995 lines
24 KiB
C
995 lines
24 KiB
C
|
/*
|
||
|
* CDDL HEADER START
|
||
|
*
|
||
|
* The contents of this file are subject to the terms of the
|
||
|
* Common Development and Distribution License (the "License").
|
||
|
* You may not use this file except in compliance with the License.
|
||
|
*
|
||
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
||
|
* or http://www.opensolaris.org/os/licensing.
|
||
|
* See the License for the specific language governing permissions
|
||
|
* and limitations under the License.
|
||
|
*
|
||
|
* When distributing Covered Code, include this CDDL HEADER in each
|
||
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
||
|
* If applicable, add the following below this CDDL HEADER, with the
|
||
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
||
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
||
|
*
|
||
|
* CDDL HEADER END
|
||
|
*/
|
||
|
/*
|
||
|
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
|
||
|
* Use is subject to license terms.
|
||
|
*/
|
||
|
|
||
|
#pragma ident "%Z%%M% %I% %E% SMI"
|
||
|
|
||
|
/*
|
||
|
* Pool import support functions.
|
||
|
*
|
||
|
* To import a pool, we rely on reading the configuration information from the
|
||
|
* ZFS label of each device. If we successfully read the label, then we
|
||
|
* organize the configuration information in the following hierarchy:
|
||
|
*
|
||
|
* pool guid -> toplevel vdev guid -> label txg
|
||
|
*
|
||
|
* Duplicate entries matching this same tuple will be discarded. Once we have
|
||
|
* examined every device, we pick the best label txg config for each toplevel
|
||
|
* vdev. We then arrange these toplevel vdevs into a complete pool config, and
|
||
|
* update any paths that have changed. Finally, we attempt to import the pool
|
||
|
* using our derived config, and record the results.
|
||
|
*/
|
||
|
|
||
|
#include <devid.h>
|
||
|
#include <dirent.h>
|
||
|
#include <errno.h>
|
||
|
#include <libintl.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <string.h>
|
||
|
#include <sys/stat.h>
|
||
|
#include <unistd.h>
|
||
|
#include <fcntl.h>
|
||
|
#include <libgeom.h>
|
||
|
|
||
|
#include <sys/vdev_impl.h>
|
||
|
|
||
|
#include "libzfs.h"
|
||
|
#include "libzfs_impl.h"
|
||
|
|
||
|
/*
|
||
|
* Intermediate structures used to gather configuration information.
|
||
|
*/
|
||
|
typedef struct config_entry {
|
||
|
uint64_t ce_txg;
|
||
|
nvlist_t *ce_config;
|
||
|
struct config_entry *ce_next;
|
||
|
} config_entry_t;
|
||
|
|
||
|
typedef struct vdev_entry {
|
||
|
uint64_t ve_guid;
|
||
|
config_entry_t *ve_configs;
|
||
|
struct vdev_entry *ve_next;
|
||
|
} vdev_entry_t;
|
||
|
|
||
|
typedef struct pool_entry {
|
||
|
uint64_t pe_guid;
|
||
|
vdev_entry_t *pe_vdevs;
|
||
|
struct pool_entry *pe_next;
|
||
|
} pool_entry_t;
|
||
|
|
||
|
typedef struct name_entry {
|
||
|
char *ne_name;
|
||
|
uint64_t ne_guid;
|
||
|
struct name_entry *ne_next;
|
||
|
} name_entry_t;
|
||
|
|
||
|
typedef struct pool_list {
|
||
|
pool_entry_t *pools;
|
||
|
name_entry_t *names;
|
||
|
} pool_list_t;
|
||
|
|
||
|
static char *
|
||
|
get_devid(const char *path)
|
||
|
{
|
||
|
int fd;
|
||
|
ddi_devid_t devid;
|
||
|
char *minor, *ret;
|
||
|
|
||
|
if ((fd = open(path, O_RDONLY)) < 0)
|
||
|
return (NULL);
|
||
|
|
||
|
minor = NULL;
|
||
|
ret = NULL;
|
||
|
if (devid_get(fd, &devid) == 0) {
|
||
|
if (devid_get_minor_name(fd, &minor) == 0)
|
||
|
ret = devid_str_encode(devid, minor);
|
||
|
if (minor != NULL)
|
||
|
devid_str_free(minor);
|
||
|
devid_free(devid);
|
||
|
}
|
||
|
(void) close(fd);
|
||
|
|
||
|
return (ret);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Go through and fix up any path and/or devid information for the given vdev
|
||
|
* configuration.
