|
= lookup_pointer_type (lookup_function_type (read_type (&p)));
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
struct type *type = read_type (&p);
|
|
|
|
|
|
|
|
|
|
if ((deftype == 'F' || deftype == 'f')
|
|
|
|
|
&& TYPE_CODE (type) != TYPE_CODE_FUNC)
|
|
|
|
|
SYMBOL_TYPE (sym) = lookup_function_type (type);
|
|
|
|
|
else
|
|
|
|
|
SYMBOL_TYPE (sym) = type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
switch (deftype)
|
|
|
|
|
{
|
|
|
|
|
case 'f':
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_BLOCK;
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
|
|
|
|
add_symbol_to_list (sym, &file_symbols);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'F':
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_BLOCK;
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
|
|
|
|
add_symbol_to_list (sym, &global_symbols);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'G':
|
|
|
|
|
/* For a class G (global) symbol, it appears that the
|
|
|
|
|
value is not correct. It is necessary to search for the
|
|
|
|
|
corresponding linker definition to find the value.
|
|
|
|
|
These definitions appear at the end of the namelist. */
|
|
|
|
|
i = hashname (SYMBOL_NAME (sym));
|
|
|
|
|
SYMBOL_VALUE (sym) = (int) global_sym_chain[i];
|
|
|
|
|
global_sym_chain[i] = sym;
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_STATIC;
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
|
|
|
|
add_symbol_to_list (sym, &global_symbols);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
/* This case is faked by a conditional above,
|
|
|
|
|
when there is no code letter in the dbx data.
|
|
|
|
|
Dbx data never actually contains 'l'. */
|
|
|
|
|
case 'l':
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_LOCAL;
|
|
|
|
|
SYMBOL_VALUE (sym) = value;
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
|
|
|
|
add_symbol_to_list (sym, &local_symbols);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'p':
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_ARG;
|
|
|
|
|
SYMBOL_VALUE (sym) = value;
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
|
|
|
|
add_symbol_to_list (sym, &local_symbols);
|
|
|
|
|
|
|
|
|
|
/* If it's gcc compiled, if it says `short', believe it. */
|
|
|
|
|
if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
#if defined(BELIEVE_PCC_PROMOTION_TYPE)
|
|
|
|
|
/* This macro is defined on machines (e.g. sparc) where
|
|
|
|
|
we should believe the type of a PCC 'short' argument,
|
|
|
|
|
but shouldn't believe the address (the address is
|
|
|
|
|
the address of the corresponding int). Note that
|
|
|
|
|
this is only different from the BELIEVE_PCC_PROMOTION
|
|
|
|
|
case on big-endian machines.
|
|
|
|
|
|
|
|
|
|
My guess is that this correction, as opposed to changing
|
|
|
|
|
the parameter to an 'int' (as done below, for PCC
|
|
|
|
|
on most machines), is the right thing to do
|
|
|
|
|
on all machines, but I don't want to risk breaking
|
|
|
|
|
something that already works. On most PCC machines,
|
|
|
|
|
the sparc problem doesn't come up because the calling
|
|
|
|
|
function has to zero the top bytes (not knowing whether
|
|
|
|
|
the called function wants an int or a short), so there
|
|
|
|
|
is no practical difference between an int and a short
|
|
|
|
|
(except perhaps what happens when the GDB user types
|
|
|
|
|
"print short_arg = 0x10000;").
|
|
|
|
|
Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
|
|
|
|
|
actually produces the correct address (we don't need to fix it
|
|
|
|
|
up). I made this code adapt so that it will offset the symbol
|
|
|
|
|
if it was pointing at an int-aligned location and not
|
|
|
|
|
otherwise. This way you can use the same gdb for 4.0.x and
|
|
|
|
|
4.1 systems. */
|
|
|
|
|
|
|
|
|
|
if (0 == SYMBOL_VALUE (sym) % sizeof (int))
|
|
|
|
|
{
|
|
|
|
|
if (SYMBOL_TYPE (sym) == builtin_type_char
|
|
|
|
|
|| SYMBOL_TYPE (sym) == builtin_type_unsigned_char)
|
|
|
|
|
SYMBOL_VALUE (sym) += 3;
|
|
|
|
|
else if (SYMBOL_TYPE (sym) == builtin_type_short
|
|
|
|
|
|| SYMBOL_TYPE (sym) == builtin_type_unsigned_short)
|
|
|
|
|
SYMBOL_VALUE (sym) += 2;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
#else /* no BELIEVE_PCC_PROMOTION_TYPE. */
|
|
|
|
|
|
|
|
|
|
/* If PCC says a parameter is a short or a char,
|
|
|
|
|
it is really an int. */
|
|
|
|
|
if (SYMBOL_TYPE (sym) == builtin_type_char
|
|
|
|
|
|| SYMBOL_TYPE (sym) == builtin_type_short)
|
|
|
|
|
SYMBOL_TYPE (sym) = builtin_type_int;
|
|
|
|
|
else if (SYMBOL_TYPE (sym) == builtin_type_unsigned_char
|
|
|
|
|
|| SYMBOL_TYPE (sym) == builtin_type_unsigned_short)
|
|
|
|
|
SYMBOL_TYPE (sym) = builtin_type_unsigned_int;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
#endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
|
|
|
|
|
|
|
|
|
|
case 'P':
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_REGPARM;
|
|
|
|
|
SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (value);
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
|
|
|
|
add_symbol_to_list (sym, &local_symbols);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'r':
|
|
|
|
|
/* XXX */
|
|
|
|
|
#ifdef sparc
|
|
|
|
|
{
|
|
|
|
|
struct symbol *s0;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* If we see a parm decl immediately followed by a reg decl of
|
|
|
|
|
* the same name (and in the same block), we change it to a single
|
|
|
|
|
* instance of a reg parm. Sun's cc will generate these.
|
|
|
|
|
*/
|
|
|
|
|
if (local_symbols &&
|
|
|
|
|
(s0 = local_symbols->symbol[local_symbols->nsyms - 1]) &&
|
|
|
|
|
SYMBOL_CLASS(s0) == LOC_ARG &&
|
|
|
|
|
strcmp(SYMBOL_NAME(s0), SYMBOL_NAME(sym)) == 0) {
|
|
|
|
|
SYMBOL_CLASS (s0) = LOC_REGPARM;
|
|
|
|
|
SYMBOL_VALUE (s0) = STAB_REG_TO_REGNUM (value);
|
|
|
|
|
SYMBOL_NAMESPACE (s0) = VAR_NAMESPACE;
|
|
|
|
|
return s0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_REGISTER;
|
|
|
|
|
SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (value);
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
|
|
|
|
add_symbol_to_list (sym, &local_symbols);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'S':
|
|
|
|
|
/* Static symbol at top level of file */
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_STATIC;
|
|
|
|
|
SYMBOL_VALUE (sym) = value;
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
|
|
|
|
add_symbol_to_list (sym, &file_symbols);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 't':
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_TYPEDEF;
|
|
|
|
|
SYMBOL_VALUE (sym) = value;
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
|
|
|
|
if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0
|
|
|
|
|
&& (TYPE_FLAGS (SYMBOL_TYPE (sym)) & TYPE_FLAG_PERM) == 0)
|
|
|
|
|
TYPE_NAME (SYMBOL_TYPE (sym)) =
|
|
|
|
|
obsavestring (SYMBOL_NAME (sym),
|
|
|
|
|
strlen (SYMBOL_NAME (sym)));
|
|
|
|
|
/* C++ vagaries: we may have a type which is derived from
|
|
|
|
|
a base type which did not have its name defined when the
|
|
|
|
|
derived class was output. We fill in the derived class's
|
|
|
|
|
base part member's name here in that case. */
|
|
|
|
|
else if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
|
|
|
|
|
|| TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
|
|
|
|
|
&& TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
|
|
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
for (i = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)); i > 0; i--)
|
|
|
|
|
if (TYPE_FIELD_NAME (SYMBOL_TYPE (sym), i - 1) == 0)
|
|
|
|
|
TYPE_FIELD_NAME (SYMBOL_TYPE (sym), i - 1) =
|
|
|
|
|
TYPE_NAME (TYPE_BASECLASS (SYMBOL_TYPE (sym), i));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
add_symbol_to_list (sym, &file_symbols);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'T':
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_TYPEDEF;
|
|
|
|
|
SYMBOL_VALUE (sym) = value;
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
|
|
|
|
|
if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0
|
|
|
|
|
&& (TYPE_FLAGS (SYMBOL_TYPE (sym)) & TYPE_FLAG_PERM) == 0)
|
|
|
|
|
TYPE_NAME (SYMBOL_TYPE (sym))
|
|
|
|
|
= obconcat ("",
|
|
|
|
|
(TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_ENUM
|
|
|
|
|
? "enum "
|
|
|
|
|
: (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
|
|
|
|
|
? "struct " : "union ")),
|
|
|
|
|
SYMBOL_NAME (sym));
|
|
|
|
|
add_symbol_to_list (sym, &file_symbols);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'V':
|
|
|
|
|
/* Static symbol of local scope */
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_STATIC;
|
|
|
|
|
SYMBOL_VALUE (sym) = value;
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
|
|
|
|
add_symbol_to_list (sym, &local_symbols);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'v':
|
|
|
|
|
/* Reference parameter */
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_REF_ARG;
|
|
|
|
|
SYMBOL_VALUE (sym) = value;
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
|
|
|
|
add_symbol_to_list (sym, &local_symbols);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'X':
|
|
|
|
|
/* This is used by Sun FORTRAN for "function result value".
