2005-01-06 23:35:40 +00:00
|
|
|
/*-
|
Add a prioritization field to the devstat_add_entry() call so that
peripheral drivers can determine where in the devstat(9) list they are
inserted.
This requires recompilation of libdevstat, systat, vmstat, rpc.rstatd, and
any ports that depend on the devstat code, since the size of the devstat
structure has changed. The devstat version number has been incremented as
well to reflect the change.
This sorts devices in the devstat list in "more interesting" to "less
interesting" order. So, for instance, da devices are now more important
than floppy drives, and so will appear before floppy drives in the default
output from systat, iostat, vmstat, etc.
The order of devices is, for now, kept in a central table in devicestat.h.
If individual drivers were able to make a meaningful decision on what
priority they should be at attach time, we could consider splitting the
priority information out into the various drivers. For now, though, they
have no way of knowing that, so it's easier to put them in an easy to find
table.
Also, move the checkversion() call in vmstat(8) to a more logical place.
Thanks to Bruce and David O'Brien for suggestions, for reviewing this, and
for putting up with the long time it has taken me to commit it. Bruce did
object somewhat to the central priority table (he would rather the
priorities be distributed in each driver), so his objection is duly noted
here.
Reviewed by: bde, obrien
1999-02-10 00:04:13 +00:00
|
|
|
* Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
|
1998-09-15 08:16:17 +00:00
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
|
|
* derived from this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
2003-06-11 00:56:59 +00:00
|
|
|
#include <sys/cdefs.h>
|
|
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
|
1998-09-15 08:16:17 +00:00
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/kernel.h>
|
|
|
|
#include <sys/systm.h>
|
2000-05-05 09:59:14 +00:00
|
|
|
#include <sys/bio.h>
|
2003-03-18 09:20:20 +00:00
|
|
|
#include <sys/devicestat.h>
|
1998-09-15 08:16:17 +00:00
|
|
|
#include <sys/sysctl.h>
|
2003-03-08 19:58:57 +00:00
|
|
|
#include <sys/malloc.h>
|
2003-03-18 09:20:20 +00:00
|
|
|
#include <sys/lock.h>
|
|
|
|
#include <sys/mutex.h>
|
2003-03-08 19:58:57 +00:00
|
|
|
#include <sys/conf.h>
|
|
|
|
#include <vm/vm.h>
|
|
|
|
#include <vm/pmap.h>
|
1998-09-15 08:16:17 +00:00
|
|
|
|
2003-03-18 09:20:20 +00:00
|
|
|
#include <machine/atomic.h>
|
1998-09-15 08:16:17 +00:00
|
|
|
|
|
|
|
static int devstat_num_devs;
|
2003-08-17 12:06:19 +00:00
|
|
|
static long devstat_generation = 1;
|
1998-09-15 08:16:17 +00:00
|
|
|
static int devstat_version = DEVSTAT_VERSION;
|
|
|
|
static int devstat_current_devnumber;
|
2003-03-18 09:20:20 +00:00
|
|
|
static struct mtx devstat_mutex;
|
1998-09-15 08:16:17 +00:00
|
|
|
|
2001-08-04 18:02:47 +00:00
|
|
|
static struct devstatlist device_statq;
|
2003-03-08 19:58:57 +00:00
|
|
|
static struct devstat *devstat_alloc(void);
|
|
|
|
static void devstat_free(struct devstat *);
|
2003-03-18 07:52:59 +00:00
|
|
|
static void devstat_add_entry(struct devstat *ds, const void *dev_name,
|
2010-06-21 09:55:56 +00:00
|
|
|
int unit_number, uint32_t block_size,
|
2003-03-08 21:46:43 +00:00
|
|
|
devstat_support_flags flags,
|
|
|
|
devstat_type_flags device_type,
|
|
|
|
devstat_priority priority);
|
2003-03-08 19:58:57 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Allocate a devstat and initialize it
|
|
|
|
*/
|
|
|
|
struct devstat *
|
2003-03-18 07:52:59 +00:00
|
|
|
devstat_new_entry(const void *dev_name,
|
2010-06-21 09:55:56 +00:00
|
|
|
int unit_number, uint32_t block_size,
|
2003-03-08 19:58:57 +00:00
|
|
|
devstat_support_flags flags,
|
|
|
|
devstat_type_flags device_type,
|
|
|
|
devstat_priority priority)
|
|
|
|
{
|
|
|
|
struct devstat *ds;
|
2003-03-18 09:20:20 +00:00
|
|
|
static int once;
|
|
|
|
|
|
|
|
if (!once) {
|
|
|
|
STAILQ_INIT(&device_statq);
|
|
|
|
mtx_init(&devstat_mutex, "devstat", NULL, MTX_DEF);
|
|
|
|
once = 1;
|
|
|
|
}
|
|
|
|
mtx_assert(&devstat_mutex, MA_NOTOWNED);
|
2003-03-08 19:58:57 +00:00
|
|
|
|
|
|
|
ds = devstat_alloc();
|
2003-03-18 09:20:20 +00:00
|
|
|
mtx_lock(&devstat_mutex);
|
2003-03-18 09:30:31 +00:00
|
|
|
if (unit_number == -1) {
|
|
|
|
ds->id = dev_name;
|
|
|
|
binuptime(&ds->creation_time);
|
|
|
|
devstat_generation++;
|
|
|
|
} else {
|
|
|
|
devstat_add_entry(ds, dev_name, unit_number, block_size,
|
|
|
|
flags, device_type, priority);
|
|
|
|
}
|
2003-03-18 09:20:20 +00:00
|
|
|
mtx_unlock(&devstat_mutex);
|
2003-03-08 19:58:57 +00:00
|
|
|
return (ds);
|
|
|
|
}
|
1998-09-15 08:16:17 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Take a malloced and zeroed devstat structure given to us, fill it in
|
|
|
|
* and add it to the queue of devices.
|
|
|
|
*/
|
2003-03-08 21:46:43 +00:00
|
|
|
static void
|
2003-03-18 07:52:59 +00:00
|
|
|
devstat_add_entry(struct devstat *ds, const void *dev_name,
|
2010-06-21 09:55:56 +00:00
|
|
|
int unit_number, uint32_t block_size,
|
1998-09-15 08:16:17 +00:00
|
|
|
devstat_support_flags flags,
|
Add a prioritization field to the devstat_add_entry() call so that
peripheral drivers can determine where in the devstat(9) list they are
inserted.
This requires recompilation of libdevstat, systat, vmstat, rpc.rstatd, and
any ports that depend on the devstat code, since the size of the devstat
structure has changed. The devstat version number has been incremented as
well to reflect the change.
This sorts devices in the devstat list in "more interesting" to "less
interesting" order. So, for instance, da devices are now more important
than floppy drives, and so will appear before floppy drives in the default
output from systat, iostat, vmstat, etc.
The order of devices is, for now, kept in a central table in devicestat.h.
If individual drivers were able to make a meaningful decision on what
priority they should be at attach time, we could consider splitting the
priority information out into the various drivers. For now, though, they
have no way of knowing that, so it's easier to put them in an easy to find
table.
Also, move the checkversion() call in vmstat(8) to a more logical place.
Thanks to Bruce and David O'Brien for suggestions, for reviewing this, and
for putting up with the long time it has taken me to commit it. Bruce did
object somewhat to the central priority table (he would rather the
priorities be distributed in each driver), so his objection is duly noted
here.
Reviewed by: bde, obrien
1999-02-10 00:04:13 +00:00
|
|
|
devstat_type_flags device_type,
|
|
|
|
devstat_priority priority)
|
1998-09-15 08:16:17 +00:00
|
|
|
{
|
|
|
|
struct devstatlist *devstat_head;
|
Add a prioritization field to the devstat_add_entry() call so that
peripheral drivers can determine where in the devstat(9) list they are
inserted.