|
||
|
*/
|
||
|
static int
|
||
|
fix_paths(nvlist_t *nv, name_entry_t *names)
|
||
|
{
|
||
|
nvlist_t **child;
|
||
|
uint_t c, children;
|
||
|
uint64_t guid;
|
||
|
name_entry_t *ne, *best;
|
||
|
char *path, *devid;
|
||
|
int matched;
|
||
|
|
||
|
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
|
||
|
&child, &children) == 0) {
|
||
|
for (c = 0; c < children; c++)
|
||
|
if (fix_paths(child[c], names) != 0)
|
||
|
return (-1);
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This is a leaf (file or disk) vdev. In either case, go through
|
||
|
* the name list and see if we find a matching guid. If so, replace
|
||
|
* the path and see if we can calculate a new devid.
|
||
|
*
|
||
|
* There may be multiple names associated with a particular guid, in
|
||
|
* which case we have overlapping slices or multiple paths to the same
|
||
|
* disk. If this is the case, then we want to pick the path that is
|
||
|
* the most similar to the original, where "most similar" is the number
|
||
|
* of matching characters starting from the end of the path. This will
|
||
|
* preserve slice numbers even if the disks have been reorganized, and
|
||
|
* will also catch preferred disk names if multiple paths exist.
|
||
|
*/
|
||
|
verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
|
||
|
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
|
||
|
path = NULL;
|
||
|
|
||
|
matched = 0;
|
||
|
best = NULL;
|
||
|
for (ne = names; ne != NULL; ne = ne->ne_next) {
|
||
|
if (ne->ne_guid == guid) {
|
||
|
const char *src, *dst;
|
||
|
int count;
|
||
|
|
||
|
if (path == NULL) {
|
||
|
best = ne;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
src = ne->ne_name + strlen(ne->ne_name) - 1;
|
||
|
dst = path + strlen(path) - 1;
|
||
|
for (count = 0; src >= ne->ne_name && dst >= path;
|
||
|
src--, dst--, count++)
|
||
|
if (*src != *dst)
|
||
|
break;
|
||
|
|
||
|
/*
|
||
|
* At this point, 'count' is the number of characters
|
||
|
* matched from the end.
|
||
|
*/
|
||
|
if (count > matched || best == NULL) {
|
||
|
best = ne;
|
||
|
matched = count;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (best == NULL)
|
||
|
return (0);
|
||
|
|
||
|
if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
|
||
|
return (-1);
|
||
|
|
||
|
if ((devid = get_devid(best->ne_name)) == NULL) {
|
||
|
(void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
|
||
|
} else {
|
||
|
if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0)
|
||
|
return (-1);
|
||
|
devid_str_free(devid);
|
||
|
}
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Add the given configuration to the list of known devices.
|
||
|
*/
|
||
|
static int
|
||
|
add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
|
||
|
nvlist_t *config)
|
||
|
{
|
||
|
uint64_t pool_guid, vdev_guid, top_guid, txg, state;
|
||
|
pool_entry_t *pe;
|
||
|
vdev_entry_t *ve;
|
||
|
config_entry_t *ce;
|
||
|
name_entry_t *ne;
|
||
|
|
||
|
/*
|
||
|
* If this is a hot spare not currently in use, add it to the list of
|
||
|
* names to translate, but don't do anything else.
|
||
|
*/
|
||
|
if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
|
||
|
&state) == 0 && state == POOL_STATE_SPARE &&
|
||
|
nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
|
||
|
if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
|
||
|
return (-1);
|
||
|
|
||
|
if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
|
||
|
free(ne);
|
||
|
return (-1);
|
||
|
}
|
||
|
ne->ne_guid = vdev_guid;
|
||
|
ne->ne_next = pl->names;
|
||
|
pl->names = ne;
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If we have a valid config but cannot read any of these fields, then
|
||
|
* it means we have a half-initialized label. In vdev_label_init()
|
||
|
* we write a label with txg == 0 so that we can identify the device
|
||
|
* in case the user refers to the same disk later on. If we fail to
|
||
|
* create the pool, we'll be left with a label in this state
|
||
|
* which should not be considered part of a valid pool.