|
|
|
|
|
Sun claims ("dbx and dbxtool interfaces", 2nd ed)
|
|
|
|
|
that Pascal uses it too, but when I tried it Pascal used
|
|
|
|
|
"x:3" (local symbol) instead. */
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_LOCAL;
|
|
|
|
|
SYMBOL_VALUE (sym) = value;
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
|
|
|
|
add_symbol_to_list (sym, &local_symbols);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
error ("Invalid symbol data: unknown symbol-type code `%c' at symtab pos %d.", deftype, symnum);
|
|
|
|
|
}
|
|
|
|
|
return sym;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* What about types defined as forward references inside of a small lexical
|
|
|
|
|
scope? */
|
|
|
|
|
/* Add a type to the list of undefined types to be checked through
|
|
|
|
|
once this file has been read in. */
|
|
|
|
|
static void
|
|
|
|
|
add_undefined_type (type)
|
|
|
|
|
struct type *type;
|
|
|
|
|
{
|
|
|
|
|
if (undef_types_length == undef_types_allocated)
|
|
|
|
|
{
|
|
|
|
|
undef_types_allocated *= 2;
|
|
|
|
|
undef_types = (struct type **)
|
|
|
|
|
xrealloc (undef_types,
|
|
|
|
|
undef_types_allocated * sizeof (struct type *));
|
|
|
|
|
}
|
|
|
|
|
undef_types[undef_types_length++] = type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Add here something to go through each undefined type, see if it's
|
|
|
|
|
still undefined, and do a full lookup if so. */
|
|
|
|
|
static void
|
|
|
|
|
cleanup_undefined_types ()
|
|
|
|
|
{
|
|
|
|
|
struct type **type, *ntype;
|
|
|
|
|
struct symbol *sym;
|
|
|
|
|
|
|
|
|
|
for (type = undef_types; type < undef_types + undef_types_length; type++)
|
|
|
|
|
{
|
|
|
|
|
struct type *ntype = 0;
|
|
|
|
|
/* Reasonable test to see if it's been defined since. */
|
|
|
|
|
if (TYPE_NFIELDS (*type) == 0)
|
|
|
|
|
{
|
|
|
|
|
struct pending *ppt;
|
|
|
|
|
int i;
|
|
|
|
|
/* Name of the type, without "struct" or "union" */
|
|
|
|
|
char *typename = TYPE_NAME (*type);
|
|
|
|
|
|
|
|
|
|
if (!strncmp (typename, "struct ", 7))
|
|
|
|
|
typename += 7;
|
|
|
|
|
if (!strncmp (typename, "union ", 6))
|
|
|
|
|
typename += 6;
|
|
|
|
|
|
|
|
|
|
for (ppt = file_symbols; ppt; ppt = ppt->next)
|
|
|
|
|
for (i = 0; i < ppt->nsyms; i++)
|
|
|
|
|
{
|
|
|
|
|
struct symbol *sym = ppt->symbol[i];
|
|
|
|
|
|
|
|
|
|
if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
|
|
|
|
|
&& SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
|
|
|
|
|
&& (TYPE_CODE (SYMBOL_TYPE (sym)) ==
|
|
|
|
|
TYPE_CODE (*type))
|
|
|
|
|
&& !strcmp (SYMBOL_NAME (sym), typename))
|
|
|
|
|
bcopy (SYMBOL_TYPE (sym), *type, sizeof (struct type));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
/* It has been defined; don't mark it as a stub. */
|
|
|
|
|
TYPE_FLAGS (*type) &= ~TYPE_FLAG_STUB;
|
|
|
|
|
}
|
|
|
|
|
undef_types_length = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Read a dbx type reference or definition;
|
|
|
|
|
return the type that is meant.
|
|
|
|
|
This can be just a number, in which case it references
|
|
|
|
|
a type already defined and placed in type_vector.
|
|
|
|
|
Or the number can be followed by an =, in which case
|
|
|
|
|
it means to define a new type according to the text that
|
|
|
|
|
follows the =. */
|
|
|
|
|
|
|
|
|
|
static
|
|
|
|
|
struct type *
|
|
|
|
|
read_type (pp)
|
|
|
|
|
register char **pp;
|
|
|
|
|
{
|
|
|
|
|
register struct type *type = 0;
|
|
|
|
|
register int n;
|
|
|
|
|
struct type *type1;
|
|
|
|
|
int typenums[2];
|
|
|
|
|
int xtypenums[2];
|
|
|
|
|
char *tmpc;
|
|
|
|
|
|
|
|
|
|
/* Read type number if present. The type number may be omitted.
|
|
|
|
|
for instance in a two-dimensional array declared with type
|
|
|
|
|
"ar1;1;10;ar1;1;10;4". */
|
|
|
|
|
if ((**pp >= '0' && **pp <= '9')
|
|
|
|
|
|| **pp == '(')
|
|
|
|
|
{
|
|
|
|
|
read_type_number (pp, typenums);
|
|
|
|
|
|
|
|
|
|
/* Detect random reference to type not yet defined.
|
|
|
|
|
Allocate a type object but leave it zeroed. */
|
|
|
|
|
if (**pp != '=')
|
|
|
|
|
return dbx_alloc_type (typenums);
|
|
|
|
|
|
|
|
|
|
*pp += 2;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* 'typenums=' not present, type is anonymous. Read and return
|
|
|
|
|
the definition, but don't put it in the type vector. */
|
|
|
|
|
typenums[0] = typenums[1] = -1;
|
|
|
|
|
*pp += 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
switch ((*pp)[-1])
|
|
|
|
|
{
|
|
|
|
|
case 'x':
|
|
|
|
|
{
|
|
|
|
|
enum type_code code;
|
|
|
|
|
|
|
|
|
|
/* Used to index through file_symbols. */
|
|
|
|
|
struct pending *ppt;
|
|
|
|
|
int i;
|
|
|
|
|
|
|
|
|
|
/* Name including "struct", etc. */
|
|
|
|
|
char *type_name;
|
|
|
|
|
|
|
|
|
|
/* Name without "struct", etc. */
|
|
|
|
|
char *type_name_only;
|
|
|
|
|
|
|
|
|
|
{
|
|
|
|
|
char *prefix;
|
|
|
|
|
char *from, *to;
|
|
|
|
|
|
|
|
|
|
/* Set the type code according to the following letter. */
|
|
|
|
|
switch ((*pp)[0])
|
|
|
|
|
{
|
|
|
|
|
case 's':
|
|
|
|
|
code = TYPE_CODE_STRUCT;
|
|
|
|
|
prefix = "struct ";
|
|
|
|
|
break;
|
|
|
|
|
case 'u':
|
|
|
|
|
code = TYPE_CODE_UNION;
|
|
|
|
|
prefix = "union ";
|
|
|
|
|
break;
|
|
|
|
|
case 'e':
|
|
|
|
|
code = TYPE_CODE_ENUM;
|
|
|
|
|
prefix = "enum ";
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
error ("Bad type cross reference at symnum: %d.", symnum);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
to = type_name = (char *)
|
|
|
|
|
obstack_alloc (symbol_obstack,
|
|
|
|
|
(strlen (prefix) +
|
|
|
|
|
((char *) index (*pp, ':') - (*pp)) + 1));
|
|
|
|
|
|
|
|
|
|
/* Copy the prefix. */
|
|
|
|
|
from = prefix;
|
|
|
|
|
while (*to++ = *from++)
|
|
|
|
|
;
|
|
|
|
|
to--;
|
|
|
|
|
|
|
|
|
|
type_name_only = to;
|
|
|
|
|
|
|
|
|
|
/* Copy the name. */
|
|
|
|
|
from = *pp + 1;
|
|
|
|
|
while ((*to++ = *from++) != ':')
|
|
|
|
|
;
|
|
|
|
|
*--to = '\0';
|
|
|
|
|
|
|
|
|
|
/* Set the pointer ahead of the name which we just read. */
|
|
|
|
|
*pp = from;
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
/* The following hack is clearly wrong, because it doesn't
|
|
|
|
|
check whether we are in a baseclass. I tried to reproduce
|
|
|
|
|
the case that it is trying to fix, but I couldn't get
|
|
|
|
|
g++ to put out a cross reference to a basetype. Perhaps
|
|
|
|
|
it doesn't do it anymore. */
|
|
|
|
|
/* Note: for C++, the cross reference may be to a base type which
|
|
|
|
|
has not yet been seen. In this case, we skip to the comma,
|
|
|
|
|
which will mark the end of the base class name. (The ':'
|
|
|
|
|
at the end of the base class name will be skipped as well.)