This requires recompilation of libdevstat, systat, vmstat, rpc.rstatd, and
any ports that depend on the devstat code, since the size of the devstat
structure has changed. The devstat version number has been incremented as
well to reflect the change.
This sorts devices in the devstat list in "more interesting" to "less
interesting" order. So, for instance, da devices are now more important
than floppy drives, and so will appear before floppy drives in the default
output from systat, iostat, vmstat, etc.
The order of devices is, for now, kept in a central table in devicestat.h.
If individual drivers were able to make a meaningful decision on what
priority they should be at attach time, we could consider splitting the
priority information out into the various drivers. For now, though, they
have no way of knowing that, so it's easier to put them in an easy to find
table.
Also, move the checkversion() call in vmstat(8) to a more logical place.
Thanks to Bruce and David O'Brien for suggestions, for reviewing this, and
for putting up with the long time it has taken me to commit it. Bruce did
object somewhat to the central priority table (he would rather the
priorities be distributed in each driver), so his objection is duly noted
here.
Reviewed by: bde, obrien
1999-02-10 00:04:13 +00:00
|
|
|
struct devstat *ds_tmp;
|
1998-09-15 08:16:17 +00:00
|
|
|
|
2003-03-18 09:20:20 +00:00
|
|
|
mtx_assert(&devstat_mutex, MA_OWNED);
|
1998-09-15 08:16:17 +00:00
|
|
|
devstat_num_devs++;
|
|
|
|
|
|
|
|
devstat_head = &device_statq;
|
|
|
|
|
Add a prioritization field to the devstat_add_entry() call so that
peripheral drivers can determine where in the devstat(9) list they are
inserted.
This requires recompilation of libdevstat, systat, vmstat, rpc.rstatd, and
any ports that depend on the devstat code, since the size of the devstat
structure has changed. The devstat version number has been incremented as
well to reflect the change.
This sorts devices in the devstat list in "more interesting" to "less
interesting" order. So, for instance, da devices are now more important
than floppy drives, and so will appear before floppy drives in the default
output from systat, iostat, vmstat, etc.
The order of devices is, for now, kept in a central table in devicestat.h.
If individual drivers were able to make a meaningful decision on what
priority they should be at attach time, we could consider splitting the
priority information out into the various drivers. For now, though, they
have no way of knowing that, so it's easier to put them in an easy to find
table.
Also, move the checkversion() call in vmstat(8) to a more logical place.
Thanks to Bruce and David O'Brien for suggestions, for reviewing this, and
for putting up with the long time it has taken me to commit it. Bruce did
object somewhat to the central priority table (he would rather the
priorities be distributed in each driver), so his objection is duly noted
here.
Reviewed by: bde, obrien
1999-02-10 00:04:13 +00:00
|
|
|
/*
|
|
|
|
* Priority sort. Each driver passes in its priority when it adds
|
|
|
|
* its devstat entry. Drivers are sorted first by priority, and
|
|
|
|
* then by probe order.
|
|
|
|
*
|
|
|
|
* For the first device, we just insert it, since the priority
|
|
|
|
* doesn't really matter yet. Subsequent devices are inserted into
|
|
|
|
* the list using the order outlined above.
|
|
|
|
*/
|
|
|
|
if (devstat_num_devs == 1)
|
|
|
|
STAILQ_INSERT_TAIL(devstat_head, ds, dev_links);
|
|
|
|
else {
|
2001-02-04 16:08:18 +00:00
|
|
|
STAILQ_FOREACH(ds_tmp, devstat_head, dev_links) {
|
Add a prioritization field to the devstat_add_entry() call so that
peripheral drivers can determine where in the devstat(9) list they are
inserted.
This requires recompilation of libdevstat, systat, vmstat, rpc.rstatd, and
any ports that depend on the devstat code, since the size of the devstat
structure has changed. The devstat version number has been incremented as
well to reflect the change.
This sorts devices in the devstat list in "more interesting" to "less
interesting" order. So, for instance, da devices are now more important
than floppy drives, and so will appear before floppy drives in the default
output from systat, iostat, vmstat, etc.
The order of devices is, for now, kept in a central table in devicestat.h.
If individual drivers were able to make a meaningful decision on what
priority they should be at attach time, we could consider splitting the
priority information out into the various drivers. For now, though, they
have no way of knowing that, so it's easier to put them in an easy to find
table.
Also, move the checkversion() call in vmstat(8) to a more logical place.
Thanks to Bruce and David O'Brien for suggestions, for reviewing this, and
for putting up with the long time it has taken me to commit it. Bruce did
object somewhat to the central priority table (he would rather the
priorities be distributed in each driver), so his objection is duly noted
here.
Reviewed by: bde, obrien
1999-02-10 00:04:13 +00:00
|
|
|
struct devstat *ds_next;
|
|
|
|
|
|
|
|
ds_next = STAILQ_NEXT(ds_tmp, dev_links);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we find a break between higher and lower
|
|
|
|
* priority items, and if this item fits in the
|
|
|
|
* break, insert it. This also applies if the
|
|
|
|
* "lower priority item" is the end of the list.
|
|
|
|
*/
|
|
|
|
if ((priority <= ds_tmp->priority)
|
|
|
|
&& ((ds_next == NULL)
|
|
|
|
|| (priority > ds_next->priority))) {
|
|
|
|
STAILQ_INSERT_AFTER(devstat_head, ds_tmp, ds,
|
|
|
|
dev_links);
|
|
|
|
break;
|
|
|
|
} else if (priority > ds_tmp->priority) {
|
|
|
|
/*
|
|
|
|
* If this is the case, we should be able
|
|
|
|
* to insert ourselves at the head of the
|
|
|
|
* list. If we can't, something is wrong.
|
|
|
|
*/
|
|
|
|
if (ds_tmp == STAILQ_FIRST(devstat_head)) {
|
|
|
|
STAILQ_INSERT_HEAD(devstat_head,
|
|
|
|
ds, dev_links);
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
STAILQ_INSERT_TAIL(devstat_head,
|
|
|
|
ds, dev_links);
|
|
|
|
printf("devstat_add_entry: HELP! "
|
|
|
|
"sorting problem detected "
|
2003-03-18 07:52:59 +00:00
|
|
|
"for name %p unit %d\n",
|
|
|
|
dev_name, unit_number);
|
Add a prioritization field to the devstat_add_entry() call so that
peripheral drivers can determine where in the devstat(9) list they are
inserted.
This requires recompilation of libdevstat, systat, vmstat, rpc.rstatd, and
any ports that depend on the devstat code, since the size of the devstat
structure has changed. The devstat version number has been incremented as
well to reflect the change.
This sorts devices in the devstat list in "more interesting" to "less
interesting" order. So, for instance, da devices are now more important
than floppy drives, and so will appear before floppy drives in the default
output from systat, iostat, vmstat, etc.
The order of devices is, for now, kept in a central table in devicestat.h.
If individual drivers were able to make a meaningful decision on what
priority they should be at attach time, we could consider splitting the
priority information out into the various drivers. For now, though, they
have no way of knowing that, so it's easier to put them in an easy to find
table.
Also, move the checkversion() call in vmstat(8) to a more logical place.
Thanks to Bruce and David O'Brien for suggestions, for reviewing this, and
for putting up with the long time it has taken me to commit it. Bruce did
object somewhat to the central priority table (he would rather the
priorities be distributed in each driver), so his objection is duly noted
here.