|
||
|
*/
|
||
|
if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
|
||
|
&pool_guid) != 0 ||
|
||
|
nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
|
||
|
&vdev_guid) != 0 ||
|
||
|
nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
|
||
|
&top_guid) != 0 ||
|
||
|
nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
|
||
|
&txg) != 0 || txg == 0) {
|
||
|
nvlist_free(config);
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* First, see if we know about this pool. If not, then add it to the
|
||
|
* list of known pools.
|
||
|
*/
|
||
|
for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
|
||
|
if (pe->pe_guid == pool_guid)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (pe == NULL) {
|
||
|
if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
|
||
|
nvlist_free(config);
|
||
|
return (-1);
|
||
|
}
|
||
|
pe->pe_guid = pool_guid;
|
||
|
pe->pe_next = pl->pools;
|
||
|
pl->pools = pe;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Second, see if we know about this toplevel vdev. Add it if its
|
||
|
* missing.
|
||
|
*/
|
||
|
for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
|
||
|
if (ve->ve_guid == top_guid)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (ve == NULL) {
|
||
|
if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
|
||
|
nvlist_free(config);
|
||
|
return (-1);
|
||
|
}
|
||
|
ve->ve_guid = top_guid;
|
||
|
ve->ve_next = pe->pe_vdevs;
|
||
|
pe->pe_vdevs = ve;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Third, see if we have a config with a matching transaction group. If
|
||
|
* so, then we do nothing. Otherwise, add it to the list of known
|
||
|
* configs.
|
||
|
*/
|
||
|
for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
|
||
|
if (ce->ce_txg == txg)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (ce == NULL) {
|
||
|
if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
|
||
|
nvlist_free(config);
|
||
|
return (-1);
|
||
|
}
|
||
|
ce->ce_txg = txg;
|
||
|
ce->ce_config = config;
|
||
|
ce->ce_next = ve->ve_configs;
|
||
|
ve->ve_configs = ce;
|
||
|
} else {
|
||
|
nvlist_free(config);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* At this point we've successfully added our config to the list of
|
||
|
* known configs. The last thing to do is add the vdev guid -> path
|
||
|
* mappings so that we can fix up the configuration as necessary before
|
||
|
* doing the import.
|
||
|
*/
|
||
|
if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
|
||
|
return (-1);
|
||
|
|
||
|
if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
|
||
|
free(ne);
|
||
|
return (-1);
|
||
|
}
|
||
|
|
||
|
ne->ne_guid = vdev_guid;
|
||
|
ne->ne_next = pl->names;
|
||
|
pl->names = ne;
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Returns true if the named pool matches the given GUID.
|
||
|
*/
|
||
|
static int
|
||
|
pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
|
||
|
boolean_t *isactive)
|
||
|
{
|
||
|
zpool_handle_t *zhp;
|
||
|
uint64_t theguid;
|
||
|
|
||
|
if (zpool_open_silent(hdl, name, &zhp) != 0)
|
||
|
return (-1);
|
||
|
|
||
|
if (zhp == NULL) {
|
||
|
*isactive = B_FALSE;
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
|
||
|
&theguid) == 0);
|
||
|
|
||
|
zpool_close(zhp);
|
||
|
|
||
|
*isactive = (theguid == guid);
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Convert our list of pools into the definitive set of configurations. We
|
||
|
* start by picking the best config for each toplevel vdev. Once that's done,
|
||
|
* we assemble the toplevel vdevs into a full config for the pool. We make a
|
||
|
* pass to fix up any incorrect paths, and then add it to the main list to
|
||
|
* return to the user.