|
|
|
|
|
But sometimes (ie. when the cross ref is the last thing on
|
|
|
|
|
the line) there will be no ','. */
|
|
|
|
|
from = (char *) index (*pp, ',');
|
|
|
|
|
if (from)
|
|
|
|
|
*pp = from;
|
|
|
|
|
#endif /* 0 */
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Now check to see whether the type has already been declared. */
|
|
|
|
|
/* This is necessary at least in the case where the
|
|
|
|
|
program says something like
|
|
|
|
|
struct foo bar[5];
|
|
|
|
|
The compiler puts out a cross-reference; we better find
|
|
|
|
|
set the length of the structure correctly so we can
|
|
|
|
|
set the length of the array. */
|
|
|
|
|
for (ppt = file_symbols; ppt; ppt = ppt->next)
|
|
|
|
|
for (i = 0; i < ppt->nsyms; i++)
|
|
|
|
|
{
|
|
|
|
|
struct symbol *sym = ppt->symbol[i];
|
|
|
|
|
|
|
|
|
|
if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
|
|
|
|
|
&& SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
|
|
|
|
|
&& (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
|
|
|
|
|
&& !strcmp (SYMBOL_NAME (sym), type_name_only))
|
|
|
|
|
{
|
|
|
|
|
obstack_free (symbol_obstack, type_name);
|
|
|
|
|
type = SYMBOL_TYPE (sym);
|
|
|
|
|
return type;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Didn't find the type to which this refers, so we must
|
|
|
|
|
be dealing with a forward reference. Allocate a type
|
|
|
|
|
structure for it, and keep track of it so we can
|
|
|
|
|
fill in the rest of the fields when we get the full
|
|
|
|
|
type. */
|
|
|
|
|
type = dbx_alloc_type (typenums);
|
|
|
|
|
TYPE_CODE (type) = code;
|
|
|
|
|
TYPE_NAME (type) = type_name;
|
|
|
|
|
|
|
|
|
|
TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
|
|
|
|
|
|
|
|
|
|
add_undefined_type (type);
|
|
|
|
|
return type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
case '0':
|
|
|
|
|
case '1':
|
|
|
|
|
case '2':
|
|
|
|
|
case '3':
|
|
|
|
|
case '4':
|
|
|
|
|
case '5':
|
|
|
|
|
case '6':
|
|
|
|
|
case '7':
|
|
|
|
|
case '8':
|
|
|
|
|
case '9':
|
|
|
|
|
case '(':
|
|
|
|
|
(*pp)--;
|
|
|
|
|
read_type_number (pp, xtypenums);
|
|
|
|
|
type = *dbx_lookup_type (xtypenums);
|
|
|
|
|
if (type == 0)
|
|
|
|
|
type = builtin_type_void;
|
|
|
|
|
if (typenums[0] != -1)
|
|
|
|
|
*dbx_lookup_type (typenums) = type;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case '*':
|
|
|
|
|
type1 = read_type (pp);
|
|
|
|
|
if (TYPE_POINTER_TYPE (type1))
|
|
|
|
|
{
|
|
|
|
|
type = TYPE_POINTER_TYPE (type1);
|
|
|
|
|
if (typenums[0] != -1)
|
|
|
|
|
*dbx_lookup_type (typenums) = type;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
type = dbx_alloc_type (typenums);
|
|
|
|
|
smash_to_pointer_type (type, type1);
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case '@':
|
|
|
|
|
{
|
|
|
|
|
struct type *domain = read_type (pp);
|
|
|
|
|
char c;
|
|
|
|
|
struct type *memtype;
|
|
|
|
|
|
|
|
|
|
if (*(*pp)++ != ',')
|
|
|
|
|
error ("invalid member type data format, at symtab pos %d.",
|
|
|
|
|
symnum);
|
|
|
|
|
|
|
|
|
|
memtype = read_type (pp);
|
|
|
|
|
type = dbx_alloc_type (typenums);
|
|
|
|
|
smash_to_member_type (type, domain, memtype);
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case '#':
|
|
|
|
|
{
|
|
|
|
|
struct type *domain = read_type (pp);
|
|
|
|
|
char c;
|
|
|
|
|
struct type *return_type;
|
|
|
|
|
struct type **args;
|
|
|
|
|
|
|
|
|
|
if (*(*pp)++ != ',')
|
|
|
|
|
error ("invalid member type data format, at symtab pos %d.",
|
|
|
|
|
symnum);
|
|
|
|
|
|
|
|
|
|
return_type = read_type (pp);
|
|
|
|
|
args = read_args (pp, ';');
|
|
|
|
|
type = dbx_alloc_type (typenums);
|
|
|
|
|
smash_to_method_type (type, domain, return_type, args);
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case '&':
|
|
|
|
|
type1 = read_type (pp);
|
|
|
|
|
if (TYPE_REFERENCE_TYPE (type1))
|
|
|
|
|
{
|
|
|
|
|
type = TYPE_REFERENCE_TYPE (type1);
|
|
|
|
|
if (typenums[0] != -1)
|
|
|
|
|
*dbx_lookup_type (typenums) = type;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
type = dbx_alloc_type (typenums);
|
|
|
|
|
smash_to_reference_type (type, type1);
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'f':
|
|
|
|
|
type1 = read_type (pp);
|
|
|
|
|
if (TYPE_FUNCTION_TYPE (type1))
|
|
|
|
|
{
|
|
|
|
|
type = TYPE_FUNCTION_TYPE (type1);
|
|
|
|
|
if (typenums[0] != -1)
|
|
|
|
|
*dbx_lookup_type (typenums) = type;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
type = dbx_alloc_type (typenums);
|
|
|
|
|
smash_to_function_type (type, type1);
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'r':
|
|
|
|
|
type = read_range_type (pp, typenums);
|
|
|
|
|
if (typenums[0] != -1)
|
|
|
|
|
*dbx_lookup_type (typenums) = type;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'e':
|
|
|
|
|
type = dbx_alloc_type (typenums);
|
|
|
|
|
type = read_enum_type (pp, type);
|
|
|
|
|
*dbx_lookup_type (typenums) = type;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 's':
|
|
|
|
|
type = dbx_alloc_type (typenums);
|
|
|
|
|
type = read_struct_type (pp, type);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'u':
|
|
|
|
|
type = dbx_alloc_type (typenums);
|
|
|
|
|
type = read_struct_type (pp, type);
|
|
|
|
|
TYPE_CODE (type) = TYPE_CODE_UNION;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'a':
|
|
|
|
|
if (*(*pp)++ != 'r')
|
|
|
|
|
error ("Invalid symbol data: unrecognized type-code `a%c' %s %d.",
|
|
|
|
|
(*pp)[-1], "at symtab position", symnum);
|
|
|
|
|
|
|
|
|
|
type = dbx_alloc_type (typenums);
|
|
|
|
|
type = read_array_type (pp, type);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
error ("Invalid symbol data: unrecognized type-code `%c' at symtab pos %d.",
|
|
|
|
|
(*pp)[-1], symnum);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (type == 0)
|
|
|
|
|
abort ();
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
/* If this is an overriding temporary alteration for a header file's
|
|
|
|
|
contents, and this type number is unknown in the global definition,
|
|
|
|
|
put this type into the global definition at this type number. */
|
|
|
|
|
if (header_file_prev_index >= 0)
|
|
|
|
|
{
|
|
|
|
|
register struct type **tp
|
|
|
|
|
= explicit_lookup_type (header_file_prev_index, typenums[1]);
|
|
|
|
|
if (*tp == 0)
|
|
|
|
|
*tp = type;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
return type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* This page contains subroutines of read_type. */
|
|
|
|
|
|
|
|
|
|
/* Read the description of a structure (or union type)
|
|
|
|
|
and return an object describing the type. */
|
|
|
|
|
|
|
|
|
|
static struct type *
|
|
|
|
|
read_struct_type (pp, type)
|
|
|
|
|
char **pp;
|
|
|
|
|
register struct type *type;
|
|
|
|
|
{
|
|
|
|
|
struct nextfield
|
|
|
|
|
{
|
|
|
|
|
struct nextfield *next;
|
|
|
|
|
int visibility;
|
|
|
|
|
struct field field;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
struct next_fnfield
|
|
|
|
|
{
|
|
|
|
|
struct next_fnfield *next;
|
|
|
|
|
int visibility;
|
|
|
|
|
struct fn_field fn_field;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
struct next_fnfieldlist
|
|
|
|
|
{
|
|
|
|
|
struct next_fnfieldlist *next;
|
|
|
|
|
struct fn_fieldlist fn_fieldlist;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
register struct nextfield *list = 0;
|
|
|
|
|
struct nextfield *new;
|
|
|
|
|
int totalsize;
|
|
|
|
|
char *name;
|
|
|
|
|
register char *p;
|
|
|
|
|
int nfields = 0;
|
|
|
|
|
register int n;
|
|
|
|
|
|
|
|
|
|
register struct next_fnfieldlist *mainlist = 0;
|
|
|
|
|
int nfn_fields = 0;
|
|
|
|
|
int read_possible_virtual_info = 0;
|
|
|
|
|
|
|
|
|
|
if (TYPE_MAIN_VARIANT (type) == 0)
|
|
|
|
|
{
|
|
|
|
|
TYPE_MAIN_VARIANT (type) = type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TYPE_CODE (type) = TYPE_CODE_STRUCT;
|
|
|
|
|
|
|
|
|
|
/* First comes the total size in bytes. */
|
|
|
|
|
|
|
|
|
|
TYPE_LENGTH (type) = read_number (pp, 0);
|
|
|
|
|
|
|
|
|
|
/* C++: Now, if the class is a derived class, then the next character
|
|
|
|
|
will be a '!', followed by the number of base classes derived from.
|
|
|
|
|
Each element in the list contains visibility information,
|
|
|
|
|
the offset of this base class in the derived structure,
|
|
|
|
|
and then the base type. */
|
|
|
|
|
if (**pp == '!')
|
|
|
|
|
{
|
|
|
|
|
int i, n_baseclasses, offset;
|
|
|
|
|
struct type **baseclass_vec;
|
|
|
|
|
struct type *baseclass;
|
|
|
|
|
int via_public;
|
|
|
|
|
|
|
|
|
|
/* Nonzero if it is a virtual baseclass, i.e.,
|
|
|
|
|
|
|
|
|
|
struct A{};
|
|
|
|
|
struct B{};
|
|
|
|
|
struct C : public B, public virtual A {};
|
|
|
|
|
|
|
|
|
|
B is a baseclass of C; A is a virtual baseclass for C. This is a C++
|
|
|
|
|
2.0 language feature. */
|
|
|
|
|
int via_virtual;
|
|
|
|
|
|
|
|
|
|
*pp += 1;
|
|
|
|
|
|
|
|
|
|
n_baseclasses = read_number (pp, ',');
|
|
|
|
|
baseclass_vec = (struct type **)
|
|
|
|
|
obstack_alloc (symbol_obstack,
|
|
|
|
|
(n_baseclasses) * sizeof (struct type **)) - 1;
|
|
|
|
|
|
|
|
|
|
for (i = 1; i <= n_baseclasses; i++)
|
|
|
|
|
{
|
|
|
|
|
if (**pp == '\\')
|
|
|
|
|
*pp = next_symbol_text ();
|
|
|
|
|
|
|
|
|
|
switch (*(*pp)++)
|
|
|
|
|
{
|
|
|
|
|
case '0':
|
|
|
|
|
via_virtual = 0;
|
|
|
|
|
break;
|
|
|
|
|
case '1':
|
|
|
|
|
via_virtual = 1;
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
error ("Invalid symbol data: bad visibility format at symtab pos %d",
|
|
|
|
|
symnum);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
switch (*(*pp)++)
|
|
|
|
|
{
|
|
|
|
|
case '0':
|
|
|
|
|
via_public = 0;
|
|
|
|
|
break;
|
|
|
|
|
case '2':
|
|
|
|
|
via_public = 1;
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
error ("Invalid symbol data: bad visibility format at symtab pos %d.",
|
|
|
|
|
symnum);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Offset of the portion of the object corresponding to
|
|
|
|
|
this baseclass. Always zero in the absence of
|
|
|
|
|
multiple inheritance. */
|
|
|
|
|
offset = read_number (pp, ',');
|
|
|
|
|
baseclass = read_type (pp);
|
|
|
|
|
*pp += 1; /* skip trailing ';' */
|
|
|
|
|
|
|
|
|
|
if (offset != 0)
|
|
|
|
|
{
|
|
|
|
|
static int error_printed = 0;
|
|
|
|
|
|
|
|
|
|
if (!error_printed)
|
|
|
|
|
{
|
|
|
|
|
fprintf (stderr,
|
|
|
|
|
"\nWarning: GDB has limited understanding of multiple inheritance...");
|
|
|
|
|
error_printed = 1;
|
|
|
|
|
}
|
|
|
|
|
offset = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
baseclass_vec[i] = lookup_basetype_type (baseclass, offset, via_virtual, via_public);
|
|
|
|
|
|
|
|
|
|
/* Since lookup_basetype_type can copy the type,
|
|
|
|
|
it might copy a stub type (complete with stub flag).