Reviewed by: bde, obrien
1999-02-10 00:04:13 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
1998-09-15 08:16:17 +00:00
|
|
|
|
|
|
|
ds->device_number = devstat_current_devnumber++;
|
|
|
|
ds->unit_number = unit_number;
|
2002-10-17 20:03:38 +00:00
|
|
|
strlcpy(ds->device_name, dev_name, DEVSTAT_NAME_LEN);
|
1998-09-15 08:16:17 +00:00
|
|
|
ds->block_size = block_size;
|
|
|
|
ds->flags = flags;
|
|
|
|
ds->device_type = device_type;
|
Add a prioritization field to the devstat_add_entry() call so that
peripheral drivers can determine where in the devstat(9) list they are
inserted.
This requires recompilation of libdevstat, systat, vmstat, rpc.rstatd, and
any ports that depend on the devstat code, since the size of the devstat
structure has changed. The devstat version number has been incremented as
well to reflect the change.
This sorts devices in the devstat list in "more interesting" to "less
interesting" order. So, for instance, da devices are now more important
than floppy drives, and so will appear before floppy drives in the default
output from systat, iostat, vmstat, etc.
The order of devices is, for now, kept in a central table in devicestat.h.
If individual drivers were able to make a meaningful decision on what
priority they should be at attach time, we could consider splitting the
priority information out into the various drivers. For now, though, they
have no way of knowing that, so it's easier to put them in an easy to find
table.
Also, move the checkversion() call in vmstat(8) to a more logical place.
Thanks to Bruce and David O'Brien for suggestions, for reviewing this, and
for putting up with the long time it has taken me to commit it. Bruce did
object somewhat to the central priority table (he would rather the
priorities be distributed in each driver), so his objection is duly noted
here.
Reviewed by: bde, obrien
1999-02-10 00:04:13 +00:00
|
|
|
ds->priority = priority;
|
Run a revision of the devstat interface:
Kernel:
Change statistics to use the *uptime() timescale (ie: relative to
boottime) rather than the UTC aligned timescale. This makes the
device statistics code oblivious to clock steps.
Change timestamps to bintime format, they are cheaper.
Remove the "busy_count", and replace it with two counter fields:
"start_count" and "end_count", which are updated in the down and
up paths respectively. This removes the locking constraint on
devstat.
Add a timestamp argument to devstat_start_transaction(), this will
normally be a timestamp set by the *_bio() function in bp->bio_t0.
Use this field to calculate duration of I/O operations.
Add two timestamp arguments to devstat_end_transaction(), one is
the current time, a NULL pointer means "take timestamp yourself",
the other is the timestamp of when this transaction started (see
above).
Change calculation of busy_time to operate on "the salami principle":
Only when we are idle, which we can determine by the start+end
counts being identical, do we update the "busy_from" field in the
down path. In the up path we accumulate the timeslice in busy_time
and update busy_from.
Change the byte_* and num_* fields into two arrays: bytes[] and
operations[].
Userland:
Change the misleading "busy_time" name to be called "snap_time" and
make the time long double since that is what most users need anyway,
fill it using clock_gettime(CLOCK_MONOTONIC) to put it on the same
timescale as the kernel fields.
Change devstat_compute_etime() to operate on struct bintime.
Remove the version 2 legacy interface: the change to bintime makes
compatibility far too expensive.
Fix a bug in systat's "vm" page where boot relative busy times would
be bogus.
Bump __FreeBSD_version to 500107
Review & Collaboration by: ken
2003-03-15 21:59:06 +00:00
|
|
|
binuptime(&ds->creation_time);
|
2003-03-18 09:20:20 +00:00
|
|
|
devstat_generation++;
|
1998-09-15 08:16:17 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Remove a devstat structure from the list of devices.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
devstat_remove_entry(struct devstat *ds)
|
|
|
|
{
|
|
|
|
struct devstatlist *devstat_head;
|
|
|
|
|
2003-03-18 09:20:20 +00:00
|
|
|
mtx_assert(&devstat_mutex, MA_NOTOWNED);
|
1998-09-15 08:16:17 +00:00
|
|
|
if (ds == NULL)
|
|
|
|
return;
|
|
|
|
|
2003-03-18 09:20:20 +00:00
|
|
|
mtx_lock(&devstat_mutex);
|
1998-09-15 08:16:17 +00:00
|
|
|
|
|
|
|
devstat_head = &device_statq;
|
|
|
|
|
|
|
|
/* Remove this entry from the devstat queue */
|
2003-03-18 09:20:20 +00:00
|
|
|
atomic_add_acq_int(&ds->sequence1, 1);
|
2003-03-18 09:30:31 +00:00
|
|
|
if (ds->id == NULL) {
|
|
|
|
devstat_num_devs--;
|
|
|
|
STAILQ_REMOVE(devstat_head, ds, devstat, dev_links);
|
|
|
|
}
|
2003-03-18 09:20:20 +00:00
|
|
|
devstat_free(ds);
|
|
|
|
devstat_generation++;
|
|
|
|
mtx_unlock(&devstat_mutex);
|
1998-09-15 08:16:17 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Record a transaction start.
|
Run a revision of the devstat interface:
Kernel:
Change statistics to use the *uptime() timescale (ie: relative to
boottime) rather than the UTC aligned timescale. This makes the
device statistics code oblivious to clock steps.
Change timestamps to bintime format, they are cheaper.
Remove the "busy_count", and replace it with two counter fields:
"start_count" and "end_count", which are updated in the down and
up paths respectively. This removes the locking constraint on
devstat.
Add a timestamp argument to devstat_start_transaction(), this will
normally be a timestamp set by the *_bio() function in bp->bio_t0.
Use this field to calculate duration of I/O operations.
Add two timestamp arguments to devstat_end_transaction(), one is
the current time, a NULL pointer means "take timestamp yourself",
the other is the timestamp of when this transaction started (see
above).
Change calculation of busy_time to operate on "the salami principle":
Only when we are idle, which we can determine by the start+end
counts being identical, do we update the "busy_from" field in the
down path. In the up path we accumulate the timeslice in busy_time
and update busy_from.
Change the byte_* and num_* fields into two arrays: bytes[] and
operations[].
Userland:
Change the misleading "busy_time" name to be called "snap_time" and
make the time long double since that is what most users need anyway,
fill it using clock_gettime(CLOCK_MONOTONIC) to put it on the same
timescale as the kernel fields.
Change devstat_compute_etime() to operate on struct bintime.
Remove the version 2 legacy interface: the change to bintime makes
compatibility far too expensive.
Fix a bug in systat's "vm" page where boot relative busy times would
be bogus.
Bump __FreeBSD_version to 500107
Review & Collaboration by: ken
2003-03-15 21:59:06 +00:00
|
|
|
*
|
|
|
|
* See comments for devstat_end_transaction(). Ordering is very important
|
|
|
|
* here.
|
1998-09-15 08:16:17 +00:00
|
|
|
*/
|
|
|
|
void
|
Run a revision of the devstat interface:
Kernel:
Change statistics to use the *uptime() timescale (ie: relative to
boottime) rather than the UTC aligned timescale. This makes the
device statistics code oblivious to clock steps.
Change timestamps to bintime format, they are cheaper.
Remove the "busy_count", and replace it with two counter fields:
"start_count" and "end_count", which are updated in the down and
up paths respectively. This removes the locking constraint on
devstat.
Add a timestamp argument to devstat_start_transaction(), this will
normally be a timestamp set by the *_bio() function in bp->bio_t0.
Use this field to calculate duration of I/O operations.
Add two timestamp arguments to devstat_end_transaction(), one is
the current time, a NULL pointer means "take timestamp yourself",
the other is the timestamp of when this transaction started (see
above).
Change calculation of busy_time to operate on "the salami principle":
Only when we are idle, which we can determine by the start+end
counts being identical, do we update the "busy_from" field in the
down path. In the up path we accumulate the timeslice in busy_time
and update busy_from.