|
||
|
*/
|
||
|
static nvlist_t *
|
||
|
get_configs(libzfs_handle_t *hdl, pool_list_t *pl)
|
||
|
{
|
||
|
pool_entry_t *pe;
|
||
|
vdev_entry_t *ve;
|
||
|
config_entry_t *ce;
|
||
|
nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot;
|
||
|
nvlist_t **spares;
|
||
|
uint_t i, nspares;
|
||
|
boolean_t config_seen;
|
||
|
uint64_t best_txg;
|
||
|
char *name;
|
||
|
zfs_cmd_t zc = { 0 };
|
||
|
uint64_t version, guid;
|
||
|
size_t len;
|
||
|
int err;
|
||
|
uint_t children = 0;
|
||
|
nvlist_t **child = NULL;
|
||
|
uint_t c;
|
||
|
boolean_t isactive;
|
||
|
|
||
|
if (nvlist_alloc(&ret, 0, 0) != 0)
|
||
|
goto nomem;
|
||
|
|
||
|
for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
|
||
|
uint64_t id;
|
||
|
|
||
|
if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
|
||
|
goto nomem;
|
||
|
config_seen = B_FALSE;
|
||
|
|
||
|
/*
|
||
|
* Iterate over all toplevel vdevs. Grab the pool configuration
|
||
|
* from the first one we find, and then go through the rest and
|
||
|
* add them as necessary to the 'vdevs' member of the config.
|
||
|
*/
|
||
|
for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
|
||
|
|
||
|
/*
|
||
|
* Determine the best configuration for this vdev by
|
||
|
* selecting the config with the latest transaction
|
||
|
* group.
|
||
|
*/
|
||
|
best_txg = 0;
|
||
|
for (ce = ve->ve_configs; ce != NULL;
|
||
|
ce = ce->ce_next) {
|
||
|
|
||
|
if (ce->ce_txg > best_txg) {
|
||
|
tmp = ce->ce_config;
|
||
|
best_txg = ce->ce_txg;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!config_seen) {
|
||
|
/*
|
||
|
* Copy the relevant pieces of data to the pool
|
||
|
* configuration:
|
||
|
*
|
||
|
* version
|
||
|
* pool guid
|
||
|
* name
|
||
|
* pool state
|
||
|
*/
|
||
|
uint64_t state;
|
||
|
|
||
|
verify(nvlist_lookup_uint64(tmp,
|
||
|
ZPOOL_CONFIG_VERSION, &version) == 0);
|
||
|
if (nvlist_add_uint64(config,
|
||
|
ZPOOL_CONFIG_VERSION, version) != 0)
|
||
|
goto nomem;
|
||
|
verify(nvlist_lookup_uint64(tmp,
|
||
|
ZPOOL_CONFIG_POOL_GUID, &guid) == 0);
|
||
|
if (nvlist_add_uint64(config,
|
||
|
ZPOOL_CONFIG_POOL_GUID, guid) != 0)
|
||
|
goto nomem;
|
||
|
verify(nvlist_lookup_string(tmp,
|
||
|
ZPOOL_CONFIG_POOL_NAME, &name) == 0);
|
||
|
if (nvlist_add_string(config,
|
||
|
ZPOOL_CONFIG_POOL_NAME, name) != 0)
|
||
|
goto nomem;
|
||
|
verify(nvlist_lookup_uint64(tmp,
|
||
|
ZPOOL_CONFIG_POOL_STATE, &state) == 0);
|
||
|
if (nvlist_add_uint64(config,
|
||
|
ZPOOL_CONFIG_POOL_STATE, state) != 0)
|
||
|
goto nomem;
|
||
|
|
||
|
config_seen = B_TRUE;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Add this top-level vdev to the child array.
|
||
|
*/
|
||
|
verify(nvlist_lookup_nvlist(tmp,
|
||
|
ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
|
||
|
verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
|
||
|
&id) == 0);
|
||
|
if (id >= children) {
|
||
|
nvlist_t **newchild;
|
||
|
|
||
|
newchild = zfs_alloc(hdl, (id + 1) *
|
||
|
sizeof (nvlist_t *));
|
||
|
if (newchild == NULL)
|
||
|
goto nomem;
|
||
|
|
||
|
for (c = 0; c < children; c++)
|
||
|
newchild[c] = child[c];
|
||
|
|
||
|
free(child);
|
||
|
child = newchild;
|
||
|
children = id + 1;
|
||
|
}
|
||
|
if (nvlist_dup(nvtop, &child[id], 0) != 0)
|
||
|
goto nomem;
|
||
|
|
||
|
}
|
||
|
|
||
|
verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
|
||
|
&guid) == 0);
|
||
|
|
||
|
/*
|
||
|
* Look for any missing top-level vdevs. If this is the case,
|
||
|
* create a faked up 'missing' vdev as a placeholder. We cannot
|
||
|
* simply compress the child array, because the kernel performs
|
||
|
* certain checks to make sure the vdev IDs match their location
|
||
|
* in the configuration.