|
|
|
|
|
If so, we need to add it to the list of undefined types
|
|
|
|
|
to clean up later. Even if lookup_basetype_type
|
|
|
|
|
didn't copy the type, adding it to the undefined list
|
|
|
|
|
will not do any harm. */
|
|
|
|
|
if (TYPE_FLAGS(baseclass_vec[i]) & TYPE_FLAG_STUB)
|
|
|
|
|
add_undefined_type (baseclass_vec[i]);
|
|
|
|
|
|
|
|
|
|
/* Make this baseclass visible for structure-printing purposes. */
|
|
|
|
|
new = (struct nextfield *) alloca (sizeof (struct nextfield));
|
|
|
|
|
new->next = list;
|
|
|
|
|
list = new;
|
|
|
|
|
list->field.type = baseclass_vec[i];
|
|
|
|
|
list->field.name = TYPE_NAME (baseclass_vec[i]);
|
|
|
|
|
list->field.bitpos = offset;
|
|
|
|
|
list->field.bitsize = 0; /* this should be an unpacked field! */
|
|
|
|
|
nfields++;
|
|
|
|
|
}
|
|
|
|
|
TYPE_N_BASECLASSES (type) = n_baseclasses;
|
|
|
|
|
TYPE_BASECLASSES (type) = baseclass_vec;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Now come the fields, as NAME:?TYPENUM,BITPOS,BITSIZE; for each one.
|
|
|
|
|
At the end, we see a semicolon instead of a field.
|
|
|
|
|
|
|
|
|
|
In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
|
|
|
|
|
a static field.
|
|
|
|
|
|
|
|
|
|
The `?' is a placeholder for one of '+' (public visibility),
|
|
|
|
|
'0' (protected visibility), and '-' (private visibility). */
|
|
|
|
|
|
|
|
|
|
/* We better set p right now, in case there are no fields at all... */
|
|
|
|
|
p = *pp;
|
|
|
|
|
|
|
|
|
|
while (**pp != ';')
|
|
|
|
|
{
|
|
|
|
|
int visibility;
|
|
|
|
|
|
|
|
|
|
/* Check for and handle cretinous dbx symbol name continuation! */
|
|
|
|
|
if (**pp == '\\') *pp = next_symbol_text ();
|
|
|
|
|
|
|
|
|
|
/* Get space to record the next field's data. */
|
|
|
|
|
new = (struct nextfield *) alloca (sizeof (struct nextfield));
|
|
|
|
|
new->next = list;
|
|
|
|
|
list = new;
|
|
|
|
|
|
|
|
|
|
/* Get the field name. */
|
|
|
|
|
p = *pp;
|
|
|
|
|
while (*p != ':') p++;
|
|
|
|
|
list->field.name = obsavestring (*pp, p - *pp);
|
|
|
|
|
|
|
|
|
|
/* C++: Check to see if we have hit the methods yet. */
|
|
|
|
|
if (p[1] == ':')
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
*pp = p + 1;
|
|
|
|
|
|
|
|
|
|
/* This means we have a visibility for a field coming. */
|
|
|
|
|
if (**pp == '/')
|
|
|
|
|
{
|
|
|
|
|
switch (*++*pp)
|
|
|
|
|
{
|
|
|
|
|
case '0':
|
|
|
|
|
visibility = 0;
|
|
|
|
|
*pp += 1;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case '1':
|
|
|
|
|
visibility = 1;
|
|
|
|
|
*pp += 1;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case '2':
|
|
|
|
|
visibility = 2;
|
|
|
|
|
*pp += 1;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
/* else normal dbx-style format. */
|
|
|
|
|
|
|
|
|
|
list->field.type = read_type (pp);
|
|
|
|
|
if (**pp == ':')
|
|
|
|
|
{
|
|
|
|
|
list->field.bitpos = (long)-1;
|
|
|
|
|
p = ++(*pp);
|
|
|
|
|
while (*p != ';') p++;
|
|
|
|
|
list->field.bitsize = (long) savestring (*pp, p - *pp);
|
|
|
|
|
*pp = p + 1;
|
|
|
|
|
nfields++;
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
else if (**pp != ',')
|
|
|
|
|
error ("Invalid symbol data: bad structure-type format at symtab pos %d.",
|
|
|
|
|
symnum);
|
|
|
|
|
(*pp)++; /* Skip the comma. */
|
|
|
|
|
list->field.bitpos = read_number (pp, ',');
|
|
|
|
|
list->field.bitsize = read_number (pp, ';');
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
/* This is wrong because this is identical to the symbols
|
|
|
|
|
produced for GCC 0-size arrays. For example:
|
|
|
|
|
typedef union {
|
|
|
|
|
int num;
|
|
|
|
|
char str[0];
|
|
|
|
|
} foo;
|
|
|
|
|
The code which dumped core in such circumstances should be
|
|
|
|
|
fixed not to dump core. */
|
|
|
|
|
|
|
|
|
|
/* g++ -g0 can put out bitpos & bitsize zero for a static
|
|
|
|
|
field. This does not give us any way of getting its
|
|
|
|
|
class, so we can't know its name. But we can just
|
|
|
|
|
ignore the field so we don't dump core and other nasty
|
|
|
|
|
stuff. */
|
|
|
|
|
if (list->field.bitpos == 0
|
|
|
|
|
&& list->field.bitsize == 0)
|
|
|
|
|
{
|
|
|
|
|
/* Have we given the warning yet? */
|
|
|
|
|
static int warning_given = 0;
|
|
|
|
|
|
|
|
|
|
/* Only give the warning once, no matter how many class
|
|
|
|
|
variables there are. */
|
|
|
|
|
if (!warning_given)
|
|
|
|
|
{
|
|
|
|
|
warning_given = 1;
|
|
|
|
|
fprintf_filtered (stderr, "\n\
|
|
|
|
|
Warning: DBX-style class variable debugging information encountered.\n\
|
|
|
|
|
You seem to have compiled your program with \
|
|
|
|
|
\"g++ -g0\" instead of \"g++ -g\".\n\
|
|
|
|
|
Therefore GDB will not know about your class variables.\n\
|
|
|
|
|
");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Ignore this field. */
|
|
|
|
|
list = list->next;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
#endif /* 0 */
|
|
|
|
|
{
|
|
|
|
|
/* Detect an unpacked field and mark it as such.
|
|
|
|
|
dbx gives a bit size for all fields.
|
|
|
|
|
Note that forward refs cannot be packed,
|
|
|
|
|
and treat enums as if they had the width of ints. */
|
|
|
|
|
if (TYPE_CODE (list->field.type) != TYPE_CODE_INT
|
|
|
|
|
&& TYPE_CODE (list->field.type) != TYPE_CODE_ENUM)
|
|
|
|
|
list->field.bitsize = 0;
|
|
|
|
|
if ((list->field.bitsize == 8 * TYPE_LENGTH (list->field.type)
|
|
|
|
|
|| (TYPE_CODE (list->field.type) == TYPE_CODE_ENUM
|
|
|
|
|
&& (list->field.bitsize
|
|
|
|
|
== 8 * TYPE_LENGTH (builtin_type_int))
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
&&
|
|
|
|
|
list->field.bitpos % 8 == 0)
|
|
|
|
|
list->field.bitsize = 0;
|
|
|
|
|
nfields++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Now come the method fields, as NAME::methods
|
|
|
|
|
where each method is of the form TYPENUM,ARGS,...:PHYSNAME;
|
|
|
|
|
At the end, we see a semicolon instead of a field.
|
|
|
|
|
|
|
|
|
|
For the case of overloaded operators, the format is
|
|
|
|
|
OPERATOR::*.methods, where OPERATOR is the string "operator",
|
|
|
|
|
`*' holds the place for an operator name (such as `+=')
|
|
|
|
|
and `.' marks the end of the operator name. */
|
|
|
|
|
if (p[1] == ':')
|
|
|
|
|
{
|
|
|
|
|
/* Now, read in the methods. To simplify matters, we
|
|
|
|
|
"unread" the name that has been read, so that we can
|
|
|
|
|
start from the top. */
|
|
|
|
|
|
|
|
|
|
p = *pp;
|
|
|
|
|
|
|
|
|
|
/* chill the list of fields: the last entry (at the head)
|
|
|
|
|
is a partially constructed entry which we now scrub. */
|
|
|
|
|
list = list->next;
|
|
|
|
|
|
|
|
|
|
/* For each list of method lists... */
|
|
|
|
|
do
|
|
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
struct next_fnfield *sublist = 0;
|
|
|
|
|
struct fn_field *fn_fields = 0;
|
|
|
|
|
int length = 0;
|
|
|
|
|
struct next_fnfieldlist *new_mainlist =
|
|
|
|
|
(struct next_fnfieldlist *)alloca (sizeof (struct next_fnfieldlist));
|
|
|
|
|
|
|
|
|
|
/* read in the name. */
|
|
|
|
|
while (*p != ':') p++;
|
|
|
|
|
if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == '$')
|
|
|
|
|
{
|
|
|
|
|
static char opname[] = "operator";
|
|
|
|
|
char *o = opname + strlen(opname);
|
|
|
|
|
|
|
|
|
|
/* Skip past '::'. */
|
|
|
|
|
p += 2;
|
|
|
|
|
while (*p != '.')