Change the byte_* and num_* fields into two arrays: bytes[] and
operations[].
Userland:
Change the misleading "busy_time" name to be called "snap_time" and
make the time long double since that is what most users need anyway,
fill it using clock_gettime(CLOCK_MONOTONIC) to put it on the same
timescale as the kernel fields.
Change devstat_compute_etime() to operate on struct bintime.
Remove the version 2 legacy interface: the change to bintime makes
compatibility far too expensive.
Fix a bug in systat's "vm" page where boot relative busy times would
be bogus.
Bump __FreeBSD_version to 500107
Review & Collaboration by: ken
2003-03-15 21:59:06 +00:00
|
|
|
devstat_start_transaction(struct devstat *ds, struct bintime *now)
|
1998-09-15 08:16:17 +00:00
|
|
|
{
|
2003-03-18 09:20:20 +00:00
|
|
|
|
|
|
|
mtx_assert(&devstat_mutex, MA_NOTOWNED);
|
|
|
|
|
1998-09-15 08:16:17 +00:00
|
|
|
/* sanity check */
|
|
|
|
if (ds == NULL)
|
|
|
|
return;
|
|
|
|
|
2003-03-18 09:20:20 +00:00
|
|
|
atomic_add_acq_int(&ds->sequence1, 1);
|
1998-09-15 08:16:17 +00:00
|
|
|
/*
|
|
|
|
* We only want to set the start time when we are going from idle
|
|
|
|
* to busy. The start time is really the start of the latest busy
|
|
|
|
* period.
|
|
|
|
*/
|
Run a revision of the devstat interface:
Kernel:
Change statistics to use the *uptime() timescale (ie: relative to
boottime) rather than the UTC aligned timescale. This makes the
device statistics code oblivious to clock steps.
Change timestamps to bintime format, they are cheaper.
Remove the "busy_count", and replace it with two counter fields:
"start_count" and "end_count", which are updated in the down and
up paths respectively. This removes the locking constraint on
devstat.
Add a timestamp argument to devstat_start_transaction(), this will
normally be a timestamp set by the *_bio() function in bp->bio_t0.
Use this field to calculate duration of I/O operations.
Add two timestamp arguments to devstat_end_transaction(), one is
the current time, a NULL pointer means "take timestamp yourself",
the other is the timestamp of when this transaction started (see
above).
Change calculation of busy_time to operate on "the salami principle":
Only when we are idle, which we can determine by the start+end
counts being identical, do we update the "busy_from" field in the
down path. In the up path we accumulate the timeslice in busy_time
and update busy_from.
Change the byte_* and num_* fields into two arrays: bytes[] and
operations[].
Userland:
Change the misleading "busy_time" name to be called "snap_time" and
make the time long double since that is what most users need anyway,
fill it using clock_gettime(CLOCK_MONOTONIC) to put it on the same
timescale as the kernel fields.
Change devstat_compute_etime() to operate on struct bintime.
Remove the version 2 legacy interface: the change to bintime makes
compatibility far too expensive.
Fix a bug in systat's "vm" page where boot relative busy times would
be bogus.
Bump __FreeBSD_version to 500107
Review & Collaboration by: ken
2003-03-15 21:59:06 +00:00
|
|
|
if (ds->start_count == ds->end_count) {
|
|
|
|
if (now != NULL)
|
|
|
|
ds->busy_from = *now;
|
|
|
|
else
|
|
|
|
binuptime(&ds->busy_from);
|
|
|
|
}
|
|
|
|
ds->start_count++;
|
2003-03-18 09:20:20 +00:00
|
|
|
atomic_add_rel_int(&ds->sequence0, 1);
|
Run a revision of the devstat interface:
Kernel:
Change statistics to use the *uptime() timescale (ie: relative to
boottime) rather than the UTC aligned timescale. This makes the
device statistics code oblivious to clock steps.
Change timestamps to bintime format, they are cheaper.
Remove the "busy_count", and replace it with two counter fields:
"start_count" and "end_count", which are updated in the down and
up paths respectively. This removes the locking constraint on
devstat.
Add a timestamp argument to devstat_start_transaction(), this will
normally be a timestamp set by the *_bio() function in bp->bio_t0.
Use this field to calculate duration of I/O operations.
Add two timestamp arguments to devstat_end_transaction(), one is
the current time, a NULL pointer means "take timestamp yourself",
the other is the timestamp of when this transaction started (see
above).
Change calculation of busy_time to operate on "the salami principle":
Only when we are idle, which we can determine by the start+end
counts being identical, do we update the "busy_from" field in the
down path. In the up path we accumulate the timeslice in busy_time
and update busy_from.
Change the byte_* and num_* fields into two arrays: bytes[] and
operations[].
Userland:
Change the misleading "busy_time" name to be called "snap_time" and
make the time long double since that is what most users need anyway,
fill it using clock_gettime(CLOCK_MONOTONIC) to put it on the same
timescale as the kernel fields.
Change devstat_compute_etime() to operate on struct bintime.
Remove the version 2 legacy interface: the change to bintime makes
compatibility far too expensive.
Fix a bug in systat's "vm" page where boot relative busy times would
be bogus.
Bump __FreeBSD_version to 500107
Review & Collaboration by: ken
2003-03-15 21:59:06 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
devstat_start_transaction_bio(struct devstat *ds, struct bio *bp)
|
|
|
|
{
|
|
|
|
|
2003-03-18 09:20:20 +00:00
|
|
|
mtx_assert(&devstat_mutex, MA_NOTOWNED);
|
|
|
|
|
|
|
|
/* sanity check */
|
|
|
|
if (ds == NULL)
|
|
|
|
return;
|
|
|
|
|
Run a revision of the devstat interface:
Kernel:
Change statistics to use the *uptime() timescale (ie: relative to
boottime) rather than the UTC aligned timescale. This makes the
device statistics code oblivious to clock steps.
Change timestamps to bintime format, they are cheaper.
Remove the "busy_count", and replace it with two counter fields:
"start_count" and "end_count", which are updated in the down and
up paths respectively. This removes the locking constraint on
devstat.
Add a timestamp argument to devstat_start_transaction(), this will
normally be a timestamp set by the *_bio() function in bp->bio_t0.
Use this field to calculate duration of I/O operations.
Add two timestamp arguments to devstat_end_transaction(), one is
the current time, a NULL pointer means "take timestamp yourself",
the other is the timestamp of when this transaction started (see
above).
Change calculation of busy_time to operate on "the salami principle":
Only when we are idle, which we can determine by the start+end
counts being identical, do we update the "busy_from" field in the
down path. In the up path we accumulate the timeslice in busy_time
and update busy_from.
Change the byte_* and num_* fields into two arrays: bytes[] and
operations[].
Userland:
Change the misleading "busy_time" name to be called "snap_time" and
make the time long double since that is what most users need anyway,
fill it using clock_gettime(CLOCK_MONOTONIC) to put it on the same
timescale as the kernel fields.
Change devstat_compute_etime() to operate on struct bintime.
Remove the version 2 legacy interface: the change to bintime makes
compatibility far too expensive.
Fix a bug in systat's "vm" page where boot relative busy times would
be bogus.
Bump __FreeBSD_version to 500107
Review & Collaboration by: ken
2003-03-15 21:59:06 +00:00
|
|
|
binuptime(&bp->bio_t0);
|
|
|
|
devstat_start_transaction(ds, &bp->bio_t0);
|
1998-09-15 08:16:17 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Record the ending of a transaction, and incrment the various counters.
|
Run a revision of the devstat interface:
Kernel:
Change statistics to use the *uptime() timescale (ie: relative to
boottime) rather than the UTC aligned timescale. This makes the
device statistics code oblivious to clock steps.