|
||
|
*/
|
||
|
for (c = 0; c < children; c++)
|
||
|
if (child[c] == NULL) {
|
||
|
nvlist_t *missing;
|
||
|
if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
|
||
|
0) != 0)
|
||
|
goto nomem;
|
||
|
if (nvlist_add_string(missing,
|
||
|
ZPOOL_CONFIG_TYPE,
|
||
|
VDEV_TYPE_MISSING) != 0 ||
|
||
|
nvlist_add_uint64(missing,
|
||
|
ZPOOL_CONFIG_ID, c) != 0 ||
|
||
|
nvlist_add_uint64(missing,
|
||
|
ZPOOL_CONFIG_GUID, 0ULL) != 0) {
|
||
|
nvlist_free(missing);
|
||
|
goto nomem;
|
||
|
}
|
||
|
child[c] = missing;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Put all of this pool's top-level vdevs into a root vdev.
|
||
|
*/
|
||
|
if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
|
||
|
goto nomem;
|
||
|
if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
|
||
|
VDEV_TYPE_ROOT) != 0 ||
|
||
|
nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
|
||
|
nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
|
||
|
nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
|
||
|
child, children) != 0) {
|
||
|
nvlist_free(nvroot);
|
||
|
goto nomem;
|
||
|
}
|
||
|
|
||
|
for (c = 0; c < children; c++)
|
||
|
nvlist_free(child[c]);
|
||
|
free(child);
|
||
|
children = 0;
|
||
|
child = NULL;
|
||
|
|
||
|
/*
|
||
|
* Go through and fix up any paths and/or devids based on our
|
||
|
* known list of vdev GUID -> path mappings.
|
||
|
*/
|
||
|
if (fix_paths(nvroot, pl->names) != 0) {
|
||
|
nvlist_free(nvroot);
|
||
|
goto nomem;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Add the root vdev to this pool's configuration.
|
||
|
*/
|
||
|
if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
|
||
|
nvroot) != 0) {
|
||
|
nvlist_free(nvroot);
|
||
|
goto nomem;
|
||
|
}
|
||
|
nvlist_free(nvroot);
|
||
|
|
||
|
/*
|
||
|
* Determine if this pool is currently active, in which case we
|
||
|
* can't actually import it.
|
||
|
*/
|
||
|
verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
|
||
|
&name) == 0);
|
||
|
verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
|
||
|
&guid) == 0);
|
||
|
|
||
|
if (pool_active(hdl, name, guid, &isactive) != 0)
|
||
|
goto error;
|
||
|
|
||
|
if (isactive) {
|
||
|
nvlist_free(config);
|
||
|
config = NULL;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Try to do the import in order to get vdev state.
|
||
|
*/
|
||
|
if (zcmd_write_src_nvlist(hdl, &zc, config, &len) != 0)
|
||
|
goto error;
|
||
|
|
||
|
nvlist_free(config);
|
||
|
config = NULL;
|
||
|
|
||
|
if (zcmd_alloc_dst_nvlist(hdl, &zc, len * 2) != 0) {
|
||
|
zcmd_free_nvlists(&zc);
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
|
||
|
&zc)) != 0 && errno == ENOMEM) {
|
||
|
if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
|
||
|
zcmd_free_nvlists(&zc);
|
||
|
goto error;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (err) {
|
||
|
(void) zpool_standard_error(hdl, errno,
|
||
|
dgettext(TEXT_DOMAIN, "cannot discover pools"));
|
||
|
zcmd_free_nvlists(&zc);
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
if (zcmd_read_dst_nvlist(hdl, &zc, &config) != 0) {
|
||
|
zcmd_free_nvlists(&zc);
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
zcmd_free_nvlists(&zc);
|
||
|
|
||
|
/*
|
||
|
* Go through and update the paths for spares, now that we have
|
||
|
* them.
|
||
|
*/
|
||
|
verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
|
||
|
&nvroot) == 0);
|
||
|
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
|
||
|
&spares, &nspares) == 0) {
|
||
|
for (i = 0; i < nspares; i++) {
|
||
|
if (fix_paths(spares[i], pl->names) != 0)
|
||
|
goto nomem;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Add this pool to the list of configs.