|
|
|
|
|
*o++ = *p++;
|
|
|
|
|
new_mainlist->fn_fieldlist.name = savestring (opname, o - opname);
|
|
|
|
|
/* Skip past '.' */
|
|
|
|
|
*pp = p + 1;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
i = 0;
|
|
|
|
|
new_mainlist->fn_fieldlist.name = savestring (*pp, p - *pp);
|
|
|
|
|
/* Skip past '::'. */
|
|
|
|
|
*pp = p + 2;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
do
|
|
|
|
|
{
|
|
|
|
|
struct next_fnfield *new_sublist =
|
|
|
|
|
(struct next_fnfield *)alloca (sizeof (struct next_fnfield));
|
|
|
|
|
|
|
|
|
|
/* Check for and handle cretinous dbx symbol name continuation! */
|
|
|
|
|
if (**pp == '\\') *pp = next_symbol_text ();
|
|
|
|
|
|
|
|
|
|
new_sublist->fn_field.type = read_type (pp);
|
|
|
|
|
if (**pp != ':')
|
|
|
|
|
error ("invalid symtab info for method at symbol number %d.",
|
|
|
|
|
symnum);
|
|
|
|
|
*pp += 1;
|
|
|
|
|
new_sublist->fn_field.args =
|
|
|
|
|
TYPE_ARG_TYPES (new_sublist->fn_field.type);
|
|
|
|
|
p = *pp;
|
|
|
|
|
while (*p != ';') p++;
|
|
|
|
|
new_sublist->fn_field.physname = savestring (*pp, p - *pp);
|
|
|
|
|
*pp = p + 1;
|
|
|
|
|
new_sublist->visibility = *(*pp)++ - '0';
|
|
|
|
|
if (**pp == '\\') *pp = next_symbol_text ();
|
|
|
|
|
|
|
|
|
|
switch (*(*pp)++)
|
|
|
|
|
{
|
|
|
|
|
case '*':
|
|
|
|
|
/* virtual member function, followed by index. */
|
|
|
|
|
new_sublist->fn_field.voffset = read_number (pp, ';') + 1;
|
|
|
|
|
break;
|
|
|
|
|
case '?':
|
|
|
|
|
/* static member function. */
|
|
|
|
|
new_sublist->fn_field.voffset = 1;
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
/* **pp == '.'. */
|
|
|
|
|
/* normal member function. */
|
|
|
|
|
new_sublist->fn_field.voffset = 0;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
new_sublist->next = sublist;
|
|
|
|
|
sublist = new_sublist;
|
|
|
|
|
length++;
|
|
|
|
|
}
|
|
|
|
|
while (**pp != ';');
|
|
|
|
|
|
|
|
|
|
*pp += 1;
|
|
|
|
|
|
|
|
|
|
new_mainlist->fn_fieldlist.fn_fields =
|
|
|
|
|
(struct fn_field *) obstack_alloc (symbol_obstack,
|
|
|
|
|
sizeof (struct fn_field) * length);
|
|
|
|
|
TYPE_FN_PRIVATE_BITS (new_mainlist->fn_fieldlist) =
|
|
|
|
|
(int *) obstack_alloc (symbol_obstack,
|
|
|
|
|
sizeof (int) * (1 + (length >> 5)));
|
|
|
|
|
|
|
|
|
|
TYPE_FN_PROTECTED_BITS (new_mainlist->fn_fieldlist) =
|
|
|
|
|
(int *) obstack_alloc (symbol_obstack,
|
|
|
|
|
sizeof (int) * (1 + (length >> 5)));
|
|
|
|
|
|
|
|
|
|
for (i = length; sublist; sublist = sublist->next)
|
|
|
|
|
{
|
|
|
|
|
new_mainlist->fn_fieldlist.fn_fields[--i] = sublist->fn_field;
|
|
|
|
|
if (sublist->visibility == 0)
|
|
|
|
|
B_SET (new_mainlist->fn_fieldlist.private_fn_field_bits, i);
|
|
|
|
|
else if (sublist->visibility == 1)
|
|
|
|
|
B_SET (new_mainlist->fn_fieldlist.protected_fn_field_bits, i);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
new_mainlist->fn_fieldlist.length = length;
|
|
|
|
|
new_mainlist->next = mainlist;
|
|
|
|
|
mainlist = new_mainlist;
|
|
|
|
|
nfn_fields++;
|
|
|
|
|
}
|
|
|
|
|
while (**pp != ';');
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
*pp += 1;
|
|
|
|
|
|
|
|
|
|
/* Now create the vector of fields, and record how big it is. */
|
|
|
|
|
|
|
|
|
|
TYPE_NFIELDS (type) = nfields;
|
|
|
|
|
TYPE_FIELDS (type) = (struct field *) obstack_alloc (symbol_obstack,
|
|
|
|
|
sizeof (struct field) * nfields);
|
|
|
|
|
TYPE_FIELD_PRIVATE_BITS (type) =
|
|
|
|
|
(int *) obstack_alloc (symbol_obstack,
|
|
|
|
|
sizeof (int) * (1 + (nfields >> 5)));
|
|
|
|
|
TYPE_FIELD_PROTECTED_BITS (type) =
|
|
|
|
|
(int *) obstack_alloc (symbol_obstack,
|
|
|
|
|
sizeof (int) * (1 + (nfields >> 5)));
|
|
|
|
|
|
|
|
|
|
TYPE_NFN_FIELDS (type) = nfn_fields;
|
|
|
|
|
TYPE_NFN_FIELDS_TOTAL (type) = nfn_fields;
|
|
|
|
|
|
|
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
for (i = 1; i <= TYPE_N_BASECLASSES (type); ++i)
|
|
|
|
|
TYPE_NFN_FIELDS_TOTAL (type) +=
|
|
|
|
|
TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, i));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TYPE_FN_FIELDLISTS (type) =
|
|
|
|
|
(struct fn_fieldlist *) obstack_alloc (symbol_obstack,
|
|
|
|
|
sizeof (struct fn_fieldlist) * nfn_fields);
|
|
|
|
|
|
|
|
|
|
/* Copy the saved-up fields into the field vector. */
|
|
|
|
|
|
|
|
|
|
for (n = nfields; list; list = list->next)
|
|
|
|
|
{
|
|
|
|
|
TYPE_FIELD (type, --n) = list->field;
|
|
|
|
|
if (list->visibility == 0)
|
|
|
|
|
SET_TYPE_FIELD_PRIVATE (type, n);
|
|
|
|
|
else if (list->visibility == 1)
|
|
|
|
|
SET_TYPE_FIELD_PROTECTED (type, n);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (n = nfn_fields; mainlist; mainlist = mainlist->next)
|
|
|
|
|
TYPE_FN_FIELDLISTS (type)[--n] = mainlist->fn_fieldlist;
|
|
|
|
|
|
|
|
|
|
if (**pp == '~')
|
|
|
|
|
{
|
|
|
|
|
*pp += 1;
|
|
|
|
|
|
|
|
|
|
if (**pp == '=')
|
|
|
|
|
{
|
|
|
|
|
TYPE_FLAGS (type)
|
|
|
|
|
|= TYPE_FLAG_HAS_CONSTRUCTOR | TYPE_FLAG_HAS_DESTRUCTOR;
|
|
|
|
|
*pp += 1;
|
|
|
|
|
}
|
|
|
|
|
else if (**pp == '+')
|
|
|
|
|
{
|
|
|
|
|
TYPE_FLAGS (type) |= TYPE_FLAG_HAS_CONSTRUCTOR;
|
|
|
|
|
*pp += 1;
|
|
|
|
|
}
|
|
|
|
|
else if (**pp == '-')
|
|
|
|
|
{
|
|
|
|
|
TYPE_FLAGS (type) |= TYPE_FLAG_HAS_DESTRUCTOR;
|
|
|
|
|
*pp += 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Read either a '%' or the final ';'. */
|
|
|
|
|
if (*(*pp)++ == '%')
|
|
|
|
|
{
|
|
|
|
|
/* Now we must record the virtual function table pointer's
|
|
|
|
|
field information. */
|
|
|
|
|
|
|
|
|
|
struct type *t;
|
|
|
|
|
int i;
|
|
|
|
|
|
|
|
|
|
t = read_type (pp);
|
|
|
|
|
p = (*pp)++;
|
|
|
|
|
while (*p != ';') p++;
|
|
|
|
|
TYPE_VPTR_BASETYPE (type) = t;
|
|
|
|
|
if (type == t)
|
|
|
|
|
{
|
|
|
|
|
if (TYPE_FIELD_NAME (t, 0) == 0)
|
|
|
|
|
TYPE_VPTR_FIELDNO (type) = i = 0;
|
|
|
|
|
else for (i = TYPE_NFIELDS (t) - 1; i >= 0; --i)
|
|
|
|
|
if (! strncmp (TYPE_FIELD_NAME (t, i), *pp,
|
|
|
|
|
strlen (TYPE_FIELD_NAME (t, i))))
|
|
|
|
|
{
|
|
|
|
|
TYPE_VPTR_FIELDNO (type) = i;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
if (i < 0)
|
|
|
|
|
error ("virtual function table field not found");
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (TYPE_BASECLASS (type, 1));
|
|
|
|
|
*pp = p + 1;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
TYPE_VPTR_BASETYPE (type) = 0;
|
|
|
|
|
TYPE_VPTR_FIELDNO (type) = -1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
TYPE_VPTR_BASETYPE (type) = 0;
|
|
|
|
|
TYPE_VPTR_FIELDNO (type) = -1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Read a definition of an array type,
|
|
|
|
|
and create and return a suitable type object.