Change timestamps to bintime format, they are cheaper.
Remove the "busy_count", and replace it with two counter fields:
"start_count" and "end_count", which are updated in the down and
up paths respectively. This removes the locking constraint on
devstat.
Add a timestamp argument to devstat_start_transaction(), this will
normally be a timestamp set by the *_bio() function in bp->bio_t0.
Use this field to calculate duration of I/O operations.
Add two timestamp arguments to devstat_end_transaction(), one is
the current time, a NULL pointer means "take timestamp yourself",
the other is the timestamp of when this transaction started (see
above).
Change calculation of busy_time to operate on "the salami principle":
Only when we are idle, which we can determine by the start+end
counts being identical, do we update the "busy_from" field in the
down path. In the up path we accumulate the timeslice in busy_time
and update busy_from.
Change the byte_* and num_* fields into two arrays: bytes[] and
operations[].
Userland:
Change the misleading "busy_time" name to be called "snap_time" and
make the time long double since that is what most users need anyway,
fill it using clock_gettime(CLOCK_MONOTONIC) to put it on the same
timescale as the kernel fields.
Change devstat_compute_etime() to operate on struct bintime.
Remove the version 2 legacy interface: the change to bintime makes
compatibility far too expensive.
Fix a bug in systat's "vm" page where boot relative busy times would
be bogus.
Bump __FreeBSD_version to 500107
Review & Collaboration by: ken
2003-03-15 21:59:06 +00:00
|
|
|
*
|
|
|
|
* Ordering in this function, and in devstat_start_transaction() is VERY
|
|
|
|
* important. The idea here is to run without locks, so we are very
|
|
|
|
* careful to only modify some fields on the way "down" (i.e. at
|
|
|
|
* transaction start) and some fields on the way "up" (i.e. at transaction
|
|
|
|
* completion). One exception is busy_from, which we only modify in
|
|
|
|
* devstat_start_transaction() when there are no outstanding transactions,
|
|
|
|
* and thus it can't be modified in devstat_end_transaction()
|
|
|
|
* simultaneously.
|
2003-03-18 09:20:20 +00:00
|
|
|
*
|
|
|
|
* The sequence0 and sequence1 fields are provided to enable an application
|
|
|
|
* spying on the structures with mmap(2) to tell when a structure is in a
|
|
|
|
* consistent state or not.
|
|
|
|
*
|
|
|
|
* For this to work 100% reliably, it is important that the two fields
|
|
|
|
* are at opposite ends of the structure and that they are incremented
|
|
|
|
* in the opposite order of how a memcpy(3) in userland would copy them.
|
|
|
|
* We assume that the copying happens front to back, but there is actually
|
|
|
|
* no way short of writing your own memcpy(3) replacement to guarantee
|
|
|
|
* this will be the case.
|
|
|
|
*
|
|
|
|
* In addition to this, being a kind of locks, they must be updated with
|
|
|
|
* atomic instructions using appropriate memory barriers.
|
1998-09-15 08:16:17 +00:00
|
|
|
*/
|
|
|
|
void
|
2010-06-21 09:55:56 +00:00
|
|
|
devstat_end_transaction(struct devstat *ds, uint32_t bytes,
|
Run a revision of the devstat interface:
Kernel:
Change statistics to use the *uptime() timescale (ie: relative to
boottime) rather than the UTC aligned timescale. This makes the
device statistics code oblivious to clock steps.
Change timestamps to bintime format, they are cheaper.
Remove the "busy_count", and replace it with two counter fields:
"start_count" and "end_count", which are updated in the down and
up paths respectively. This removes the locking constraint on
devstat.
Add a timestamp argument to devstat_start_transaction(), this will
normally be a timestamp set by the *_bio() function in bp->bio_t0.
Use this field to calculate duration of I/O operations.
Add two timestamp arguments to devstat_end_transaction(), one is
the current time, a NULL pointer means "take timestamp yourself",
the other is the timestamp of when this transaction started (see
above).
Change calculation of busy_time to operate on "the salami principle":
Only when we are idle, which we can determine by the start+end
counts being identical, do we update the "busy_from" field in the
down path. In the up path we accumulate the timeslice in busy_time
and update busy_from.
Change the byte_* and num_* fields into two arrays: bytes[] and
operations[].
Userland:
Change the misleading "busy_time" name to be called "snap_time" and
make the time long double since that is what most users need anyway,
fill it using clock_gettime(CLOCK_MONOTONIC) to put it on the same
timescale as the kernel fields.
Change devstat_compute_etime() to operate on struct bintime.
Remove the version 2 legacy interface: the change to bintime makes
compatibility far too expensive.
Fix a bug in systat's "vm" page where boot relative busy times would
be bogus.
Bump __FreeBSD_version to 500107
Review & Collaboration by: ken
2003-03-15 21:59:06 +00:00
|
|
|
devstat_tag_type tag_type, devstat_trans_flags flags,
|
|
|
|
struct bintime *now, struct bintime *then)
|
1998-09-15 08:16:17 +00:00
|
|
|
{
|
Run a revision of the devstat interface:
Kernel:
Change statistics to use the *uptime() timescale (ie: relative to
boottime) rather than the UTC aligned timescale. This makes the
device statistics code oblivious to clock steps.
Change timestamps to bintime format, they are cheaper.
Remove the "busy_count", and replace it with two counter fields:
"start_count" and "end_count", which are updated in the down and
up paths respectively. This removes the locking constraint on
devstat.
Add a timestamp argument to devstat_start_transaction(), this will
normally be a timestamp set by the *_bio() function in bp->bio_t0.
Use this field to calculate duration of I/O operations.
Add two timestamp arguments to devstat_end_transaction(), one is
the current time, a NULL pointer means "take timestamp yourself",
the other is the timestamp of when this transaction started (see
above).
Change calculation of busy_time to operate on "the salami principle":
Only when we are idle, which we can determine by the start+end
counts being identical, do we update the "busy_from" field in the
down path. In the up path we accumulate the timeslice in busy_time
and update busy_from.
Change the byte_* and num_* fields into two arrays: bytes[] and
operations[].
Userland:
Change the misleading "busy_time" name to be called "snap_time" and
make the time long double since that is what most users need anyway,
fill it using clock_gettime(CLOCK_MONOTONIC) to put it on the same
timescale as the kernel fields.
Change devstat_compute_etime() to operate on struct bintime.
Remove the version 2 legacy interface: the change to bintime makes
compatibility far too expensive.
Fix a bug in systat's "vm" page where boot relative busy times would
be bogus.
Bump __FreeBSD_version to 500107
Review & Collaboration by: ken
2003-03-15 21:59:06 +00:00
|
|
|
struct bintime dt, lnow;
|
1998-09-15 08:16:17 +00:00
|
|
|
|
|
|
|
/* sanity check */
|
|
|
|
if (ds == NULL)
|
|
|
|
return;
|
|
|
|
|
Run a revision of the devstat interface:
Kernel:
Change statistics to use the *uptime() timescale (ie: relative to
boottime) rather than the UTC aligned timescale. This makes the
device statistics code oblivious to clock steps.
Change timestamps to bintime format, they are cheaper.
Remove the "busy_count", and replace it with two counter fields:
"start_count" and "end_count", which are updated in the down and
up paths respectively. This removes the locking constraint on
devstat.
Add a timestamp argument to devstat_start_transaction(), this will
normally be a timestamp set by the *_bio() function in bp->bio_t0.
Use this field to calculate duration of I/O operations.
Add two timestamp arguments to devstat_end_transaction(), one is
the current time, a NULL pointer means "take timestamp yourself",
the other is the timestamp of when this transaction started (see
above).