|
||
|
*/
|
||
|
verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
|
||
|
&name) == 0);
|
||
|
if (nvlist_add_nvlist(ret, name, config) != 0)
|
||
|
goto nomem;
|
||
|
|
||
|
nvlist_free(config);
|
||
|
config = NULL;
|
||
|
}
|
||
|
|
||
|
return (ret);
|
||
|
|
||
|
nomem:
|
||
|
(void) no_memory(hdl);
|
||
|
error:
|
||
|
nvlist_free(config);
|
||
|
nvlist_free(ret);
|
||
|
for (c = 0; c < children; c++)
|
||
|
nvlist_free(child[c]);
|
||
|
free(child);
|
||
|
|
||
|
return (NULL);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Return the offset of the given label.
|
||
|
*/
|
||
|
static uint64_t
|
||
|
label_offset(size_t size, int l)
|
||
|
{
|
||
|
return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
|
||
|
0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Given a file descriptor, read the label information and return an nvlist
|
||
|
* describing the configuration, if there is one.
|
||
|
*/
|
||
|
int
|
||
|
zpool_read_label(int fd, nvlist_t **config)
|
||
|
{
|
||
|
struct stat64 statbuf;
|
||
|
int l;
|
||
|
vdev_label_t *label;
|
||
|
uint64_t state, txg;
|
||
|
|
||
|
*config = NULL;
|
||
|
|
||
|
if (fstat64(fd, &statbuf) == -1)
|
||
|
return (0);
|
||
|
|
||
|
if ((label = malloc(sizeof (vdev_label_t))) == NULL)
|
||
|
return (-1);
|
||
|
|
||
|
for (l = 0; l < VDEV_LABELS; l++) {
|
||
|
if (pread(fd, label, sizeof (vdev_label_t),
|
||
|
label_offset(statbuf.st_size, l)) != sizeof (vdev_label_t))
|
||
|
continue;
|
||
|
|
||
|
if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
|
||
|
sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
|
||
|
continue;
|
||
|
|
||
|
if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
|
||
|
&state) != 0 || state > POOL_STATE_SPARE) {
|
||
|
nvlist_free(*config);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (state != POOL_STATE_SPARE &&
|
||
|
(nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
|
||
|
&txg) != 0 || txg == 0)) {
|
||
|
nvlist_free(*config);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
free(label);
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
free(label);
|
||
|
*config = NULL;
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Given a list of directories to search, find all pools stored on disk. This
|
||
|
* includes partial pools which are not available to import. If no args are
|
||
|
* given (argc is 0), then the default directory (/dev) is searched.
|
||
|
*/
|
||
|
nvlist_t *
|
||
|
zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
|
||
|
{
|
||
|
int i;
|
||
|
DIR *dirp;
|
||
|
char path[MAXPATHLEN];
|
||
|
nvlist_t *ret = NULL, *config;
|
||
|
int fd;
|
||
|
pool_list_t pools = { 0 };
|
||
|
pool_entry_t *pe, *penext;
|
||
|
vdev_entry_t *ve, *venext;
|
||
|
config_entry_t *ce, *cenext;
|
||
|
name_entry_t *ne, *nenext;
|
||
|
struct gmesh mesh;
|
||
|
struct gclass *mp;
|
||
|
struct ggeom *gp;
|
||
|
struct gprovider *pp;
|
||
|
|
||
|
/*
|
||
|
* Go through and read the label configuration information from every
|
||
|
* possible device, organizing the information according to pool GUID
|
||
|
* and toplevel GUID.