|
|
|
|
|
Also creates a range type which represents the bounds of that
|
|
|
|
|
array. */
|
|
|
|
|
static struct type *
|
|
|
|
|
read_array_type (pp, type)
|
|
|
|
|
register char **pp;
|
|
|
|
|
register struct type *type;
|
|
|
|
|
{
|
|
|
|
|
struct type *index_type, *element_type, *range_type;
|
|
|
|
|
int lower, upper;
|
|
|
|
|
int adjustable = 0;
|
|
|
|
|
|
|
|
|
|
/* Format of an array type:
|
|
|
|
|
"ar<index type>;lower;upper;<array_contents_type>". Put code in
|
|
|
|
|
to handle this.
|
|
|
|
|
|
|
|
|
|
Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
|
|
|
|
|
for these, produce a type like float[][]. */
|
|
|
|
|
|
|
|
|
|
index_type = read_type (pp);
|
|
|
|
|
if (*(*pp)++ != ';')
|
|
|
|
|
error ("Invalid symbol data; improper format of array type decl.");
|
|
|
|
|
|
|
|
|
|
if (!(**pp >= '0' && **pp <= '9'))
|
|
|
|
|
{
|
|
|
|
|
*pp += 1;
|
|
|
|
|
adjustable = 1;
|
|
|
|
|
}
|
|
|
|
|
lower = read_number (pp, ';');
|
|
|
|
|
|
|
|
|
|
if (!(**pp >= '0' && **pp <= '9'))
|
|
|
|
|
{
|
|
|
|
|
*pp += 1;
|
|
|
|
|
adjustable = 1;
|
|
|
|
|
}
|
|
|
|
|
upper = read_number (pp, ';');
|
|
|
|
|
|
|
|
|
|
element_type = read_type (pp);
|
|
|
|
|
|
|
|
|
|
if (adjustable)
|
|
|
|
|
{
|
|
|
|
|
lower = 0;
|
|
|
|
|
upper = -1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
{
|
|
|
|
|
/* Create range type. */
|
|
|
|
|
range_type = (struct type *) obstack_alloc (symbol_obstack,
|
|
|
|
|
sizeof (struct type));
|
|
|
|
|
TYPE_CODE (range_type) = TYPE_CODE_RANGE;
|
|
|
|
|
TYPE_TARGET_TYPE (range_type) = index_type;
|
|
|
|
|
|
|
|
|
|
/* This should never be needed. */
|
|
|
|
|
TYPE_LENGTH (range_type) = sizeof (int);
|
|
|
|
|
|
|
|
|
|
TYPE_NFIELDS (range_type) = 2;
|
|
|
|
|
TYPE_FIELDS (range_type) =
|
|
|
|
|
(struct field *) obstack_alloc (symbol_obstack,
|
|
|
|
|
2 * sizeof (struct field));
|
|
|
|
|
TYPE_FIELD_BITPOS (range_type, 0) = lower;
|
|
|
|
|
TYPE_FIELD_BITPOS (range_type, 1) = upper;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TYPE_CODE (type) = TYPE_CODE_ARRAY;
|
|
|
|
|
TYPE_TARGET_TYPE (type) = element_type;
|
|
|
|
|
TYPE_LENGTH (type) = (upper - lower + 1) * TYPE_LENGTH (element_type);
|
|
|
|
|
TYPE_NFIELDS (type) = 1;
|
|
|
|
|
TYPE_FIELDS (type) =
|
|
|
|
|
(struct field *) obstack_alloc (symbol_obstack,
|
|
|
|
|
sizeof (struct field));
|
|
|
|
|
TYPE_FIELD_TYPE (type, 0) = range_type;
|
|
|
|
|
|
|
|
|
|
return type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Read a definition of an enumeration type,
|
|
|
|
|
and create and return a suitable type object.
|
|
|
|
|
Also defines the symbols that represent the values of the type. */
|
|
|
|
|
|
|
|
|
|
static struct type *
|
|
|
|
|
read_enum_type (pp, type)
|
|
|
|
|
register char **pp;
|
|
|
|
|
register struct type *type;
|
|
|
|
|
{
|
|
|
|
|
register char *p;
|
|
|
|
|
char *name;
|
|
|
|
|
register long n;
|
|
|
|
|
register struct symbol *sym;
|
|
|
|
|
int nsyms = 0;
|
|
|
|
|
struct pending **symlist;
|
|
|
|
|
struct pending *osyms, *syms;
|
|
|
|
|
int o_nsyms;
|
|
|
|
|
|
|
|
|
|
if (within_function)
|
|
|
|
|
symlist = &local_symbols;
|
|
|
|
|
else
|
|
|
|
|
symlist = &file_symbols;
|
|
|
|
|
osyms = *symlist;
|
|
|
|
|
o_nsyms = osyms ? osyms->nsyms : 0;
|
|
|
|
|
|
|
|
|
|
/* Read the value-names and their values.
|
|
|
|
|
The input syntax is NAME:VALUE,NAME:VALUE, and so on.
|
|
|
|
|
A semicolon or comman instead of a NAME means the end. */
|
|
|
|
|
while (**pp && **pp != ';' && **pp != ',')
|
|
|
|
|
{
|
|
|
|
|
/* Check for and handle cretinous dbx symbol name continuation! */
|
|
|
|
|
if (**pp == '\\') *pp = next_symbol_text ();
|
|
|
|
|
|
|
|
|
|
p = *pp;
|
|
|
|
|
while (*p != ':') p++;
|
|
|
|
|
name = obsavestring (*pp, p - *pp);
|
|
|
|
|
*pp = p + 1;
|
|
|
|
|
n = read_number (pp, ',');
|
|
|
|
|
|
|
|
|
|
sym = (struct symbol *) obstack_alloc (symbol_obstack, sizeof (struct symbol));
|
|
|
|
|
bzero (sym, sizeof (struct symbol));
|
|
|
|
|
SYMBOL_NAME (sym) = name;
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_CONST;
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
|
|
|
|
SYMBOL_VALUE (sym) = n;
|
|
|
|
|
add_symbol_to_list (sym, symlist);
|
|
|
|
|
nsyms++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (**pp == ';')
|
|
|
|
|
(*pp)++; /* Skip the semicolon. */
|
|
|
|
|
|
|
|
|
|
/* Now fill in the fields of the type-structure. */
|
|
|
|
|
|
|
|
|
|
TYPE_LENGTH (type) = sizeof (int);
|
|
|
|
|
TYPE_CODE (type) = TYPE_CODE_ENUM;
|
|
|
|
|
TYPE_NFIELDS (type) = nsyms;
|
|
|
|
|
TYPE_FIELDS (type) = (struct field *) obstack_alloc (symbol_obstack, sizeof (struct field) * nsyms);
|
|
|
|
|
|
|
|
|
|
/* Find the symbols for the values and put them into the type.
|
|
|
|
|
The symbols can be found in the symlist that we put them on
|
|
|
|
|
to cause them to be defined. osyms contains the old value
|
|
|
|
|
of that symlist; everything up to there was defined by us. */
|
|
|
|
|
/* Note that we preserve the order of the enum constants, so
|
|
|
|
|
that in something like "enum {FOO, LAST_THING=FOO}" we print
|
|
|
|
|
FOO, not LAST_THING. */
|
|
|
|
|
|
|
|
|
|
for (syms = *symlist, n = 0; syms; syms = syms->next)
|
|
|
|
|
{
|
|
|
|
|
int j = 0;
|
|
|
|
|
if (syms == osyms)
|
|
|
|
|
j = o_nsyms;
|
|
|
|
|
for (; j < syms->nsyms; j++)
|
|
|
|
|
{
|
|
|
|
|
struct symbol *sym = syms->symbol[j];
|
|
|
|
|
SYMBOL_TYPE (sym) = type;
|
|
|
|
|
TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (sym);
|
|
|
|
|
TYPE_FIELD_VALUE (type, n) = 0;
|
|
|
|
|
TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (sym);
|
|
|
|
|
TYPE_FIELD_BITSIZE (type, n++) = 0;
|
|
|
|
|
}
|
|
|
|
|
if (syms == osyms)
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#define MAX_OF_TYPE(t) ((1 << (sizeof (t) - 1)) - 1)
|
|
|
|
|
#define MIN_OF_TYPE(t) (-(1 << (sizeof (t) - 1)))
|
|
|
|
|
|
|
|
|
|
static struct type *
|
|
|
|
|
read_range_type (pp, typenums)
|
|
|
|
|
char **pp;
|
|
|
|
|
int typenums[2];
|
|
|
|
|
{
|
|
|
|
|
int rangenums[2];
|
1993-07-26 22:40:41 +00:00
|
|
|
|
long n2, n3;
|
|
|
|
|
int n2bits, n3bits;
|
1993-06-29 09:48:26 +00:00
|
|
|
|
int self_subrange;
|
|
|
|
|
struct type *result_type;
|
1993-07-26 22:40:41 +00:00
|
|
|
|
struct type *index_type;
|
1993-06-29 09:48:26 +00:00
|
|
|
|
|
|
|
|
|
/* First comes a type we are a subrange of.