Change calculation of busy_time to operate on "the salami principle":
Only when we are idle, which we can determine by the start+end
counts being identical, do we update the "busy_from" field in the
down path. In the up path we accumulate the timeslice in busy_time
and update busy_from.
Change the byte_* and num_* fields into two arrays: bytes[] and
operations[].
Userland:
Change the misleading "busy_time" name to be called "snap_time" and
make the time long double since that is what most users need anyway,
fill it using clock_gettime(CLOCK_MONOTONIC) to put it on the same
timescale as the kernel fields.
Change devstat_compute_etime() to operate on struct bintime.
Remove the version 2 legacy interface: the change to bintime makes
compatibility far too expensive.
Fix a bug in systat's "vm" page where boot relative busy times would
be bogus.
Bump __FreeBSD_version to 500107
Review & Collaboration by: ken
2003-03-15 21:59:06 +00:00
|
|
|
if (now == NULL) {
|
|
|
|
now = &lnow;
|
|
|
|
binuptime(now);
|
|
|
|
}
|
1998-09-15 08:16:17 +00:00
|
|
|
|
2003-03-18 09:20:20 +00:00
|
|
|
atomic_add_acq_int(&ds->sequence1, 1);
|
Run a revision of the devstat interface:
Kernel:
Change statistics to use the *uptime() timescale (ie: relative to
boottime) rather than the UTC aligned timescale. This makes the
device statistics code oblivious to clock steps.
Change timestamps to bintime format, they are cheaper.
Remove the "busy_count", and replace it with two counter fields:
"start_count" and "end_count", which are updated in the down and
up paths respectively. This removes the locking constraint on
devstat.
Add a timestamp argument to devstat_start_transaction(), this will
normally be a timestamp set by the *_bio() function in bp->bio_t0.
Use this field to calculate duration of I/O operations.
Add two timestamp arguments to devstat_end_transaction(), one is
the current time, a NULL pointer means "take timestamp yourself",
the other is the timestamp of when this transaction started (see
above).
Change calculation of busy_time to operate on "the salami principle":
Only when we are idle, which we can determine by the start+end
counts being identical, do we update the "busy_from" field in the
down path. In the up path we accumulate the timeslice in busy_time
and update busy_from.
Change the byte_* and num_* fields into two arrays: bytes[] and
operations[].
Userland:
Change the misleading "busy_time" name to be called "snap_time" and
make the time long double since that is what most users need anyway,
fill it using clock_gettime(CLOCK_MONOTONIC) to put it on the same
timescale as the kernel fields.
Change devstat_compute_etime() to operate on struct bintime.
Remove the version 2 legacy interface: the change to bintime makes
compatibility far too expensive.
Fix a bug in systat's "vm" page where boot relative busy times would
be bogus.
Bump __FreeBSD_version to 500107
Review & Collaboration by: ken
2003-03-15 21:59:06 +00:00
|
|
|
/* Update byte and operations counts */
|
|
|
|
ds->bytes[flags] += bytes;
|
|
|
|
ds->operations[flags]++;
|
1998-09-15 08:16:17 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Keep a count of the various tag types sent.
|
|
|
|
*/
|
1999-09-19 08:28:49 +00:00
|
|
|
if ((ds->flags & DEVSTAT_NO_ORDERED_TAGS) == 0 &&
|
1999-09-18 21:28:09 +00:00
|
|
|
tag_type != DEVSTAT_TAG_NONE)
|
1998-09-15 08:16:17 +00:00
|
|
|
ds->tag_types[tag_type]++;
|
|
|
|
|
Run a revision of the devstat interface:
Kernel:
Change statistics to use the *uptime() timescale (ie: relative to
boottime) rather than the UTC aligned timescale. This makes the
device statistics code oblivious to clock steps.
Change timestamps to bintime format, they are cheaper.
Remove the "busy_count", and replace it with two counter fields:
"start_count" and "end_count", which are updated in the down and
up paths respectively. This removes the locking constraint on
devstat.
Add a timestamp argument to devstat_start_transaction(), this will
normally be a timestamp set by the *_bio() function in bp->bio_t0.
Use this field to calculate duration of I/O operations.
Add two timestamp arguments to devstat_end_transaction(), one is
the current time, a NULL pointer means "take timestamp yourself",
the other is the timestamp of when this transaction started (see
above).
Change calculation of busy_time to operate on "the salami principle":
Only when we are idle, which we can determine by the start+end
counts being identical, do we update the "busy_from" field in the
down path. In the up path we accumulate the timeslice in busy_time
and update busy_from.
Change the byte_* and num_* fields into two arrays: bytes[] and
operations[].
Userland:
Change the misleading "busy_time" name to be called "snap_time" and
make the time long double since that is what most users need anyway,
fill it using clock_gettime(CLOCK_MONOTONIC) to put it on the same
timescale as the kernel fields.
Change devstat_compute_etime() to operate on struct bintime.
Remove the version 2 legacy interface: the change to bintime makes
compatibility far too expensive.
Fix a bug in systat's "vm" page where boot relative busy times would
be bogus.
Bump __FreeBSD_version to 500107
Review & Collaboration by: ken
2003-03-15 21:59:06 +00:00
|
|
|
if (then != NULL) {
|
|
|
|
/* Update duration of operations */
|
|
|
|
dt = *now;
|
|
|
|
bintime_sub(&dt, then);
|
|
|
|
bintime_add(&ds->duration[flags], &dt);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Accumulate busy time */
|
|
|
|
dt = *now;
|
|
|
|
bintime_sub(&dt, &ds->busy_from);
|
|
|
|
bintime_add(&ds->busy_time, &dt);
|
|
|
|
ds->busy_from = *now;
|
|
|
|
|
|
|
|
ds->end_count++;
|
2003-03-18 09:20:20 +00:00
|
|
|
atomic_add_rel_int(&ds->sequence0, 1);
|
1998-09-15 08:16:17 +00:00
|
|
|
}
|
|
|
|
|
2000-04-02 19:08:05 +00:00
|
|
|
void
|
|
|
|
devstat_end_transaction_bio(struct devstat *ds, struct bio *bp)
|
|
|
|
{
|
|
|
|
devstat_trans_flags flg;
|
|
|
|
|
2003-03-18 09:20:20 +00:00
|
|
|
/* sanity check */
|
|
|
|
if (ds == NULL)
|
|
|
|
return;
|
|
|
|
|
2000-04-02 19:08:05 +00:00
|
|
|
if (bp->bio_cmd == BIO_DELETE)
|
|
|
|
flg = DEVSTAT_FREE;
|
|
|
|
else if (bp->bio_cmd == BIO_READ)
|
|
|
|
flg = DEVSTAT_READ;
|
2003-03-18 09:20:20 +00:00
|
|
|
else if (bp->bio_cmd == BIO_WRITE)
|
2000-04-02 19:08:05 +00:00
|
|
|
flg = DEVSTAT_WRITE;
|
2003-03-18 09:20:20 +00:00
|
|
|
else
|
|
|
|
flg = DEVSTAT_NO_DATA;
|
2000-04-02 19:08:05 +00:00
|
|
|
|
|
|
|
devstat_end_transaction(ds, bp->bio_bcount - bp->bio_resid,
|
Run a revision of the devstat interface:
Kernel:
Change statistics to use the *uptime() timescale (ie: relative to
boottime) rather than the UTC aligned timescale. This makes the
device statistics code oblivious to clock steps.
Change timestamps to bintime format, they are cheaper.
Remove the "busy_count", and replace it with two counter fields:
"start_count" and "end_count", which are updated in the down and
up paths respectively. This removes the locking constraint on
devstat.
Add a timestamp argument to devstat_start_transaction(), this will
normally be a timestamp set by the *_bio() function in bp->bio_t0.
Use this field to calculate duration of I/O operations.