|
||
|
*/
|
||
|
|
||
|
fd = geom_gettree(&mesh);
|
||
|
assert(fd == 0);
|
||
|
|
||
|
LIST_FOREACH(mp, &mesh.lg_class, lg_class) {
|
||
|
LIST_FOREACH(gp, &mp->lg_geom, lg_geom) {
|
||
|
LIST_FOREACH(pp, &gp->lg_provider, lg_provider) {
|
||
|
|
||
|
(void) snprintf(path, sizeof (path), "%s%s",
|
||
|
_PATH_DEV, pp->lg_name);
|
||
|
|
||
|
if ((fd = open64(path, O_RDONLY)) < 0)
|
||
|
continue;
|
||
|
|
||
|
if ((zpool_read_label(fd, &config)) != 0) {
|
||
|
(void) no_memory(hdl);
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
(void) close(fd);
|
||
|
|
||
|
if (config == NULL)
|
||
|
continue;
|
||
|
|
||
|
if (add_config(hdl, &pools, path, config) != 0)
|
||
|
goto error;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
geom_deletetree(&mesh);
|
||
|
|
||
|
ret = get_configs(hdl, &pools);
|
||
|
|
||
|
error:
|
||
|
for (pe = pools.pools; pe != NULL; pe = penext) {
|
||
|
penext = pe->pe_next;
|
||
|
for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
|
||
|
venext = ve->ve_next;
|
||
|
for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
|
||
|
cenext = ce->ce_next;
|
||
|
if (ce->ce_config)
|
||
|
nvlist_free(ce->ce_config);
|
||
|
free(ce);
|
||
|
}
|
||
|
free(ve);
|
||
|
}
|
||
|
free(pe);
|
||
|
}
|
||
|
|
||
|
for (ne = pools.names; ne != NULL; ne = nenext) {
|
||
|
nenext = ne->ne_next;
|
||
|
if (ne->ne_name)
|
||
|
free(ne->ne_name);
|
||
|
free(ne);
|
||
|
}
|
||
|
|
||
|
|
||
|
return (ret);
|
||
|
}
|
||
|
|
||
|
boolean_t
|
||
|
find_guid(nvlist_t *nv, uint64_t guid)
|
||
|
{
|
||
|
uint64_t tmp;
|
||
|
nvlist_t **child;
|
||
|
uint_t c, children;
|
||
|
|
||
|
verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
|
||
|
if (tmp == guid)
|
||
|
return (B_TRUE);
|
||
|
|
||
|
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
|
||
|
&child, &children) == 0) {
|
||
|
for (c = 0; c < children; c++)
|
||
|
if (find_guid(child[c], guid))
|
||
|
return (B_TRUE);
|
||
|
}
|
||
|
|
||
|
return (B_FALSE);
|
||
|
}
|
||
|
|
||
|
typedef struct spare_cbdata {
|
||
|
uint64_t cb_guid;
|
||
|
zpool_handle_t *cb_zhp;
|
||
|
} spare_cbdata_t;
|
||
|
|
||
|
static int
|
||
|
find_spare(zpool_handle_t *zhp, void *data)
|
||
|
{
|
||
|
spare_cbdata_t *cbp = data;
|
||
|
nvlist_t **spares;
|
||
|
uint_t i, nspares;
|
||
|
uint64_t guid;
|
||
|
nvlist_t *nvroot;
|
||
|
|
||
|
verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
|
||
|
&nvroot) == 0);
|
||
|
|
||
|
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
|
||
|
&spares, &nspares) == 0) {
|
||
|
for (i = 0; i < nspares; i++) {
|
||
|
verify(nvlist_lookup_uint64(spares[i],
|
||
|
ZPOOL_CONFIG_GUID, &guid) == 0);
|
||
|
if (guid == cbp->cb_guid) {
|
||
|
cbp->cb_zhp = zhp;
|
||
|
return (1);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
zpool_close(zhp);
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Determines if the pool is in use. If so, it returns true and the state of
|
||
|
* the pool as well as the name of the pool. Both strings are allocated and
|
||
|
* must be freed by the caller.