|
|
|
|
|
In C it is usually 0, 1 or the type being defined. */
|
|
|
|
|
read_type_number (pp, rangenums);
|
|
|
|
|
self_subrange = (rangenums[0] == typenums[0] &&
|
|
|
|
|
rangenums[1] == typenums[1]);
|
|
|
|
|
|
|
|
|
|
/* A semicolon should now follow; skip it. */
|
|
|
|
|
if (**pp == ';')
|
|
|
|
|
(*pp)++;
|
|
|
|
|
|
|
|
|
|
/* The remaining two operands are usually lower and upper bounds
|
|
|
|
|
of the range. But in some special cases they mean something else. */
|
1993-07-26 22:40:41 +00:00
|
|
|
|
read_huge_number (pp, ';', &n2, &n2bits);
|
|
|
|
|
read_huge_number (pp, ';', &n3, &n3bits);
|
|
|
|
|
|
|
|
|
|
if (n2bits == -1 || n3bits == -1)
|
|
|
|
|
error ("Unrecognized type range %s.", pp);
|
|
|
|
|
|
|
|
|
|
if (n2bits != 0 || n3bits != 0)
|
|
|
|
|
#ifdef LONG_LONG
|
|
|
|
|
{
|
|
|
|
|
char got_signed = 0;
|
|
|
|
|
char got_unsigned = 0;
|
|
|
|
|
/* Number of bits in the type. */
|
|
|
|
|
int nbits;
|
|
|
|
|
|
|
|
|
|
/* Range from 0 to <large number> is an unsigned large integral type. */
|
|
|
|
|
if ((n2bits == 0 && n2 == 0) && n3bits != 0)
|
|
|
|
|
{
|
|
|
|
|
got_unsigned = 1;
|
|
|
|
|
nbits = n3bits;
|
|
|
|
|
}
|
|
|
|
|
/* Range fro <large number> to <large number>-1 is a large signed
|
|
|
|
|
integral type. */
|
|
|
|
|
else if (n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
|
|
|
|
|
{
|
|
|
|
|
got_signed = 1;
|
|
|
|
|
nbits = n2bits;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Check for "long long". */
|
|
|
|
|
if (got_signed && nbits == CHAR_BIT * sizeof (long long))
|
|
|
|
|
return builtin_type_long_long;
|
|
|
|
|
if (got_unsigned && nbits == CHAR_BIT * sizeof (long long))
|
|
|
|
|
return builtin_type_unsigned_long_long;
|
|
|
|
|
|
|
|
|
|
error ("Large type isn't a long long.");
|
|
|
|
|
}
|
|
|
|
|
#else /* LONG_LONG */
|
|
|
|
|
error ("Type long long not supported on this machine.");
|
|
|
|
|
#endif
|
1993-06-29 09:48:26 +00:00
|
|
|
|
|
|
|
|
|
/* A type defined as a subrange of itself, with bounds both 0, is void. */
|
|
|
|
|
if (self_subrange && n2 == 0 && n3 == 0)
|
|
|
|
|
return builtin_type_void;
|
|
|
|
|
|
|
|
|
|
/* If n3 is zero and n2 is not, we want a floating type,
|
|
|
|
|
and n2 is the width in bytes.
|
|
|
|
|
|
|
|
|
|
Fortran programs appear to use this for complex types also,
|
|
|
|
|
and they give no way to distinguish between double and single-complex!
|
|
|
|
|
We don't have complex types, so we would lose on all fortran files!
|
|
|
|
|
So return type `double' for all of those. It won't work right
|
|
|
|
|
for the complex values, but at least it makes the file loadable. */
|
|
|
|
|
|
|
|
|
|
if (n3 == 0 && n2 > 0)
|
|
|
|
|
{
|
|
|
|
|
if (n2 == sizeof (float))
|
|
|
|
|
return builtin_type_float;
|
|
|
|
|
return builtin_type_double;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If the upper bound is -1, it must really be an unsigned int. */
|
|
|
|
|
|
|
|
|
|
else if (n2 == 0 && n3 == -1)
|
|
|
|
|
{
|
|
|
|
|
if (sizeof (int) == sizeof (long))
|
|
|
|
|
return builtin_type_unsigned_int;
|
|
|
|
|
else
|
|
|
|
|
return builtin_type_unsigned_long;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Special case: char is defined (Who knows why) as a subrange of
|
|
|
|
|
itself with range 0-127. */
|
|
|
|
|
else if (self_subrange && n2 == 0 && n3 == 127)
|
|
|
|
|
return builtin_type_char;
|
|
|
|
|
|
|
|
|
|
/* Assumptions made here: Subrange of self is equivalent to subrange
|
|
|
|
|
of int. */
|
|
|
|
|
else if (n2 == 0
|
|
|
|
|
&& (self_subrange ||
|
|
|
|
|
*dbx_lookup_type (rangenums) == builtin_type_int))
|
|
|
|
|
{
|
|
|
|
|
/* an unsigned type */
|
1993-07-26 22:40:41 +00:00
|
|
|
|
if (n3 == UINT_MAX)
|
1993-06-29 09:48:26 +00:00
|
|
|
|
return builtin_type_unsigned_int;
|
1993-07-26 22:40:41 +00:00
|
|
|
|
if (n3 == ULONG_MAX)
|
|
|
|
|
return builtin_type_unsigned_long;
|
|
|
|
|
if (n3 == USHRT_MAX)
|
1993-06-29 09:48:26 +00:00
|
|
|
|
return builtin_type_unsigned_short;
|
1993-07-26 22:40:41 +00:00
|
|
|
|
if (n3 == UCHAR_MAX)
|
1993-06-29 09:48:26 +00:00
|
|
|
|
return builtin_type_unsigned_char;
|
|
|
|
|
}
|
|
|
|
|
#ifdef LONG_LONG
|
|
|
|
|
else if (n3 == 0 && n2 == -sizeof (long long))
|
|
|
|
|
return builtin_type_long_long;
|
1993-07-26 22:40:41 +00:00
|
|
|
|
#endif
|
1993-06-29 09:48:26 +00:00
|
|
|
|
else if (n2 == -n3 -1)
|
|
|
|
|
{
|
|
|
|
|
/* a signed type */
|
1993-07-26 22:40:41 +00:00
|
|
|
|
if (n3 == INT_MAX)
|
1993-06-29 09:48:26 +00:00
|
|
|
|
return builtin_type_int;
|
1993-07-26 22:40:41 +00:00
|
|
|
|
if (n3 == LONG_MAX)
|
1993-06-29 09:48:26 +00:00
|
|
|
|
return builtin_type_long;
|
1993-07-26 22:40:41 +00:00
|
|
|
|
if (n3 == SHRT_MAX)
|
1993-06-29 09:48:26 +00:00
|
|
|
|
return builtin_type_short;
|
1993-07-26 22:40:41 +00:00
|
|
|
|
if (n3 == CHAR_MAX)
|
1993-06-29 09:48:26 +00:00
|
|
|
|
return builtin_type_char;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* We have a real range type on our hands. Allocate space and
|
|
|
|
|
return a real pointer. */
|
|
|
|
|
|
|
|
|
|
/* At this point I don't have the faintest idea how to deal with
|
|
|
|
|
a self_subrange type; I'm going to assume that this is used
|
|
|
|
|
as an idiom, and that all of them are special cases. So . . . */
|
|
|
|
|
if (self_subrange)
|
1993-07-26 22:40:41 +00:00
|
|
|
|
error ("Type defined as subrange of itself: %s.", pp);
|
1993-06-29 09:48:26 +00:00
|
|
|
|
|
|
|
|
|
result_type = (struct type *) obstack_alloc (symbol_obstack,
|
|
|
|
|
sizeof (struct type));
|
|
|
|
|
bzero (result_type, sizeof (struct type));
|
|
|
|
|
|
|
|
|
|
TYPE_TARGET_TYPE (result_type) = (self_subrange ?
|
|
|
|
|
builtin_type_int :
|
|
|
|
|
*dbx_lookup_type(rangenums));
|
|
|
|
|
|
|
|
|
|
/* We have to figure out how many bytes it takes to hold this
|
|
|
|
|
range type. I'm going to assume that anything that is pushing
|
|
|
|
|
the bounds of a long was taken care of above. */
|
|
|
|
|
if (n2 >= MIN_OF_TYPE(char) && n3 <= MAX_OF_TYPE(char))
|
|
|
|
|
TYPE_LENGTH (result_type) = 1;
|
|
|
|
|
else if (n2 >= MIN_OF_TYPE(short) && n3 <= MAX_OF_TYPE(short))
|
|
|
|
|
TYPE_LENGTH (result_type) = sizeof (short);
|
|
|
|
|
else if (n2 >= MIN_OF_TYPE(int) && n3 <= MAX_OF_TYPE(int))
|
|
|
|
|
TYPE_LENGTH (result_type) = sizeof (int);
|
|
|
|
|
else if (n2 >= MIN_OF_TYPE(long) && n3 <= MAX_OF_TYPE(long))
|
|
|
|
|
TYPE_LENGTH (result_type) = sizeof (long);
|
|
|
|
|
else
|
|
|
|
|
error ("Ranged type doesn't fit within known sizes.");
|
|
|
|
|
|
|
|
|
|
TYPE_LENGTH (result_type) = TYPE_LENGTH (TYPE_TARGET_TYPE (result_type));
|
|
|
|
|
TYPE_CODE (result_type) = TYPE_CODE_RANGE;
|
|
|
|
|
TYPE_NFIELDS (result_type) = 2;
|
|
|
|
|
TYPE_FIELDS (result_type) =
|
|
|
|
|
(struct field *) obstack_alloc (symbol_obstack,
|
|
|
|
|
2 * sizeof (struct field));
|
|
|
|
|
bzero (TYPE_FIELDS (result_type), 2 * sizeof (struct field));
|
|
|
|
|
TYPE_FIELD_BITPOS (result_type, 0) = n2;
|
|
|
|
|
TYPE_FIELD_BITPOS (result_type, 1) = n3;
|
|
|
|
|
|
|
|
|
|
return result_type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Read a number from the string pointed to by *PP.
|
|
|
|
|
The value of *PP is advanced over the number.
|
|
|
|
|
If END is nonzero, the character that ends the
|
|
|
|
|
number must match END, or an error happens;
|
|
|
|
|
and that character is skipped if it does match.