Add two timestamp arguments to devstat_end_transaction(), one is
the current time, a NULL pointer means "take timestamp yourself",
the other is the timestamp of when this transaction started (see
above).
Change calculation of busy_time to operate on "the salami principle":
Only when we are idle, which we can determine by the start+end
counts being identical, do we update the "busy_from" field in the
down path. In the up path we accumulate the timeslice in busy_time
and update busy_from.
Change the byte_* and num_* fields into two arrays: bytes[] and
operations[].
Userland:
Change the misleading "busy_time" name to be called "snap_time" and
make the time long double since that is what most users need anyway,
fill it using clock_gettime(CLOCK_MONOTONIC) to put it on the same
timescale as the kernel fields.
Change devstat_compute_etime() to operate on struct bintime.
Remove the version 2 legacy interface: the change to bintime makes
compatibility far too expensive.
Fix a bug in systat's "vm" page where boot relative busy times would
be bogus.
Bump __FreeBSD_version to 500107
Review & Collaboration by: ken
2003-03-15 21:59:06 +00:00
|
|
|
DEVSTAT_TAG_SIMPLE, flg, NULL, &bp->bio_t0);
|
2000-04-02 19:08:05 +00:00
|
|
|
}
|
|
|
|
|
1998-09-15 08:16:17 +00:00
|
|
|
/*
|
|
|
|
* This is the sysctl handler for the devstat package. The data pushed out
|
|
|
|
* on the kern.devstat.all sysctl variable consists of the current devstat
|
|
|
|
* generation number, and then an array of devstat structures, one for each
|
|
|
|
* device in the system.
|
|
|
|
*
|
2003-03-18 09:20:20 +00:00
|
|
|
* This is more cryptic that obvious, but basically we neither can nor
|
|
|
|
* want to hold the devstat_mutex for any amount of time, so we grab it
|
|
|
|
* only when we need to and keep an eye on devstat_generation all the time.
|
1998-09-15 08:16:17 +00:00
|
|
|
*/
|
|
|
|
static int
|
2000-07-04 11:25:35 +00:00
|
|
|
sysctl_devstat(SYSCTL_HANDLER_ARGS)
|
1998-09-15 08:16:17 +00:00
|
|
|
{
|
2003-03-18 09:20:20 +00:00
|
|
|
int error;
|
2003-04-17 15:06:28 +00:00
|
|
|
long mygen;
|
1998-09-15 08:16:17 +00:00
|
|
|
struct devstat *nds;
|
2003-03-18 09:20:20 +00:00
|
|
|
|
|
|
|
mtx_assert(&devstat_mutex, MA_NOTOWNED);
|
1998-09-15 08:16:17 +00:00
|
|
|
|
|
|
|
/*
|
2003-03-18 09:20:20 +00:00
|
|
|
* XXX devstat_generation should really be "volatile" but that
|
|
|
|
* XXX freaks out the sysctl macro below. The places where we
|
|
|
|
* XXX change it and inspect it are bracketed in the mutex which
|
|
|
|
* XXX guarantees us proper write barriers. I don't belive the
|
|
|
|
* XXX compiler is allowed to optimize mygen away across calls
|
|
|
|
* XXX to other functions, so the following is belived to be safe.
|
1998-09-15 08:16:17 +00:00
|
|
|
*/
|
2003-03-18 09:20:20 +00:00
|
|
|
mygen = devstat_generation;
|
1998-09-15 08:16:17 +00:00
|
|
|
|
2003-03-18 09:20:20 +00:00
|
|
|
error = SYSCTL_OUT(req, &mygen, sizeof(mygen));
|
|
|
|
|
2003-08-17 12:06:19 +00:00
|
|
|
if (devstat_num_devs == 0)
|
|
|
|
return(0);
|
|
|
|
|
2003-03-18 09:20:20 +00:00
|
|
|
if (error != 0)
|
|
|
|
return (error);
|
1998-09-15 08:16:17 +00:00
|
|
|
|
2003-03-18 09:20:20 +00:00
|
|
|
mtx_lock(&devstat_mutex);
|
|
|
|
nds = STAILQ_FIRST(&device_statq);
|
|
|
|
if (mygen != devstat_generation)
|
|
|
|
error = EBUSY;
|
|
|
|
mtx_unlock(&devstat_mutex);
|
|
|
|
|
|
|
|
if (error != 0)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
for (;nds != NULL;) {
|
|
|
|
error = SYSCTL_OUT(req, nds, sizeof(struct devstat));
|
|
|
|
if (error != 0)
|
|
|
|
return (error);
|
|
|
|
mtx_lock(&devstat_mutex);
|
|
|
|
if (mygen != devstat_generation)
|
|
|
|
error = EBUSY;
|
|
|
|
else
|
|
|
|
nds = STAILQ_NEXT(nds, dev_links);
|
|
|
|
mtx_unlock(&devstat_mutex);
|
|
|
|
if (error != 0)
|
|
|
|
return (error);
|
|
|
|
}
|
1998-09-15 08:16:17 +00:00
|
|
|
return(error);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Sysctl entries for devstat. The first one is a node that all the rest
|
|
|
|
* hang off of.
|
|
|
|
*/
|
2009-02-03 07:54:42 +00:00
|
|
|
SYSCTL_NODE(_kern, OID_AUTO, devstat, CTLFLAG_RD, NULL, "Device Statistics");
|
1998-09-15 08:16:17 +00:00
|
|
|
|
|
|
|
SYSCTL_PROC(_kern_devstat, OID_AUTO, all, CTLFLAG_RD|CTLTYPE_OPAQUE,
|
2009-02-03 07:54:42 +00:00
|
|
|
NULL, 0, sysctl_devstat, "S,devstat", "All devices in the devstat list");
|
1998-09-15 08:16:17 +00:00
|
|
|
/*
|
|
|
|
* Export the number of devices in the system so that userland utilities
|
|
|
|
* can determine how much memory to allocate to hold all the devices.