|
||
|
*/
|
||
|
int
|
||
|
zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
|
||
|
boolean_t *inuse)
|
||
|
{
|
||
|
nvlist_t *config;
|
||
|
char *name;
|
||
|
boolean_t ret;
|
||
|
uint64_t guid, vdev_guid;
|
||
|
zpool_handle_t *zhp;
|
||
|
nvlist_t *pool_config;
|
||
|
uint64_t stateval, isspare;
|
||
|
spare_cbdata_t cb = { 0 };
|
||
|
boolean_t isactive;
|
||
|
|
||
|
*inuse = B_FALSE;
|
||
|
|
||
|
if (zpool_read_label(fd, &config) != 0) {
|
||
|
(void) no_memory(hdl);
|
||
|
return (-1);
|
||
|
}
|
||
|
|
||
|
if (config == NULL)
|
||
|
return (0);
|
||
|
|
||
|
verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
|
||
|
&stateval) == 0);
|
||
|
verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
|
||
|
&vdev_guid) == 0);
|
||
|
|
||
|
if (stateval != POOL_STATE_SPARE) {
|
||
|
verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
|
||
|
&name) == 0);
|
||
|
verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
|
||
|
&guid) == 0);
|
||
|
}
|
||
|
|
||
|
switch (stateval) {
|
||
|
case POOL_STATE_EXPORTED:
|
||
|
ret = B_TRUE;
|
||
|
break;
|
||
|
|
||
|
case POOL_STATE_ACTIVE:
|
||
|
/*
|
||
|
* For an active pool, we have to determine if it's really part
|
||
|
* of a currently active pool (in which case the pool will exist
|
||
|
* and the guid will be the same), or whether it's part of an
|
||
|
* active pool that was disconnected without being explicitly
|
||
|
* exported.
|
||
|
*/
|
||
|
if (pool_active(hdl, name, guid, &isactive) != 0) {
|
||
|
nvlist_free(config);
|
||
|
return (-1);
|
||
|
}
|
||
|
|
||
|
if (isactive) {
|
||
|
/*
|
||
|
* Because the device may have been removed while
|
||
|
* offlined, we only report it as active if the vdev is
|
||
|
* still present in the config. Otherwise, pretend like
|
||
|
* it's not in use.
|
||
|
*/
|
||
|
if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
|
||
|
(pool_config = zpool_get_config(zhp, NULL))
|
||
|
!= NULL) {
|
||
|
nvlist_t *nvroot;
|
||
|
|
||
|
verify(nvlist_lookup_nvlist(pool_config,
|
||
|
ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
|
||
|
ret = find_guid(nvroot, vdev_guid);
|
||
|
} else {
|
||
|
ret = B_FALSE;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If this is an active spare within another pool, we
|
||
|
* treat it like an unused hot spare. This allows the
|
||
|
* user to create a pool with a hot spare that currently
|
||
|
* in use within another pool. Since we return B_TRUE,
|
||
|
* libdiskmgt will continue to prevent generic consumers
|
||
|
* from using the device.
|
||
|
*/
|
||
|
if (ret && nvlist_lookup_uint64(config,
|
||
|
ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
|
||
|
stateval = POOL_STATE_SPARE;
|
||
|
|
||
|
if (zhp != NULL)
|
||
|
zpool_close(zhp);
|
||
|
} else {
|
||
|
stateval = POOL_STATE_POTENTIALLY_ACTIVE;
|
||
|
ret = B_TRUE;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case POOL_STATE_SPARE:
|
||
|
/*
|
||
|
* For a hot spare, it can be either definitively in use, or
|
||
|
* potentially active. To determine if it's in use, we iterate
|
||
|
* over all pools in the system and search for one with a spare
|
||
|
* with a matching guid.
|
||
|
*
|
||
|
* Due to the shared nature of spares, we don't actually report
|
||
|
* the potentially active case as in use. This means the user
|
||
|
* can freely create pools on the hot spares of exported pools,
|
||
|
* but to do otherwise makes the resulting code complicated, and
|
||
|
* we end up having to deal with this case anyway.
|
||
|
*/
|
||
|
cb.cb_zhp = NULL;
|
||
|
cb.cb_guid = vdev_guid;
|
||
|
if (zpool_iter(hdl, find_spare, &cb) == 1) {
|
||
|
name = (char *)zpool_get_name(cb.cb_zhp);
|
||
|
ret = TRUE;
|
||
|
} else {
|
||
|
ret = FALSE;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
ret = B_FALSE;
|
||
|
}
|
||
|
|
||
|
|
||
|
if (ret) {
|
||
|
if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
|
||
|
nvlist_free(config);
|
||
|
return (-1);
|
||
|
}
|
||
|
*state = (pool_state_t)stateval;
|
||
|
}
|
||
|
|
||
|
if (cb.cb_zhp)
|
||
|
zpool_close(cb.cb_zhp);
|
||
|
|
||
|
nvlist_free(config);
|
||
|
*inuse = ret;
|
||
|
return (0);
|
||
|
}
|