|
|
|
|
|
If END is zero, *PP is left pointing to that character. */
|
|
|
|
|
|
|
|
|
|
static long
|
|
|
|
|
read_number (pp, end)
|
|
|
|
|
char **pp;
|
|
|
|
|
int end;
|
|
|
|
|
{
|
|
|
|
|
register char *p = *pp;
|
|
|
|
|
register long n = 0;
|
|
|
|
|
register int c;
|
|
|
|
|
int sign = 1;
|
|
|
|
|
|
|
|
|
|
/* Handle an optional leading minus sign. */
|
|
|
|
|
|
|
|
|
|
if (*p == '-')
|
|
|
|
|
{
|
|
|
|
|
sign = -1;
|
|
|
|
|
p++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Read the digits, as far as they go. */
|
|
|
|
|
|
|
|
|
|
while ((c = *p++) >= '0' && c <= '9')
|
|
|
|
|
{
|
|
|
|
|
n *= 10;
|
|
|
|
|
n += c - '0';
|
|
|
|
|
}
|
|
|
|
|
if (end)
|
|
|
|
|
{
|
|
|
|
|
if (c && c != end)
|
|
|
|
|
error ("Invalid symbol data: invalid character \\%03o at symbol pos %d.", c, symnum);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
--p;
|
|
|
|
|
|
|
|
|
|
*pp = p;
|
|
|
|
|
return n * sign;
|
|
|
|
|
}
|
|
|
|
|
|
1993-07-26 22:40:41 +00:00
|
|
|
|
static void
|
|
|
|
|
read_huge_number (pp, end, valu, bits)
|
|
|
|
|
char **pp;
|
|
|
|
|
int end;
|
|
|
|
|
long *valu;
|
|
|
|
|
int *bits;
|
|
|
|
|
{
|
|
|
|
|
char *p = *pp;
|
|
|
|
|
int sign = 1;
|
|
|
|
|
long n = 0;
|
|
|
|
|
int radix = 10;
|
|
|
|
|
char overflow = 0;
|
|
|
|
|
int nbits = 0;
|
|
|
|
|
int c;
|
|
|
|
|
long upper_limit;
|
|
|
|
|
|
|
|
|
|
/* Handle an optional leading minus sign. */
|
|
|
|
|
|
|
|
|
|
if (*p == '-')
|
|
|
|
|
{
|
|
|
|
|
sign = -1;
|
|
|
|
|
p++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Leading zero means octal. GCC uses this to output values larger
|
|
|
|
|
than an int (because that would be hard in decimal). */
|
|
|
|
|
if (*p == '0')
|
|
|
|
|
{
|
|
|
|
|
radix = 8;
|
|
|
|
|
p++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
upper_limit = LONG_MAX / radix;
|
|
|
|
|
while ((c = *p++) >= '0' && c <= '9')
|
|
|
|
|
{
|
|
|
|
|
if (n <= upper_limit)
|
|
|
|
|
{
|
|
|
|
|
n *= radix;
|
|
|
|
|
n += c - '0';
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
overflow = 1;
|
|
|
|
|
|
|
|
|
|
/* This depends on large values being output in octal, which is
|
|
|
|
|
what GCC does. */
|
|
|
|
|
if (radix == 8)
|
|
|
|
|
{
|
|
|
|
|
if (nbits == 0)
|
|
|
|
|
{
|
|
|
|
|
if (c == '0')
|
|
|
|
|
/* Ignore leading zeroes. */
|
|
|
|
|
;
|
|
|
|
|
else if (c == '1')
|
|
|
|
|
nbits = 1;
|
|
|
|
|
else if (c == '2' || c == '3')
|
|
|
|
|
nbits = 2;
|
|
|
|
|
else
|
|
|
|
|
nbits = 3;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
nbits += 3;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (end)
|
|
|
|
|
{
|
|
|
|
|
if (c && c != end)
|
|
|
|
|
{
|
|
|
|
|
if (bits != NULL)
|
|
|
|
|
*bits = -1;
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
--p;
|
|
|
|
|
|
|
|
|
|
*pp = p;
|
|
|
|
|
if (overflow)
|
|
|
|
|
{
|
|
|
|
|
if (nbits == 0)
|
|
|
|
|
{
|
|
|
|
|
/* Large decimal constants are an error (because it is hard to
|
|
|
|
|
count how many bits are in them). */
|
|
|
|
|
if (bits != NULL)
|
|
|
|
|
*bits = -1;
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* -0x7f is the same as 0x80. So deal with it by adding one to
|
|
|
|
|
the number of bits. */
|
|
|
|
|
if (sign == -1)
|
|
|
|
|
++nbits;
|
|
|
|
|
if (bits)
|
|
|
|
|
*bits = nbits;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (valu)
|
|
|
|
|
*valu = n * sign;
|
|
|
|
|
if (bits)
|
|
|
|
|
*bits = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
1993-06-29 09:48:26 +00:00
|
|
|
|
/* Read in an argument list. This is a list of types. It is terminated with
|
|
|
|
|
a ':', FYI. Return the list of types read in. */
|
|
|
|
|
static struct type **
|
|
|
|
|
read_args (pp, end)
|
|
|
|
|
char **pp;
|
|
|
|
|
int end;
|
|
|
|
|
{
|
|
|
|
|
struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
|
|
|
|
|
int n = 0;
|
|
|
|
|
|
|
|
|
|
while (**pp != end)
|
|
|
|
|
{
|
|
|
|
|
if (**pp != ',')
|
|
|
|
|
error ("Invalid argument list: no ',', at symtab pos %d", symnum);
|
|
|
|
|
*pp += 1;
|
|
|
|
|
|
|
|
|
|
/* Check for and handle cretinous dbx symbol name continuation! */
|
|
|
|
|
if (**pp == '\\')
|
|
|
|
|
*pp = next_symbol_text ();
|
|
|
|
|
|
|
|
|
|
types[n++] = read_type (pp);
|
|
|
|
|
}
|
|
|
|
|
*pp += 1; /* get past `end' (the ':' character) */
|
|
|
|
|
|
|
|
|
|
if (n == 1)
|
|
|
|
|
{
|
|
|
|
|
rval = (struct type **) xmalloc (2 * sizeof (struct type *));
|
|
|
|
|
}
|
|
|
|
|
else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
|
|
|
|
|
{
|
|
|
|
|
rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
|
|
|
|
|
bzero (rval + n, sizeof (struct type *));
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
rval = (struct type **) xmalloc (n * sizeof (struct type *));
|
|
|
|
|
}
|
|
|
|
|
bcopy (types, rval, n * sizeof (struct type *));
|
|
|
|
|
return rval;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* This function is really horrible, but to avoid it, there would need
|
|
|
|
|
to be more filling in of forward references. THIS SHOULD BE MOVED OUT
|
|
|
|
|
OF COFFREAD.C AND DBXREAD.C TO SOME PLACE WHERE IT CAN BE SHARED */
|
|
|
|
|
int
|
|
|
|
|
fill_in_vptr_fieldno (type)
|
|
|
|
|
struct type *type;
|
|
|
|
|
{
|
|
|
|
|
if (TYPE_VPTR_FIELDNO (type) < 0)
|
|
|
|
|
TYPE_VPTR_FIELDNO (type) =
|
|
|
|
|
fill_in_vptr_fieldno (TYPE_BASECLASS (type, 1));
|
|
|
|
|
return TYPE_VPTR_FIELDNO (type);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Copy a pending list, used to record the contents of a common
|
|
|
|
|
block for later fixup. BUG FIX by rde@topexpress.co.uk */
|
|
|
|
|
static struct pending *
|
|
|
|
|
copy_pending (beg, begi, end)
|
|
|
|
|
struct pending *beg, *end;
|
|
|
|
|
int begi;
|
|
|
|
|
{
|
|
|
|
|
struct pending *new = 0;
|
|
|
|
|
struct pending *next;
|
|
|
|
|
|
|
|
|
|
/* rde note: `begi' is an offset in block `end', NOT `beg' */
|
|
|
|
|
for (next = beg; next != 0; next = next->next)
|
|
|
|
|
{
|
|
|
|
|
register int j;
|
|
|
|
|
for (j = next == end ? begi : 0; j < next->nsyms; j++)
|
|
|
|
|
add_symbol_to_list (next->symbol[j], &new);
|
|
|
|
|
|
|
|
|
|
if (next == end)
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
return new;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Add a common block's start address to the offset of each symbol
|
|
|
|
|
declared to be in it (by being between a BCOMM/ECOMM pair that uses
|
|
|
|
|
the common block name). */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
fix_common_block (sym, value)
|
|
|
|
|
struct symbol *sym;
|
|
|
|
|
int value;
|
|
|
|
|
{
|
|
|
|
|
struct pending *next = (struct pending *) SYMBOL_NAMESPACE (sym);
|
|
|
|
|
for ( ; next; next = next->next)
|
|
|
|
|
{
|
|
|
|
|
register int j;
|
|
|
|
|
for (j = next->nsyms - 1; j >= 0; j--)
|
|
|
|
|
SYMBOL_VALUE (next->symbol[j]) += value;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
_initialize_dbxread ()
|
|
|
|
|
{
|
|
|
|
|
symfile = 0;
|
|
|
|
|
header_files = (struct header_file *) 0;
|
|
|
|
|
this_object_header_files = (int *) 0;
|
|
|
|
|
|
|
|
|
|
undef_types_allocated = 20;
|
|
|
|
|
undef_types_length = 0;
|
|
|
|
|
undef_types = (struct type **) xmalloc (undef_types_allocated *
|
|
|
|
|
sizeof (struct type *));
|
|
|
|
|
|
|
|
|
|
add_com ("symbol-file", class_files, symbol_file_command,
|
|
|
|
|
"Load symbol table (in dbx format) from executable file FILE.");
|
|
|
|
|
|
|
|
|
|
add_com ("add-file", class_files, add_file_command,
|
|
|
|
|
"Load the symbols from FILE, assuming its code is at TEXT_START.") ;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif /* READ_DBX_FORMAT */
|