|
|
|
|
*/
|
1999-05-03 23:57:32 +00:00
|
|
|
SYSCTL_INT(_kern_devstat, OID_AUTO, numdevs, CTLFLAG_RD,
|
|
|
|
&devstat_num_devs, 0, "Number of devices in the devstat list");
|
2003-04-17 15:06:28 +00:00
|
|
|
SYSCTL_LONG(_kern_devstat, OID_AUTO, generation, CTLFLAG_RD,
|
2000-07-05 07:46:41 +00:00
|
|
|
&devstat_generation, 0, "Devstat list generation");
|
1999-05-03 23:57:32 +00:00
|
|
|
SYSCTL_INT(_kern_devstat, OID_AUTO, version, CTLFLAG_RD,
|
|
|
|
&devstat_version, 0, "Devstat list version number");
|
2003-03-08 19:58:57 +00:00
|
|
|
|
2003-03-18 09:20:20 +00:00
|
|
|
/*
|
|
|
|
* Allocator for struct devstat structures. We sub-allocate these from pages
|
|
|
|
* which we get from malloc. These pages are exported for mmap(2)'ing through
|
|
|
|
* a miniature device driver
|
|
|
|
*/
|
|
|
|
|
2003-03-08 19:58:57 +00:00
|
|
|
#define statsperpage (PAGE_SIZE / sizeof(struct devstat))
|
|
|
|
|
|
|
|
static d_mmap_t devstat_mmap;
|
|
|
|
|
|
|
|
static struct cdevsw devstat_cdevsw = {
|
2004-02-21 21:10:55 +00:00
|
|
|
.d_version = D_VERSION,
|
|
|
|
.d_flags = D_NEEDGIANT,
|
2003-03-08 19:58:57 +00:00
|
|
|
.d_mmap = devstat_mmap,
|
|
|
|
.d_name = "devstat",
|
|
|
|
};
|
|
|
|
|
|
|
|
struct statspage {
|
|
|
|
TAILQ_ENTRY(statspage) list;
|
|
|
|
struct devstat *stat;
|
|
|
|
u_int nfree;
|
|
|
|
};
|
|
|
|
|
|
|
|
static TAILQ_HEAD(, statspage) pagelist = TAILQ_HEAD_INITIALIZER(pagelist);
|
|
|
|
static MALLOC_DEFINE(M_DEVSTAT, "devstat", "Device statistics");
|
|
|
|
|
|
|
|
static int
|
2009-12-29 21:51:28 +00:00
|
|
|
devstat_mmap(struct cdev *dev, vm_ooffset_t offset, vm_paddr_t *paddr,
|
|
|
|
int nprot, vm_memattr_t *memattr)
|
2003-03-08 19:58:57 +00:00
|
|
|
{
|
|
|
|
struct statspage *spp;
|
|
|
|
|
|
|
|
if (nprot != VM_PROT_READ)
|
|
|
|
return (-1);
|
|
|
|
TAILQ_FOREACH(spp, &pagelist, list) {
|
|
|
|
if (offset == 0) {
|
|
|
|
*paddr = vtophys(spp->stat);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
offset -= PAGE_SIZE;
|
|
|
|
}
|
|
|
|
return (-1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct devstat *
|
|
|
|
devstat_alloc(void)
|
|
|
|
{
|
|
|
|
struct devstat *dsp;
|
2009-09-18 13:48:38 +00:00
|
|
|
struct statspage *spp, *spp2;
|
2003-03-08 19:58:57 +00:00
|
|
|
u_int u;
|
|
|
|
static int once;
|
|
|
|
|
2003-03-18 09:20:20 +00:00
|
|
|
mtx_assert(&devstat_mutex, MA_NOTOWNED);
|
2003-03-08 19:58:57 +00:00
|
|
|
if (!once) {
|
2011-01-04 10:59:38 +00:00
|
|
|
make_dev_credf(MAKEDEV_ETERNAL, &devstat_cdevsw, 0, NULL,
|
2003-03-16 23:20:05 +00:00
|
|
|
UID_ROOT, GID_WHEEL, 0400, DEVSTAT_DEVICE_NAME);
|
2003-03-18 09:20:20 +00:00
|
|
|
once = 1;
|
2003-03-08 19:58:57 +00:00
|
|
|
}
|
2009-09-18 13:48:38 +00:00
|
|
|
spp2 = NULL;
|
2003-03-18 09:20:20 +00:00
|
|
|
mtx_lock(&devstat_mutex);
|
|
|
|
for (;;) {
|
|
|
|
TAILQ_FOREACH(spp, &pagelist, list) {
|
|
|
|
if (spp->nfree > 0)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (spp != NULL)
|
2003-03-08 19:58:57 +00:00
|
|
|
break;
|
2003-03-18 09:20:20 +00:00
|
|
|
mtx_unlock(&devstat_mutex);
|
2009-09-18 13:48:38 +00:00
|
|
|
spp2 = malloc(sizeof *spp, M_DEVSTAT, M_ZERO | M_WAITOK);
|
|
|
|
spp2->stat = malloc(PAGE_SIZE, M_DEVSTAT, M_ZERO | M_WAITOK);
|
|
|
|
spp2->nfree = statsperpage;
|
|
|
|
|
2003-03-18 09:20:20 +00:00
|
|
|
/*
|
2009-09-18 13:48:38 +00:00
|
|
|
* If free statspages were added while the lock was released
|
|
|
|
* just reuse them.
|
2003-03-18 09:20:20 +00:00
|
|
|
*/
|
2009-09-18 13:48:38 +00:00
|
|
|
mtx_lock(&devstat_mutex);
|
|
|
|
TAILQ_FOREACH(spp, &pagelist, list)
|
|
|
|
if (spp->nfree > 0)
|
|
|
|
break;
|
|
|
|
if (spp == NULL) {
|
|
|
|
spp = spp2;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* It would make more sense to add the new page at the
|
|
|
|
* head but the order on the list determine the
|
|
|
|
* sequence of the mapping so we can't do that.
|
|
|
|
*/
|
|
|
|
TAILQ_INSERT_TAIL(&pagelist, spp, list);
|
|
|
|
} else
|
|
|
|
break;
|
2003-03-08 19:58:57 +00:00
|
|
|
}
|
|
|
|
dsp = spp->stat;
|
|
|
|
for (u = 0; u < statsperpage; u++) {
|
|
|
|
if (dsp->allocated == 0)
|
|
|
|
break;
|
|
|
|
dsp++;
|
|
|
|
}
|
|
|
|
spp->nfree--;
|
|
|
|
dsp->allocated = 1;
|
2003-03-18 09:20:20 +00:00
|
|
|
mtx_unlock(&devstat_mutex);
|
2009-09-18 13:48:38 +00:00
|
|
|
if (spp2 != NULL && spp2 != spp) {
|
|
|
|
free(spp2->stat, M_DEVSTAT);
|
|
|
|
free(spp2, M_DEVSTAT);
|
|
|
|
}
|
2003-03-08 19:58:57 +00:00
|
|
|
return (dsp);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
devstat_free(struct devstat *dsp)
|
|
|
|
{
|
|
|
|
struct statspage *spp;
|
|
|
|
|
2003-03-18 09:20:20 +00:00
|
|
|
mtx_assert(&devstat_mutex, MA_OWNED);
|
2003-03-08 19:58:57 +00:00
|
|
|
bzero(dsp, sizeof *dsp);
|
|
|
|
TAILQ_FOREACH(spp, &pagelist, list) {
|
|
|
|
if (dsp >= spp->stat && dsp < (spp->stat + statsperpage)) {
|
|
|
|
spp->nfree++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
Run a revision of the devstat interface:
Kernel:
Change statistics to use the *uptime() timescale (ie: relative to
boottime) rather than the UTC aligned timescale. This makes the
device statistics code oblivious to clock steps.
Change timestamps to bintime format, they are cheaper.
Remove the "busy_count", and replace it with two counter fields:
"start_count" and "end_count", which are updated in the down and
up paths respectively. This removes the locking constraint on
devstat.
Add a timestamp argument to devstat_start_transaction(), this will
normally be a timestamp set by the *_bio() function in bp->bio_t0.
Use this field to calculate duration of I/O operations.
Add two timestamp arguments to devstat_end_transaction(), one is
the current time, a NULL pointer means "take timestamp yourself",
the other is the timestamp of when this transaction started (see
above).
Change calculation of busy_time to operate on "the salami principle":
Only when we are idle, which we can determine by the start+end
counts being identical, do we update the "busy_from" field in the
down path. In the up path we accumulate the timeslice in busy_time
and update busy_from.
Change the byte_* and num_* fields into two arrays: bytes[] and
operations[].
Userland:
Change the misleading "busy_time" name to be called "snap_time" and
make the time long double since that is what most users need anyway,
fill it using clock_gettime(CLOCK_MONOTONIC) to put it on the same
timescale as the kernel fields.
Change devstat_compute_etime() to operate on struct bintime.
Remove the version 2 legacy interface: the change to bintime makes
compatibility far too expensive.
Fix a bug in systat's "vm" page where boot relative busy times would
be bogus.
Bump __FreeBSD_version to 500107
Review & Collaboration by: ken
2003-03-15 21:59:06 +00:00
|
|
|
|
|
|
|
SYSCTL_INT(_debug_sizeof, OID_AUTO, devstat, CTLFLAG_RD,
|
2009-02-03 07:54:42 +00:00
|
|
|
NULL, sizeof(struct devstat), "sizeof(struct devstat)");
|